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Abstract. In recent years quantum random walks have garnered much inter-
est among quantum information researchers. Part of the reason is the prospect
that many hard problems can be solved efficiently by employing algorithms
based on quantum random walks, in the same way that classical random walks
have played a central role in many hugely successful randomized algorithms. In
this paper we introduce a new representation for the quantum random walks
via the classical random walk with internal states. This new representation
allows for a systematic approach to finding closed form expressions for the
n-step distributions for a variety of quantum random walk models, and lends
itself naturally to large deviation analysis. As an example, we show how to use
the new representation to arrive at the same closed form expression for the
Hadamard quantum random walk on a line, previously obtained by others. We
assert the proposed method works in the most general settings.

1 Introduction

For many hard problems in computer science, the most efficient solution ap-
proach known is that of randomized algorithms based on Markov chain or
random walk methods [1]. For example, a well-known NP-complete problem
is the 3-Satisfiability problem for which the most efficient known algorithm is
based on random walk [4]. Randomized algorithms have also been successfully
used to estimate the volume of convex bodies [2] and to approximate the per-
manent [3]. Therefore, it is reasonable to expect that the quantum versions
of randomized algorithms which employ appropriate quantum random walk
methods, will efficiently solve many hard problems on a quantum computer.
In fact, using a quantum random walk method, the black box graph traversal
problem can be solved exponentially faster on a quantum computer than on
a classical computer [12]. Furthermore, as mentioned in [10], until now many
quantum algorithms have been discovered in a rather ad-hoc way. Studying
quantum random walks will perhaps provide a systematic way of speeding up
a large class of classical randomized algorithms.

To that end, in this paper we study the discrete quantum random walks as
defined in Kempe [9] in a new representation. In the classical one dimensional



random walk, the behavior of a (classical) particle moving on a line according
to some probabilistic rule is studied. In the simplest model, a particle will
move, at every discrete time step, one unit to the left or to the right with
probabilities p and 1−p, respectively, independent of its past positions. Many
useful questions can be asked about the dynamics of the particle. One such
important question is: how the particle’s positions are distributed after t time
steps? Similarly, in the quantum random walk model, a (quantum) particle
will move simultaneously, i.e., in superposition both to its left and right with
some probabilities. However, this model is not possible as it is easy to show
that the sum of probabilities over all its possible positions will not be unitary.
Fortunately, it is still possible to construct such a random quantum walk if
an extra degree of freedom, e.g., the particle’s spin, is incorporated into the
model. Mathematically, if the particle’s spin is up, then applying an appropri-
ate unitary operator, the particle will move to the right. If the particle’s spin
is down, then the same operator will move the particle to the left. To achieve
the quantum random walk, the particle’s spin can be randomized via applying
rotation (unitary) operator. We will describe these operators shortly.

In this paper, we will describe a new representation that allows for a sys-
tematic approach to finding closed form expressions for the n-step distributions
for a variety of quantum random walk models. The new representation is based
on the classical random walk with internal states, and for which a rich set of
classical analysis tools is readily available. Thus, the new representation also
suggests a promising direction for large deviation analysis of quantum ran-
dom walks. We will show how to use the new representation to arrive at the
same closed form expression for the Hadamard quantum random walk on a
line, previously obtained by others. We outline how to use it for other quan-
tum random walk models such as two-dimensional random walk and balanced
quantum walk.

The rest of our paper is organized as follows. In Section 2, we will provide
some related work and a formal model on quantum random on a line, and
describe the proposed representation for it in Section 3. Section 4 provides an
outline for studying two-dimensional quantum walk and balanced quantum
walk based on the new representations, and also carves out a direction for
large deviation analysis of the random quantum walks.

2 Preliminary

2.1 Related Work

Quantum random walks have been extensively studied by many researchers.
Kempe provided a good introduction to quantum random walk in [9]. The



work of Y. Aharonov et al. [5] provided the first basic model for subsequent
various models of quantum random walks. D. Aharonov et al. [6] investigated
quantum walks on graphs and their mixing behavior. They showed that, ran-
dom quantum walks are not stationary processes. Thus, their mixing times
are more appropriately measured in terms of how close their n − step distri-
butions are to that of the uniform distribution stemmed from the average of
the probability distributions over all time steps. They further showed that the
quantum walk on a circle has mixing time O(n log n). Nayak and Vishwanath
[10] also provided a detail analysis of quantum walk on a line via the Fourier
analysis on the transformation of the wave equation at each time step. Their
results showed that after t time steps, the probability distribution of the par-
ticle’s position on the line, is almost uniformly over the interval [−t/2, t/2].
Romanelli et al. [11] also studied quantum random walk on the line as Marko-
vian processes. They represented the quantum walk by separating the quantum
evolution equation into Markovian and interference terms. Based on this, they
showed analytically that the quadratic increase in the variance of the quantum
walker’s position with time is due to the coherence of the quantum evolution.

Our work differs from those in [10] and [11] is that our model assumes little
about the physics of the wave packets. Instead, we model the physical process
of interest as some appropriate classical random walks with internal states.
Thus, we suspect that our model is more general than the ones that are tied
to specific wave equations.

2.2 Discrete Quantum Random Walk on a Line

In this section we formally but briefly describe the model for the (discrete)
quantum random walk on a line as presented in detail in [9]. Let HP be the
Hilbert space spanned by the positions of the particle, i.e., HP is spanned
by the basis states {|i >: i ∈ Z}. The position Hilbert space HP is further
augmented by the coin Hilbert space HC , to result in the overall particle
state in HP ⊗ HC . HC = {| ↓>, | ↑>} represents the outcome of a “coin
toss” and corresponds directly to the particle’s spin: “up” or “down”. This
augmentation is necessary to provide an extra degree of freedom to make the
quantum random walk physically possible. Specifically, just like a coin-flip in
the classical random walk, the first step of the quantum random walk is a
rotation in the coin-space for the purpose of randomizing the particle’s spin.
In the second step, a translation operator is applied to the particle’s quantum
state, which will move the particle according to its current spin values.

Depending on the desired quantum walk model, an appropriate rotation
operator can be used. We consider a frequently used operator, also called the



Hadamard coin H:

H =
1√
2

(
1 1
1 −1

)

Next, the translation of the particle can be described using the following
unitary operator:

S = | ↑><↑ | ⊗
∑

s

|s + 1 >< s| + | ↓><↓ | ⊗
∑

s

|s − 1 >< s|

Overall, each step of the walk is accomplished by the unitary operator:

U = S(H ⊗ I),

which implements a coin toss followed by a move.
Given that the initial particle’s position and spin are in the pure states,

e.g., |0 > and | ↑>, H will ensure that after the first coin-flip followed by a
translation, the particle will have an equal chance of being on the left or right
if measured properly. Mathematically,

| ↑> ⊗|0 >
H−→ 1√

2
(|0 > +|1 >) ⊗ |0 > (1)

S−→ 1√
2
(| ↑> ⊗|1 > +| ↓> ⊗| − 1 >) (2)

Now measuring the coin state in the standard basis at this point, we will have
the probabilities P (| ↑> ⊗|1 >) = P (| ↓> ⊗| − 1 >) = 1

2
.

3 Representation of Quantum Random Walks with Classical

Random Walk with Internal States

The classical random walks with internal states are fully described in Hughes
[7]. In a walk with M internal states at each site, at any step the walker may
move to a new site, with or without an accompanying change of state, or he
may pause at his present site, with or without a change of state. An advantage
of using random walk with internal states to model a problem, is that many
analytic tools have been developed for these models. In what follows, we show
how to model the Hadamard quantum walk with this model.

In the case of the Hadamard quantum walk, our first observation is that
each time we apply U = S(H ⊗ I), a pure state splits into two according to
the following rules:

U(±| ↑> ⊗|s >) =
1√
2
(±| ↑> ⊗|s + 1 >) +

1√
2
(±| ↓> ⊗|s − 1 >)

U(±| ↓> ⊗|s >) =
1√
2
(±| ↑> ⊗|s + 1 >) +

1√
2
(∓| ↓> ⊗|s − 1 >)

Thus we can embed the Hadamard walk into a random walk with internal
states (see B. D. Hughes et al [8]) by letting the states

(s, ↑, +1), (s, ↑,−1), (s, ↓, +1), (s, ↓,−1) for s ∈ Z



represent respectively the pure states

(| ↑> ⊗|s >), − (| ↑> ⊗|s >), (| ↓> ⊗|s >) and − (| ↓> ⊗|s >)

of the Hadamard random walk. Here s ∈ Z are sites, and “1” = (↑, +1),
“2” = (↑,−1), “3” = (↓, +1) and “4” = (↓,−1) are the four internal states. The
splitting of the pure states in the quantum walk corresponds to the following
transition probabilities of a random walk with internal states.

P [(s + 1, ↑, +1) | (s, ↑, +1)] = P [(s − 1, ↓, +1) | (s, ↑, +1)] =
1

2

P [(s + 1, ↑,−1) | (s, ↑,−1)] = P [(s − 1, ↓,−1) | (s, ↑,−1)] =
1

2

P [(s + 1, ↑, +1) | (s, ↓, +1)] = P [(s − 1, ↓,−1) | (s, ↓, +1)] =
1

2

P [(s + 1, ↑,−1) | (s, ↓,−1)] = P [(s − 1, ↓, +1) | (s, ↓,−1)] =
1

2

Notice that the above transition probabilities are translation invariant in
s ∈ Z. As in Kempe [9], let the walk begin at | ↓> ⊗|0 >= (0, ↓, +1) = (0, 3)
Following the notations in Hughes, let us define the two matrices

p(1) = P [(s + 1, m) | (s, m′)](m,m′) =





1
2

0 0 0
0 1

2
0 0

1
2

0 0 0
0 1

2
0 0





and

p(−1) = P [(s − 1, m) | (s, m′)](m,m′) =





0 0 1
2

0
0 0 0 1

2

0 0 0 1
2

0 0 1
2

0





where m and m′ go over all internal states. The initial conditions are encoded
in the column vector V = (0, 0, 1, 0)T , and the n step probabilities are rep-
resented by the column vector Pn(s) = (Pn(s, 1), Pn(s, 2), Pn(s, 3), Pn(s, 4))T

with P0(s) = δ0(s)V .
Now, the quantum walk is assumed to begin at a pure state, and the density

matrix expands covering more and more quantum states, each element of it
splitting into two at each iteration. We allow the quantum walk to proceed
without cancellations as the cancellations can be done at any moment. In order
to find the distribution after n time steps, we count in all the cancellations
and renormalize to get

µn(s) = 2n(Pn(s, 1) − Pn(s, 2))2 + 2n(Pn(s, 3) − Pn(s, 4))2

for all s ∈ Z. The generating function of Pn(s) is a vector defined as

P (s; ξ) =

∞∑

n=0

Pn(s)ξn

and therefore

P (s; ξ) = δ0(s)V + ξp(1)P (s − 1; ξ) + ξp(−1)P (s + 1; ξ)
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Fig. 1. The random walk over Z with four internal states that embeds the Hadamard quantum
walk.

Taking the Fourier transform of P (s; ξ) and p(l), get P̂ (k; ξ) =
∑

s
eiskP (s; ξ)

and

L(k) =
∑

l

e
ilk

p(l) =
1

2





eik 0 e−ik 0

0 eik 0 e−ik

eik 0 0 e−ik

0 eik e−ik 0





Hence, obtaining as in Hughes, P̂ (k; ξ) = V + ξL(k)P̂ (k; ξ) and

P̂ (k; ξ) = (I − ξL(k))−1
V,

where I is the identity matrix. We invert the discrete Fourier transform,
obtaining

P (s; ξ) =
1

2π

∫ π

−π

e
−isk(I − ξL(k))−1

V dk

Expanding (I − ξL(k))−1 in powers of ξ, find

Pn(s) =
1

2π

∫ π

−π

e
−isk

L(k)n
V dk

Thus we have proved the following theorem.

Theorem 1 The distribution of the Hadamard quantum walk is

µn(s) =
1

2n

[
1

2π
(1,−1, 0, 0)

(∫ π

−π

e
−isk(2L(k))n

dk

)
V

]2

+
1

2n

[
1

2π
(0, 0, 1,−1)

(∫ π

−π

e
−isk(2L(k))n

dk

)
V

]2



In the above theorem, the eigenvalues of

2L(k) =





eik 0 e−ik 0

0 eik 0 e−ik

eik 0 0 e−ik

0 eik e−ik 0





are
λ1 = 0, λ2 = 2 cos(k) and λ3,4 = ±

√
1 + cos2(k) + i sin(k)

and the corresponding matrix of right eigenvectors

R(k) =





−e−2ik 1 −
√

1 + cos2(k) − cos(k)
√

1 + cos2(k) − cos(k)

−e−2ik 1
√

1 + cos2(k) + cos(k) −
√

1 + cos2(k) + cos(k)

1 1 −eik −eik

1 1 eik eik





giving us the closed form for the diagonalized (2L(k))n = R(k)Λ(k)nR(k)−1.
Inverting R(k) obtain

R
−1(k) =





−eik

4 cos(k)
−eik

4 cos(k)
eik

4 cos(k)
eik

4 cos(k)
eik

4 cos(k)
eik

4 cos(k)
e−ik

4 cos(k)
e−ik

4 cos(k)

− 1

4
√

1+cos2(k)

1

4
√

1+cos2(k)

cos(k)−
√

1+cos2(k)

4
√

1+cos2(k)
e−ik − cos(k)−

√
1+cos2(k)

4
√

1+cos2(k)
e−ik

1

4
√

1+cos2(k)
− 1

4
√

1+cos2(k)
− cos(k)+

√
1+cos2(k)

4
√

1+cos2(k)
e−ik cos(k)+

√
1+cos2(k)

4
√

1+cos2(k)
e−ik





For s ∈ Z and n ≥ 0, let us define D↑,n(s) = 1
2π

(1,−1, 0, 0)
(∫ π

−π
e−isk(2L(k))ndk

)
V

and D↓,n(s) = 1
2π

(0, 0, 1,−1)
(∫ π

−π
e−isk(2L(k))ndk

)
V as the functions in Theorem

1. Then for the initial internal state V = (0, 0, 1, 0)T as in [9] (i.e. the initial
pure state | ↓> ⊗|0 > being equivalent to δ0(s)V in the random walk model),
we have the following closed form solution.

Corollary 1 The distribution of the Hadamard quantum walk is expressed in
the closed form as

µn(s) =
D2

↑,n(s) + D2
↓,n(s)

2n
,

where

D↑,n(s) =
1

2π

∫ π

−π

e−i(s+1)k

2
√

1 + cos2(k)
[λn

3 − λ
n
4 ] dk

and

D↓,n(s) =
1

2π

∫ π

−π

e−isk
[
(λn

4 − λn
3 ) cos(k) + (λn

3 + λn
4 )

√
1 + cos2(k)

]

2
√

1 + cos2(k)
dk

The above closed form solution was initially derived in [10] in 2000. Generated
by our representation, Figs. 3(a) and 3(b) show the overall distribution of the
particle positions and the joint distribution of internal states and positions
after 100 time steps, starting at s = 100. The fact that the joint distribution of
internal state and positions approaching Gaussian will be key to large deviation
analysis. We will briefly discuss this later.
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Fig. 2. (a) Probability distribution of the particle’s position after 100 time steps, starting at
s = 100; (b) Joint distribution of internal states and positions.

4 Other Applications

In this section, we suggest the generalities of the proposed representation
by outlining how it can be applied to the balanced quantum walk and two-
dimensional quantum walk, and the large deviation analysis.

Balanced Quantum Walk.
As seen in Fig. 3(a), the n-step distribution is asymmetric. This is due to
the asymmetry of H. For the balance walk, Kemp [9] suggested to use the
following rotation operator (coin):

Y =
1√
2

(
1 i

i 1

)

Using the same approach, expand the result of an iteration, at every step
there will be eight terms. Thus, we can represent eight internal states:

±(| ↑> ⊗|s >), ± i(| ↑> ⊗|s >), ± (| ↓> ⊗|s >) and ± i(| ↓> ⊗|s >)

for a given location s ∈ Z. Here each internal state is determined by the spin,
the plus or minus in front, and the multiplication by i. The corresponding
walk with internal states is reducible with the states associated with ±(| ↑>
⊗|s >) and ±i(| ↓> ⊗|s >) being disconnected from the states associated with
±i(| ↑> ⊗|s >) and ±(| ↓> ⊗|s >). In other words, the four internal states

“1” = (↑, +1), “2” = (↓, +i), “3” = (↑,−1), and “4” = (↓,−i)

are disconnected from

“5” = (↑, +i), “6” = (↓,−1), “7” = (↑,−i), and “8” = (↓, +1)



Once again, following the notation in Hughes [7], we define the following
matrices

p(1) = P [(s + 1, m) | (s, m′)](m,m′) =
1

2





1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0





and

p(−1) = P [(s − 1, m) | (s, m′)](m,m′) =
1

2





0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1





We can write the Fourier transform of p(l) as

L(k) =
∑

l

e
ilk

p(l) =
1

2

(
`(k) 0

0 `(k)

)
, where `(k) =





eik e−ik 0 0

0 e−ik eik 0

0 0 eik e−ik

eik 0 0 e−ik





Given the representation above, the closed form expression for the balanced
quantum walk can be obtained in exactly the same way as that of the pre-
sented Hadamard walk.

Two-Dimensional Quantum Walk.
For a two-dimensional quantum walk, one potentially use two coins, and the
outcome of a new coin toss is in HC ⊗HC , i.e., we use the rotation transforma-
tion H⊗H. It is straightforward to verify that, using the same approach, there
will be eight internal states, with four states with be disconnected from the
other four just like the balanced walk. Furthermore, the forward and backward
probability matrices, and the closed form solutions can be easily obtained us-
ing the same approach as before.

Large Deviation Analysis.
In the Markov chain we use to represent the quantum walk with, for every
internal state j, the distribution Pn(s, j) over all s ∈ Z as shown in Fig. 3(b),
converges to that of a scaled Gaussian, i.e. one quarter of a normal density. In
order to represent the quantum walks we consider the cancellations between
pairs of internal states, the asymptotic expression for the quantum walk can



therefore be represented via the large deviation functions Ij(n) for the tail
probabilities

∑
s≥an Pn(s, j) ∼ e−Ij(a)n.

5 Conclusions

We introduced a new representation for the quantum random walks via the
classical random walk with internal states. This new representation allowed
for a systematic approach to finding closed form expressions for the n-step
distributions for a variety of quantum random walk models, and naturally
lend itself to large deviation analysis.

References

1. R. Motwani and P. Raghavan, Randomized Algorithms Cambridge university press
(1995)

2. M. Dyaer, A. Frieze, and R. Kannan A random polynomial-time algorithm for approxi-
mating the volume of convex bodies Journal of the ACM, 38(1):1-17, January 1991

3. M. Jerrum and A. Sinclair, Approximating the permanent SIAM Journal on Computing,
18(6):1149-1178, December 1989

4. U. Schoning, A probabilistic algorithm for k-SAT and constraint satisfaction problems
FOCS, (1999)

5. Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks Phys. Rev. A 48,
(1993), 1687-1690

6. D.Aharonov, A.Ambainis, J.Kempe and U.Vazirani, Quantum Walks on Graphs
STOC’01, (2001), 50-59

7. B.D.Hughes, Random Walks and Random Environments (Vol.I) Oxford (1995)
8. B.D.Hughes, M.Sahimi and H.T.Davis Random walks on pseudo-lattices Physica 120A,

(1983), 515-536
9. J.Kempe, Quantum random walks - an introductory overview (2008)

10. A.Nayak and A.Vishwanath, Quantum walk on the Line DIMACS Technical Report
(2000)

11. A. Romanelle, A.C. Sicardi Schifino, R. Siri, G. Abal, A. Auyuanet, R. Donangelo,
Quantum random walk on the line as a Markovian Process Physica A 338(2004), 395-
405

12. A. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, D. Spielman Exponential algorith-
mic speedup by a quantum walk Proceedings of the thirty-fifth annual ACM symposium
on Theory of computing (2003)


