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APPLICATION OF THE LEAST SQUARES CRITERION
TO THE DETERMINATION OF MOLECULAR COMPLIANCE CONSTANTS

INTRODUCTION

The potential energy of a2 polyetomic molecule is
most conveniently expressed using an harmonic oscillator
model resulting in a quadratic potential function containe
ing either force constants or compliance constants, When
these constants are known it is possible to use them to
accurately predict various physical and chemical properties
of the molecules involved, The determination of these
potential constants from observed data is subject to many
general limitations. Anharmonicity together with Fermi
resonance and an in-bility in most casss to accurately
determine the band centers all combine to make it difficult
or impossible to find a set of frequencies which are
completely consistent with a quadratic potential function.
For these reascns the least squares approach using high
speed computers was introduced by Mann, st al (12,43-51)
and has been used mainly by Overend and collaborators
(16,1289-1295 and later papers) and Schactschneider (19,
1-90) to determine a best fit set of force constants from
frequency data,

Frequency data from one isotopic form of a molecule

is insufficient (except in the simplest polyatomic moleculef)



to determine the complete potential function in the
quadratic approximation, thus frequency data from various
isotopically substituted molecules is combined in the
calculation, Often however the isotopic shifts are small
and difficult to resolve (except for the D for H
substitution) and since the constants are determined by

the shifts some error is introduced. Sometimes for the
above and other reasons it is impossible to get the complete
set of isotopic frequency data and one cannot determine all
of the constants., To overcome this deficiency it is
possible to use various other observables to replace or
supplement frequency data., Mean square amplitudes of
vibration from gas phase electron diffraction experiments,
centrifugal distortion constants from microwave and infrared
experiments and Coriolis coupling constants from infrared
experiments all are related to the potential constants.

In this thesis a least squares model is developed
using frequency data, mean amplitude data and centrifual
distortion data to determine compliance constants. The
model developed is general and can be applied to any
molecule for which there is sufficient data. Coriolis
coupling constants were not ingcluded here since they are

generally applicable only to molecules having degenerate



modes and because they are not as sensitive to changes in

the constants as the other data types.



I. MOLECULAR COMPLIANCE CONSTANTS

Compliance constants have only recently been seriously
considered for the expression of the molecular potential
function., The advantages of their use was first discussed-
by Decius (6,241-248)., Previous to this time the G,F
method introduced by Wilson (22,1047-1052) was most generally
used,

The G,F method is developed from the basic defining
equations for the kinetic and potential energies (23,309-
310).

L

Kinetic energys 2T = § ¢~ls (1,1)

t

Potential energy: 2V = S'FS (1,2)

where S is the vector of internal coordinate displacements;

§ » the vector of their derivatives with respect to time;

g1 » a matrix whose elements are a function of the geometry
of the molecule and the masses of the component atoms;
and F , the "force constant” matrix. The kinetic and

potential energies in terms of normal coordinates are
Kinetic energy: 27T = 6t£6 (1,3)

Potential energy: 2V = a* A q (1,4)



§

If L is the transformation from normal coordinates
to internal displacement coordinating S = LQ , equations

(1,1) and (1,3) may be combined to give

21 « ste™1s = ot te'o = abeq (1,5)
so that
N o WY (1,6)

and equations (I,2) and (I,4) may be combined to give
2v = strs = 0'L*a = a* A @ (1,7)

so that LPmL = i ® (1,8)
The combination of (I,6) end (1,8) leads to the eguation

CFL w LA (1,9)

which leads to the secular equation
GF =« E ) k =0 (1,10)

In place of equation (I,2) the equation

2v = F 8¢ F may be written. (1,11)

Where J is the generalized force vecter,

T = -(-}%) == FS (1,12)

and C = F~1 the “compliance constant® matrix. (I,13)



Equation (I,6) may be rewritten as

mtom = € (1,14)
where M = (L"‘)t , (1,15)
and (1,8) as

mbom = § (1,16)
or as civtac (1,16)
where 0™ (1,17)
From (I,14)

mt s H-1K
where

X ug (1,18)

so (I,16) may be written as

n~Tkem = §
and multiplying both sides by M gives

KCm = md (1,19)
which leads to the secular equation

ke - g, | =0 (1,20)

At this point it should be explained that nothing is
to be lost by considering the compliance constant matrix

rather than the force constant potential function. In the



following it will be shown rather that the use of
compl iance constants might be more natural from the point
of view of its determination,

The most generally applicable advantage of the compli-
ance matrix is in the uniqueness of its elements. In the
treatment of molecular vibrations, redundant coordinates
sometimes arise which are employed in order to use the
general method (23,102-145) for factoring the secular
determinant. In the force constant language their employ
leads to ambiguity in the definition of the elements of
F « Such an ambiguity does not arise in the compliance
constant treatment of the same problem.

It can be assumed with no loss of generality that
one is dealing with a single symmetry species and its
associated factor of the secular determinant., If S is
the vector of symmetry displacement coordinates including
the redundancies and § is the corresponding vector withe
out the redundancies and A is a rectangular matrix
defining the transformation

S =4S
Then for force constants

N

2v = %8 < ghatrag = S%¢ S (1,21)

-

where F is the force constant matrix corresponding to the

~

S coordinates and ¥ the force constant matrix corresponding

to the § coordinates,



For compliance constants

Then

e Fte FegaCats o b F (1,22)

A

where C is the compliance matrix corresponding to %F

*

and © the compliance metrix corresponding te T
From (1'21)
% = atra (1,23)

Since A cannot be inverted it is impossible to define
F in terms of T ,

But from (I,22)

C=A CW (1,24)
so that the elements of C may be defined in terms of

those af € and although they are not linearly independent
they are certainly uniquely defined.

It should here be noted that one aobtains different
compliance constants depending on what kind of internal

coordinates are used for their definition. 1In particular,
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the use of symmetry coordinates simplifies the solution of
the secular determinant in exactly the seme way as in the
G,F case.

If the symmetry coordinates are defined by the orthog-

onal transformation

$ = S (1,25)
Then

& =uout (1,26)
and

f =urnt (1,27)

Inverting equations (I,26) and (I,27) gives

K = uxu® (1,28)

2 t

C = Uty (1,29)
where as before

K = 5-1 and € = F""

Since 'h and ; are factored, K and E are also
factored in the same manner.

As the right sides of equations (I,28) and (I1,29)
have the same form as (I,26) and (1,27) , the technigues
described by Wilson, Decius, and Cross (23,102-145) may
be applied just by writing C for F and K for G .
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Frequenc alculation

The calculation of frequencies from compliance constant
data is quite analogous to the calculation from force

constant data:

X e #n®ud® 8 4“2itz'°k2 and since

Q a_]\_-1 » ﬂk c*-%'- = 1/4 ﬂzczwk2 (1,30)
k

The only complication to solution of the secular
determinant (I,2) is that usually only G is available
and not K Y o« If there are not redundancies, C may
simply be inverted; but if redundancies are present, it
is necessary to remove them and thus the rows and columns
corresponding to them before inversion. As previously
discussed, there is no loss of generality.

The secular equation can then be ssclved and the

frequencies calculated from (I,30).

1/ See however (17,1133-1138).
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Mean Square Amplitude Calculation

The mean square amplitudes of vibration are also
easily eulculaind after solution of the secular equation.,
Solution givui/thl elements of and also the eigenvector
matrix M from which the transformation matrix L can
be determined.

If R is the vector of the interatomic displacement
coordinates the mean square amplitude matrix (14,726-733)

is given by <RR'> , If R 4is related to the internal
coordinates used to define the matrix M (and thus L )

by the transformation
' R = VS (1,31)
we have
<RR" = <yss'y'> = ¥ <35> W (1,32)
and since S = L@
V <SS'> ¥ = UL <QQ'> L'V* = VL O LTye (1,33)

where Q0 is a diagonal matrix whose elements are

A, = (n/8 ncw,) eoth (he w,/2kT) (1,34)

Introducing the notation of Cyvin (4,828-834)

<RR"> = T (1,35)

<g§'> =L AL = is (1,36)
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iR =V gV (1,37)

Thus, in order to obtain mean square amplitudes, it is
necessary to evaluate V 3§ solve the secular equation;
transpose and invert the eigenvector matrix; choose a
temperature and use equations (1,34), (1,36), and (1,37).

At this stage it would seem that there is no advantage
to using the compliance constants rather than the force
constants. In fact, it seems that the G,F treatment
would be more appropriate as the L matrix is obtained
directly. It will be shown below that this conclusion is
premature and that the compliance language is really more
natural when dealing with mean square amplitudes.

If we choose our internal coordinates so that the
transformation matrix, V , is the identity matrix, €,

we may express (I,30) and (I,31) as

Zo= Egsl by (1,38)
If u.k is now written in the form
Ak = kTﬂkxk coth x, (1,39)
where
hct-\‘
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and X\ coth X\ expanded as

X eoth x, =1 + %2/ 3 +x%45 4 .., (1,40)

It is easily seen that
#h( A /KkT) = ﬂn (1,41)

and thus that

lim "éT g = lim —&T(Lau) .L'ﬁ_\_' (1,42)

T2 T»ae
From (I,167)
c=L@§u

and thus

lin <y 2 o =C (1,43)



14

Centrifugal Distortion Constants

Another observed molecular property is the centrifugal
distortion constant which Kivelson and Wilson (11,1229-1236)
have expressed as a linear combination of the compliance
constants.

The centrifugal distortion constants are the

in the Hamiltonian for the semi-rigid roter,

Hed Zo, B2 43 S R S TR
The parameters of this equation may be determined if enough
data from microwave or infrared analysis is available.
Kivelson and Wilson have shown that if the geometry and
compliance constants are known, one may calculate the
distortion constants using the formulas:

o =-2(1°, 1%

S Aol AR T (1,45)

and

t"‘f“ﬁ . zi %[JS:) ] ? \3&{) __Xacij (1,46)

where

* 3Ry ¥, and 5 refer to the cartesian coordinates

BV X 3 xjd B I:p ’ I%Y ’ Izs are the principal



158

moments of inertia for the equilibrium configuration
which must be expressed in the principal axis coordi-

natasZ/ ;s and

(k)
Ay s 0N /aRk)§=g (1,47)

where Ry is the coordinate whose displacement is

the internal coordinate Sk .

(o]
Since Sk = Rk - Rk

P = N
(914,3 / Rk)§' (st/ ng)( 3104,8 / Sk-%-g-

= (31,4 / as")sgo (1,48)

The evaluation of these quantities is discussed

in Appendix 1.

2/ The moment of inertia matrix is then diagonal.
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II. THE LEAST SQUARE CRITERION

Section One was concerned with the description of
molecular compliance constants and with the derivation of
various physically observable properties from the compliance
constants,

The object of this project is to take observed physical
properties ¥ and to determine the compliance constants
from them,

The usual technique employed is to express the
observables as linear functions of the parameters of
interest and to use the least squares criterion to arrive
at a statistical estimate.

In general, for N pieces of independent data, Yj 4
in terms of the m parameters (13,328-359):
Yj =%y +RXyq +RX 5 + eus +AaXin + 8y (11,1)
J=1,N
where yj is the Jth observed value of y corresponding
to the set of known values ( d].xj1....,xj_) and the

expected value of

e E(-j) =0 j=1,N (11,2)

3/ 1In the present case: vibrational frequencies, mean
square amplitudes of vibration and centrifugal distor-
tion constants.
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and the covariance

E(e e,) =6%/p, k =1 (11,3)
=0 k # 1

In matrix notation these relations may be expressed as

Y =4 XB+ 8 (11,1')
E(e) =10 (11,2')
Cov(e) = E(ee?) = s2p~1 {11,%")

where 9'1 is a diagonal matrix whose elements are
1/p,

The least square criterion can now be applied. It

is desired to find a set of solutions B,'. /32, ces '/33

such that

2, [p;9%] 1s & mintoum (21,181-210) .

Z p,8 2 = 2
g 1 T mn-4 =A1%q “R % et Fa¥y)
(11,4)
To minimize the partial derivatives with respect to the
parameters K are taken out and set equal to zero.
o

L L3 e 2
Py 2 g b P f 20 XY= % = ByXyq -

-ﬁ.xm) =0 (k=1,m) (11,5)
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= zl' PyXaelyy= 1) =84 2 pyXiqXy =By 2 py¥io¥y -

eoe "ﬂ. 2 plxlaxlk =0 (k!“,') (11.6)

(11,6) may be rewritten as
Br-Z Mgy ¢ oes ofg 2 MUyl t

-3 plxll(yl- °‘1) (k=1,m) (11,7)

where tho,é are the estimates for the paremeters = .
The above equations are summarized in matrix notation

e'Pe = (Y =t = xp)' P(y=-o =XgB)

(11,41)
-%—(-vp.) = X'P(Y =) = X'PXA=0 (11,6')
x'pxﬁ; = X1P(Y = d) (11,7')

Then if S=X'PX and S is of rank m , equation (II,7')

has the solution

f

B e 8"ty <o) (11,8)

An estimate of the general variance o 2 ’ é 2 s based on

~

the estimate 8 may be written as
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A

S?eqls [ -v-xA) pv-voxp)] ()

o 675yl [(¥ =a)tm(y =) = prxmm(y -4) ] (11,9')
Before discussing how these equations may be used
to determine compliance constants it is important to
describe some of the more important properties of the
general estimates,
It is certainly desired that the expected value of
all possible estimates /§ should be B . (S is assumed

of rank m ).

B(A) =€ [(s"x'n(v - ot)]

1

= 8

XPELY =]

shepe [x8 4o

= 8-1

X'PX3 + E(e)
=sTxexs =55
E(R) = 4 (11,10)

o

The variance estimate € “ is defined by (11,9)

E(c?) =¢ (NJ-T [y = =x@ )p(y = & -x3 )1]

= [usz +el prsp -ﬁ'sﬁﬂ
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- [uez - £ [ epxs™'xpe ]]

1 2 2
= ﬁ-_-.- [ NG -m6 ]
g(s?) =62 (11,11)
A A
The covariance of B , Cov(ﬂ), is defined as

Cov ('é) = E [_(,é-/s) (,é-ﬁ)']
= s xrpE(ee’ Jpxs™?

-1

=5 2(s™Txpp~tpxs™")

=6 2(s”Txpxs™")
« 5251 (11,12)

If we estimate Cov(/3) by

1~ 2

Et:v(ﬁ) =5"'¢C

it is seen from (I11,11) that

£ [Bov(@)] = s7'e(&?) =267
and thus
£ [Bov(2)] = cow( @) (11,13)
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Application of Least Squares to Curve Fittin

It is assumed that a function rj(x1.x2,...,x.)

can be represented by a truncated Taylor series of the

form
P y(%qoXgrenns®y) = 15 (F0x30eeesx))
m
* 1{1( ij/ S xi)ia Bxi (11,13)
and that there are N such functions to each of which
corresponds an observed value , f?b' . If 8y = f?b’

- fj s (11,13) may be written as

P9 =] 4 T (P 3x)” Dxy e ey (11,14)

Letting r‘j”’ =y 1] 2oy (31,/3%)° = X5y o ond

A.x1 = /5, and referring to equation (11,1) it is seen

that given initial values, xﬁ,xg,....x: and pyyPy

ceesP, » equation (11,8) may be used to determine correc-

tions, A x,, to the xg, xg, M

gy If the A"i are

used to determine new initial values, new xg = old xz

¢lkxi , and (11,8) used again, new corrections, A X; » are
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obtained. This iteration may be continued until the
Axxi‘d satisfy some preset convergence criterion and the
XqoXgpeses X, o there obtained can be said to be the "best
fit" parameters for the given data., Since the x:,xg,
...,x: pbtained after esach iteration are considered as
constants in the next iteration, the covariance of the
“best fit" parameters,

Cov(x) = Cov (3° +28) = Cow(n}),
where the Ax and x are the vectors of A x,'s and
x;'s resulting from the last iteration, and x? , the

vector of x:'a resulting from the next to last iteration.

in order to use the above technique to determine “best
fit* compliance constants the following quantities must be
obtained:

v, 7, ( éfj/ éx‘)"

and P . These will be discussed bilou.
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The X° vector
The x2's here correspond to the compliance constants,

i
cij’ which are elements of the compliance matrix C. In

order to simplify the notation and to teke advantage of the
fact that some of the c‘j are equal due to symmetry, a

transformation Z (12,43-51) is defined such that

Gy* T U Ga (11,15)

where the | are the independent compliance constants of
which each cij' is a linear combination. Since cij = CJ‘.

zlﬁk = Z“k and only the lek need be specified.

In order to determine a starting x° vector, in the

clio of compliance constants a C? vector, usually either
values are taken from similar molecules; previously deter-
mined force constants are inverted; or a simplified poten-
tial is assumed and the simplified secular determinant
solved to give estimates of the diagonal and most important
off-diagonal constants and the rest are initially set at

Zero.
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The ?“ Vector

Civen the transformation Z and a set of initial

values C 2, the fg of interest, i.e., the ijs .

<’r§> °, and t,.0 's may be calculated respectively

by solving the secular determinant (I,20) to find the

ﬂ? and the L° matrix, using the ﬂj'u and L in

conjunction with (1,34), (1,36) and (1,37) to find the
<'ri>' ® and using equation (1,46) to find the tgﬁ,ifo .

These quantities must of course be re-evaluated after each

iteration.
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The (9 fj/ d x}l)° Matrix

(38 3¢ 4)

Starting with the eguation
mtcm = § (1,16)
and from (I,14)

Mﬂt =K , (11,16)

the perturbation equations
of o= (Ant)com® O nc)n® o nbc®(am)  (11,17)
and

(am)m®t L w®(amt) =0 (11,18)
can be written,

From (11,18)

ant = -m’"( M!)nt (11,19)
From (11’17)

Afy = [(L\m")c"m“]” + Eﬂ"( ACM“]u

+ [matcu(Am)]jJ (11020)

Substituting (II,19) into the first term on the right
hand side of (11,20) results in
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Ay = - [m°-1( A m)m"c“m"] T +E°t( ne)m® ]“

” [m“c“m"n"‘ﬂ( A m)l i3

P md
== |m® (Am)g° i ¢%°‘(Ac)n°]“

-

-1
+ (8% (2 '"’1 i3

. [n""(t\c)nﬂ 14

W e, D Gy

k 1

Since Cp, = :; 214 % {

AN 21- Zyg ATy

and (II,21) may be written as

A ¢,j = = % majll;alkub.(ii

i

(11,21)

(11,22)

(11,23)

1f (11,23) is assumed to be a truncated Taylor series
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.;dj/sc, ;" '% }1'_ n:jmgjzku (11,24)

3ig/3C ;=2 % %k":jugjzklj

0 .0
+ % e 1M 1 Zick 5 (11,247)
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3<rp /3¢,

From equation (I,37) , ;1 g =V §SV' 8

for a diagonal element
¥ 2 _
Then the partial derivative

where from equation (I,36)

[Zs\kl » Z.Lkn O plim

it RSN 2 Lot/ 3¢ 4 8 ghya
*Lbem A o/ 3C b1
’LRMAQ( aLll/éC 1)1 (II,SB)
The partial derivative of QA

(3b /9 C ;) is evaluated by the formula

(SA/SHNIE/Y C ) af3D /2T ) (11,9)
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Using the constants consistent with the choice of distances
in Angstroms, masses in a.m.u. and compliance constants in

0
A/millidyne (11,39) gives

SA& o/ 3C  =0.00647 [p(.‘* coth (Arﬁn‘*)

+ AT¢"1 cosech 2 (“Tﬂn.ij]

0
[ 2 MemZkks * 2 % :‘:k”k-'uzku]
(11,40)
where A, = 937.492/7 .

The partial derivatives of the elements of the L
matrix, ( O L /O C 4) are very difficult to evaluate

in closed form for any but the smallest matrices. For this
reason they are most easily evaluated numerically., The

@pproximation used here is

Sliw/ 9 C 4 F Aly,/aCy "Té‘c-1 bt C ot

+ A Cigooo,C_.) - Lk.(C1 ....Ci 'A61.00'Icm)
(11,41)
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étdféﬁﬁ/sci

e il

The derivatives of the centrifugal distortion para-
meters, (bt*ﬁ“ / SCL) » are the most easily evaluated.

From equations (I,46) and (11,15)

X \ ) o
bopss ® % % E;-Y.J.{,S“)J [J“""l Zgy C 4 (11,42)

and thus

Qtd(&xs /3C, = % % [Ja,;(j)]o[-'n(k)lnzjn
(11,43)

or since zjkl = ijl

Itupvs / ACy = ? Ldram]o(:’ws(”]o 2351

* T &[0 b

0 o 5
,[_.dp(kq [4,09] ZJ"‘] (11,43')
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The P Matrix

The assumption of @quation (II,8) is that the elements

of the P matrix are known. That is, for each set (dj’
”41'x32"°°'*4n) the variance of yj.<§§ is knouwn

and that the general vurianco.csz s is known, where

pj6§ :62 o In reality these quantities are not known
but can be estimated. Since the quantity of interest is
Eov(fg) and not <2 s only the relative values of the Py
and not their absolute values are important, Thus an
arbitrary value of 2 p 52, may be chosen to relate the
pj'a .

If the variance of a function of the quantity of
interest is known, a truncated Taylor series is used to
determine the variance of the quantity of interest.

That is if

f = r(x1,x2....,xg)

il 1 ‘
= fo( /‘-1, /‘LZ""'/LI) + 12.1( ) "/3 "1)/* ("1'/”1) 9
and ?(X1,...,X1) = f(/&'oo-oo/*l) ’

then 63 = E [(f—?’)z]
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- € [( Z(ar/2x)? (x -/«m’]
. :[% (3 #/3x)2(xg = py)?

vZ T 3% 1/ 3x) () )

If the x; are independently distributed

¢ % 51 ( 3/ 3x) (2¢/ éxj)(x,-ﬂg)(*,-/*j)]

-0.
Then

2 .¢ I{ (3¢/3x)% (x; - p,)? ]
- T O foy -2

&% = (3¢/3%)%sy,? (11, 44)

.
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Frequency Data

Since jj rather than = is used in the least

squares procedure, it is necessary to express G’ 2

in terms of ijz .

ﬂj = 1/(5.88852 x 10"7...312)

So that

i 5 6,6 =3
Bﬂj/s j == 3.39644 x 10 Wy

where ,U-J is assumed to be the observed bJJ « Then

: 2 2
th s (3 />0 ) &2

J
c?  -1.15358 x 1013 w =6 2
ﬁj J ‘“J
(111, 45)

and if 62 =0.1 and W = 1000 en”! then
3

czﬂ,%‘- 10°0 where fi* is the f corresponding to

2

1000 cn~' . since 62 4is arbitrary, it can be chosen so

that it corresponds to a fixed 6'3 of 0.1 and to
J

WJ = 1000 en™ i.e., Gzﬁ, « If another value of 6”%‘,
J
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is used, equation (I1,45) may be used to calculate the
corresponding &2 = 62,5, .
The elements of the P matrix, pJ » for frequency

data are defined by the equation

p1€d = ngzd =00085ﬁ.l€2
D1C ‘-“’1-5 = PZC “"2-6 = e0e = C(1UOD)-6
Then
p.‘ aw16/ 1018
. ”326/ el

py = wf/ 1018 (11,46)
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Mean uare Amplitude Data

The least squares analysis used for electron diffrace
tion data results in values for the root mean square ampli-

tuds ).J and its estimated standard error €

ks

S0
2

where llj is chosen as 1j X

Then

6"2('12> - a7 6211 (11,47)
and

p14112 G 211 = 924122 6‘212 = eee = g=2
from which

py = &2/(4 <rjz> P (11,48)

J
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Centrifugal Distortion Data

For simple diatomic molecules centrifugal distortion
data has besn reported to within one percent, but for larger
molecules it has proven difficult to obtain better than ten
percent agreement, For this reason B.D1tiﬁb\ has been
rather pessimistically éﬁusnh~fur the variance of tdﬁxs.

Then since

P67 =Py

é;zt o
aaaa bbbb

® eee =&

py =& /(00182 ) (11,49)

It should be mentioned that if the estimated 91"
are chosen generally to be higher than the true pJ's ’

an upper limit on Cov(/§) will usually be obtained,

which is to be desired for most purposes,
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Conggter Program

A FORTRAN II program based on this model has been
written for the 1.8.M. 7094. The program has the followe
ing limitations., No more than 60 independent compliance

‘ constants, Cl;'é', can be determined at one time. No

compliance matrix or secular determinant may be larger
than 30 x 30 and no more than 30 observables may correspond
to a given secular determinant or compliance matrix at one
time., However, it is possible to repeat compliance matrices
so that the same one may be used for various sets of data
and there is no limit on how much total information may be
used. The above restrictions may be modified simply by
changing the DIMENSION statements of the program but one
must be careful not to exceed the capacity of the machine
being used,

The program has been written so that it is possible
to modify the pj's calculated above if some better

estimates of the variances or standard errors are available,
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IITI. APPLICATIONS OF THE MODEL

The model described in Section Twe has been applied
to three molecules; Nitrogen Dioxide, NO,s Sulfur Dioxide,

SD2; and Dinitrogen Tetroxide, NZO‘ .

Nitrogen Dioxide

NO, was selected for analysis because an electron

diffraction study yielding both structural parameters and
mean square amplitudes of vibration was recently completed
at Oregon State University. In 1964 Or. Jerome S, Blank

completed his electron diffraction ahalysis which yielded

the following parameters for 14~1602 at 380° Kelvin:

o

the bonded N-0 distance 1.202 4 .0013A , the non-bonded
g

0...0 distance 2.213 4 .0050A , the N-O0' root mean square

0 i
amplitude 0.0382 2 .0025A2, and the 0.,.0 root mean square
0.0470 4 .0050 (3,22-69).
The vibration frequencies observed by Arakawa and

Nielsen (1,413-427) for l‘ulﬁoz are Y, = 1319.7 cn”! ,

Yy = 749.8 ca”' and ;- 1617.75 en™! . ror 15y,
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they are ¥, = 1306.5 en”t Y, = 740,15 em™" and

Y, = 1580.32 on”' .

The compliance constants to be calculated are those
corresponding to the commonly used valence force field. The
internal cooré@inates chosen for this analysis are
is the equilibrium N-0 distance, included in the angle

coordinate to give all compliance constants the units

o
A/millidyne. The following diagram illustrates the

numbering of the atoms and of the coordinates

Since both 1‘n1502 and 15N1602 have sz

symmetry it is possible to construct by the technique
of Wilson, Decius, and Cross (23,102-145) the symmetry
coordinates:

(A,) 1 (A,)

Sp = ——(Ar s Brp), 5, U =20,
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and

(31) 1

r = “ﬁ-—"‘( A!'1 - A rz)

Thus the U matrix in the transformation S = US is

S

1/ V2 3 T3 0
U = 0 0 1
1/ 2 -1/ V2 0

In order to calculate the frequencies and mean square
amplitudes it is necessary to first calculate the G or

K matrix elements. A program based on one written by
J.H. Schactschneider was used to determine the G matrix
elements for the 14~1602 and 15N1602 molecules., Since

there are no redundant coordinates these G matrices may
be directly inverted to give the corresponding K
A

matrices. The needed G , G , K , and Q matrices for

the two molecules are tabulated below.

N 02
G 81 Sg 53‘
B 0.133890 -0.,049603 -0,051343
Sy 0.133890 -0.051343
Sq D.366987




n (A,) (A,) (8,)
1 1 : 1
G Sr S4 Sr
(4)
Sr 0.084287 -0,072609 0
()
Sd‘ 0.366987 0
(8,)
Sr 0.183494
K
9.875847 4,426048 2,000894
9.875847 2,000894
3.284759
A
K
14,301895 2,829692 0
3,284759 0
5.449799
15,16
N 0,
7AN
G
0,350903 0.
0.175451
N
K
14.337863 2,769625 0.
3.384803 0.

5. 699597
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Also needed to calculate the mean square amplitudes

is the V matrix defined by equation (I,31) , R = VS,

where S is the vector of internal coordinates used to

define K and C and R the vector of interatomic

distance displacement coordinates,

A.r1

l\rz

AR(0,..0)

In the present case

and thus from simple geometrical considerations

1.0
V: U.
0,920549

0.
1.0

0.920549

0.
0.
0.390627

The compliance matrix corresponding to the internal

coordinates is

c “ S1 52 53
s1 cr rr crd
s2 ct cr¢

wvhere the four indepeéndent constants C

r* Coaos Cppo

and C. are coefficients of terms of the form % ?Frz g
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3 ?%3 . Sir 9% g1 and ﬁ:r {££ respectively in the

expansion of the potential energy., These constants may

be represented pictorially as follows:

& X 20N,

X /:\

The cocmpliance matrix corresponding to the symmetry

coordinates S has the form

A A
5 i 1) 54“1) sr(81)
sr(n,) cr(t\,) cr?,) .
50(“1) c:“‘) .

(8,) (8,)
Wb gy
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where

(“1).1: o £

cl‘ T rr

(Ay)

M ¢

rok A

(8,)

c = Cr - C

r T

The observed data and the various required supplemen-
tary information tabulated earlier were used to prepare
input cards for the 7094 FORTRAN II program based on the
model described in Section Two. The program was processed
at Western Data Processing Center at the University of
California at Los Angeles,

Since there are eight observed parameters and only
four independent constants to be determined, various com~
binations of data were used to observe how the compliance
constants and their estimated errors varied., The constants
determined using the whole of the data might be called the
“hest" or "most compatible” constants and serve as the
standard to which the constants determined using less
information are compared.

The following tables list for each set of data the

compliance constants, their estimated errors, the observed
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parameters and those calculated for each set of constants.

In all cases the iteration procedure was said converged when

Acl = 0,00005 Qi X i=1,234,

14

Trial one includes all of the data; the noz frequencies,

15

the NO, frequencies, and the two mean: square amplitudes.

These constants are then the "most compatible" constants.

1

Trial two uses the ‘No2 and 15"92 Prequencies only.

1‘&02 frequencies and the two mean

15

Trial three uses the

square amplitudes., Trial four uses only the naz

frequencies and the two mean square amplitudes. In each
case it is necessary to have at least five pieces of data

in order to estimate the errors.
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NO, COMPLIANCE CONSTANTS AND ESTIMATED ERRORS

Qbserved

749,8
1319.7
1617.75

Observed

740,15
1306.5
1580.32

n1402 Mean Square Amplitudes at SBG‘K

Observed

0.001459
0.002209

Trial 1

0.001509
0.002300

Trial 2 Trial 3
0.001509+ 0,00150%
0.002300# 0,002207

* Not used for fitting in this trial,

Trial 1 Trial 2 Trial 3 Trial 4
0.1011 0.1011 0.1006 0.1009
&+ 0003 + .0004 2 .0001 + .00002
0.9368 0.9367 0.9748 0.9701
+ .0144 4, ,0203 & -0D448 4 .0431
-0,.0181 -0.0181 -0.,0184 -0.0184
s+ 0003 . .0004 2 -0001 + .00002
-0,0339 -0,0339 -0,0477 -0,0473

OBSERVED AND CALCULQTED PARAMETERS
Nl‘nz Frequencips kcm")
Trial 1 Trial 2 Trial 3 Trial 4
750.0 750.0 749,.8 751,2#%
1319.8 1319.8 1319.7 1317, 4+»
1616.96 1616.96 1617.75 1616.17#
~1502 Frequencies
Trial 1 Trial 2 Trial 3 Trial 4
739,96 739,96 738, 70% 740,15
1306, 4 1306.4 1308, 2# 1306.5
1581,.13 1581,.1 1582, 3» 1580, 32

Trial 4

0.001508
0.002209
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Comparison of the results of trials two through
four with trial one gives some idea of the utility of
the model when less than the full complement of one kind
of data is available. The starred (*) values in the
table are those calculated using the compliance constants
determined using the unstarred values. These were calcu=-
lated at a different time using a slightly different
approach to setting up the dats., Thus there are some round-
off errors which show up as slight inconsistencies in the
outputs of the two models,

In all cases it is apparent that the use of less than
the full amount of data has little significant effect on
the compliance constants and the estimated errors. The
general increase in the magnitude of the estimated errors
for the compliance constants can mostly be attributed to
the decrease in the number of degrees of freedom. The
change in the compliance constants is generally significant

only in the off-diagonal terms crr and crd_; the diagonal
constants cr and C_ are apparently quite stable.

At this time it should prove ussful to compare the
results of trial one with those of Blank (3,130) who used
a cruder weight matrix in a similar least squares program

for the same data.
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Blank Trial 1
€,  0.1010 s .0003 0.1011 .+ .0003
€, -0.0181 4 .0003 -0.0181 4 .0003
C, 0.9424 4 .0134 0.9368 o .0144

It can be easily seen that except for minor inconsistencies
which may probably be ascribed to the slight difference in
G matrices they are in close agreement.

To test whether changes in the weight (P) matrix
have a significant effect on the compliance constants a
series of trials were run in which the whole of the data was
used, but where the weight of the mean square amplitude
data relative to the frequency data was varied. Letting

7 represent the weights calculated using equation (II,48)

‘the matrices F, = 107%F , B, = 10""% , F, < 10,

Fb = 1025 are the weight matrices used with the mean square

amplitude data of trials five, six, seven, and eight respec-

tively. The results are given in the following table.



Observed

749.8
1319.7
1617.75

Qbserved

740,15
1306.5
1580, 32

Observed

0.001459
0.002209
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TABLE I1I.
Trial 1 Trial 5 Trial 6 T:igi 7 Trill 8
0.1011 0.1011  0.1011 0.1011 0.1010
+0003 40003 40003 40003 0003
0.9368 0.9367 0.9367 0.9373 0.9420
20144 20144 20144 #0147 +.0170
-0.0181 -0.0181 -0,0181 -0,0181 -0,0181
+ .0003 4 .0003 & 0003 4 .0003 + .0003
«0.,0339 -0,0339 -0,0339 -0,0341 «0,0358
+.0051 4 .0051 4 .0081 4 .0052 4 ,0061
N“o2 Frequencies (cn'1)
Trial 1 Trial 5 Trial 6 Trial 7 Trial 8
750.0 750.0 750.0 750.0 750.1
1319,.8 1319.8 1319,.8 1319.8 1319.7
1616.96 1616,96 1616,96 1616.96 1616,.97
N1502 Frequencies (cu'1)
Trial 1 Trial 5§ Trial 6 Trial 7 Trial 8
739,96 739,96 739,96 739,95 '739.89
1306.4 1306, 4 1306.4 1306.4 1306.5
1581.13 1581.13 1581.13 1561.,13 1581.13
Nl‘oz Mean Square Amplitudes
Trill 1 Trial 5 Tria} 6 Trial 7 Trial 8
.001509 0.001510 0.001510 0.001509 0.001509
.002300 0.002301 0.002301 0.002300 0.002288
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The results of Table Il indicate that at least for
noz the model is not particularly sensitive to the weight

matrix, The fact that the estimated errors for trial one
are, in general, less than those for the other trials
indicates that the P matrix elements as estimated by
equation (I1,45) are probably roprusoatntivo.

While this work was in proqiu:a a paper by Bird, st al
(2,3378-3390) appeared reporting the centrifugal distortion
constants as well as other parameters, These data were
not included in the determination of the compliance constants
gsince the vibrational data was used in the microwave analysis

and thus the data was not independent.
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Sulfur Dioxide

snz s like N02 is a simple triatomic, It was

selected for study because there is considerable infrared
and microwave data available in the literature including
centrifugal distortion parameters, The infrared spectrum

of variocus isotopically substituted 502 molecules has

been studied by Polo and Wilson (18,900-903)., The micro-
wave spectrum was studied by Kivelson (10,904-908).

The structure used in the calculations is that of
Kivelson: the S«0 distance equal to 1.4321: and the
0-S-0 angle equal to 119.536° . The observed vibration
frequencies are Y, = 1151.4 4+ .3, 7, =517.8 4.3,

and Y, = 1360.5 4.5 for s',, U, =1122.0 41,
Y, = 506,8 + .5, and . = 1341.1 4.5 for s6pl8p,

end Vg = 1316.0 +.5 for 5%, . The observed

gl6

centrifugal distortion constants for 02 are

e = ‘1001557 Nc., Tbbbb = -00035615 Me..

T aabh ® 0.46436 Mec., and ‘C;bab = 0.048496 Me., where

a, b, and ¢ refer to the cartesian coordinates chosen

<
so that I‘. Ibb < Icc .
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The internal coordinates for 502 are the same as

16 18

those for N02 and further since § 02 and S 02

have c2v symmetry the same symmetry coordinates may

be used for these molecules, The G and K wmatrices and
the J vectors were calculated using these coordinates in
conjunction with the Kivelson structure. The G and K
(and 6 and Q s Wwhere applicable) matrices are tabulated

below,



16
s*%,
n
£
0.078353  -0.038472 0.
0.218362 0.
0.109181
A
K
13.971410 2,461563 0.
5.013244 0,
9.159103
516518,
c g
0.93767 -0.015414  -0,027204
0.086808  -0,027204
0.211403
K
11.631725 2.640951  1.836653
12.603370  1,961687
5.219084
18
0,
0.071394  -0.038472 .
0.204444 0.
0.102222
K
15.587422 2,933241 0.
5. 443292 0.

9.782630

S3
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In order to be used in the model, the centrifugal
constants, Tugvs (Me.) , must be converted into the

carresponding patanotors,fkpxxusing equation (I,45).

In general this has the form

DB B e e G el R ISR A

(111,1)
-3 o o o (+]
= -2,953006 x 10 x(1 I I I ) Copxs
B R 0T T SR
where Iia ’ Igﬁ ’ 12, s and ng s have the units
o
2

a.m.ue A" o

For s'®0, 1, =8.3167, 1,, = 48.911 , end
loo = 57.3077 so that t,,.. = 143,473 , t,,,, = 605.843,
¢ -227.643 and t_,_. = 23.7740 .

aabb * aba

In order to calculate the t's wusing equation

(1,46) , the Jap. and J,, vectors are required.
The vectors needed in the case of 302 are J.. ’ Jbb ’

and Jub e« These vectors are tabulated below.
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Jaa Jbb Jab
54 5.807315+% 34,209288 -11.412138
Sy 5.807316+% 34,209288 11,412138
-9,965164 19,935862 0.

#* These values differ because of round-off error
introduced in their ecalculation.

As in the case of uez there is enough data so that

various combinations can be used to observe the variance
in the compliance constants, their errors, and the para-

meters. for saz there are eleven pieces of data and

still only four constants to be determined. In trial one
all of the data was used; the seven observed frequencies
and the four centrifugal distortion parameters. These

are the "most compatible” constants. In trial two only
the frequency data was used, In trial three the 51662
frequencies were combined with the four centrifugal dis-

tortion parameters and in trial four the sI‘GIBG
frequency data was combined with distortion parameters.

18

In trial five the one § g, frequency was used with

the centrifugal distortion data. The results of these
trials are tabulated in Table III.



. st X,
N -

Irisl 1

0.10029
40.00007

1.2920
40,0181

0.000098
-n.000065

-0,0378
40,0131

Observed

1151.4
517.8
1360,.5

Observed

1122,0
506.8
1341,1

TABLE III.

Trial 4

0.1004
40,0003

1.3042
40,0299

0.0002
40,0003

40,0217

Irisl 3

1151.4
517.8
1360.5

Irial 3

1122, 4%
507, 6%

Trial 2 Trial 3
0.1003 06,1003
40,0001 20,0004
1.2846 1.2992
20,0255 40.0283
0.0001 0.0002
40,0001 +0.0004
-0,0321 -0,0435
20,0177 J0.0218
51502 Frequencies
Trial 1 Trial 2
1151.4 1151.3
517.6 517.6
1360.4 1360.4
516018 Frequencies
Trial 1 Trial 2
1122,5 1122,.7
507.3 507.2
1341,1 1341,.0

Not used for calculation in this trial.

1341, 6%

Trial 5

0.0822
40.0144

1.3368
40,0903

-0.0181
40.0144

40,0273

Trial 4

1151, 3
516.9#
1360, 3+

Trial 4

1122,0
506,.8
1341.1

Trial S
1441, 4%

507.8%
1359, 6%

Irial s

1328, 5%
497, 7%
1417.6%

98



(TABLE III continued)

Observed Trial 1
1J1 on® 1099,0#
‘)2 eve 496. a‘
L)s 1316.0 1316.3

16

Observed Trial 1
taaaa 143,473 143,723
tbbbb 605,843 646,589
ta'bh -227. 6‘3 -1990 979
tahab 23,774 26,098

51882 Freguencies

Trgal 2 Trial 3

1099, 3=
496, 6%
1316.3

Iriel 2

141.769%
657,973#
-200.859»
26,099%

*® Not used for calculation in this trial.

1098, 7+
497, 2%
1316.9

S 02 Centrifugal Distortion Constents

Trial 3

145,867
632.988
-198,593
26.092

Tgla; 4

1098, 2#»
496, 3»
1316,2%

Tria; 4

146,510
633, 380
-199,253

26,092

Trial 5

1375,5#
487, 4%
1316.0

Irial §

143,473
605,843
-227,643
26,409

A
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The same general remarks can be made for 502 that

were made for ND2 except for trial five. As long as a

16

complete set of frequency data from either § 02 or

8160130 wvas used the parameters estimated using these
compliance constants agree quite well with the parameters
calculated using the whole of the data., This indicates
that in order to get a reasonable set of constants it

is necessary not only to have more data than constants

but to have more than one piece of data bearing on 2 given
constant. In trial five the one piece of frequency dats

is related only to the difference cr'crr s thus the
€, and crd constants as well as the individual
magnitudes of cr and crr are determined only by the

centrifugal distortion data which, of course, are subject
to large error as previously mentioned.

Some remarks should slso be made regarding the
significance of the reported estimated errors. These
errors only measure how well the determined constants
fit the data that has been used in their determination.
Thus they only have real significance when the conditions
outlined in the previous paragraph are fulfilled.

The results of trial one may be compared with those

obtained by inversion of the force constants determined by
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Polo and Wilson (18,903) and Kivelson (10,907) using

the same data,

Polo, Wilson, and Kivelson Trial 1

c 0.10035 0.10029
o + 0,00007
c 0.00025 0.000098
I + 0,000065
€, 1.2719 1.2920
c ‘000239 '0.0378
rd _t 000131

These results apparently agree quite well.

As for Nﬂz 2 series of trials were run in which

the whole of the data was used and only the relative
weights of the centrifugal distortion data relative to
the frequency data was varied., Letting ¥ equel the

weight matrix calculated by equation (1I,49), trial six

uses P, = 10°%p » trial seven uses P, = 10'1F', trial

eight uses Fh = 10F , trial nine uses Fb = 102F and
trial ten uses Fin e P . The results from trial ten

differ from those of trial one because of round-off error.
This is introduced because the U matrix was used

explicity by the program to determine C, K and
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(L")t in trial one whereas in trisl ten the £ and
synmmetrized Z matrix were imput, and (L'1)t not

determined. The results are presented in Table IV.



Qbserved

517.8
1151,4
1360.5

Observed

1316.0

Observed

506.8
1120,0
1341.1

TABLE 1IV.
Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
0.1004 0.1004 0.1004 0.1004 0.1004
+ 0002 +.0002 #0002 +.0003 2.0002
1.3048 1.3048 1.3021 1.3019 1.3041
+. 0089 +.0092 #0163 + 0202 20112
0.00024 0.00024 0.00020 0.00019 0,00023
_-!.00015 .:.39015 _!.00022 _2.00028 ;_0.00013
-0,0470 -0,0470 -0.,0447 -0.0439 -0,.0464
+.0069 #0071 2.0123 #0140 +.0086
81602 Frequencies
Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
517.6 517.6 $17.5 517.4 517.6
1151.3 1151.3 1181.3 1151.3 1151.3
1360.3 1360.3 1360.4 1360,.5 1360.3
51802 Frequencies
Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
497,0 497.0 496,9 496, 7 497,0
1098,2 1098.2 1098,.4 1098.4 1098.3
1316.3 1316.3 1316.3 1316.4 1316.3
5160180 Frequencies
Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
507.4 507.4 507.4 807.2 507. 4
1122.1 1122,1 1122,2 1122.2 1122,1
1341.0 1341.0 1341.0 1341.1 1341.0

61




(TABLE IV continued)

s!®0, Centrifugal Distortion Parameters

Observed Trial 6 Trial 7 Trial 8 Trial 9

62

Trial 10

143,473 147,243 147.220 146.439 146,227
605.843 626,084 626.220 630.891 632,999
-227.643 -198,078 -198,092 -198,569 -198,919
23,774 26,098 26,098 26,097 26.093

147,031
627,334
-198.205
26.098
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The variance model assumed for centrifugal distortion
data seems to be reasonable. The diagonal compliance con-
stants are only slightly affected so that most of the effect
shows up in the off-diagonal constants. The effect however
on the calculated parameters appesars to be consistently
negligible.

The magnitudes of the estimated errors are strongly
affected due to the Pact that the major portion of the
estimated variance contributed by the differences betweesn
t.# observed and calculated distortion parameters. Since
the pj" are used directly in this variance calculation

the effect is obviocusly significant.



64

Pinitrogen Tetroxide

~2°4 was chosen to be the first practical applica-
tion of the model, N02 and soz having been chosen

more to illustrate and test various aspects of the model
than to yield any new information about the molecules,

The structure of uzo‘ was determined by Darwin

Smith (20,56-71) who found the molecule to be planar with

the following parameters: N0 bonded distance equal to
o :
1.177A , the 0...0 distance across one end of the molecule

equal to 2.1732 and the N-N distance equal to 1.752: .
The mean square amplitudes for these and the dependent
distances are also reported.

The infrared and Raman spectra have been compiled
and reported by Hisatsuni (8,18-60 and 9,1-47),

The compliance constants to be calculated are again
those corresponding to the v-lonco‘rereo field. The
internal coordinates chosen for this are the following:

S.‘ SAt1 ’ 82 -1\1‘2 9 ss aA!‘z i s‘ SAr4 » ss Sr.Ad.‘ Fl

Sg =t Ay, 8, =00, , 5 s t*0 By s By waR,

e e 8
swar A’C,sueraY.‘,md 312.:' sz.
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Since this molecule has D2h symmetry it is possible to

construct the following symmetry coordinates.

Ag (A))

Sr 9 = #( Ar, 0&1‘2 .Ars ¢b\r‘)

SR(‘Q) = QR
Au

51._(““) at.ﬁ’f
819 (8, °

S, ti(At‘.‘ -Arz ¢'&r3-tsr‘)

(8,.) e

< s O'V'g:'(&/g1 -Aﬂz)
B1u (B1u) e

5‘6 cvf-(ﬁ\‘1ol).¥2)
529

5:520) '-\/‘-:;(sz-bx')
82" (BZu’

S

” = #( Ar, -Arz-ﬁrz +Dr,)

(
2) '\é" (A3, + 83),)
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BS«
(8,

(84,) e
S, ” "\{-'g-‘(ﬁ"(1"'A"'\2)

The numbering of the atoms and coordinates is defined

in the following diagram,

g

The 0 7 coordinate displaces atom 2 and 4 up out

of the paper and atom 1 and 3 into the paper. O X .

is defined as atoms 1,2, and 6 coming up and atom 5 going

down, Dxx'z by atoms 3,4, and 5 coming up and 6 going

down,
The following diagram illustrates pictorially the
definition of the various compliance constants corresponding

to the chosen set of internal coordinates.
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The compliance constants corresponding to the chosen
symmetry coordinates are

A
g9

19



)
Cra 9 = \2 (crﬁ) c'r‘é)
BQu
(8,,)
¥ Tu = C, QC\\A
Bag
cl(azg) o Byl
- (8,)
r . Co = Cor *+ Cor = O3
c/&(am) =Cs +Cap
(8,,)
cr/e . e (crﬁ e,c;/s)
By
(8,,)
r "o Cr #Cop = C3r = C2r
(84,) o

c (Bsy) V7 (c

ro O C;_d)
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Hisatsuni determined a set of force constants for

the in-plane vibrations using frequency data for the
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liquid, Since we wished to use the frequency data in
conjunction with the gaseous mean square amplitude data we
used the frequencies Pound for the gas phase, Hisatsuni's
force constant matrix was inverted and transformed to

give a set of compliance constants which would serve as
starting values for our determination. In the following
tables are listed the Hisatsuni compliance constants (trial
one) and those constants determined, in the case of trial
two, using just the frequency data and, in the case of
trial three, the frequency data dnd three of the observed
mean square amplitudes. The mean amplitudes corresponding
to the N-0 distance and 0...0 diztance across the end
of the molecule Were;discarded because thelr determination

depended on knowing the correct structure for N02 which

was in error at the time of Smith's snalysis. The mean
eamplitude for the N-N distance was discarded because of
poor resolution in the radial distribution curve. This
left three amplitudes, those corresponding to the two
across molecule O0,,.0 distances and that for the non-
bonded N...0 distance,

Following the compliance constant table is a table
giving the observed data and that calculated for each of

the three sets of constants.



7

In the cases of trials two and trial three the
computer selected which of the constants were significent
(see Appendix III). Those listed with the value 0.

were judged insignificant or indeterminant.



TABLE v.

INPLANE CONSTANTS

Trial 1 (a)

Irial 2

72

Trial 3

0.0989
-0.0053
-0,0001

0,0017

0.9252

0.0004
0.6135

~0.2069
-0.0336
~0,0005
~0,0405
0.0137
0.7491
0.0241

~0,0173

(a)

0.0986 4 .0003
~0.0094 4 .0003
0.

0.
0.9903 , .0181

0.
0.6111 4 .0114

~0.1837 4 ,0111
~0.0535 4 .0077
0.

~0.0473 4 ,0021
0.

0.8134 o .0457
0.0232 4 .0025

a.

e s e St

0.0986 + .0003
-0.0094 , ,0003
0.

0.
0.9906 4 .0158

0.
0.6111 4 .0100

~0.1838 4 .0097
-0.0536 4 .0067
0.

-0.0473 4 ,0018
0.

0.8152 4 .0396
0.0232 4 .0021

0.

Inverted Hisatsuni force constants
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(Table v continued)

IN-PLANE FREQUENCIES AND MEAN SQUARE AMPLITUDES
ngo‘ Frequencies (cm")

Observed Trial 1 Trial 2 Indal 3

19
W, 260 267 260 260
g 812 809 813 813
b 1373 1370 1371 1371
By

g
g 480 479 481 481
Wg 1710 1721 1710 1710

8oy
w40 385 387 381 sl
W $ 1748 1755 1746 1746

83y
Wq2 750 753 750 750
Weq 1261 1254 1261 1261

ngu‘ Frequencies (em")
Observed Trial 1 ITrial 2 Tr;-; 3

Mg
Wy 260 266 258 258
. | 800 800 801 801
“q 1350 1347 1352 1352
st 478 475 477 477

“g 1670 1682 1671 1671



(Table v continued)

e

N0
NN

°1.0002
NesaO

0209003

0,...5‘

Observed Trial 1 Triasl 2

377
1707

739
1251

Sbserved
«001747
.005625
.002430

.006053
«009178

«005432

386
177

744
1241

381
1709

739
1251

»I;a‘ fean Square Amplitudes

74

361
1709

739
1251

Triel 1 Trial 2 Trial 3

LE B 2

«001457»
+004479%
002117+

«005464»
«008786»

«005519#

* Not used for fitting in this triesl.

«001457»
«004486»
«002116%

«005470
008793

«005524
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ARs before the results of trial three can be called
the “most compatible" constants. These constants are
only slightly different from those of trial two while in
all cases the estimated errors are reduced, indicating
that while the mean amplitudes did not give us enough
information to determine any other constants, they did
increase our confidence in those which could be detemmined,

The difference between trial one (Hisatsuni's values)
and trial threes are noticeable mostly for the diagonal

constants C_ and Chp « These differences are probably

due to Hisatsuni's use of the liquid fregquencies combined
with the fact that a slightly different  matrix was
used here. The other differences observed for the other
constants may be due to the reasons above as wsll as to
round-off error in the inversion.

In the following table the compliance constants
for the out-of-plane modes are determined, The wag ( ¥)
constants are calculated from observed frequencies and
the torsion constant from a frequency estimated from
thermal data, since the torsional mode is both infrared
and Raman inactive. These constants are determined sepae-
rately from the in-plane constants becsuse there are no
constants common to both the in-plane and out-of-plane

blocks, The in-plane constants were determined together
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since all blocks have at least four constants in common

(Cr # Cop v Chp » and c;,) y and thus a representative

Pit could not be determined using only the separated
symmetry blocks, Also all of the in-plane constants
are involved in the mean amplitude Pitting,
It would also be incorrect to estimate the ervors
in the out-af-plane constents ueing 2 éz calculated
from derivations in both the ineplane and cut-of«plane
frequencies, since there is no relationship betwsen them.
The out-of=plane constants are themselves determined

in two sets: C, eond Cy, together; and C, by

itself for the same reasons.
There is no error estimate for the C . constant
because there is only one observation. This, however,

does not mean there is no errar in the calculated Cr o



TABLE VI.
QUT-OF=-PLANE CONSTANTS

Torsion
Cr =199,3
Frequency
50 em™!

Qut-of-Plane Wags

Cy = 5.7051 , .0421

Cyy = 0.6734 4 .0421

Frequencies (en")

Qbserved c;;gglltog
675

W30, g B2 668
"3, o, By 641 649
W, <7 By 430 430
o, 7 By 420 420

77
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In the course of the calculations on N204 ’

JoC. Decius (7) noted that some of the add band shapes
observed in the infrared spectrum might be explained in
terms of a torsional angle dependence of the kinetic
energy matrix, G .

In the following paragraphs I will give 2 brief
resume of the resulting theory and then show the applicae

tion to N20A .

The effect can most simply be explained in terms of

an "anharmonicity” constant, xkk. s in the expansion

vibrational energy of the moleculs,
€yip = e Y.% WV + %) » E % K ¢

x (v, +3)(v, .4})1 where 15k < k'S 3N-6 ,

It should be noted that while this egquation is identical
with that used for non-harmonic potentials, we here are

considering harmonic potentials, and xkk, is really

@ coupling due only to torsion () angle.
There are two ways of simply treating the effect

on the vibrational energy. The first is a perturbation
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treatment in which the ka, are explicity evaluated

and the second a more straight forward technique involving
evaluating G for different values of ~ and using these
G's together with the equilibrium potential constants
to calculate the vibrational frequencies.

' In the perturbation technique the kinetic energy

term, 2T , is expanded in matrix notation as follows in

27 = pt(Go e B2 + 50" ’Cz)p (111,2)

wvherse

® =« 6( T equil)

2
" = -Q-gféE,l Tequil

and the potential energy is left in usual foram

2V = SPFs (111,3)

where the § are inisinal symmetry coordirates and
p their associated momenta.
Using the ususl notation for the transformation to

internal coordinates
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S =LQ and p' = p'L'1
yields the following two equations for 2V and 2T

2v = 2% _\_q (111,4)

2T = ptp " ptL-1G1(L-1)tp e }DtL-1G'(L-1)tp't2
(111,5)
If we let
Fooe gl
and
e os " lge(=t)t
(111,5) may be rewritten as
27 « 0% o ptr"pto }pt‘F‘pztz(III,ﬂ)

In order to find the contributions to the L

terms using perturbation theory it is convenient to write

(111,6) in summation notation
2
27 = zpk + T zk %ﬁ pk P'kk.pkl

2
g.i’t Z
ko kPr M kirPio (111,7)

We first treat the -tz term in (I111,7) .
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For k = k' first order perturbation theory results

in an energy contribution

(T /4, Yhe)lisy W (v, + $)(V, + %)

which leads to a contribution to X of

k

"»21»2 = 0, N ( «2/8y) (111,8)

where Vo is the rotational barrier height in wave
numbers,

For k # k' second order theory gives an energy
correction cubic in the vibrational quantum numbers and

thus not affecting the X ‘terms,

For the two cases involving the = term we find

for k = k' a second order corrsction

- 10 T 20 )y o )2
which vanishes unless = is totally symmetric.

For k # k' there are contributions to both kinds

of anharmonicity constants. They are

o 30& 2- ulz)
i *( e ')2( L‘)?t /V mk k¢ “)k Kkt ¥
Kee = 201 °)E""k‘“°k" - @t!![wk-uk,)!-é]

where k ¢ k' £z (111,9)
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and
M) = H(or /i) 3, (k)T

itk R R

[Cop “’*)T‘“’u';ﬂz S = )T - mu'zl (111,10)

gV, k1

kt ¥ "k y T

where xkif’ and xkgf) are defined by eguations

(111,8) and (111,10) respectively.
The vibrational energy for a particular mode

perturbed by the frequency interactions may be written as

c“ ys [w" » %u xkk'(vk' ””] (Vk + %)

Then for a fundamental transition the observed frequency

1Jk(cm°1) is given by

Ve sl o Zx i o D] 21 43 = voh)

= oW, o+ Exkk.(vk. + %) (111,11)

which has an obvious dependence on the quantum numbers

corresponding to the other normal modes.
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In order to evaluate these terms for uzo‘ the

following terms will be required

v, = 1014 ca”"

W= 61 cﬂ-1

(this «+ was calculated from vo). the G, G' , and

G" matrices, " and " and the frequencies for the

other modes.
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Using the symmetry coordinates previously defined
for the V,, symmetry only the following G elements

are found to depend on T (5)

Grﬁ--ﬁ }iuatn-% euff! oi(l*mt'f)
G, V—i* }l,‘ sm‘; sin

Gﬂ = /un[i; 0(* 0&0.%)2: %!-(i oceo"")ao-t éﬂn

Gey --i#u(?{ oetu% ouc;) sin 7

2
Gy uﬂnk, . («5 + 88C ;)24:%5 (i + s8C i») mn’t]

3 /“auez ';
where the upper sign in = or ¥ refers to By » the
lower to ’2 « Note that crx and Ggy are zero

for ¥ = 0 , thus allowing the further factoring into the

g end u blocks seen for vh. The G' and G* are

blocked according to the more gensral V symmetry as will

be shown later,



Taking the partisl derivatives with respect to

gives the following results.

G "ﬁﬁﬂ““iiﬁr ein v )

o
=\ 2 /L“llﬂ %i (2 8in © )

s W2 fyein 3 & ( g e08 X))

6, ~ 2 -i Jyein ”i cos ¢

G, ==V2F Hysin 3 sin <

6 = My g (R econ sine

W = J PR (f s cos) eos @

6% ---ﬁ/«“(zﬁ.mn"f,.uc%‘z) cos ©
CRET | ﬂ.(?{ s 008 5 o 508 F) sin ¥
6 =/ 3R F ovecy sin

&% = T4, Z* (i » ue?l!) cas T

Since all other partials are equal to zero, the (' and
G* matrices are factored inte 8y and 8, blocks,



For example

G S, Sa 85
0 Oy B
575 G?gu
L]
“*5

Since G 4is symmetric, G' and (C* are also symmetric,
Using the following quantities
o
r = 1.177A
0
R = 1.752“

sin § = 0.92321

cos § = 0.3843

sec ; = 2.6021

»U" = 0,0713
we can now evaluate the derivatives
G"ﬁ =0 G"r/e' »+ 0.0628

G.r‘& = 0,0625 G.rl. 0

B =0 G = 0.1011
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Gy = ~0,2073 G4y =0

6, =0 "y = 40,3136

In order to now evaluate "' and N*" we need the
L=' elements corresponding to the B, end B, blocks

of G and G" . The L'1

matrices are output by the
program for the final set of compliance constants. Ffor

1‘uzu‘ they are

84
-1
L & S 4 S
Q 2.7845 13,1056 0.
ﬂs ‘2. 2‘89 000918 00
e, 0. 0. 1.2000
8,
T s 5 5
3 e 3
Q4q 0.9209 5.3511  O.
0 -2.3808 -0.2763 O,
0 0. 0. 0.8697

Using these matrices we can now evaluate the corresponding

"' and ["* matrices using the equations
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M et"ter(=Nt

Mo o L"Gﬂ(L“)‘_

o
00 0.. “005636
R 0. -0,1914
0.
0,1342 «0,4487 0.
P” = -0.&265 0.
+0,.4515
82
o, 0. -0,9144
r” = a. -0,0796
o.
2,2788 10,6626 a.
P " = *0.07‘3 0.
-0,2371

For purpose of calculation we will use the frequencies
calculated from the most compatible compliance constants
for the 31 and 52 blocks. The other frequencies are

not required since the curresponding " ' “matrices venish.
8
-1
Wg = 481 em” ' ( Qmode)
We = 1710 en”? (r mode)
Wy = 430 e~ 1 ( Ymode)
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e
Waq = 381 cm™ (2 mode)
Wwg = 1746 en”' (r mode)
wg = 668 cn”! (X mode)
Using equations (111,8) and (I11,10) together with the

above tabulated quentities, we find the following results
for the X . terms

8
1
%! = 0.4853 X(Z) = -23.0372 x, « -22.5519

xg') - -0.3007 %2 o066 Xg o = =0,2791

) crame %P .07 x, . 231572

(2)

Xeot!) = 65281 x,,62) . 7. 3604 Xqges 048403

x4 = w0972 x(?) . 0,026 Xg = =0.9492

Xt 08 %42 .azse  xg, s 3.0008

Using equation (II1,9) leads to the following results
8
xﬁ.'ﬁ = ‘7‘6 = -26,8672

Xgq = Xor = 0.0100
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by

It should be noted that both the magnitude and sign
of Xgr and xa, are strongly dependent on the (v

value used., Since “r is not observed directly the value
used is subject to lltga error. This could lead to a
large error in prodlcttdn of the shape of the observed
band as the quantum levels above the ground state are
only significantly occupied for the T vibration.

In the more straight-forward technique which is
in reality a Born-Oppenheimer type treatment, the G
matrix program was used to evaluate the G elements

corresponding to the 81 and 52 blocks for values

of ¥ between zero and ninety degrees. These G's
were then used to find the K matrices and the secular
equation solved assuming no change in the C matrices.
The frequencies are plotted on the following pages as

a function of T,
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In the Born-Oppenheimer treatment the total energy
of the high frequency modes serves es the potential
energy to the low frequency mode. A classical perturba~
tion argument leads to a equation similar to (111,10) which
is dependent on the curvature of the frequency curves at
the origin, J.C. Decius has used this equation to deter-

mine the xkf values for the affected modes, These are

tabulated below with the corresponding results from the
straight perturbation theory,

Bgrn-gggcnhgimor Perturbation

Xg < 6.85 -22,55
Xg negligible - 0,28
Xy 2 ~8.7 23,16
Xa0 « -0,57 -0.84
Xg « -0,953 ~0.949
xB‘t 2,8 3.04

These results for the Born-Oppenheimer treatment are
valid only near the origin© =0 . The behavior seen on
the graphs beyond the origin would probably be described
by a Purther expansion of the perturbation arguments to

terms in T° » etec. Comparison of the results of the



results of the two treatments points to an aspparent failure

of the Born-Oppenheimer theory for the 0)6 and O,

frequencies, This failure is due in part to the absence
of Wrin the denominator of the resulting equation and in
part to a Fermi resonance effect which does not allow
correct assignment of the bands on an harmonic oscillator
model,

The theoretically more reliable perturbation results
- should prove quite useful for purposes of resolving structurs
al and assignment questions. This is true becesuse L',
G' and G are not particularly sensitive to the peten-
tial constants used or to structure (with the exception
of the equilibrium value of T ) thus allowing semi-quanti-
tative evaluation of "' and ™" from transferred compli-
ance constants and preliminary structural information,
This theory also explains some of the obvious anomalies

previously observed in the spectra of Xo¥, molecules

(very assymmetric bands, doublets where there should be
singlets, etc.) which have proved difficult to reconcile

with predictions based on an unperturbed model.
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CONCLUSIONS

The model developed in Section Two and illustrated
in Section Three is not intended to be used or interpreted
blindly, For the small molecules, n02 and 502 s it

was possible to run various combinations of data @nd weights
and to observe the effects on the compliance constants,
In the practical case this sort of op.ratinnxia not
usually possible., Indeed, the motivation behind the model
was to use data from the electron diffraction and micro-
wave experiments to replace infrered and Raman frequencies
where they are unavailable in the literature or difficult
to get by experiment. Since usually the freguency data
is known to much higher precision than either the mean
square amplitude or the centrifugal distortion data, the
best results are obtained when there is sufficient frequen-
cy data, The results obtained when the other data provides
the major portion of the constants can at best only be
said to be rough estimates., O0Of course, these estimates
are considerably better than nothing at all.,

As previously mentioned in discussions of the results
for NO, and S0, , the weight estimates ‘pl) obtained

in Section Two seem to bs reasonable and not particularly

critical. However, it should be remarked that if better
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estimates than G 2 . O.I(cn")2 for frequency deta

are known these should be used, since then the model will
be definitely representative of the data., Alsoc mentioned
in those discussions was the necessity of having more than
one piece of data bearing on a given constant in order

to have somes confidence in that constant and its estimated
error. This is especially important in the case of the
larger molecules where there might be some tendency

just to tatal the number of observed data and note that
this total is larger than the ﬁunbor of constants being
determined. It ie guite possible that some of the constants
are insensitive to this date and thus indeterminate.

It is necessary thet one understand not only limita-
tions of the data but alsc those of the model. These
mostly are related to the approximations used in various
places in its derivation. The first epproximation ie
that expressed in equation (11,13) involving the use
of the truncated Taylor series, which is anly valid when
terms involving the second derivatives are smell compared
to those involving the first derivatives. The second is
in the evaluation of the partial derivatives of the meazn
square amplitudes where the derivative is calculated
numerically and is thus subject to 2 Taylor series type
error. The third is in the least squares model which

assumes that the Py are known exactly; where, of course,
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we only are able to estimate them., The fourth is in the
use of equation (II,21) to evaluate the derivates of
phi. This equation ignores the off-diagonal terms of
the A O matrix and thus can lesd to improper velues for
the first derivatives if these off-diagonal terms ere
significant,

A Pinal difficulty lies in the possibility of
multiple solutions., The algebraic form of the exact solu-
tion of the secular determinent shows that in general more
than one solution exists. In the present work evarything
depends upon the initial approximation used, Physical
intuition is at present the only guide here,

If the model is used with knowledge of the limitations
mentioned in the above paragraphs, it is possible to use
it to find a ressonable set of constants and further to
use these constants to give good estimates of isotapic
frequencies, mean square amplitudes, and centrifugal
distortion data which have not yet been shserved. These
constants and other data output from the model may also be

used, as for Nzn‘ » to derive further effects dependent

on the force field and geometry of the molecules.
Such a model as this should serve as a useful tool

in the utilization of all observed data to determine what
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could not be determined using simply one kind of data,
As further kinds of data become available there is no

reason why these cannot be fit into the model, it only
being necessary to be able to evaluate the derivatives

and the weights (pt'c) as well as the functions themselves,



1.

2,

3.

a4,

103
BIBLIOGRAPHY

.Arnka-n, Edward 7. and Alvin H., Nielsen, Infrared

spectra and molecular constants of u“oz and

lenz « Journal of Molecular Spectroscopy 2:

Bird, George et al. Microwave spectrum of Nﬂz s

Fine structure and magnetic coupling, The Journal
of Chemical Physics 40:3378-3390, 1964,

Blank, Jerome S, A structure investigation of
nitrogen dioxide, I. Geometry and amplitudes of
vibration, II. Quadratic potential constants.
Ph,D. thesis. Corvallis, Oregon State University,
1964, 137 numb, leaves,

Cyvin, S.J., Vibrational mean emplitude matrices,
I. Secular equations involving mean smplitudes of
vibration, and approximate computation of mean
square amplitude matrices, Spectrochimica Acta 15:
828-834, 1959,

Cyvin, S.J. Associate Professor, Institute of
Theoretical Chemistry, Technical University of Norway,
I;ggdhcln. Norway, rivate communication. Corvallis.

Decius, J.C. Compliance matrix and molecular vibrae
tions. Journal of Chemical Physics 38:241-248, 1963,

Decius, J.C. Professor, Department of Chemistry,
Oregon State unlversit{, Corvallis, Oregon. Private
communication. Corvallis, 1965,

Hisatsuni, I.C. The spectra of nitrogen oxides,

I. The spectrum of N0, « Manhattan, 1959, 60

numb, leaves, (Kansas State University. Dept. of
Chemistry, Sclonttfie report no. 1 on Air Force
Contract AF 19(604 -2255’?



9,

10,

11.

12,

13,

14,

15,

16,

17.

104

» The spectra of nitrogen oxides,

I1. The Urey-Bradley force constants in lzo4

and the infrared spectrum of solid “1304 .
Manhattan, 19608. &% numb, leaves, (Kansas State
University, Dept. of Chemistry. Scientific report
no. 2 on Air Force Contract AF 19(604)-2255),

Kivelson, D. The determination of the potential
constants ef soz from centrifugal distortion

lfgocts. Journal of Chemical Physics 22:904-908,
1954,

Kivelson, D, and E.B. Wilson, Jr, Theory of centrif-
ugal distortion constants of palyatomic rotor molecules.
Journal of Chemical Physics 21:1229-1236, 1953,

Mann, D.E., et al. Normal coordinate analysis of
halogenated ethylenes, I. General methods. Journal
of Chemicsl Physics 27:43<51, 1957,

flood, Alexander M., and Franklin A, Graybill., Introe-
duction to the theory of statistics., New York,
lﬁcﬂrniwﬂill. 1363, 443 Pe

Morino, Yonezo, Kazo Kuchitsu, and Takehike
Shimanouchi, @ mean amplitudes of thermal vibra-
tions in polyatomic molecules, I, cr, - crz

and CH2 = crz » Journal of Chemical Physics 20:
726-733. 1952,

Morino, Yonezo et al., The mean amplitudes of themmal
vibrations in polyatomic molecules, II. An approxi-
mate method for calculating mean square ampl itudes,
Journal of Chemical Physics 21:1927-1933, 1953,

Overend, John and J,R, Scherer. Transferability
of Urey-Bradley force constants, I. Calculation
of force constants on a digital computer, Journal
of Chemical Bhysics 32:1289-1295, 1960,

Polo, S.R., mMatrices D™' and G~' 1n the theory
of molecular vibrations., Journal of Chemical Physics
24:1133-1138., 1956,



18.

19,

20.

21.

22,

23,

108

Polo, S.R. and M., Kent Wilson. Infrared spectrum
of 5150180 and the potential constants of 502 B
Journal of Chemical Physics 22:900-903, 1954,

Schactschneider, J.H, Vibrational analysis of
polyatomic molecules, III, Vibrational secular
equation programs. Emeryville, California. Shell
0il Co. 1962, 70 numb, lesaves. (Shell technical
report no. 263-62),

Smith, Darwin., Some electron diffraction studies,
I. Electron diffraction studies of some heavy matal
hexafluorides. Il., The molecular structure of
u204 « III, Applications of the method of least

squares in electron diffraction investigations.
Ph.D. thesis, Pasadena, California Institute
of Technology, 1959. 90 numb. leaves.

Sukolnikoff, 1.8, (ed.) Introduction to the theory
of probability and statistics. WNew York, John
Wiley, 1950, 238 p.

Wilson, E. Bright, Jr. A method of obtllniag the
expanded secular equation for the vibration frequen-
cies of a molecule., Journal of Chemical Physies 7:
1047-1052, 1939,

Wilson, E. Bright, Jr., J. €. Decius, and PaulicC.
Cross. Molecular vibrations., New York, McGrawe



L
ot i

o3 e
-
7 ;‘;-_,{"‘.

&

- >

) a,'ﬂi’liﬁ'
—l'u‘:‘ubrf—au o
Cai




106
APPENDIX I

The B__Matrix

In order to calculate Prequencies, mean square
amplitudes, and centrifugal distortion constants, one needs

to have the K matrix, the V matrix, and the Jop

vectors, These quantities are all related to the B8
matrix where B is the transformation matrix relating

internal displacement coordinates, St s the cartesian

displacement coordinates, 5 :

S=85. (AL,1)
The elements of the B matrix are normally defined
using the s vector technique (23,55-63) in which Sy
is defined by the eguation

N
Sy = EE L B P (A1,2)
where /Qx is the vector
S Jod w2
[ = 53«8
53 (A1, 3)

and the St« is a vector defined on an atom <~ so that

its direction is that which will produce the maximum
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increase in 5t and its magnitude is the increase in

Sy produced by a unit displacement of atom < in this
most effective direction.
Comparison of equations (A1,1) and (A1,2) shows that

the three elements of the S4s Vvector are at,3d~-2 ’
8t,30(-1 s and Bt.sci « Therefore definition of the

s vectors for the various internal coordinates gives the
elements of B . Methods for construction of the s
vectors are described in Wilson, Decius, and Cross
(23,55-63),

The B8 matrix will then have 3N columns where
N is the total number of atoms and the same number of

rows as there are internal coordinates,

The § Matrix

When the B matrix elements have been defined it
is quite simple to compute the elements of the ¢ -.trix;
This matrix is defined by the equation

G = Bn”~Tar (A1,4)

1

where M~' is a 3N x 3N diagonal matrix whose elements

have the form (0™7)3y 2 342 = (W™ )gq g, 3409

- ('-1)31.31 = -%i and m; 4is the mass of atom 1 ,
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Since § = US it is also possible to find and use the

A
symmetrized B matrix, B , which may be used in the
A
same way as 8 to find C
N A g
G =8n"'8 (a1,5)

The K or ﬁ matrix can then usually be found
simply by inverting the proper G matrix. This cannot
be done however if there are redundant coordinates., Ffor
this case either the rows and columns corresponding to
the redundant coordinates must be removed from the 3
matrix before inversion or the corresponding rows of 3
can be removed before using equation (A1,5). The latter
technique is usually easier and has other advantages which

will be discussed later,

The C* matrices

Other important matrices which may be directly
calculated from the B matrices are the C* matrices
where o« equals x,y, or z, These matrices are used in
the computation of the Coriolis coupling coefficient
matrices, S*. The C * matrices are defined generally

by the operation

%= BI, B (A1,6)
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where the non-zero elements of p;, are

(I;L )31-1’31 = '( I?L)Si.si-.‘ = 1/.1 1".000,“

for £ = %,

(T )3y, 3102 = ~(Uh Dgqp, 30 = 1/mg detyeec,

for £ = y, and

(10 )35-2,30-1 = =10 3guz, 3002 = 1/mg dstyeuc,
for L =2,

If redundant coordinates are included in the internal
coordinate B wmatrix normally the B8 matrix with the
redundancies removed would be used to calculate the C°

matrices,

The J 8 Vectors

The calculation of the t xz3s parameters described

in Section One requires the quantities of the form
i
Jfls) = (91,5 /9 si)s
evaluated with the molecule in a principal axis coordinate

system and for cartesian displacements satisfying the

Eckart conditions.
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The elements of the moment of inertia matrix are

Tex = z 'i(yf ¢ :i)

Iyy = 2 n‘(xf + Z:)

22 = = '1("3 ¢ '3)

Iyz = =2 myx, 2,

1z = =2my,2,

Then for the derivative, for example, of 1

Xy
with respect to S, one has
(1,79 g P S ["1“'5/ “hda
AL, Ds"_)g-p_‘k (41,7)

and one is left with the problem of evaluating

(9 ¥/ sk%.o and ( 3:1/3 Sk%'o .

—

Referring to equation (A1,1) it can be easily seen

that if B8 can somehow be inverted, an expression giving
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as a function of § would be available. This can-
not be done directly since B is non-square,.

If, however, the origin of the position vectors
describing the molecule is translated to the center of
mass and if the molecule is then rotated to a principal
axis system, it is possible to augment the B matrix in
such a way that it may be inverted. This is done simply
by combining the equation § = 85 with the equation

ReE,S5 =0 (A1,8)

which expresses the Eckart conditions. For non-linear

molecules R has six zero elements and Ec has the fom

m g 0 0 My cee W 0 0

0 my ] 0 «ss O mo 0

0 0 .y 0 ees O 0 m,

0 “MaZq WMoYy 0 ess O ..z MY,
Wty B yRy MaXy ese MR, B “MnXn
MYy Myx, O “Mo¥y ese wm .y, m.x O

where Xg 0 Ygo0 24 refer to those components of the

position vectors in the principal axis system chosen.
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For linear molecules Ee has the form

my 0 0 moy see M 0 0
0 g a 0 eee DO m 0
i] 0 m, 0 ess O 0 ™
myz, 0 0 MoZyg eee m 2z D 0
0 myz, O 0 ees O moZy, O

where 2z is the axis of the molecule.
S B
Letting !’-(R) and B '(Ec\ we have

T=H5 (A1,9)
where © is square if all redundancies have been re-
moved, If the internal coordinates have been properly
defined the B matrix should be invertable and after

inversion one will have the equation

§atT (a1, 10)

Now since

@ i (s - el)s

5k

we have the quantities needed to evaluate (A1,7). It
should be noted that these derivatives automatically
satisfy the Eckart conditions and refer to the principal

axis system,
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Equation (A1,7) and others derived from the moment
of inertia equations may now be used to evaluate the

J?‘ﬁ vectors for all o« and [é. .

The V Matrix

—————

The V matrix is the trensformation from the inter-
nal coordinates, S , used to define the K and C
gatriceo to the interatomic distance displacement coordi-
nates, R
R=VS.
The elements of V are defined using a truncated
Taylor series such that

A"ij = % ( Mij/ st)sﬂsk

Then if Anlj = Rm ’ Vak = (QR’.J/QS")

where (9 R“/S S,) are svaluated using the formulas

Rij = (xi-xj)z * (7_1'71)2 + (21"!’)2

aa=‘wu 1 p e 3 )X )
(7 = oy | et - )
Sy Y )2 AR
- R -l
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where, for example

(3%,/ 38)gq = (B Natez,k *



115
APPENDIX II

Solution of the Secular Equation

There are many ways to solve the secular eguation
(1,19).

Kem = m
The technique presented here uses a subroutine based on
Jacobi's method for solving real, symmetric matrices
and has the following desirable characteristics. It is
quite fast, being proportional to the dimension of the
matrix cubed rather than to the fourth as is the case for
the fastest methods for solving none-symmetric matrices,
The resultant M matrix is automatically normalized so
that mm® = K , and it has no difficulty handling multiple
roots,

The solution of (I,18) is accomplished by solving
the symmetric matrices, First we consider the equation

KD = D™ (A2,1)
where ' is the diagonal eigenvalue matrix of K and
D its eigenvector matrix, Since K is real and symmetric,
D is orthogonal and the elements of [’ are real and
positive, Therefore
K =0V p (A2,2)
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Let W =DM? then K = Ww' . Next consider the
solution of the secular equation for real symmetric
matrix H = W'CW ,

HS = S (A2, 3)
As before S is orthogonal and the elements of § real
and positive,

HS = SD
may be written as

w'cws = sP
Multiplying on the left by ¥ gives

W' Cws = wsh

which is
KCUS = Wsh
Comparison with (I,19) shows
m = WS (A2, 4)

These matrices have the following properties

t t,t

mm® = wsstut & wwt <k

mtem - stubcus < stus = §
as is desired,

since m = (L™t

L™ o stet (A2,5)
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and
L =« wg (A2,6)
Solution using this technigue thus greatly simplifies
finding the desired P , M , L™ and L matrices.
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APPENDIX III

Multiole Regression

Often in the application of least squares models such
as the one described in this thesis it is found that cer-
tain of the constants cennot be determined. This is
usually due to one of two reasons; either the observed
data is not sensitive ta the particul;r constant, which
leads to unusually large estimated errors and possible
divergence or oscillation, or two constants are strongly
correlated, which leads to near singularity of the §
matrix and very large estimated errors and again possibly
to divergence or oscillation. In order to obtain a reasone
able and stable solution it is necessary for reason one
to eliminate the indetsrminant constants or for reason twe
to eliminate one of the strongly correlated pair. This
may be done either by trial and error, i.e,, by trying
various sets of constants including some constants and
excluding others or by setting up some criterion which
will allow the computer to eliminate the offending cone-
stants,

The technique used here is a quite simple one based
on the t test. The S metrix is inverted and the first

B vector calculated. A vector t is then calculated

using the formula
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¢ 'léi/m \

shere € 7 is defined by equation (11,9'), m being

the total number of constants minus those held fixed.

These t elements are only calculated for those /g

which have not either been forced into the regression
(usually diagonal constants and most important off-diagonal
constants) or held constant, these constants being speci-
fied before the problem is begun. The set of calbculated
t's 1is then searched to find the minimum element. The

t test is then used to determine whether the carresponde-
ing constant is sf{gnificant, the eriterion being determined
by t table values, t_ (d.f.), where o is the size

of the test, i.e., the probability

B/ V(8™ 82 ¢, (dut) orl ot (duor.) 194, 20

and d.f. is the number of degrees of freedom, i.e.,

the number of pieces of data minus the total number of
constants plus the number of constants being held fixed.
1f t' is the minimum ¢t value the test of significance

is whether t, is greater than t_ (d.f.). 1If t,

is less than t ;(d.f.) the correspanding constant, 5, ,

is judged as insignificant. The vector and the &'
matrix are then modified using the following equations
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new @3 1 =Ry '(3.1)1./3./(5-1)n
new (5'1)1J = (5-1)11 - (8.1)1.(3-1)1./(8-1)-. ’

the number of degrees of freedom increased by one and

c? recalculated. The new t's are calculated and the
above repeated until either all remaining constants are
significant or there are no more to be tested, at which

time control is returned to the main part of the program,
In our case since él is AC,‘.C1 + A Cy
is used in place of Just/ét in the calculation of ti .

This is done so that some value other than zero may be
used as a starting value for those constants which are

to be tested. If the £, is judged insignificant both
C_1 and A C‘l are set equal to zero.

It is important to note some of the difficulties
involved in using this technique to find the significant
constants, The first is involved with the fact that the
use of the t test assumes that /31 is normally dis-

tributed. Up to this time no assumption has been made
about the distributions other than they have finite means
and variances., It is difficult to predict the effect
this has since a distribution function has not been
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defined, but it can be hoped that the normal distribution

is a reasonable assumption., There is also no good reason

to assume that the t tests are independent, i.e., that

we are not discarding a variable at one stage which may

be significant at a later stage. This difficulty may be

minimized by proper choice of which variables to force

into the regression and which to hold fixed., Usually this

decision is physically rather than statistically based.
The last difficulty lies in the interpretation of

the final results, A constant is judged insignificant

(or indeterminant) or significant on the basis of the data

supplied to the model. There is no guarantee that if more

or better data were available, one would have the same

results or even the same constants in the final result.



