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QUATERNIONS AND THEIR HISTORY

CHAPTER 1
THE ORIGIN OF QUATERNIONS

William Rowan Hamilton was the inventor of quater-
nions. The first complete publication of his work with
quaternions was presented in 1853, However, he had pre-
sented many lectures on quaternions prior to this time.

L believe it is appropriate to present some of the
events that led up to the discovery of quaternions. Hamil-
ton did not regard quaternions as a mathematical system,
but he considered them as a new mathematical method.

Hamilton began working in this area because he felt
there were many difficulties present in the presentation
of negative and imaginary quantities in algebra. He was
familiar with different suggestions proposed for elimi-
nating the difficulties. Some of the suggestions were
the theory of inverse quantities, the method of construct-
ing imaginaries by lines drawn from one point with various
directions in one plane, and a suggestion to explzin them
by algebraic operations and the properties of symbolic
language.

He believed that negatives and imaginaries were not
quantities, but he felt they should have a clear interpre-
tation and meaning. He wanted this to be done in such a
way that it would not be necessary to introduce geometri=-

cal ideas which would involve the idea of an angle.
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Hamilton said, "It early appeared to me that these
ends might be attained by our consenting to regard Algebra
as being no mere Art, nor Languagé, nor primarily a Science
of Quantity; but rather as the Science of Order in Pro-
gression. It was, however, a part bf?this conception, that
the progression here spoken of was understood to be con-
tinuous and unidimensional; extending indefinitely forward
and backward, but not in any lateral direction. And al-
though the successive states of such a progression might
(no doubt) be represented by points upon a line, yet I
thought that their simple successiveness was better con-
ceived by comparing them with moments of time, divested,
however, of all reference to cause and effectj so that the
'time' here considered might be said to be abstract, ideal,
or pure, like that 'space' which is the object of geometry.
In this manner I was led, many years ago, to regard Algebra
as the Science of pure Time." (5, pref. p.2)

Let us consider now some of the ideas expressed in
Hamilton's algebra of time. Let A and B denote any
two moments of time, not necessarily distinct. They could
also be considered to represent dates. Then the equation,
A = B, would be used to indicate that the moments were
identical or the dates equivalent. 1In this representation
there is no reference made to quantity nor does this ex-
press the result of comparing any two durations of time.

It corresponds to the idea of synchronization.



Non-equivalence can be expressed by the formulae,
B>A, or B <A,

The first expression would be interpreted to mean that the
moment B is conceived to be later than the moment A,
and in the second expression the moment B is earlier than
the moment A. Again there is no reference to quantity
or any introduction of a measure to determine how much
later, or how much earlier, one moment is than the other.

Hamilton then introduced the symbol '=', This was
used to form the symbol B = A, which would denote the
difference of two moments, or an interval of time. In
this way the idea of duration, as quantity in time, was
introduced: The full meaning of the symbol B - A, is
not completely known, until there is some idea as to how
long after, or how long before, if at all, B is than A.

Extending this idea further Hamilton interpreted the
equation,

D=-=C=B-A,
to mean that two intervals in time were equivalent. In
other words the moment D is related to the moment C
exactly as the moment B is to the moment A. He &lso
found, by performing a number of transformations and come-
binations, which could be interpreted and justified by
this method of viewing the subject, the accepted rules of
algebra still held. For example, if
C=-D=A-B, thenD - B =C = A,
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The expressions for inequality of differences were,

D-=C>B-AandD -C <B = A,
which meant in the first that D was later, relative to
C, than B to A and in the second D was earlier rela~-
tive to C, than B to A.

Hamilton then introduced a small letter, a. This
was to indicate a step in time. In connection with this
he introduced the symbol, '+'. This symbol was primarily
used to indicate a combination between a step in time a,
and the moment A, from which this step was to be made.
Thus, the equation,

B=a+A, |
would mean that the moment B could be attained by making ~
the step a from the moment, A. A null step, o0, would
produce no effect,

o+ A=A,

Hamilton then realized that the symbol, B =~ A,
which represented an ordinal relation between two moments,
could also be considered as denoting a step from one mo-
ment to another. Thus, he could write,

B =«A=a,
where these are actually two symbols which represent the
same step. We then also have,

a+ A =B,

Thus we get an identity,
(B - A) +A=B,



5
which describes a certain connection between the operations
+» and =-. Namely that we first determine the difference
between two moments as a relation, then apply that dif-
ference as a step. He then introduced the usual notation,
+a and =-a, to indicate the step itself and the opposite
of that step. This proved to be consistent with the general
view,

Hamilton next compared two time-steps by use of the
algebraic ratio. This was to present a new relation which
was the idea of a quotient. This was determined partly by
their relative largeness and partly by their relative direc-
tion. This "number" found by taking the ratio of two
time-steps was found to be closely related to the idea of
an "algebraic number". (It appears that what Hamilton
called an "algebraic number" is actually a real number.)

It operates on the quantity and the direction of one step
to generate or produce the quantity and direction of the
other step. Thus in symbolic form, if the ratio of two
time-steps is indicated by,
b/a = q,

then we get the identities,

b/a x a = b or a x a = b,
Thus a is a positive or negative number, depending on
whether it preserved or reversed the direction of the
steps on which it operated.

Hamilton then defined operations on "algebraic numbers"
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and these operations were made to depend on operations of
the same names on steps. Thus any operations on two alge=-
braic numbers could be interpreted in terms of his alge-
bra of time. His definitions were, given any two algebraic
numbers a and B;

(e +B) xa=(axa)+(pxa);
(a =B) xa=(axa)=-(Bxa);
(a x B) xa=ax (Bxa);
:B)=(axa)>(Bpxa).

The results derived from this were found to agree again with

——
Q
]

the accepted rules of algebra. Specifically the product

of two negative numbers would be equal to a positive num~
ber. This simply meant, in his view, that two successive
reversals restored the direction of a step. It is impor-
tant to note here that in this view of algebra also, the

square of every number is positive, and therefore no num=
ber, whether positive or negative, could be a square root
of a negative number.

Since no number could be the square root of a nega=-
tive number Hamilton began comparing pairs of moments.
This would lead to pairs of steps and thus to pair# of
numbers. Thus he was led to the expression,

(B)sBy) = (A),Ay) = (B) = A}, By = A,).
This expresses that the ordinal relation of one momentepair

to another moment-pair is a system of two ordinal relations
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B, - A, and B, - A,. Where the primary moment B, is

compared with the primary moment Al' and the secondary

moment B, is compared with the secondary moment Aye

This same relation would define a step couple such
that,
(81’32) - (Al’A2) = (al.az). and
(BysBy) = (a),3,5) + (A},A,),  thus
(BysBy) = ((B4By) = (A1,A5)) + (A),4,).
In this way a moment pair was generated by adding a moment
pair to a step pair.
He found no difficulty in interpreting formulae for
multiplication and division such as,
a x (aj,ay) = (aa,,aa,) and
(aaj,aay) + (aj,2,) = a
where a is a number, positive or negative, and 3,2,
are any two steps in time. However, Hamilton ran into
difficulty when he tried to interpret the division of two
step-pairs, of the form;
(bysby) = (a5,a,)
where bl.b2 represented two steps which could not be
derived from aj.a, by multiplication by any single number
Thus he was led to introduce the idea of a number-pair

such as (al.az). Any single number a, was represented
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as a degenerate form, namely (a,0). This was necessary
so that it would correspond to multiplication of a number
by a step=-pair, thus

(a,0) x (al.a2) = (aal.aaz).

He also wrote every step-pair as the sum of a pure
primary and a pure secondary, and every number-pair as the
sum of a pure primary and a pure secondary, such as;

(al.az) = (al,O) + (0,02).
He was then led to the formula for the multiplication of
an arbitrary number-pair, by a primary step, such as;
(al,az)(a.o) = (ala,aza) .
He also defined the product of a pure secondary number-
pair and a pure secondary step-pair to be,
(0032)(0032) - ('azazoo) ’
which was found to be consistent with his interpretations. .,
Thus the formula for multiplication of a number-pair by a

step-pair was found to be,

(alaa2)(aloa2) = {(alto) + (0032)}{(31o0) + (0032)}
= (aloo)(aloo) + (aloo)(ona2) + (0,02)(0,ﬂ2)

+ (Ovaz)(alvo)

(alal.o) + (O,a2al) + (O.alaz) + (-0202.0)
= (alal = Gyay , aya) + “1“2) .

With this formula the quotient of two step-pairs could



always be interpreted as a number-pair.

The two factors, (1,0) and (0,1), were then
considered to be called respectively the primary unit,
and the secondary unit, of number, becausej;

(1,0)(a,b) = (a,b) and (0,1)(a,b) = (=b,a).
Also, (0,1)2 (a,b) = (0,1) {(0,1)(a,b)}
(0,1)(=b,a)

(=a,=b)

(-1,0)ta;b),

and thus, (0,1)2 = (-1,0) = -1.

In this way then (0,1) was considered to be ~<-1, with~
out any notion of it being imaginary. Consequently, Hamil~-
ton was led to the conclusion that any number couple,

(ajsay), could be written as, ay + N1 ay .

After working with number-pairs he became very inter=-
ested to find out if it might be possible to extend this
to number-triads. He made this extension using a similar
line of reasoning, beginning first with moment-triads,
then developed step-triads, and finally to the number-
triads.

Thus he found three distinct and independent unite-
numbers, namely; (1,0,0), (0,1,0), and (0,0,1) which
he called respectively the primary unit, the secondary
unit, and the tertiary unit. He eventually adopted the

notation 1, i, and j to represent these unit-numbers.
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His numerical triplet then took the form, x + iy + jz,
where he interpreted_ X, Y, z as three rectangular co-
ordinates, and the triplet itself as a line in three-dimen-
sional space. “fﬁ

Tﬁe theory of three-dimensional space had been pre-
viously developed,éhd mainly began with Argand in 1806.
Other writers had worked on fhis, but Hamilton wanted to
express his thebry'in some new and‘usgful way. His theory
differs mainly in the concept of the product of two triples.
With this in miﬁd Hamilton‘began working with triplets as
lines in three-dimensional space, and wanted to obtain a
concise expression for the multiplication of these lines.,
He wanted to retain the distributive principle, with which
some eariier systems had been inconsistent, and he at
fir;t asshmed that he could retain the commutative princi-
ple also.

In the triplet, x + iy + jz, in’order that this
could be somewhat analogous to his development of lines in
two-dimensional space, he assumed that 12 = -1 and
j2 = =1, The interpretation of 12 and 32 was such that
12 was a rotation through two right angles in the xy=-plane
and j2 was a similar rotation.in the xz-plane. This
interpretation is seen to be valid, for if we consider

any line a + ib in the xy-plane, and multiply this line

by 12. wo got
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i2(a+ib) = -1(a+ib)
= -(a+ib).
Hence the line has been rotated through two right angles.
Similarly, for any line x + jz in the xz-plane. Thus
Hamilton regarded the unit-numbers i and j as opera-
tors.

Hamilton also assumed that ij = ji. Under these
restrictions the product appeared to take the form;

(a + ib + jc)(x + iy + jz) = (ax = by - cz) + i(ay + bx)
+ jlaz + cx) + ij(bz + cy).

From his theory of triplets it appeared that 1ij should

also be a triplei such that;

ij = (e + if + jg), where e,f,g, were three constants

to be determined.

Hamilton then tried to determine these constants, so
as to adopt in the best way the resulting formula of
multiplication to some guiding geometrical analogies.

He first considered a case where the coordinates b,c
were proportional to vy,z. If we let y=Ab and z = )\c,
where A is any real number, then for the product of the
two lines, we get
(a + ib + jc)(x + i\b + JAe) = (ax = Ab? = Ac?)

+ i(abh + bx) + j(ach + cx) + 1j(bch + be))

= (ax = Ab? = A¢?)

+ i[b(an + x)] + jlc(ax + x)] + 1j(2ber).

For the coefficients of 1, i, and j he found that,



12

(a2 + b2+ c2)(x + h2b2 + A2c2) = (a2 2, k2b4 + Azc

2b2k2c2) 4 (azkzb2 +b x2) + (a2k2 2,¢ x2) = (a 2

+

- 2axab? + 2%p% - 2axac? + 2%? + 2622%2) + (2222

+ 2axkb2 + b H~(a212 2, 2axkc2 +c x2) (ax = Abz
- Acz) + [b(a) + x)]2 + [clan + x)]2 "

Thus Hamilton concluded that in this case the triplet,
(ax = by = ¢z) + i(ay + bx) + j(az + cx) denoted a line
which might, consistent with known analogies, be regarded
as the product of the two lines if the fourth term

ij(bz + cy) did not appear. He thought that ij = O
might be an answer.

Hamilton was not completely satisfied with this, so
he assumed that ij = = ji or that ij = k and ji = =k
where the value of k was still undetermined.. In this
case the product of triplets became,

(a + ib + je)(x + iy + jz) = (ax = by = ¢z) + i(ay + bx)

+ jlaz + ¢cx) + k(bz - cy).
This representation led to the following identity in the[
coefficients of 1,i,j,k;

(824 b2 4 c2)(x2 + y2 + 22) = a22 + a2y2 4+ 22,2 4 p22

+ b2y2 + b222 + c2x2 + c2y2 + c2z2 = (a2x2 - 2axby
4 b2y2 - 2axcz + c2z2 + 2czby) + (a2y2 + 2axby
+ b x2) + (a + 2axcz + ¢ x2) + (b2 2. 2czby

+ c2y2) = (ax = by - cz)2 + (ay +bx)2 + (az + cx)2

+ (bz - CY)2 °
This led Hamilton to believe that instead of confining
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himself to triplets, such as a + ib + jc  he should regard
these as only imperfect forms of guaternions, such as
a + ib + jc + kd. Where the symbol k represents some
new unit operator. Thus he found it necessary to fix the
value of the square, k2. and also the values of the
products, ik, jk, ki, kj; so he could operate with
quaternions.

Hamilton already knew that, 12 = j2 = -1 and that

ij =k and ji = =k. He then assumed that, ,
ki = =ik = =i(1j) = 1% = j, and kj = =3k = j(Ji) =j2i=-i
To remain consistent he found that,
k2 = (13)(13) = -i(13)3 = (~1253 = =(~1)(-1) = -1.
Therefore, Hamilton now had that;
122 3% = k% =215 85 = =51 = k; jk = <kj = i3 ki = -ik = j.
From these he now had the equation,
(a + ib + jc + kd)(a' + ib' + jc' + kd')= a" + ib" +jc"+kd",
where; a" = aa' = bb' - cc' - dd!

b" = (ab' + ba') + (cd' = dc')

c" = (ac' + ca') + (db' = bd')

d" = (ad' + da') + (bc' = cb') .

He also found that;
(a2+024c24d?) (a'24b124c 12491 2) = (an24pn2icn2ign2)
At this point Hamilton became aware of the fact that
if, instead of representing a line by x + iy + jz, we
would represent it by ix + jy + kz, we could express the

product of two lines in space by a quaternion which would
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have a very simple geometrical interpretation. Thus,
(ix + jy + kz)(ix" + jy' + kz') = w" + (ix" + jy" + kz"),
where, w" = =xx' = yy' - zz2'; x" = yz' -« zy';
y" = zx' - xz'; z" = xy' - yx'.

Hamilton's interpretation was, "that the part w",
independent of i, j, k, in this expression for the pro-
duct, represents the product of the lengths of the two
factor-lines, multiplied by the cosine of the supplement
of their inclination to each other; and the remaining part

Ax" + jy" + kz" of the same product of the two trinomials

represents a line, which is in length the product of the

clination, while in direction it is perpendicular to the

plane of the factor-lines, and is such that the rotation

round the multiplier~line, from the multiplicandqlihe

towards the product-line (or towards the line-part of the
whole quaternion product), has the same right-handed (or

left-handed) character, as the rotation round the posi=-
tive semiaxis of k (or of z), from the positive semiaxis
of i (or of x), *owards that of Jj (or of y)."
(5, Pref. p.47)

With this developed Hamilton thenfelt he had a new
instrument for applying calculation to geometry.

It is important to note that Hamilton's product of

two lines in three~dimensional space can be written in the
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following way; if a,p are two lines in space, such that,

ai + bj +ck, and B =a'i + b'j + c'k, then

a
af = aXp = a « B. Where,
aXp = (bc' = cb')i + (ca' = ac')j + (ab' - ba')k,

is the usual vector product or outer product of a,B, and
@+ B =aa' + bb' + cc', is the scalar product or inner
product of @ and PB. It was largely because of this
identity, that much of the present day three-dimensional
vector analysis was written in the language of quaternions

in the half-century 1850-1900. (1, p.237-38)

The remaining part of this theses will be a discussion

of the way quaternions fit into modern algebraic theory.
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CHAFTER 11
QUATERNIONS AS A DIVISION ALGEEBRA

Real quaternions will be defined as quadruples,
(a,b,c,d), where a,b,c,d are real numbers. Two real
quaternions x = (a,b,c,d) and y = (a',b',c',d') are
equal if and only if a = a', b= b', c =c¢', and d = d'.
DEFINITION: If x = (a,b,c,d) and y = (a',b',c',d'),
then x +y=(a+a', b+b',c+c',d+d"). (7,p.60)
DEFINITION: A system Q having one closed operation,
'+', such that

(i) for all x,y,z € Q, x + (y+z) = (x+y) +z,
(ii) for all x,y €Q, x + y =y + x,
(iii) there exists an identity element 0, such
that, 0 + x = x = x + 0, for all x€ Q,
(iv) for every x € Q, there exists an inverse
-x, such that,
x + (=x) = 0= (-x) + x,
is called a commutative group. (4,p.18)
THEOREM 1. The set Q of all real quaternions with the
operation, '+', is a commutative group.
Proof. From the definition it is seen that addition is a
closed operation.
(i) 1f x = (a,b,c,d), y = (a',b',c',d'), and

z= (a",b",c",d"), then
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x + (y+z) = (a,b,c,d) + {(a',b',c',d") +(a",b",c",d")}
= (a,b,c,d) + (a'+a", b'+b", c'+c", d'+d")
= (a+(a'+a"), b+(b'+b"), c+(c'+c"), d+(d'+d")).
But a,b, etc. are real numbers which we know are associa-
tive, thus
x + (y+z) = ((a+a')+a", (b+b')+b", (c4c')+c®, (d+d')+d")

= (a+a', b+b', ctc', d+d')+ (a",b",c",d")

i

(x+y)+z,
Therefore the set Q of all real quaternions is associa=-
tive with respect to addition.
(ii) I1f x = (a,b,c,d) and y = (a',b',c",d'), then

X +y = (a,b,c,d) + (a',b',c',d") =(a+a',b+b',c+c'd+d').
But a,b, etc. are real numbers which we know are commuta=-
tive, thus
x +y = (a'+a, b'+b, c'+c, d'+d)

= (a', b', ¢', d') + (a,b,c,d)

=y + x.
Therefore the set Q of all real quaternions is commuta-
tive with respect to addition.
(iii) Let 6 be a real quaternion (a', b', ¢', d') and
let a' =0pb'=¢'=d'=0, then 6 = (0,0,0,0)
If x 4is any real quaternion such that x = (a,b,c,d),
then x + 6 = (a,b,c,d) + (0,0,0,0)

=(a+0,b+0,c+0,d+0).

But since a,b,c,d,0 are real numbers

x + 0 =(a,b,c,d) = x.
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In (ii) it was shown that real quaternions are commutative,
thus x + 0 = 0 + x. Therefore, x + 0 = x = 06 + x and
there exists an additive identity.
(iv) If x 1is any real qguaternion such that,
x = (a,b,c,d), then define -x = (-a,=b,-c,=d). Thus,
x + (-x) = (a,b,c,d) + (=a,=b,=c,~d)

= (a+(=a), b+(=b), c+(=c), d+(-d)).
But since a,b,c,d are real numbers,
x + (-x) = (0,0,0,0)

= @, and since real quaternions are commutative,
x + (=x) = (=x) + x.
Therefore, x + (-x) = 8 = (-x) + x, and there exists for
every x € Q an additive inverse -x.
Thus the set Q of all real quaternions forms a commutative
group with respect to addition.
THEOREM 2. In any group the identity element is unique.
Proof. Assume that 61 and 92 are both identity elements

Since 91 is an identity element,
0, + 6, =6, .
Since 92 is an identity element,
91 + 6, =06
Therefore el = 6,, and the identity element is unique.

(8,p.49)
THEOREM 8; If y = (a',b',c',d') 1is any real quaternion,
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then y = 0, where 6 is the additive identity element,
if and only if a' =b' =c¢' = d' = 0.

Proof. If a' =Db'=¢' =d' =0, then y = (0,0,0,0)
which by Theorem 1(iii) is the identity .

If y=0, then since 0 is the additive identity
element and by Theorem 2 this is unique, y = (0,0,0,0).
But this means that, (0,0,0,0) = (a',b',c',d'), which
can only be true if a' = Db' = c¢' = d' = 0. Therefore if
y = (a',b',c",d') 1is any real quaternion then y is the
additive identity element (0,0,0,0) 4if and only if
a' =p' =¢' =4d'=0.

THEOREM 4, 1In any group if x + y = x + z, then y = z.
Proof. If x 4+ y =x + z, add the inverse of x to both
sides, then (-x) + (x+y) = (-x) + (x+z)

{(-x)+x} + y = {(-x)+x} + z, by the associa-
tive law 6 +y=0+ 2z,

Y = z.

THEOREM 5. 1In any group the inverse is unique.
Proof. Assume xy; and Xy are two inverses of x, then
x + %) = 0 and x + Xy = 0. Thus x + Xy = x + xoy and
by Theorem 4, Xy = Xoe
Therefore in any group the inverse is unique. (8, p.50)
DEFINITION., If m 4is any real number and x = (a,b,c,d)
is any real quaternion, then mx = (ma, mb, mc, md). This
is called scalar multiplication. (3, p.125)
DEFINITION: A system V = {V, F, +, «, ®, ©} is called a
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vector space over the field F if and only if,

(a) {F; +, «} 1is a field E whose identity

elementérare denoted by 0 and 1j;

(b) {v; ®} is a commutative group whose identity

element is denoted 0;

(¢) for all m, n €F and all x, y €V, m « x G

and (1) (m+n)@x=(m@x) d(m@ x),

(i) mO(x®y)=(m@x) ® (mOy),

(iii) (mn) @ x =m @ (n @ x),

(iv) 1@ x = x. (4, p.26)
THEOREM 6. The set Q of all real quaternions is a vector
space over the field F of all real numbers.
Proof. In this proof I will omit the symbols @ and @,
and there is no ambiguity.

(a) The real numbers form a field whose identity
elements are O and 1.

(b) The set Q of all real quaternions forms a
commutative group with identity element 6 = (0,0,0,0),
by Theorem 1.

(¢) If m,n are any real numbers and x,y are
any real quaternions, then m+ n and m ¢ n  are also
real numbers. |

(i) If x = (a,b,c,d), then by definition of scalar
multiplication, |
(m#n)}x = ((m+n)a, (m+n)b, (m+n)c, (m+n)d).

Since m,n,a,b,c,d are real numbers we have the distributive



law, thus

(m+n)x = (ma + na, mb + nb, mc + nc, md + nd),
and from the definition of addition we get

(m+n)x = (ma, mb, mc, wmd) + (na, nb, nc, nd)

m(a,b,c,d) + n(a,b,c,d),

]

= mx + N¥Xe
(ii) If x= (a,b,c,d) and y = (a',b',c',d'), then
m(x+y) = m(a+a', b+b', c+c', d+d'), by the defini-
tion of addition. From the definition of scalar multi-
plication, we get
m{x+y) = (m(a+a'), m(b+b'), m(c+c'), m(d+d')).
Since m,a,b, etc. are real numbers we have the distribue=
tive law, thus
m(x+y; = (ma+ma', mb+mb', mc+mc', mdvmd')
= (ma, mb, mc, md) + (ma', mb', mc', md')
= m(a,b,c,d) + m(a', b', ¢, d')
= mx + my.
(iii) 1f x = (a,b,c,d) is any real quaternion, then
(mn)x = mn(a,b,c,d)
= ((mn)a, (mn)b, (mn)c, (mn)d).
Since m,n,a,b,c,d are real numbers they are associeative,
then (mn)x = (m(na), m(nb), m(nc), m(nd))
= m(na, nb, nc, nd)
= m(n(a,b,c,d))

= m(nx).
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(iv) 1f x = (a,b,c,d) is any real quaternion, then
lex = le(a,b,c,d)
= (la, lb, lc, 1d).
Since 1l,a,b,c,d are real numbers, then
lex = (a,b,c,d)
= X
Therefore the set Q of all real quaternions forms a
vector space over the field of real numbers.
THEOREM 7. In any vector space if © denotes the zero
vector, and if «-x denotes the group inverse of x, then
for all x €V, m€F,
(i) 0« x = 0,
(i1) (-1)x = -x,

(1ii) md = 0.
Proof.
(i) x = lex, by Theorem 6 (iv),
= (1+0)x

=1 ¢ x4+ 0+ x, by Theorem 6 (i),
=x + 0 « x, by Theorem 6, (iv).
By adding -x to both sides, we get
(=x) + x = (=x) + (x + 0 * x)
= {(=x) + x} + 0 ¢ x
6 =06+0 ¢ x
=0 * x.
(ii) x + (=1)x =1 « x + (=1)x, by Theorem 6 (iv),
= {1 + (-1}x, by Theorem 6 (i),
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=0 « x
=0, by (i) above.
Thus (-1)x is an inverse of x and by Theorem 5 this
inverse is unique, therefore (~=l)x = -x.
(1ii) m 8 = m{x + (=x)}
= mx + m(~-x)
=mx + m(-1x), by (ii),
= mx + {m(-1)}x, by associativity,
= mx + (-mx)
= 0 (4, p.27)
DEFINITION: A set {xjsese,x,} oOf vectors issaid to be
linearly independent if and only if the equation
a1%; + eeo +a x = 0 implies that a) = weo =a_ = 0.
(4, p.32)
THEOREM 8. The vectors 1 = (1,0,0,0), i = (0,1,0,0),

n

j=(0,0,1,0), and k = (0,0,0,1) are linearly independent.
Proof. If a,b,c,d are any real numbers then
a.l+beitcej+dek = a(1,0,0,0)+b(0,1,0,0)+c(0,0,1,0)+d(0,0,01)
= (e,0,0,0)+(0,b,0,0)+(0,0,¢,0)+(0,0,0,d)
= (a,b,c,d).
By Theorem 3, (a,b,c,d) = 0 if and only if a=b=c=d=0.
Therefore the vectors 1,i,j,k are linearly independent.
DEFINITION. If an independent set cannot be extended to
a larger independent set it is called a maximal indepen-

dent set. (4, p.34)
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THEOREM 9. The vectors 1,i,j,k are a maximal independent
set.
Proof. Assume there exists another vector p such that
1,i,j,k,p are linearly independent, then
ael + bei + coj + dek + eep=0 implies a=b=c=d=e
=0, Let p=(a', b', ¢', d') and from Theorem 8
@ael + bei + cej + dek = (a,b,c,d), thus
(a,b,c,d) + (ea', eb', ec', ed') = 0. This says that
e(a', b', ¢', d') is an additive inverse of (a,b,c,d).
By Theorem 5, this inverse is unique, thus ea' =-a,eb'=-b,
ec'==c, and ed'=-d. Therefore the expression can be
equal to O if e # o, and the vectors 1,i,j,k are a
maximal independent set.
DEFINITION. A maximal linearly independent subset of a
vector space V is called a basis of V. (4, p.36)

Therefore by Theorems 8 and 9 the vectors 1,i,j,k
form a basis for the set Q of all real quaternions.
Furthermore if x = (a,b,c,d) is any real quaternion, we
can represent x as a linear combination of 1,i,j,k
such that, x = a«l + bei + c.j + d.k.

The dimension of a finite~dimensional vector space
is the number of vectors in any basis. Therefore the
dimension of the vector space of the real quaternions is
four. |
DEFINITION: If x = (a,b,c,d) and y = (a',b',c',d")

are any two real quaternions, then
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xy = (aa'=bb'=cc'=dd', ab' . +ba'+cd'-dc', ac'+ca'+db'-bd"’,
ad'+da'+bc'-cb').
DEFINITION. A linear algebra L with a multiplicative
identity element over a field F is a system,
L= {L,F; +,°3 8,0, El} which satisfies the postulates:
(a) the system {L,F; +,+;9,0} is a vector space
over F.
(b) T2l is a binary operation on L such that for
all m, n€F and all x,y,z €L,
(1) xply €L,
(i1) xTA(yFz) = (xF\y) § z,
(i11) xW (y @ z) = (x[Ty) & (x@ 2),
(iv) (mox)@y=xfl(n@y)=mn@ (.xmy).
(v) there exists a multiplication identity
element relative to (&1 . (6, p.228)
THEOREM 10. The set Q of all real quaternions is a
linear algebra with a multiplicative identity element over
the field F of real numbers.
Proof. (a) By Theorem 6 the real quaternions forms a
vector space over the field of real numbers.
(b) By the definition of multiplication of two
quaternions multiplication is a binary opera
tion,
In the expressions that follow I will omit the symbols
@, ® and {J, and there is no ambiguity.

If m,n are any real numbers and x,y,z are any
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r2al quaternions such that, x = (a,b,c,d),y = (a',b",c',d),
and z = (a",b",c",d"), then

(i) xy © Q, by the definition of multiplication,
(ii)x(yz)=(a.b.c.d){(a',b'.c'.d')(a“,b",c",d")}
=(a,b,c,d,{a'a"=b'b"=c'c"-d'd",
a'b"+h'at+c 'di-d'c",
a'cic'aMid! p-b'd",

a'd"+d'a"+b'cY=¢c 'b")
=(a(a "a"eh'bMec tcMag 'd")—b( a 'b-"+b'a“+c'd"-db”)/

~c(a'c"+e'a™+d'b"-b'd")-d(a'd"+d 'a"+b'c"=cb")
a(a'b"+b'a"c'd"~d'c")+b(a'a"=b'b"c'c"-d'd")
+c(a’d"+d'a"+b'c"-c'b“)-d(a'c"+c’a“+d'b“b'd?}
ala'c"+c'at+d'b"~b'd")+c(ata"-h'b"=c 'c"=d'd")
+d(a'b"+b'a"+c'd"=d'c")~b(a'd"+d a"+b'c"c 'b")
ala'd"+d'a"+b'c"~c'b")+d(a'am=b"'b"=c 'c"=d'd")
+b(a'c"+c'am+d'b"-b'd")~c(a'b"+b"a"+ctd"=d ' cn))
=(aa'a"=ab'h"-ac'c"-ad'd"-ba'b"=bb'a"=bc 'd"
+bd'cMeca'c"ecc'aM-cd'b"+chb'd"-da'd"-dd'a"
-db'c"+dc'b",aa'b"+ab'a"+ac 'd"-ad'c"+ba'a"
=bb'b"=bc'c"=bd'd"+ca'd"+cd'a"+ckb'c"-cc "'b"
~da'c"=dc'a"-dd'b"+db'd",aa'c"+ac'a"+ad'b"
~ab'd"+ca'am-cb'b"=cc'c"=cd'd"+da'b"4db'a"
tdc'd"-dd'c"-ba'd"~bd'2"-bb'c"+bc 'b",aa 'd"
tad'a"+2b'c"~ac'b"+da'a"=-db'b"=dc'c"=dd'd"

+ba'c"+bc'a"+bd'b"~bb'd"=ca'b"=ch'aM=cc 'd"
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+cd'c"),
The a,b,c,etc are real numbers, thus they are commutative
with respect to addition. Hence,
x(yz)= ((aa'-bb'=cc'-dd')a"=(ab'+ba'+cd'~dc' )b"
-(ac'+ca'+db'~bd")c"-(ad'+da'+bc'~cb')d",
(aa'~bb'=cc'=dd')b"+(ab'+ba'+cd’'-dc')a"
+(ac'+ca'+db'-bd')d"=(ad'+da'+bc'=cb')c",
(aa'=bb'=cc'~dd')c"+(ac'+ca'+db'-bd")a"
+(ad'+da'+bc'~cb')b"=(ab'+ba'+cd'=dc')d",
(aa'=bb'=cc'~dd’')d"+(ad'+da'+bc'=cb')a"
+(ab'+ba'+cd'~dc')c"=(ac'+ca'+db'=bd*)b")
= (aa'=bb'-cc'~-dd',ab'+ba'+cd'=dc"’,
ac'+ca'+db'~-bd',ad'+da'+bc'=cb')
(a",b",c",d")
= {(a,b,c,d)(a',b',c',d*)}(a",b",c",d")
= (xy)z.
Therefore, the set Q of real quaternions is associative
with respect to multiplication.
(iii)x(y+z)=(a,b,c,d){(a',b'.c',d')+(a",b”.c“.d")}
=(a,b,c,d)(a'+a",b'+b",c'+c",d"+d")
=(a(a'+a")=b(b'+b")=c(c'+c")-d(d"+d"),
a(b'+b")+b(a'+a")+c(d'+d")=-d(c'+c"),
a(c'+c")+c(a'+a“)+d(b'+b")-b(d'+d”).
a(d'+d")+d(a'+a")+b(c'+c")=c(b'+b"))
=(aa'+aa"-bb'=bb"=cc'-cc"=dd'~-dd",

ab'+ab"+ba'+ba"+cd'+cd"=dc'~dc",
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ac'+ac"+ca'+ca"+db'+db"=bd'-bd",
ad'+ad"+da'+da"+bc'+bc"=cb'-cb")

= ((aa'~bb'=cc'=dd')+(aa"=bb"=cc"=dd"),
(ab'+ba'+cd'~dc')+(ab"+ba"+cd"=dc"),
(ac'+ca'+db'=bd')+(ac"+ca"+db"=bd"),

(ad'+da'+bc'=cb')+(ad"+da"+bc"=cb"))

(aa'~bb'=cc'~dd',ab'+ba'+cd'-dc’,
ac'+ca'+db'tbd',ad'+da'+bc'~cb')
+(aa"=bb"=cc"=-dd",ab"+ba"+cd"=-dc",
ac"+da"+db"=bd",ad"+da"+bc"~cb")
= (a.b.c,d)(a'.b;.c'.d')+(a,b,c.d)(a",b".c".d“)
= xy + xz.
Therefore in the set of real quaternions multiplication is
distributive over addition.
(iv) {xy)= m{(a,b,c,d)(a',b',c',d")}
= m(aa'~bb'-cc'~dd’,ab'+ba'+cd'~dc’,
ac'+ca'+db'~-bd',ad'+da'+bc'=chb"')
= (m(aa'=bb'=cc'=dd"'),m{ab'+ba'+cd'=dc"'),
m(ac'+ca'+db'~bd'),m(ad*+da'+bc'=cb'))
= (maa'=mbb'-mcc'=mdd',mab'+mba'+mcd'~mdc’,
mac '+mca '+mdb'-mbd',mad '+mda'+mbc '=-mcb').
x(my) = (a,b,c,d){m(a',b',c*,d")}

(a,b,c,d)(ma',mb',mc',md")

= (ama'~bmb'~cmc'=dmd',amb'+bma'+cmd'-dmc’,

amc '+cma *+dmb'=bmd ', amd '+dma *+bmc '=cmb"' ).
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Since m,a,b, etc. are real numbers their product is com=-
mutative, thus
x(my) = (maa'=mbb'-mcc'-mdd’,mab'+mba'+mcd'~mdc’,
mac '+mca'+mdb'-mbd ' ,mad '+mda ' +mbc '-mcd"' ).
(mx) vy = {m(a,b,c,d)}(a’,b',c",d")
= (ma,mb,mc,md)(a',b',c',d")
= (maa'-mbb'-mcc'-mdd"',mab'+mba'+mcd'-mdc"',
mac '4+mca'+mdb'~-mbd',mad'+mda'+mbc'-mch').
The final results of m(xy), x(my), and (mx)y are
identical. Therefore, (mx)y = x(my) = m(xy).
(v) Let x = (a,b,c,d) be any real quaternion. We
have defined the quaternion 1 to be (1,0,0,0).
Now, 1lex = (1,0,0,0)ta,b,c,d)
= (lea=Qeb=0ec~0ed, leb+0eca+0+d-0cc,
lec+0sa+0eb=0+d, led+0+a+0ec=0¢b).
But 1,0,a,b,c,d are real numbers, thus
lex = (a,b,c,d)
= X,
x+1 = (a,b,c,d)(1,0,0,0)
= (ael=be0=ce0-de0, a+0+bel+c*0-de0,
a+0+Cel4de0=be0, a¢0+del+be0~c+0).
But 1,0,a,b,c,d are real numbers, thus
x*l = (a,b,c,d)
= x, and

lex = x = x1 .
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Therefore (1,0,0,0) is both a right and left hand
identity element, and the set Q of all real quaternions
is a linear algebra with a multiplicative identity element
over the field F of all real numbers.

I have previously shown that the set Q of all
real quaternions, can be represented as a linear combi=-
nation of the basis vectors 1,i,j,k. The definitions
for addition, scalar multiplication, and multiplication
now become; if x = at+bit+cj+dk and y = a'+b'i+c'j+d'k
are any two real quaternions, and m is any real number,
then (a) x+y = (a+a') + (b+b')i + (c+c')j + (d+d')k ,

(b) mx = ma + mbi + mcj + mdk ,

(c) xy = (aa'=-bb'=cc'-dd') + (ab'+ba'+cd'~dc')i

+(ac'+ca'+db'=bd')j + (ad'+da'+bc'=cb')k.
DEFINITION. Two algebraic systems L and L' are iso-
morphic if there is a one-one correspondence a + a'
between L and L' which preserves the operations.
THEOREM 1ll. The special quaternions a.l, where a is
any real number and 1 is the basis element (1,0,0,0),
are isomorphic to the real numbers.
Proof. If a 1is any real number, then for every a
there exists a quaternion of this form, namely a.l .
Conversely for every quaternion a«l there corresponds
a real number, namely a.

If a.l % bsl, then from the definitions of equality

of two quaternions a # b. Hence the correspondence is
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one~-one.
Now ael +- a and bel +b, and
(a+b)el = a+l + bel ,
(ab) «1 = (a°1)(bel) .
Thus addition and multiplication is preserved, and the
correspondence is an isomorphism.
DEFINITION. If x = a + bi + cj + Qk is any real quater-
nion, then the conjugate of x, ¥ = a = bi = ¢j - dk.
THECREM 12, If x = a+bi+cj+dk is any real quaternion,

2+c +d2)

then x+X = Xex = (a +b .
Proof .x+x=(a+bi+cj+dk)(a-bi-cj-dk)
={a(a)=b(=b)-c(=c)=-d(=d)}+{a(-b)+b(a)+c(=d)=d(=c)}i
Ha(-c)+c(a)+d(-b)=b(-d)}+{a(~d)+d(a)+b(=c)-c(=b)le
But a,b,c,d are real numbers, thus

2, +d2) 4+ Oei 4 0¢j 4+ Ok ,

XeX = (a +b
since 1i,j,k are also quaternicns, from Theorem 7(i),
Oei = 0¢j = 0.k =68, and O is the additive identity of

the cguaternions. Thus,

xex = (a +b2+c +d2) .
Similarly,
X+x = (a-bi-cj=dk)(a+bi+cj+dk)

(a2+b2+c2+d2)+ 0ei + 0+§ + Ok

(a +b24c +d2)

The positive real number x.x is called the norm of

x, and we write N(x) = xeXx = Xox .
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THEOREM 13. If x = a+bi+cj+dk, then N(x) = 0 if and
only if a=b=c¢c=d = 0,
Proof. If a=b=c=d=0, then x=06 and x = 0.
Thus xex = 0 and N(x) = O.

2,,2, .2 .2

If N(x) = 0, then since N(x) = a“+b“+c“+d“ ,

a2+b2+c2+d2 =0, But a,b,c,d are real numbers, thus

32+b2+c2+d2 is always a positive real number or zero. It
can only be zero if a=b=c¢c=d = 0,

Therefore N(x) = 0 if and only if a =b = ¢ =d =0,
in which case x =0.
DEFINITION. A linear algebra with a multiplicative
identity and where each element, except O, has both a
right hand and left hand inverse, is called a division
algebra.
THEOREM 14, The set Q of all real quaternions forms a
division algebra.
Proof. Since it has previously been shown that the
quaternions form a linear algebra with a unit element,
it is sufficient to show that every element has a right
and left hand inverse.

By Theorem 3 and Theorem 13 if x # 6, then
N(x) # 0. If x is any real quaternion other than @
and x* denotes the inverse of x, then x¢x* = x*x =],

Let x* = x/N(x), then

xx* = xx/N(x)
= N(x)/N(x)
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= 1,
xx/N(x)
N(x)/N(x)
=1 .

Therefore if x # 0, then the inverse of x, x*, is

Also, x*x

denoted by x/N(x), which is both a right and left hand
inverse. Hence, every element of Q except 6 has both
a right and left hand inverse and Q 1is a division alge-
bra.
THEOREM 15, In any division algebra the right inverse and
the left inverse are equal.
Proof. If x e D , then x has a right inverse xI
and a left inverse x§ , such that x.xI = 1 and
x5ex = l. Consider 1 = x§-x. multiply on the right by
xI « Then
lext = (x%ex)xy
x} = x3(xxy)

= x3el

= x5 .
Therefore the right inverse and the left inverse are equal
THEOREM 16, In any division algebra the multiplicative
inverse is unique.
Proof. Let x be any element in a division algebra, other
than zero. Assume x has two inverses xI and x§ ’

then xxI =1 and xx§ = 1, hence xxI = xx§ .



34
Multiplying both sides of the equation by the inverse of

x, we get

x*(xxf) = x*(xx§

(x*x)xf (x*x)xi

lxi = 1x§
xf =x3 .
Therefore the multiplicative inverse element is unique.
It is appropriate, at this time, to prove that there
are only three division algebras over the field of real
numbers. I will begin by proving two Lemmas.
LEMMA 1. If D is a division algebra, then it contains
no divisors of zero.
Proof. Since D i; a division algebra it has a multi-
plicative identity 1.
Assume that there exists x,y ¢ D such that
xy = 0, and that x #0 and y # 0. Thus y has a right
inverse y* such that yy* = 1.
Then, O = xy
Oy* = (xy)y*
0 = x(yy*)
= x1
=X .
But this contradicts the hypothesis that x # O. Hence

a division algebra contains no divisors of zero.
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LEMMA 2, Every element of a division algebra over the

field of real numhers is a root of a quadratic equation
with real coefficients.
Proof. Let D be a division algebra of dimension n
over the field F of real numbers.

If n=1, then the division algebra D is the
field of real numbers F.

We know that any n+l elements of D are linearly
dependent, thus if x is an element of D, then

2

Lk X .....xn are linearly dependent. Thus there exists

not all zero such that,
n

real numbers ao.al,....an

f(x) = agel + ajex + ¢e0 @ x =0 .

The imaginary roots of this equation with real coefficients
come in pairs of the form a * bi, where a and b are
real.

Hence there exist real numbers which are the coef-
ficients of the linear or quadratic factors
fl(x).fz(x)....,fk(x). where f(x) = f,(x)fy(x).ccf (x) .

Since f(x) = 0 by Lemma 1, some fi(x) = 0, then
x 1is a root of a linear or a quadratic equation with
real coefficients. If fi(x) is linear its square is
quadratic. Therefore x is a root of a quadratic equa~-
tion with real coefficients.

If we represent any quaternion x by

X = @ael + bei + cej + dek ,
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then we get from the definition of multiplication a parti-
cular relationship between the special quaternions 1,1i,j,
ke This relationship is, that 1 4is the unit element

and that
2

12=32=x%=11, ij=-ji=k,
jk = «kj =1, ki = =ik = j.

These properties and the bilinear postulate completely
define quaternion multiplication.
THEOREM 17. The only division algebras over the field of
all real numbers are that field, the field of complex nume
bers, and the algebra of real quaternions.
Proof. Let D be a division algebra of dimension n over
the field F of all real numbers.

If n =1, then the division algebra is the set of
all real numbers.

Let l,el.ez,....en_l be a set of bask elements of

D. Then from Lemma 2, each ey is a root of a quadratic

equation with real coefficients, thus e§+2aiei+bi =0 ,

where a; and bi are real numbers. By completing the
square we get,
2 2
(ei + ai) = ai - bi .
But af - bi is a real number, hence after adding a real

number to each ey the square of this new basis element
ey is a real number.

If the square is > 0 , it would be the square of
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a real number Cy thus

2 2
e; - ¢y = 0
ei = % ci .
In which case e is some scalar multiple of 1, but ey
and 1 are linearly independent. Thus the sguare must be

negative and,

(1) ei = -df » where d; is a real number.

- 2 - -
If n=2, the algebra (l.El) is identical to the
field of all complex numbers.-
Let n>2, and denote the basis elements by 1,I,J,.eep
where 1 = el/d1 sy J = e2/d2. eee o and ef = -df.

e% = ’dg 9 ooe0 o Thus, 12 = "l’ J2

= «l, cee o
Since I,J are elements in D, then I + J and

I - J are also elements in D. By Lemma 2 they are the
roots of some quadratic equation with real coefficients,
hence

¢143)% - a(I+J) - b = 0, and

(I-J)2 - ¢(I-J) - d =0, where a,b,c,d
are real numbers. But,

(143)2 = =2 + 10 + JI ,

(1-J)2 = =2 = IJ = JI, thus
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-2+ I1J + JI = a(I+J) + b ,
“2 = IJ - JI = ¢(I-J) +d .
Adding the two together, we get
(atc)I + (a=c)J + (b+d+4)+l =0 ,
But 1,I,J are linearly independeni, hence a +c¢ =0 ,
a-¢c=0, and b+d+4=0, Thus, a=c¢ =0 and
b+d= -4, Hence, IJ 4+ JI=2D0+ 2,
Let g = (2+b)/2, then g 4is a real number and
1J + JI = 2g. Hence,
(1+0)%2 = =2 + 17 + JT1 = 2g - 2 ,

(1-3)2

H

-2 «1J=~-Jl=-2g -2,

From (1), (I+J)2 and (I-J)2 must both be negative,
hence =~ 2g - 2 and 2g - 2 are both negative real num-
berss In which case (=-l+g) and (-l-g) are both nega=-
tive, and (=-1l4g)(-1-g) = 1-92 is a positive real number
which has a real square root.

Write 1 =21. j= (J+gI)/fT:;§ . We know that

12 = «1 and J = -1, hence 12 = ~]1 and

32 = {(3+q1)N1-g%12

{32 + g(I1J+JI) + 9%1%}/(1-¢%)
{a(29) - (1+g°)}/(1-9%)

= ~(1-g%)/(1-¢?)

1.

0

i

Also,

15431 = 1{(J+qI)AT-g2} + {(J+gI)Af1-g2}1

i
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{(1J4J1) + 912 + 912}/J‘1-g2

(29 - 29)A/1-g2
= 0 °

The product ij is linearly independent of 1,i,]j
and hence may be taken as the fourth basis element ke
For if not it could be expressed as, ij = al+bi+cj ,
where a,b,c are real numbers. By multiplying on the
left by i we get,

i(ij) = i(al) + i(bi) + i(cj)
-j = ai = bl + c(ij)
= ai - bl + c(a+bi+cj)
= ai - bl + ca + cbi + c2j
0 = (ca=b)l + (a+ch)i + (l+c?)j.

2

But 1,i,j are linearly independent, thus 1 + ¢< = 0

and c2 = -1 . This contradicts the fact that a,b,c
are real numbers, thus k = ij is linearly independent of
1,i,3.
I have previously shown that, 12 = j2 = -] ,
ij+ ji=0, and ij = k, hence ij = =ji = k and
k2 = (13)(-31) = 42 = 21,
By the associative law,
ik = i(4j) = -3 ; ki = (=3i)i = j ;
kj = (ij)} = -1 ; jk = j(=ji) = 1 .
Thus 1,i,j,k are the basis elements of the real

quaternions which was a division algebra of dimension four.
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If n>4, then D contains a fifth basis element

p such that p2 = «1 , Since i,p are in D, then
i+p and i - p are also in D, By Lemma 2 they are
the roots of some quadratic equation with real coefficiens,
hence

(i+p)2

(1-p)?

" real numbers but,

a(i+p) - b =0 and

c(i-p) = d = 0 , where a,b,c,d are

(i+p)2 = «2 + ip + pi ,
(i-p)2 = «2 -« ip = pi , hence
-2 + ip + pi = a(i+p) + b,
=2 = ip = pi = ¢(i-p) + d .
Adding these two equations together we get,
(atc)i + (a-c)p + (b+d+4)1l = 0 . But 1,i,p
are linearly independent, hence a + ¢ =0, a = ¢ = O,
and b+d+4=0, Thus, a=c=0 and b+ d = -4 ,
Hence, ip+pi=b+ 2,
Let g; = b+ 2, then g1 1is a real number and
ip + pi = 9)
In a similar way it can be found that,
jp+pi=9g,, and
kp + pk = g,
where g, and gy are real numbers. Then,
pk = p(ij)
= (pi)J
= (gy = ip)J
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=g, - i(pj)
=g, = i(gy=Jp)
= glj - 921 + kp .
Adding pk to each member of the equation, we get
2pk = glj = goi + kp + pk
= g;J = 9,1 + 950
Multiplying each term on the right by k, we get
2pk2 = gljk - 921k + g3k
-2p = gli + gzj + gqzk .
Hence p is a linear combination of 1i,j,k. But this is
a contradiction of the assumption that p,l1l,i,j,k are
linearly independent.
Therefore for n > 4 there does not exist a divi-
sion algebra over the field of real numbers. (2, p.62-64)
It is interesting to note that the real numbers and
the complex numbers are both commutative with respect to
multiplication, but multiplication in the real quaternions
is not commutative. This can easily be seen by observing
the special quaternions i,j. From a previous statement
we found that ij = =ji, hence ij # ji.
Therefore from Theorem 17 and the statement above,
we find that the set Q of real quaternions forms the
only non-commutative division algebra over the field of

real numbers.
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CHAPFTER 111
MATRIC REPRESENTATIONS OF QUATERNIONS

DEFINITION. Two algebras L and L' over the same field
F are isomorphic if there is a one-one correspondence
a ++ a' between L and L' which preserves all three
operations:

a+ B+ a+p', ca+tca', ap — a'B'. (1,p.240)
DEFINITION. A linear transformation T; V =+W, of
a vector space V to a vector space W over the same
field F, 1is a transformation T of V into W which
satisfies (ca + dB)T = c(aT) +d(BT), for all vectors
a and B in V and all scalars ¢ and d in F.
(1, p.204)
THEOREM 18. Every linear algebra of order n with a
unity is isomorphic to an algebra of nXn matrices, which
is a sub algebra of the algebra of all nXn matrices with
real elements.
Proof. The algebra L is a vector space of elements &.
Associate with each element a in L the transformation
T obtained by right multiplication as &T =.&a, Tor any
§ in L .

If ByelL and a,b &€ F, then aB + by is in the
vector space L. Consider, (ap + b{)T = (ap + by)a .
Since L 1is a linear algebra multiplication is bilinear,
thus (ap + by)T = a(Ba) + b(ya)
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= a(BT) + b(yT).
Hence T is a linear transformation. The ®t of linear
transformations on L also forms a linear algebra.

Since a unity e is present, a # B implies that
ea # ep , hence distinct elements « and B induce dis-
tinct transformations T and U.

If a corresponds to the linear transformation T
and B corresponds to the linear transformation U, then
from the postulates of a linear algebra,

§(T+U) = €T + W
= fa + &P
= E(atp) ;
E(cT) = c(&T)
c(Za)

L}

E(ca), where ¢ is any scalar;
E(TU) = (¥T)U

= (Ea)U

= (Za)p

= g(ap) .

Therefore a + B corresponds to T + U , c¢a cor-

responds to ¢T, and aBf corresponds to TU. Thus the
correspondence a “* T is an isomorphism of the given
algebra to an algebra of linear transformations on L.
The linear transformations of L can be represented
isomorphically by nXn matrices. Therefore every linear

algebra of order n with a unity is isomorphic to an
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algebra of nXn matrices. (1, p.241)
To exhibit these matrices, choose a basis
{el.....en} of L. The transformation T then carries

each e; into some element

1

e~

e.a = c e °
by €135
Every element x of the linear algebra can be expressed

as a linear combination of the basis vectors,
n

X = z; aiei « Hence
i=

n n
(iél aiei)T = géﬂ aiei)a
n

o

a.(e;a)

H
nbvj:

i 1(2 cjjey)

"
M>’3

( "
) 1?‘1 13
Relative to these coordinates, the linear transformation

T 1is described by the equations
n

i =) 2%
i=l
which has a corresponding matrix C = (cij) i
The correspondence a+C of L to the algebra of
matrices C 1is an isomorphism, this is called the second

regular representation of L. The first regular represen-

tation of L is found by premultiplication with a.
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It has been shown that the set Q of all real qua=-
terniongforms a linear algebra, with a unity, of dimension
four, hence there must exist, by Theorem 18, an algebra of
4X4 matrices which is isomorphic to the algebra Q. I
have also shown that the elements l1,i,j,k form a basis
for the algebra Q.
Let the quaternion 1 correspond to the identity
matrix I. Let a = i, then
lei = 0ol + 1ei 4 0¢J + O°k
fei = 1ol + 0¢ + 0ej 4 Ook

Jei = 0el + 0ei 4 0j = 1ok
kei = 0el + Oei + 1¢j + Oek .
Hence
0100
.1000
i+ 100 0-1
0010

Let a = j, then
lej = 0el + Ocdi + 1¢j + 0ek
Ol + Oei + 0¢j + 1k
Jej = =lel + Oui + 0e¢j 4 0ek
O¢l = 1lei 4 O¢j + Ok, hence

-
L

.
]

=
.

.
]

e
OO0
SCOO
COM~O

" \
(of —Jole)
\\

Let a =k, then
lek = 0¢1 + Oei + 0¢j + lek
i*k = 0¢1 + Oei = 1ej + Ok
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jek = Oel 4 lei + 0¢j + O¢k
kek = =lel 4 Oei 4+ O¢j + Ok, hence

~
OO0
OI'—"OO
OO0
OCOOK

If x=al + bi + ¢j + dk is any real quaternion
and a = x, then
lex = acl + bei 4 c¢j 4 dek
iex = =bel + aei = d+j + c+k
Jex = =cel + dei + a¢j = bek
kex = =del = c+i + bej + ask , hence
abecd
~b a-d ¢

-c d a-b
«d=C b a

= A .

If y=a'l+b'i+c'j+d'k is any real quaternion,
then

/a: b: c! d:

- - ' \

Yy **(_20 :v go_;|f= B
~-d'=c' b' a'

If A is any matrix of the special form

‘abcd

| b a=d ¢

-c d a=b

~d-c b a/,
then there is a quaternion which corresponds to A, namely
a +bi+cj+dk, If A =B, we know that a = a‘',
b=Db'yc=c'", and d =d's Hence x =y and the
correspondence is one-one.

To prove that this correspondence is an isomorphism
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it is sufficient to show that the correspondence is pre-
served under addition, scalar multiplication, and multi-
plication.

Hence if x = a + bi + ¢j + dk and
y =a' 4+ b'i+c'j +c'k are any real quaternions and
m is any real number we get from the definitions of
addition, scalar multiplication and multiplication;
x+y = (a+a')l + (b+b')i + (c+c')j + (d+d")k ,
mx = mal + mbi + mcj + mdk |,
xy = (aa'=bb'-cc'~dd')1l + (ab'+ba'+cd'~dc')i
+(ac'+ca'+db'~bd')j + (ad'+da'+bc'-cb')k .
If x+ A and y + B, tﬁen;
(ata') (b+b') (c+c') (d+d?')
-(b+b') (a+a')=-(d+d') (c+c')
A -(c+c') (d+d') (a+a')=-(b+b')
~(d+d')=(c+c') (b+b') (a+a') .
Hence, x + y +— A + B.
Also
ma mb mc md
-mb maemd mc
-mc md ma-mb -
-md-mc mb ma /, hence
mx ++ mA .,
Ands 8P b" " ("
-b" a"-d" c"

-c" d" a"_b”
-d'=c" b" a" )/, where

AB =

a" = aa'=bb'-cc'~dd' ,

b" = ab'+ba'+cd'-dc' ,
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c" = ac'+ca'+db'~bd' ,
d" = ad'+da'+bc'~-cb' ,  hence
xy + AB .

Therefore this one-one correspondence of elements
from Q to this matrix algebra is an isomorphism, and
this is the second regular representation of the algebra
Q.

The first regular representation is found by pre-
multiplication with a. Again we let the unit element
1 correspond to the identity matrix I.

Let a =i, then

i1 =01 4+ 1i + 0j + Ok
ij = -11 +0i + 0j + Ok
ij =01 +0i+ 0j + 1k
ik = 01 + 01 - 1j + Ok , hence
0100
te 170001
00-10/ .

Let a = j, then
j1l =01 + 0i + 1) + Ok
ji=01+0i+0j -~ 1k
Jj=-11+0i + 0j + Ok
Jk =01 + 11 + 0j + Ok , hence

O~OO
~OOO
QOO M
OO
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Let a =k, then
kl =01 + 0i + 0j + 1k
ki =01+ 0i + 1j + Ok
kj =01 - 1i + 0j + Ok
kk =-11
00
k 00

S
-1 0

Oi + 0j + Ok , hence

1
0
0
o .

QOO +

If x = atbit+cj+dk and y = a'+b'it+c'j+d'k are
any real quaternions, in a similar way, we find that
Xx ++*A and y +* B, where

abcd
-b a d-c

-c=-d a b
-d ¢c~b a/ , and

A=

a' b' ¢' 4!
-b' a' d'-¢c'
=c'=d' a' b'
~d' c'=-b' a'/ .

B =

In a similar way as was done for the second regular
representations, it can be shown that this correspondence
is one-one.

We can see from the definitions of addition and
scalar multiplication that x + y ++ A + B and mx +* mA.
However, the product AB does not correspond to the pro-
duct xy. From the definition of matrix multiplication
it is found that,

a" b" ¢" g"
BA ={-b" a" d"-c"

~cMad® a" p"
=d" c"-b" a"/ , where
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a" = aa'«bb'=cc'=dd'

b" = ab'+ba'+cd'~dc'

(4]
=
]

ac'+ca'+db'«bd"’

o.
L}

ad'+da'+bc'-cb' , hence
Xy +* BA. This type of correspondence is called an anti-
isomorphism,

There is another representation of real quaternions
by matrices, namely as a sub algebra of the algebra of
all 2X2 matrices over the complex field.

Let 1 correspond to the identity matrix I, and
let,

YO 01 0
iH(O'YBp jH(-lO , kH»Yg ,
where y =.=1.
If x = atbitcjtdk and y = a'+b'itc'j+d'k are

real quaternions, then x ++* A and y ++* B, where

= [atby  c+dy
A C;*dY a-by |’ and

B = §’+b'y c'+d'y \ .
-C""d'Y a'-d'Y
If A 1is any matrix of the special form _2:gz ::g: s
then there is a quaternion which corresponds to A, namely
a+bi+cj+dk . If A =B, then a = a'y b=b', ¢c=c¢',
and d = d'. Hence x =y and the correspondence is
one-one.
(atby)+la'+b'y) (c+dy)+(c'+d'y)
A+B=
(-c+dy)+(-c'+d'y) (a=by)+(a'-b'y)
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(a+a')+(b+b")y (c4c?)+(d+d")y
=(c+c')+(d+d?)y (a+a')-(b+b')7) » thus
X+ y+—+A+B .
Let m be any real number, then
m(a+by) m(c+dy)>
mA =

(m(-c+dy) m(a-by)
ma + mby mc + mdy

a(;c + mdy ma - mby) » hence

mx +— mA

. (AR
B = i-c+d¥ gg::g: ; $-c+dyzge-ge;

= a" + by cW4d"y
(—c" + d"y a"qb“y) » Wwhere

a" = aa'-bb'-cc'-dd"’
b" = ac'+ca'+db'=hbd’
d" = ad'+da'+bc'=-cb' , hence

xy «— AB .

Therefore the algebra Q of real quaternions is
isomorphic to an algebra of 2X2 matrices, which is a

sub algebra of an algebra of all 2X2 matrices over the

complex field.
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