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Teraohm on-chip resistance realisation
using switched capacitor topologies

W. Li, T. Wang, J. Cao and G.C. Temes

Two large-resistance realisation schemes are proposed using switched-
capacitor circuits. The equivalent resistance of the array realisation
increases as the third power of the number of capacitor pairs, and
that of the ladder realisation increases exponentially. The equivalent
resistance for the ladder scheme also grows with the capacitance
ratio. Using these schemes, large resistances can be fabricated with
standard CMOS process in an affordable chip area. Simulation
results show that very low pole frequency (�9 Hz in the example)
can be achieved with practical element values, and with a capacitance
spread of only 10 in a three-stage ladder.

Introduction: Standard CMOS technology based biosensors are widely
used in biomedical applications [1]. A programmable-gain amplifier
(PGA) is commonly used as the front-end stage [2]. In biomedical
and communication applications, there is often the need to suppress
the input offset of the signal by the PGA using a very low-frequency
pole [3], which requires a large R-C time constant. However, large resis-
tors are usually hard to fabricate, and occupy a large chip area. In this
Letter, we proposed two switched-capacitor schemes, which promise
to be practical ways to realise resistances in the teraohm range.

Large resistance topologies: A switched capacitor circuit containing
four capacitors was proposed in [4]. The principle can be generalised
as shown in Fig. 1.
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Fig. 1 Switched capacitor array for large resistor realisation

F1 and F2 are non-overlapping clock phases at a frequency fs. The
equivalent resistance R is then

R = k(k2Ca + Cb)
fsCaCb

(1)

When Ca .. Cb, or k ≫ 1, R increases as the third power of the
number of capacitor pairs (k):

R ≃ k3

fsCb
(2)

Hence, a very large resistance can be obtained using reasonably-sized
elements. Note that the operation of the circuit is somewhat affected
by parasitic capacitors loading the floating nodes.

An n-stage resistor ladder topology is shown in Fig. 2. This scheme
can generate even larger equivalent resistance when used as a feedback
resistor. Denote

r = R1/R2 . 1, A = 1 1
r 1 + r

[ ]
(3)

The equivalent resistance R can be obtained from the nth power of A:

R = Vt

It
= 1 1

[ ]
An 0

1

[ ]
R1 (4)

An can readily be found using eigenvalue methods, or available soft-
ware. If r ≫ 1, the stages do not load their next neighbour very

much, so the approximation

R ≃ (1 + r)nR1 (5)

may be used. As (5) shows, the equivalent resistance grows nearly expo-
nentially with the number of stages. Thus, a large equivalent resistance
can be realised without fabricating many stages of resistors, or using
large-resistance components.
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Fig. 2 Resistor ladder

As an alternative to the resistor ladder, a switched-capacitor ladder
may be used. The realisation of a SC PGA is shown in Fig. 3. A
single-ended example is shown for simplicity, although the real circuit
is differential. The switches are clocked at a frequency fs; F1 and F2

are non-overlapping clocks phases.
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Fig. 3 Switched capacitor ladder realisation

The transfer function has a zero at f ¼ 0, and a low-frequency pole at

fp = 1

2pRCfb
(6)

R can be calculated using (4), with

R1 = 1

fsC1
and r = C2

C1
(7)

Simulation results: The equivalent resistance of the switched capacitor
ladder was simulated by setting C1 ¼ 100 fF, and fs ¼ 1MHz. The
equivalent resistance grows rapidly with capacitance ratio r, and the
growth is even faster for a ladder with more stages. The equivalent resist-
ance grows exponentially with the number of stages, as shown in Fig. 4,
and as predicted by (5). The simulation results and the predicted values
coincide with each other. An equivalent resistance of teraohms can be
achieved with five stages, and a capacitance spread less than 10.
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Fig. 4 Equivalent resistance against number of stages for different capaci-
tance ratios
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The PGA of Fig. 3 was simulated with a 10 pF input capacitor, 1 pF
feedback capacitor, 1 MHz sampling clock, and a three-stage ladder
structure with the capacitance ratio of 10. The frequency response of
the whole circuit (implemented in a fully differential mode) is shown
in Fig. 5. The low frequency highpass pole occurs at 9.4 Hz, which is
consistent with the ideal value 9.3 Hz calculated from (6). The
number of stages, as well as the capacitance ratio, can be simply adjusted
to get different pole frequencies as needed.
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Fig. 5 Frequency response of PGA with switched-capacitor resistors

Owing to the reduced feedback factor caused by the ladder, the opamp
input offset (Vios), will be amplified. The resulting output offset (Voos)
can be calculated from the opamp DC gain (Adc), along with (4) and (7):

Voos =
RAdcVios

R + R1Adc
(8)

If necessary, the opamp offset can be reduced using correlated double
sampling [5].

Conclusion: Proposed is a switched-capacitor array, and a switched-
capacitor ladder implementation of a large equivalent resistance.

Using these schemes, the size of the on-chip resistance is not limited
by fabrication feature size, or chip area. With realistic capacitance
spread, and only a few stages, teraohm resistance can be achieved.
Circuit simulation results verified the feasibility of realising a low fre-
quency pole for a PGA used in the biosensor system.
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