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Abstract. We consider flow-structure interactions modeled by a modified

wave equation coupled at an interface with equations of nonlinear elasticity.
Both subsonic and supersonic flow velocities are treated with Neumann type

flow conditions, and a novel treatment of the so called Kutta-Joukowsky flow

conditions are given in the subsonic case. The goal of the paper is threefold:
(i) to provide an accurate review of recent results on existence, uniqueness, and

stability of weak solutions, (ii) to present a construction of finite dimensional,

attracting sets corresponding to the structural dynamics and discuss conver-
gence of trajectories, and (iii) to state several open questions associated with

the topic. This second task is based on a decoupling technique which reduces
the analysis of the full flow-structure system to a PDE system with delay.

1. Introduction. Flow-structure models have attracted considerable attention in
the past mathematical literature, see, e.g., [2, 3, 4, 9, 10, 11, 17, 22, 23, 36, 59, 73]
and the references therein. However, the vast majority of the work done on flow-
structure interactions has been devoted to numerical and experimental studies; see,
for instance, [6, 8, 36, 40, 45, 71] and also the survey [61] and the literature cited
there. This is not surprising, taking into considerations multitudes of engineer-
ing applications with a prime example of flutter suppression. Many mathematical
studies have been based on linear, two dimensional, plate models with specific ge-
ometries. In these studies the primary goal was to determine the speed at which
flutter occurs [2, 6, 8, 40, 45, 61]. More recently, the study of linear models wherein
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the two dimensional dynamics are reduced (typical section) to a one dimensional
structure (beam, or panel with constant width which is infinitely extended in one
direction) with Kutta-Joukowsky flow boundary conditions have enjoyed renewed
interest, and have been extensively pursued in [3, 66, 67]. This line of work has fo-
cused on spectral properties of the system, with particular emphasis on identifying
aeroelastic eigenmodes corresponding to the associated Possio integral equation.

In contrast, our interest here concerns PDE aspects of the problem, including
the fundamental issue of well-posedness of finite energy solutions corresponding to
nonlinear flow-plate interaction, along with long-time behavior of solutions within
the realm of dynamical systems.

In this paper we address one of the most general flow-structure PDE models which
describes the interactive dynamics between a nonlinear plate and a surrounding po-
tential flow [8, 36]. This class of models is standard in the applied mathematics
literature for the modeling of flow-structure interactions and dates back to clas-
sical discussions ([8, 36], and also [37, 40] and the references therein). Owing to
the importance of the associated physical phenomena (including flutter), there has
been an immense amount of activity over the last 60 years with the aim of better
understanding the modeling and control aspects of the underlying dynamics. An
excellent source of recent information on the subject is provided by the review pa-
per [37] and also [2, 3, 38]. These include inspiring modeling, computational, and
experimental studies of the flow-plate and flow-beam problem.

The main goal of the present paper is to provide PDE based analysis of flow-plate
dynamics corresponding to large range of flow velocities including both subsonic and
supersonic flow velocities. As a starting point, we consider PDE models introduced
in [36, 40], and more recently discussed in [37]. A characteristic feature of these
models is the absence of the rotational inertia term. This is in agreement with
physics of the problem where the plate is of infinitesimal thickness and the in-plane
accelerations are not accounted for [53]. On the other hand, it is by now well
known that the presence of rotational terms provides an additional regularizing
effect on the transverse velocity of the plate, which in turn leads to several desirable
mathematical properties such as compactness, gain of derivatives, etc.. Thus, it
was natural that first mathematical PDE theory of flow-plate dynamics was carried
out under the assumption that rotational inertia is present. With this assumption
there is a rather rich theory that has been developed for both well-posedness and
long-time behavior of the (structural) dynamics subjected to mechanical damping
implemented on the plate (see [22] and the references therein).

In view of this, the distinct feature of our work is that the analysis presented
herein (a) does not account for the regularizing effects of rotational terms, and
(b) does not require any mechanical damping imposed on the structure, which is
precisely in agreement with the physical model considered in [36, 37, 39]. Yet, the
final discussion presented in this paper provides long-time asymptotic properties
of the originally “rough” dynamics which ultimately become (without any added
damping) smooth and finite dimensional in nature. In order to gain an insight as
to how it is conceivable to obtain “attracting behavior” without any dissipation
present, we offer some preliminary explanation: experimentally we see that the flow
(particularly at supersonic speeds) has the ability of inducing stability in the moving
structure. This is the case when the structure itself does not possess any mechanical
or frictional damping. This dissipative effect is not immediately noticeable in the
standard energy balance equation. However, a reduction technique introduced in
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[10, 11] allows us to write the full flow-structure interaction as a certain delayed plate
model, and demonstrates the stabilizing effects of the flow, provided that rotational
terms are not present in the model. The full flow dynamics manifest themselves
in the form of non-conservative forces acting upon the structure via the downwash
of the flow. In the case where rotational inertia is present in the plate model, the
downwash of the flow is not substantial enough to dissipate the mass term due to
inertia. Thus, the challenge to resolve this paradox and to solve the mathematical
problem of long-time behavior for the model is to show that the non-conservative
effect of the downwash leads to the desired dissipative long-time dynamics. The
obstacles are then the lack of compactness and the criticality of nonlinear term
(again, due to the absence of rotational inertia), along with the lack of gradient
structure in the reduced (delayed) dynamical system.

As compactness of the dynamics and gradient structure are pillars of long-time
behavior analysis, previous studies have only been successful when regularizing
(compactifying) effects are present in the model. Hence, the long-time behavior
of subsonic and supersonic models without rotational inertia—or other regularizing
terms (i.e. thermoelastic plates) in the dynamics [64, 65]—has been virtually un-
chartered territory. The tools required to tackle the mathematical issues of loss of
compactness, loss of gradient structure in dynamical systems, and supercriticality
of nonlinear terms in the equations have been developed only recently. This paper
presents the state of the art results and mathematical methods as are relevant to
the problem at hand. For other aspects of the problem such as computational and
experimental we refer reader to a large wealth of literature available at present (see
the discussion and the references in [2, 6, 8, 32, 61]).

1.1. Notation. For the remainder of the text we write x for (x, y, z) ∈ R3
+ or

(x, y) ∈ Ω ⊂ R2
{(x,y)}, as dictated by context. Norms || · || are taken to be L2(D) for

the domain D. The symbols ν and τ will be used to denote the unit normal and
unit tangent vectors do a given domain, again, dictated by context. Inner products
in L2(R3

+) are written (·, ·), while inner products in L2(R2 ≡ ∂R3
+) are written

< ·, · >. Also, Hs(D) will denote the Sobolev space of order s, defined on a domain
D, and Hs

0(D) denotes the closure of C∞0 (D) in the Hs(D) norm which we denote
by ‖ · ‖Hs(D) or ‖ · ‖s,D. We make use of the standard notation for the trace of

functions defined on R3
+, i.e. for φ ∈ H1(R3

+), γ[φ] = φ
∣∣
z=0

is the trace of φ on the

plane {x : z = 0}. (We use analogous notation for γ[w] as the trace map from Ω to
∂Ω.)

1.2. Basic principles of the fluid/gas dynamics. The model in consideration
describes the interaction between a nonlinear plate and a fluid or flow of gas above
it. Suppose the domain O = R3

+ is filled with fluid whose dynamics are governed by
the compressible Navier–Stokes (or Poisson–Stokes) system (see, e.g., [14], [40] and
[54] for the physical backgrounds of the models) which are written for the density
%̃, velocity ṽ and pressure p̃:

%̃t + div {%̃ṽ} = 0 in O × (0,+∞),

%̃
[
ṽt + (ṽ,∇)ṽ)

]
= div T (ṽ, p̃) in O × (0,+∞),

In this section we utilize the notation x = (x1;x2;x3) to accommodate the tensor
analysis, and
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[div T (v, p)]
i

=

3∑
j=1

∂xjT
ij(v, p), i = 1, 2, 3.

where T = {T ij}3i,j=1 is the stress tensor of the fluid,

T ij ≡ T ij(v, p) = µf

(
vixj + vjxi

)
+
[
λf div v − p

]
δij . i, j = 1, 2, 3.

Here µf and λf are (non-negative) viscosity coefficients (which vanish in the case of
invisid fluid). We assume that the fluid is isothermal, i.e., the pressure p̃ is a linear
function of the density %̃. For simplicity we take p̃ = %̃.

Now we consider linearization of the model with respect to some reference state
{%∗; v∗; p∗}. We suppose that unperturbed flow v∗ represents the fluid/gas moving
with speed U along the x1-direction, i.e., v∗ = (U, 0, 0) and %∗, p∗ are constants.
For simplicity we assume p∗ = %∗ = 1. Then for small perturbations {%; v; p} we
obtain the equations:

%t + U%x1 + div v = 0 in O × R+, (1a)

vt + Uvx1 − µf∆v − (µf + λf )∇div v +∇% = 0 in O × R+, (1b)

We need to also supply (1) with appropriate boundary conditions. We choose
impermeable boundary conditions, which look as follows:

(Tν, τ) = 0 on ∂O, (v, ν) = 0 on ∂O \ Ω, (v, ν) = ut + Uux on Ω,

where ν is the unit outer normal to ∂O, τ is a unit tangent direction to ∂O, u is
the deflection of flexible part Ω of the boundary (see some discussion in [14] and
also in [40] where an explanation of the term ut + Uux on the boundary is given).
In the case O = R3

+, the boundary conditions have the form

µf
(
vix3

+ v3
xi

)
= 0, i = 1, 2, on ∂O, v3 = 0 on ∂O \ Ω, v3 = ut + Uux on Ω, (2)

This model describes the case of (possibly viscous) compressible gas/fluid flows
and was recently studied in [18] in the viscous case µf > 0 with the zero speed U of
unperturbed flow. This general model also leads to several special cases which are
important from an applied point of view.

• Incompressible fluid, i.e. div v = 0 and % constant: In the viscous case
µf > 0 the standard linearized Navier-Stokes equations arise; fluid plate in-
teraction in this case were studied in [27, 28, 29, 30]. Results on well-posedness
and attractors for different plate situations and domains were obtained. The
invisid case was studied in [19] in the same context.
• Invisid compressible fluid (µf = 0 and λf = 0): In this case from (1) we can

obtain wave type dynamics for the (perturbed) velocity potential (v = −∇φ,
potential flow) of the form (see also [6, 8, 40]):

(∂t + U∂x)2φ = ∆φ in R3
+ × (0, T ),

φ(0) = φ0; φt(0) = φ1,

∂νφ = −
[
(∂t + U∂x)u(x)

]
· 1Ω(x) on R2

{(x,y)} × (0, T ).

(3)

In these variables the pressure/density of the fluid has the form % = (∂t +
U∂x)φ. Due to (2) in the case of the perfect fluid (µf = 0 and λf = 0) we
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have only the one boundary condition given above. This is exactly the model
for a gas/fluid on which we concentrate in this paper.

1.3. PDE description of the full gas-plate model. The behavior of the plate
is governed by the second order (in time) Kirchoff plate equation; we consider the
von Karman nonlinearity, which is the principal ‘physical’ nonlinearity used in the
modeling of the large oscillations of thin, flexible plates—so called large deflection
theory [31, 53].

The environment we consider is R3
+ = {(x, y, z) : z ≥ 0}. The plate is modeled by

a bounded domain Ω ⊂ R2
{(x,y)} = {(x, y, z) : z = 0} with smooth boundary ∂Ω = Γ.

The plate is embedded (perhaps partially) in a large rigid body (producing the so
called clamped boundary conditions) immersed in an inviscid flow (over body) with
velocity U 6= 1 in the negative x-direction. We have normalized U = 1 to be Mach
1, i.e. 0 ≤ U < 1 corresponding to subsonic flows and U > 1 is supersonic.

The scalar function u : Ω× R+ → R represents the vertical displacement of the
plate in the z-direction at the point (x; y) at the moment t. We take the plate with
clamped or free-clamped boundary conditions:{

utt + ∆2u+ f(u) = p(x, t) in Ω× (0, T ),

u(0) = u0; ut(0) = u1,
(4)

Clamped boundary conditions are given by:

u = ∂νu = 0, on ∂Ω× (0, T ). (5)

Free-clamped boundary conditions are given by:

u = ∂νu = 0 on ∂Ω1 × (0, T ),

B1u = 0,B2u = 0 on ∂Ω2 × (0, T ). (6)

where ∂Ωi, i = 1, 2 are complementary parts of the boundary ∂Ω , and B1, B2

represent moments and shear forces, given by [53]:

B1u ≡ ∆u+ (1− µ)B1u

B2u ≡ ∂ν∆u+ (1− µ)B2u− µ1u− βu3; β ≥ 0.

The boundary operators B1 and B2 are given by [53]:

B1u = 2ν1ν2uxy − ν2
1uyy − ν2

2uxx ,

B2u = ∂τ
[(
ν2

1 − ν2
2

)
uxy + ν1ν2 (uyy − uxx)

]
,

where here ν = (ν1, ν2) is the outer normal to Γ, τ = (−ν2, ν1) is the oriented
unit tangent vector along Γ. (Note that in the case of R3

+ with boundary R2, ν is
identified with the −z direction.) The parameters µ1 and β are nonnegative, with
the constant 0 < µ < 1 having the meaning of the Poisson modulus.

The choice of boundary conditions is dependent upon the application. For in-
stance, panels mounted in a rigid frame will satisfy clamped boundary conditions.
Alternatively, certain flag-like configurations in air flow provide a classical example
of free-clamped combination. (See Section 1.4 below.)

The aerodynamical pressure p(x, t) represents by the third component T 33 of
the stress tensor describes the coupling with the flow and will be given below. In
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this paper we consider the typical nonlinear (cubic-type) force term resulting from
aeroelasticity modeling [8, 39, 40, 46]: the von Karman model, given by

f(u) = −[u, v(u) + F0],

where F0 is a given function from H3+δ(Ω). In the case of free-clamped boundary
conditions we must also assume that F ∈ H2

0 (Ω).
The von Karman bracket [u, v] is given by

[u, v] = ∂2
xu · ∂2

yv + ∂2
yu · ∂2

xv − 2 · ∂x∂yu · ∂x∂yv,

and the Airy stress function v(u,w) solves the following elliptic problem

∆2v(u,w) + [u,w] = 0 in Ω, ∂νv(u,w) = v(u,w) = 0 on ∂Ω

(we make use of the notation v(u) = v(u, u)). Von Karman equations are well known
in nonlinear elasticity and constitute a basic model describing nonlinear oscillations
of a plate accounting for large displacements, see [48] and also [22, 31] and references
therein.

By taking the aerodynamical pressure of the form

p(x, t) = p0 +
(
∂t + U∂x

)
γ[φ] (7)

in (4) above, p0 ∈ L2(Ω), and using the perturbed wave equation in (3), we arrive
at the fully coupled model:

utt + ∆2u+ f(u) = p0 +
(
∂t + U∂x

)
γ[φ] in Ω× (0, T ),

u(0) = u0; ut(0) = u1,

BC(u) on ∂Ω× (0, T ),

(∂t + U∂x)2φ = ∆φ in R3
+ × (0, T ),

φ(0) = φ0; φt(0) = φ1,

∂νφ = −
[
(∂t + U∂x)u(x)

]
· 1Ω(x) on R2

{(x,y)} × (0, T ).

(8)

where BC(u) represent appropriate plate boundary conditions as specified in (6).

Remark 1. The flow-structure interaction models which we discuss here, estab-
lished in the literature, do not involve moving frames (boundaries) of reference. The
model corresponds to a “snap shot” of the structure interacting with the flow at a
given time t with Ω as a fixed frame of reference in the plane. This is in contrast
with analyses where the interface between the fluid and solid is intrinsically evolving
in time [13, 47].

1.4. Physical configurations and other flow boundary conditions. At this
point, we pause to point out other modeling configurations of great interest. The
mathematical arguments presented below are done in the context of purely clamped
boundary conditions, i.e. no portion of the boundary ∂Ω is free. We have pre-
sented the model above in additional generality, including the possibility of a free
component, however, the full treatment of a free portion of the boundary is tech-
nically challenging and currently under investigation. This is due to the loss of
sufficient regularity of the boundary data imposed for the flow. Clamped boundary
conditions assumed on the boundary of the plate allow for smooth extensions to
R2 of the Neumann flow boundary conditions satisfied by the flow. In the absence
of these, one needs to approximate the original dynamics in order to construct
sufficiently smooth functions amenable to PDE calculations. This is a technical
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challenge and was carried out in a similar fashion in [25], although the need for this
analysis was not due to plate boundary conditions. Since free boundary conditions
are physically interesting, and represent challenging well-posedness problems, we
discuss other possible configurations of the model and their physical pertinence in
this section.

Remark 2. So called hinged or pinned (homogeneous) boundary conditions do not
differ substantially (mathematically) from the clamped boundary conditions. (See
[22, 53] for details.) These boundary conditions do not yield a markedly different
analysis than that of clamped conditions, with the key point being that in both
cases the plate component of the model admits a well-posed biharmonic problem,
and hence the Sobolev H2(Ω) norm is equivalent to the norm ||∆ · ||. It is of
interest to note that boundary control via moments are typically expressed through
a hinged type condition. See [22] for details in the case of the plate alone, and [58]
for a well-posedness analysis of these boundary conditions in the flow-plate model.

Perhaps the most mathematically interesting (and difficult) case corresponding
to this model is the free-clamped configuration. These types of boundary conditions
are extremely important in the modeling of airfoils and in the modeling of panels
in which some component of the boundary is left free. In addition to the difficulties
associated with the free plate boundary condition coupled with a Neumann type
flow condition on the interface (the last line of (3)), another natural flow boundary
condition is the so called Kutta-Joukowsky (K-J) condition (a dynamic, mixed-type
boundary condition) [2, 34, 39, 43, 50] and considered below. The applicability of
this flow boundary condition is highly dependent upon the geometry of the plate in
question. Physically, the K-J conditions corresponds to taking a zero pressure jump
in the flow off of the wing—specifically at the trailing edge [40]. Mathematically, we
are extremely interested in understanding the affect of the K-J condition interacting
with both clamped and free type plate boundary conditions.

The so called Kutta-Joukowsky conditions specify that (for the flow):{
∂νφ = −(∂t + U∂x)u on Ω

ψ = φt + Uφx = 0 off Ω.
(9)

These mixed type flow boundary conditions are taken to be accurate for plates
in the clamped-free configuration. A recent analysis was made of these boundary
conditions coupled with a clamped plate; we include an outline of this analysis in
Section 4. However, more in depth analysis of the arguments presented reveals that
free boundary conditions can be incorporated as well.

The configuration below represents an attempt to model oscillations of a plate
which is mostly free. The dynamic nature of the flow conditions correspond to the
fact that the interaction of the plate and flow is no longer static along the free
edge(s), and in this case the implementation of the K-J condition is called for. In
this case we take the free-clamped plate boundary conditions, and the mixed flow
boundary conditions:

u = ∂νu = 0, on ∂Ω1 × (0, T )

B1u = 0,B2u = 0, on ∂Ω2 × (0, T )

∂νφ = −(∂t + U∂x)u, on Ω× (0, T )

∂νφ = 0, on Θ1 × (0, T )

ψ = φt + Uφx = 0, on Θ2 × (0, T )

(10)
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with the regions described by the image below (the regions Θi extend in the natural
way into the remainder of the x− y plane):

Remark 3. The configuration above arises in the study of airfoils, but another
related configuration referred to as axial flow takes the flow to occur in the y di-
rection in the picture above. In our analysis, the geometry of the plate (and hence
the orientation of the flow) do not play a central role. In practice, the orienta-
tion can have a dramatic effect on the occurrence and magnitude of the oscillations
associated with the flow-structure coupling. In the case of axial flow, the above
configuration is often discussed in the context of flag flutter or flapping. See [41]
for more details.

The physical nature of the model given above makes its analysis desirable; how-
ever, this model involves a high degree of mathematical complexity due to the
dynamic and mixed nature of the boundary coupling near the flow-plate interface.
From the point of view of the existing analysis, much of the well-posedness and
long-time behavior analysis benefits upon the ability to extend the plate solution
by 0 outside of Ω. This is particularly true with Neumann bounary conditions im-
posed on the flow. Such extension is not a trivial task for any boundary condition
other than that of clamped, and hence, considering the analysis herein with mixed
boundary conditions is immediately non-trivial. There is some indication in pre-
liminary studies that the K-J flow condition may be more amenable to supporting
free-clamped plate boundary conditions. This seems to agree with the implemen-
tation of the K-J boundary conditions in other recent analyses [2, 3] (we provide
more discussion of this in the Open Problems section, # 1).

Assumption. The analysis to follow is done strictly in the context of the clamped
plate. This is done to streamline exposition and avoid involved technicalities; in
what follows, we do specify what issues arise when considering other plate boundary
conditions. The analysis for the clamped plate represents a first step—complete
with a full spectrum of challenging PDE issues—in producing well-posedness and
long-time behavior results for this class of fluid-structure models.

2. Energies and phase spaces. There is a distinct difference in the form of
energy functional for the subsonic case and supersonic case taken with the standard
Neumann type flow conditions. Indeed, the standard energy function for the flow
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loses ellipticity in the supersonic case. For this reason these two cases are treated
separately. We will also consider the subsonic model with the K-J flow conditions
below, but its functional setup is similar to the supersonic case, so we discuss its
properties following that of the supersonic model.

2.1. Subsonic energy. We begin with the simpler subsonic case. In this case
(0 ≤ U < 1) energies can be derived by applying standard plate and flow multipliers,
ut and φt respectively, along with the boundary conditions to obtain the energy
relations for the plate and the flow. This procedure leads to the energy which is
bounded from below. (See [22, 23, 73] for details.) We discuss this briefly now.

The description of the system in the subsonic case is given by (0 ≤ U < 1):
(∂t + U∂x)2φ = ∆φ in R3

+ × (0, T ),

∂νφ = −
[
(∂t + U∂x)u(x)

]
· 1Ω(x) on R2

{(x,y)} × (0, T ),

utt + ∆2u+ f(u) = p0 + γ[ψ] in Ω× (0, T ),

BC(u) on ∂Ω× (0, T ),

(11)

where BC(u) correspond to clamped or free-clamped boundary conditions as given
above.

In this case, we have the flow energy and interactive energies given by

Êfl(t) =
1

2

(
||φt||2 − U2||∂xφ||2 + ||∇φ||2

)
, Êint(t) = U < γ[φ], ux >

The plate energy is defined as usual

Epl(t) =
1

2

(
||ut||2 + a(u, u)

)
+ Π(u), (12)

where a(u, u) is a bilinear form topologically equivalent to H2(Ω) defined by1

a(u,w) =

∫
Ω

ã(u,w) + µ1

∫
Γ1

uw,

with

ã(u,w) ≡ uxxwxx + uyywyy + µ(uxxwyy + uyywxx) + 2(1− µ)uxywxy.

Π(u) is a potential of the nonlinear forces given by2

Π(u) =
1

4
||∆v(u)||2 − 1

2
< [u, u], F0 > +

∫
∂Ω2

[
µ1

2
u2 +

β

2
u4

]
in the case of the von Karman nonlinearity.

The total energy in the subsonic case is defined as a sum of the three components

Ê(t) = Êfl(t) + Epl(t) + Êint(t)

and satisfies (formally) Ê(t) = Ê(s).

1In the case of clamped or hinged boundary conditions the bilinear form a(u,w) collapses [22]

to the familiar expression a(u,w) =

∫
Ω

∆u∆wdx.

2In the case of clamped boundary conditions (i.e. ∂Ω2 = ∅) the boundary terms vanish.
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2.2. Supersonic energy. We note, that in the supersonic case (U > 1) the flow

part of the energy Êfl(t) is no longer nonnegative. This, being the source of major
mathematical difficulties, necessitates a different approach. In the case of supersonic
flows we make use of the flow acceleration multiplier

(∂t + U∂x)φ ≡ ψ.

We thus have a change of “state” from the natural (hyperbolic type) state variable
associated to the flow equation: φt → (φt + Uφx) = ψ.

We then have a description of our coupled system as follows:

(∂t + U∂x)φ = ψ in R3
+ × (0, T ),

(∂t + U∂x)ψ = ∆φ in R3
+ × (0, T ),

∂νφ = −
[
(∂t + U∂x)u(x)

]
· 1Ω(x) on R2

{(x,y)} × (0, T ),

utt + ∆2u+ f(u) = p0 + γ[ψ] in Ω× (0, T ),

BC(u) on ∂Ω× (0, T ),

(13)

where BC(u) correspond to clamped, or free, or free-clamped boundary conditions
as given above, see (5) and (6).

This leads to the following (formal) energies, arrived at via Green’s Theorem:

Epl(t) =
1

2

(
||ut||2 + a(u, u)

)
+ Π(u), Efl(t) =

1

2

(
||ψ||2 + ||∇φ||2

)
,

E(t) =Epl(t) + Efl(t),

where a(u, u) and Π(u) were introduced before.
With these energies, we have the formal energy relation

E(t) + U

∫ t

0

< ux, γ[ψ] > dt = E(0). (14)

This energy relation reveals an apparent loss of dissipation and the associated loss
of gradient structure. It also provides the first motivation for viewing the dynamics
(under our change of phase variable) as comprised of a generating piece and a
“perturbation”.

Finite energy constraints manifest themselves in the natural requirements on the
functions φ and u:

φ(x, t) ∈ C(0, T ;H1(R3
+)) ∩ C1(0, T ;L2(R3

+)),

u(x, t) ∈ C(0, T ;H) ∩ C1(0, T ;L2(Ω)),

where

H = H2
∂Ω1

(Ω) ≡
{
u ∈ H2(Ω) : u = ∂νu = 0, on ∂Ω1

}
3

In working with well-posedness considerations (and thus dynamical systems), the
above finite energy constraints lead to the so called finite energy space, which we
will take as our state space:

Y = Yfl × Ypl ≡
(
H1(R3

+)× L2(R3
+)
)
×
(
H× L2(Ω)

)
. (15)

The new representation of the energies as in (12) provides good topological mea-
sure for the sought after solution, however the energy balance is lost in (14) and,

3We make use of this notation throughout the remainder of the text where pertinent in order
to keep the statements as general as possible. However, for most of the remainder of the paper we

specify to the case of clamped boundary conditions.
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in addition, the boundary term is “leaking energy” and involves the traces of L2

solutions, which are possibly not defined at all.

2.3. Subsonic case taken with the K-J flow condition. In this section we
briefly relate the functional setup above (supersonic with Neumann flow conditions)
with the case of subsonic flows taken with the K-J flow condition given in (9). Our
full system in this case is given by

utt + ∆2u+ f(u) = p0 + γ[ψ] in Ω× (0, T ),

u(0) = u0; ut(0) = u1,

u = ∂νu = 0 on ∂Ω× (0, T ),

(∂t + U∂x)φ = ψ in R3
+ × (0, T ),

(∂t + U∂x)ψ = ∆φ in R3
+ × (0, T ),

φ(0) = φ0; φt(0) = φ1,

∂νφ = −(∂t + U∂x)u on Ω× (0, T ).

(∂t + U∂x)φ = 0 on R2\Ω× (0, T ).

(16)

In line with the analysis of the supersonic flows (with standard flow boundary
conditions) in [25], we make use of the flow acceleration multiplier (∂t+U∂x)φ ≡ ψ
for the subsonic flow, taken with the K-J flow boundary conditions. Thus for the
flow dynamics, instead of (φ;φt) we again have the state variables (φ;ψ). This leads
to the same (formal) energies, arrived at via Green’s Theorem when the multipliers
ut and ψ are applied to (8) as in the supersonic case described above. These energies
provide the formal energy relation for the system (implementing the K-J conditions)

E(t) + U

∫ t

0

< ux, γ[ψ] > dt = E(0). (17)

As in the supersonic case, the relations above lead to the same finite energy
space.

3. Main results. The main results presented below address: (i) the well-posedness
of finite energy solutions, (ii) the construction of an attracting set for the dynamics
of the structure. All results presented below implement clamped boundary conditions
for the plate.

3.1. Definitions of solutions. In the analysis we will encounter strong (classical),
generalized (mild), and weak (variational) solutions. In the well-posedness analy-
sis found in [25] semigroup theory is used, which requires the use of generalized
solutions; these are strong limits of strong solutions. These solutions satisfy an
integral formulation of (8), and are also called mild by some authors. We note that
generalized solutions are also weak solutions, see, e.g., [22, Section 6.5.5] and [73].
Weak solutions possess the quality of finite energy and satisfy the corresponding
variational relation. We do not provide here rigorous definitions of these solutions
and instead refer to [25] and [73]; see also [22] for detailed discussion of solutions for
different types of boundary conditions in the case of stand-alone plate models. All
of the solutions mentioned below are generalized, and differ only their smoothness
properties. In all statements below we try to indicate clearly the corresponding
smoothness.

3.2. Well-posedness of the model. We now present an overview of the well-
posedness results for the flow-plate model.
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3.2.1. Statement of subsonic results. We assume that 0 ≤ U < 1 (subsonic) and
p0 ∈ L2(Ω), with F0 ∈ H3+δ(Ω).

Theorem 3.1 (Linear System). Suppose f ≡ 0.

1. Linear Generation The dynamics operator associated to (11) generates a
strongly continuous semigroup Tt on the state space

Y = H1(R3
+)× L2(R3

+)×H2
0 (Ω)× L2(Ω).

2. Strong Solutions Assume

u1 ∈ H2
0 (Ω), u0 ∈W ≡ {w ∈ H2

0 (Ω) : ∆2w ∈ L2(Ω)} = H4(Ω) ∩H2
0 (Ω).

Moroever, suppose

φ0 ∈ H2(R3
+) and φ1 ∈ H1(R3

+)

with the following compatibility condition in place:

∂zφ0

∣∣
z=0

=

{
u1 + U∂xu0 if x ∈ Ω

0 if x /∈ Ω
.

Then (11) has a unique strong solution for any interval [0, T ]. This solution
possesses the properties

(φ;φt;φtt) ∈ L∞(0, T ;H2(R3
+)×H1(R3

+)× L2(R3
+)),

(u;ut;utt) ∈ L∞(0, T ;W ×H2
0 (Ω)× L2(Ω))

and satisfies the energy equality Ê(t) = Ê(s) for t > s, with Ê(t) defined as in
Section 2.

3. Generalized and Weak Solutions Assume

u0 ∈ H2
0 (Ω), u1 ∈ L2(Ω), φ0 ∈ H1(R3

+), and φ1 ∈ L2(R3
+).

Then (11) has a unique generalized solution on any interval [0, T ]. This solu-

tion satisfies Ê(t) = Ê(s) for t > s which then implies that there exist constants
C > 0, ω > 0 such that

||Tt||L (Y ) ≤ Ceωt, t > 0

Every generalized solution is also weak.

Theorem 3.2 (Nonlinear Semigroup). If f(u) = −[v(u)+F0, u], then under the
strong solutions assumptions Theorem 3.1, for all T , (11) has a unique strong
solution on [0, T ]; under the generalized and weak solutions assumptions, for
all T , (11) has a unique generalized (and hence weak) solution on [0, T ] denoted
by St(y0). This is to say that (St, Y ) is a (nonlinear) dynamical system on Y .
Moreover, this solution has the property that for St(y0) = (u(t), ut(t);φ(t), φt(t)):

sup
t>0

{
||∆u(t)||2 + ||ut(t)||2 + ||∇φ(t)||2 + ||φt(t)||2

}
.

Remark 4. We note that while the solution to linear problem does not need to
be bounded in time, the corresponding solution to the nonlinear problem is ulti-
mately bounded. This is due to the presence of the nonlinearity which controls the
interactive part of the energy at the level of higher frequencies.

Remark 5. This theorem remains true if (a) the von Karman nonlinearity is re-
placed by any nonlinearity f : H2(Ω) ∩H1

0 (Ω) → L2(Ω) which is locally Lipschitz
(e.g. the Berger or Kirchoff type nonlinearities [25]), and (b) the nonlinear trajec-
tories possess a uniform bound in time.
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3.2.2. Statement of supersonic results.

Theorem 3.3 (Linear). Consider linear problem in (8) with f(u) = 0. Let T > 0.
Then, for every initial datum (φ0, φ1;u0, u1) ∈ Y there exists unique generalized
solution

(φ(t), φt(t);u(t), ut(t)) ∈ C([0, T ], Y ) (18)

which defines a C0-semigroup Tt : Y → Y associated with (13) (where f = 0).
For any initial data in

Y1 ≡

y = (φ, φ1;u, u1) ∈ Y

∣∣∣∣∣∣∣∣
φ1 ∈ H1(R3

+), u1 ∈ H,
−U2∂x

2φ+ ∆φ ∈ L2(R3
+),

∂νφ = −[u1 + U∂xu] · 1Ω ∈ H1(R2),
−∆2u+ Uγ[∂xφ] ∈ L2(Ω)

 (19)

the corresponding solution is also strong in the sense that

(φ(t), φt(t);u(t), ut(t)) ∈ C([0, T ], Y1)

We shall turn next to nonlinear problem.

Theorem 3.4 (Nonlinear Semigroup). Let T > 0 and let f(u) be given by the
von Karman nonlinearity. Then, for every initial datum (φ0, φ1;u0, u1) ∈ Y there
exists unique generalized solution (φ, φt;u, ut) to (8) with the clamped boundary
conditions possessing property (18). This solution is also weak and generates a
nonlinear continuous semigroup St : Y → Y associated with (13).

If (φ0, φ1;u0, u1) ∈ Y1, where Y1 ⊂ Y is given by (19), then the corresponding
solution is also strong.

Remark 6. In comparing the results obtained with a subsonic case, there are two
major differences at the qualitative level:

First, the regularity of strong solutions obtained in the subsonic case [23, 73]
coincides with regularity expected for classical solutions. In the supersonic case,
there is a loss of differentiability in the flow in the tangential x direction, which
then propagates to the loss of differentiability in the structural variable u. As a
consequence strong solutions do not exhibit sufficient regularity in order to perform
the needed calculations. To cope with the problem, special regularization proce-
dure was introduced in [25] where strong solutions are approximated by sufficiently
regular functions though not solutions to the given PDE. The limit passage allows
to obtain the needed estimates valid for the original solutions [25].

Secondly, in the subsonic case one shows that the resulting semigroup is bounded
in time, see [22, Proposition 6.5.7] and also [23, 73]. This property could not be
shown in the supersonic analysis, and most likely does not hold. The leak of energy
in the energy relation can not be compensated for by the nonlinear terms (unlike
in the subsonic case).

3.2.3. Discussion of well-posedness results for the subsonic case taken with the
Kutta-Joukowsky flow conditions. Some aspects of both the subsonic and super-
sonic analyses discussed in the previous theorems appear in the analysis of the case
of subsonic flows with the K-J flow condition. However, new technical ingredi-
ents enter in a substantial way. They depend critically on the subsonic range of
velocities for the flow (unlike the Neumann boundary conditions). The work on
well-posedness of finite energy solutions for this system is very recent, and as such,
we include an outline of the proof in Section 4.
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We suffice to say, at this point, that in Section 4 we demonstrate well-posedness
of mild solutions to the system given in (16) on the finite energy space Y ; this
result depends upon a critical assumption (Assumption 4.1 in Section 4.7) which
then yields additional trace regularity of the acceleration potential (∂t +U∂x)φ

∣∣
R2 .

Such an assumption is not needed for the well-posedness analysis in the case of the
standard Neumann type data (Theorems 3.2 and 3.4 above). Owing to the rather
technical nature of this assumption, which deals with the invertibility of a two
dimensional singular integral transform (related to the so called Possio equation),
we do not state the result here. Rather, we provide a self contained discussion and
outline of the well-posedness proof in Section 9. Additionally, we demonstrate that
this key assumption is satisfied when the dimensionality of the model is reduced to
a two dimensional structure interacting with a one dimensional flow. Due to the
reduction of dimension, the said Assumption 4.1 is reduced to invertibility of finite
Hilbert transforms on Lp, p ∈ (1, 2). This fact was first observed and used in [2]
where linear spectral analysis is used in order to determine flutter modes.

3.3. Long-time behavior and attracting sets. We present here the long-time
characteristics of the dynamical system induced by (St, Y ) in both subsonic and
supersonic cases with the standard Neumann flow condition. As noted in the intro-
duction, the problem at hand is rendered challenging for the following reasons:

• the unboundedness of the flow domain;
• the lack of inherent dissipation for both flow and plate;
• the lack of compactness in both the flow and plate dynamics;
• the absence of gradient structure for the dynamical system.

Nevertheless, the result we obtain demonstrates that the trajectories for the
structure are attracted by a finite dimensional and smooth attracting set. In order
to obtain this type of result, a certain amount of decoupling of the flow dynamics
from structure dynamics is absolutely necessary. This will be accomplished by
realizing that the flow effects produce (after some time) delayed forces acting upon
the plate. Thus, instead of considering the full dynamical system with the nice
properties of invariance, we will need to consider a modified dynamical system for
which desirable properties can be shown for the structure.

Theorem 3.5. Suppose 0 ≤ U 6= 1, F0 ∈ H3+δ(Ω) and p0 ∈ L2(Ω). Then there
exists a compact set U ⊂ H× L2(Ω) of finite fractal dimension such that

lim
t→∞

dH×L2(Ω)

(
(u(t), ut(t)),U

)
= lim
t→∞

inf
(ν0,ν1)∈U

(
||u(t)− ν0||22 + ||ut(t)− ν1||2

)
= 0

for any weak solution (u, ut;φ, φt) to (8) taken with clamped boundary conditions
(H = H2

0 (Ω)), and with initial data

(u0, u1;φ0, φ1) ∈ H × L2(Ω)×H1(R3
+)× L2(R3

+)

which are localized in R3
+ (i.e., φ0(x) = φ1(x) = 0 for |x| > R for some R > 0).

Additionally we have the extra regularity U ⊂
(
H4(Ω) ∩H

)
×H2(Ω).

While Theorem 3.5 pertains to “attractors” capturing the limiting dynamics of
the plate component of solutions, it is of interest to develop long-time behavior
results describing the entire evolution, if possible. In particular, it is of interest
(and often important) to determine when the end behavior of solutions is simple,
perhaps static (in contrast to potentially chaotic behavior). The physical phenom-
enon associated with static end behavior for the plate is known as buckling (large
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deflection theory [53]). The issue which we address in the conjecture below is un-
der which circumstances full trajectories (plate and flow) converge to stationary
states—solutions to the static problem corresponding to (11). We suspect that
one may implement additional damping of the form kut with k > 0 in order to
strengthen the result of Theorem 3.5 in this direction.

Conjecture 1. Let 0 ≤ U < 1 and suppose the mechanical damping term kut,
k > 0 is incorporated into (8) above on the LHS of the equation; assume p0 ∈ L2(Ω)
and F0 ∈ H3+δ(Ω). Then any weak solution (u(t), φ(t)) to the system with localized
initial flow data (as in Theorem 3.5) has the property that

lim
t→+∞

inf
ū,φ̄∈N

{
||u(t)− ū||2H2(Ω) + ||ut(t)||2L2(Ω) + ||φ(t)− φ̄||2H1(Bρ) + ||φt(t)||2L2(Bρ)

}
= 0,

where N is the set of stationary solutions to (8).

The proof of Theorem 1 will makes critical use of (i) mechanical damping im-
posed on the structure, (ii) compactness of the attractor stated above, and (iii) the
finiteness of the dissipation integral

k

∫ ∞
0

||ut||2L2(Ω)dτ <∞

via the energy relation in Section 2.1. Eliminating non-stationary asymptotic be-
havior via internal dissipation is the topic of [60]. (See [22, Section 12.4.2] and [17]
for details on a related result with rotational inertia accounted for; see [64, 65] for
similar results in the presence of regularizing thermoelastic terms.)

Remark 7. As recently documented in [71] the result of Theorem 1 will not hold
in the supersonic case, even with a small supersonic speeds. It turns out that any
amount of structural damping is not a position to eliminate flutter in low modes
for low supersonic speeds. In that sense the result claimed in Conjecture 1 would
optimal.

The proof of Theorem 3.5 will be discussed later in Section 6.

3.4. Discussion of results in relation to past literature.

3.4.1. Well-posedness. For the reasons described above, well-posedness results in
the past literature dealt mainly with the dynamics possessing some regularizing ef-
fects. This has been accomplished by either accounting for non-negligible rotational
forces [9, 11, 22] or strong damping from thermal effects [64, 65]. In the first case,
the linear part of plate dynamics becomes

utt − α∆utt + ∆2u = p0 + (φt + Uφx)
∣∣
Ω

; (20)

while in the second case, thermal effects lead to the consideration of a strongly
damped plate

utt − α∆ut + ∆2u = p0 + (φt + Uφx)
∣∣
Ω
. (21)

In both cases the plate velocity has the property ut ∈ H1(Ω)—which is the needed
regularity for the applicability (in this scenario) of many standard tools in nonlinear
analysis. Even at this stage, though, the problem is far from simple. One is faced
with low regularity of boundary traces, due to the failure of Lopatinski conditions
(unlike the Dirichlet case for the flow, where there is no loss of regularity to wave so-
lutions in their boundary traces). In fact, the first contribution to the mathematical
analysis of the problem is [10, 11] (see also [22, Section 6.6]), where the case α > 0
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(rotational) is fully treated. The method employed in [10, 11, 22] relies on the fol-
lowing main ingredients: (i) sharp microlocal estimates for the solution to the wave
equation driven by H1/2(Ω) Neumann boundary data given by ut + Uux. This
gives φt|Ω ∈ L2(0, T ;H−1/2(Ω)) [62] (in fact more regularity is presently known:
H−1/3(Ω) [68]); and (ii) the regularizing effects on the velocity ut (i.e. ut ∈ H1(Ω))
due to the fact that α > 0. The above items, along with an explicit solver for the
three dimensional perturbed wave equation, and a Galerkin approximation for the
structure, allow one to construct a fixed point for the appropriate solution map.
The method works well in both cases 0 < U < 1 and U > 1. Similar ideas were
used more recently [64, 65] in the case when thermoelastic effects are added to the
model; in this case the dynamics also exhibit H1(Ω) regularity of the velocity in
both the rotational and non-rotational cases due to the analytic regularizing effects
induced by thermoelasticity [57].

However, when α = 0 (non-rotational case), and additional smoothing is not
present, ut is only L2(Ω). In that case the corresponding estimates become sin-
gular, destroying the applicability of the previous methods. Naturally, the first
analysis of the problem with α = 0 (no rotational inertia) depends critically on the
condition U < 1. The main mathematical difficulty of this problem is the presence
of the boundary terms: (φt + Uφx)|Ω acting as the aerodynamical pressure on the
plate. When U = 0, the corresponding boundary terms exhibit monotone behavior
with respect to the energy inner product (see [22, Section 6.2] and [55]) which is
topologically equivalent to the topology of the space Y given by (15). The latter
enables the use of monotone operator theory ([22, Section 6.2] and [55]). However,
when U > 0 this is no longer true with respect to the topology induced by the en-
ergy spaces. The lack of the natural dissipativity for both interface traces, as well
as the nonlinear term in the plate equation, make the task of proving well-posedness
challenging.

A recent book [22, Chapter 6] provides an account of relevant results in the
case α ≥ 0 and 0 ≤ U < 1. Existence of a nonlinear semigroup capturing finite
energy solutions has been shown for the first time in [73], and later expanded upon
in [23]; the proof of Theorem 3.1 given in [73] relies on two principal ingredients:
(i) renormalization of the state space which yields ω-dissipativity for the dynamics
operator (which is nondissipative in the standard norm on the state space); (ii) the
sharp regularity of Airy’s stress function, see [42] and also [22, Corollary 1.4.5, p.
44], which converts a supercritical nonlinearity into a critical one

||v(u)||W 2,∞(Ω) ≤ C||u||2H2(Ω);

and (iii) control of low frequencies for the system by the nonlinear source, repre-
sented by the inequality

||u||22−δ ≤ ε[||u||2H2(Ω) + ||∆v(u)||2L2(Ω)] + Cε, ∀ ε > 0, δ ∈ (0, 2]. (22)

The above inequality holds for clamped and simply supported boundary conditions.
In the case of clamped-free conditions (6) we need to assume that β > 0 and to add
the boundary energy term.

The issue of well-posedness in the presence of supersonic flows was, to a certain
extent, the final open case for this class of standard models with Neumann flow
data, and was not effectively handled by previous theories. It has only been fully
resolved recently in [25], with the main results reported above in Section 3.2.2.
The method and results in [25] do not depend on any smoothing mechanism (as
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we take α = 0), and they are applicable for all U 6= 1. The key ingredients
rely on the development of a suitable microlocal trace theory for the velocity of
the flow, and the implementation of the corresponding estimates with semigroup
theory in extended spaces. In this way, a-priori estimates allow for a construction
of a nonlinear semiflow which evolves finite energy solutions -with corresponding
results stated in Theorem 3.4.

To the knowledge of the authors the models introduced in (16) and (10) have not
been addressed in the case of two dimensional plates and three dimensional flows.
However, in his pioneering work, the author of [2, 3] (and references therein) con-
siders a linear airfoil immersed in a subsonic flow; the wing is taken to have a high
aspect ratio thereby allowing for the suppression of the span variable, and reducing
the analysis to individual chords normal to the span. By reducing the problem to a
one dimensional analysis, many technical hangups are avoided, and Fourier-Laplace
analysis is greatly effective. Ultimately, the problem of well-posedness and Lp reg-
ularity of solutions can be realized in the context of the classical Possio integral
problem [2, 3, 70], involving the inverse Hilbert transform and analysis of Mikhlin
multipliers. In the approach presented here, we attempt to characterize our solution
by similar means and point out how the two dimensional analysis greatly compli-
cates matters and gives rise to singular integrals in higher dimensions. In addition,
our analysis pertains to solvability of the full system (flow and plate)-rather than
solvability of aeroelastic Possio’s equation -a critical component, however charac-
terizing only boundary interaction of the flow-plate variables.

3.4.2. Long-time behavior. While long-time behavior of von Karman evolutions has
been well studied [22], the long-time behavior of both subsonic and supersonic
models without rotational inertia or other regularizing terms has been virtually un-
charted territory. (For the results corresponding to α > 0, see [22, 64, 65] and
references therein.) One of the obvious reasons is that the tools needed to tackle
mathematical issues such as loss of compactness, loss of gradient structure in dy-
namical system, and supercriticality of nonlinear terms in the equations have been
developed only recently.

The first key idea in this analysis is based on reduction of the full flow-plate
dynamics to a delayed plate system where flow information is encapsulated in a
delay term. This approach was already applied to Berger plate models in [12, 26]
for the proof of the existence of attractors for the associated reduced plate system
with a delay term. In fact, an abstract long-time behavior analysis of second order
nonlinear PDEs with delays has been developed in [15] (see also [22]): first, in the
case of the von Karman model with rotational inertia, and secondly, in [12, 26],
in the case of the Berger model with a “small” delay term (corresponding to a
hypersonic speeds U >> 1). These expositions address the existence and properties
of global attractors for this general plate with delay in the presence of a natural
form of interior damping and additional regularizations.

We again emphasize that the presence of rotational inertia parameter α > 0 in
the plate model, while drastically improving the topological properties of solutions,
is neither natural nor physically desirable in the context of flow-structure interac-
tion. Instead, when the rotational inertia term is neglected (α = 0), the damping
secured by the flow alone (via the reduction step) provides the main mechanism
for stabilization. Additionally, the principal nonlinearity in the analysis of clamped
and clamped-free plates (panels) is that of von Karman; the Berger nonlinearity
is taken to be an approximation of the von Karman model based on simplifying
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physical assumptions [5]. In view of this, it is paramount to the problem at hand
to consider the long-time behavior of the von Karman plate model in the absence
of rotational inertia and impose no limiting regimes on the flow velocity parameter
U ≥ 0, U 6= 1.

The mathematical difficulties which arise in this model force us to consider new
long-time behavior technologies applied within this framework. Specifically, the ab-
stract approach mentioned above (and utilized in previous long-time analyses for
rotational inertia) does not apply in this case. We make use of a relatively new
technique [20, 21, 22] which allows us to address the asymptotic compactness prop-
erty for the associated dynamical system without making reference to any gradient
structure of the dynamics (not available in this model, owing to the dispersive flow
term). In addition, we are able to demonstrate extra regularity of the attractor via
a quasistability approach [22]. In proving finite dimensionality and smoothness of
the attractors, the criticality of the nonlinearity and the lack of gradient structure
prevents one from using a powerful technique of backward smoothness of trajectories
[1, 22, 49], where smoothness is propagated forward from the equilibria. Without a
gradient structure, the attractor may have complicated structure (not being char-
acterized by the equilibria points). In order to cope with this issue, we take the
advantage of novel method that is based on suitable approximations and exploits
only the compactness of the attractor.

In the absence of the damping on the flow, it is reasonable to expect that the
entire evolution is strongly stable in the sense of strong convergence to the equilibria.
In fact, such results have been shown for subsonic velocities and plate models with
rotational forces and additional mechanical damping [22] or plates with thermal
effects accounted for [64, 65]. The key to obtaining such results is a viable energy
relation and a priori bounds on solutions which yield finiteness of the dissipation
integral. Since we have seen that the energy relation in the supersonic case has non-
dissipative terms which potentially “leak” energy, we focus on the case of subsonic
flows. Additionally, since we must make use of the energy relation coming from the
full flow-plate system we may not utilize the damping which was previously “culled”
from the flow. This indicates that some structural damping is necessary to obtain
Theorem 1. On the other hand recent results reported in [71] indicate that such
results are false for a low supersonic speeds.

3.5. Open problems. In what follows below we shall list some open problems
which naturally emerge from the material presented above.

1. As pointed out in Section 1.3, the free-clamped boundary conditions imposed
on the plate are of great physical interest. From the mathematical point of
view, the difficulty arises at the level of linear theory when one attempts
to construct “smooth” solutions of the corresponding evolution. The typical
procedure of extending plate solutions by zero outside Ω leads to a jump in
the Neumann boundary conditions imposed on the flow. In order to contend
with this issue, regularization procedures are needed in order obtain smooth
approximations of the original solutions. While some regularizations have
been already introduced in [25], more study is needed in order to demonstrate
the effectiveness of this “smoothing” for the large array of problems described
in this work. Free boundary conditions in the context of piston theory and
boundary dissipation have been recently studied in [7].
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2. We note that the arguments used in the case of K-J boundary conditions below
are perhaps more amenable to the consideration of free boundary conditions
imposed on the portion of the boundary of the plate. This is in line with cer-
tain engineering applications (e.g. flag type models [34]). On the other hand,
existence of attracting sets in the above configuration is a totally uncharted
and very challenging area. In addition, rigorous analysis of well-posedness for
the case of supersonic flows (U > 1), taken with the K-J boundary conditions,
represents an entirely wide-open problem for any plate boundary conditions.

3. While Theorem 3.5 asserts an existence of compact attracting set with an
additional regularity of one derivative, it would be interesting to see whether
for regular loads p and F0 one obtaind C∞ regularity of the attracting set.
This will involve additional boot-strap arguments in line with the strategy
outlined in [22] and utilized recently in [44].

4. Recent techniques have shown that geometrically constrained (localized) in-
terior damping is a viable form of dissipation for the von Karman and Berger
evolutions [44]. Additionally, a preliminary study of the flow-plate interaction
(taken with subsonic flows and standard Neumann type coupling) has shown
that nonlinear boundary damping is not a viable candidate for stabilizability
to a global attractor [59]. As such, it is a natural question to ask whether
localized interior damping will be a successful control mechanism to establish
the existence of a global attractor in the case of a weak coupling between the
flow and the plate, and perhaps produce the analogous result to Theorem
1 making use of damping which is active only on a “small” portion of the
domain.

5. The treatment presented above excludes the so called transonic barrier U = 1.
Indeed, for U = 1 the analysis provided breaks down in the essential way,
namely the principal spatial operator associated to the flow ∆−U2∂2

x becomes
degenerate in the x direction. In the case of supersonic or subsonic flows, we
are able to exploit the definite sign of this operator associated to the x variable,
however, when U = 1 the flow equations becomes of degenerate hyperbolic
type. In addition, according to [39, 40], near U = 1 the flow equation acquires
the term φxφxx, which is referred to the local Mach number effect. Thus near
the transonic barrier the flow equation becomes degenerate and quasilinear.
While numerical/experimental work predicts appearance of shock waves [38],
to our best knowledge no mathematical treatment of this problem is available
at present.

6. Finally, the ultimate goal is to consider a fully nonlinear flow model. Experim-
ental-numerical results predicting shock waves in the evolution are partially
available [38]. However the mathematical aspects of this problem are presently
wide open.

4. Proof of well-posedness: Subsonic flows with Kutta-Joukowsky con-
ditions. We see above that the primary source of mathematical difficulty lies in
interpreting and unravelling the energy relation in (17). In fact, the structure of
the energies provides a good topological measure for the potential solution; however
the energy balance is lost in (17) when making use of the state variable ψ and, in
addition, the boundary term involves the traces of L2 solutions of the flow, which
are possibly not defined at all. In view of these complications, our approach is be
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based on (i) developing a suitable theory for the traces of the flow solutions (as in
[25]); (ii) counteracting the loss of energy balance relation.

In this section we attempt to recover the dynamics after the change of state
variable by viewing them as the sum of a generating component and a perturbation,
where there perturbation corresponds to the “energy polluting” term in the energy
relation. This method was successfully used in [25].

As explained in Section 1.4, the K-J boundary conditions arise in the modeling
of panels that may be partially free. The existence of a pressure jump off of the
wing occurs in many typical configurations [2]. From the mathematical point of
view the difficulty lies, again, at the level of the linear theory. In order to deal
with the effects of the unbounded traces γ[ψ] in the energy relation (17) microlo-
cal calculus is necessary. This has been successfully accomplished in [25] where
clamped boundary conditions in the supersonic case were considered. However, in
the case of K-J boundary conditions there is an additional difficulty that involves
“invertibility” of finite Hilbert (resp. Riesz) transforms. This latter property is
known to fail within the L2 framework, thus it is necessary to build the Lp the-
ory, p 6= 2. This was for the first time observed in [3] and successfully resolved
in the one dimensional case. However, any progress to higher dimensions depends
on the validity of the corresponding harmonic analysis result developed for finite
Hilbert/Riesz type transforms in two dimensions. The outline of a well-posedness
proof are now outlined below.

4.1. Abstract setup. We introduce the standard linear plate operator with clam-
ped boundary conditions: A = ∆2 with the domain

D(A ) = {u ∈ H4(Ω) : u = ∂νu = 0 on ∂Ω} = (H4 ∩H2
0 )(Ω).

Additionally, D(A 1/2) = H2
0 (Ω). Take our state variable to be

y ≡ (φ, ψ;u, v) ∈
(
H1(R3

+)× L2(R3
+)
)
×
(
D(A 1/2)× L2(Ω)

)
≡ Y.

We work with ψ as an independent state variable, i.e., we are not explicitly taking
ψ = φt + Uφx here.

To build our abstract model, we must first define a preliminary operator A :
D(A) ⊂ Y → Y by

A


φ
ψ
u
v

 =


−U∂xφ+ ψ
−U∂xψ + ∆φ

v
−A u+ γ[ψ]

 (23)

The domain of D(A) is given by

D(A) ≡

y =


φ
ψ
u
v

 ∈ Y
∣∣∣∣∣∣∣∣∣∣
−U∂xφ+ ψ ∈ H1(R3

+),
−U∂xψ + ∆φ ∈ L2(R3

+),
ψ = 0 on R2\Ω, ∂νφ = −v, in Ω
v ∈ D(A 1/2) = H2

0 (Ω),
−A u+ γ[ψ] ∈ L2(Ω)

 (24)

The operator A will be the foundation of our abstract setup, and ultimately the
dynamics of the evolution in (16) can be represented through A.

As a first step, we show that A is m-dissipative.
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4.2. Semigroup generation of A.

Theorem 4.1. The operator A is m-dissipative on Y . Hence, via the Lumer-Philips
theorem, it generates a C0 semigroup of contractions.

Proof. Maximal Dissipativity. We employ the following inner product on our state
space: for y, ŷ ∈ Y

((y, ŷ))Y ≡ (∇φ,∇φ̂)R3
+

+ (ψ, ψ̂)R3
+

+ < A 1/2u,A 1/2v̂ >Ω + < v, v̂ >Ω

With this inner product, we dissipativity is checked in a straightforward manner
utilizing the K-J boundary conditions and the coupling, and for any y ∈ Y

((Ay, y))Y = 0.

We must verify the range condition for A. We will take the system corresponding
to A + λI, with λ = 0 first. Given (f1, f2; g1, g2) ∈ Y , we consider:

− Uφx + ψ = f1 ∈ H1(R3
+) (25)

−Uψx + ∆φ = f2 ∈ L2(R3
+) (26)

v = g1 ∈ D(A 1/2) (27)

−A u+ γ[ψ] = g2 ∈ L2(Ω), (28)

with boundary conditions: {
∂νφ = −v = g1 ∈ H2(Ω)

ψ = 0 in R2\Ω.
(29)

Denoting κ ≡ φx and ∆U ≡ ∆ − U2D2
x we easily deduce that κ satisfies the

following Zaremba (mixed) problem:

∆Uκ = f2x + Uf1xx ∈ H−1(R3
+), ∂νκ = −vx = g1x ∈ H1(Ω), κ = − 1

U
f1 ∈ H1/2(R2 \ Ω),

As we are in the subsonic case, U < 1, the above problem defined by ∆U is strongly
elliptic in κ = φx.

This is a mixed (Zaremba) problem and we recover φx ∈ H1(R3
+). Returning to

the equation, we recover ψ: ψ = Uφx+f1 ∈ H1(R3
+) and hence, ψ ∈ H1(R3

+). With

ψ ∈ H1(R3
+) in hand (and hence γ[ψ] ∈ H1/2(Ω)), solving for (u, v) is standard.

In addition, having solved for φx, we may then specify that ∆φ = f2 + ψx ∈
L2(R3

+), with appropriate boundary conditions. We must verify that this is valid,
by recovering φ ∈ H1(R3

+).

Remark 8. Note that (from the regularity of the flow equations and mixed bound-
ary conditions) we do not obtain φ ∈ H2(R3

+), demonstrating that the resolvent
operator is not compact.

To see that φ ∈ H1(R3
+), we proceed as follows: let λ > 0 and consider the

equation for (A + λI)y = (f1, f2; g1, g2) ∈ Y , where y = (φ, ψ;u, v) is a solution (as
obtained above for the case λ = 0):

−Uφx + ψ + λφ =f1 ∈ H1(R3
+)

−Uψx + ∆φ+ λψ =f2 ∈ L2(R3
+)

v + λu =g1 ∈ D(A 1/2)

−A u+ γ[ψ] + λv =g2 ∈ L2(Ω)

∂νφ = −v, in Ω, ψ =0 in R2\Ω,
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where A stands for plate generator. Now, using the same idea as in [25], we may
obtain the a priori estimate on the solution:

λ||(φ, ψ;u, v)||2Y ≤ C||(f1, f2; g1, g2)||2Y .

In addition, we note from the proof of the m-dissipativity of A above, that
−A is also m-dissipative; indeed, ((−Ay, y))Y = 0, and the proof of maximality
(the corresponding estimates) does not depend on the sign of A, owing to inherent
cancellations in the structure of the static flow problem. Thus, with both ±A
m-dissipative, we have:

Corollary 1. The operator A is skew-adjoint on Y and generates a C0 group of
isometries.

4.3. Encoding the flow boundary conditions. In order to incoporate the flow
boundary conditions abstractly into our operator representation of the evolution,
we introduce the flow-Neumann map defined for the flow operator

A0

(
φ
ψ

)
≡
(
−Uφx + ψ
−Uψx + ∆φ

)
,

with

D(A0) = {(φ, ψ) ∈ Yf ≡ H1(R3
+)×L2(R3

+)
∣∣ −Uφx +ψ ∈ H1(R3

+), Uψx + ∆φ ∈ L2(R3
+),

∂νφ = 0 on Ω, ψ = 0 in R2\Ω}.
By the utilizing the arguments above in the proof of maximality, we have that the
operators ±A0 are m-dissipative on Yf . This indicates that A0 is skew-adjoint and
one may check that

((A0y, ŷ))Yf = −((y,A0ŷ))Yf for y, ŷ ∈ D(A0).

With a help of the flow map A0 discussed above, we define Neumann-flow map
as follows:

N : L2(R2)→ Yf

given by (φ, ψ) = Ng, iff −Uφx + ψ + φ = 0 and − Uψx + ∆φ+ ψ = 0 in R3
+,

with ψ = 0 in R2\Ω and ∂νφ = −g in Ω.
We then consider the associated regularity of the map N . Note that the Neumann

map is associated with the matrix operator A0 rather than the usual harmonic
extensions associated with a scalar elliptic operator. This difference is due to the
fact that K-J conditions affect both the flow and the aeroelastic potential. In order
to describe the regularity of N map we shall use the following anisotropic function
spaces:

Hr,s(D) = {f ∈ Hs(D),
∂fr

∂xr
∈ Hs(D)}

These spaces are subspaces of Hs(D) with the additional information on regularity
in x-direction. Using the regularity associated to the Zaremba elliptic problem (as
discussed above) we have:

Lemma 4.2.

N ∈ L
(
H1,−1/2(Ω)→ H1,1(R3

+)×H0,1(R3
+)
)

where g ∈ H1,−1/2(Ω) denotes the anisotropic space ∂xg ∈ H−1/2(Ω) , g ∈ H1(Ω).
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Our next result identifies N∗[A∗0 + I] with a trace operator. Here, the adjoint
taken is with respect to the L2(Ω)→ Yf topology. This is reminiscent of a classical
Neumann map:

Lemma 4.3. Let (φ, ψ) ∈ D(A∗0). Then N∗[A∗0 + I](φ, ψ) = γ[ψ].

Proof. This follows from the identification of D(A0) = D(A∗0), (from the skew-
adjointness property) and Green’s theorem.

With the introduced notation we can express the final flow-structure operator as

A


φ
ψ
u
v

 =


·

A0

[(
φ
ψ

)
−Nv

]
−Nv

v

−A u+N∗(A∗0 + I)

(
φ
ψ

)

 . (30)

This new representation of A encodes the boundary conditions, and further reveals
the antisymmetric structure of the problem.

4.4. Cauchy problem. Having established that A is m-dissipative, the Cauchy
problem

yt = Ay, y(0) = y0 ∈ Y (31)

is well-posed on Y . However, this semigroup statement is not equivalent to the
problem in (16). The dynamics of the original fluid-structure interaction in (16)
can be re-written (taking into account the action and domain of A) as

BL


φ
ψ
u
v

 = A


φ
ψ
u
v

+ P


φ
ψ
u
v

 , (32)

where P corresponds to what remains of the dynamics in (16) which are not captured
by A. This allows us to treat the problem of well-posedness within the framework
of “unbounded trace perturbations”, where the perturbation in question becomes

P


φ
ψ
u
v

 =


·

−U(A0 + I)Nux
0
0

 (33)

Here (A0 + I)N is defined via duality (using its adjoint expression) via Lemma 4.3.
We now verify that A + P (computed formally) fully encodes the dynamics of

(16).

(A + P)y =


·

A0

[(φ
ψ

)
−N(v + Uux)

]
−N(v + Uux)

v

−A +N∗(A∗0 + I)

(
φ
ψ

)


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That the plate components are correct is standard. We focus on the flow component:

let

(
φ̂

ψ̂

)
= −N(v + Uux). This implies that

− Uφ̂x + ψ̂ = −φ̂, −Uψ̂x + ∆φ̂ = −ψ̂, ∂ν φ̂ = −(v + Uux) on Ω, ψ̂ = 0 on R2\Ω.
(34)

Hence

A0

[(
φ
ψ

)
−N(v + Uux)

]
−N(v + Uux) = A0

[(
φ
ψ

)
+

(
φ̂

ψ̂

)]
+

(
φ̂

ψ̂

)
=

(
−Uφx + ψ
−Uψx + ∆φ

)
where we have used (34) in the last line to make the cancellation.

4.5. Generation for the full dynamics: A+P. We would like to recast the full
dynamics of the problem in (16) as a Cauchy problem in terms of the operator A.
To do this, we define an operator P : Y → R(P) as follows:

P


φ
ψ
u
v

 = P#[u] ≡


0

−UA0N∂xu
0
0

 (35)

Specifically, the problem in (16) has the abstract Cauchy formulation:

yt = (A + P)y, y(0) = y0,

where y0 ∈ Y will produce semigroup (mild) solutions to the corresponding inte-
gral equation, and y0 ∈ D(A) will produce classical solutions. To find solutions
to this problem, we will consider a fixed point argument, which necessitates inter-
preting and solving the following inhomogeneous problem, and then producing the
corresponding estimate on the solution:

yt = Ay + P#u, t > 0, y(0) = y0, (36)

for a given u. To do so, we must understand how P acts on Y (and thus P# on
H2(Ω)).

To motivate the following discussion, consider for y ∈ Y and z = (φ, ψ;u, v) and
apply Lemma 4.3 (with Y as the pivot space) to obtain:

(Py, z)Y =(P#[u], z)Y = −U(A0N∂xu, ψ) = −U < ∂xu, γ[ψ] > . (37)

Hence, interpreting the operator P (via duality) is contingent upon the ability to
make sense of γ[ψ], which can be done if γ[ψ] ∈ H−1+ε(Ω) (since ux ∈ H1(Ω)).
In what follows, we show a trace estimate on ψ (for semigroup solutions) of (36)
allows us to justify the program outlined above. We note that similar arguments
were used in [25].

We now state the trace regularity which is required for us to continue the abstract
analysis of the dynamics. We state the following as a theorem which depends upon
an assumption about the integral transform on Ω. We will then show that abstract
assumption is satisfied when the problem is reduced to a one dimensional structure.
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Theorem 4.4 (Flow Trace Regularity). Let the auxiliary Assumption 4.1 stated
below be in force. If φ(x, t) satisfies (3) taken with flow boundary conditions (9),
then for every ε > 0 with ψ = φt + Uφx we have∫ T

0

‖γ[ψ](t)‖2H−1/2−ε(R2)dt ≤ CT

(
Efl(0) +

∫ T

0

‖∂νφ(t)‖2Ωdt

)
(38)

In Section 4.7 we state and give an explanation of Assumption 4.1.

Remark 9. We note that similar trace result has been established for the model
considered in [25] where, however, in this treatement the authors were able to take
ε = 0. Since the above trace result is used in order to justify the duality pairing in
(37), it suffices to take any ε < 1.

To conclude the proof of generation, we utilize the approach taken in [25] by
interpreting the variation of parameters formula for u ∈ C(R+;H2

0 (Ω))

y(t) = eAty0 +

∫ t

0

eA(t−s)P#[u(s)]ds. (39)

by writing (with some λ ∈ R, λ 6= 0):

y(t) = eAty0 + (λ− A)

∫ t

0

eA(t−s)(λ− A)−1P#[u(s)]ds. (40)

We initially take this solution in [D(A∗)]′ = [D(A)]′ (via the skew-adjointness of A),
i.e., by considering the solution y(t) in (40) above acting on an element of D(A∗).

The approach is based on a key theorem in the theory of abstract boundary
control [57, pp.645-653]. This theorem allows us to view the operator P (mapping
Y outside of itself) as an unbounded perturbation. To make use of it, we critically
implement the trace regularity theorem above in (4.4). We may now consider mild
solutions to the problem given in (36). Applying general results on C0-semigroups
we arrive at the following assertion.

Proposition 1. Let u ∈ C1([0, T ];H2
0 (Ω)) and y0 ∈ Y . Then y(t) given by (39)

belongs to C([0, T ];Y ) and is a strong solution to (36) in [D(A)]′, i.e. in addition
we have that

y ∈ C1((0, T ); [D(A)]′)

and (36) holds in [D(A)]′ for each t ∈ (0, T ).

From here, we utilize the full strength of the abstract semigroup theory with
unbounded trace perturbation [57, pp.645-653] (and restated and used in [25]).

Theorem 4.5 (L Regularity). Let T > 0 be fixed, y0 ∈ Y and u ∈ C([0, T ];
H2

0 (Ω)). Then the mild solution

y(t) = eAty0 + L[u](t) ≡ eAty0 +

∫ t

0

eA(t−s)P#[u(s)]ds

to problem (36) in [D(A)]′ belongs to the class C([0, T ];Y ) and enjoys the estimate

max
τ∈[0,t]

||y(τ)||Y ≤||y0||Y + kT ||u||L2(0,t;H2
0 (Ω)), ∀ t ∈ [0, T ]. (41)

Remark 10. We emphasize that the perturbation P acting outside of Y is reg-
ularized when incorporated into the operator L defined above; namely, the vari-
ation of parameters operator L is a priori only continuous from L2(0, T ;U) to
C(0, T ; [D(A∗)]′). However, we have shown that the additional “hidden” regularity
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of the trace of ψ for solutions to (3) with the boundary conditions in (9) allows us
to bootstrap L to be continuous from L2(0, T ;U) to C(0, T ;Y ) (with corresponding
estimate) via the abstract theorem [57]. This result justifies formal energy methods
on the equation (36) in order to produce a fixed point argument—see [25].

4.6. Construction of a generator. Let Xt = C
(
(0, t];Y

)
. Now, with y0 ∈ Y take

y = (φ, ψ;u, v) ∈ Xt, and introduce the map F : y → y given by

y(t) = eAty0 + L[u](t),

i.e. y solves yt = Ay+P#u, y(0) = y0, in the generalized sense, where P# is defined
in (35). Using (41) we then implement a standard fixed point argument on Xt.

This implies that there exists a t∗such that on the interval [0, t∗] the problem
yt = Ay + Py, t > 0, y(0) = y0, has a local in time unique (mild) solution defined
now in Y . This above local solution can be extended to a global solution in finitely
many steps by linearity. Thus there exists a unique function y = (φ, ψ;u, v) ∈
C
(
R+;Y

)
which satisfies the variation of parameters (Duhamel) formula. It also

follows from the analysis above that

‖y(t)‖Y ≤ CT ‖y0‖Y , t ∈ [0, T ], ∀T > 0.

Thus we have a strongly continuous semigroup corresponding to solutions T̂ (t) in
Y . Additionally, since mild solutions satisfy the corresponding variational equality
we have

(y(t), h)Y = (y0, h)Y +

∫ t

0

[−(y(τ),Ah)Y + (P[y(τ)], h)Y ] dτ, ∀h ∈ D(A), t > 0.

Using the same idea as presented in [23, 25], we conclude that the generator Â of

T̂ (t) has the form

Âz = Az + Pz, z ∈ D(Â) = {z ∈ Y : Az + Pz ∈ Y }

(we note that the sum Az + Pz is well-defined as an element in [D(A)]′ for every

z ∈ Y ). Hence, the semigroup eÂty0 is a generalized solution for y0 ∈ Y (resp. a

classical solution for y0 ∈ D(Â)) to (16) on [0, T ] for all T > 0.

D(A + P) ≡

y ∈ Y
∣∣∣∣∣∣
−U∂xφ+ ψ ∈ H1(R3

+),
−U∂xψ − A0(φ−N(v + U∂xu)) ∈ L2(R3

+)
v ∈ D(A 1/2) = H2

0 (Ω), −A u+N∗A∗0ψ ∈ L2(Ω)

 (42)

Indeed, the function y(t) is a generalized solution corresponding to the generator
A + P with the domain defined in (42).

4.7. Trace regularity. As we noted above, the “hidden” trace regularity of the
term ψ coming from the flow equation (3) is critical to the arguments above. In this
section we analyze this problem in the dual (Fourier-Laplace) domain and relate it
to a certain class of integral transforms reminiscent of the finite Hilbert transform.
In the case of two dimensions, we reduce the trace regularity to an hypothesis about
the invertibility of Hilbert-like transforms on bounded domains. Additionally, we
assert the necessary trace regularity on a pseduodifferential operator corresponding
to the flow problem in one dimension.
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We are interested in the trace regularity of the following flow problem in R3
+:

(∂t + U∂x)2φ = ∆φ in R3
+ × (0, T ),

φ(0) = φ0; φt(0) = φ1,

∂νφ = d(x, t) on Ω× (0, T )

γ[φt + Uφx] = γ[ψ] = 0, x ∈ R2\Ω,

(43)

with 0 ≤ U < 1, d(x, t) is the “downwash” generated on the structure, and γ[ψ] is
the aeroelastic potential. Aeroelastic potential satisfies the trace estimate given in
Theorem 4.4.

Remark 11. A related analysis of trace regularity for this equation was carried
out in the case of Lloc2 (R2) purely Neumann data in [25]. Here, the mixed boundary
conditions present a challenge in the microlocal analysis.

The analysis of the trace regularity is done in the dual (Fourier-Laplace) domain.
It is here where we encounter the analysis (microlocally) involving the an integral
transform which is analogous to the finite Hilbert transform on Ω. We now introduce
the necessary assumption mentioned above. Define and operator H on L2(Ω) whose

symbol is given by symb(H ) =
−i|ηx|
ηx

≡ j(ηx), where ηx ↔ 1
i ∂x in the Fourier

correspondence. Additionally, let PΩ : R2 → Ω be the associated projection into
Lp(Ω) and EΩ be the extension operator (by zero) from Lp(Ω) into Lp(R2).

Assumption 4.1. Assume that the operator Hf ≡ PΩH EΩ : Lp(Ω) → Lp(Ω) is
continuously invertible for p ∈ (1, 2).

When Ω ≡ (−1, 1) and the problem is reduced to a two dimensional flow inter-
acting with the one dimensional structure, we have that Assumption 4.1 reduces to
the invertibility of the finite Hilbert transform [33, 74, 63]. That the finite Hilbert
transform is invertible on L2−(−1, 1) is discussed in [33, 74]. We note that it is also
Fredholm on Lp(−1, 1) for p > 2, and in the case p = 2 the finite Hilbert transform
has a range which is proper and dense. Hence, when Ω = (−1, 1), Assumption 4.1
is satisfied.

Remark 12. The connection between integral equations appearing in the study
of aeroelasticity and invertibility of finite Hilbert fransforms has been known for
many years and dates back to Tricomi and his airfoil equation [70]. This approach
has been critically used in [2, 3] where the analysis is centered on solvability of
integral equations connecting the downwash with the aeroelastic potential. In these
works the author performs an analysis on a one dimensional flow-beam system and
utilizes a similar Fourier-Laplace approach and corresponding Lp theory. However,
the solution to the system (the Possio integral equation) is constructed via a Fourier-
Laplace approach. We follow the same conceptual route with different technical
tools. Our approach is based on microlocal analysis, rather than explicit solvers
of integral equations arising in a purely one dimensional setting. Though our final
estimate depends on an assumption (which we demonstrate is satisfied only for the
one dimensional case) we believe that the microlocal approach provides new ground
for extending the flow-structure analysis to the multidimensional settings.

We note at this stage that the integral transform which arises corresponding to
the so called abstract version of Possio equation [2, 3]

d = PΩH SEΩf ;x ∈ Ω, t > 0
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where f is supported only on Ω. In our case, via the K-J condition, ψ is a function
on the whole domain whose support lies inside Ω; hence we have:

d = PΩH SEΩψ, on Ω, t > 0,

We recall that ψ = 0 off Ω, so EΩψ coincides in this case with ψ. Given d ∈
C(0, T ;L2(Ω)) our task is to infer the regularity of EΩψ. This precise formulation
is the one given in [2], where the connection with finite Hilbert transform has been
used. This is not a standard problem in the two dimensional scenario. However,
when Ω is reduced to an interval, the integral equation above contains the classical
finite Hilbert transform. The pseudodifferential operator S (corresponding to an
auxiliary symbol S(β, η)—β being dual time variable and η being the spatial dual
variable) is an operator with the property that

S −1 : L2(0, T ;H−ε(R))→ L2(0, T ;H−1/2−ε(R)), ε > 0

is bounded (a familiar loss of 1/2 derivative [25]). Relating the Hilbert transform
H to the finite Hilbert transform described above one obtains

d = PΩH SEΩψ = PΩH EΩPΩSEΩψ

+PΩH [I − EΩPΩ]SEΩψ

= HfPΩSEΩψ + VSEΩψ (44)

Since the singular support of [I − EΩPΩ]Sψ is empty (recall ψ = 0 off Ω), by
the pseudolocal property of pseudodifferential operators the singular support of
V Sψ is empty. Hence, the operator V is “smooth” and compact (see [2, 3] for
detailed calculations with a similar decomposition). The operator HfPΩ + V is
then invertible on L2(0, T ;Lp(Ω)) with p < 2. Thus with d ∈ L2(0, T ;L2(Ω)), by
the properties of finite Hilbert Transform, we have PΩSψ ∈ L2(0, T ;Lp(R)) with
p < 2, which yields via Sobolev’s embeddings Sψ ∈ L2(0, T ;H−ε(Ω)) for every
ε > 0 by taking a suitable p < 2. Thus ψ ∈ L2(0, T ;H−1/2−ε(Ω)), as desired.

A detailed discussion of the relationship between Theorem 4.4 and the integral
transform Hf can be found in a forthcoming manuscript. This treatment will
also contain the details of the microlocal proof outlined above, and a proof of the
invertibility S when Ω = (−1, 1).

Remark 13. We note that a similar result is obtained in the analysis in [2, 3],
where the author proves that aeroelastic potential ψ ∈ L2(0, T ;Lq(Ω)) for q < 4/3.
Since for p > 4 there exists ε > 0 such that

H1/2+ε(Ω) ⊂ Lp(Ω), p > 4, dim Ω ≤ 2,

and one then obtains that Lq(Ω) ⊂ H−1/2−ε(Ω) with q < 4/3.

5. Long-time behavior of solutions.

5.1. Reduction to a delayed model. A key to obtaining the attracting property
of the dynamics is the representation of the flow on the structure via a delay poten-
tial. We may rewrite the full flow-plate system as a von Karman system with delay
term. Reducing the flow-plate problem to a delayed von Karman plate is the pri-
mary motivation for our main result and allows long-time behavior analysis of the
flow-plate system. The exact statement of this reduction is given in the following
assertion:
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Theorem 5.1. Let the hypotheses of Theorem 3.4 be in force, and (u0, u1;φ0, φ1) ∈
H × L2(Ω)×H1(R3

+)× L2(R3
+). Assume that there exists an R such that φ0(x) =

φ1(x) = 0 for |x| > R. Then the there exists a time t#(R,U,Ω) > 0 such that for
all t > t# the weak solution u(t) to (8) in the clamped case satisfies the following
equation:

utt + ∆2u− [u, v(u) + F0] = p0 − (∂t + U∂x)u− qu(t) (45)

with

qu(t) =
1

2π

∫ t∗

0

ds

∫ 2π

0

dθ[M2
θ û](x− (U + sin θ)s, y − s cos θ, t− s). (46)

Here, û is the extension of u by 0 outside of Ω; Mθ = sin θ∂x + cos θ∂y and

t∗ = inf{t : x(U, θ, s) /∈ Ω for all x ∈ Ω, θ ∈ [0, 2π], and s > t}

with x(U, θ, s) = (x− (U + sin θ)s, y − s cos θ) ⊂ R2.

Remark 14. This extremely helpful theorem first appeared as a heuristic in [51]
and was used in this way for many years; it was later made rigorous in [15].

Thus, after some time, the behavior of the flow can be captured by the aerody-
namical pressure term p(t) in the form of a reduced delayed forcing. Theorem 5.1
allows us (assuming that the flow data is compactly supported) to suppress the
dependence of the problem on the flow variable φ. Here we emphasize that the
structure of aerodynamical pressure (7) posited in the hypotheses leads to the ve-
locity term −ut on the RHS of (45). We may utilize this as natural damping
appearing in the structure of the reduced flow pressure by moving this term to the
LHS.

As we see below, the reduction method above allows us to study long-time be-
havior of the dynamical system corresponding to (8) (for sufficiently large times)
by reducing the problem to a plate equation with delay. The flow state variables
(φ, φt) manifest themselves in our rewritten system via the delayed character of the
problem; they appear in the initial data for the delayed component of the plate,
namely ut

∣∣
(−t∗,0)

. Hence the behavior of both dynamical systems agree for all

t > t#(R,U,Ω). By the dynamical systems property for solutions to the full system
(semigroup well-posedness), we can propagate forward and simply study the long-
time behavior of the plate with delay on the interval (σ− t∗, σ+ T ] for σ > t# and
T ≤ ∞.

Remark 15. An immediate observation is that both the nonlinear term [u, v(u) +
F0] and the forcing term due to the flow, qu, are at the critical level with respect to
the topology of phase space. This immediately rules out the possibility of relying
on compactness for the forcing terms—a critical property in studying long-time
behavior. In fact, coping with this issue presents the major challenge in solving the
problem of long-time behavior of trajectories.

The following proposition concerns the delayed force term in the delayed von
Karman plate model (45) and permits much of the analysis to follow.

Proposition 2. Let qu(t) be given by (46). Then

||qu(t)||2−1 ≤ ct∗
∫ t

t−t∗
||u(τ)||21dτ (47)
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for any u ∈ L2(t− t∗, t;H1
0 (Ω)). If u ∈ Lloc2 ([−t∗,+∞);H2 ∩H1

0 )(Ω)) we also have

||qu(t)||2 ≤ ct∗
∫ t

t−t∗
||u(τ)||22dτ, ∀t ≥ 0, (48)

and ∫ t

0

||qu(τ)||2dτ ≤ c[t∗]2
∫ t

−t∗
||u(τ)||22dτ, ∀t ≥ 0. (49)

Moreover if u ∈ C(−t∗,+∞;H2 ∩H1
0 )(Ω)), we have that qu(t) ∈ C1(R+;H−1(Ω)),

‖qut (t)‖−1 ≤ C
{
||u(t)||1 + ||u(t− t∗)||1 +

∫ 0

−t∗
||u(t+ τ)||2dτ

}
, ∀t ≥ 0. (50)

Proof. The proof of the bounds (47)–(49) can be found in [15] and [22]. The estimate
(50) follows by differentiating q in time (distributionally). Details are presented in
[24].

Remark 16. A priori, when ut is in H1
0 (Ω), it is clear from (47) that there is a

compactness margin and we have the estimate∫ t

0

< qu(τ), ut(τ) > dτ ≤ ε
∫ t

0

||ut(τ)||21 + C(ε, t) sup
τ∈[−t∗,t]

||u(τ)||21.

However, this is not immediately apparent when ut ∈ L2(Ω) as ||qu(t)||20 has no such
a priori bound from above, as in (47). This is precisely the property which disallows
the previous “abstract” analysis of second order equations with delay. Hence, the
critical component which will allow us to perform an analysis in the α = 0 case is
the “hidden compactness” of the term displayed in (50); this allows estimation at
the energy level.

We note that inequality (50) represents a loss of one derivative (anisotropic—time
derivatives are scaled by two spatial derivatives), versus the loss of two derivatives
in (47), (48), and (49).

5.2. Plate model with delay as a dynamical system. Below we utilize a pos-
itive parameter 0 < t∗ < +∞ as the time of delay, and accept the commonly
used (see, e.g., [35] or [72]) notation ut(·) for function on s ∈ [−t∗, 0] of the form
s 7→ u(t+ s). This is necessary due to the delayed character of the problem which
requires initial data on the prehistory interval [−t∗, 0], i.e., we need to impose an
initial condition of the form u|t∈(−t∗,0) = η(x, t), where η is a given function on
Ω× [−t∗, 0]. We can choose this prehistory data η in various classes. In our prob-
lem it is convenient to deal with Hilbert type structures, and therefore we assume
in what follows that η ∈ L2(−t∗, 0;H). Since we do not assume the continuity of
η in s ∈ [−t∗, 0], we also need to add the (standard) initial conditions of the form
u(t = 0) = u0(x) and ∂tu(t = 0) = u1(x).

Our delayed system is then given by:
utt + ∆2u+ ut + f(u) + Lu = p0 + q(ut, t) in Ω× (0, T ),

u = ∂νu = 0 on ∂Ω× (0, T ),

u(0) = u0, ut(0) = u1,

u|t∈(−t∗,0) = η ∈ L2(−t∗, 0;H2
0 (Ω)).

(51)

Here f(u) is the von Karman nonlinearity as given above, and the forcing term
q(ut, t) occurring on the RHS of the plate equation encompasses the gas flow (as in
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(5.1)). The operator L encompasses spatial lower order terms which do not have
gradient structure (e.g., the term −Uux in (45)).

5.2.1. Properties of the delayed system. We take a weak solution to (51) on [0, T ]
to be a function

u ∈ L∞(0, T ;H2
0 (Ω)) ∩W 1

∞(0, T ;L2(Ω)) ∩ L2(−t∗, 0;H2
0 (Ω))

such that the variational relation corresponding to (51) holds (see, e.g., [22, (4.1.39),
p.211]). We now assert:

Proposition 3. The well-posedness of weak solutions to (8), as given in Theo-
rem 3.4, imply that the corresponding solutions are weak solutions to (51). Such
solutions to (51) belong to the class

C(0, T ;H) ∩ C1(0, T ;L2(Ω))

and satisfies the energy identity

E(t) +

∫ t

s

||ut(τ)||2dτ

=E(s) +

∫ t

s

< q(uτ , τ), ut(τ) > dτ +

∫ t

s

< p0 − Lu(τ), ut(τ) > dτ, (52)

where the full (not necessarily positive) energy has the form

E(u, ut) ≡
1

2

{
||ut||2− < [u, F0], u >

}
+ Π∗(u) (53)

with

Π∗(u) ≡ 1

2

{
‖∆u‖2 +

1

2
||∆v(u)||2

}
. (54)

Lemma 5.2. We denote qu(t) = q(ut, t) and note the estimates in Proposition 2.
Then ∣∣∣ ∫ t

0

< qu(τ), ut(τ) > dτ
∣∣∣

≤ Cε−1t∗
∫ t

−t∗
||u(τ)||22dτ + ε

∫ t

0

||ut(τ)||2dτ, ∀ε > 0, ∀t ∈ [0, T ], (55)

for any u ∈ L2(−t∗, T ;H2(Ω)) ∩W 1
2 (0, T ;L2(Ω)).

Additionally, there exists η∗ > 0 such that for every ε > 0 we have the estimate:∣∣∣ ∫ t

0

< qu(τ), ut(τ) > dτ
∣∣∣

≤ ε

∫ t

−t∗
||u(τ)||22dτ + C(t∗, ε) · (1 + T ) sup

[0,t]

||u(τ)||22−η∗ , ∀t ∈ [0, T ], (56)

for any u ∈ L2(−t∗, T ;H2(Ω)) ∩ C(0, T ;H2−η∗(Ω)) ∩ C1(0, T ;L2(Ω)).

Proof. The relation in (55) easily follows from:∫ t

0

dτ

∫ τ

τ−t∗
φ(s)ds ≤ t∗

∫ t

−t∗
φ(s)ds, ∀ φ ∈ L1(0, T ).

Inequality (56) is verified by integrating by parts in t, applying (50) with ψ = u(t),
and utilizing (48). For more details we refer to [24].
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In order to consider the delayed system as a dynamical system with the phase
space

H ≡ H× L2(Ω)× L2(−t∗, 0;H),

we recall the notation: ut(s) ≡ u(t + s), s ∈ [−t∗, 0]. With the above notation we
introduce the evolution operator St : H 7→ H by the formula

St(u0, u1, η) ≡ (u(t), ut(t), u
t),

where u(t) solves (51). Proposition 3 implies the following conclusion

Corollary 2. St : H→ H is a strongly continuous semigroup on H.

Proof. Strong continuity is stated in Proposition 3. The semigroup property follows
from uniqueness. Continuity with respect to initial data in this setting follows from:

Lemma 5.3 ([24]). Suppose ui(t) for i = 1, 2 are weak solutions to (51) with
different initial data and z = u1 − u2. Additionally assume that

||uit(t)||2 + ||∆ui(t)||2 ≤ R2, i = 1, 2 (57)

for some R > 0 and all t ∈ [0, T ]. Then there exists C > 0 and aR ≡ aR(t∗) > 0
such that

||zt(t)||2 + ||∆z(t)||2

≤ CeaRt
{
||∆(u1

0 − u2
0)||2 + ||u1

1 − u2
1||2 +

∫ 0

−t∗
||η1(τ)− η2(τ)||22dτ

}
for all t ∈ [0, T ].

Proof. The argument is standard. We first note that z solves the following problem
ztt + ∆2z + zt + f(u1)− f(u2) = q(zt, t)− Lz,
BC(z) on ∂Ω ,

z(0) = z0 ∈ H, zt(0) = z1 ∈ L2(Ω), z|(−t∗,0) ∈ L2(−t∗, 0;H),

(58)

and then apply the standard energy multiplier and Gronwall’s inequality.

Using Lemma 5.3 we obtain that

||Sty1 − Sty2||2H ≤ CeaRt||y1 − y2||2H

for Styi = (ui(t), uit(t), [u
i]t) with yi = (ui0, u

i
1, η), such that (57) holds. This allows

us to conclude the proof of Corollary 2.

5.3. Dissipative dynamical system. In the case when the system is gradient
system, existence of global attractors reduces to the study of asymptotic smooth-
ness. Since the model under consideration does not exhibit gradient structure (in
the reduced, delayed setting), our first step in the long-time analysis is showing an
existence of an absorbing set; in other words, proving the dissipativity property.
Thus, our next task (in order to to make use of Theorem 6.1) is to show the dissipa-
tivity of the dynamical system (St,H), namely that there exists a bounded, forward
invariant, absorbing set. To show this, similar to the consideration in [22, Theorem
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9.3.4, p.480], we consider the Lyapunov-type function (with E(u, ut) as in (53), and
with Π∗(u) given by (54))

V (Sty) ≡E(u(t), ut(t))− < qu(t), u(t) > +ν
(
< ut, u > +

1 + k

2
||u||2

)
+ µ

(∫ t

t−t∗
Π∗(u(s))ds+

∫ t∗

0

ds

∫ t

t−s
Π∗(u(τ))dτ

)
,

where Sty ≡ y(t) = (u(t), ut(t), u
t) for t ≥ 0 and µ, ν are some positive numbers to

be specified below, and k ≥ 0.

Remark 17. The value k above is the same as the (possible) damping coefficient
added to the plate equation: kut. In what immediately follows we are not consid-
ering any imposed damping—the natural damping from the flow is being utilized
via the reduction result—however, we list the above Lyapunov-type function in full
generality. We restrict here to the case that k = 0.

In view of the results for the von Karman plate in [22, Section 4.1.1], we have
that

c0E(u, ut)− c ≤ V (Sty) ≤ c1E(u, ut) + µCt∗
∫ 0

−t∗
Π∗(u(t+ τ))dτ + c (59)

for ν > 0 small enough, where c0, c1, c, C > 0 are constant. Here we make use of

the notation: E(u, ut) ≡
1

2
||ut||2 + Π∗(u).

To obtain the above bound, we here need (and below) the critical lower bound
on the potential energy cited in (22) (which can also be found on [22, p. 49 and p.
132]). In what follows below, we will often make use of the above theorem to give

< [u, F0], u > +||u||2 ≤ δΠ∗(u) + Cδ,F0
.

Next, the computation of
d

dt
V (Sty) (presented in [24]) yields

Lemma 5.4. There exist µ, ν > 0 and c(µ, ν, t∗) > 0 and C(µ, ν, p0, F0) > 0 such
that

d

dt
V (Sty) ≤ −c

{
||ut||2+||∆u||2+||∆v(u)||2+Π∗(u(t−t∗))+

∫ 0

−t∗
Π∗(u(t+τ))dτ

}
+C.

From this lemma and the upper bound in (59), we have for some β > 0 sufficiently
small (again, depending on µ and ν):

d

dt
V (Sty) + βV (Sty) ≤ C, t > 0, (60)

The estimate above in (60) implies (by a version of Gronwall’s inequality) that

V (Sty) ≤ V (y)e−βt +
C

β
(1− e−βt).

Hence, the set

B ≡
{
y ∈ H : V (y) ≤ 1 +

C

β

}
, (61)

is a bounded forward invariant absorbing set.
Thus we have

Corollary 3. The system (H, St) is dissipative with absorbing set given by (61)
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We recall [1, 16, 69] that a closed set B ⊂ H is said to be absorbing for (St,H)
if for any bounded set D ⊂ H there exists a t0(D) such that StD ⊂ B for all
t > t0. If the dynamical system (St,H) has a bounded absorbing set it is said to
be dissipative.

6. Proof of Theorem 3.5. In the context of this paper we will use a few keys
theorems to prove the existence of a finite dimensional global attractor. First, we
address the existence of attractors and characterize the attracting set (for the proof,
see [1] or [69]):

Theorem 6.1. Any dissipative and asymptotically smooth dynamical system (St,H)
in a Banach space H possesses a unique compact global attractor A. This attractor
is a connected set and can be described as a set of all bounded full trajectories.

We recall (see, e.g., [1, 16, 52, 69]) that a global attractor A is a closed, bounded
set in H which is invariant (i.e., StA = A for all t > 0) and uniformly attracts
every bounded set B, i.e.

lim
t→+∞

dH{StB|A} = 0, where dH{StB|A} ≡ sup
y∈B

distH(y,A), (62)

for any bounded B ∈ H. One says that a dynamical system (St,H) is asymptotically
smooth if for any bounded, forward invariant setD there exists a compact setK ⊂ D
such that

lim
t→+∞

dH{StD|K} = 0

holds. An asymptotically smooth dynamical system should be thought of as one
which possesses local attractors, i.e. for a given forward invariant set BR of diameter
R in the space H there exists a compact attracting set in the closure of BR, however,
this set need not be uniform with respect to R.

6.1. Technical preliminaries. In this section we outline certain energy and mul-
tiplier estimates, as well as estimates on the von Karman nonlinearity, which will
be necessary in the proof of Theorem 3.5 below. For full details of the proof of
Theorem 3.5 see [24].

The following theorem is a case specialization found in [22, Section 1.4, pp.38-45;
Section 9.4, pp.496-497]; it is of critical importance in the analysis of von Karman
plates without rotational inertia. The first bound elucidates the local Lipschitz
(quasi-Lipschitz) character of the von Karman nonlinearity, and is relatively recent
and critical to our nonlinear analysis. The second bound is related to a compen-
sated compactness of the nonlinear term, which by itself is also at the critical level.
This compensated compactness estimate is essential in proving “smoothness” of the
attracting set.

Theorem 6.2. Let ui ∈ BR(H2
0 (Ω)), i = 1, 2, and z = u1 − u2. Then for f(u) =

−[u, v(u) + F0] we have

||f(u1)− f(u2)||−δ ≤Cδ
(
1 + ||u1||22 + ||u2||22

)
||z||2−δ

≤C(δ,R)||z||2−δ for all δ ∈ [0, 1]. (63)

If we further assume that ui ∈ C(s, t;H2(Ω)) ∩ C1(s, t;L2(Ω)), then we have that

− < f(u1)− f(u2), zt >=
1

4

d

dt
Q(z) +

1

2
P (z)
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where

Q(z) =< v(u1) + v(u2), [z, z] > −||∆v(u1 + u2, z)||2

and

P (z) = − < u1
t , [u

1, v(z)] > − < u2
t , [u

2, v(z)] > − < u1
t + u2

t , [z, v(u1 + u2, z)] > .
(64)

Moreover [22],∣∣∣ ∫ t

s

< f(u1(τ))− f(u2(τ)), zt(τ) > dτ
∣∣∣ ≤ C(R) sup

τ∈[s,t]

||z||22−η +
1

2

∣∣∣ ∫ t

s

P (z)dτ
∣∣∣

(65)

for some 0 < η < 1/2 provided ui(τ) ∈ BR(H2
0 (Ω)) for all τ ∈ [s, t].

The above estimates and the standard displacement multiplier allow us to obtain
the following estimates:

Lemma 6.3. Let ui ∈ C(0, T ;H)∩C1(0, T ;L2(Ω))∩L2(−t∗, T ;H) solve (51) with
clamped or clamped-hinged boundary conditions and appropriate initial conditions
on [0, T ] for i = 1, 2. Then the following estimate holds for all ε > 0, for some
η > 0, and 0 ≤ t ≤ T :∫ t

0

(
||∆u||2 − ||ut||2

)
dτ ≤ ε

∫ t

0

||u||22dτ + C

∫ 0

−t∗
||u(τ)||22dτ+

C(ε, t∗, T ) sup
τ∈[0,t]

||u(τ)||22−η + ε

−
∫ t

0

< f(u), u > dτ + | < ut(t), u(t) > |+ | < ut(s), u(s) > |.

Moreover, in the case where we are considering the difference z = u1−u2 of solutions
solving (58) with ui(t) ∈ BR(H2(Ω)) for all t ∈ [0, T ], we may utilize the estimates
in Theorem 6.2 (which eliminates the stand-alone ε) arrive at∫ t

s

(
||∆z||2 − ||zt||2

)
dτ ≤ ε

∫ t

s

||z||22dτ + C

∫ t

s−t∗
||z(τ)||22−σdτ+

C(ε, T,R) sup
τ∈[0,t]

||z(τ)||22−η + Ez(t) + Ez(s), (66)

where Ez(t) ≡
1

2

{
||∆z(t)||2 + ||zt(t)||2

}
.

The final class of estimates we need are energy estimates for the z term defines
as the solution to (58). Energy estimates for single solutions (making use of the
nonlinear potential energy) can be derived straightforwardly from (52). The energy
estimate on z, along with the estimate in (66) above, will be used in showing
asymptotic smoothness for the system.

Using the energy relation for the difference of two trajectories, (66), and the
integration by parts formula for the integral with delayed term we arrive at the
following assertion.

Lemma 6.4. Let ui ∈ C(0, T ;H)∩C1(0, T ;L2(Ω))∩L2(−t∗, T ;H) solve (51) with
clamped boundary conditions and appropriate initial conditions on [0, T ] for i = 1, 2,
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T ≥ 2t∗. Additionally, assume ui(t) ∈ BR(H2(Ω)) for all t ∈ [0, T ]. Then the
following estimates

T

2

[
Ez(T ) +

∫ T

T−t∗
Ez(τ)dτ

]
≤ a0

(
Ez(0) +

∫ 0

−t∗
||z(τ)||22dτ

)
+ C(T,R) sup

τ∈[0,T ]

||z||22−η∗ (67)

− a1

∫ T

0

ds

∫ T

s

< f(u1)− f(u2), zt > dτ − a2

∫ T

0

< f(u1)− f(u2), zt > dτ

hold with ai independent of T and R.

6.2. Asymptotic smoothness. Recall that our dynamical system is (St,H), where
St is the evolution operator corresponding to plate solutions to (51) and H =
H2

0 (Ω) × L2(Ω) × L2(−t∗, 0;H2
0 (Ω)). To show asymptotic smoothness of this dy-

namical system, we will make use of some abstract theorem, which generalizes the
result given in [49]. In fact, criticality of nonlinear term prevents the use of other
more standard methods, such as those given in [1, 52, 69].

To make use of this theorem, we will consider our functional Ψ comprising

lower order terms (compact with respect to H) and quasicompact (
∫ t
s
< f(u1) −

f(u2), zt > dτ) terms. We need to produce an estimate which bounds trajectories
in H, i.e. ||(u(t), ut(t), u

t)||2H (taking the metric d to be || · ||H). Such an estimate
will be produced below by combining our energy estimates produced earlier:

Lemma 6.5. Suppose z = u1−u2 is as in (58), with yi(t) = (ui(t), ut(t)
i, ut,i) and

yi(t) ∈ BR(H) for all t ≥ 0. Also, let η > 0. Then for every 0 < ε < 1 there exists
T = Tε(R) such that the following estimate

Ez(T ) +

∫ T

T−t∗
||z(τ)||22dτ ≤ ε+ Ψε,T,R(y1, y2)

holds, where

Ψε,T,R(y1, y2)

≡C(R, T ) sup
τ∈[0,T ]

||z(τ)||22−η + a1

∣∣∣ ∫ T

0

< f(u1(τ))− f(u2(τ)), zt(τ) > dτ
∣∣∣

+ a2

∣∣∣ ∫ T

0

∫ T

s

< f(u1(τ))− f(u2(τ)), zt(τ) > dτds
∣∣∣.

Proof. It follows from (67) by dividing by T and taking T large enough.

In Lemma 6.5 above, we have obtained the necessary estimate for asymptotic
smoothness; it now suffices to show that Ψ, as defined above, has the compensated
compactness condition.

Theorem 6.6. The dynamical system (St,H) generated by weak solutions to (51)
is asymptotically smooth.

Proof. In line with the discussion above, we make use of the useful criterion (inspired
by [49] and proven in [21], see also [22, Chapter 7]) which reduces asymptotic
smoothness to finding a suitable functional on the state space with a compensated
compactness condition. To do so, it suffices to show the compensated compactness
condition for Ψε,T,R which we now write as Ψ, with ε, T, and R fixed along with the
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other constants given by the equation. Let B be a bounded, positively invariant set
in H, and let {yn} ⊂ B ⊂ BR(H). We must show that

lim inf
m

lim inf
n

Ψ(yn, ym) = 0.

The proof of this condition for Ψ follows from the decomposition [22, pp. 598–599].

< F(z)(τ), zt(τ) >=
1

4

d

dτ

{
− ||∆v(u1)||2 − ||∆v(u2)||2 + 2 < [z, z], F0 >

}
− < [v(u2), u2], u1

t > − < [v(u1), u1], u2
t > .

Integrating the above expression in time and utilizing the sharp regularity of the
Airy stress function, and the compactness of the lower order terms, the desired limit
property follows. For details see [24].

Having shown the asymptotic smoothness property, we can now conclude by
Theorem 6.1 and Corollary 3 that there exists a compact global attractor A ⊂ H
for the dynamical system (St,H). One may also see that this attractor has finite
fractal dimension (see the discussion below).

As the final step in the proof of Theorem 3.5 we note that we have rewritten the
dynamical system generated by the full flow-plate system (8) as the delayed system
in (St,H) (45). This is possible for sufficiently large times by Theorem 5.1. We
apply this result to the dynamical system generated by the weak solution to (45)
on the space H = H(Ω)×L2(Ω)×L2(−t∗, 0;H2

0 (Ω)). This yields a compact global
attractor A ⊂ H of finite dimension and additional regularity; to arrive at our set
U (as in Theorem 3.5) we then take U to be the projection of A on H × L2(Ω),
which concludes the proof.

Remark 18. It should also be noted here that because we have rewritten our
problem (8) as a reduced delayed plate, and additionally changed the state space
upon which we are operating, the results obtained on long-time behavior will not
be invariant with respect to the flow component of the model, i.e. our global
attractors will be with respect to the state space H, as defined above. Again,
the data in the form of the delayed term u|(−t∗,0) contains the information from
the flow itself. Obtaining global attractors for the full state space corresponding
to (u, ut;φ, φt) ∈ H2

0 (Ω) × L2(Ω) × H1(R3
+) × L2(R3

+) is not a realistic task from
the mathematical point of view. There is no damping imposed on the system,
thus the flow component evolves according to the full half space, unconstrained
dynamics. The obtained result on the structure (without damping) seems to be the
best possible result with respect to both the underlying physics and mathematics
of the problem.

6.3. Quasistability estimate and the completion of the proof of theorem
3.5. In this section we refine our methods in the asymptotic smoothness calculation
and work on trajectories from the attractor, whose existence has been established
in the previous sections.

The key role is played by a quasistability estimate which reflects the fact that
the flow can be stabilized exponentially to a compact set. Alternatively, we might
say that the flow is exponentially stable, modulo a compact perturbation (lower
order terms). The quadratic nature of the lower order terms is important for our
considerations.
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Lemma 6.7. Suppose that u1(t), u2(t) ∈ A are two solutions to (51) with z =
u1 − u2. Then for y = (z(t), zt(t), z

t) there exists constants σ,C(σ,A) and C such
that for all t > 0:

||y(t)||2H ≤ C(σ,A)||y(0)||2He−σt + C sup
τ∈[0,t]

||z(τ)||22−η. (68)

The estimate above is often referred to (in practice) as the “quasistability” or
“stabilizability” estimate (see, e.g., [20, 21, 22]).

Proof. Analyzing (67), we may also write

T

[
Ez(T ) +

∫ T

T−t∗
Ez(τ)dτ

]
≤ c
(
Ez(0) +

∫ 0

−t∗
||z(τ)||22dτ

)
(69)

+C · T sup
s∈[0,T ]

∣∣∣ ∫ T

s

< F (z), zt > dτ
∣∣∣+ C(R, T ) sup

τ∈[s,t]

||z||22−η,

where F (z) = f(u1)− f(u2). We note that c does not depend on T ≥ min{1, 2t∗},
and l.o.t..

In order to prove the quasistability estimate, we have to handle the non-compact
term < F(z), zt >. We recall the relation (65) in Theorem 6.2: if ui ∈ C(s, t;H2(Ω))
∩ C1(s, t;L2(Ω)) with ui(τ) ∈ BR(L2(Ω)) for τ ∈ [s, t], then∣∣∣ ∫ t

s

< F (z), zt(τ) > dτ ≤ C(R) sup
τ∈[s,t]

||z||22−η +
1

2

∣∣∣ ∫ t

s

P (z(τ))dτ
∣∣∣ (70)

for some 0 < η < 1/2. Here P (z) is given by (64).
Let γu1 = {(u1(t), u1

t (t), [u
1]t) : t ∈ R} and γu2 = {(u2(t), u2

t (t), [u
2]t) : t ∈ R} be

trajectories from the attractor A. It is clear that for the pair u1(t) and u2(t) satisfy
the hypotheses of the estimate in (70) for every interval [s, t]. Our main goal is to
handle the second term on the right hand side of (70) which is of critical regularity.
To accomplish this we use the already established compactness of the attractor in
the state space H = H × L2(Ω) × L2(−t∗, 0;H) and also the method presented in
[22]. This allows us finally to conclude that for y = (z(t), zt(t), z

t) the estimate in
(68) is satisfied.

The quasistability established in Lemma 6.7 makes it possible to conclude that
A has a finite fractal dimension.

Additionally (see [21] or [22] for details) using quasistability estimate on a tra-
jectory from A and a time shifted copy of the trajectory we can conclude that

||utt(t)||2 + ||ut(t)||22 + ||u(t)||24 ≤ C for all t ∈ R.

on the attractor. Thus, we have additional regularity of the trajectories from the
attractor A ⊂ H stated in Theorem 3.5.
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