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APPLICATION OF THE LEAST SQUARES CRITERION 
TO THE DETERMINATION OF MOLECULAR COMPLIANCE CONSTANTS 

INTRODUCTION 

The potential energy of a polyatomic molecule is 

most conveniently expressed using an harmonic oscillator 

model resulting in a quadratic potential function contain- 

ing either force constants or compliance constants. When 

these constants are known it is possible to use them to 

accurately predict various physical and chemical orooerties 

of the molecules involved. The determination of these 

potential constants from observed data is subject to many 

general limitations. Anharmonicity together with Fermi 

resonance and an inability in most cases to accurately 

determine the band centers all combine to make it difficult 

or impossible to find a set of frequencies which are 

completely consistent with a quadratic potential function. 

For these reasons the least squares approach using high 

speed computers was introduced by Mann, et al (12,43 -51) 

and has been used mainly by Overend and collaborators 

(16,1289 -1295 and later papers) and Schactschneìder (19, 

1 -90) to determine a best fit set of force constants from 

frequency data. 

Frequency data from one isotopic form of a molecule 

is insufficient (except in the simplest polyatomic molecule.) 
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to determine the complete potential function in the 

quadratic approximation, thus frequency data from various 

isotopically substituted molecules is combined in the 

calculation. Often however the isotopic shifts are small 

and difficult to resolve (except for the D for H 

substitution) and since the constants are determined by 

the shifts some error is introduced. Sometimes for the 

above and other reasons it is impossible to get the complete 

set of isotopic frequency data and one cannot determine all 

of the constants. To overcome this deficiency it is 

possible to use various other observables to replace or 

supplement frequency data. mean square amplitudes of 

vibration from gas phase electron diffraction experiments, 

centrifugal distortion constants from microwave and infrared 

experiments and Coriolis coupling constants from infrared 

experiments all are related to the potential constants. 

In this thesis a least squares model is developed 

using frequency data, mean amplitude data and centrifual 

distortion data to determine compliance constants. The 

model developed is general and can be applied to any 

molecule for which there is sufficient data. Coriolis 

coupling constants were not included here since they are 

goner lly applicable to molecules having degenerate 

. 
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modes and because they are not as sensitive to changes in 

the constants as the other data types. 
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I. MOLECULAR COMPLIANCE CONSTANTS 

Compliance constants have only recently been seriously 

considered for the expression of the molecular potential 

function. The advantages of their use was first discussed 

by Decius (6,241-248). Previous to this time the G,F 

method introduced by Wilson (22,1047 -1052) was most generally 

used. 

The G,F method is developed from the basic defining 

equations for the kinetic and potential energies (23,309- 

310). 

Kinetic energy: 2T = StG (I,1) 

Potential energy: 2V = StFS 0,2) 

where S is the vector of internal coordinate displacements; 

S , the vector of their derivatives with respect to time; 

G -1 , a matrix whose elements are a function of the geometry 

of the molecule and the masses of the component atoms; 

and F , the "force constant" matrix. The kinetic and 

potential energies in terms of normal coordinates are 

Kinetic energy: 2T = QtEQ (I,3) 

Potential energy: 2V = Qt_ A- Q (1,4) 

, 
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If L is the transformation from normal coordinates 

to internal displacement coordinating S = LQ , equations 

(I,1) and 0,3) may be combined to give 

2T = StG -1S = QtLtC -1LQ = QtEQ 

so that 

LtC-1 L = E 

(1,5) 

and equations 0,2) and 0,4) may be combined to give 

2V = S t F S = QtLtFLQ = Qt Q 

so that LtFL = Jv (I,8) 

The combination of (I,6) and (I,8) leads to the equation 

CFL = L 

which leads to the secular equation 

GF - E a k = 0 

In place of equation (I,2) the equation 

2V = tC 7.4F may be written. 

Where is the generalized force vector, 

- FS (I,12) 

and C = F "compliance constant" matrix. (I,13) 

. 

; 

(I,6) 

, 

(1,9) 

. (WO 

; 0,10: 

-(41) = 
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Equation (I, 6) may be rewritten as 

where m = (L -1)t 

and (I,e) as 

or as 

where 

From (I,14) 

where 

mtcm = E 

mtcm = 

LILt = C 

t=A-1 

('7t = m-1K 

= 
G-1 

so (I,16) may be written as 

m-1KCm = 

and multiplying both sides by m gives 

KCm = m 

which leads to the secular equation 

IKC - EgkI = 0 

6 

(I,14) 

(I,15) 

(1,19) 

(I,20) 

At this point it should be explained that nothing is 

to be lost by considering the compliance constant matrix 

rather than the force constant potential function. In the 

(1,16) 

, 0,169 

- (417) 

t 

0;10 
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following it will be shown rather that the use of 

compliance constants might be more natural from the point 

of view of its determination. 

The most generally applicable advantage of the compli- 

ance matrix is in the uniqueness of its elements. In the 

treatment of molecular vibrations, redundant coordinates 

sometimes arise which are employed in order to use the 

general method (23,102 -145) for factoring the secular 

determinant. In the force constant language their employ 

leads to ambiguity in the definition of the elements of 

F . Such an ambiguity does not arise in the compliance 

constant treatment of the same problem. 

It can be assumed with no loss of generality that 

one is dealing with a single symmetry species and its 

associated factor of the secular determinant. If S is 

the vector of symmetry displacement coordinates including 

the redundancies and S is the corresponding vector with- 

out the redundancies and A is a rectangular matrix 

defining the transformation 

^ 

S = A 

Then for force constants 

2V = StFS StAtFAS = StF S 0,21) 21) 

where F is the force constant matrix corresponding to the 

S coordinates and {F the force constant matrix corresponding 

to the 5 coordinates. 

' 

' 

S 

= 



For compliance constants 

Then 

=4a vJ ` S 

av _ as v At 
_ - - ---- - a1 

2V = 
L CT= tA At _ LC - 

(1,22) 

where C is the compliance matrix corresponding to 

and E the compliance matrix corresponding to ' . 

From (I,21) 

ALFA = (I,23) 

Since A cannot be inverted it is impossible to define 

F in terms of SF . 

But from (I,22) 

C = A AI (1,24) 

so that the elements of C may be defined in terms of 

those of lC and although they are not linearly independent 

they are certainly uniquely defined. 

It should here be noted that one obtains different 

compliance constants depending on what kind of internal 

coordinates are used for their definition. In particular, 

_ °; _ 

0 1 . 

t° 
. , S ... 

h 1 

Re 
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tF 

H 
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the use of symmetry coordinates simplifies the solution of 

the secular determinant in exactly the same way as in the 

G,F case. 

If the symmetry coordinates are defined by the orthog- 

onal transformation 

Then 

G = UGUt 

and 

F = U FU t 

Inverting equations (I,26) and (I,27) gives 

K = UKUt 

C = UCUt 

where as before 

(1,25) 

(1,26) 

(1,22) 

(1,28) 

(1,29) 

K = G -1 
-1 and C = F -1 

A 

Since G and F are factored, K and C are also 

factored in the same manner. 

As the right sides of equations (I,28) and (1,29) 

have the same form as (1,26) and (1,27) , the techniques 

described by Wilson, Decius, and Cross (23,102 -145) may 

be applied just by writing C for F and K for G . 

S = US 

. .. 

. 

J 
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Frequency Calculation 

The calculation of frequencies from compliance constant 

data is quite analogous to the calculation from force 

constant data: 

ak = 41\21)2 4112c2,0 k2 
and since 

= 1/4 
2,2 k2 R (I,30) 

The only complication to solution of the secular 

determinant (I,2) is that usually only C is available 

and not K If there are not redundancies, G may 

simply be inverted; but if redundancies are present, it 

is necessary to remove them and thus the rows and columns 

corresponding to them before inversion. As previously 

discussed, there is no loss of generality. 

The secular equation can then be solved and the 

frequencies calculated from 0,30). 30). 

1/ See however (17,1133- 1138). 

' 

k 

t" 7 -4 7 1" 
k 

1 J / 

. 
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, 
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Mean Square Amplitude Calculation 

The mean square amplitudes of vibration are also 

easily calculated after solution of the secular equation. 

Solution gives the elements of and also the eigenvector 

matrix m from which the transformation matrix L can 

be determined. 

If R is the vector of the interatomic displacement 

coordinates the mean square amplitude matrix (14,726 -733) 

is given by 4 RA' 7 . If R is related to the internal 

coordinates used to define the matrix m (and thus L ) 

by the transformation 

R = VS (I,31) 

we have 

<RR') = <VSS'V'> = V <SS' V' (1,32) 

and since S = LQ 

V < SS', V' = VL <QQ'' L'V' = VL o L'V' (I,33) 

where a is a diagonal matrix whose elements are 

1 = (h /8 n2c wi) coth (he )i /2kT) (1,34) 

Introducing the notation of Cyvin (4,828 -834) 

t RR', = (1, 35) 

'S5'> = L = 
S (Ir36) 

' s 

R 
.. 1 

L1 
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(I,37) 

Thus, in order to obtain mean square amplitudes, it is 

necessary to evaluate V ; solve the secular equation; 

transpose and invert the eigenvector matrix; choose a 

temperature and use equations (1,34), (I,36), and (I,37). 

At this stage it would seem that there is no advantage 

to using the compliance constants rather than the force 

constants. In fact, it seems that the G,F treatment 

would be more appropriate as the L matrix is obtained 

directly. It will be shown below that this conclusion is 

premature and that the compliance language is really more 

natural when dealing with mean square amplitudes. 

If we choose our internal coordinates so that the 

transformation matrix, V , is the identity matrix, E , 

we may express 0,30) and 0,31) 31) as 

where 

= _ Q LI 

If D is now written in the form 

(I,38) 

k 
= k Tfik xk coth xk (I,39) 

hc 
xk = 

Ir- 

R 
= V SV 

. 

R S 

r 

r 

. 

7. 

k 
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and xk coth xk expanded as 

xk coth xk = 1 + xk2/ 3 + xk4/45 + ... (1,40) 

It is easily seen that 

lim( A /kT) = (I, 41) 

and thus that 

l im 

From (I,16') 

and thus 

5 
= lim (L a L') = L I, L' (1,42) 

T-'660 

C 

lim --1 
S 

= C 

T- -o 
(1,43) 

!. .¡ 

1 

T-0- 

T . 

= L L' 

, 

glk 

i 

¡,r 
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Centrifugal Distortion Constants 

Another observed molecular property is the centrifugal 

distortion constant which Kivelson and Wilson (11,1229 -1236) 

have expressed as a linear combination of the compliance 

constants. 

The centrifugal distortion constants are the 

in the Hamiltonian for the semi -rigid rotor, 

H = 
i 2: pa2 + Za s pd P P P (I,44) . ,,Rs ( 

The parameters of this equation may be determined if enough 

data from microwave or infrared analysis is available. 

Kivelson and Wilson have shown that if the geometry and 

compliance constants are known, one may calculate the 

distortion constants using the formulas: 

and 

0 0 0 tas 
' !2(IJ. I.¡s IYr 

t.(,(3)s 

I°s ) Zds (1,4s) 

_ 5E 7: [J(i) } ° \_j(i) °C( i, 46) 

where 

d- , , - , and % refer to the cartesian coordinates 

x, y, z ; Id- , I40 , I x , I ° are the principal 

. 

. 

. ,. ..., . 

ß 

r- 

NW- 
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moments of inertia for the equilibrium configuration 

which must be expressed in the principal axis coordi- 

nates ; and 

J) = ( aI /)R 
k 

) 

S=0 
(I,47). 

where Rk is the coordinate whose displacement is 

the internal coordinate Sk . 

Since Sk = Rk - Rk 

( a Idß / a Rk) 
S=0 

= ( Sk / Rk ) ( a I ,fe, / a Sk 
) 
S=0 0 

= 
( aldß (JIdß / aSk) Sk) 

5=0 
(I,48) 

The evaluation of these quantities is discussed 

in Appendix I. 

V The moment of inertia matrix is then diagonal. 

. 

a 
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H. THE LEAST SQUARE CRITERION 

Section One was concerned with the description of 

molecular compliance constants and with the derivation of 

various physically observable properties from the compliance 

constants. 

The object of this project is to take observed physical 

properties and to determine the compliance constants 

from them. 

The usual technique employed is to express the 

observables as linear functions of the parameters of 

interest and to use the least squares criterion to arrive 

at a statistical estimate. 

In general, for N pieces of independent data, yj ; 

in terms of the m parameters (13,328-359): 

yj =c4j +ß1Xj1 +02Xj2 + +,61mXjm + ej (II,1) 

j =1. 

where yj is the jth observed value of y corresponding 

to the set of known values ( d X X jm) and the 

expected value of 

ej , E( e.) = 0 j=1,N 

1 In the present case: vibrational frequencies, mean 
square amplitudes of vibration and centrifugal distor- 
tion constants. 

2/ 

. 

. 

(II,2) 



and the covariance 

E(ekel) 
=62/pk 

k = 1 

= 0 k # 1 

17 

(HO) 3) 

In matrix notation these relations may be expressed as 

Y =d+X/S+e 
E( e) = n 

Cov( e) _ E( ee' ) = 62p-1 

where P -1 is a diagonal matrix whose elements are 

1 /pk 

The least square criterion can now be applied. It 

is desired to find a set of solutions Ig 19/2' s.. '/3 m 

such that 

1 L °1e12 
is a minimum (21,181-210) . 

2 
o 
1 
e 
1 

= pl(y1- d1 -/31X11 -(32x12 - ...- 13mXlm)2 

(11,4) 

To minimize the partial derivatives with respect to the 

parameters 
k 

are taken out and set equal to zero. 

a 
SS 

¡3k 
L 

p1e12 = 2p1Xlk(yl- dl - R.011 1 

mXlm) = 
0 (k =1,m) ( 01, 5) 

- 

(II,11) 

WOO I, 3' ) 

. 

.., s 

} 

. ,: 

.1 

_..___ 

... 

- 

(('' 

1 
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P1X1k(Y1- 1) /31 2 P1X11X1k - /32 - P1X12X1k 
1 

". -ism 1E 
P1X1mX1k ' 

0 (k=1,m) (II,6) 

(II,6) may be rewritten as 

A A 

/81 2 P1X11X1k + "' +/gm P1X1mX1k 

PlXlm(Y1` °41) (k=1,m) (11,7) 

where the are the estimates for the parameters's . 

as 

The above equations are summarized in matrix notation 

e'Pe = (Y -d. - Xfis )1 P(y- d -X(3) 
(11,4') 

(e'Pe) = X'P(Y - d) - X'PX3= 0 01,61) 

X'PX3 = X'P(Y - d) (II,7') 

Then if S =X'PX and S is of rank m , equation (II,7') 
has the solution 

/" = S-1X'P(Y -d ) (II,a) 

An estimate of the general variance 6 , 6 2 , based on 

the estimate /5 may be written as 

= . .- 

.s 

' 

. ... 

. G . 

2 

- 



6 2 = g74; 
N1m 

r (Y -.c - X/3)' P(Y 

or 62 = 
N1m 

¡(Y -d)'P(Y -J) -p'X'P(Y -q) 
J 

(II91) 

Before discussing how these equations may be used 

to determine compliance constants it is important to 

describe some of the more important properties of the 

general estimates. 

It is certainly desired that the expected value of 

all possible estimates /3 should be f . (S is assumed 

of rank m ). 

E( /ß) = E {(s"lxtP(v - °k)-1 

= S-1 X' P E LY - d,] 

= S-1X'P£ tXß + ® 
= S-1X1PX/ + E(e) 

= S X' P X/3 = S-1 S/3 

E( = (II,10) 

The variance estimate 6'2 is defined by (II,9) 

E( c2) = E 1[(V )'P(Y - -Xi3 

N1m N +Etß'SP - SÌ3"11 

.w 

19 

- - 4)1 (II,9) 

, w « ,. .. . y 
7 . 

ggg 

* 

A 

l' 

v 

a 

r , 

-a -X%3 Al 

= )6' 
C 



= N1m 
{N6-2 - E C 

eiPXS-1X'Pe 

= CNG2-m623 

E(62) =62 

A ^ 
The covariance of/3 , Cov(3 ), is defined as 

Coy (13 ) = E L -) ( " -/3)'J 

= S -1 X' P E(ee' )P XS -1 

= 6 2(S -1 -1P 
XS -1) 

62(s- 1X'PXS -1) 

= 62S-1 

If we estimate Cov(3 ) by 

Cov() = 2 

it is seen from (II,11) that 

and thus 

3 [Cov( ), = S-1E( 6 2) 25-1 E 

E Laov()-1 = Coy( ) 

20 

. 

., 

(II;12) 

S716 

t 

7 

(II,13) 
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Application of Least Squares to Curve Fitting .r rrrr r r rr 

It is assumed that a function fj .(x1,x,...,xm) 

can be represented by a truncated Taylor series cf the 

form 

Pi(x10(2,...,xm) = f° (x,x2,...,xm) 

a 
ti/ a xi)xo D xi (II,13) 

ta 

and that there are N such functions to each of which 

corresponds an observe( value , fibs . If e = 
fobs 

- f , (11,13) may be written as 

fobs f + ( f/ xi)° ll xi + ej 

Letting fibs = y fi = d , ( fi/ xi)° = 
Xji 

, and 

A xi = A3 and referring to equation (II,1) it is seen 

that given initial values, x°, x2, ..., xm and p1,p2, 

...,pn , equation (II,B) may be used to determine correc- 

tions, U xi, to the xi, x2, ..., xm . If the fa xi are 

used to determine new initial values, new xi = old xi 

+ /\xi , and (II,B) used again, new corrections, A xi , are 

( 
x . 

. (IWO 

+ a 

_ 

_ 
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obtained. This iteration may be continued until the 

A x,'s satisfy some preset convergence criterion and the 

x1'x2,...,xm , there obtained can be said to be the "best 

fit" parameters for the given data. Since the x°, x2, 

...,xm obtained after each iteration are considered as 

constants in the next iteration, the covariance of the 

"best fit" parameters, 

Cov(() = Cov (x° + Lx) s COv( A x) , 

where the 4 x and x are the vectors of A x.'s and 
i 

xi's resulting from the last iteration, and x° , the 

vector of xi's resulting from the next to last iteration. 

In order to use the above technique to determine "best 

fit" compliance constants the following quantities must be 

obtained: 

A o 
x , ° a f j/ a xi ' 

and P . These will be discussed below. 

Ar - g . , 

, 

, 



23 

r 
The x° Vector 

The xi's here correspond to the compliance constants, 

Cij, which are elements of the compliance matrix C. In 

order to simplify the notation and to take advantage of the 

fact that some of the Cij are equal due to symmetry, a 

transformation Z (12,43-51) is defined such that 

where the 

Ci = ' Zi Cb (II,15) 

are the independent compliance constants of 

which each Cij is a linear combination. Since Cij Cji, 

Z; = Zjik and only the Zijk need be specified. 

In order to determine a starting x° vector, in the 

case of compliance constants a r° vector, usually either 

values are taken from similar molecules; previously deter- 

mined force constants are inverted; or a simplified poten- 

tial is assumed and the simplified secular determinant 

solved to give estimates of the diagonal and most important 

off -diagonal constants and the rest are initially set at 

zero. 

k 
. . 

. 

. 

, r 

. . 

. 

' 

k 

k 
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The f° Vector 

Given the transformation Z and a set of initial 

values C °, the f°. of interest, i.e., the j s , 

<ri> ° , and telpt° Is may be calculated respectively 

by solving the secular determinant (I,20) to find the 

0° and the L° matrix, using the 4's and L in 

conjunction with (I,34), (1,36) and (1,37) to find the 

ri> ° and using equation (1,46) to find the t ° I s 
These quantities must of course be re- evaluated after each 

iteration. 

,r 

. 
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The ( 3 fj/ a xi)° matrix 

(4i /ahi) 

Starting with the equation 

mtCm = (I,16) 

and from 0,14) 

mmt = K 

the perturbation equations 

=( 4 mt) C°m° + m°t( h C)m° + mtc°( Qm) (II,17) 

and 

( flm)m °t m°( Amt) = o 

can be written. 

From (II,18) 

0 mt = -41 -1( o m)mt 

From (II,17) 

= L(A mt)c°m°l \ot( (c)mol 

+ 
[m0tc0(Ain) (II,20) 

Substituting (II,19) into the first term on the right 

hand side of (II,20) results in 

N 

; (II,16) 

4 

+ 

Qpi 
L( t 

iJ 

(II,,18) 



-1 [ma ( m)motcomo 
J, 

+rMot( Ec)mo 

Cmotcomomo ( q m) 
Ji 

, mk jmi ck l 
k 

Since Ckl = 2_ 
Zkli i 

Ckl = Zk1i \ci 
and (II,21) may be written as 

c)m°l j 

0j 
k 

mkjmijzkli La 
C- i 

If (II,23) is assumed to be a truncated Taylor series 

26 

( I I, 22) 

(11,23) 23) 

Q 

-1 

[b° o 

1(A 
m)1 

_ [mot( 
L1 C)m°l jJ 

' 

= 

1 

j 

(I 1,,, 21) 

' 

= _ [mb1(m)k1 
i i 

4°t( 

lii 

fl 



fij/ac- M° 
0 

= mkjmljZkli 

or as 
Zkli ' Z1ki 

olj/a C _ 2 M° 0 

t mk jml jZkl j 

+ k mkimkiZkkj 

27 

(II,24) 

(II,24') 

M. 

_ 

a 
k 

i 

k i, 
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<r.21> /)Ci 

From equation (1,37) , = V -t SV' , 

for a diagonal element 

Vt. R] _ r2 . > _ 2 Vjk S jklVl 

Then the partial derivative 

r'/Ci= vjk S-4l/ a 

where from equation (I,36) 

= Lkm 
a mLim 

- 1, 3 Lkm/ C i L mLim 

*Lkm a A m/) C iLlm 

+ Lkm 4 m( J ,Lim/ i) - 1 (11,38) 

The partial derivative of Q 

( A m/ C i) is evalunted by the formula 

( L m/ Rim)( ),Fim/a C i) m/ i) (II,39) 

. . 

k 
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I 
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Using the constants consistent with the choice of distances 

in Angstroms, masses in a.m.u. and compliance constants in 
o 

A /millidyne (II,39) gives 

A á 
m/ i = 0.00647 [prrn--4 coth ( A Tm ) 

+ ATOm-1 cosech 2 ( ATOm' ) 

2 

x 
mkmZkki +2 z 

k l'k 
(II,40) 

where AT = 937.492/7 . 

The partial derivatives of the elements of the L 

matrix, ( Lkm/ C. i) 
are very difficult to evaluate 

in closed form for any but the smallest matrices. For this 

reason they are most easily evaluated numerically. The 

approximation used here is 

Lkm/ a C n Lkm/o C i = A Gi Lkm ((1 
1, 

+D Ci,,Cm) - Lkm(Ci ..., -LCi,...rC-m) 

L + 

i ...,Ci, 

(II,41) 

. 

J I 

a 
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toto / a c 

The derivatives of the centrifugal distortion para- 

meters, (a td13/ / ) , are the most easily evaluated. 

From equations (1,46) and (ILLS) 

td _ a 
(j)]°c) (k7 

°z ki C i (II,42) j k i 
and thus 

ta@ / a = j dR(j)1°[,s (k)1°Zjki 

or since Zjki = Zkji 

td(3v $/ a Ci I 1 zut 

(11,43) 

+ kj [j 
ac 

WTI t Y$ 
(k)] © o 

{.,,o(kn° E,, (j)] ° 
Zjki 

(II,431) 

l 

, 
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.. 
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The P Matrix 

The assumption of equation (II,8) is that the elements 

of the P matrix are known. That is, for each set (ds, 

Xj1, Xj2, ..., Xim) the variance of yJ, G 
i 

is known 

and that the general variance, G2 , is known, where 

pj G =6 
2 

. In reality these quantities are not known 

but can be estimated. Since the quantity of interest is 

Cove) and not G2 , only the relative values of the 

and not their absolute values are important. Thus an 

arbitrary value of 62 , 2, may be chosen to relate the 

pJ .1s . 

If the variance of a function of the quantity of 

interest is known, a truncated Taylor series is used to 

determine the variance of the quantity of interest. 

That is if 

f = f(x1,x2,...,x1) 

1 

= f°()41'712""04-1) + 

and 7(x1,...,x1) - f(zo1,...,)41) 

then C, 2 - E Dr-r)2] 

f/ xi), (xi-Ai) 

a 
. 

pi 

- 

, 

a , 

\ 
i=1 

, 
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( 

i( 
a f/ , xi)? ( xi _hi )) 2 

( f/ xi)2(xi _},,i)2 
i 

xi) ( a f/ 3x j) (xj-)V(xj-J93 i .101 

If the xi are independently distributed 

Then 

E 
[ ( t) f/ ) i j #i 

/8 0. 

( af/ axj)(xi-í(1)(xjAj) 

f = ( a f/ a xi)2 (xi _"ti)2 
i 

( f/ axi)2E (xi -Jti)21 

f/axi)2c x i (IIt44) 

k , 

/ 
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Since rather than wi is used in the least 

squares procedure, it is necessary to express G al 

J 

in terms of Gu, 2 . 
j 

= 1/(5.88852 x 10-7w2) 

So that 

2 

3/ 
J 

= - 3.39644 x 106w -3 

where J-J is assumed to be the observed Then 

c:203 = ( / wj)2 6 w 

6 zc1 = 1.15358 x 1013 co J-6 2 

J 6wJ 
(III,45) 

and if 6 = 0.1 and w = 1000 cm 
-1 

then 
J 

2 x 10 
-6 6 ¡* where %* is the % corresponding to 

1000 cm -1 . Since 62 is arbitrary, it can be chosen so 

that it corresponds to a fixed 6 2 of 0.1 and to 
J 

w = 1000 cm-1 i.e., Gao* . If another value of 6- 
2 

J 

511J 

a w 

. 

1 
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is used, equation (II,45) may be used to calculate the 

corresponding 62 = 62 P 

The elements of the P matrix, pj , for frequency 

data are defined by the equation 

p 1 
620 = P2 62P4 

_ = 20* =G2 
1 2 

p1C w1-6 = p2C w2-6 = ... 

Then 

p1 
_ '1 

6/ 
/ 1018 

P2 l'"(-°2 

6 

/ 
1018 

pJ 
J6/ 

1018 

= C(1000)-6 

(11,46) 

6 

= 

. 
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mean Square Amplitude Data 

The least squares analysis used for electron diffrac- 
tion data results in values for the root mean square ampli- 
tude 13 and its estimated standard error 6 

J 

so 

r32> 
= 

132 

( a <r32>/a13) = 213 

where is chosen as 1 . 

Then 

and 

p14112 21 

1 

p24122 621 
2 

2 

from which 

p = 2/(4 < r32> 62 13) 

(I1,47) 

01,48) 

. 

r 

) 

-- 6 2. 41,i 
2 

6- 
ri > 

J 

= 

G = = 6 

1 
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Centrifugal Distortion Data 

For simple diatomic molecules centrifugal distortion 

data has been reported to within one percent, but for larger 

molecules it has proven difficilt to obtain better than ten 

percent agreement. For this reason 0.01t?D has been 

rather pessimistically chosen for the variance of tdfs.6s . 

Then since 

P1 52t = p2 62t =... = 6 2 

aaaa bbbb 

Pi =6- 
2 /(0.01ti3/ ) (II,49) 

It should be mentioned that if the estimated oz's 

are chosen generally to be higher than the true pi's , 

an upper limit on Cov(`3 ) will usually be obtained, 

which is to be desired for most purposes. 

- 
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Computer Program 

A FORTRAN II program based on this model has been 

written for the I.B.M. 7094. The program has the follow- 

ing limitations. No more than 60 independent compliance 

constants, C is , can be determined at one time. No 

compliance matrix or secular determinant may be larger 

than 30 x 30 and no more than 30 observables may correspond 

to a given secular determinant or compliance matrix at one 

time. However, it is possible to repeat compliance matrices 

so that the same one may be used for various sets of data 

and there is no limit on how much total information may be 

used. The above restrictions may be modified simply by 

changing the DIMENSION statements of the program but one 

must be careful not to exceed the capacity of the machine 

being used. 

The program has been written so that it is possible 

to modify the pi's calculated above if some better 

estimates of the variances or standard errors are available. 

' 
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III. APPLICATIONS OF THE MODEL 

The model described in Section Two has been applied 

to three molecules; Nitrogen Dioxide, NO2; Sulfur Dioxide, 

S02; and Dinitrogen Tetroxide, N204 . 

Nitrogen Dioxide 

NO2 was selected for analysis because an electron 

diffraction study yielding both structural parameters and 

mean square amplitudes of vibration was recently completed 

at Oregon State University. In 1964 Dr. Jerome S. Blank 

completed his electron diffraction analysis which yielded 

the following parameters for 14N1602 
at 380° Kelvin: 

o 
the bonded N -0 distance 1.202 + .0013A , the non -bonded 

o 
0...0 distance 2.213 + .0050A , the N -0 root mean square 

0 
amplitude 0.0382 + .0025A2, and the 0...0 root mean square 

0.0470 + .0050 (3,22 -69). 

The vibration frequencies observed by Arakawa and 

Nielsen (1,413 -427) for 14N1602 are »1 = 1319.7 cm -1 , 

y2 = 749.8 cm -1 and /)3 = 1617.75 cm -1 . For 15N16O2 
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they are v1 = 1306.5 cm , 2 = 740.15 cm 
-1 

and 

v3 = 1580.32 cm-1 . 

The compliance constants to be calculated are those 

corresponding to the commonly used valence force field. The 

internal coordinates chosen for this analysis are 

S1 = d r1 , S2 = A r2 , and S3 = re A where re 

is the equilibrium N -0 distance, included in the angle 

coordinate to give all compliance constants the units 

o 

A /millidyne. The following diagram illustrates the 

numbering of the atoms and of the coordinates 
N, 

b2 03 

r 

Since both 
14 

N 0 
16 

2 
and 151602 

have C2v 

symmetry it is possible to construct by the technique 

of Wilson, Decius, and Cross (23,102 -145) the symmetry 

coordinates: 

(A1) Sr 1 (Ari + r2). Sci, 

A1) 
= re a °L 

d 
1 

-1 



and 

r - r2) 

Thus the U matrix in the transformation S = US is 

U 

1/V2 1/ V2 0 

o o 1 

1/ \T--- -1/ 4-2 o 

40 

In order to calculate the frequencies and mean square 

amplitudes it is necessary to first calculate the G or 

K matrix elements. A program based on one written by 

J.H. Schactschneider was used to determine the G matrix 

elements for the 14N1602 and 
15N1602 molecules. Since 

there are no redundant coordinates these G matrices may 

be directly inverted to give the corresponding K 

matrices. The needed G , G , K , and K matrices for 

the two molecules are tabulated below. 

G _,. 
S1 

S2 

53 

14íN160 
2 

S1 S2 S3 

0.133890 -0.049603 -0.051343 

0.133890 -0.051343 

0.366987 

( e ) .--1 F Q r . Q = 1 

= 

A 

s , 

A 
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!\ 

G 
(A1) 

Sr 
(A1) 

So, 
(81) 

Sr 

(A1) 
Sr 0.084287 -0.072609 0 

(A1) 
S 0.366987 0 

S(81) 
r 0.183494 

K 

9.875847 4.426048 2.000894 
9.875847 2.000894 

n 

3.284759 

14.301895 2.829692 0 
3.284759 0 

5.449799 

15N1602 

0.082839 -0.067783 0. 
0.350903 0. 

0.175451 

14.337863 2.769625 0. 
3.384803 0. 

5.699597 

0 

2 

' 

K 

G 

K 
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Also needed to calculate the mean square amplitudes 

is the V matrix defined by equation (I,31) , R = VS , 

where E is the vector of internal coordinates used to 

define K and C and R the vector of interatomic 

distance displacement coordinates. In the present case 

r1 

4 
r2 

A0(0...9) 

and thus from simple geometrical considerations 

= 

1.0 

0. 

t?.92n549 

0. 0. 

1.0 0. 

0.920549 0.390627 

The compliance matrix corresponding to the internal 

coordinates is 

C S1 S2 S3 

S1 

S2 

S3 
3 

Cr 
-Crr 

Cr 

Crot 

Crd 
Co( 

where the four independent constants Cr , Cd , Crr , 

and C coefficients of terms of the form 2r2 , 

R = 

, . 

. 

, 

. 
are 



r' 
and 1r respectively in the 
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expansion of the potential energy. These constants may 

be represented pictorially as follows: 

Crr rd_ 

The compliance matrix corresponding to the symmetry 

coordinates S has the form 

fd r 

Cr 
C oC 

A 

C S 

(A.) 
sa 

( A) 
S 
r 

(B.) 
S 
r 

(A1), 
Sr, 

1) 
Cr ..,. 

(Al) 
o 

o 

Cr 

l' 

Sa( AI ) 

(B) 
Sr 

C r 

C(Al) 

(B1) 



where 
(A1) 

Cr = Cr + Crr 

(A1) 
Ca = Cd 

Cr( 1) = 32 Cr 

($1) 
Cr Cr - Crr 
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The observed data and the various required supplemen- 

tary information tabulated earlier were used to prepare 

input cards for the 7094 FORTRAN II program based on the 

model described in Section Two. The program was processed 

at Western Data Processing Center at the University of 

California at Los Angeles. 

Since there are eight observed parameters and only 

four independent constants to be determined, various com- 

binations of data were used to observe how the compliance 

constants and their estimated errors varied. The constants 

determined using the whole of the data might be called the 

"best" or "most compatible" constants and serve as the 

standard to which the constants determined using less 

information are compared. 

The following tables list for each set of data the 

compliance constants, their estimated errors, the observed 

= 

. 
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parameters and those calculated for rh set of constants. 

In all cases the iteration procedure was said converged when 

4 C = 0.00005 i = 1,2,3,4 . 

Trial one includes all of the data; the 14NO2 
frequencies, 

the 15NO2 
frequencies, and the two mean square amplitudes. 

These constants are then the "most compatible" constants. 

Trial twn uses the 14NO2 and 15N22 
frequencies only. 

Trial three uses the 14NO2 frequencies and the two mean 

square amplitudes. Trial four uses only the 15NO2 

frequencies and the two mean square amplitudes. In each 

case it is necessary to have at least five pieces of data 

in order to estimate the errors. 

, 

, 

2 

' 

(I- 



TABLE I. 

NO2 COMPLIANCE CONSTANTS AND ESTIMATED ERRORS 

Trial 1 Trial 2 Trial 3 

46 

Trial 4 

Cr 

C 

Crr 

CrO, 

0.1011 
+ .0003 

0.9368 
+ .0144 

-0.0181 
+ .0003 

-0.0339 
+ .0051 

0.1011 
+ .0004 

0.9367 
+ .0203 

-0.0181 
+ .0004 

-0.0339 
+ .1r77 

0.1006 
+ .0001 

0.9748 
+ .0448 

-0.3134 
+ .0001 

-0.0477 
+ .0179 

0.1009 
+ .00002 

0.9701 0.9701 
+ .0431 

-0.0184 
+ .00002 
-0.0473 
+ .0185 

OBSERVED AND CALCULATED PARAMETERS 
41402 Frequencies (cm -1) 

Observed Trial 1 Trial 2 Trial 3 

749.8 749.8 
1319.7 1319.7 
1617.75 1617.75 

Observed 

740.15 
1306.5 
1580.32 

750.0 
1319.8 
1616.96 

750.0 
1319.8 
1616.96 

N1502 Frequencies 

Trial 1 Trial 2 Trial 3 

739.96 739.96 
1306.4 1306.4 
1581.13 1581.1 

738.70* 
1308.2* 
1582.3* 

N1402 Mean Square Amplitudes at 380° 

Trial 4 

751.2* 
1317.4* 
1616.17* 

Trial 4 

740.15 
1306.5 
1580.32 

Observed Trial 1 Trial 2 Trial 3 Trial 4 

0.001459 0.001509 0.001509* 0.001505 0.001508 
0.002209 0.002300 0.002300* 0.002207 0.002209 

* Not used for fitting in this trial. 

. 

s 

- 

a 
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Comparison of the results of trials two through 

four with trial one gives some idea of the utility of 

the model when less than the full complement of one kind 

of data is available. The starred ( *) values in the 

table are those calculated using the compliance constants 

determined using the unstarred values. These were calcu- 

lated at a different time using a slightly different 

approach to setting up the data. Thus there are some round - 

off errors which show up as slight inconsistencies in the 

outputs of the two models. 

In all cases it is apparent that the use of less than 

the full amount of data has little significant effect on 

the compliance constants and the estimated errors. The 

general increase in the magnitude of the estimated errors 

for the compliance constants can mostly be attributed to 

the decrease in the number of degrees of freedom. The 

change in the compliance constants is generally significant 

only in the off -diagonal terms Crr and Cr ; the diagonal 

constants Cr and C,4 are apparently quite stable. 

At this time it should prove useful to compare the 

results of trial one with those of Blank (3,130) who used 

a cruder "night matrix in a similar least squares program 

for the same data. 

, 

,. 

. 

b 



48 

Blank Trial 1 

Cr 0.1010 + .0003 0.1011 + .0003 

Crr -0.0181 + .0003 -0.0181 + .0003 

C d 0.9424 + .0134 0.9368 + .0144 

C ± .0048 -0.0339 + .0051 

It can be easily seen that except for minor inconsistencies 

which may probably be ascribed to the slight difference in 

G matrices they are in close agreement. 

To test whether changes in the weight (P) matrix 

have a significant effect on the compliance constants a 

series of trials were run in which the whole of the data was 

used, but where the weight of the mean square amplitude 

data relative to the frequency data was varied. Letting 

P represent the weights calculated using equation (II,48) 

the matrices Ps = 10 -2P , P'6 = 10 -1P , P = 10P, 

p8 = 102p are the weight matrices used with the mean square 

amplitude data of trials five, six, seven, and eight respec- 

tively. The results are given in the following table. 

' 

rd, - 
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TABLE II. 

Trial 1 Trial 5 Trial 6 Trial 7 Trial 8 

Cr 

Crr 

Cr 
o( 

Observed 

0.1011 
+.0003 

0.9368 
+.0144 

-0.0181 
+ .0003 

-0.0339 
+ .0051 

Trial 1 

0.1011 0.1011 
+.0003 +.0003 

0.9367 0.9367 
+.0144 +.0144 

-0.0181 -0.0181 
+ .0003 + .0003 

-0.0339 -0.0339 
+ .0051 + .0051 

N1402 Frequencies 

Trial 5 Trial 6 

0.1011 
+.0003 

0.9373 
+.0147 

-0.0181 
+ .0003 

-0.0341 
+ .0052 

(cm -1) 

Trial 7 

0.1010 
+.0003 

0.9420 
+.0170 

-0.0181 
+ .0003 

-0.0358 
+ .0061 

Trial 8 

749.8 
1319.7 
1617.75 

750.0 
1319.8 
1616.96 

750.0 
1319.8 
1616.96 

750.0 
1319.8 
1616.96 

750.0 
1319.8 
1616.96 

750.1 
1319.7 
1616.97 

N1502 Frequencies (cm -1) 

Observed Trial 1 Trial 5 Trial 6 Trial 7 Trial 8 

740.15 739.96 739.96 739.96 739.95 739.89 
1306.5 1306.4 1306.4 1306.4 1306.4 1306.5 
1580.32 1581.13 1581.13 1581.13 1581.13 1581.13 

,1402 mean Square Amplitudes 

Observed Trial 1 Trial 5 Trial 6 Trial 7 Trial 8 

0.001459 .001509 0.001510 0.001510 0.001509 0.001509 
0.002209 .002300 0.002301 0.002301 0.002300 0.002288 

Cd 

= 
` 

' 

' 

, °' , 

' ' . 
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The results of Table II indicate that at least for 

NO2 the model is not particularly sensitive to the weight 

matrix. The fact that the estimated errors for trial one 

are, in general, less than those for the other trials 

indicates that the P matrix elements as estimated by 

equation (II,45) (II,45) are probably representative. 

While this work was in progress a paper by Bird, et al 

(2,3378 -3390) appeared reporting the centrifugal distortion 

constants as well as other parameters. These data were 

not included in the determination of the compliance constants 

since the vibrational data was used in the microwave analysis 

and thus the data was not independent. 

- _ 

k 
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Sulfur Dioxide 

SO2 
2 

, like NO2 is a simple triatomic. It was 

selected for study because there is considerable infrared 

and microwave data available in the literature including 

centrifugal distortion parameters. The infrared spectrum 

of various isotopically substituted SO2 
2 

molecules has 

been studied by Polo and Wilson (18,900 -903). The micro- 

wave spectrum was studied by Kivelson (10,904 -908). 

The structure used in the calculations is that of 
o 

Kivelson: the S -0 distance equal to 1.4321A and the 

0 -S -0 angle equal to 119.536° . The observed vibration 

frequencies are v = 1151.4 + .3 , il = 517.8 + .3 , 

and 1)3 = 1360.5 + .5 for S1602 
, J 1 = 1122.0 + 1, 

1/2 = 506.8 + .5 , and 2-)3 = 1341.1 + .5 for 516018C, 

and 2-)3 = 1316.0 + .5 for 51802 . The observed 

centrifugal distortion constants for S1602 are 

papa 
= -10.1557 Mc. bbbb = -0.035615 Mc., 

r aabb = 
0.46436 Mc., and abab = 0.048496 Mc., where 

a, b, and c refer to the cartesian coordinates chosen 

so that Iaa 
Ç Ibb Icc 

. - '' 

, 

. 

't 

s 
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The internal coordinates for 502 
2 

are the same as 

those for NO2 and further since 51602 and S1802 

have C2v symmetry the same symmetry coordinates may 

be used for these molecules. The G and K matrices and 

the J vectors were calculated using these coordinates in 

conjunction with the Kivelson structure. The G and K 

(and G and K , where applicable) matrices are tabulated 

below. 

' 

' 
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u 

0.078353 -0.038472 
0.218362 

0. 
0. 
0.109181 

13.971410 2.461553 
5.013244 

0. 
0. 
9.159103 

516018 

0.93767 -0.015414 -0.027204 
0.086808 -0.027204 

0.211403 

11.631725 2.640951 1.836653 
12.603370 1.961687 

5.219084 

5180 
2 

0.071394 -0.038472 0. 
0.204444 0. 

0.102222 

15.587422 2.933241 0. 
5.443292 0. 

9.782630 

2 

G 

K 

G 



In order to be used in the model, the centrifugal 

constants, s (Mc.) , must be converted into the 

corresponding parameters, t.zp b using equation (1,45). 

In general this has the form 

= -32 141h-3N-2 x 10-37x( 
Io 

IßP 
I ̀ 1° 

) aßts 
(III,1) 

_-2.953006 x 10-3 x(1°,344 I°N3. Ió" I b )`edpz( s, 

(III,1' ) 

where I °d , Ißß , III , and Ic4 , have the units 

02 
a.m.u. A . 

For 5162 Iaa = 8.3167 , 
Ibb 

= 48.911 , and 

Icc = 57.3077 so that taaaa = 143.473 , tbbbb = 605.843, 

taabb = -227.643 and tabab = 23.7740 

In order to calculate the is using equation 

(I,46) , the J and J. vectors are required. 

The vectors needed in the case of SO2 are Jaa 
' Jbb ' 

and Jab . These vectors are tabulated below. 

54 
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Jaa Jbb Jab 

51 5.807315* 34.209288 -11.412138 

S2 5.807316* 34.209288 11.412138 

S3 -9.965164 19.935862 0. 

* These values differ because of round -off error 
introduced in their calculation. 

As in the case of NO2 there is enough data so that 

various combinations can be used to observe the variance 

in the compliance constants, their errors, and the para- 

meters. For SO2 
2 

there are eleven pieces of data and 

still only four constants to be determined. In trial one 

all of the data was used; the seven observed frequencies 

and the four centrifugal distortion parameters. These 

are the "most compatible" constants. In trial two only 

the frequency data was used. In trial three the 51602 

frequencies were combined with the four centrifugal dis- 

tortion parameters and in trial four the 5160190 

frequency data was combined with distortion parameters. 

In trial five the one 51802 frequency was used with 

the centrifugal distortion data. The results of these 

trials are tabulated in Table III. 

, 

' 

' 

. 



Cr 
r 

Cd 

Crr 

Çrd 

2 
2)3 

TABLE III. 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

0.10029 0.1003 0.1003 0.1004 0.0822 
40.00007 40.0001 40.0004 47.0003 40.0144 

1.2920 1.2846 1.2992 1.3042 1.3368 
40.0181 40,0255 40.0283 40.0299 40.0903 

0.000098 0.0001 0.0002 0.0002 -0.0181 
41.0000 65 40.0001 40.0004 40.0003 40.0144 
-0.0378 -0.0321 -0.0435 -0.0441 -0.0277 
40.0131 40.0177 40.0218 40.0217 40.0273 

Observed 

51602 Frequencies 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

1151.4 1151.4 1151.3 1151.4 1151.3* 1441.4* 
517.8 517.6 517.6 517.8 516.9* 507.8* 

1360.5 1360.4 1360.4 1360.5 1360.3* 1359.6* 

s16o1B 
Frequencies 

Observed Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

1122.0 1122.5 1122.7 1122.4* 1122.0 1328.5* 
506.8 507.3 507.2 507.6* 506.8 497.7* 

1341.1 1341.1 1341.0 1341.6* 1341.1 1417.6* 

* Not used for calculation in this trial. 
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(TABLE III continued) 

`) 1 
0 

2 

`ì 3 

Observed Trial 1 

3 l80.. Frequencies- L 

Trial 2 Trial 3 Trial 4 Trial 5 

.. 
.. 
1316.0 

Observed 

1099.0* 1099.3* 1098.7* 
496.8* 496.6* 497.2* 

1316.3 1316.3 1316.9 

51602 Centrifugal Distortion Const ,its 

Trial 1 Trial 2 Trial 3 

1098.2* 

496.3* 

1316.2* 

Trial 4 

1375.5* 

487.4* 

1316.0 

Trial 5 

taaaa 

tbbbb 

taabb 

tabab 

143.473 143.723 141.769* 
605.843 646.589 657.973* 

-227.643 -199.979 -200.859* 
23.774 26.098 26.099* 

* Not used for calculation in this trial. 

145.867 

632.988 

-198.593 

26.092 

146.510 

633.380 

-199.253 

26.092 

143.473 

605.843 

-227. 643 

26.109 

.- _ 
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The same general remarks can be made for SO2 that 

were made for NO2 except for trial five. As long as a 

complete set of frequency data from either 
S1602 or 

5160180 was used the parameters estimated using these 

compliance constants agree quite well with the parameters 

calculated using the whole of the data. This indicates 

that in order to get a reasonable set of constants it 

is necessary not only to have more data than constants 

but to have more than one piece of data bearing on a given 

constant. In trial five the one piece of frequency data 

is related only to the difference Cr -Crr , thus the 

C and C.rc constants as well as the individual 

magnitudes of Cr and Crr are determined only by the 

centrifugal distortion data which, of course, are subject 

to large error as previously mentioned. 

Some remarks should also be made regarding the 

significance of the reported estimated errors. These 

errors only measure how well the determined constants 

fit the data that has been used in their determination. 

Thus they only have real significance when the conditions 

outlined in the previous paragraph are fulfilled. 

The results of trial one may be compared with those 

obtained by inversion of the force constants determined by 

-t 

' 

, 
. 

, 

J 

` 
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Polo and Wilson 

the same data. 

Polo, 

(18,903) and Kivelson (10,907) using 

Wilson, and Kivelson Trial 

Cr 

Crr 

C 

Cr 
ot 

0.10035 

0.00025 

1.2719 

-0.0239 

0.10029 
+ 9.00907 

0.000098 
+ 0.000065 

1.2920 
0.0181 

-0.0378 
+ 0.0131 

These results apparently agree quite well. 

As for NO2 a series of trials were run in which 

the whole of the data was used and only the relative 

weights of the centrifugal distortion data relative to 

the frequency data was varied. Letting P equal the 

weight matrix calculated by equation (II,49), trial six 

uses P6 = 10 -2P , trial seven uses 77 _ 10 -17 , trial 

eight uses Fg = 10W , trial nine uses Pg _ 102P and 

trial ten uses 
p10 

= P . The results from trial ten 

differ from those of trial one because of round -off error. 

This is introduced because the U matrix was used 

explicity by the program to determine C, K and 

. 

. 

. , 

1 
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(L -1)t in trial one whereas in trial ten the G and 

symmetrized Z matrix were input, and (L -1 )t not 

determined. The results are presented in Table IV. 

Y1 
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TABLE IV. 

Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

Cr 0.1004 0.1004 0.1004 0.1004 0.1004 
+.0002 +.0002 +.0002 +.0003 +.0002 

1.3048 1.3048 1.3021 1.3019 1.3041 
+.0089 +.0092 +.0163 +.0202 +.0112 

Crr 0.00024 0.00024 0.00020 0.00019 0.00023 
+.00015 +.00016 +.00022 +.00028 +.00018 

Cr d 
-0.0470 -0.0470 -0.0447 -0.0439 -0.0464 
+.0069 +.0071 +.0123 +.0140 +.0086 

51602 Frequencies 

Observed Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

517.8 517.6 517.6 517.5 517.4 517.6 
1151.4 1151.3 1151.3 1151.3 1151.3 1151.3 
1360.5 1360.3 1360.3 1360.4 1360.5 1360.3 

51802 Frequencies 

Observed Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

497.0 497.0 496.9 496.7 497.0 
... 1098.2 1098.2 1098.4 1098.4 1098.3 

1316.0 1316.3 1316.3 1316.3 1316.4 1316.3 

S 
16 18 

0 0 Frequencies 

Observed Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

506.8 507.4 507.4 507.4 507.2 507.4 
1120.0 1122.1 1122.1 1122.2 1122.2 1122.1 
1341.1 1341.0 1341.0 1341.0 1341.1 1341.0 

C 
ct? 

_ 

. 

... 
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(TABLE IV continued) 

SO2 16 Centrifugal Distortion Parameters 

Observed Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 

143.473 147.243 147.220 146.439 146.227 147.031 

605.843 626.084 626.220 630.891 632.999 627.334 

-227.643 -198.078 -198.092 -198.569 -198.919 -198.205 

23.774 26.098 26.098 26.097 26.093 26.098 

1 , e . 
.. . 

; 

e - s 

J 

-.,. 

r 

e' 

,! 

7 
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The variance model assumed for centrifugal distortion 

data seems to be reasonable. The diagonal compliance con- 

stants are only slightly affected so that most of the effect 

shows up in the off -diagonal constants. The effect however 

on the calculated parameters appears to be consistently 

negligible. 

The magnitudes of the estimated errors are strongly 

affected due to the fact that the major portion of the 

estimated variance contributed by the differences between 

t. ,e observed and calculated distortion parameters. Since 

the os's are used directly in this variance calculation 

the effect is obviously significant. 

, 

h 

'. 
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Dinitrogen Tetroxide 

N204 was chosen to be the first practical applica- 

tion of the model, NO2 and SO2 having been chosen 

more to illustrate and test various aspects of the model 

than to yield any new information about the molecules. 

The structure of N204 was determined by Darwin 

Smith (20,56 -71) who found the molecule to be planar with 

the following parameters: N -0 bonded distance equal to 

o 

1.177A , the 0...0 distance across one end of the molecule 
L o 

equal to 2.173A and the N -N distance equal to 1.752A . 

The mean square amplitudes for these and the dependent 

distances are also reported. 

The infrared and Raman spectra have been compiled 

and reported by Hisatsuni (8,18 -60 and 9,1 -47). 

The compliance constants to be calculated are again 

those corresponding to the valence force field. The 

internal coordinates chosen for this are the following: 
e s1 = r1 , S2 = Ar2 , 53 = Q r3 , S4 = Lr4 , SS = r L. , 

S6 = re 
A 

2 
, 57 = r° L1 1 , 

58 = 
re 3 , 

59 =A R , 

S10 
= re 

S11 = 
re 4" ' and S12 = re L 

2 

' 

d 
1 

4 ' . 
1 
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Since this molecule has D2h symmetry it is possible to 

construct the following symmetry coordinates. 

A 
g 

Au 

s1g 

B Blu 

a2g 

8 2u 

Sr = ;( L r2 + L` r3 

( Ag) 
= rre ( p oc , &,4 2) 

Y2 

(A ) 
SR 9 = 6.R 

S 
(Au) 

= re L z 

(ß 1 
Sr = 6 r1 -4r2 +2r3 -Nr4) 

S 

(ß1g) 
s re 

A,ß2) P 

S (81u) _ re 
( Q + a Y2) 

.)5 

( ß 2g) 
S ( L Y Ql 1) 

(82u) 
_ Q r1 -4 r2 "r3 +ar4) Ar4) 

S t (ß2u) 
( A + AO' 2) 

r4 ) 

u 

Q r1 À 

S 
.' . , 

f( 

o " 

( Q 1 >. 
1 

l - 

Sr ( 
re 

1 = 

- 

_ r- e 
2 

\W 



B 3u 

(83u) 
Sr = ( r1 +L r2 - r3 - r4) 

66 

e 
5 tB3u) _ . ( p / d 

1 
- L2i 

42 

The numbering of the atoms and coordinates is defined 

in the following diagram. 

The Q T coordinate displaces atom 2 and 4 up out 

of the paper and atom 1 and 3 into the paper. x 

is defined as atoms 1,2, and 6 coming up and atom 5 going 

down, 
2 

by atoms 3,4, and 5 coming up and 6 going 

down. 

The following diagram illustrates pictorially the 

definition of the various compliance constants corresponding 

to the chosen set of internal coordinates. 

A 

A 

A 
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The compliance constants corresponding to the chosen 
symmetry coordinates are 

A 
g 

Au 

81g 

(A ) 
Cr g = Cr + Crr 

+ Crr + Crr 

(A ) 
C = Cd + Cod 

(A ) 
CR g CR 

C 

(A 
g) _ Y2 (C + Cd ) 

(Ag) 

CRr = 2CR 

(Ag) 
CR 

CR 

(Au) C C - z 

(gig) 
Cr 

= 
Cr - C - C1 

+ rr rr Cr Cr 

C (819) = 

d 
ot 

. 

d 
g = Ü 2 

ç - c Nz 



81u 

B 
29 

82u 

B3u 

C 
(81g) 

= a (cr - Cr ) 

C 
(81u) 

= C 

ZCC 
(B) 

Cr a Cr - Crr 
+ Crr 

- Crr 

( B au ): C + C r6 

(82u) 
(C r + Cr ) r 

(83u) 
Cr Cr + C 

- CFr 
" 

rr 

C (B3u) = Co( d - C dd 

83u) V2 (Cr - Cra ) 
ot- 
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Hisatsuni determined a set of force constants for 

the in -plane vibrations using frequency data for the 

,. . 

Ca1s.. 

(8 ) C _ 

C = 

c = 2 

= 

_ 



liquid. Since we wished to use the frequency data in 

conjunction with the gaseous mean square amplitude data we 

used the frequencies found for the gas phase. Hisatsuni's 

force constant matrix was inverted and transformed to 

give a set of compliance constants which would serve as 

starting values for our determination. In the following 

tables are listed the Hisatsuni compliance constants (trial 

one) and those constants determined, in the case of trial 

two, using just the frequency data and, in the case of 

trial three, the frequency data on'' three of the observed 

mean square amplitudes. The mean amplitudes corresponding 

to the N -0 distance and 0...0 distance across the end 

of the molecule were discarded because their determination 

depended on knowing the correct structure for NO2 which 

was in error at the time of Smith's analysis. The mean 

amplitude for the N -N distance was discarded because of 

poor resolution in the radial distribution curve. This 

left three amplitudes, those corresponding to the two 

across molecule 0...0 distances and that for the non - 

bonded N...O distance. 

Following the compliance constant table is a table 

giving the observed data and that calculated for each of 

the three sets of constants. 

70 
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In the cases of trials two and trial three the 
computer selected which of the constants were significant 
(see Appendix III). Those listed with the value O. 

were judged insignificant or indeterminant. 

t 
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TABLE V. 

IN -PLANE CONSTANTS 

Trial 1(a) Trial 2 Trial 3 

Cr 0.0999 0.0986 .0003 0.0986 .0003 

Crr -0.0053 -0.0094 ± .0003 -0.0094 ,.0003 

Co 
r -0.0001 0. 0. 

Crr 0.0017 0. 0. 

Cd, 0.9252 0.9903 +.0181 0.9906 .0158 

Cold 0.0004 0. 0. 
Cß 0.6135 0.6111 + .0114 0.6111 .0100 

Cpp -0.2069 -0.1837 + .0111 -0.1838 ± .0097 

Cr -0.0336 -0.0535 .0077 -0.0536 f .0067 
Crd -0.0005 0. o. 

Crß -0.0405 -0.0473 + .0021 

CT0 0.0137 0. 

CR 0.7491 0.8134 .0457 

CRr 0.0241 0.0232 .0025 

-0.0473 + .0018 

0. 

0.8152 .0396 

0.0232 + .0021 

CRd -0.0173 0. 0. 

(a) Inverted Hisatsuni force constants 

. 

; 
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(Table V continued) 

Ind -PLANE FREQUENCIES AND MEAN SQUARE AMPLITUDES 

N1404 Frequencies (cm -1) 

Observed Trial 1 Trial 2 Trial 3 

A1g 
LJ 260 267 260 260 

"32 812 809 813 813 w 
1 1373 1370 1371 1371 

8 
1g 

6 480 479 481 481 w5 
1710 1721 1710 1710 

82u 
ko 

10 385 387 381 381 

1748 1755 1746 1746 

83u 
W12 

750 753 750 750 
u311 

1261 1254 1261 1261 

4 Frequencies (cm-1) 

Observed Trial 1 Trial 2 Trial 3 

A1g 
0A 
3 260 266 258 258 

w2 800 830 801 801 
0.)1 

1350 1347 1352 1352 

81g 

478 475 477 477 
5 1670 1682 1671 1671 

, 

r 

- ' 

' 
. 

" ' 

. 

' 

' 

. 

e` , 

' 

`') 6 
(s. 

, 

9 
w 
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(Table V continued) 

Observed Trial 1 Trial 2 Trial 3 

a2u 
w 

10 377 386 381 -.L w 
9 1707 1717 1709 1709 

93u 
LO 

12 

u3 
11 

739 

1251 

744 

1241 

739 

1251 

739 

1251 

N140 mean Square Amplitudes 

Observed Trial 1 Trial 2 Trial 3 

N-0 .001?47 ... .001457* .00145?' 
N -N .005625 ... .004479* .004486' 
01...02 .002430 .002117* .002116' 

N...0 .006053 ... .005464* .005470 

02...03 .009179 ... .009786" .008793 

01...04 .005432 .005519' .005524 

e Not used for fitting in this trial. 

.. 

... 

... 
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As before the results of trial three can be called 

the "most compatible" constants. These constants are 

only slightly different from those of trial two while in 

all cases the estimated errors are reduced, indicating 

that while the mean amplitudes did not give us enough 

information to determine any other constants, they did 

increase our confidence in those which could be oetermined. 

The difference between trial one (Hisatsuni's values) 

and trial three are noticeable mostly for the diagonal 

constants C o& and CR These differences are probably 

due to Hisatsuni's use of the liquid frequencies combined 

with the fact that a slightly different G matrix was 

used hare. The other differences observed for the other 

constants may be due to the reasons above as well as to 

round -off error in the inversion. 

In the following table the compliance constants 

for the out -of -plane modes are determined. The wag ( ó) 

constants are calculated from observed frequencies and 

the torsion constant from a frequency estimated from 

thermal data, since the torsional mode is both infrared 

and Raman inactive. These constants are determined sepa- 

rately from the in -plane constants because there are no 

constants common to both the in -plane and out -of -plane 

blocks. The in -plane constants were determined together 

' 

' 

' 

. 

. 



since all blocks have at least four constants in common 

(Cr , Crr , Crr , and Crr) , and thus a representative 

fit could not be determined using only the separated 

symmetry blocks. Also all of the in -plane constants 

are involved in the mean amplitude Pitting. 

It would also be incorrect to estimate the errors 

in the out-of -plane constants using a 62 calculated 

from derivations in both the in -plane and out -of -plane 

frequencies, since there is no relationship between them. 

The out -of -plane constants are themselves determined 

in two sets; C6 and C-61 l together; and C,r, by 

itself for the sane reasons. 

There is no error estimate for the C constant 

because there is only one observation. This, however, 

does not mean there is no errar in the calculated C . 

76 
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C -t = 199.3 

TABLE VI. 

OUT -OF -PLANE CONSTANTS 

Frequency 

50 -1 cm 

Out-of-Plane Wags 

CI( x 5.7051 + .0421 

C sor a 0.6734 .0421 

Frequencies (cm -1) 
Observed Calculated 

N1204 
w 

ß29 
675 669 

N1204 w8 
B29 

641 649 

u37 81u 430 430 N140 
2 4 
0 

vJ7 81u 420 420 N140 
2 
0 
4 

Torsion 

f 

. 

,.. 

- 

' 
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In the course of the calculations on N204 , 

J.C. Decius (7) noted that some of the odd band shapes 

observed in the infrared spectrum might be explained in 

terms of a torsional angle dependence of the kinetic 

energy matrix, G . 

In the following paragraphs I will give a brief 

resume of the resulting theory and then show the applica- 

tion to N204 . 

The effect can most simply be explained in terms of 

an "anharmonicity" constant, Xkk, , in the expansion 

vibrational energy of the molecule, 

Evib = hc C Wk(vk + + Xkk' 
k k 

x (Uk ;)(Uk li-)1 where 1`- k *. kl--- 3N-6 . 

It should be noted that while this equation is identical 

with that used for non -harmonic potentials, we here are 

considering harmonic potentials, and Xkk, is really 

a coupling due only to torsion (t) angle. 

There are two ways of simply treating the effect 

on the vibrational energy. The first is a perturbation 

) L 
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treatment in which the 
Xkk' 

are exolicity evaluated 

and the second a more straight forward technique involving 

evaluating G for different values of ' and using these 

G's together with the equilibrium potential constants 

to calculate the vibrational frequencies. 

In the perturbation technique the kinetic energy 

term, 21 , is expanded in matrix notation as follows in 

where 

2T =pt(Go +G'z +?iG" z2), (III,2) 

G° = G( equil) 

G' = 
aa 

(s. 
) Zequil 

2G( z ) 
G" _ equil 

and the potential energy is left in usual form 

2V to StFS 

where the S are ir+ernel symmetry coordinates and 

o their associated momenta. 

Using the usual notation for the transformation to 

internal coordinates 

. 

T2, 

. 

. 

"C 



nr1 

S = LQ and 0 = peL -1 

yields the following two equations for 2V and 2T 

2V = Q t 
N.. 

21 ptp + ptL-1G1(L-'i)tP z + iPtL-1G"(L-1)tp 
z2 

(III,5) 

If ws let 

and 

re = L-1 G 1( L-1) t 

s L-1Ga(L-1)t 

(III,5) may be rewritten as 

2T qtq otr 'ot +t 2 (I I I 6) 

In order to find the contributions to the Xkke 

terms using perturbation theory it is convenient to write 

(III,6) in summation notation 

21 2E pk2 + t lE ZE Pk kke Pk 
k ke 

k ePk r"kkepke 

We first treat the e" term in (III,7) . 

. Q 

= 

A 

.= 

C' 

*4 2 . 
(III,7) 

r " 
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For k = k' first order perturbation theory results 

in an energy contribution 

( r kk/4F,c 
) (hc) 

2u3Y 
1.-0k( Vk + i) Uz ( + i) 

which leads to a contribution to Xk,t of 

Xklt 
= wk "kk ( zi8 Uo ) 

where Vo is the rotational barrier height in wave 

numbers. 

For k # k' second order theory gives an energy 

correction cubic in the vibrational quantum numbers and 

thus not affecting the Xkk terms. 

For the two cases involving the 'r term we find 

for k g k' a second order correction 

- k( tick )2( 
uak2/vo)(Uk 

+ 
4)2 

which vanishes unless t is totally symmetric. 

For k k' there are contributions to both kinds 

of anharmonicity constants. They are 

2 2 
2 2 k k' ( k: 

2 
+ uk, - uJY 

Xkk, = 
( 

r,kk') ( /Uo 
, 
( `)kl 

where k k' z 

(IIIt8) 

' 

. 

# 

' 

2". k 1ÇkkI) 
(II 0) 0 



and 
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Xk(2) ai( wt wk/Uo) ko ( Ìkk )2 x 

wk, 2( wk2 - k 2 + ti2) 

[k + wY ) 2 - w , 2, (( `,a ``'t 
) 2 - "k z J (III,10) 

(1) "1 Xk a Xkz + Xkz' 

where Xk(1) and Xk(2) are defined by equations 

(III,9) and (III,10) respectively. 

The vibrational energy for particular mode 

perturbed by the frequency interactions may be written as 

_ Ek 
k + ki Xkk (Vk + id (Vk + 4) 

Then for a fundamental transition the observed frequency 

k(c -1) is given by 

1J, [(-4 
k 

+ X kko(VO + fl.1 (Vk + 1 + 

_ 
`"`' k 

+ Xk k 
o ' 

( vk 

- V k-'2) 

(III,11) 
which has an obvious dependence on the quantum numbers 

corresponding to the other normal modes. 

n` + 

z 

4 

. a 

w 

) 

t z 

t 

= 
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In order to evaluate these terms for N204 the 

following terms will be required 

Vo = 1014 cm-1 

W z = 51 cm-1 

(this LA-5T_ was calculated from Vo), the G , GI , and 

G" matrices, Po and po and the frequencies for the 

other modes. 

o 
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G , and .:.' 

Using the symmetry coordinates ,previously defined 
for the Vh symmetry only the following G elements 

are found to depend on (5) 

Gr 
a -2 N sin - cos -12, vl cos z ) 

Grp: V2 i 2 sin y sin 

G : -- (R . cos 7 ) 2 2r ( cos co Sit 7) ++1co . 

G _ - r ( cos 7 . sec ) sin 

G 
ó 4, ( + ( . sec ) cost a .F-27 . eec )2T 2-= n 

,uogec7 7 
where the upper sign in i or T- refers to B1 , the 

lower to 32 . Note that Gr and C - are zero 

for 'r 3 , thus allowing the further factoring into the 
g and u blocks seen for Vh . The GI and G" are 

blocked according to the more general V symmetry as will 
be shown later. 

,c 

2 ; 
R 

11 

= 

. G11 

s 



Taking the partiel derivatives with respect to 

gives the following results. 

(T sin ) 

lu Nsin (_ sin ) 

G" .12 )1k sin 04 ( cos ) rp 

sin 7 cos z 

r-15 
»rein 7 sin i 

Goa . (Á cos 3) sinT 

11 
N-74 { caa7y) cos T 

Go 

at 
r coS 74 sec ) cos 

a ( cos d sec 7) sec sin 

; N J- y4 7) sin `r 

s 
r-:V 

-+ (g sec 7) cos t 

35 

Since all other partials are equal to zero, the G' and 

C matrices are factored into 31 and E3 
2 

blocks, 

G r/2 

;\1 '2 

G8 r13 

: -QÌ2 -4 

fi N 

GI 2' 

GI! 

/ 

Ift( 

2r 

_- 

7 C( 



For example 

G' 

0 Go 
r(8 

Ge 
I 
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Since G is symmetric, G' and G" are also symmetric. 

Using the following quantities 

o 

r = 1.177A 

o 
R 1.752A 

sin 7 a 0.92321 

cos = 0.3843 

sec 2.6021 

/1-1 . = 0.0713 

we can now evaluate the derivatives 

G 0 

Go 
r 

:0.0625 

G"rß: , 0.0625 

G"r)= 
0 

G" zr 0.1011 

Sie: ' 

G°( Gitszi 

54L 

rf 3. 

. 

G1-15 * O 

Sr SN 

G r' 

a 

7 

= 

= 

a 



G' -9.2073 

0 

G" _ 0 

G+' = +0.3136 
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In order to now evaluate r' and ¡'" we need the 

L -1 elements corresponding to the B1 and B2 blocks 

of G' and G" . The L-1 matrices are output by the 

program for the final set of compliance constants. For 

14N204 they are 

81 
-1 

Q6 

Q5 

Q7 

Q10 

Q9 

Q8 

Sr S S ó 

2.?845 3.1056 0. 

-2.2489 0.0918 0. 

0. 0. 1.2000 

Sr SA S-6 

0.9209 5.3511 0. 

-2.3808 -0.2763 0. 

0. 0. 0.8697 

Using these matrices we can now evaluate the corresponding 

r ' and [ 0 matrices using the equations 

: 

z 

. 

. 

. ' 

8? 

L 

. 

Co3 



B1 

' 

' . L-1 G' (L-1) t 

r 

0. 

" = 
L-1 (L-1) t 

0.. 
0. 

-0.5636 
-0.1914 

0. 

0.1342 -0.4487 0. 
-0.9265 0. 

40.4515 

0. 0. 
0. 

-0.9144 
-0.0796 

0. 

2.2788 0.6626 0. 
-0.0743 0. 

-0.2371 
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For purpose of calculation we will use the frequencies 

calculated from the most compatible compliance constants 

for the 81 and 82 blocks. The other frequencies are 

not required 

3 
1 

since 

(-06 481 

ki) = 1711 

W7 = 430 

the corresponding 1 ',"matrices vanish. 

cm-1 ( P.mode) 

cm -1 
-1 

(r mode) 

cm -1 (ó mode) 

r 

. 

= ,. 

, 

02 

" 

z 

z 
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coif) = 381 cm -1 -1 (ß mode) 

w 
9 

- 1746 cm -1 (r mode) 

c18 _ 668 cm ('s mode) 

89 

Using equations (III,8) and (III,10) together with the 
above tabulated quertitie5, we find the following results 

for the X terms 

81 
1 

X6;1) : 0.4853 X5?) _ -23.0372 X6t _ -22.5519 

X5( ) : -0.3407 X5 a 0.0616 X5 t _ -0.2791 

X7(z) = 1.4598 X7(.1) : 21.6976 X7 ,ca 23.1572 

82 

X10 (1) = 6.5281 x1 (2) :-7. 3684 X10 _ -0.8403 
Xr1) _ -0.9752 X( 2) - 0.0260 X9 .c- 

X8 z1) s 1.1908 X8(2) = 4,2316 X8z = 3.0408 

Using equation (III,9) leads to the following results 

81 

x67 = X76 = -26.8672 

X57 a X75 _ 0.0100 

4 . . 

_ -0.9492 
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X10, 8 = X8,10 
= 1.3300 

90 

X98 
= X89 = 0.0032 

It should be noted that both the magnitude and sign 

of X6 2 and X67 are strongly dependent on the - -- 
value used. Since L'-'r is not observed directly the value 

used is subject to large error. This could lead to a 

large error in prediction of the shape of the observed 

band as the quantum levels above the ground state are 

only significantly occupied for the 2' vibration. 

In the more straight -forward technique which is 

in reality a Born -Oppenheimer type treatment, the G 

matrix program was used to evaluate the G elements 

corresponding to the 81 and 82 blocks for values 

of between zero and ninety degrees. These G's 

were then used to find the K matrices and the secular 

equation solved assuming no change in the C matrices. 

The frequencies are plotted on the following pages as 

a function of 'L. 

't 
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In the Born -Oppenheimer treatment the total energy 

of the high frequency modes serves as the potential 

energy to the low frequency mode. A classical perturba- 

tion argument leads to a equation similar to (III,10) which 

is dependent on the curvature of the frequency curves at 

the origin. J.C. Decius has used this equation to deter- 

mine the Xkr values for the affected modes. These are 

tabulated below with the corresponding results from the 

straight perturbation theory. 

Born -Oppenheimer Perturbation 

X .t. 
6 6.85 -22.55 

X5 negligible - 0.28 

X7 z -8.7 23.16 

X10 
T. 

-0.57 -0.84 

X9 -0.953 -0.949 

Ä$ 2.8 3.04 

These results for the Born- Oppenheimer treatment are 

valid only near the origin t : 0 . The behavior seen on 
the graphs beyond the origin would probably be described 
by a further expansion of the perturbation arguments to 

terms in 
`f3 

etc. Comparison of the results of the 

' 

, 

- 

- 

.. 

. 't - 'k' 

` 

z. 

, 

z 
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results of the two treatments points to an apparent failure 

of the Born -Oppenheimer theory for the 1'36 and uo 

frequencies. This failure is due in part to the absence 

of LA-3-Lin the denominator of the resulting equation and in 

part to a Fermi resonance effect which does not allow 

correct assignment of the bands on an harmonic oscillator 

model. 

The theoretically more reliable perturbation results 

should prove quite useful for purposes of resolving structure 

al and assignment questions. This is true because L -1 , 

GI and G" are not particularly sensitive to the paten- 

tial constants used or to structure (with the exception 

of the equilibrium value of ) thus allowing semi- quanti- 

tative evaluation of P, and P" from transferred compli- 

ance constants and preliminary structural information. 

This theory also explains some of the obvious anomalies 

previously observed in the spectra of X2Y4 molecules 

(very assymmetric bands, doublets where there should be 

singlets, etc.) which have proved difficult to reconcile 

with predictions based on an unperturbed model. 

: 

' 

T 
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CONCLUSIONS 

The model developed in Section Two and illustrated 

in Section Three is not intended to be used or interpreted 

blindly. For the small molecules, NO2 and SO2 , it 

was possible to run various combinations of data and weights 

and to observe the effects on the compliance constants. 

In the practical case this sort of operation is not 

usually possible. Indeed, the motivation behind the model 

was to use data from the electron diffraction and micro- 

wave experiments to replace infrared and Raman frequencies 

where they are unavailable in the literature or difficult 

to get by experiment. Since usually the frequency data 

is known to much higher precision than either the mean 

square amplitude or the centrifugal distortion data, the 

best results are obtained when there is sufficient frequen- 

cy data. The results obtained when the other data provides 

the major portion of the constants can at best only be 

said to be rough estimates. Of course, these estimates 

are considerably better than nothing at all. 

As previously mentioned in discussions of the results 

for NO2 and SO2 , the weight estimates (pi) obtained 

in Section Two seem to be reasonable and not particularly 

critical. However, it should be remarked that if better 

. . 
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estimates than E 2 = 0.1(cm-1)2 for frequency data 

are known these should be used, since then the model will 

be definitely representative of the data. Also mentioned 

in those discussions was the necessity of having more than 

one piece of data bearing on a given constant in order 

to hava some confidence in that constant and its estimated' 

error. This is especially important in the case of the 

larger molecules where there might be some tendency 

just to total the number of observed data and note that 

this total is larger than the number of constants being 

determined. It is quite possible that some of the constants 

are insensitive to this date and thus indeterminate. 

It is necessary that one understand not only limita- 

tions of the data but also those of the model. These 

mostly are related to the approximations used in various 

places in its derivation. The first approximation is 

that expressed in equation (11,13) involving the use 

of the truncated Taylor series, which is only valid when 

terms involving the second derivatives are small compared 

to those involving the first derivatives. The second is 

in the evaluation of the partial derivatives, of the mean 

square amplitudes where the derivative is calculated 

numerically and is thus subject to a Taylor series type 

error. The third is in the least squares model which 

assumes that the pi are known exactly; where, of course, 

.....O.-.-_ 

' 

. 

' ' 

, 
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we only are able to estimate them. The fourth is in the 

use of equation (I1,21) to evaluate the derivates of 

phi. This equation ignores the off -diagonal terms of 

the A b matrix and thus can lead to improper values for 

the first derivatives if these off- diagonal terms ere 

significant. 

A final difficulty lies in the possibility of 

multiple solutions. The algebraic form of the exact solu- 

tion of the secular determinant shows that in general more 

than one solution exists. In the present work everything 

depends upon the initial approximation used. Physical 

intuition is at present the only guide here. 

If the model is used with knowledge of the limitations 

mentioned in the above paragraphs, it is possible to use 

it to find a reasonable set of constants and further to 

use these constants to give good estimates of isotopic 

frequencies, mean square amplitudes, and centrifugal 

distortion data which have not yet been observed. These 

constants and other data output from the model may also be 

used, as for N204 , to derive further effects dependent 

on the force field and geometry of the molecules. 

Such a model as this should serve as a useful tool 

in the utilization of all observed data to determine what 
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could not be determined using simply one kind of data. 

As further kinds of data become available there is no 

reason why these cannot be fit into the model, it only 

being necessary to be able to evaluate the derivatives 

and the weights (oils) as well as the functions themselves. 

Or+ 

%, 
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APPENDIX I 

The B matrix 
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In order to calculate frequencies, mean square 

amplitudes, and centrifugal distortion constants, one needs 

to have the K matrix, the V matrix, and the Joy 

vectors. These quantities are all related to the B 

matrix where B is the transformation matrix relating 

internal displacement coordinates, St , the cartesian 

displacement coordinates, S 

S = 8 S . (A1,1) 

The elements of the B matrix are normally defined 

using the s vector technique (23,55 -63) in which 

is defined by the equation 

N 

St 

where 
/0( is the vector 

St 

(A1,2) 

(A1,3) 

and the S 
te( 

is a vector defined on an atom á so that 

its direction is that which will produce the maximum 

Pa 

s 
/ ov= 

e 

S 3d -2 

3.c -1 

S3a 
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increase in St and its magnitude is the increase in 

St produced by a unit displacement of atom of in this 

most effective direction. 

Comparison of equations (A1,1) and (A1,2) shows that 

the three elements of the s are 
Bt,30(-2 ' 

Bt : 3d -1 , 
and 

3t,3 d . Therefore definition of the 

s vectors for the various internal coordinates gives the 

elements of 8 . methods for construction of the s 

vectors are described in Wilson, Decius, and Cross 

(23, 55 -63). 

The 8 matrix will then have 3N columns where 

N is the total number of atoms and the same number of 

rows as there are internal coordinates. 

The G Matrix 

When the B matrix elements have been defined it 

is quite simple to compute the elements of the G matrix. 

This matrix is defined by the equation 

G = BM-1B1 (A1,4) 

where M a 3N x 3N diagonal matrix whose elements 

have the form (m ) 3i -2, 3ß -2 (51-1 )3i -1, 3i -1 

(m-11 
3i, 3i ' mi and mi is the mass of atom i . 

vector 

, 

' 

is 

1 
. 

-1 

= 
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Since S = US it is also possible to find and use the 
A 

symmetrized 8 matrix, B , which may be used in the 
A 

same way as B to find G 

G = 8f+19' (A1,5) 

The K or K matrix can then usually be found 

simply by inverting the proper G matrix. This cannot 

be done however if there are redundant coordinates. For 

this case either the rows and columns corresponding to 

the redundant coordinates must be removed from the G 

B matrix before inversion or the corresponding rows of 8 

can be removed before using equation (A1,5). The latter 

technique is usually easier and has other advantages which 

will be discussed later. 

The C°` :Matrices 

Other important matrices which may be directly 

calculated from the 8 matrices are the Ca matrices 

where d equals x, y, or z. These matrices are used in 

the computation of the Coriolis coupling coefficient 

matrices, S . 
d 

The C 
d 

matrices are defined generally 

by the operation 

Ceka 8I 8' (A1,6) 

A 

A 

n 
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where the non -zero elements of Iµ are 

= ` ` 1/mi 1=1,00.0 

for o(a x, 

(0,4.1. ) 3i, 3i-2 ' -! I )3i_2 
3i 

= 1/mi 1.21,N 

for 04 = y, and 

= -(1. 3i -2, 3i -2 ` 1 /mi 1 =1, ..., N 

for omz. 
If redundant coordinates are included in the internal 

coordinate 8 matrix normally the B matrix with the 

redundancies removed would be used to calculate the C" 

matrices. 

The J co Vectors 

The calculation of the t a¡3n13 parameters described 

in Section One requires the quantities of the form 

.4(3) S) 
S-0 

evaluated with the molecule in a principal axis coordinate 

system and for cartesian displacements satisfying the 

Eckart conditions. 

x x 

( Ii` ) 3i-1, 3i 3i- 

'' 

(I 
3i -2, 34.4 

' 

" 

_ ( /a . 

- 
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The elements of the moment of inertia matrix are 

2 2 Ixx = 42. mi(yi + x) 

Iyy = mi(xi + zi) 

2 2 
= mi(xi + Yi) 

Iy mixiyi 
Y 

Ixz = - mixizi 

Iyz = - miyizi 

Then for the derivative, for example, of I 

with respect to Sk one has 

( xy/J Sia ) - mi xi(3Yi/ Sk) S0 S=0 .. .. r. 

xy 

+ yi( a xi/ Sk) (A1,7) 
S_J 

and one is left with the problem of evaluating 

(a yi / Sk) and ( xi /J Sk) . 
S=0 S=0 

Referring to equation (A1,1) it can be easily seen 

that if 3 can somehow be inverted, an expression giving 

'22 

m 

It - 

. 

- 

1E 

a 
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as a function of S would be available. This can- 

not be done directly since 8 is non -square. 

If, however, the origin of the poiition vectors 

describing the molecule is translated to the center of 

mass and if the molecule is then rotated to a principal 

axis system, it is possible to augment the 8 matrix in 

such a way that it may be inverted. This is done simply 

by combining the equation S * 0 with the equation 

Ec a (A1,8) 

which expresses the Eckart conditions. For non -linear 

molecules R has six zero elements and Ec has the form 

m1 0 J m2 ... mn 0 

0 m1 0 0 ... 0 mn 0 

0 

O -m z1 m1Y1 

... 0 

G ... 0 

m1z1 O -m 1x1 x m2z2 

-m1y1 m1x1 0 -m2y2 0410 

0 mn 

`mnzn 
mnyn 

mnzn 0 -`"nxn 

-mnyn mnxn 0 

where xi , yi zi refer to those components of the 

position vectors in the principal axis system chosen. 

S 

R 0 

0 0 m1 
, 0 

; 

e ue,emir 

= 

n 
1 
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For linear molecules Ec has the form 

m1 0 0 m2 ... mn 0 0 

0 m1 0 ... 0 mn 
n 

0 

0 0 0 m1 0 0 0 mn 

m1z1 0 0 m2Z2. ... mnzn 0 0 

0 m1z1 0 
0 ... 0 m2z2 0 

where z is the axis of the molecule. 

S }} (8 
Letting S =(RJ and Ë3 L-tEci we have 

IT S (A1,9) 

where is square if all redundancies have been re- 

moved. If the internal coordinates have been properly 

defined the 8 matrix should be invertable and after 

inversion one will have the equation 

Now since 

cff -1 ( a 
i) ( a `%i) 

) i,k Sk / S =0 \ a 5k l á =0 

j 

= a Sk S'ó 

we have the quantities needed to evaluate (41,7). It 

should be noted that these derivatives automatically 

satisfy the Eckart conditions and refer to the principal 

axis system. 

..,.,. 

N-1! , . (A100) 
. 

; 
. . 

- 

- 

7 _ 

7 

w 
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Equation (A1,7) and others derived from the moment 

of inertia equations may now be used to evaluate the 

Jd vectors for all 0( and (3 . 

The matrix 

The V matrix is the transformation from the inter- 
nal coordinates, S , used to define the K and C 

matrices to the interatomic distance displacement coordi- 

nates, R 

R s VS . 

The elements of V are defined using a truncated 

Taylor serios such that 

A Rij 
( aRi/ aSk) Sk 

S SO M by 

Then if Riä = Rm ( Ri.Í/aSk) 
INIsle. NNW 

where (a Rij/ a Sk) are evaluated using the formulas 

Rj : (xi-xj)2 + (yi-yp 2 + (zi-z3)2 

(0c. ax 

Sk 
Sw0 i jj ( xi x k - dJk 

+ ( yi-y3 ) ayi 
k 

- ay + ( zi-z 

V 

r s 

, . 

) 
. SO. 

áRI '" 
. 

= 

Vmk 

') 

l 

' 



where, Pur example 

( xî/ a 5k) 5_0 
1 

z (IT )31-2,k 
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APPENDIX II 

Solution of the Secular Equation 

There are many ways to solve the secular equation 

K cn =fit 

The technique presented here uses a subroutine based on 

Jacobi's method for solving real, symmetric matrices 

and has the following desirable characteristics. It is 

quite fast, being proportional to the dimension of the 

matrix cubed rather than to the fourth as is the case for 

the fastest methods for solving non -symmetric matrices. 

The resultant m matrix is automatically normalized so 

that !pmt _ K , and it has no difficulty handling multiple 

roots. 

The solution of (I,19) is accomplished by solving 

the symmetric matrices. First we consider the equation 

KD = D r (A2,1) 

where r is the diagonal eigenvalue matrix of K and 

D its eigenvector matrix. Since K is real and symmetric, 

D is .I orthogonal and the elements of are real and 

positive. Therefore 

K _ D r D' (A2,2) 

(I,19). 
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Let W = Dr then K = WW' . Next consider the 

solution of the secular equation for real symmetric 

matrix H = iv' Cw , 

HS = (A2,3) 

As before S is orthogonal and the elements of real 

and positive. 

HS = Si 

may be written as 

W' CWS = Si 

Multiplying on the left by W gives 

WOWS = WSi 

which is 

KCWS = WSI 

Comparison with (I,19) shows 

= WS 

These matrices have the fallowing properties 

itiii1t = iUSStWt = WWt = K 

LC^1 = StWtCWS = StHS = 

as is desired. 

Since M = (L_1 )t 

L-1 st Wt 

(A2,4) 

(A2,5) 

. 

M 
, 

4 

1 

I 

= 

§ 
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and 

= 
T r -1 

S (A2,6) 

Solution using this technique thus greatly simplifies 

finding the desired k , m , L-1 and L matrices. 

L 



APPENDIX III 

tlJlgltiple Regression 

Often in the application of least squares models such 

as the one described in this thesis it is found that cer- 

tain of the constants cannot be determined. This is 

usually duo to one of two reasons; either the observed 

data is not sensitive ta the particular constant, which 

leads to unusually large estimated errors and possible 

divergence or oscillation, or two constants are strongly 

correlated, which leads to near singularity of the S 

matrix and very large estimated errors and again possibly 

to divergence or oscillation. In order to obtain a reason- 

able and stable solution it is necessary for reason one 

to eliminate the indetsrminant constants or for reason two 

to eliminate one of the strongly correlated pair. This 

may be done either by trial and error, i.e., by trying 

various sets of constants including some constants and 

excluding others or by setting up some criterion which 

will allow the computer to eliminate the offending con- 

stants. 

The technique used here is a quite simple one based 

on the t test. The S matrix is inverted and the first 

vector calculated. A vector t is then calculated 

using the formula 

.,..... 
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ti = 
I 
/3 i/ U (s-1jii 2 

, 

.where G is defined by equation (i1,99), m being 

the total number of constants minus those held fixed. 

These t elements are only calculated for those 

which have not either been forced into the regression 

(usually diagonal constants and most important off- diagonal 

constants) or held constant, these constants being speci- 

fied before the problem is begun. The set of calculated 

is is then searched to find the minimum element. The 

t test is then used to determine whether the correspond- 

ing constant is significant, the criterion being determined 

by t table valise, t (d.f.), d where d is the size 

of the test, i.e., the probability 

tej (d.f) or4 (d.f.) if/e0 
and d.f. is the number of degrees of freedom, i.e., 

the number of pieces of data minus the total number of 

constants plus the number of constants being held fixed. 

If tm is the minimum t value the test of significance 

is whether tm is greater than to/ (d.f.). If tm 

is less than t ,i (d. f.) the corresponding constant, 

is judged as insignificant. The vector and the S 
-/ 

matrix are then modified using the following equations 

, 

4 I 

//^ . 

k/ 
(S-1)kkG2 

, 



120 

1 1 new l<3 =i -(S imm/(s ) 
)mm 

new (s-1N (s-1ij " 
ts1)im(s-1Njrnfi`y-min 

the number of degrees of freedom increased by one and 

6 2 recalculated. The new is are calculated and the 

above reneated until either all remaining constants are 

significant or there are no more to be tested, at which 

time control is returned to the main part of the program. 

In nur case since j3 is A C + A 

1 
is used in place of just /i in the calculation of ti . 

This is done so that some value other than zero may be 

used as a starting value for those constants which are 
1 

to be tested. If the j% is judged insignificant both 

C i and Q C are set equal to zero. 

It is important to note some of the difficulties 

involved in using this technique to find the significant 

constants. The first is involved with the fact that the 

use of the t test assumes that /a is normally dis- 

tributed. Up to this time no assumption has been made 

about the distributions other than they have finite means 

and variances. It is difficult to predict the effect 

this has since a distribution function has not been 

(S-1)im(S-1) 

A 

c i i 

' 
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defined, but it can be hoped that the normal distribution 

is a reasonable assumption. There is also no good reason 

to assume that the t tests are independent, i.e., that 

we are not discarding a variable at one stage which may 

be significant at a later stage. This difficulty may be 

minimized by proper choice of which variables to force 

into the regression z . which to hold fixed. Usually this 

.decision is physically rather than statistically based. 

The last difficulty lies in the interpretation of 

the final results. A constant is judged insignificant 

(or indeterminant) or significant on the basis of the data 

supplied to the model. There is no guarantee that if more 

or better data were available, one would have the same 

results or even the same constants in the final result. 


