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QUATERNIS AND THEIR HISTORY 

CHAPTER I 

THE ORIGIN OF QUATERNIO:S 

William Rowan Hami1tcr was the invertor of quater- 

nirns. The first complete publication cf his work with 

quaterrions was xrose' . ted in 1853. However, he hd pro- 

serited rany lectures or quaterniins prior to this time. 

i. believo it is a4ipropriate to rst some of the 

evets that led up to the discovery f quaternions. 71anil- 

ton did not ?'Jard quaternions as a rtie;.atica1 system, 

but he considered them as a new aathetical method. 

Hamili;on beqm workiny in this area eìuse he felt 

there were !.ìany difficltío present in the presentation 
of ne,attve dnd iayiary quaitItis in a!ye)ra. He was 

f?miliar with different suge3tions ropo3ed for elimi- 

nating the difficulties. Some nf the sugyestions were 

the theory of inverse quantities, the íerhod of construct- 
Ing imaginaries by lines drawn from oie point with various 
directirns in Öne plane, and a suggestion to explain them 

by algebraic operations and the properties of symbolic 

language. 

He believed that negatives and imaginaries were not 

quantities, but he felt they should have a clear interpre- 

tation and meaning. He wanted this to be done in such a 

way that it would not be necessary to introduce geometri- 

cal ideas which wnuld involve the idea of an angle. 



2 

Hamilton said, "It early apeared to me that these 

ends might be attained by our crnsenting to regard Algebra 

as being no mere Art, nor Language, nor primarily a Science 

of Quantity; but rather as the Science of Order in Pro- 

gression. It was, however, a part of this conception, that 

the progression here spoken of was understood to be con- 

tinuous arid unidirnensional; extending indefinitely forward 

and backward, but not in any lateral direction. And al- 

though the successive states of such a progression might 

(no doubt) be represented by points upon a line, yet I 

thought that their simple successiveness was better con- 

ceived by comparing them with moments of time, divested, 

however, of all reference to cause and effect; so that the 

'time' here considered might be said to be abstract, ideal, 

or pure, like that 'space' which is the object of geometry. 

In this manner I ws led, many years ago, to regard Algebra 

as the Science of pure Time." (5, pref. p.2) 

Let us consider now some of the ideas expressed in 

Hamilton's algebra of time. Let A and B denote any 

two moments of time, not necessarily distinct. They could 

also be considered to represent dates. Then the equation, 

A = B, would be used to indicate that the moments were 

identical or the dates equivalent. In this representation 

there is no reference made to quantity nor does this ex- 

press the result of comparing any two durations of time. 

It corresponds to the idea of synchronization. 
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Non-equivalence can be expressed by the formulae, 

B > A, or B < A. 

The first expression would be interpreted to mean that the 

moment B is conceived to be later than the moment A, 

and in the second expression the moment B is earlier than 

the moment A. Again there is no reference to quantity 

or any Introduction of a measure to determine how much 

later, or how much earlier, one moment is than the other. 

Hamilton then introduced the symbol '-'. Tlìis was 

used to form the symbol B - A, which would denote the 

difference of two moments, or an interval of time. In 

this way the idea of duration, as quantity in time, was 

introduced. The full meaning of the symbQl B - A, is 

not completely known, until there is some idea as to how 

long after, or hoyi long before, if at all, B is than A. 

Extending this idea further Hamilton interpreted the 

equation, 

D - C = B - A, 

to mean that two intervals in time were equivalent. In 

other words the moment D is related to the moment C 

exactly as the moment B is to the moment A. He also 

found, by performing a number of transformations and corn- 

binations, which could be interpreted and justified by 

this method of viewing the subject, the accepted rules of 

algebra still held. For example, if 

C - D A - B, then D - B = C - A. 
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The expressions for inequality of differnces were, 

D-C>B-AandD-C <B-A, 
wh.ch meant in the first that L) was later, relative to 

C, than B to A and in the second D was earlier rela- 

tive to C, than B to A. 

Hamilton then introduced a small letter, a. This 

was to indicate a step in time. In connection with this 

he introduced the symbol, '4'. This symbol was primarily 

used to indicate a combination between a step in time a, 

and the moment A, from which this step was to be made. 

Thus, the equation, 

Ba+A, 
would mean that the moment B could be attained by making 

the step a from the moment, A. A null step, o, would 

produce no effect, 

o + A = A. 

Hamilton then realized that the symbol, B - A, 

which represented an ordinal relation between two moments, 

could also be considered as denoting a step from one mo- 

ment to another. Thus, he could write, 

b - A = a, 

where these are actually two symbols which represent the 

same step. We then also have, 

a + A = B. 

Thus we ç,et an identity, 

(B - A) + A = B, 
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which describes a certain connection between the operations 

+, and -. Namely that we first determine the difference 

between two moments as a relation, then apply that dif- 

ference as a step. He then introduced the usual notation, 

+a and -a, to indicate the step itself and the opposite 

of that step. This proved to be consistent withthe general 

view. 

Hamilton next compared two time-steps by use of the 

algebraic ratio. This was to present a new relation which 

was the idea of a quotient. This was determined partly by 

their relative lareness and partly by their relative dixc- 

tion. This "number" found by taking the ratio of two 

time-steps was found to be closely related to the idea of 

an "algebraic number". (It appears that what Hamilton 

called an "algebraic number" is actually a real number.) 

It operates on the auantity and the direction of one step 

to generate or produce the quantity and direction of the 

other step. Thus in symbolic form, if the ratio of two 

time-steps is indicated by, 

b/a = a, 

then we get the identities, 

b/a x a b or a x a = b. 

Thus a is a positive or negative number, deending on 

whether it preserved or reversed the direction of the 

steps on which it operated. 

Hamilton then defined operations on "algebraic numb' 



and these operations were made to deend on operations of 

the same names on steps. Thus any operations on two alge- 

braic numbers could be interreted in terms of his alge- 

bra of time. His definitions were, given any two algebraic 

numbers a and 
; 

(a + ) x a = (a x a) + ( x a) 

(a - 13) x a (ci x a) - (13 x a) ; 

(a x 13) x a s a x (13 x a); 

(a 13) = (a x a) (13 x a). 

The results derived from this were found to agree again ñth 

the accepted rules of algebra. Specifically the product 

of two negative numbers would be equal to a positive num- 

ber. This simply meant, in his view, that two successive 

reversals restored the direction of a step. It is impor- 

tant to note here that in this view of algebra also, the 

square of every number is positive, and therefore no num- 

ber, whether positive or negative, could be a square rc.ot 

of a negative number. 

Since no number could be the square root of a nega- 

tive number Hamilton began comparing pairs of moments. 

This would lead to pairs of steps and thus to pairs of 

numbers. Thus he was led to the expression, 

(B1,82) - (A1,A2) = (B1 - A1, 82 _ A2). 

This expresses that the ordinal relation of one moment-pair 

to another moment-pair is a system of two ordinal relations 
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- A1 and B2 - A2. Where the primary moment B1 is 

compared with the primary moment A1, and the secondary 

moment B2 is compared with the secondary moment A2. 

that, 

This same relation would define a step couple such 

(B1,B2) - (A1,A2) = (a1,a2), and 

(B1,B2) = (a1,a2) + (A1,A2), thus 

(131,82) = ((81,82) - (A1,A2)) + (A1,A2). 

In this way a moment pair was generated by adding a moment 

pair to a step pair. 

He found no difficulty in interpreting formulae for 

multiplication and division such as, 

a X (a1,a2) = (c&a1,aa2) and 

(aa1,aa2) (a1,a2) a ; 

where a is a number, positive or negative, and a1,a2 

are any two steps in time. However, Hamilton ran into 

difficulty when he tried to interpret the division of two 

step-pairs, of the form; 

(b1,b2) (a1,a2) 

where b1,b2 represented two steps which could not be 

derived from a1,a2 by multiplication by any single number. 

Thus he was led to introduce the idea of a number-pair 

such as (a1,ct2). Any single number a, was represented 



as a degenerate form, namely (a,O). This was necessary 

so that it would correspond to multiplication of a number 

by a step-pair, thus 

(,O) x (a1,a2) = (aa1,aa2). 

He also wrote every step-pair as the sum of a pure 

primary and a pure secondary, and every number-pair as the 

sum of a pure primary and a pure secondary, such as; 

(a1,c2) = (a1,0) + (O,u2). 

He was then led to the formula for the multiplication of 

an arbitrary number-pair, by a primary step, such as; 

(a1,a2)(a,O) = (cL1a,u2a) 

He also defined the product of a pure secondary number- 

pair and a pure secondary step-pair to be, 

(O,a2)(O,a2) = (-u2a2,0) 

which was found to be consistent with his interpretations. 

Thus the formula for multiplication of a number-pair by a 

step-pair was found to be, 

(u1,u2)(a1,a2) = (ui3O) + (O,c2)J[(a1,O) + (O,a2)} 

= (a1,O)(a1,O) + (a1,O)(O,a2) + (O,a2)(O,a2) 

+ (O,u2)(a1,O) 

= (a1a1,O) + (O,a2a1) + (O,c1a2) + (-a2a2,O) 

=(a1a1-u2a2, a2a1+a1a2) 

Vith this formula the quotient of two step-pairs could 



always be interpreted as a number-pair. 

The two factors, (1,0) and (0,1), were then 

considered to be called respectively the primary unit, 

and the secondary unit, of number, because; 

(l,O)(a,b) (a,b) and (O,l)(a,b) (-b,a). 

Also, (0,1)2 (a,b) = (0,l) (O,l)(a,b)} 

= (O,l)(-b,a) 

= (-a,-b) 

= (-1,O)a,b), 

and thus, (0,1)2 (-1,0) -1. 

In this way then (0,1) was considered to be .j1, with- 

out any notirn of it being imaginary. Consequently, Hamil- 

ton was led to the conclusion that any number couple, 

( a1,a2), could be written as, a1 +'T a2 

After working with number-pairs he became very inter- 

ested to find out if it might be possible to extend this 

to number-triads. He made this extension using a similar 

line of reasönirig, beginning first with moment-triads, 

then developed step-triads, and finally to the number- 

triads. 

Thus he found three distinct and indeendent unit- 

numbers, namely; (1,0,0), (0,1,0), and (0,0,1) which 

he called respectively the primary unit, the secondary 

unit, and the tertiary unit. He eventually adopted the 

notation 1, i, and j to represent these unit-numbers. 
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His numerical triplet then took the form, x + iy + jz, 

where he interpreted x, y, z as three rectangular co- 

ordinates, and the triplet itself as a line in three-dimen- 

sional space. 

The theory of three-dimensional space had been pre- 

viously developed and mainly began with Argand in 1806. 

Other writers had wnrked on this, but Hamilton wanted to 

express his theory in some nev. ¿nd useful way. His theory 

differs mainly in the concept of the product of two triples. 

With this in mind Hamilton began working with triplets as 

lines in three-dirnensinnal space, and wanted to obtain a 

concise expression for the multiplication of these lines. 

He wanted to retain the distributive principle, with which 

some earlier systems had been inconsistent, and he at 

first assumed that he could retain the commutative princi- 

ple also. 

In the triplet, x + iy + ji, in order that this 

could be somewhat analogous to his development of lines in 

two-dimensional space, he assumed that i2 -1 and 

2 
-1. The interpretation of i2 and j2 was such that 

2 was a rotation through two right angles in the xy-p]are 

and j2 was a similar rotationin the xz-plane. This 

interpretation is seen to be valid, for if we consider 

any line a + ib in the xy-plane, and multiply this line 

2 by i , wo tjt 
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i2(a+ib) = -l(a+ib) 

= -(a+ib). 

Hence the line has been rotated through two right angles. 

Similarly, for any line x + jz in the xz-plane. Thus 

Hamilton regarded the unit-numbers i and j as opera- 

tors. 

Hamilton also assumed that ij ji. Under these 

restrictions the product appeared to take the form; 

(a i- ib + jc)(x + iy + jz) (ax - by - Cz) + i(ay + bx) 

+ j(az + cx) + ij(bz + cy). 

From his theory of triplets it appeared that ii should 

also be a triplet such that; 

ij = (e + if + jg), where e,f,g, were three constants 

to be determined. 

Hamilton then tried to determine these constants, so 

as to adopt in the best way the resulting formula of 

multiplication to some guiding geometrical analogies. 

He first considered a case where the coordinates b,c 

were proportional to y,z. If we let y Xb and z Xc, 

where X is any real number, then for the product of the 

two lines, we get 

(a + ib + jc)(x + iXb + jXc) = (ax - Xb2 - Xc2) 

+ i(abX + bx) + j(acX + cx) + ij(bcX + bcX) 

= (ax - Xb2 - Xc2) 

+ i[b(aX + x)] + j[c(aX + x)] + ij(2bcX). 

For the coefficients of i, i, and j he found that, 
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(a2 + b2 + c2)(x2 + X2k2 + 2c2) (a2x2 + )2b4 + 

+ 2bX2c2) + (a2b2 + b2x2) + (aX2c2 + c2x2) = (a2x2 

- 2ax)b2 f X2b4 - 2ax?c2 + X2c4 + 2b2).2c2) + (a2)2b2 

+ 2axXb2 + b2x2)+ (a2?2c2 + 2axc2 + c2x2) = (ax - Xb2 

- Xc2)2 + [b(a? + x))2 + [c(aX + x)]2 

Thus Hamilton concluded that in this case the triplet, 

(ax - by - Cz) + i(ay + bx) + j(az -f cx) denoted a line 

which might, consistent with knovn analogies, be regarded 

as the product of the two lines if the fourth term 

ij(bz + cy) did not apear. He thought that ij - O 

might be an answer. 

Hamilton was iot completely satisfied with this, so 

he assumed that ij = - ji or that ii = k and ji = -k 

where the value of k was still undetermined. In this 

case the product of triplets became, 

(a + ib + jc)(x + ly + jz) = (ax - by - Cz) + i(ay + bx) 

+ j(az + cx) + k(bz - cy). 

This represenìtationì led to the following identity in the 

coefficients of l,i,j,k; 

2 2 2 2 2 2 22 22 22 22 
( a + b +c ,(x + y + z j =a x +a y + a z + bx 

22 22 22 22 22 22 
+ b y + b z + C x + c y + c z = (a x - 2axby 

+ b2y2 - 2axcz + c2z2 +2czby) + (a2y2 + 2axby 

+ b2x2) + (a2z2 + 2axcz + c2x2) + (b2z2 - 2czby 

+ C2y2) = (ax - by - cz)2 + (ay +bx)2 + (az + cx)2 

+ (bi - cy)2 

This led Hamilton to believe that instead of confining 
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himself to triplets, such as a + ib + jc he should regard 

these as only imperfect forms of quaternions, such as 

a + ib + jc + kd. where the symbol k represents some 

new unit operator. Thus he found it necessary to fix the 

value of the scuare, k2, and also the values of the 

products, ik, jk, ki, kj; so he could operate with 

quaternions. 

Hamilton already knew that, i2 j2 -1 and that 

ij = k and ji = -k. He then assumed that, 

ki = -ik = -i(ij) = -i2j = j, and kj .ujk j(ji j2i-i. 

To remain consistent he found that, 

k2 (ij)(ij) = -i(ij)j = (-i2j = -(-l)(-1) = -1. 

Therefore Hamilton now had that, 

2 
2 = k2 = -1; ij = -ji = k; jk = -kj = i; ki = -ik = j. 

From these he now had the equation, 

(a + ib + jc + kd)(a' + ib' + jc' + kd')= a" + ib" +jc"+kd", 

where; a" = aa' - bb' - cc' - dd' 

b" = (ab' + ba') + (cd' - dc') 

c" = (ac' + ca') + (db' - bd') 

d" = (ad' + da') + (bc' - Cb') 

He also found that; 

(a2+b2+c2+d2)(a '24b'2+c '2+d' 
2) 

= (a"2+b"2+c"2+d"2) 

At this point Hamilton became aware of the fact that 

if, instead of representing a line by x + iy + jz, we 

would represent it by ix + jy + kz, we could express the 

product of two lines in space by a quaternion which would 
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have a very simple geometrical interpretation. Thus, 

(ix + jy + kz)(ix' + jy' + kz') = w" + (ix" + jy" + kz"), 

where, w" = -xx' - yy' -ZZ; X" = yz' - zy'; 

y" = zx' z" = xy' - yx'. 

Hamilton's interpretation was, "that the part w", 

independent of i, j, k, in this expression for the pro- 

duct, represents the product of the lengths of the two 

factor-lines, multiplied the cosine of the p1ement 

f their inclination to each other; and the remaining part 

lx" + jy" + kz" of the same product of the two trinomials 

re1.resents a line, which is in length the £roduct of the 

same lengths, multiplied the sine of tne same 

clination, while in direction it is perpendicular to the 

plane 2í tfl factor-lines, and is such that the rotation 

!2.!a rnulti2lier-line, froiri the multiplicand-line 

towards the product-line (or towards the line-part of the 

whole quaternion product), has the same right-handed (or 

left-handed) character, as the rotation round the posi- 

tive semiaxis of k (or of z), from the positive semiaxis 

of ! (or of towards that of j. (or of 

(5, Pref. p.47) 

With this developed Hamilton thenfelt he had a new 

instrument for applying calculation to geometry. 

It is important to note that Hamilton's product of 

two lines in three-dimensional space can be written in the 
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following way; if a,3 are two lines in sace, such that, 

aai+bj+ck, and =a'i+b'j+c'k, then 

a aX - a . here, 

aX(3 = (bc' - cb')i + (ca' - ac')j + (ab' - ba')k, 

is the usual vector product or outer product of a,13, and 

a = aa' + bb' + cc', is the scalar product or inner 

product of a and 3. It was largely because of this 

identity, that much of the present day three-dimensional 

vector analysis was written in the language of quaternions 

in the half-century 1850-1900. (1, p.2'7-38) 

The remaining part of this theses will be a discussion 

of the way quaternions fit into modern algebraic theory. 
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CHAPTR II 

QUATERNIONS AS A DIVISION ALGEE3RA 

Real quaterruìns will be defined as quadruples, 

( a,b,c,d), where a,b,c,d are real numbers. Two real 

quaternions x (a,b,c,d) and y = (a',b',c',d') are 

equal if and only if a = a', b = b', c c', and d d'. 

DEFINITION: If x (a,b,c,d) and y (a',b',c',d'), 

then x + y = (a + a', b + b', C + Ct, d + d'). (7,p.60) 

DEFLITION: A system Q having one c1osd operation, 

'+', such that 

(i) for all x,y,z Q, x + (y+z) = (x+y) +z, 

(ii) for all x,y Q, + = y + x, 

(iii) there exists an Identity elee't O, such 

that, O + x = x = x 3 O, for a1 x Q, 
( iv) for every x Q, there exists an inverse 

-X, such that, 

X + (-x) 0= (-x) + x, 

is called a commutative group. (4,p.l8) 

THE(REM 1. The set Q of all real quaternions with the 

operation, '+', is a commutative group. 

Proof. From the definition it is seen that aditinn is a 

closed operation. 

(i) If x(a,b,c,d), y=(a',b',c',d'), and 

z b",c",d"), then 
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X -t (y+z) (a,b,c,d) + t(a',b',c',d') 4(atI,btI,cl,dtt)} 

= (a,b,c,d) i. (a'4a", b'+b", c'+c", dI+dlt) 

(a-s(a'+a"), bi(b'+b"), c+(c'+c"), d+(d'+d")). 

But a,b, etc. are real numbers which we know are assocía- 

tive, thus 

X + (y+z) = ((a+a')-sa", (b+b')+b", (c+c')+c", (d+d')+d") 

= (a+a', b4b', c+c', d+d')+ (a*,b,ct,d) 

= (x+y)+z. 

Therefore the set Q of all real quaternions is associa- 

tive with respect to addition. 

(ii) If x = (a,1,c,d) and y (a',b',c',d'), then 

X + y = (a,b,c,d) + (at,be,cI,d)(a+a,b+bt,c+ct1+dI). 

But a,b, etc. are real numbers which we know are commuta- 

tive, thus 

X + y = (a'+a, b'+b, c'4c, d'+d) 

= (a', b', C', d') (a,b,c,d) 

= y + X. 

Therefore the set Q of all real quaternions is commuta- 

tive with respect to addition. 

(iii) Let e be a real quaternion (a', b', C', d') and 

let a' = b' = c' = d' = O, then O = (0,0,0,0) 

If x is any real quaternion such tLat x (a,b,c,d), 

then x e = (a,b,c,d) + (0,0,0,0) 

= (a + O, b + O, c + O, d + o). 

But since a,b,c,d,0 are real numbers 

+ e = (a,b,c,d) = x. 



In (il) it was shown that real cuaternions are commutative, 

thus x+ee+x. Therefore, x+ex9+x and 

there exists an additive identity. 

(iv) If x is any real ouaternion such that, 

X = (a,b,c,d), then define -x (-a,-b,-c,-d). Thus, 

X + (-x) (a,b,c,d) + (-a,-b,-c,-d) 

(a+(-a), b+(-b), c+(-c), d+(-d)). 

But since a,b,cd are real numbers, 

X + (-x) (0,0,0,0) 

= e, and SflC? real quaternions are commutative, 

X 4- (-x) (-x) + x. 

Therefore, x + (-x) = e = (-x) + x, and there exists for 

every x Q ari additive inverse -x. 

Thus the set Q of all real quaternions forms a commutative 

group with respect to addition. 

THE(LEM 2. In any group the identity element is unique. 

Proof. Assume that and e2 are both identity elements. 

Since e1 is an identity element, 

e1 + 2 = 02 

Since e2 is an identity element, 

+ 02 = el 

Therefore = 02 and the identity eleent is unique. 

(8,p.49) 

THEOHEM : 
If y = (a',b',c',d') is any real quaternion, 
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then y = ê, where e is the additive ideitity element, 

if and only if a' = b' c' = d' O. 

Proof. If a' = b' C' d' ; O, then y (0,0,0,0) 

which by Theorem 1(iii) is the identity 

If y = 8, then since e is the additive identity 

e1en.ent and by Theorem 2 this is unique, y = (0,0,0,0). 

But this means that, (0,0,0,0) = (a',b',c',d'), which 

can only be true if a' = b' = c' = d' O. Therefore if 

y = (a',b',c',d') is any real quaternion then y is the 

additive identity element (0,0,0,0) if and only if 

a' = C' d' 0. 

iHEOEM 4. In any group if x + y x + z, then y z. 

Proof. If x + y X + Z, add the inverse of x to both 

sides, then (-x) + (x+y) (-x) f (x+z) 

-(-x)+x} + y = t(-x)+x} + z, by the associa- 

tive law e + = e + z, 

y = z. 

TE(JREM 5. In any group the inverse is unique. 

Proof. Assume X1 and x2 are two inverses of x, then 

X + X1 = e and x + X2 = e. Thus x + x1 x + x2, and 

by Theorem 4, x1 x2. 

Therefore in any group the inverse is unique. (8, p.50) 

DEFINITION. If in is any real number and x = (a,b,c,d) 

is any real quaternion, then mx = (ma, mb, mc, md). This 

is called scalar multiplication. (3, p.125) 

DEFINITION: A system V = [V, F, +, ., , } is called a 
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vector space over the field if and oniy if, 

(a) F; +, } is a field F whose identity 

elernenttare denoted by O and 1; 

(b) V; } is a commutative group whose identity 

element is denoted O; 

(c) for all m, n E F and all x, y V, in x C-V 

and (i) (in + n) ( x = (m 6 x) (m () x), 

(ii) m ® (x y) = (m x) (m (.) y), 

(iii) (mn) ® x m (n 

(iv) i 4' x x. (4, p.26) 

THEOREM 6. The set Q of all real quaternions is a vector 

space over the field F Of all real numbers. 

Proof. In this proof I will omit the symbols and , 

and there is no ambiguity. 

(a) The real numbers form a field whose identity 

elements are O and 1. 

(b) The set Q of all real quaternions forms a 

commutative group with identity element e = (o,o,o,o), 

by Theorem 1. 

(c) If m,n are any real numbers and x,y are 

any real quaternions, then in + n and m n are also 

real numbers. 

(i) If x = (a,b,c,d), then by definition of scalar 

multiplication, 

(m+n)x = ((m+n)a, (m+n)b, (m+n)c, (m+n)d). 

Since m,n,a,b,c,d are real numbers we have the distributie 
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law, thus 

(m+n)x = (rna + na, mb + nb, mc + nc, n4d + nd), 

and from the definition of addition we get 

(tn+n)x = (ma, mb, mc, md) * (na, nb, nc, nd) 

= n(a,b,c,d) + n(a,b,c,d), 

= fiX + nX. 

(ii) If x= (a,b,c,d) and y (a',b',c',d'), then 

m(x+y) m(ai-a', u+b', ctc', d+d'), by thee defini- 

tjor, of addition. From the definition of scalar multi- 

plication, we yet 

m(x+y) = (m(a+a'), m(b+b'), m(c+c'), m(d+d')). 

Since m,a,b, etc. are real nunibers we hdve the distribu- 

tive law, thus 

ni( x+y) = (ma+iaa ' , mb+ini' , mc+cic ' , md-md ' ) 

(tna, tab, mc, md) + (raa' , ma', mc' , ird' ) 

s = m(a,b,c,d) + m(a', b , . d') 

= mx + my. 

(iii) If X = (a,b,c,d) i any real quaternion, then 

(rnn)x mn(a,b,c,d) 

= ((mn)a, (mn)b, (mn)c, (mn)d). 

Since m,n,a,b,c,d are real numbers they are associeative, 

then (mn)x (tn(na), m(nb), ín(nc), rn(nd)) 

= m(na, nb, nc, nd) 

= m(n(a,b,c,d)) 

* m(nx). 



( iv) If x = (a,b,c,d) is any real quaternion, then 

1.x = 1.(a,b,c,d) 

= (la, lb, ic, ld). 

Since 1,a,b,c,d are real numbers, then 

l.x = (a,b,c,d) 

= X. 

Therefore the et Q of all real quaternions forms a 

vector space over the field of real numbers. 

L ECflEt'i 7. In any vector space if e denotes the zero 

vector, and if -x denotes the group inverse of x, then 

for all x V, m F, 

(1) o x = e, 

(ii) (-l)x = -x, 

(iii) rn = e. 

Proof. 

(i) x = l.x, by Theorem 6 (iv), 

= (1+O)x 

= 1 x + O x, by Theorem 6 (i), 

x + O x, by Theorem 6, (iv). 

By adding -x to both sides, we get 

(-x) + x (-x) + (x + O . x) 

+ x} + O x 

e=e+o X 

= O X. 

(ii) x + (-l)x = i x + (-1)x, by Theorem 6 (iv), 

= + (-l}x, by Theorem 6 (i), 
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=0 x 

= e, by (i) abovee 

Thus (-1)x is an inverse of x and by Theorem 5 this 

inverse is unique, therefore (-1)x -x. 

(iii) (R 8 = m[x + (-x)} 

= mx + m(-x) 

= mx + m(-lx), by (ii), 

= mx + [m(-1)Jx, by associativity, 

= mx + (-mx) 

= e (4, p.27) 

DEFINITION: A set of vectors issaid to be 

linearly independent if and only if the equation 

a1x1 + ... + ax e implies that a1 ... a O. 

(4, p.32) 

THEOREM 8. The vectors 1 (1,0,0,0), i (0,1,0,0), 

j = (o,o,i,o), and k = (0,0,0,1) are linearly independent 

Proof. If a,bc,d are any real numbers then 

a.l+b.i+c.j+d.k = a( l,0,O,O)+b(0,1,O,0)+c(0,O,l,O)+d(O,0,c1) 

= (a,0,O,O)+(0,b,O,O)+(O,0,c,O)+(O,O,O,d) 

= (a,bc,d). 

By Theorem 3, (a,b,c,d) e if and only if a=b=c=d=O. 

Therefore the vectors l,i,j,k are linearly independent. 

DEFINITION. If an independent set cannot be extended to 

a larger independent set it is called a maximal indepen- 

dent set. (4, p.34) 
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THEOREM 9. The vectors 1,ij,k are a maximal independent 

set. 

Proof. Assume there exists another vector p such that 

1,ìj,k,p are linearly independent, then 

a.1 + b.i + c.j + d.k + e.p e implies a = b = c = d = e 

= o. Let p = (a', b', c', d') and from Theorem 8 

a.l f b.i + c.j + d.k = (a,b,c,d), thus 

( a,b,c,d) + (ea', eb', ec', ed') e. This says that 

e(a', b', c', d') is an additive inverse of (a,b,c,d). 

By Theorem 5, this inverse is unique, thus ea' a,eb'b, 

ec'=-c, and ed'=-d. Therefore the expression can be 

equal to e if e o, and the vectors l,i,j,k are a 

maximal independent set. 

DEFINITIU'4. A maximal linearly independent subset of a 

vector space is called a basis of . (4, p.36) 

Therefore by Theorems 8 and 9 the vectors l,i,j,k 

forni a basis for the set Q of all real quaternions. 

Furthermore if x = (a,b,c,d) is any real quaternion, we 

can represent x as a linear combination of l,i,j,k 

such that, x = a.l + b.i + c.j + d.k. 

The dimension of a finite-dimensional vector space 

is the number of vectors in any basis. Therefore the 

dimension of the vector space of the real quaternions is 

four. 

DEFINITION: If x = (a,b,c,d) and y = (a',b',c',d') 

are any two real quaternions, then 
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xy = (aafbbtcctddI, ab' +b'+cd'-dc', c'+c'+db'-bcP, 

ad'+da'+bc'-cb'). 

DEFINITION. A linear algebra with a multiplicative 

idenUty element over a field is a system, 

= [L,F; +,.; 8,®, 1J which satisfies the postulates: 

(a) the system jL,F; +,.;th,} is a vector space 

(b) iì is a binary operation on such that for 

all m, n e i and all x,y,z L, 

(i) 

(ii) (y Fi z) (x y) z, 

(iii) xLi (y z) (xy) » (xz), 
(iv) (m (s) X) i: y x (in y) ir Q (xi y), 

(y) there exists a multiplication identity 

element relative to . (6, p.228) 

THEOREM 10. The set Q of all real quaternions is a 

linear algebra with a multiplicative identity element over 

the field F of real numbers. 

Proof. (a) By Theorem 6 the real quaternions forms a 

vector space over the field of real numbers. 

(b) By the definition of multiplication of two 

quaternions multiplication is a binary opera- 

tion4 

In the expressions that follow I will omit the symbols 

», and J, and there is no ambiguity. 

If m,n are any real numbers and x,y,z are any 
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raJ. quaterûios such that, x = (a,o,c,dj,y = 

and z= (a",b',c",d"), than 

(i) xy Q, by the definition o uitipicatioi, 
( ii)x( a, b,c ci) a' ,b' ,c',d' ) (a", 

a, b, C , (i , C a 
$3 b"-c 'C 'u ' d " 

a 'b"t-b t 3 'd 'l_rJ tc It. 

a 'c ILIC s 
a "4d b"-b ci,,, 

a td?ld '"+b'c"-c ' b") 
=( a( a ' a "-h ' h51-c ' c -d 'd " )-.b( a b"+h ' a "i-c ' d "-d 

a(atctt+cta11+d?bt1_btdt1)+c(atast..htb11...ctcll..dedis) 

'a "+h'c t'_c t )+d(a 'a "-b' b" c 'C d 'd" ) 

+1: ( a 'c "-'c 'a "+d ' h"-F'd' ) -e ( ¿ ' h"+b' a "i-c 'd"-d ' cv,) 

(aa 'a"-ab' b"-ac 'c"-ad 'd"-}a 'b"-bh'a"-hc 'd" 

+bd 'c"-c 'c"-cc 'a"-cd ' h"4cb'd"- 'd"-dd 'a" 

_dttCu+dc 'h",aa'b"+ab'att+actd't_ad'ctt+batan 

_hb$htLbctçtt_bdtdtl+catdtt4cdtattcbtcttcctbn 

a'c"dc'a't_d'b1'+dbtd1t,aatcttaclatt+adtbt* 

a ttcb' b"c 'C "-cd d"+da b"db' a" 

4dC'd"c!d'c"_ba'd"_bc'atLbh?c't+bcthtf,aa$dtt 

a "+a b'c "-ac ' b"+da 'a "-db' h"-dc 'C ci 

+ba 'c"+bc 'a"+hd' b"-hh'd"-ca 'b"cb' a"-cc 'd" 
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+cd tcfl). 

The a,b,c,etc are real numbers, thus they are commutative 

with respect to addition. Hence, 

x(yz)= ((aa'-bb'-cc'-dd' )a"-(ab'+ba'+cd'-dc' )b" 

-(ac'+ca'+db'-bd')c"-(ad'+da'+bc'-cb')cj", 
(aa'-bb'-cc'-.dd')b"+(ab'+ba'+cci'-dc')a" 

ac '+ca '4db' -bd' )d "-( ad '+da +bc'' )c", 
(aa'-bb'-cc'-dd')c"+(ac'+ca'+db'-bcì')a" 
+(ad '+da '+bc '-cb' )b".(ab'+ba '+cd '-dc' )d", 

(aa'-bb'-cc'-dd')d"+(aci'+cia'+bc'-cb')a" 

= (aa '-bb'-cc ' -dd' ,ab'+ba '+cd '-dc', 
ac'+ca'+db'-bd',ad'+da'+bc'-cb') 
a", b", c ,d" ) 

= [(a,b,c,d)(a' ,b',c' ,d' )}(atl,bht,c?t,dlt) 

= (xy)z. 

Therefore, the set Q of real quaternions is associative 
with respect to multiplication. 

(iii)x(y+z)(a,b,c,d){(a',b',c',d')+(a",b",c",d")} 

a(b'+b")+b(a'+a")+c(d'+d")-d(c'+c', 

a(c'+c")+c(a'+a")+d(b'+b")-b(d'+d"), 
a(d '+d")+d(a'+a")+b(c'+c")-c(b'+b")) 

=(aa'+aa"-.bb'-bb"-cc'-cc"-dd'-dd", 

ab'+ab"+ba'+ba"+cd'+cd"-dc'-dc", 



act+acfl+ca?+catt+dbt+dbfl_bdt_bdtt, 

ad'+ad"+da'+da"+bc'+bc"-cb'-cb") 

= ((aa'-bb'-cc'-dd')+(aa"-bb"-cc"-dcP'), 

(ab'+ba 1+cd?_dc?)+(abt+batt+cdtt_dc), 

(ac '+ca '+db'-bd' )+( ac+ca"+db"-bd"), 

(ad'+da'+bc'-cb')+(ad"+da"+bc"-cb")) 

= (aa '-bb' -cc '-dd' ,ab'+ba '+cd '-dc', 
ac'+ca'+db'+bd',ad'+da'+bc'-cb') 
+(aatt_bbtt_cctt_ddtt,ab;t+batt+cdtt_dctt, 

ac tt+da "+db"-bd ad"+da "+bc "-C b") 

= 

= xy + xz. 

Therefore in the set of real quaternions multiplication is 

distributive over addition. 

(iv) r(xy)= mÍ(a,b,c,d)(a',b',c'.d')J 
= m(aa'-bb'-cc'-dd' ,ab'+ba'+cd'-dc', 

ac '+ca '+db'-bd' ,ad '+da '+bc '-cb') 
= (m(aa '-bb'-cc 'dd ),m(ab'+ba '+cd '-dc'), 

ac '+ca '+db' -bd' ) ,m( ad' +da '+bc '-cb' j) 
= (maa '-mbb'-mcc '-mdd' ,mab'+mba '+mcd '-mdc', 

mac'+mca'+mdb'-mbd',mad'+mda'+mbc'-mcb'). 

x(íny) = (a,b,c,d)[m(a',b',c',d')} 
= (a,b,c,d)(ma',mb',mc' md') 
= 

amc '+cma '+dmb' -bmd' , arnd '+dma '+bmc '-cmb'). 
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Since m,a,b, etc. are real numbers their product is com- 

mutative, thus 

x(my) (maa'-mbb'-mcc'-mdd',mab'+mba'+mcd'-mdc', 

mac'+mca'+mdb'mbd',mad'+mda'+mbc'mcd'). 

(mx) ys m(a,b,c,d)(a',b',c',d') 
= (ma ,mb,mc ,md)(a' , b' ,c' ,d') 

= (maa'-mbb'-rncc'-mdd',mab'+mba'+mcd'-mdc', 

mac '+mca '+mdb'-mbd' ,mad '+mda '+mbc -mcb'). 

The final results of m(xy), x(my), and (mx)y are 

identical. Therefore, (mx)y = x(my) s m(xy). 

(y) Let x = (a,b,c,d) be any real quaternion. We 

have defined the ouaternion i to be (1,0,0,0). 

Now, l.x = (l,0,0,O)a,b,c,d) 
= (1.a-O.b-O'c-O.d, l'b+O.a+O.d-Oc, 

l.c+O.a+O.b-O'd, 1.d+0.a+0'c-O.b). 

But l,O,a,b,c,d are real nwnbers, tnus 

1x = (a,b,c,d) 
= X. 

x.l = (a,b,c,d)(l,0,0,0) 

5 (a.1-b.0-c.0-d.0, a.0+b.1+c0-d. 0, 

a.0+c.1+d.O-b.0, asO+d.l+b.0-c.0). 

But l,0,a,b,c,d are real numbers, thus 

x.l = (a,b,c,d) 

= X, and 

1.x=x=x.l 
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Therefore (1,0,0,0) is both a right and left hand 

identity element, and the set Q of all real quaternions 

is a linear algebra with a multiplicative identity element 

over the field F of all real numbers. 

I have previously shown that the set Q of all 

real quaternions, can be represented as a linear combi- 

nation of the basis vectors l,i,j,k. The definitions 

for addition, scalar multiplication, and multiplication 

now become; if x = a+bi+cj+dk and y a'+b'i+c'j+d'k 

are any two real quaternions, and m is any real number, 

then (a) x+y (a+a') + (b+b')i + (c+c')j + (d+d')k , 

(b) mx = ma + mbi + mcj + mdk 

(c) xy= (aa'-bb'-cc'-dd') + (ab'+ba'+cd'-dc')i 

+(ac'+ca'+db'-bd' )j + (ad'+da'+bc'-cb')k. 

DEFINITIc1. Two algebraic systems and j are iso- 

morphic if there is a one-one correspondence u +-' a' 

between 
.b and L' which preserves the operations. 

THEOREM il. The special quaternions a.l, where a is 
any real number and i is the basis element (1,0,0,0), 

are isomorphic to the real numbers. 

Proof. If a is any real number, then for every a 

there exists a quaternion of this form, namely a.1 

Conversely for every quaternion a.1 there corresponds 

a real number, namely a. 

If a.1 A b.1 , then from the definitions of equality 

of two quaternions a A b. Hence the correspondence is 
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cine- one. 

No'' a.1 -- a 'nd b.1 -b, and 

(a+h).1 = a1 * b1 

(ah) .1 (al)(b.1) 

Thus accitior ¿nd mu1tip1ic'tin is preserved1 and the 

correspondence is an isnrnorphisrn. 

DEFINITION. If x = a 4 bI 4 cj 4 dk is any real quater- 

nion, then the conjugat.e of x, a - bi - cj - dk. 

THEOREM 12. If x = a+bi4cjdk is any real quaternion, 

then x. = (a24b24c24d2) 

E-roof.x.=(a4bi4cj+d )(a-hi-cj-dk) 

4a(-c)i-c(a)+d( -h)-b( -d)ìj+[c( -d)+d(a )+h( -c)-c(-b)Ik,. 

But a,b,c,d are real numbers, thus 

= (a2+b2+c2+d2) + O.i + Oj 9 O.k 

since i,j,k are also Quaternicrs, fr'nm Theorem 7(i), 

0.i = 0.j = O.k = e, and e is the additive identity of 

the cuaternions. Thus, 

- 
, 2 2 2 2 x.xa+b+c +d ) 

S imilarly, 

= (a-hi-cj-dk)(a+bi+cj+dk) 

O.j + O.j + O.k 

= (a2+b2+c2+d2) . 

The positive real number x. is called the norm of 

x, and we write N(x) x' = .x 
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THEOREM 13. If x = a+bi+cj+dk, then N(x) = O if and 

onlyif a=b=c=d=O. 
Proof. If ab=c=d=O, then x=e and =e. 

Thus = O and N(x) O. 

If N(x) O, then since N(x) a2+b2+c2+d2 , 

a2+b2+c2+d2 O But a,bc,d are real numbers, thus 

a2+b2+c2+d2 is always a positive real number or zero. It 

can only be zero if a b C d O. 

Therefore N(x) = O if and only if a b = C d 0, 

in which case x e. 

DEFINITIC4'. A linear algebra with a multiplicative 

identity and where each element, except O, has both a 

right hand and left hand inverse, is called a division 

algebra. 

THEO:EM 14. The set Q of all real quaternions forms a 

division algebra. 

Proof. Since it has previously been shown that the 

quaternions form a linear algebra with a unit element, 

it is sufficient to show that every element has a right 

and left hand inverse. 

By Theorem 3 and Theorem 13 if x e, then 

N(x) / O. If x ís any real quaternion other than e 

and x denotes the inverse of x, then x.x* = x'x 1. 

Let x* /N(x), then 

xx' = xA«x) 
= N(x)/N(x) 
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= 1. 

Also, xx x/N(x) 

= N(x)/N(x) 

=1 

Therefore if x , e, then the inverse of x, x, is 

denoted by WN(x), which is both a right and left hand 

inverse. Hence, every element of Q except e has both 

a right and left hand inverse and Q is a division alge- 

bra. 

THEOREM 15. In any division algebra the right inverse and 

the left inverse are equal. 

Proof. If x D , then x has a right inverse xÌ 

and a left inverse x , such that x.xÎ i and 

x.x = 1. Consider i = x.x, multiply on the right by 

. Then 

l.xt = (x.x)xt 

xÌ = x(xxÍ) 

= x'1 

= x . 

Therefore the right inverse and the left inverse are equal 

THEOREM 16. In any division algebra the multiplicative 

inverse is unique. 

Proof. Let x be any element in a division algebra, other 

than zero. Assume x has two inverses xT and x 

then xxt = i and xx = 1, hence xxt xx 
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Multiplying both sides cf the equation by the inverse of 

X, we get 

x*(xx) s x*(xx) 

(x*x)x = (x*x)x 

lxt 1x 

* = xl '2 

Therefore the multiplicative inverse element is unique. 

It is appropriate, at this times to prove that there 

are only three division algebras over the field of real 

numbers. I will begin by proving two Lemmas. 

LEMMA 1. If D is a division algebra, then it contains 

no divisors of zero. 

Proof. Since D is a division algebra it has a multi- 

plicative identity 1. 

Assume that there exists x,y s D such that 

xy = O, and that x , O and y / O. Thus y has a right 

Inverse y* such that yy* = 1. 

Then, O = xy 

Oy* = (xy)y* 

O x(yy*) 

= xl 

But this contradicts the hypothesis that x O. Hence 

a division algebra contains no divisors of zero. 
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LEÁVA 2. Every e1eent of a division algebra over the 

field of real numbers is a root of a quadratic equation 

with real coefficients. 

Proof. Let D be a division algebra of dimension n 

over the field F of real numbers. 

If n = 1, then the division algebra D is the 

field of real numbers F. 

We know that any n+l elements of D are linearly 

dependent, thus if x is an element of D, then 

l,x,x2,e..,xn are linearly dependent. Thus there exists 

real numbers not all zero such that, 

f(x) a0'l + a1x + ... + a0x' = o 

The imaginary roots of this equation with real coefficients 

come in pairs of the form a t bi, where a and b are 

rea 1. 

Hence there exist real numbers which are the coef- 

ficients of the linear or quadratic factors 

fl(x),f2(x),...,fk(x), wheref(x)=fl(x).f2(x)...fk(x) 

Since f(x) O by Lemma 1, soae f = O, then 

x is a root of a linear or a quadratic equation with 

real coefficients. If f(x) is linear its square is 

quadratic. Therefore x is a root of a cuadratic equa- 

tion with real coefficients. 

If we represent any quaternion x by 

x a.l + b.i + c.j + d.k 
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then we jet from the definition of multiplication a parti- 

cular relationship between the special quaternions l,i,j, 

k, This relationship is, that i is the unit ele;nent 

and that 

2 
2 = k2 = -i, ij = -ii = k, 

jk=-kj=i, ki=-ik=j. 
These properties ¿n the bilinear postulate completely 
define quaternion multiplication. 

THEOREM 17. The only divisir'n algebras over the field of 

ail real numbers are that field, the field of complex num- 

bers, and the algebra of real quaternions. 

Proof. Let D be a division algebra of dimensirn ri over 

all real numbers. 

If n = i, then the division algebra is the set of 

all real numbers. 

Let le1.e2.....e_1 be a set of basi elenents of 

D. Then from Lemma 2, each e is a root of a quadratic 
. . .. 2 equation with real coefficients, thus e+2ae1+b1 = O 

where a1 and b1 are real numbers. By completing the 
square we get, 

2 
te1 + a1i a1 

- 
b1 

But a - b1 is a real number, hence after adding a real 

number to each. e1, the square of this new basis elenent 

e1 is a real number. 

If the square is > O , it would be the square of 
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a real number c , thus 

2 2 
e1 = 

2 2 
e1 - = O 

(e1 - c1)(e1 + c,) = O , hence 

e1 ± C1 

In which case e1 is some scalar rnultìple of 1, but e1 

arid i are linearly independent. Thus the square must be 

negative and, 

(1) e = -d , where d1 is a real number. 

brite E1 = e1/d1, then E -1. 

If n=2, the algebra (l,E1) is identical to the 

field of all Complex numbers. 

Let n>2, and denote the basis elements by ll,J,..., 

where I = e1/d1 , J = e/d2, ... , and e = 

2 2 2 2 e2 -d2 , . . . . Thus, I = -1, J = -i, . . 

Since I,J are elements in D, then I + J and 

I - J are also elements in D. By Lerna 2 they ¿ire the 

roots of sorne quadratic equation with real coefficients, 
hence 

- a(I+J) - b = O, and 

(lJ)2 - c(I-J) - d = O, where a,b,c,d 

are real numbers. But, 

(I+J)2=-2+IJ+JI 
(I-J)2 = -2 - .LJ - JI, thus 



38 

-2 + IJ + JI a(1fJ) + b 

-2 - - Ji = c(I-J) + d 

Adding the twn together, we get 

(a+c)I + (a-c)J + (h+d+4)'l = O 

But 1,I,J are linearly independeni, hincc a + c = O 

a-c=O, ard b+d+4=O. Thus, ac=O and 

b + d = -4. Pence, IJ + JI b -f 2. 

Let g = (2+b)/2, then g is a real number and 

IJ f JI 2g. Hence, 

(iJ)2 = -2 i- IJ + JI = 2g - 2 

(I-j)2 -2 - IS - JI = -'2g - 2 

From (i), (i+j)2 and (I-J)2 must both be negative, 

hence - 2g - 2 and 2g - 2 are both negative real nurn- 

bers. In which case (-l+g) and (-l-g) are both nega- 

tive, and (-l+g)(-l-g) = l-g2 is a positive real nuqìber 

which has a real square root. 

Write j = I, j (J+gi)/./1? . we know that 

2 2 
2 I = -1 and J = -1 , hence j = -1 and 

{(J+gI)/Ji12 

= [j2 + g(ij+ji) + g2I2/( i-g2) 

= {g(2g) - (lFg2)/(l-g2) 

= -(l-g2)/( l_g2) 

Also, 

=4 

ij+ji {(j+g)/2 {(j+g)/J2 
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= 1(iJ+JI) + i2 + 

= (2g - 2g)/J1-g 

=0 

The product ii is linearly independent of l,i,j 

and hence may be taken as the fourth basis element k. 

For if not it could be expressed as, ïj al+bi+cj , 

where a,b,c are real numbers. By multiplying on the 

left by i we get, 

i(ij) = i(al) + i(bi) + i(cj) 

-j = ai - bi + c(ij) 

= ai - bi + c(a+bi+cj) 

=ai bl+ca +cbi+c2j 

o = (ca-b)l + (a+cb)i + (l+c2)j. 

But l,i,j are linearly independent, tnus i + C2 O 

and c2 = -1 This contradicts the fact that a,b,c 

are real numbers, thus k = ij is linearly independent of 

l,i,j 

I have previously shown that, j2 2 
= -1 

ij + ji = O, and ij = k, hence ij = -ji k and 

k2 = (ij)(-ji) = i2 = -1 

By the associative law, 

ik = 1(u) = -j ; ki = (-ji)i = j ; 

kj = (ij)j. = -i ; jk = j(-ji) = i 

Thus li,j,k are the basis elements of the real 

quaternins which was a division algebra of dimension four. 
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If n > 4, then D contains a fifth basis element 

p such that p2 = -1 Since i,p are in D, then 

i + p and i - p are also in D. By Lemma 2 they are 

the roots of some quadratic equation with real coefficient, 

hence 

(i+p)2 - a(i+p) - b = O and 

(i-p)2 - c(i-p) - d O , where a,b,c,d are 

real numbers but, 

(i+p)2 -2 + ip + pi 

(i-p)2 = -2 - Ip - pi , hence 

-2 + ip + pi = a(i+p) + b 

-2 - ip - pi = c(i-p) + d 

Adding these two equations together we get, 

(a+c)i + (a-c)p + (b+d+4)l O But l,i,p 

are linearly independent, hence a + c = 0, a - c = 0, 

and b + d + 4 = O . Thus, a = c = O and b + d = -4 

Hence, ip + pi = b + 2. 

Let g1 = b -f 2, then g1 is a real number and 

ip+p1g1 
In a similar way it can be found that, 

jp + = g2 , and 

kp + pk = g3 

where and g3 are real numbers. Then, 

pk = p(ij) 

= (pi)j 

= (g1 - ip)j 



91j - i(pj) 

= gli - i(g2-jp) 

=g1j-g21+kp 

Adding pk to each member of the ec-uation, we get 

2pkg1i-g2i+kp+pk 

= 
gli - 921 + g3. 

Multiplying each term on the right by k, we get 

2pk2 = g1jk - g2jk + gk 

g1i + g2j + g3k 

Hence p is a linear comnbiration of i,j,k. But this is 

a contradic'ion of the assumption that p,l,i,j,k are 

linearly independent. 

Therefore for n > 4 there does not exist a divi- 

sion algebra over the field of real numbers. (2, p.62-64) 

It is interesting to note that the real numbers and 

the complex numbe-s are both commutative with respect to 

multiplication, but multLdication in the real quaternions 

is ot commutative. This can easily be seen by observing 

the special quaternions i,j. From a previous statement 

we found that ij = -ji, hence ij , ji. 

Therefore from Theorem 17 and the stateent above, 

we find that the set Q of real quaternions forms the 

only non-commutative division algebra over the field of 

real numbers. 
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CHA1TER III 

MATRIC REPRESENTATICS ('F QUATERNIONS 

DEFINiTION. Two algebras and ' c'ver the same field 

F are isomorphic if there is a one-one correspondence 

a c' between L and L' which preserves all three 

operations: 

a + f3 
4-4V a' + 1', ca ca', a3 -' a'3'. (l,p.240) 

DEFINITION. A linear transformation T: V -' W, of 

a vector space V to a vector space W over the same 

field F, is a transformation T of V into W which 

satisfies (ccx + d3)T c(aT) +d(T), for all vectors 

ci and in V and all scalars c and d in F. 

(1, p.204) 

THEOREM 18. Every linear algebra of order n with a 

unity is isomorphic to an algebra of nXn matrices, which 

is a sub algebra of the algebra of all nXn matrices with 

real elements. 

Proof. The algebra L is a vector space of ele:ents L 

Associate with each elelkent a in I. the transformation 

T obtained by right multiplication as T = for any 

E; in L 

If 3,y L and a,b F, then a + by is in the 

vector space L. Consider, (a + by)T = (a + by)a 

since L is a linear algebra multiplication is bilinear, 

thus (a + by)T = a(a) + b(ya) 
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s a(T) + b(yT). 

Hence T is a linear transfcrat on. The t of linear 

transformations on L also forms a linear algebra. 

Since a unity e is present, a A 3 implies that 

ea A e , hence distinct elements a and induce dis- 

tinct transformations T and U. 

If a corresponds to the linear transformation T 

and corresponds to the linear transformation U, then 

from the postulates of a linear algebra, 

(T+u) = T + W 
= a + 

= «a+) 

(cT) = c(T) 

= c(a) 

= (ca), where c is any scalar; 

(Tu) = (cr)u 

= (a)U 

= (a) 

= «an) s 

Therefore a + corresponds to T + U , ca cor- 

responds to cT, and a corresponds to TU. Thus the 

correspondence a +- T is an isomorphism of the given 

algebra to an algebra of linear transforations on 

The linear transforiiations of L can be represented 

isomorphically by nXn matrices. Therefore every linear 

algebra of order n with a unity is isomorphic to an 
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algebra of nXn catrices. (1, pe241) 

To exhibit these matrices, choose a basis 

I 
of L. The trasforrnation T then carries 

each e. into some e1enert 
i 

e1a 
=j1 

c1e . 

Every element x cf the linear algebra can be expressed 

as a linear combination of the basis vectors, 
n 

X = a.e ence 
.1_J ii 
i=1 

n n 

( 
2: 

a.e )T = (? ae )u 

i=l i'l 

=il 
a(eu) 

= 
: 

( 
: 1 

e4) 
1=1 1j=l 
n n 

=, a.c..)e. 
jwl i=1 ' 

:ij J 

Relative to these coordinates, the linear traisformation 

T is described by the equations 

y aC1 , 

which has a corresponding matrix C = (c4) 

The correspondence ul-C of to the algebra of 

matrices C is an isomorphism, this is called the second 

regular representation of j. The first regular represen- 

tation of L is found by premultiplication with a. 
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It has been shown that the set Q of all real qua- 

ternionforrns a linear algebra, with a unity, of dimension 

four, hence tnere ciust exist, by Theorem 18, an algebra of 

4X4 matrices which is isomorphic to the algebra Q. I 

have also shown that the elements 1,i,j,k form a basis 

for the algebra Q. 

Let the quaternion i correspond to the identity 

matrix I. Let a = i, then 

1.i = 0.1 + 1.i + O.j + O.k 

1.1 = -1.1 + 0.1 + O.j + Ok 

ji = 0.1 + 0.1 + Oj - 1.k 

k.i = 0'l + 0.1 + lj + 0k 
Hence 

1 0 1 0 0 
(-i o o o 
0 0 0-1 

\o o i o 

Let a j, then 

l.j = 0.1 + 0.1 + 1.j + Ok 
ij = 0.1 + 0.1 + O.j + 1k 
j.j = -1.1 + 0.1 + O.j + O'k 

k.j = 0.1 - 1.1 + O.j + 0k, hence 

¡ o o i. o 

/ 
O O O i 4-, 

J 1-1000 
\ 01 0 0 

Let a = k, then 

l'k = 0'l + 0.1 + 0j + 1.k 

ik = 01 + 0.1 - 1.j + Ok 
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jak = 0.1 + 1.1 + 0.j + O'k 

k'k = -1.1 + 0i + Osi + Osk, hence 

/0 0 0 1\ 

._Jo 0.-i O 
k 

O 

t_1o0O 

If x = al + bi + cj i- dk is any real quaternion 

and ci x, then 

1x = al + b.i + c.j i- dk 

i.x = -bl f ai - d.j + c.k 

i.x = -c'i + d.i + a.j - b.k 

k'x=-d.l-c.i+b'j+a.k , hence 

¡a b c d 

A 

.-d-c b a 

If y = a'l + b'j + c'j + d'k is any real quaternion, 

t hen 

: 

b:c: 
't +-+ = B y _I a'-b' 

-d'-c' b' a' 

If A is any matrix of the special form 

Ç a b c d 
-b a-d c 

-c d a-b 
b a) 

then tnere is a quaternion which corresponds to A, namely 

a + bi + ci + dk. If A = B, we know that a = a', 

b = b', c = c', and d = d'. Hence x = y and the 

correspondence is one-one. 

To prove that this correspondence is an isomorphism 
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it is sufficient to show that the correspondence is pre- 

served under addition, scalar multiplication, and multi- 

plicat ion. 

Hence if x = a + bi + cj + dk and 

y = a' + b'i + c'i + c'k are any real quaternions and 

m is any real number we get from the definitions of 

addition, scalar multiplication and multiplication; 

x+y = (a+a')l + (b+b')i + (c+c')j + (d+d')k 

mx = mal + mbi + mcj + mdk 

xy= (aa'-bb'-cc'-dd')l + (ab'+ba'+cd'-dc')i 

+(ac'+ca'+db'-bd')j + (ad'+da'+bc'-cb')k 

If x 4-k A and y 4-' B, then; 

[ 
(a+a') (b+b') (ci-c') (d+d') 

-(bi-b') (a-e-a')-(d+d') (ci-c') 
AB 

-(d+d')-(c+c') (bi-b') (a+a') 

Hence, x + y 4-' A + B. 

Also 

mx+-mA 

And, 

( ma mb mc md 

mA - I 
-mb ma-md mc - 

I 
-mc md ma-mb 

\-md-mc mb ma , hence 

AB 

a" b" c" d" ' 

- Ib" a"-d" C" - 
I d" a"b" I 

(-d'-c" b" a"), where 

a" = aa'u-bb'-cc'-dd' 

b" = ab'+ba'+cd'-dc' 



ac'+ca'+db'-bd' 

d" = ad'+da'+bc'-cb' , hence 

xyi-+AB 

Therefore this one-one correspondence of elements 

from Q to this matrix algebra is an isomorphism, and 

this is the second regular representation of the algebra 

Q. 

The first regular representation is found by pre- 

multiplication with a. Again we let the unit element 

i correspond to the identity matrix I. 

Let a = i, then 

il = 01 + li + Oj + 0k 

ij = -li + 01 + Oj + 0k 

ij = 01 + 01 + Oj + 1k 

ik=0l+Oi-lj+Ok , hence 

¡0100 
_ I-1000 

i : 

O 0 0 1 

\oo-lo 
Let a = j, then 

ji = 01 + Oi + lj + 0k 

ji = 01 + 01 + Oj - 1k 

jj = -li + Ui + Oj + 0k 

jk = 01 + li + Oj + 0k , hence 

/0 0 1 0 
(000-1 
(-i o o o 

0 100 



Let u. = k, then 

ki = 01 + 01 + Oj + 1k 

ki r o + 01 + lj + 0k 

kj = 01 - li + Oj + 0k 

kk =41 + Oi + Oj + 0k , hence 

/0 0 0 1 

L. 4J o o i o\ 
p 

-1000/ 

If x = a+bi+cj+dk and y = a'+b'i+c'j+d'k are 

any real quaternirns, in a similar way, we find that 

x-A and y-B, where 

:'a b c d 

A '-b a d-c 
'-c-d a b 
-d c-b a.' , and 

1' 
a' b' C' d'\ 

_-b' a' d'-c' B 
-c'-d' a' b' 
-d' c'-b' a' 

In a similar way as was done for the second regular 

representations, it can be shown that this correspondence 

is one-one. 

We can see from the definitions of addition and 

sca lar multiplication that x + y i-' A + B and mx mA. 

However, the product AB does not correspond to the pro- 

duct xy. From the definition of matrix multiplication 

it is found that, 

/ a" b" c" jt 

tt d"-c" BA 
-c"-d" a" b" ¡ 

a?) 
, where 
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a" = aa'-bb'-cc'-dd' 

b$t = ab'+ba'+cd'-dc' 

C" = ac'+ca'+db''bd' 

d" = ad'+da'+bc'-cb' , hence 

xy 4-' BA. This type of correspondence i called an anti- 

isomorphism. 

There is another representation of real quaternions 

by matrices, namely as a sub algebra of the alaebra of 

all 2X2 matrices over the complex field. 

Let i correspond to the identity matrix I, and 

let, 

i 
' 

i 
(- ') , 

k 

where y = %r-l. 

If x = a+hi+cj+dk and y a'+b'i+c'j+d'k are 

real quaternions, then x ' A and y B, where 

A =( and 

B =1a'+b'y c'+d'y'\. 
-c'+d'y a'-d'y ) 

. 
. a+b'' c+dy If A is any matrix of the special form 

-c+d' a-by ' 

then there is a quaternion which corresponds to A, namely 

a+bi+cj+dk . If A = B, then a = a', b = b', c = c', 

and d = d'. Hence x = y and the correspondence is 

one-one. 

((a+by)+a'+b'y) (c+dy)+(c'+d'y)", 
A+B=: 

'\\(-c+dy)+(-c'+d'y) (a-by)+(a'-b'y)) 
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( 
(a+a')+(b+b')y 

(a+a')_(b+b')y) , thus 

X + y A+ B 

Let m be any real 

(m(a+by) 
mA =1 

m( -c+dy) 

¡ma + mby 

(.mc + mdv 

number, then 

m(c+dy) 

m(a-hy) 

mc + mdv'\ 

ma - mby) , hence 

mx-mA 

/ (a+by)(a'+b'1 (a+by (c'+d'y 
+(c+dy (a'-b'y. 

AB = 

k (-c+dy)(a'+b'T) (-c+dy.ì(c'+d'y) 
\+(a-by)(-c'+d'y) +(a-by)(a'-b'-) 

= f 
a" + b"y c"+d"y'\ 

+ d"y a"-b"y) , where 

a" = aa'-bb'-cc'-dd' 

b" ac'+ca'+db'-bd' 

dit = ad'+da'+bc'-cb' , hence 

xy+-'AB 

Therefore the algebra Q of real quaternions is 

isomorphic to an algebra of 2X2 :atrices, which is a 

sub algebra of an algebra of all 2X2 matrices over the 

complex field. 
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