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Environmental sustainability and economic growth is at the forefront of international policy 

discussions.  There is no question that climate change is happening, but also that countries all 

around the world aspire to continued economic growth.  When it comes to climate change, 

scientists agree that increased carbon dioxide (CO2) emissions in the atmosphere from human 

activity contribute to the current process of global climate change.  Regarding economic growth, 

International Economics taught us that when countries engage in international trade, these 

countries benefit in terms of increased overall welfare, ceteris paribus.  Finding additional 

avenues that would further stimulate growth in international trade, causing further increases in 

welfare, could be valuable.  In this context, this dissertation examines the following research 

question: Could global standards of living continue to improve in the presence of global climate 

change and international trade resistance? This question will be addressed in this dissertation in 

two parts.   



 
 

Addressing the first part of the research question in chapter two, this dissertation uniquely 

employs the theoretical and empirical tool known as the directional distance function to 

investigate the possibility of a global carbon dioxide (CO2) market.  The goal is to reduce or 

stabilize emissions without hindering global Real Gross Domestic Product (RGDP), and to 

achieve a uniform global price for CO2, accomplishing environmental and economic global 

goals.  First, this chapter looks at the Law of One Price for CO2 and estimates shadow prices of 

CO2 across countries.  A joint production model with one desirable output and one undesirable 

output is presented.  Drawing upon data from 141 countries spanning 18 years and exploiting the 

duality between the directional distance function and this production model, the parameters of a 

quadratic directional distance function are then estimated which yield country level shadow 

prices of CO2.  Results suggest an average country level price of $719.33 per metric ton of CO2.  

Based on the relative shadow prices, a hypothetical CO2 global market is simulated to investigate 

whether reduced emissions are possible without hindering RGDP.  Simulation results suggest 

that it is possible for global emissions to stabilize while global RGDP increases, achieving 

environmental and economic global goals.   

The second part of the research question is investigated in chapter three by uniquely employing 

Data Envelopment Analysis (DEA) techniques to estimate Johansen’s Capacity Utilization 

notion with the goal of examining resistance to trade across trading partners.  A trade resistance 

model is presented, where trade barriers are (undesirable) inputs used in the production of the 

(undesirable) output, trade resistance. Drawing upon United States manufacturing industries 

trade data, the impact that each trade barrier has on trade resistance is assessed.  Results suggest 

that U.S. port logistics are the most limiting trade barrier, followed by the distance between trade 

partners, the U.S. imposed tariffs, and the trading partner’s imposed tariffs.     
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CHAPTER 1 

1. Introduction and Overview 
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Environmental sustainability and economic growth are at the forefront of international policy 

discussions.  There is no question that climate change is happening, but also that countries all 

around the world aspire to continued economic growth.  In terms of climate change, scientists 

agree that increased carbon dioxide (CO2) emissions in the atmosphere from human activity 

contribute to the current process of global warming through an amplification of the greenhouse 

effect.  The concern is that if human activity continues as is, global warming could potentially 

have adverse impacts on the world.  For example, melting glacial ice all over the world would 

cause sea level rises, potentially displacing populations along coastal areas, but would also cause 

changes in agricultural patterns due to climate shifts, possibly distressing global agricultural 

markets, which could in turn affect jobs and incomes.  Concerning economic growth, 

International Economics teaches that when countries engage in international trade, these 

countries benefit in terms of increased overall welfare, ceteris paribus.  Although nations are 

increasingly dependent on each other for goods and services and some countries have drawn up 

trade agreements meant to be mutually beneficial, trade impediments still exist between them, 

making trade still relatively restrictive.  Finding additional avenues that would further stimulate 

growth in international trade, causing further increases in welfare, could be valuable.   

In this context, this dissertation examines the following research question: Could global 

standards of living continue to improve in the presence of global climate change and 

international trade resistance? This question will be addressed in this dissertation in two parts.  

The first part, presented in chapter two, will examine if global CO2 emission could stabilize 

without restricting global incomes.  The second part, presented in chapter three, will examine the 

factors contributing to international trade resistance. A desired end result of this work is to 

provide a benchmark, or a guide, from which international talks can begin or advance towards an 
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agreement on how to mitigate the effects of global climate change without adverse effects on 

global standards of living, and how to reduce international trade resistance further.   

Using established, theoretically grounded, and empirically tested tools this dissertation 

contributes three-fold to the Economics literature.  Addressing the first part of the research 

question, this dissertation uniquely employs the theoretical and empirical tool known as the 

directional distance function to investigate the possibility of a global CO2 market based on the 

relative differences in country level prices of CO2.  The objective is to reduce or stabilize global 

CO2 emissions without hindering global Real Gross Domestic Product (RGDP) and to achieve a 

uniform price for carbon dioxide.  A polluting production process is modeled using the 

directional distance function, which then allows computation of shadow prices for CO2 at the 

country level, something performed for the first time at this scale and using these methods.   

The main contribution stemming from the approach used in chapter two is that it allows for a 

model of optimal reallocation of pollution across markets, permitting the simulation of a CO2 

global market.  The goal of the simulation is to examine how CO2 emissions are optimally 

reallocated across countries based on their respective shadow prices, and what happens to 

shadow prices and RGDP once optimal reallocations are complete.  From a policy perspective, 

the goal of chapter two is to provide policy makers with a guide on how global environmental 

and economic efficiency, i.e. equilibrium in the global CO2 market without restricting global 

incomes, could be attained.     

Addressing the second part of the research question, this dissertation contributes further to the 

Economics literature by using techniques from the Operational Research area to examine 

resistance to trade across trading partners.  The main contribution here is that these techniques 

allow for Johansen’s Capacity Utilization to be applied to international trade, with estimations 
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yielding a ranking of trade barriers based on their impact on trade resistance.  Knowing the 

ranking of trade resistance factors could help steer trade policy in the direction that could 

potentially stimulate trade the most, resulting in further increases in overall welfare.   

One assumption being made in this dissertation is that countries around the world all have the 

common goal of increasing standards of living in the presence of global climate change and 

international trade resistance.  It could be possible that certain countries around the world might 

have different objectives when it comes to addressing global climate change and trade resistance. 

The research in this dissertation also does not prescribe policy or address distributional issues, it 

only provides information, a benchmark, or guideline to policy makers, so that there is a basis for 

discussion in the policy setting environment related to the global issues investigated in this 

dissertation.  After all, scientific research is only one of the components in the policy making 

process.  Setting policy is a normative process and many more factors go into it beyond the 

research performed in the bench and social sciences.   

This dissertation is organized as follows.  Chapter two investigates the first part of the research 

question: Is global environmental stability possible without hindering global standards of living?  

The second part of the research question is addressed in chapter three: Is there potential for 

international trade to continue expanding, contributing further to increases in the standards of 

living?  Chapter four summarizes the main findings of this dissertation, and then concludes.    
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Chapter 2 

2. Towards a global carbon dioxide market: shadow pricing carbon dioxide 

across countries 
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2.1 Introduction  

Pollution is a byproduct of many economic activities, i.e. production processes, transportation, 

and if not discarded and managed properly, reduced or eliminated, it could come into contact 

directly or indirectly with people and cause adverse health effects.  As a nation grows 

economically, it is assumed that it passes a certain threshold beyond which citizens’ preferences 

change towards assigning greater values to a cleaner natural environment and longer healthier 

lives for current and future generations.  For example, countries reach a particular level of 

income per capita where certain human needs like food, water, shelter, sanitation are not the 

main concern and focus, but issues like a clean environment are.  Of course, even wealthy 

nations still experience hunger, homelessness, and disease outbreaks, no matter the income per 

capita level.  As a consequence, policy makers seek to mitigate the effects of pollution by 

discussing legislation that could help in this aspect but at the same time not be detrimental to 

future incomes.  One such possible policy action is to implement pollution quotas and have a 

market for emissions trading.  An industry can have an emissions cap but individual firms in that 

industry could then trade emission permits between themselves, i.e. less polluting firms could 

trade emissions permits with more polluting firms.  The same scenario could be applied at a 

global scale.    

For trading to take place at any level, a market place needs to exist for pollutants.  In order for 

the market to exist, prices of the pollutant(s) need to be known, but such prices do not exist.  

That is where this paper comes in.  Using established, theoretically grounded, and empirically 

tested tools this study investigates if the Law of One Price holds for carbon dioxide (CO2) across 

countries, and if it does not, how could prices possibly equalize, achieving global environmental 

and economic goals.   Employing the theoretical and empirical tool known as the directional 
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distance function shadow prices for CO2 at the country level are estimated.  Further, the main 

contribution in this research is that the methods used will then allow for a model of optimal 

reallocation of pollution across countries, permitting for the investigation of a hypothetical 

global CO2 market, where the goal is to achieve a global, uniform price for CO2 with reduced or 

stable emissions and without limiting global incomes.      

But why shadow price CO2 and how could this help mitigate the effects of global climate 

change?  Given the threat of global climate change, policy makers and economists are looking 

for an environmental and economic solution to this problem.  A possible solution is to implement 

a global CO2 market where countries could trade emission permits based on their respective 

shadow prices for CO2.  The goal is to achieve equilibrium in this market so that global CO2 

emission levels become stable at sustainable levels.  As a result, there will be no further arbitrage 

opportunities in emissions trading which will then help countries to consider investing in, 

improving, or adopting additional abatement technologies in order to continue or move beyond 

current standards of living.   

Therefore, the objective and main contribution in this study is to investigate the possibility of a 

global CO2 market based on relative differences in country level prices of CO2, where the goal is 

to reduce global emissions without hindering global Real Gross Domestic Product (RGDP).  A 

joint production model with one desirable output (RGDP) and one undesirable output (CO2) is 

presented.  Then it is shown how the directional distance function represents the polluting 

production process presented, accommodating the global goal of reduced CO2 emissions while 

increasing RGDP.  Drawing upon data from 141 countries spanning 18 years and exploiting the 

duality between the directional distance function and the joint production model, the parameters 

of a quadratic directional distance function are then estimated which yield country level shadow 
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prices of CO2.  Results suggest an average country level price of $719.33 per metric ton of CO2, 

defined as the value of RGDP needed to be forgone in order to reduce CO2 by one metric ton.  

Based on the relative shadow prices, a hypothetical CO2 global market is then simulated.  The 

goal of the simulation is to examine how CO2 emissions are optimally reallocated across 

countries based on their respective shadow prices, and what happens to shadow prices and 

RGDP once optimal reallocations are complete.  Simulation results suggest that it is possible for 

global emissions to decrease, global RGDP to increase, while shadow prices equalize.  

Why choose the directional distance function approach?  When production of a certain output is 

simultaneously associated with the production of a certain pollutant, here CO2, the directional 

distance function models this process well by permitting increases in the good output while 

simultaneously allowing for reductions in the bad output, i.e. pollutant.  In essence, the 

directional distance function will project towards the technical and environmental efficiency 

frontier in a multi-output production model with simultaneous production of a good and bad 

output.  In contrast, Shephard’s output distance function allows for only proportional increases in 

both outputs, hence the choice of the directional distance function as the theoretical and 

empirical tool for this study.   

(Directional) Distance functions have been used to create indexes of efficiency and productivity 

especially when technology is characterized by multiple outputs, and to model technologies 

when prices of inputs or outputs are not observable.  Single output technologies could be 

modeled using production functions given input quantities, while multi-output technologies 

could be modeled using cost functions given input prices and output quantities, but when prices 

are not available, distance functions could be used (Weber and Xia 2011).  Similarly, in this 

study, prices of CO2 are not observable. Further, (Directional) Distance functions also allow for 
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computation of shadow prices, elasticity of substitution, technical change, and optimal 

reallocation models, outcomes desired in this study.  The directional distance function has its 

roots in the shortage function that was first introduced by Luenberger (1992), and it has been 

extended to production theory by Chambers et al. (1996).  Under certain conditions, Chambers et 

al. (1996) have shown that Shephard’s input and output distance functions are just variants of 

directional distance functions. 

Similar approaches have been used in previous studies of shadow pricing pollutants like SO2 

(Coggins and Swinton 1996; Swinton 1998) employing Shephard’s output distance function 

(Shephard 1970).  Lee and Zhang (2012) shadow priced CO2 for a sample of Chinese 

manufacturing industries employing Shephard’s input distance function, and found shadow 

prices ranging from $0/ton to $18.82/ton.  Qi et al. (2004) investigated shadow prices across 44 

countries during the 1980-2000 period using the distance function approach and found an 

average price of $308.5/ton.  Salnykov and Zelenyuk (2005) looked at 96 countries for 1995 and 

found shadow prices for CO2 ranging from $133.85/ton to $478.4/ton.  In a working paper, Dang 

and Mourougane (2014) employ the output distance function for 19 OECD countries during the 

period 1990-2008 to obtain shadow prices for CO2 that range from a low of $240/ton to a high of 

$786/ton.   

In this paper, the approach will be similar to Färe et al. (2005) where directional distance 

functions have been used to obtain shadow prices of SO2 for a sample of U.S. utility companies.  

More recently, directional distance functions have been used in Weber and Xia (2011) and 

Summary and Weber (2012) where a stochastic directional distance function has been estimated 

for thirty universities that participated in nanobiotechnology research and a stochastic directional 

distance function has been estimated for academic departments at Southeast Missouri University 
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to analyze grade distribution and grade inflation, respectively.   In Wang et al. (2011) marginal 

abatement costs of CO2 for Chinese provinces were obtained employing non-parametric 

techniques which yielded a CO2 price of 475.3yuan/ton.  Marklund and Samakovlis (2007) 

looked at 15 European Union members for the period 1990-2000 using the directional distance 

function approach and found an average price of about €670/ton.   In Wei et al. (2013), Chinese 

thermal enterprises’ shadow prices for CO2 were estimated using the directional distance 

function approach employing deterministic and stochastic methods for the year 2004.  Estimated 

prices ranged from a low of $0.04/ton to a high of $496/ton.  Based on the past and current 

studies presented here, shadow prices at the country level seem to be on the average higher 

relative to firm or industry level prices.   

Estimates of shadow prices for CO2 vary greatly across studies.  Reasons include the methods 

used, i.e. output (input) distance functions vs. directional distance functions, stochastic vs. 

deterministic approach, the scope of the studies, i.e. firm vs. industry vs. country level analysis, 

what the policy goals are, i.e. simultaneous increase in emissions and the good output vs. 

simultaneous decrease in emissions and increase in the good output, and what theoretical and 

empirical tools are used that accommodate policy makers’ goals.   

One assumption being made in this study is that countries around the world all have the common 

goal of reducing CO2 emissions and increasing RGDP, and that countries do not all operate on 

the efficiency frontier.  This study does not prescribe policy, it provides information, a 

benchmark, or guideline to policy makers, so that there is a basis for discussion in the policy 

setting environment related to the global issues presented here.  

This paper is organized as follows.  In Section two, the theoretical model for a polluting industry 

is presented along with how the directional distance function accommodates such an industry.  
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This section continues by showing how shadow prices of the pollutant will be obtained through 

the use of the directional distance function.  Section two concludes by presenting the functional 

form chosen for the directional output distance function used in this study. Section three 

discusses the estimation procedure employed in this paper, while section four discusses the data. 

The estimation results are presented in section five which include directional distance function 

parameter estimates, technical inefficiencies estimates, technical change estimates, and shadow 

prices for CO2. Section six presents a simulated carbon dioxide quota global market based on the 

shadow price information from section five.  Section seven summarizes and concludes.   

2.2 Theoretical Framework 

 

2.2.1 The Output Set 
 

The study begins by presenting the theoretical framework that is used to model a certain 

country’s polluting production process.  It will be assumed that for every country, there is a 

single aggregate good output (y), and a single aggregate bad output (b), where (b) is a by-product 

of the production process of (y). Representing the polluting technology is a standard output set 

P(x), where the good output (y) and the bad, polluting output (b) are produced jointly from the 

input vector (x):  

 ),(:),()( byproducecanxbyxP                                                             (2.1) 

Following Färe et al. (2005), certain assumptions and properties about the output set P(x) as well 

as the good output (y) and the bad output (b) are presented, assumptions that are relevant for a 

polluting technology scenario.  Firstly, the output set P(x) is assumed to be a compact set, 

implying it is a closed and bounded set, an assumption that any traditional output set possesses.  
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In intuitive, economic terms, compactness of a set implies scarcity-there is a finite amount of 

inputs that can produce a finite amount of outputs (Färe and Primont 1995).  

A standard assumption being made is that inputs are strongly disposable, signifying that inputs 

will not congest outputs (increasing inputs will not decrease production, or that expanding inputs 

will not decrease productivity, or increasing inputs does not contract the output set).  

)()'(' xPxPthenxxif                                                                                    (2.2) 

The following assumption is the first departure from a traditional output set, assumption that is 

illustrative of a polluting production process.  Assume that good and bad outputs are null-joint 

(Shephard and Färe 1974), meaning that one output cannot occur without the other, i.e. 

production of the good output comes with the simultaneous production of the bad output, the 

latter being a byproduct of the production process of the first.  If a certain country produced good 

(y), then it must have also produced pollution (b).  Mathematically,   

00)(),(  ythenbandxPbyif                                                                         (2.3) 

Assuming the goal of any society and therefore policy makers is to reduce pollution as much as 

possible, we impose the condition that the good output (y) and the bad output (b) are together 

weakly disposable (proportional reductions in both are feasible), i.e. if it is mandated by law that 

the bad output is to be reduced by a certain amount, then the production of the good output must 

be reduced also, and both reduction are possible, meaning production can always be reduced.  

Intuitively, this condition says that reductions in pollution are costly, either by having to reduce 

production of the good output that will automatically reduce pollution, by diverting inputs 

towards cleanup of the bad output, inputs that would have gone towards the good output 
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production otherwise, or by having to pay certain pollution fees.  Mathematically, weak 

disposability of the good output (y) and the bad output (b) is: 

)(),(10)(),( xPbythenandxPbyif                                                         (2.4) 

A standard assumption that good outputs (y) are strongly disposable is maintained also, implying 

that good outputs can always be tossed out without any cost (an output vector with less of the 

good output but the same level of the bad output is feasible-it is part of the output set): 

)(),'(),(),'()(),( xPbythenbybyandxPbyif                                                      (2.5) 

The disposability assumptions imply that there are no holes (or gaps, or jumps) in the output set 

ensuring that the output set can be fully characterized by the directional output distance function 

(presented in the next section).  The strong disposability of the inputs (x) and the good outputs 

(y), can also be interpreted as ensuring that marginal products are positive (i.e. dy/dx>0) and that 

the marginal rate of technical substitution and marginal rate of product transformation are 

negative, i.e. dxi/dxj<0 and dyi/dyj<0 (FØrsund 2008).   These are standard conditions in the 

neoclassical framework of production theory.    

Figure 2.1, shows an output set that satisfies the assumptions outlined above.  The output set P(x) 

outlined by 0AC0 characterizes the polluting technology presented in this study where null-

jointness and weak disposability of both good and bad outputs are imposed.  The output set 

outlined by 0DAC0 represents a traditional output set where strong disposability of both the 

good and bad output is imposed, while null-jointness is not-production of the good output (y) can 

occur without any bad output (b), as illustrated by the line segment OD in Figure 2.1.  
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Fig. 2.1 Output set of a polluting technology 

 

2.2.2 The Directional Output Distance Function 

To be able to engage in an empirical exercise, the polluting technology presented above needs to 

be represented by a function. Following Färe et al. (2005), this function will be the directional 

output distance function, which accommodates this polluting technology and the goal of 

simultaneously reducing the bad output while increasing the good output. The directional output 

distance function is defined as follows: 

 )(),(:max),;,,( xPgbgyggbyxD bybyo  


                                              (2.6) 

where g=(gy,-gb) is a directional vector .  The directional vector is usually chosen by the 

researcher, given the nature of the research question. This directional distance function seeks to 

simultaneously increase the production of the good output (in the gy direction) while at the same 

time it seeks the maximum reduction in the bad output (in the - gb direction), by moving 

production to the technical and environmental efficiency frontier (in Figure 2.1 the outer 

boundary of the output set spanned by OAC), given the directional vector (gy, -gb).   For a 

country to be on the technical and environmental efficiency frontier, the value of the directional 

b 

 D 

C 

P(x) ≡ 
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 A 
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distance function has to be zero. Values divergent from zero will be indicative of the country not 

operating at the efficiency frontier.  

Figure 2.2 illustrates the directional output distance function given our output set P(x).  For a 

given point (y1, b1) and directional vector represented by OA, the directional distance function 

will seek expansion to the boundary of P(x)-at point C- in the direction OA.  The resulting value 

of the directional output distance function will be OB/OA (or the value of inefficiency).   

 

 

  

 

                       

                       Fig. 2.2 Directional Output Distance Function 

Given the output set P(x) and its properties outline in the previous section, the directional 

distance function displays certain properties which are outlined in Appendix A.  The one 

property of this function that is worth mentioning in the body of this paper is the translation 

property, which is a property analogous to the homogeneity property of Shephard’s output 

distance function:  

 ,),;,,(),;,,( byobybyo ggbyxDgggbgyxD


                                  (2.7) 

If the good output is expanded by yg  and the bad output is contracted by bg then efficiency 

will improve by , or the value of the directional distance function will be reduced by .  As 

y 

P(x) ≡ 

b 
0 

A 

B 

(y1, b1) 

-gb 

gy 

C 
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the value of the directional distance function gets smaller, efficiency increases, and when the 

value equals zero, then maximum efficiency is achieved, given current inputs and technology.  

The translation property will be important when it comes to choosing functional forms for the 

directional output distance function.    

2.2.3 Shadow Pricing of the Bad Output 
 

Seeing how the directional output distance function completely characterizes technology (see 

Appendix A), we can recover the shadow price of CO2 from the revenue maximization problem 

as portrayed in Färe et al. (2005).  The revenue function can be specified as follows: 

 0),;,,(:max),,(
,

 byo
by

ggbyxDsbpyspxR


                                             (2.8) 

where s is the price of the bad output, and p is the price of the good output. 

The Lagrangian multiplier for this problem has been shown to be by sgpg  by Chambers et 

al. (1998). Therefore the Lagrangian for this problem becomes: 

 ),;,,()( byoby ggbyxDsgpgsbpyL


                                                       (2.9)                                                        

First order conditions (FOC) yield: 

0
),;,,(
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0
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dy

ggbyxDd
sgpgp
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dL







                                                 (2.10) 
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

                                                 (2.11)  
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




                                                        (2.12) 

Conditions (2.10), (2.11), (2.12) will give us the optimal good output y* and optimal bad output 

b* allocations, where technical and environmental efficiency are achieved (given by equation 

(2.12)-recall that efficiency is reached when the value of the directional distance function is 

zero).  Taking the ratio of (2.10) and (2.11) gives us: 

b)/,-gg b; y, (x,

y)/,-gg b; y, (x,

by0

by0

dDd

dDd

s

p




                                                                 (2.13)                                                                                     

Equation (2.13) gives the tangency point between the isorevenue line and the output set P(x), 

represented by the directional output distance function, at optimal points y* and b* (Figure 2.3 

presents an illustration).  It follows that the shadow price (s) of the pollutant can be recovered by 

solving equation (13) for s as follows: 

y)/,-gg b; y, (x,

b)/,-gg b; y, (x, 

by0

by0

dDd

dDd
ps





                                                                       (2.14) 

Equation (2.14) says that as long as the researcher knows the price (p) of the good output (y) and 

is employing a differentiable directional distance function in the analysis, the shadow price (s) of 

the pollutant (b) can be obtained using the above method.     
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                     Fig. 2.3 Revenue Maximization Illustration 

2.3 Empirical Specification of the Directional Output Distance Function 
 

In the previous sections, the theoretical model of a polluting technology, the directional output 

distance function and the derivation of shadow prices using the directional output distance 

function have been presented.  In what follows, a functional form for the directional output 

distance function needs to be chosen in order to engage in an empirical exercise.  In doing so, the 

researcher needs a functional form that will retain the translation property of the directional 

distance function and that is also differentiable to be able to derive shadow prices of CO2.   

To begin, functional forms for directional distance functions have been restricted to those 

functions that are linear in parameters and they are referred to as the class of transformed 

quadratic functions (Färe et al. 2010).   Färe and Lundberg (2005) solved for functions that 

satisfies the directional distance function’s translation property and that are simultaneously linear 

in parameters and have found as one of the two solutions the quadratic function.  The quadratic 

function has been suggested as a functional form that can accommodate the translation property 

earlier by Chambers (1998).  

y 

P(x) ≡ 

b 
0 

(gy,-gb) (y1,b1) 

(s/p) 
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Let the directional vector g equal g= (1,-1).   Then, the directional distance function will give the 

maximum simultaneous expansion and contraction in the good and bad outputs, respectively, 

given the inputs.  Other directional vectors could be chosen by the researcher such as g=(1,0), 

which gives the maximum feasible expansion in the good output while holding the bad output 

constant, or, g=(0,-1), which gives the maximum feasible contraction  in the bad output, holding 

the good output fixed.  Given the directional vector g= (1,-1), the two outputs (y, b), and the 

inputs (x) labor and capital (l, k), the quadratic function for the directional output distance 

function for a certain country and a particular point in time is: 
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                                  (2.15) 

For the translation property to hold, the following restrictions need to be imposed on the 

quadratic function presented above: 

1.1 11                               

  22.2                                             

2,1,.3  nvnn                                            

In addition symmetry is also imposed and implied by the above formulation of the directional 

output distance function: 

2,1',,''  nnnnnn                                                 
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Given the quadratic function for the directional output distance function above, the shadow price 

of CO2 (s) can then be recovered using equations (2.14) and (2.15) as: 

b+kv+Lv+y +

y +k +L +b +

2121

2121




ps                                                                             (2.16) 

2.4 Estimation Method  
 

Estimation of equation (2.15) will take place via stochastic frontier methods.  Usually the 

methods follow Kumbhakar and Lovell (2000), and Green (2008).  The basic specification for a 

fixed effects stochastic frontier model is: 

ititiit xy                                                                                      (2.17) 

where  

ititit u                     

yit is output of country i at time t, 

xit represents input of country i at time t, 

αi represents country specific fixed effects, 

vit represents an error term capturing stochastic elements specific to each country and time 

period, and 

)N(0,~v 2

vit   
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uit captures each country’s departure from the stochastic frontier ititiit xy    and therefore 

representing inefficiency , with  

),0(~ 2

uititit NUandUu                                                 

In the formulation above ititi uv   captures both country specific heterogeneity and 

inefficiency.  

In order to recover estimated technical inefficiencies the approach of Atkinson et al. (2003a) will 

be followed.  Inefficiency will be modeled in a second stage regression as, 

2

321 ** TCTCCu iiiiiiit                                                                                          (2.18) 

where C is a dummy variable for each country, and T is a time trend.  The first term’s coefficient 

in equation (2.18) captures time invariant, country specific differences in the technology, while 

the coefficients of the second and third terms capture time variant, country specific differences in 

the technology.  More details on recovering the technical inefficiencies will be given once the 

first stage regression equation will be presented.  

The stochastic frontier specification of the directional distance function will be: 

  )1,1;,,( byxDo o


                                                                                                       (2.19) 

where  

)( uv  and v, u are as described previously,  

and )1,1;,,( byxDo


represents equation (2.15). 
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To estimate equation (2.19), recall the directional output distance function’s translation property: 

 ,),;,,(),;,,( byobybyo ggbyxDgggbgyxD


 

Given the chosen directional vector g = (1,-1):  

)1,1;,,()1,1;,,(  byxDbyxD oo


                                                           (2.20) 

Substituting (2.20) into equation (2.19), (2.19) becomes: 

  )1,1;,,( byxDo


                                                                                      (2.21) 

Given (2.15), (2.21) becomes: 
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Therefore, the directional output distance function’s translation property allows estimation of 

equation (2.22) by choosing a Ω that will give variation on the left hand side of equation (2.22).    

Following Färe et al. (2005), b is chosen for Ω.  Substituting for Ω in equation (2.22), the main 

first stage regression equation becomes 
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where ititit byy ~
; i=1,..,141; t=1,...,18, and ititit u                          
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This specification controls for country and time effects through the dummy variables C(ountry) 

and T(ime).   

Technical Inefficiency will be recovered as follows.  First step is to recover the predicted 

residuals of equation (2.23), it̂ , and then use them as the dependent variable in equation (2.18).  

Once (2.18) is estimated, fitted values, it~ , are obtained for the dependent variable.  Recall, 

ititit u , therefore identifying the minimum it~ identifies the most technically efficient 

country (uit is the smallest).  Technical inefficiencies, TI, for every country will then be 

calculated as )~min~(   itTI .   

2.5 Data  
 

For this study, data on the good output (y), inputs (x) and bad output (b) are needed for each 

country.  For the good output (y), each country’s Real Gross Domestic Product (RGDP) will be 

used.  For the inputs (x), total capital stock (K) and total labor force (L) will be used.  For the bad 

output (b), CO2 emissions levels will be used for each country that is part of this study.  There 

are 141 countries included in this study covering the period from 1992 through 2009, with a mix 

of low income, middle income, and high income countries.  As of July 2013, according to the 

World Bank, a country is classified as low income if it has an income per capita of $1,035 or 

less, middle income if income per capita is between $1,036 and $12,615, and high income if 

above $12,616.   

Data on carbon dioxide was obtained from the World Bank.  The World Bank gathered the data 

from the Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak 

Ridge National Laboratory in Tennessee, United States.  According to the World Bank, the data 
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reflects estimates of carbon dioxide from the burning of fossil fuels and cement production, 

which includes emissions produced during consumption of solid, liquid, and gas fuels and gas 

flaring.  According to the Carbon Dioxide Information Analysis Center, it is difficult to trace 

emissions back to the source.  Hence, it is possible for some countries to exhibit higher than 

expected CO2 levels, i.e. flights originating in a different country have to fuel and refuel, and the 

emissions of CO2 created are recorded in the native country, and not in the country where the 

flight originated.  According to the Carbon Dioxide Information Analysis Center, this could 

influence especially small, island states, where foreign military bases exist and where tourism 

from other countries is prevalent.  A possible consequence of this accounting process is that 

some portion of the shadow price estimates for certain countries might be due to this.   

Although shadow prices might be in part influenced by the accounting process described above, I  

do not feel that it would create great distortions in shadow prices across most countries because 

for instance, emissions from international transportation are but a small, negligible percentage of 

total emissions.  For example, according to the United States Environmental Protection Agency, 

during 2012, U.S. CO2 emissions stemming from transportation, which includes cars, trucks, 

ships, trains and planes, accounted for 28% of total U.S. CO2 emissions.  Further, according to 

the United States Bureau of Transportation Statistics, about 10% of total departure flights in the 

U.S. in 2012 were international departures.   

Data on RGDP, capital and labor was obtained from the Penn World Table, Version 8.0.  RGDP 

is measured in millions of 2005 USD, as well as capital, and labor is measured as millions of 

persons employed.   For the purposes of this study, a brief description of capital is given here. 

For more detailed information on the capital variable, the Penn World Table, Version 8.0 

literature should be consulted.  The capital variable was calculated using the perpetual inventory 
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method (PIM).  Six asset categories were considered in the construction of capital: structures, 

transport equipment, computers, communication equipment, software, and other machinery and 

assets.  It is assumed that the geometric depreciation rates are constant over countries and time.  

Overall, data quality is a function of the accuracy of the national income and product accounts 

across countries and of the methods used to collect, report, and compile the data.   

Table 2.1 presents descriptive statistics of the data for the entire time span of the study, while 

table two presents descriptive statistics by time periods.  It can be seen from table one that all 

variables display great variation and from table 2.2 that all variables exhibit growth over time as 

expected. Over the time span of this study, world population did increase, pollution is higher, 

world income has increased, and capital is higher.   

Following Summary and Weber (2012), all outputs and inputs were normalized by their 

respected pooled averages, and Tables one, two and three reflect this.  As a result of this 

normalization, the average country uses one unit of labor and one unit of capital to produce one 

unit of RGDP and one unit of carbon dioxide.  An additional consequence of this normalization 

is that all the variables are now free of the units of measurement seeing how interaction terms 

need to be created in the quadratic function specification of the directional distance function. 

Table 2.1 Descriptive Statistics   

Variable N Mean Std. Dev. Min Max 

CO2 (b) 2538 154273.40 625820.20 14.67 7687114.00 

Labor (l) 2538 17.16 70.46 0.03 777.38 

RGDP (y) 2538 322773.30 1139303.00 157.30 13100000.00 

Capital (k) 2538 1004075.00 3590308.00 204.23 40300000.00 
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Table 2.2 Descriptive Statistics over Time  

1992-1997 N Mean Std. Dev. Min Max 

CO2 (b) 846 136499.50 531491.00 14.67 5501365.00 

Labor (l) 846 15.64 65.14 0.03 693.85 

Capital (k) 846 790365.40 2801947.00 204.23 29900000.00 

RGDP (y) 846 256298.30 884729.40 157.30 9783200.00 

1998-2003 N Mean Std. Dev. Min Max 

CO2 (b) 846 147253.30 580443.20 73.34 5713450.00 

Labor (l) 846 17.05 70.21 0.04 740.86 

Capital (k) 846 981898.90 3446797.00 648.92 35700000.00 

RGDP (y) 846 314856.00 1102018.00 174.20 11800000.00 

2004-2009 N Mean Std. Dev. Min Max 

CO2 (b) 846 179067.30 745319.70 102.68 7687114.00 

Labor (l) 846 18.80 75.69 0.04 777.38 

Capital (k) 846 1239960.00 4343754.00 736.58 40300000.00 

RGDP (y) 846 397165.50 1374732.00 210.37 13100000.00 

 

 

2.6 Estimation Results 
 

One common production possibilities frontier is estimated for the entire data set.  Therefore, one 

production unit (observation) is equivalent to one country for one year.  Table 2.3 presents the 

parameter estimates of the directional distance function based on equation (2.23).  There are six 

specifications presented in this table.  The first three and the sixth one present estimates based on 

the ordinary least squares (OLS) estimation, while the fourth and fifth specifications present 

estimates based on the instrumental variables (IV) estimator.  The reason for IV estimations 

stems from Weber and Xia (2011) and Summary and Weber (2012) where directional distance 

functions were estimated using generalized method of moments (GMM) to allow for the 

possibility of endogenous outputs and inputs.  Although I do not suspect endogeneity in this 

paper, the IV estimations are undertaken as additional checks.  I believe that the country and time 

fixed effects will capture any additional unobservable effects that could possibly affect 

coefficient estimates. 
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Specification OLS3 and OLS2 include country and time effects and country effects only, 

respectively.  To notice in Table 2.3 is that the coefficient estimates do not vary statistically from 

one OLS specification to the next.  Specifications four and five present estimates based on the IV 

estimator. Labor, capital and RGDP are instrumented by the labor, capital and RGDP variables 

interacted with a time trend.  Relative to the OLS specifications, the magnitude of some 

coefficient estimates change.  Employing the IV coefficient estimates into the calculations of 

shadow prices changes the actual levels of shadow prices, increases them, but the relative 

differences between shadow prices across countries stay the same, which is what this study is 

after.  For the reasons outlined in the beginning paragraph of this section and since the relative 

differences in shadow prices across countries matter, specification OLS3 will be chosen as the 

preferred specification, and all subsequent estimations and calculations will be based on this 

specification unless specified otherwise.  Directional distance function coefficient estimates are 

presented in Table 2.3.  

Before proceeding with calculations based on these parameter estimates it is worthy to note that 

the directional distance function’s monotonicity properties, i.e. 0,0 
db

Dd

dy

Dd oo



, have been 

satisfied by all the observations in the data set.  Also, a test of the null-jointness property was 

undertaken by calculating the value of the directional distance function when the bad output is 

set to zero, i.e. )1,1;0,,( yxDo


.  If 0)1,1;0,,( yxDo


, then this will signify a violation of the 

null-jointness property.  Recall, 0)1,1;0,,( yxDo


if and only if (y, b) ∈ P(x).  It was found that 

74% of the data satisfies the null-jointness property.    
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Table 2.3 Directional Distance Function Parameter Estimates  

Parameter Variable OLS1 OLS2 OLS3 IV1 IV2 OLS4 

α1 l .0874*** -0.0164 -.0512** -.1816** -.1813** -.0477** 

α2 k .4380*** .5841*** .5669*** .5382*** .5384*** .5672*** 

β1 y -.6814*** -.7463*** -.7506*** -.6055*** -.6042*** -.7483*** 

ɣ1=β1 +1 b 0.3186 0.2494 0.2494 0.3945 0.3958 0.2517 

α11 l2 -.01*** .0159*** .0180*** .0163*** .0162*** .0177*** 

α22 k2 -.1261*** -.0782*** -.0764*** -.0837*** -.0838*** -.0765*** 

α12=α21 l*k, k*l -.0341*** -.025*** -.0249*** -.0229** -.0228** -.0248*** 

β2 = ɣ2 = μ y2,b2,y*b -.0428*** -.0181*** -.0176*** -.0214*** -.0215*** -.0177*** 

v1 =δ1 l*y, l*b .0097*** -0.0002 -0.0003 -0.0011 -0.0012 -0.0003 

v2 =δ2 k*y, k*b .0733*** .0403*** .0395*** .0435*** .0435*** .0396*** 

t2 period 2     0.0043 .0093** 

t3 period 3     .0087* .0240*** 

Time Effects  no no yes yes no no 
Fixed Effects  no yes yes yes yes yes 

N  2538 2538 2538 2538 2538 2538 
R2  0.9978 0.9998 0.9998 0.9998 0.9998 0.9998 

*Indicates p<.05; **Indicates p<.01; ***Indicates p<.001 

   

2.6.1 Technical Efficiency  
 

With directional distance function parameter estimates in hand, the first step is to recover 

technical efficiency estimates based on the specification OLS3.  Following the methods outlined 

in section 2.4, a second stage regression is undertaken, equation 18, and technical inefficiencies 

are obtained.  The results are presented in Table 2.4.  The table presents overall directional 

distance function values, but also values when extreme outliers are left out.  Eliminating extreme 

outliers removes about 11% of the data, i.e. when TI<2.  Recall that the property of null-jointness 

did not hold for about 26% of the data, and that could be reflected in the technical efficiency 

scores presented here.  Therefore, I interpret the results based on the TI<2 scores.   

The average technical inefficiency over all countries and the entire time period of the study is 

0.2349, meaning the average country needed to increase RGDP and decrease CO2 emissions by 

about 24% in order to achieve efficiency.  Given the normalization of the data employed earlier, 
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the average observation could have increased RGDP by 0.2349*322,773.3= 75,819.45million 

USD or about 75.82 billion USD and decreased carbon dioxide by 0.2349*154,273.4= 36,238.82 

kilotons or about 36.24 million metric tons, in order to achieve environmental and technical 

efficiency, or to reach the frontier of the output set.  To give these numbers some perspective, in 

2009, the U.S. had a value of RGDP of about 12.69 trillion and CO2 emissions of about 5.29 

billion metric tons.  The most efficient observation (i.e. TI=0) is Ethiopia in 1992, and the most 

inefficient observation is Brazil in 2000.   

Table 2.4 Technical Inneficiency (TI) Estimates  

Variable N Mean Std. Dev. Min Max 

TI 2538 1.0126 4.0520 0.0000 50.7383 

TI<10 2498 0.5470 1.1645 0.0000 9.6508 

TI<5 2448 0.4204 0.7430 0.0000 3.6907 

TI<2 2258 0.2349 0.3661 0.0000 1.9997 

 

2.6.2 Technical Change  
 

An added benefit of the directional distance approach is that estimations can be made to 

investigate whether technical change has occurred.  Due to improvements in technology, holding 

everything else constant, i.e. input use, did the output set presented in this study experience 

technical progress or technical regress? Did the frontier shift outwards or inwards? Or, did the 

good outputs increase and bad outputs decrease due to technological improvements? Figure four 

illustrates this graphically for the case of technical progress.   

Given an observation located at point A in Figure four, the first step is to eliminate any 

inefficiencies and move to point B (along the directional vector) on the technological and 

environmental frontier of the output set at time period to.  Technical progress has occurred if in 
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the next time period, t1, the observation that was located at point B, has moved outside the output 

set P(x,t0), to a point like C which is part of the output set P(x,t1).   

 

 

  

 

 

 

Fig. 2.4 Technical Change  

Empirically, Weber and Xia (2011) have included a technical change component in their study 

based on the directional distance function.  Theoretically, the directional measures of technical 

change have been thoroughly outlined by Färe and Karagiannis (2014).  Applying that theoretical 

framework in this study, assuming efficiency, adding a time index, t, and allowing technical 

change to occur in the direction (zgy, –ugb), where z and u are the good output and the bad output 

translation factors, respectively, the total differential of 0),;,,,(  bybyo ggtugbzgyxD


 

yields: 
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dt

Dd
dx

dx

Dd
dugDdzgD oo

bobyoy




                                                 (2.24)                                                       

Allowing for common marginal changes in the translation factors induced by technical change, 

i.e. dz=du=dâ, using  1)()( ''  bobyoy gDgD


 from Chambers (2002), and dx=0 (from 
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the definition of technical change), the total differential of the directional distance function 

reduces to: 

0ˆ  dt
dt

Dd
ad o



                                                                                                             (2.25)                                                       

Therefore the rate of technical change along a predetermined directional vector with common 

marginal changes in the translation factors will be given by: 

dt

Dd

dt

ad o




ˆ

                                                                                                                         (2.26)                                                       

which, according to Färe and Karagiannis (2014), gives the common number of times the good 

output and bad output vectors (gy and gb) can be added to the good outputs and subtracted from 

the bad outputs as a result of technical change.   

Based on the theoretical framework outlined above and the empirical strategy outlined in section 

2.4, specification OLS4 in table 2.3 was used to investigate whether technical change has 

occurred.  This specification includes country fixed effects and three time period indicator 

variables-time1 (t1), time2 (t2) and time3 (t3) corresponding to the time periods 1992 through 

1997, 1998 through 2003, and 2004 through 2009.  The coefficients on these variables will signal 

whether technological progress or regress occurred from one time period to the next.  

Coefficients t2 and t3 are both positive signifying that technological progress has occurred in time 

period 2 and time period 3 relative to time period 1.  The average observation in time period 2 

and time period 3 lies further away from its respective frontier (implying more good output and 

less bad output with everything else constant), relative to the same average observation in time 

period 1.   
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2.6.3 Shadow Prices of CO2 

 

Given the directional distance function’s coefficient estimates based on specification OLS3, the 

shadow prices of carbon dioxide are calculated and presented next. Recall the shadow price 

formula as 

b+kv+Lv+y +

y +k +L +b +

2121

2121




ps   

Table 2.5 presents the shadow price estimates based on the above formula.  In the calculation of 

the shadow prices, the price (p) of the good output (RGDP) is set to one, seeing how RGDP takes 

into account the price deflator of GDP in its calculation.  Due to the normalization of the data 

and to obtain shadow price in terms of USD/ton of CO2, the final shadow price calculations are 

as follows: 

22121
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000,1
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
                                     (2.27)                                                       

where the second ratio reflects the fact that the good output is in millions USD while the bad 

output in kilotons (1 kiloton=1000 tons), and the third ration is the ratio of the pooled average of 

RGDP to the pooled average of CO2.  

Table 2.5 Carbon Dioxide Shadow Price Estimates  

Shadow Price N Mean Std. Dev. Min Max 

s 2538 719.33 165.65 61.18 3049.28 

0<s<1000 2458 697.18 59.93 61.18 999.54 

s>1000 80 1400.01 533.90 1002.20 3049.28 

 

The average shadow price across all observations is $719.33, with a minimum price of $61.18 

corresponding to China for the year 1995, and a maximum of $3,049.28 corresponding to Japan 
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for the year 2009.  What this shadow price implies is that, on the average, in order to reduce 

country level CO2 emissions by one metric ton, $719.33 has to be forgone in RGDP.  Therefore, 

one metric ton of country level CO2 emissions would cost Japan $3,049.28 in 2009, while it 

would cost China $61.18 in 1995, in terms of RGDP.   

The next section discusses what could be done with the knowledge of shadow prices of CO2 

across countries in the context of curbing global CO2 emissions in an effort to mitigate the 

environmental effects of global climate change.   

2.7 Extension of Results 
 

Once country-level shadow prices of CO2 are known, how could this information be used to 

guide policy makers towards achieving an environmental and economic solution to the global 

warming problem?  One option for reducing or stabilizing emissions of CO2 and having shadow 

prices of CO2 equalize across countries is by setting up a quota system and by trading emission 

permits based on each country’s shadow price information.   

In the introduction, it was presented why knowing country level shadow prices for CO2 could be 

relevant for mitigating the effects of global climate change.  Assuming the goal is to reduce or 

keep CO2 emissions stable at a certain level, countries could trade emission credits based on each 

country’s shadow price for CO2.  Relative differences in prices across countries will incentivize 

trading of credits based on arbitrage opportunities.  Eventually, prices will reach an equilibrium, 

achieving efficiency in this market, with emissions levels stabilizing.  As a result, countries 

would then be incentivized to invest in new abatement technologies and improve knowledge, in 

order for incomes to increase further without extra CO2 emissions.  In this section, a simulation 

of this example is presented using nonlinear programming techniques.    
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2.7.1 Simulation of a CO2 quota market 
 

A hypothetical example is presented to show what could happen to shadow prices of CO2 when a 

quota on the bad output is imposed between three countries. The countries are characterized as 

having free trade between them, one good output (y-RGDP), one bad output (b-CO2), and labor 

(x1) and capital (x2) as inputs to production.  This hypothetical example of a quota will be set up 

as a nonlinear programming problem.  The goal is to maximize the joint amount of the good 

output between these countries, with the restriction that the total amount of the bad output 

between these countries cannot go above a set quota level, with everything else kept constant, i.e. 

the inputs to production. 

A three country (i=1, 2, 3) problem is set up as follows: 
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                                                                              (2.28)                                                                  

The bars above any variable signifies that the variable is fixed.  The CO2 quota, b , will be set as 

the summation of the currently observed levels of CO2 between the countries. Therefore, 

everything else the same, this investigation asks what could happen to the level of combined 

RGDP between the countries when the combined CO2 level stays at current levels or below?     

It was shown earlier that the directional distance function is a functional representation of the 

output set.  Therefore, the above maximization problem can be written as: 
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The quadratic functional form was shown to accommodate directional distance functions.  Given 

the quadratic functional form, (2.29) can be written as follows: 
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                  (2.30)                           

All of the coefficients of the quadratic function in (2.30) have been estimated earlier in equation 

(2.23) and will be used as constants in (2.30), as well as the fixed levels of labor and capital.  The 

solution to (2.30) will yield optimal values for the good outputs (RGDP) and the optimal 

allocations of the bad output, CO2, between the two countries.  Once the optimal values of CO2 

and RGDP are obtained, these optimal values are plugged into the shadow price formula from 

earlier, equation (2.16), and new shadow prices of CO2 will be obtained for these countries based 

on the model formulation above.   

Recall equation (2.16), the shadow price formula, as:   
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The variables with stars represent optimal levels of the bad and good output obtained as the 

solutions to (2.30). 

2.7.2 Simulation results        
 

Two simulation examples are presented.  One example includes the countries Canada, Mexico 

and the United States, while the second one includes the countries India, China, and Japan.  The 

simulation results are illustrated in tables 2.6 and 2.7. Included in the tables are the initial starting 

(normalized by the pooled averages) values for all countries, along with the estimated shadow 

prices of CO2 for each country.  The optimal values of RGDP (y*), CO2 (b
*) along with the new 

shadow prices (s*) calculated based on the optimal value of outputs are presented as well in 

tables 2.6 and 2.7.  The optimal y* also include the revenue or cost associated with selling or 

purchasing emission credits or permits at the equilibrium shadow price.  The difference between 

b and b* multiplied by s* is added to y*, and that is what is presented in the results tables.   

Table 2.6 Extension Estimation Results 1 

Country Year l k b y b* y* s s* 

Canada 2000 0.8514 2.2759 3.4645 3.1345 2.8070 2.8044 601 676 

Mexico 2000 2.2176 2.6600 2.4730 3.5855 3.3400 2.6158 688 676 

U.S.A. 2000 8.0623 32.9434 37.0346 34.5695 36.8260 37.2574 841 676 

Totals    42.9721 41.2895 42.9730 42.6780   

 

Table 2.6 presents the simulation results for Mexico, Canada and the United States.  All three 

countries start with a combined level of CO2 of 42.9721 (which will be the emissions quota 

level) and a combined level of RGDP of 41.2895.  The most CO2 emitting country is the United 

States, followed by Canada, and then Mexico.  U.S. has the highest RGDP, followed by Mexico, 
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and then Canada.  After the simulation, the three country combined emissions levels stay at the 

quota level, combined RGDP increases, and shadow prices equalize.  To note in table 2.6 is that 

CO2 optimally reallocates from the relatively low shadow price country, Canada, to the higher 

shadow price Mexico.  As a result, the shadow prices equalize at a level somewhere between the 

original shadow price starting levels of these countries, which in theory should disincentives any 

further reallocations of pollution.   To note, is that the global level of RGDP, y*, has increased 

but not for every country in this example.  Reasons could be due to initial starting conditions.  

For example, U.S. has relatively higher levels of CO2 emissions with the highest shadow price.  

Therefore, in this particular market, there might be no economic incentives for trading to occur.  

There still are environmental incentives, i.e. stabilizing emissions and a uniform shadow price, 

but policy discussions on the redistribution of the global income would have to come into play.  

Table 2.7 Extension Estimation Results 2 

Country Year l k b y b* y* s s* 

China 2000 41.8020 13.0757 22.0724 13.1715 14.7230 17.6940 320 586 

India 2000 22.8305 3.9734 7.6919 6.2575 4.1800 7.0980 381 586 

Japan 2000 3.7707 15.6047 7.9054 11.5832 18.7670 15.1170 2283 586 

Totals    37.6697 31.0122 37.6700 39.6390   

 

Table 2.7 presents simulation results for China, India, and Japan.  Combined CO2 emissions level 

stays at quota level, combined RGDP increases, and shadow prices equalize.  Emissions 

reallocate from the low shadow price countries of India, and China to the higher shadow price 

country of Japan.  In this particular example, every country gains in terms of RGDP, and an 

economic and environmental solution towards a uniform shadow price of carbon dioxide is 

possible.  Relative to the Table 2.6 example, the initial conditions differ.  For example, China has 

the most emissions with the lowest shadow price, implying an economic incentive to trade exists 
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in this market.  Redistributions of global income discussions are not needed for this particular 

case.   

Based on the set up of this quota simulation problem, and given the results in tables 2.6 and 2.7, 

in a world with one good output (RGDP) and one bad (polluting) output (CO2), two inputs of 

production (labor and capital), free trade between countries in the CO2 allowances market, 

imposing a CO2 quota yields results in line with theoretical expectations.  Combined RGDP 

increases after the quota and CO2 is optimally redistributed between the countries, where the 

redistribution happens based on the arbitrage opportunities in this market for CO2.  The 

reallocation flows from relatively lower CO2 shadow price countries to higher CO2 shadow price 

countries.  As a result, shadow prices equalize as predicted eliminating further arbitrage 

opportunities.  Given the models presented in this study, it could be possible to institute a global 

CO2 market, where global emissions levels would be in equilibrium and are optimally reallocated 

across the world with global RDGP increasing and a uniform price for carbon dioxide.  To note 

is that initial starting conditions might matter, and policy interventions might be necessary in 

certain cases in order to achieve both an environmental and economic solution to curbing global 

warming.   

2.8 Remarks  
 

Concerned with the effects of pollution across the world, policy makers are taking part in 

international talks at the United Nations in hopes of mitigating these effects.  The goal of these 

talks would be to reduce pollution levels across the globe while at the same time not sacrificing 

standards of living for future generations.  One of the ways this goal could possibly be achieved 

would be to set up an international quota level for CO2 or set up a trading scheme of CO2 
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emission credits based on the prices of CO2 across countries.  With time, trading will induce the 

prices of carbon dioxide to equalize, eliminating any additional arbitrage opportunities and as a 

result pollution levels would stabilize.  Since carbon dioxide is a non-market good (or bad in this 

case), its prices are not known.  In order for exchanges to take place in a market place, prices 

need to be known.  This is where this study comes in.  In order to guide policymakers in their 

international goals, in this chapter shadow prices of carbon dioxide are estimated across 

countries, to investigate the Law of One Price for CO2 and a possible global CO2 market.   

Estimating shadow prices first began by setting up a theoretical framework in the context of an 

output set that has countries producing two outputs, one good (RGDP) and one bad (CO2), with 

two inputs of production, labor and capital.  The goal in this model is to increase RGDP while at 

the same time reduce CO2.  For the model to be estimated and shadow prices recovered, a 

functional representation of the output set is needed, one that accommodates the goal of the 

problem.  The directional distance function is such a functional representation of the output set.  

One advantage of this function is that it allows for simultaneous increases in RGDP and 

reductions in CO2.  A second advantage is that a functional form (the quadratic) arises out of the 

theoretical framework of directional distance functions, functional form that can be easily 

estimated which would yield the needed shadow prices.  Through the directional distance 

function shadow prices of CO2 are therefore estimated across countries.  Results suggested an 

average country-level price of $719.33 per metric ton of CO2. 

Once shadow prices were estimated across countries, in order to show how this information 

could be useful to policy makers, this study turned to using the information on shadow prices in a 

pollution quota simulation problem, where the goal would be to increase world income while at 

the same time keeping CO2 levels to a set quota limit or below it.  The results from this 
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simulation revealed that emissions of CO2 optimally reallocate across the world, fleeing from 

low shadow price countries to higher shadow price countries, with increased global income at the 

same time.  The most notable outcome of this simulation is that shadow prices of CO2 across 

countries equalize as predicted,  therefore eliminating any further arbitrage opportunities (or 

emissions reallocation) based on the shadow prices of CO2.  As a result, world pollution levels 

would be in equilibrium (at or below the quota level) with global income at relatively higher 

levels of RGDP.   

Possible future directions that the research in this chapter could take include disaggregating the 

data to reflect polluting units at the industry and possibly firm level.  Shadow prices will then be 

calculated at the industry/firm level across countries.  This way, the analysis could move closer 

to the source of pollution, and shadow prices would reflect a more detailed story.   Going even 

further, the model could possibly be expanded to reflect polluting, intermediate inputs that could 

be consumed and produced during a production process (some inputs are used in the production 

of an output, which in turn could be used as an input in the final production of a different 

output), intermediate inputs that could also be traded in the international market. Another 

possibility is to set up a model that would consider the carbon content of goods that are traded 

internationally.  Shadow prices would then reflect the different countries’ export and import 

levels of different carbon content goods.  The model in section six could also be expanded to 

allow for time substitution.  What that entails is investigating when the optimal economic time 

would have been for a particular country to reduce emissions based on its shadow prices across 

time, shadow prices recovered based on optimal emission and income levels, levels calculated as 

described in section 2.7.  
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Could a world with less pollution and higher income for current and future generations be 

possible?  According to this study, it could be possible.  Given the theoretical model and 

estimations laid out in this chapter, the goal of an environmentally friendlier and richer world 

could be possible.  The benefits could be even greater assuming that abatement technologies, 

production processes, peoples’ skills, and knowledge in general will continue to improve.  

Nevertheless, even in world characterized by scarcity, progress is still possible, especially when 

economic theory and estimation techniques evolve to accommodate current issues, issues that 

arise as a result of scarcity.    
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CHAPTER 3 

3. Ranking trade resistance variables using data envelopment analysis 
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3.1 Introduction 
 

Globalization is a phenomenon that is not new anymore.  Technological improvements in 

transportation and communication systems have facilitated an increased interconnection between 

countries around the world.  Evident to this is that the size of cargo ships is increasing, and as a 

result there are talks about the construction of a second canal in Central America that would link 

the Pacific and Atlantic Oceans.  According to a recent article in The Economist (2013), a canal 

is being proposed in Nicaragua, one that will be able to accommodate more traffic and larger 

ships relative to the Panama Canal.  World Trade Organization statistics show world 

merchandise exports’ value varying from about $2 trillion in 1980 to over $18 trillion in 2012.  

When it comes to the United States (U.S.), according to the Census Bureau’s Foreign Trade 

Division, U.S. exports’ value has increased from approximately $271 billion in 1980 to about 

$2.2 trillion in 2012 while the value of imports has increased from about $291 billion in 1980 to 

$2.7 trillion in 2012.  The above statistics provide support for the fact that trade around the world 

is at an all-time high and continues to rise.   

Although the U.S. is increasingly dependent on trade with other countries, impediments to 

trading goods and services still exist.  There are trade agreements between the U.S. and other 

countries around the world (i.e. North American Free Trade Agreement) which are drawn up to 

economically benefit participating countries.  Nevertheless, trade resistance between the U.S. 

and its trading partners still persist.   

Trade resistance as an international trade concept has its roots in the gravity equation.  The 

gravity equation itself has its beginnings in Tinbergen (1962).  The author specified bilateral 

trade flows as a function of country sizes (given by their gross national product) and trade 
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resistance between the countries in question (Helpman et al. 2008).  Therefore, trade resistance 

can be seen as all other factors besides country sizes that influence bilateral trade flows.  Trade 

resistance factors include the distance between countries, geographic variables, i.e. common 

borders, island, landlocked, political and institutional variables, and any other factors that could 

influence bilateral trade flows.   

Drawing upon trade data for U.S. manufacturing industries, this chapter seeks to investigate 

which trade resistance variable, if not regulated, i.e. left to vary freely, will impact trade 

resistance the most between the U.S. manufacturing industries and their trading partners.  A 

desired outcome is to rank the trade resistance variables from the most limiting to the least 

limiting in terms of trade resistance, in an effort to shed light on how international trade flows 

could possibly be increased even further.     

Knowing which trade resistance variable is the most restrictive is important because U.S. trade 

policy could then be appropriately targeted. For example, previous studies (Anderson and van 

Wincoop 2004; Novy 2006; Novy 2009) have found that the trade resistance variable, tariff, does 

not affect trade resistance greatly.  Wu (2012) found similar results for tariffs, but the trade 

resistance variable distance was found to be impactful on trade resistance. As a result, it would 

be unwise to direct policy efforts towards tariffs, when other trade resistance variables have 

greater economic impacts.     

The research in this chapter could also benefit institutions in the world trade arena devoted to 

reducing trade resistance.   For example, if distance between the U.S. and its trading partners is a 

major factor influencing bilateral trade, then Research & Development efforts can be directed to 

things such as improvements in infrastructure, and advances in transportation technologies, i.e. 

fuel efficiency.  At the same time, this paper’s findings can also steer academic research in a new 
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direction, by incentivizing university research to focus on areas with the greatest potential impact 

on reducing trade resistance, research that can be immediately employed by policy makers.   

To further substantiate this research, according to the International Trading Centre, there are 

some interesting trade patterns to notice around the world.  India’s exports to the United States 

are 13% of its total exports,  to Brazil 2%, to the  United Kingdom 3%, but to Pakistan, 

Myanmar, Nepal, Bhutan (some neighboring countries) exports are a total of 2% combined.  In 

India’s case, distance does not seem to be an important trade resistance factor.  In contrast, 

Mexico’s exports to the United States are 78% of its total exports, while exports to Western 

Europe less than 4%.  In these cases, and possibly others, the patterns of trade could be 

associated with the history between nations.  For example, India’s colonial ties to the United 

Kingdom and its historical relationship with Pakistan are no mystery, and its trade patterns may 

be a reflection of that.  Inducing India to trade with relatively closer nations might be better 

addressed through political and social avenues, rather than policy instruments such as tariffs.  

Therefore, it is important for policy makers to know which trade resistance variable is the most 

restrictive, so that trade policy can then be formulated in a way that it could have the greatest 

potential impact on trade.        

In this chapter a theoretical model of (undesirable) trade resistance is formulated. Trade 

resistance variables are being specified as (undesirable) inputs into the (undesirable) production 

of the output, trade resistance.  Then, in the spirit of Justus von Liebig's Law of the Minimum, 

Johansen’s notion of capacity is injected into this framework which will theoretically predict 

certain results. Estimation takes place via non-parametric Data Envelopment Analysis (DEA), 

which will allow the research question to be addressed: which trade resistance variable increases 

trade resistance the most? Using DEA, a ranking of the trade resistance variables is obtained by 
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allowing them to take values from zero up to their observed values, something that cannot be 

accomplished using statistical techniques (problems will be encountered such as omitted variable 

bias, etc.).   Before proceeding to the main body of this paper, Justus von Liebig's Law of the 

Minimum and Johansen’s concept of Capacity will be explained in the context of this paper.   

This research is in the spirit of Justus von Liebig's Law of the Minimum which states that growth 

(of a biological plant) is given by the scarcest or limiting factor, or alternatively, that increases in 

abundant nutrients do not affect growth as much as increases in the scarcest nutrient do.  This 

“law” is applied here but in the international trade arena, where an inquiry is conducted to 

explore which trade resistance variable (“nutrient”) is the most limiting in terms of trade 

resistance (“plant growth”), or which variable increases trade resistance the most.   

This paper makes use of the concept of capacity which is defined by Johansen (1987) as “…the 

maximum amount that can be produced per unit of time with the existing plant and equipment 

provided that the availability of variable factors is not restricted.”  This says that, in a production 

framework, inputs will be divided into two categories-fixed and variable.  The maximum 

potential output will therefore be given by the variable inputs, which can vary to any level.  In a 

Law of the Minimum context, variable inputs can be seen as the limiting factors, the ones that 

can cause increases in output growth the most.  In a similar fashion, in this paper, trade resistance 

variables are split up into fixed and variable.  For example, the distance variable could be held 

fixed, while tariffs would be variable, and DEA estimation will take place to see how tariffs 

impact trade resistance.  Then the roles will be reversed to investigate distance’s impact.  In the 

end, a ranking of trade resistance variables will be established based on the impact each of these 

variables have on trade resistance.   
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Past studies investigating trade resistance included Hausman et al. (2005) and Wu (2012).  These 

papers have analyzed the impacts of trade resistance variables on calculated trade costs indexes.  

Econometric estimates in these papers yield statistically significant results in line with theoretical 

predictions, i.e. positive relationships between trade costs and these variables. Wu (2012) 

calculates elasticities of the impacts on trade costs, which show the economic significance of the 

statistical results, but a ranking of trade resistance variables free of statistical assumptions is not 

obtained.  As previously stated, omitting a variable in an econometric model induces certain 

statistical problems.  Therefore, this study, by employing Data Envelopment Analysis, will 

obtain a ranking of U.S. trade resistance variables, free of statistical assumptions.   

This chapter is organized as follows.  Section II introduces the theoretical model.  The estimation 

procedure is laid out in section III.  The data used in this study is presented in section IV. Section 

V presents the estimation results and discusses them, while section VI summarizes and 

concludes. 

3.2 Theoretical Framework  
 

3.2.1 Trade Resistance Function 
 

Trade resistance will be specified as a function of the trade resistance variables, meaning these 

variables will generate the level of trade resistance present.  The trade resistance level will be 

represented by r , and the trade resistance variables will be represented by a vector

N

n qwithqqq ),,...,(, 1 .  A trade resistance function, T(q), can then be specified as a function 

of the trade resistance variables as follows, 

   RrqrgeneratesqrqT N

r
,,:max)(                                                               (3.1)                                                                       
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This function therefore represents the bilateral trade resistance level given by the trade resistance 

variables.  Also, the set bounded from above by T(q) can be defined as, 

   RrqrqTrqS N ,,)(:),(                                                                      (3.2) 

  

 

 

 

 

 

Figure 3.1 Trade Resistance Function T(q) and S  

As an illustration and assuming a linear trade resistance function, figure 3.1 portrays the 

relationship between trade resistance, r, and the trade resistance variable, q.  In the figure, r1 is 

the level of trade resistance given by the q1 level of the resistance variable q.  Set S (given by q 

and r) is also portrayed in this figure as all the r values lower than or equal to the T(q) line.  

Certain properties are imposed on this framework.  These properties, are outlined next as 

follows: 

(i) The set S is convex and nonempty  

Convexity implies averages are possible in this set.  Non-emptiness says that trade resistance 

exists or that it is feasible.   

(ii) Doing nothing is feasible:  S0  

q O 

r 

T(q) 

q1 

r1 S 
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A customs district can always choose to remain in the state of autarky and incur no trade 

resistance. 

(iii) No free lunch: 0,0  qthenrif  

Trade resistance cannot be positive without the trade resistance variables being positive.  For 

example, the distance between customs districts and their trading partners will always be 

positive; hence trade resistance will be positive.       

(iv) Trade resistance variables are freely disposable:  

SrqthenrqrqandSrqif  ),'(),(),'(),(  

A higher level of trade resistance variables will generate a higher level of trade resistance, but 

the old level of trade resistance is achievable given the higher level of the resistance variables. 

For example, distance generates a certain level of trade resistance, but also all lower levels.  This 

property rules out congestion in the system.   

(v) Trade resistance levels are freely disposable:  

SrqthenrqrqandSrqif  )',(),,()',(),(  

This property states that lower levels of trade resistance are part of the set given by a certain 

level of trade resistance variables.   

For illustrative purposes, the free disposability properties in (iv) and (v) are presented in figure 

3.2.   Property (iv) says that q2 which is greater than q1 generates r2 but could also generate r1.  

Property (v) says that q2, which gives r2 can also give r1, a lower level than r2.  Monotonicity is a 

result of the disposability properties.   Based on trade theory and the disposability properties, 

monotonicity, 0/)( ndqqdT , can be incorporated into this paper’s theoretical formulation, as 

long as T(q) is assumed to be differentiable.  Therefore, this model can be interpreted as an 

undesirable output production model, where the undesirable inputs yield an output that is 



50 
 

 

undesirable, i.e. more undesirable inputs yield more undesirable output.  There is a positive 

relationship between the trade resistance variables and the trade resistance level.  Given the 

aforementioned properties of this model, Shephard (1970) showed that DEA accommodates 

these properties.  Estimation employing DEA will be discussed in a later section.   

 

 

 

 

 

 

Figure 3.2. Disposability Properties 

3.2.2. Capacity Framework 
 

To answer the research question, the concept of capacity is integrated into this framework.  

Recall capacity being defined by Johansen (1987) as “…the maximum amount that can be 

produced per unit of time with the existing plant and equipment provided that the availability of 

variable factors is not restricted.”  In the spirit of capacity, the vector q will be partitioned in two, 

a fixed part and a variable part, as q = (qf, qv) following Färe et al. (1989).  Given figure 3.3, the 

level of trade resistance will therefore be given by the variable trade resistance component as 

follows, 

 Sqrrr  ),(:max 111                                                                                                 (3.3) 

which portrays the situation before allowing one component to be free (variable), and 
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which portrays the state after allowing one of the components to be free (variable).  

                                                                                                                                                                       

  

 

 

 

 

 

 

Figure 3.3 Capacity Utilization  

Graphically, the capacity utilization notion is presented in figure 3.3.  The graph illustrates the 

example of one trade resistance variable, q, while keeping the others fixed.  There is an initial 

situation where for example q1 generates r1.  Then, allowing the trade resistance variable q to 

fluctuate to any level, the optimal level of q that yields the highest trade resistance r is estimated.  

In figure 3.3 the optimal level is q2 with a new trade resistance level of r2.  Additional increases 

in q beyond q2 will not generate additional trade resistance.  Repeating this process for every 

available trade resistance variable, a ranking could then be obtained.  The trade resistance 

variables could then be ranked based on the following (capacity utilization) formula, 

 1
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where i represents a particular trade resistance variable, ri1  represents the current (observed) 

trade resistance level given by variable i, and ri2  represents the maximal trade resistance level 

given by the optimal level of trade resistance variable i, holding all the others fixed.  The trade 

resistance variable that yields the lowest value in equation (3.4) will be interpreted as the most 

restrictive, or the one that induces the most trade resistance.   

3.3 Estimation Procedure   
 

Answering the research question will be done through the use of Data Envelopment Analysis 

(DEA) following Färe et al. (2013).  To note is that the analysis here should not to be confused 

with negative DEA models.  First, for every observation k’, the maximal trade resistance level is 

calculated given that the trade resistance variables are at their observed values, as follows 

..maxˆ ' tsr
rk

                                                                                                           (3.5) 
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where the first three inequalities represent the disposability properties outlined earlier, while the 

last inequality represents  S (q, r) characterized by constant returns to scale.  Given each 

observation’s trade resistance variables (q), equation (3.5) seeks to estimate which observation 

has the highest trade resistance ( 'k̂r ), or which one is technically efficient based on the properties 
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of this model.  A departure from traditional interpretations of efficiency is in order here.  In this 

paper, because trade resistance is interpreted as an undesirable output, the observation that the 

calculations yield as the most efficient is actually interpreted as the least efficient. Efficiency will 

be given by a Farrell Output-Oriented Measure of Technical Efficiency as, 

1
ˆ

'

' 
k

k
o

r

r
F                                                                                                                               (3.6) 

If (3.6) equals one, then k’ is relatively doing the worst it can in terms of trade resistance level, 

i.e. it is technically the most inefficient.  Potential for improvements, i.e. reductions in trade 

resistance, exist.  If (3.6) is greater than one, then k’ is technically more efficient, or doing better, 

relative to an observation for which (3.6) has values less than the value for k’.   

The second step is to calculate the denominator of equation (3.4). For every observation, k’, the 

maximal trade resistance level is calculated given that one of the trade resistance variables is not 

at its observed value, i.e. it is allowed to freely vary or take any value, as follows: 
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By choosing different trade resistance variables to freely vary in (3.7), a ranking of the trade 

resistance variables could then be established. The trade resistance variable that generates the 

highest values for (3.7) or lowest values for (3.4) will signify that that variable is the most 

limiting.   

As an illustration, figure 3.4 presents the estimation procedure graphically.  For example, point A 

represents 'kr  , point B represents 'k̂r , while point C represents 'kr .  Point A represents the 

capacity notion, which is the highest level of trade resistance that could be achieved as a result of 

varying a certain trade resistance variable for a particular observation.  Before estimating point 

A, estimating point B will represent an observation that is relatively the most technically 

inefficient, i.e. has the highest trade resistance level, while point C represents a more technically 

efficient customs district relative to B.   

 

  

 

 

 

 

 

Figure 3.4 Estimating the most restrictive trade resistance variable  

 

The first step in the estimation procedure is to calculate the distance between points B and C, 

which will signify how much more technically efficient the customs district located at point C is 

q O 

r 

)(qT  

A 

 

C 

 

B 

 

1qS  

q0 



55 
 

 

relative to the one at point B.  The second step is to calculate point A to see how high trade 

resistance levels could go as a result of varying a certain trade resistance variable.   

3.4 Data 
 

This study uses data collected and compiled in Wu (2012).  For the purpose of this study, a quick 

exposition of the data is given here.  For greater detail on the sources of the data and the 

computation of variables Wu (2012) should be consulted.  There is data for one time period on 

25 three-digit North American Industry Classification System (NAICS) level industries trading 

with 72 countries out of 38 U.S. customs districts.  One observation represents a particular 

manufacturing industry, trading with a particular country, out of a particular U.S. customs 

district.  In Wu (2012), the author derived a bilateral trade resistance index (TRI) by industry.  

The index represents the international trade resistance that an industry trading out of a particular 

U.S. customs port with a certain country is facing relative to domestic trade resistance.  The trade 

resistance index (the average for the time period 2005-2009) is being specified as a function of 

the following trade resistance variables: 

 distance between the U.S. customs district and the trading partner (in miles) 

 U.S. domestic tariffs by industry (in percentages, for year 2004) 

 trading partner’s tariffs by industry (in percentages, for year 2004) 

 whether or not there is a common border between trading partners (indicator variable) 

 whether or not there is a common language between trading partners (indicator variable) 

  whether the trading partner is landlocked (indicator variable) 

  time required to import goods (in calendar days, for year 2006) 
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Wu (2012) estimated the following econometric specification with the trade resistance index as 

the dependent variable and the trade resistance variables as independent variables as follows: 
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where i stands for U.S. customs district, j for U.S. trade partners, and s stands for industry.  Wu 

(2012) found distance, trading partner’s tariffs and importer’s time to have a statistically positive 

relationship with the trade resistance index, meaning reductions in any of these variables could 

lower bilateral trade resistance. The trade resistance variables specified above, excluding the 

indicator variables border, common language, and landlocked, will be used in this paper along 

with the trade resistance index.   

Before estimation, the data was inspected and some inconsistencies, i.e. negative values for the 

trade resistance index, the distance variable, and extreme outliers were found.  This could have 

been a result of data entry error or calculation of variables especially for the negative values just 

mentioned.  As a result, observations with negative values associated with the trade resistance 

index and distance variable were deleted as well as observations with extreme tariff values 

(based on the density of tariffs, tariff rates for both U.S. and trading partners fluctuate generally 

between 0 to 20 percent).  This deletion of observations reduced the dataset by less than 0.4% of 

the original size.  All estimations, including calculating equation (3.6) and equation (3.7) were 

performed using the software OnFront2.  

Table 3.1 displays summary statistics for all variables used in the estimation process.  Overall, 

average international trade resistance (TRI) is 158.05 percent of domestic trade resistance, with a 

high of 981.22 percent that corresponds to the Crop Production industry (NAICS 111) trading 
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out of Houston, Texas with South Africa and a low of 0.64 percent corresponding to the 

Electrical Equipment and Appliances industry (NAICS 335) trading out of Miami, FL to Mexico, 

The average U.S. tariff (TariffUS) is 2.16 percent with a high of 51.31 percent corresponding to 

the Crop Production Industry trading out of Baltimore, M.D., New York City, N.Y., and 

Houston, TX with South Africa.  The average trading partner’s tariff (TariffCty) is 5.39 percent 

with a high of 20 percent corresponding to the Leather and allied product industry (NAICS 316) 

for Senegal, Australia, and Egypt. The average distance (Distance) between U.S. industries and 

their trading partners is 5417.71 miles, while the average time required to import goods 

(TimeImp) is 17.69 days.  

Table 3.1. Descriptive Statistics  

Variable Obs Mean Std. Dev. Min Max 

TRI 23289 1.5805 0.9701 0.0064 9.8122 

TariffCty 23289 0.0539 0.0527 0.0000 0.2000 

TariffUs 23289 0.0216 0.0358 0.0000 0.5131 

Distance 23289 5417.71 2061.43 546.00 10610.00 

TimeImp 23289 17.6959 10.4346 0.0000 76.0000 

 

Additional descriptive statistics (only means) by industry, trading country, and U.S. customs 

districts are presented and discussed in Appendix B.   

3.5 Estimation Results 
 

Table 3.2 presents estimation results for equation 3.6.  It also includes results for equation 3.5 

and the trade resistance index (TRI) for comparison purposes.  The average Farrell Output-

Oriented Measure of Technical Efficiency, Fo, is 13.51, which says that the average observation 

(average industry trading out of the average port with the average trading partner) is 13.51 times 

more efficient (or has less trade resistance) than the least efficient observation, which equals one.  
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The most efficient observation, or the best one in terms of lowest trade resistance for which 

Fo=959.05, corresponds to the Electrical Equipment and Appliances industry (NAICS 335) 

trading out of Miami, FL to Mexico.  In Table five, the average r̂ (Rhat) or maximal trade 

resistance level given Fo, is 15.79.  That means that for the average observation to become the 

least efficient observation the average trade resistance level would have to increase from 1.5805 

to 15.79.   

Table 3.2. Equation 3.6 Results 

Variable     Obs Mean Std. Dev. Min Max 

Fo 23289 13.51 12.64 1.00 959.05 

ȓ 23289 15.79 6.64 1.15 47.24 

TRI 23289 1.5805 0.9701 0.0003 9.8122 

 

Table 3.3. Equation 3.7 Results  

Variable Obs Mean Std. Dev. Min Max 

Distance 23289 6.19 6.42 0.01 102.29 

TimeImp 23289 6.96 6.62 0.01 106.23 

TariffUS 23289 1.75 1.12 0.01 11.13 

TariffCty 23289 1.61 1.00 0.01 9.81 

 

Table 3.4. Equation 3.4 Results  

Variable Obs Mean Median Skeweness Min Max 

Distance 23289 0.37 0.38 0.26 0.01 1.00 

TimeImp 23289 0.28 0.26 1.15 0.02 1.00 

TariffUS 23289 0.92 0.96 -1.16 0.24 1.00 

TariffCty 23289 0.98 1.00 -4.51 0.60 1.00 

 

Equation 3.7 results, or r  calculated for every trade resistance variable, are presented in Table 

3.3.  Recall, that the largest increase amongst the variables will represent that that variable will 

be the most restrictive in terms of trade resistance, i.e. it increases trade resistance the most.  By 
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allowing the trade resistance variables to take any value, the most restrictive variable comes out 

to be the time to import, or port logistics, variable (it raises trade resistance to an average level of 

6.96), followed by the distance variable (average level of 6.19), the U.S. tariff (average level of 

1.75), and the least restrictive variable being the tariff of the trading partner (average level of 

1.61).  Therefore, table 3.3 results indicate that, on average, bilateral trade resistance is affected 

most by the time it takes to import goods, or port logistics, followed by distance, with relatively 

and considerably lower effects by tariffs.   

Table 3.5. Results by U.S. Region  

Region Distance TimeImp Fo 

East Coast 0.36 0.30 14.77 

West Coast 0.39 0.26 13.95 

Gulf Coast 0.38 0.29 14.23 

Midwest 0.36 0.28 11.53 

Southwest 0.37 0.29 11.10 

 

With the results of equation (3.7) in hand, the results for equation (3.4) will be presented next in 

Table 3.4. Recall, equation (3.4) will be less than or equal to one.  The trade resistance variable 

that yields the lowest values for this equation is interpreted as the most restrictive.  Evidently, the 

same conclusions can be drawn from Table 3.4 as they were in Table 3.3.    

Given that trade policy could possibly be directed at certain regions of the U.S., industries or 

customs districts depending on policy makers’ goals, the results are therefore also presented by 

U.S. region, by industry and by customs district.  Due to distance and time to import goods being 

found as the most limiting variables, with tariffs having relatively negligible impacts, the 

subsequent discussion will focus on the former variables.  The results are presented based on 

equation (3.4).   
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Table 3.5 presents results by U.S. regions.  From an efficiency perspective, the most efficient 

(highest Fo) region is the East Coast, followed by the Gulf Coast, West Coast, Midwest and then 

Southwest.  This is as expected, seeing how the coast regions have ports where large, ocean 

transport ships have relatively easy access.  Also, the Midwest is more efficient than the 

Southwest and this is as expected as well.  The Midwest includes the ports of Chicago, Detroit 

and Cleveland, which are all located on the Great Lakes where big transport ships from all over 

the world have access to these ports through the St. Lawrence River, Niagara River, Detroit 

River and other connecting waterways that can accommodate large ships. 

Distance is the most restrictive trade resistance variable for the Midwest, the East Coast, and the 

Southwest, and the least restrictive for the Gulf Coast and the West Coast. It makes sense seeing 

how the Midwest, the East Coast and the Southwest are relatively further away from trade routes 

from Eastern Asia and U.S. trade with Eastern Asia, especially China, has increased greatly in 

the past decade according to the U.S. Census.  The time it takes to import goods is the most 

restrictive trade resistance variable for the West Coast and the Midwest and the least restrictive 

for the East Coast.  It could be argued that the East Coast ports have a longer history of operation 

implying more experience in port procedures, which could be also reflected in the East Coast 

being the most efficient region given the results in Table 3.5.   

Table 3.6 presents the results by industry.   Crop production, Animal production, Forestry and 

Logging, Fishing, Hunting and Trapping, and Paper manufacturing seem to be the least efficient 

industries in terms of trade resistance, while Fabricated Metal Product, and Machinery 

Manufacturing seem to be the most efficient industries.  Distance seems to be the most restrictive 

variable for Food Manufacturing and Apparel Manufacturing, and least restrictive for the 

Forestry and Logging and the Petroleum and Coal Products industries.  Time to import goods is 



61 
 

 

the most restrictive variable for the Forestry and Logging, Petroleum and Coal Products, and the 

Furniture and Related Product industries, and least restrictive for the Crop Production, and Food 

Manufacturing industries.  Although the overall results identified the time to import goods 

variable as the most restrictive, to note in table 3.6 is that distance is more restrictive than time to 

import for the Crop Production, Food Manufacturing, Textile Mills, Textile Product Mills, 

Apparel Manufacturing, Leather and Allied Product, Plastics and Rubber Products, and 

Nonmetallic Mineral Product industries. 

Lastly, the estimation results are presented by U.S. customs districts in table 3.7.  The most 

efficient ports include Nogales, AZ, Norfolk, VA, Savannah, GA, Miami, FL, Detroit, MI and 

Seattle, WA, while the most inefficient ports include St. Louis, MO, Minneapolis, MN, and 

Providence, RI.  Distance is the most restrictive variable for Pembina, ND, New York City, NY, 

Ogdensburg, NY, Portland, ME, and St. Louis, MO and the least restrictive for the ports of 

Detroit, MI, El Paso, TX, Port Arthur, TX, and Providence, RI.  The time to import goods is the 

most restrictive for Columbia/Snake, OR, Laredo, TX, and San Francisco, CA, and the least 

restrictive for Providence, RI, Boston, MA, Port Arthur, TX, and St. Albans, VT.  Worthy to 

note in table 3.7 as well is that there were a few exceptions where distance is more restrictive 

than the time to import goods for the ports of Boston, MA, New York, NY, Portland, ME, 

Pembina, ND, Ogdensburg, NY, and St. Albans, VT.   

Overall, the estimation results showed that the ranking of trade resistance variables consists of 

the time to import, or port logistics, as the most limiting variable in terms of the impact on the 

level of trade resistance, followed by distance, the tariff imposed by the U.S., and the tariff 

imposed by the trading partner.  If the results are presented by industry or by port, the distance 



62 
 

 

variable emerges as being more restrictive than the time to import goods for a few industries and 

ports.  

Table 3.6. Results by Industry  

NAICS Industry Distance TimeImp Fo 

111 Crop Production 0.30 0.33 6.59 

112 Animal Production 0.50 0.27 5.22 

113 Forestry and Logging 0.57 0.25 5.95 

114 Fishing, Hunting and Trapping 0.43 0.30 6.63 

311 Food Manufacturing 0.18 0.33 17.91 

312 Beverage and Tobacco product 0.32 0.30 11.76 

313 Textile Mills 0.21 0.30 16.55 

314 Textile Product Mills 0.19 0.30 16.88 

315 Apparel Manufacturing 0.16 0.30 18.96 

316 Leather and Allied Product 0.19 0.31 12.90 

321 Wood Product 0.46 0.29 10.97 

322 Paper Manufacturing 0.46 0.27 6.74 

323 Printing and Related Activities 0.48 0.27 12.00 

324 Petroleum and Coal Products 0.55 0.26 12.50 

325 Chemicals Manufacturing 0.35 0.30 10.39 

326 Plastics and Rubber Products 0.27 0.29 11.40 

327 Nonmetallic Mineral Product 0.29 0.30 11.08 

331 Primary Metal Manufacturing 0.45 0.28 15.46 

332 Fabricated Metal Product 0.31 0.29 20.53 

333 Machinery Manufacturing 0.44 0.28 23.41 

334 Computer and Electronic Product 0.51 0.27 11.20 

335 Electrical Equipment, Appliances 0.38 0.28 11.70 

336 Transportation Equipment 0.40 0.28 12.49 

337 Furniture and Related Product 0.52 0.26 12.68 

339 Miscellaneous Manufacturing 0.42 0.28 15.51 
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Table 3.7. Results by U.S. Port District  

District Fo Distance TimeImp District Fo Distance TimeImp 

Baltimore, MD 13.66 0.24 0.23 New Orleans, LA 10.29 0.26 0.22 

Boston, MA 11.26 0.24 0.25 New York City 15.58 0.23 0.24 

Buffalo, NY 10.50 0.24 0.23 Nogales, AZ 20.64 0.28 0.22 

Charleston, SC 15.24 0.26 0.23 Norfolk, VA 16.76 0.25 0.24 

Chicago, IL 13.52 0.25 0.23 Ogdensburg, NY 9.49 0.23 0.24 

Cleveland, OH 11.19 0.24 0.23 Pembina, ND 8.68 0.22 0.24 

Columbia/Snake,OR 11.62 0.27 0.21 Philadelphia, PA 11.58 0.24 0.24 

Dallas/Fort Worth 10.81 0.25 0.22 Port Arthur, TX 9.71 0.33 0.25 

Detroit, MI 15.83 0.29 0.22 Portland, ME 11.56 0.23 0.24 

Duluth, MN 7.43 0.24 0.23 Providence, RI 7.74 0.32 0.32 

El Paso, TX 9.75 0.29 0.22 San Diego, Ca 9.16 0.28 0.22 

Great Falls, MT 9.75 0.26 0.23 San Francisco, CA 12.12 0.28 0.21 

Houston, TX 8.67 0.26 0.22 Savannah, GA 16.22 0.25 0.23 

Laredo, TX 15.42 0.26 0.21 Seattle, WA 15.88 0.27 0.22 

Los Angeles, CA 13.38 0.27 0.22 St. Albans, VT 12.87 0.22 0.25 

Miami, FL 16.41 0.28 0.22 St. Louis, MO 6.96 0.23 0.23 

Milwaukee, WI 15.68 0.24 0.24 Tampa, FL 11.22 0.26 0.23 

Minneapolis, MN 6.88 0.25 0.23 Washington, D.C. 12.88 0.28 0.24 

Mobile, AL 8.78 0.26 0.23 Wilmington, N.C. 9.28 0.25 0.24 

 

3.6 Remarks  
 

United States’ trade volume with the world has increased over time and continues to rise.  

Although trade with other countries has become relatively less costly due to trade agreements, 

improvements and advancements in technology, communication, transportation and 

infrastructure, trade impediments still exist.  In an effort to identify how trade resistance can 

further be ameliorated and trade costs reduced further so that the welfare benefits from trade 

continue to rise for the U.S. and its trading partners, this chapter set out to investigate which 

trade resistance variable has the greatest impact on the level of trade resistance.  The goal of the 

study was to produce a ranking of trade resistance variables from the most restrictive to the least 

restrictive based on their impact on the level of trade resistance.   
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In this chapter, a model for trade resistance was presented where a trade resistance function was 

specified as a function of trade resistance variables.  Then, in the spirit of the Law of the 

Minimum, the concept of capacity utilization was applied to this model.  Using Data 

Envelopment Analysis, the trade resistance variables were allowed to vary to any level one by 

one and the impact of each on the level of trade resistance was noted.  The estimation results 

revealed that, for the average U.S. industry trading out of the average U.S. customs port with the 

average foreign trading partner, the time to import goods was the most restrictive trade resistance 

variable, followed by the distance between U.S. and its trading partners, the tariffs imposed by 

the U.S., and lastly the tariffs imposed by the trading partner.   

From a policy perspective, these findings suggest that policy instruments, i.e. tariffs, are not as 

impactful on bilateral trade resistance as port logistics (in terms of moving imported goods to the 

market), infrastructure, and transportation and communication systems/technology are. Ceteris 

paribus, the results in this study suggest that in order for U.S. bilateral trade volumes to increase 

even further, U.S. international trade policy should be directed at improving port logistics and 

reducing the distance between trading partners.  The ladder goal could be possibly accomplished 

by implementing additional improvements in infrastructure for better traffic flow, improvements 

in fuel efficiency, increasing the capacity of transport vessels, and ensuring safe waterways free 

of pirating activity.  The former goal could be possibly accomplished by expediting the 

bureaucratic process of releasing imported goods to the market, perhaps through a type of 

certification system for importers and exporters and their suppliers so that certain steps in the 

bureaucratic process could then be expedited.  Based on the results in this study, more specific 

policy actions could be further directed at certain regions, industries, or U.S. customs ports, 

based on what the policy makers’ goals are.   
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This study could be extended in several ways.  The binary variables including whether trading 

partners share a common language, common border, whether a country is landlocked or an 

island, were excluded from the estimation process.  Data envelopment analysis could perhaps be 

improved upon to accommodate binary variables.  As a result, additional trade resistance 

variables could be investigated based on this paper’s framework.  Another possible extension 

would be to shadow price the trade resistance variables.  Using the trade cost variable from Wu 

(2012) which was employed as a proxy for trade resistance in this study, the trade resistance 

variables could be seen as characteristics of trade costs.  In a hedonic or non-market valuation 

context, these characteristics could be then shadow priced by employing a directional distance 

function approach which will take into account customs ports’ inefficiencies, inefficiencies that 

are traditionally assumed away in hedonic pricing models.   

Moving beyond the production possibilities frontier (PPF) signals improvements in welfare.  

International trade theory suggests that when countries engage in trade with each other based on 

their respective comparative advantages, as a result, these countries move beyond their PPF and 

increase their welfare.  Given that the goal of policy makers is to improve social welfare, 

increasing trade volumes is one avenue to that end.  In support of this goal, this study delved into 

this area and identified certain factors that influence trade volumes the most.  Future research 

will hopefully investigate further this and other avenues through which benefits from trade will 

continue to accumulate for all trading countries.   
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CHAPTER 4 

4. Summary and Conclusion 
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Advances in communication and transportation systems have brought about a global 

interconnectedness in a relatively short time period.  As a result, thinking at all levels, i.e. 

business, academic, political, has a global perspective.  This is especially true in the policy 

setting arena.  In today’s world, policy should be formulated with consideration to the global 

implications.  In this context, this dissertation investigated the following global research 

question: Could global standards of living continue to rise in the presence of global climate 

change and international trade resistance?  The research question was addressed in two parts.  

The first part was addressed in chapter two, while the second part in chapter three.    

The first part of the research question investigated whether an environmental and economic 

solution is possible to the global climate change problem.  The objective was to employ 

theoretical and empirical tools that model the global goal of reduced CO2 emissions while 

simultaneously increasing RGDP, to shadow price CO2 at country levels, and to simulate a 

global market for CO2.  The tool used was the directional distance function.  Exploiting the 

duality between this function and the polluting technology, country level shadow prices for CO2 

were estimated and a global CO2 market was simulation based on the country level shadow price 

information.  Results suggest an average country level price of $719.33 per metric ton of CO2.  

Market simulation results suggest that it is possible for global emissions to decrease, global 

RGDP to increase, while shadow prices equalize.  The end goal is to achieve equilibrium in this 

market, where in order for countries to continue or go beyond current standards of living, there 

would have to be improvements in abatement technologies so that CO2 levels remain at 

equilibrium, sustainable levels.       

The goal of the second part of the research question was to rank the factors that restrict trade 

between trading partners in terms of their respective impacts on trade resistance, so that trade 
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policy could then be steered in the direction that could potentially stimulate trade the most, 

resulting in relatively higher increases in overall welfare.  To this end, this dissertation used 

techniques from the Operational Research field, i.e. DEA.  These techniques allowed for a 

unique way of looking at trade resistance between trade partners, and allowed for a ranking of 

trade barriers to be established based on their impacts on trade resistance. In the context of Justus 

von Liebig's Law of the Minimum and using Johansen’s notion of Capacity, a trade resistance 

model was presented, where trade barriers are (undesirable) inputs used in the production of the 

(undesirable) output, trade resistance. DEA was then employed to assess the impact that each 

trade barrier has on trade resistance.  Results suggest that U.S. port logistics are the most limiting 

trade barrier, followed by the distance between trade partners, the U.S. imposed tariffs, and the 

trading partner’s imposed tariffs. 

Since this dissertation employs some unique theoretical and empirical tools and applies them to 

new areas of research, future directions in these areas are abundant.  For example, the analysis in 

chapter two could be extended to link the market simulation with country level efficiency 

measures, investigating how the global CO2 market might affect the efficiency performance of 

individual countries.  The analysis in chapter three could be extended to include policy variables 

to investigate how policy might influence trade, i.e. trade agreements, or even shadow price trade 

barriers in an effort to establish a ranking of trade barriers based on a new methodology.  

This dissertation uses a utilitarian approach, and distributional issues are not investigated here.  It 

is assumed that addressing distributional issues is a normative process that goes beyond what this 

research produces, and it is left in the hands of policy makers.  Moreover, the research in this 

dissertation is meant to provide information, a benchmark, or guideline to policy makers, so that 

there is a basis for discussion in the policy setting environment related to the global issues 
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investigated in this dissertation.  A desired goal of this dissertation is for policy makers to utilize 

the information herein towards the formulation of policy that will advance the wellbeing of 

people all over the world.  Global climate change is a real threat and if its effects could be 

mitigated by the formulation of a global CO2 market without impeding standards of living, then 

the world could benefit.  International Trade and the availability of goods to people all over the 

world improves global welfare, therefore finding ways to reduce trade resistance between trading 

partners could have positive global welfare implications.    

 

 

 

 

 

 

 

 

 

 

 



70 
 

 

Bibliography 
 

1. Anderson, J.E., van Wincoop, E. (2004). Trade Costs. Journal of Economic Literature, 

42(3), 691-751. 

 

2. Atkinson, S.E., Färe R., Primont, D. (2003a). Stochastic estimation of firm inefficiency 

using distance functions. Southern Economics Journal, 69(3), 596–611.  

 

3. Chambers, R., Chung, Y., Färe, R. (1996). Benefit and Distance Functions. Journal of 

economic theory, 70, 407-419.   

 

4. Chambers, R., Chung, Y., Färe, R. (1998). Profit, directional distance functions, and 

Nerlovian efficiency. Journal of Optimization Theory and Applications, 98, 351–364. 

 

5. Chambers, R. (1998). Input and output indicators. In: Färe, R., Grosskopf, S., Russell, 

R.R. (Eds.), Index Numbers in Honour of Sten Malmquist (pp. 241-272). Boston: Kluwer 

Academic Publishers.  

 

6. Chamber, R. (2002). Exact Nonradial Input, Output and Productivity Measurement. 

Economic Theory, 20, 751-765.   

 

7. Coggins, Swinton, J. (1996). The price of pollution: a dual approach to valuing SO2 

allowances. Journal of Environmental Economics and Management, 30, 58–72. 

 

8. Dang, T.-T., Mourougane, A., (2014). Estimating shadow prices of pollution in OECD 

economies. IPAG Business School Working Paper Series.   

 

9. Economist, The (2013, October 5).  A man, a plan-and little else.  Retrieved from 

http://www.economist.com.  

  

10. Färe, R., Grosskopf, S., Kokkelenberg, E. (1989). Measuring plant capacity, utilization, 

and technical change. International Economics Review, 30, 655–666.  

 

11. Färe, R., Grosskopf, S., Lundgren, T., Marklund, P., Zhou, W. (2013). Which Bad is 

worse? An Application of Leif Johansen’s Capacity Model. Oregon State University and 

Umeå University working paper. 

 

12. Färe, R., Grosskopf, S., Noh, D., Weber, W. (2005). Characteristics of a polluting 

technology: theory and practice.  Journal of Econometrics, 126, 469–492. 

 

13. Färe, R., Karagiannis, G. (2014). Radial and directional measures of the rate of technical 

change. Journal of Economics, 112 (2), 183-199.   

 

14. Färe, R., Primont, D. (1995). Multi-output Production and Duality: Theory and 

Applications. Boston: Kluwer Academic Publishers. 



71 
 

 

15. Färe, R., Lundberg, A. (2005). Parameterizing the Shortage (Directional Distance) 

Function. Oregon State University Working Paper.  

 

16. Färe, R., Martins-Filho, C., and Vardanyan, M. (2010). On Functional Form 

Representation of Multi-Output Production Technologies. Journal of Productivity 

Analysis, 33, 81-96. 

 

17. Førsund, F. (2008). Good modelling of bad outputs: Pollution and multiple-output 

production. Memorandum // Department of Economics, University of Oslo, 30. 

http://hdl.handle.net/10419/47343. Accessed 22 January, 2014.  

 

18. Greene, W. (2008). Econometric Analysis. New Jersey: Prentice Hall.   

 

19. Hausman, W.H., Lee, H.L., Subramanian, U. (2005). Global Logistics Indicators, Supply 

Chain Metrics, and Bilateral Trade Patterns. Policy Research Working Paper 3773, The 

World Bank. 

 

20. Helpman, E., Melitz, M., Rubinstein, Y. (2008). Estimating Trade Flows: Trading 

Partners and Trading Volumes. The Quarterly Journal of Economics 123(2), 441-487. 

 

21. Johansen, L. (1987). Production functions and the concept of capacity. In F. R. Førsund 

(Ed.), Collected works of Leif Johansen. Amsterdam, Netherlands: North-Holland. 

 

22. Kumbhakar, S., Lovell, C. (2000). Stochastic Frontier Analysis. Cambridge: Cambridge 

University Press.  

 

23. Lee, M., Zhang, N., (2012). Technical efficiency, shadow price of carbon dioxide 

emissions, and substitutability for energy in the Chinese manufacturing industries. 

Energy Economics, 34, 1492–1497. 

 

24. Luenberger, D. (1992). Benefit functions and duality. Journal of Mathematical 

Economics, 21, 461–481. 

 

25. Marklund, P.-O., Samakovlis, E., (2007). What is driving the EU burden-sharing 

agreement:efficiency or equity? J. Environ. Management, 85 (2), 317–329. 

 

26. Novy, D. (2006). Is the Iceberg Melting Less Quickly? International Trade Costs after 

World War II.  Mimeo: University of Warwick.   

 

27. Novy, D. (2009). Gravity Redux: Measuring International Trade Costs with Panel Data. 

The Warwick Economics Research Paper Series (TWERPS), University of Warwick. 

 

28. Qi S., Xu L., Coggins J., (2004). Deriving Shadow Prices of Environmental Externalities. 

            University of Minnesota. 

 



72 
 

 

29. Salnykov M., V. Zelenyuk (2005). Estimation of Environmental Efficiencies of 

Economies and Shadow Prices of Pollutants in Countries in Transition. EERC Working 

Paper Series 05-06e, EERC Research Network, Russia and CIS. 

 

30. Shephard, R., Färe, R. (1974). The law of diminishing returns. Zeitschrift für 

Nationalӧkonomie, 34, 69–90. 

 

31. Shephard, R. (1953). Cost and Production Functions. Princeton: Princeton University 

Press.  

 

32. Shephard, R. (1970). Theory of Cost and Production Functions. Princeton: Princeton 

University Press.   

 

33. Summary, R., Weber, L.W. (2012). Grade inflation or productivity growth? An analysis 

of changing grade distributions at a regional university. Journal of Productivity Analysis, 

38, 95-107. 

 

34. Swinton, J. (1998). At what cost do we reduce pollution? Shadow prices of SO2 

emissions. The Energy Journal, 19, 63–83. 

 

35. Tinbergen, J. (1962). Shaping the World Economy. New York, N.Y.: The Twentieth 

Century Fund. 

 

36. Wang, Q., Cui, Q., Zhou, D., Wang, S., (2011). Marginal abatement costs of carbon 

dioxide in China: a nonparametric analysis. Energy Procedia, 5, 2316–2320.   

 

37. Weber, L.W., Xia, Y. (2011). The Productivity of Nanobiotechnology Research and 

Education in U.S. Universities. American Journal of Agricultural Economics, 93(4), 

1151-1167. 

 

38. Wei C., Löschel, A., Liu, B., (2013). An empirical analysis of the CO2 shadow price in 

Chinese thermal power enterprises.  Energy Economics, 40, 22–31.  

 

39. Wu, Q. (2012). Trade Costs and Business Dynamics in U.S. Regions and Industries. 

Oregon State University Ph.D. Thesis.   

 

 

 

  

 

 



73 
 

 

 

 

 

 

 

 
 

 

APPENDICES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



74 
 

 

 

Appendix A. Additional Properties of the Directional Distance Function 

 

Presented in Färe et al. (2005), the properties of the directional distance function are inherited 

from the polluting technology’s output set. They are as follows:   

(AA.1) )(),(0),;,,( xPbyifonlyandifggbyxD byo 


                              

The function will either be zero if (y, b) is on the boundary of the output set, or some other 

positive value if (y, b) is on the inside of the output set.   

(AA.2)  G-Disposability :  

)(),(,10),(),(),,( xPgbgythenandxPbygggif byby  
 

Properties 1 and 2 ensure that our output set P(x) can be recovered from the directional output 

distance function, or that the directional output distance function fully characterizes the 

technology represented by P(x). 

(AA.3) )(),(),'(),;,,(),;,',( xPbybyforggbyxDggbyxD byobyo 


 

This property comes from the assumption of strong disposability of the good output (y).  It says 

that using the same amount of inputs, and producing the same level of the bad output (b), but 

producing more of the good output (y), will not decrease efficiency.  Or, producing more of the 

good output (y), while all else is held constant, can only increases efficiency.   

(AA.4) )(),()',(),;,,(),;',,( xPbybyforggbyxDggbyxD byobyo 

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Similarly, using the same level of inputs and producing the same level of the good output (y), but 

producing more of the bad output (b), will not increase efficiency.  It can only signal decreases in 

efficiency.   

Properties (AA.3) and (AA.4) can be viewed as monotonicity properties.  

(AA.5)  10)(),(0),;,,(   andxPbyforggbyxD byo


 

This property reflects the joint weak disposability assumption of the good and bad outputs. 

Proportional contraction of both good and bad outputs is always feasible, and the directional 

output distance function will be non-negative.   

(AA.6)  )(),(),;,,( xPbyinconcaveisggbyxD byo 


 

Property (AA.6) comes in handy when taking second order derivatives of the directional output 

distance function in order to determine the curvature of the output set.  For an application see 

Färe et al. (2005), where the shadow price output elasticity of substitution was estimated.   
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Appendix B. Additional Chapter 3 Summary Statistics 
 

Table AB.1. Descriptive Statistics by Industry  

NAICS Industry TRI TariffCty TariffUs Distance TimeImp 

111 Crop Production 3.4350 0.0521 0.0706 5080.6880 19.2895 

112 Animal Production 3.4727 0.0433 0.0039 5412.3570 17.0152 

113 Forestry and Logging 2.8162 0.0206 0.0018 5507.2450 16.6094 

114 Fishing, Hunting and Trapping 2.9830 0.0703 0.0050 5122.1860 17.0380 

311 Food Manufacturing 1.1821 0.1202 0.0684 5485.9750 19.5819 

312 Beverage and Tobacco product 1.2965 0.0717 0.0255 4760.8210 14.7816 

313 Textile Mills 1.1905 0.0777 0.0462 5389.5900 17.4954 

314 Textile Product Mills 1.1385 0.0841 0.0478 5334.5550 17.4768 

315 Apparel Manufacturing 0.9957 0.0981 0.0840 5287.4910 16.9313 

316 Leather and Allied Product 1.5551 0.0835 0.0588 5402.5200 17.9264 

321 Wood Product 1.6301 0.0356 0.0104 5377.4930 17.5228 

322 Paper Manufacturing 2.8130 0.0420 0.0088 5519.3530 17.0786 

323 Printing and Related Activities 1.3710 0.0322 0.0053 5394.1670 17.4325 

324 Petroleum and Coal Products 1.2496 0.0279 0.0063 4988.6660 15.9631 

325 Chemicals Manufacturing 2.0886 0.0460 0.0161 5501.7160 18.8000 

326 Plastics and Rubber Products 1.6921 0.0712 0.0249 5374.6600 17.5208 

327 Nonmetallic Mineral Product 1.7214 0.0571 0.0273 5453.6560 17.8294 

331 Primary Metal Manufacturing 1.2058 0.0414 0.0051 5457.1870 18.2602 

332 Fabricated Metal Product 0.8957 0.0565 0.0176 5489.4180 17.9357 

333 Machinery Manufacturing 0.8140 0.0357 0.0051 5513.8250 18.6281 

334 Computer and Electronic Product 1.5973 0.0247 0.0042 5606.3050 17.7474 

335 Electrical Equipment, Appliances 1.8032 0.0471 0.0135 5508.4420 17.2630 

336 Transportation Equipment 1.5266 0.0438 0.0093 5498.8480 17.6096 

337 Furniture and Related Product 1.2427 0.0560 0.0021 5300.7140 16.5687 

339 Miscellaneous Manufacturing 1.2093 0.0454 0.0137 5580.0630 18.2064 
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Table AB.2. Descriptive Statistics by Trading Country 

Country TRI TariffCty TariffUs Distance TimeImp 

Argentina 1.6192 0.0662 0.0223 4960.9070 12.1748 

Armenia 1.3621 0.0680 0.0287 6012.6950 36.2655 

Australia 1.6823 0.0663 0.0174 7401.8490 18.2797 

Austria 1.6842 0.0349 0.0294 4873.6460 14.6389 

Azerbaijan 1.5247 0.0884 0.0180 6070.5590 32.9804 

Belgium 1.5246 0.0373 0.0277 4466.0110 11.9288 

Bolivia 1.3305 0.0375 0.0064 4861.9540 25.5525 

Brazil 1.6642 0.1011 0.0250 4770.8860 19.3633 

Bulgaria 1.5286 0.0494 0.0217 6064.3640 21.6640 

Canada 1.5692 0.0126 0.0041 1966.3230 14.6521 

Chile 1.3989 0.0647 0.0183 4830.4320 21.1712 

China 1.5422 0.0658 0.0301 6750.7900 16.9790 

Colombia 1.4722 0.1125 0.0030 3078.3150 35.6019 

Cyprus 1.2364 0.0224 0.0120 6563.1860 12.1947 

Czech Republic 1.6968 0.0361 0.0305 4975.3990 20.7865 

Denmark 1.4521 0.0362 0.0287 4150.7830 7.4440 

Ecuador 1.4945 0.1059 0.0031 3652.1670 33.6718 

Egypt 1.7269 0.1009 0.0115 5951.3870 29.7956 

Estonia 1.5942 0.0342 0.0307 4761.2620 10.0359 

Germany 1.6107 0.0319 0.0246 4781.7150 10.3303 

Finland 1.5401 0.0367 0.0294 4408.5250 6.7677 

France 1.4455 0.0327 0.0266 4552.6920 11.3458 

Georgia 1.4495 0.0440 0.0178 5446.9800 38.5714 

Ghana 1.6450 0.1003 0.0041 7372.0190 39.4167 

Greece 1.7733 0.0755 0.0275 5780.9450 21.5115 

Hungary 1.6752 0.0353 0.0300 4931.4490 13.6313 

India 1.6414 0.1163 0.0220 8143.5240 26.3735 

Indonesia 1.3554 0.0737 0.0290 7819.0940 24.3790 

Iran 0.8976 0.0098 0.0002 6175.3750 12.0000 

Ireland 1.4639 0.0309 0.0206 4170.5330 8.9689 

Israel 1.5930 0.0610 0.0079 7024.4800 20.2731 

Italy 1.7164 0.0410 0.0272 5477.6580 19.9505 

Japan 1.6142 0.0342 0.0220 7233.0990 12.1172 

Jordan 1.4811 0.0921 0.0172 7586.8420 25.9928 

Kazakhstan 1.5724 0.0479 0.0345 5080.7740 33.7799 

South Korea 1.6238 0.0419 0.0272 6622.8520 11.5503 

Kyrgyzstan 1.4209 0.0371 0.0355 4962.4120 22.2549 
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Table AB.3. Descriptive Statistics by Trading Country (Continued) 

Country TRI TariffCty TariffUs Distance TimeImp 

Latvia 1.5783 0.0362 0.0277 4906.3690 15.6560 

Lithuania 1.7952 0.0370 0.0283 4874.4260 20.3062 

Macedonia 1.6603 0.0526 0.0887 5501.0630 24.5625 

Malawi 1.6322 0.0008 0.0003 1672.0000 11.3333 

Malaysia 1.5221 0.0381 0.0176 9101.3980 11.2363 

Malta 1.5195 0.0353 0.0325 5187.8550 14.2077 

Mexico 1.5066 0.0500 0.0060 2326.7660 18.2317 

Moldova 1.4901 0.0281 0.0250 4426.4800 10.0000 

Morocco 1.6274 0.0830 0.0125 5803.1330 25.0533 

Netherlands 1.4815 0.0337 0.0216 4405.8400 8.4997 

Nigeria 1.6703 0.0778 0.0040 8150.6480 36.0432 

Norway 1.5691 0.0256 0.0221 4397.3010 7.5721 

Oman 1.2452 0.1314 0.0217 8114.3470 31.5612 

Pakistan 1.6163 0.1116 0.0304 8438.9950 22.7846 

Panama 1.3407 0.0970 0.0067 2425.5760 22.8259 

Peru 1.5812 0.0758 0.0042 4357.5120 27.3043 

Poland 1.7342 0.0701 0.0239 5039.2130 28.2280 

Portugal 1.6597 0.0339 0.0345 4865.6990 13.3306 

Qatar 1.3689 0.0877 0.0228 7653.7500 26.0046 

Romania 1.7001 0.0905 0.0143 5763.2860 21.2379 

Russia 1.7784 0.0868 0.0243 5393.3890 34.1069 

Senegal 1.7641 0.1084 0.0051 6834.9270 39.4606 

Singapore 1.5358 0.0356 0.0173 8872.6940 16.7968 

Slovakia 1.7385 0.0356 0.0288 5023.0220 20.1507 

Slovenia 1.7234 0.0403 0.0260 5482.6440 22.3915 

South Africa 1.6561 0.0381 0.0099 4714.6770 22.4609 

Spain 1.6877 0.0286 0.0289 4615.1790 14.0411 

Sri Lanka 1.3945 0.1052 0.0210 8713.9110 20.6436 

Sweden 1.5478 0.0229 0.0174 4356.7200 6.6499 

Thailand 1.6625 0.0880 0.0224 8668.9590 18.2014 

Trinidad Tobago 1.3042 0.1184 0.0044 2537.7960 32.4626 

Turkey 1.6722 0.0414 0.0309 6445.4200 15.7972 

Ukraine 1.6601 0.0607 0.0219 5638.4890 32.1894 

United Kingdom 1.5434 0.0334 0.0226 4015.9700 9.7927 

Uruguay 1.3845 0.1166 0.0268 5294.6310 19.8750 

Vietnam 1.4822 0.0723 0.0235 8974.5250 16.6952 
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Table AB.4. Descriptive Statistics by U.S. Port District  

District TRI TariffCty TariffUs Distance TimeImp 

Baltimore, MD 1.4171 0.0590 0.0218 5231.9270 18.6169 

Boston, MA 1.6144 0.0531 0.0220 4989.3970 17.2973 

Buffalo, NY 1.8830 0.0466 0.0214 5129.4960 16.3152 

Charleston, SC 1.3165 0.0584 0.0226 5293.2280 18.6533 

Chicago, IL 1.5772 0.0594 0.0243 5492.8780 18.6803 

Cleveland, OH 1.7903 0.0552 0.0240 5342.7440 17.5270 

Columbia/Snake, OR 1.6401 0.0466 0.0211 5821.7890 16.2863 

Dallas/Fort Worth, TX 1.8947 0.0526 0.0230 5991.0800 17.0961 

Detroit, MI 1.4884 0.0476 0.0173 5241.6290 16.7768 

El Paso, TX 2.2013 0.0331 0.0146 5270.5750 15.3664 

Great Falls, MT 2.3252 0.0335 0.0189 5045.5700 15.3835 

Houston, TX 1.3827 0.0597 0.0225 5842.6960 19.4111 

Laredo, TX 2.0598 0.0439 0.0169 5502.1570 16.0803 

Los Angeles, CA 1.4688 0.0599 0.0231 6055.5060 19.3295 

Miami, FL 1.5269 0.0598 0.0189 5471.2610 18.8174 

Milwaukee, WI 2.2632 0.0375 0.0185 4743.4870 13.5812 

Minneapolis, MN 1.9184 0.0438 0.0200 5192.3670 15.1845 

Mobile, AL 1.7302 0.0426 0.0166 5170.9540 16.4212 

New Orleans, LA 1.3420 0.0583 0.0213 5709.9270 18.5032 

New York City, NY 1.0660 0.0648 0.0261 4986.8900 19.9886 

Nogales, AZ 1.8867 0.0374 0.0152 5660.8280 15.9373 

Norfolk, VA 1.1894 0.0597 0.0228 5284.0550 18.7235 

Ogdensburg, NY 1.9445 0.0424 0.0213 4727.2240 14.4829 

Pembina, ND 2.7567 0.0209 0.0341 4612.2610 15.2464 

Philadelphia, PA 1.6806 0.0553 0.0227 5076.7240 17.8806 

Port Arthur, TX 1.6814 0.0319 0.0079 4822.5000 17.0417 

Portland, ME 1.5411 0.0413 0.0184 4684.3810 14.6285 

Providence, RI 1.8800 0.0182 0.0097 3060.7600 11.3867 

San Diego, Ca 2.1673 0.0435 0.0158 5629.1130 16.7179 

San Francisco, CA 1.7566 0.0551 0.0224 6057.3730 17.6484 

Savannah, GA 1.3329 0.0608 0.0230 5508.7290 18.7657 

Seattle, WA 1.4320 0.0553 0.0238 5703.7900 17.5763 

St. Albans, VT 1.3489 0.0375 0.0211 4324.0630 14.0119 

St. Louis, MO 2.2192 0.0369 0.0189 5027.8770 13.7536 

Tampa, FL 1.7381 0.0544 0.0196 5397.2690 17.7237 

Washington, D.C. 1.2523 0.0490 0.0169 4983.6700 15.9425 

Wilmington, N.C. 1.9621 0.0468 0.0211 5404.5000 16.3239 
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Based on Table AB.1, the largest trade resistance is in the Animal Production industry (NAICS 

112) and Crop Production (NAICS 111), while the lowest is in the Machinery Manufacturing 

industry (NAICS 333) and the Fabricated Metal industry (NAICS 332).  Averages by trading 

country are presented in Tables AB.2 and AB.3, while averages by U.S. customs district are 

presented in Table AB.4.  To notice in Table AB.4 is that U.S. ports located in the middle of the 

country have on average the highest trade resistance, while the U.S. ports on the East Coast have 

on average the lowest trade resistance.  This should not come as a surprise.  The East Coast ports 

are located in relatively more accessible areas by big container ships.   
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