$\frac{\text { FERDI TAHİR OLGUN }}{\text { (Name of }}$ for the degree of MASTER OF SCIENCE in (Name of Student) (Degree) $\frac{\text { CHEMICAL ENGINEERING }}{\text { (Major Department) }}$ presented on $\frac{\text { Nov. } 18,1977}{\text { (Date) }}$

Title: AN EXECUTIVE FOR SIMULATION OF PROCESS DYNAMICS AND CONTROL Abstract approved by: Redacted for Privacy

Ferhan Kayıhan

A simple package of routines that can be easily implemented in small minicomputers used in process control, was developed to simulate dynamic systems and computer control of simple dynamic systems found in the process industries.

Two different systems, a gas absorber and a fifth-order transfer function were chosen as processes to be simulated. Several control models, like proportional-integral, direct digital control (DDC), steady-state and dynamic feedforward control and Dahlin's control algorithm were used to control these systems. The gas absorber and the fifth-order transfer function were simulated with an analog computer. The control actions were either done by the analog computer or the NOVA minicomputer. The results were also obtained by simulating the processes and the control actions by using the executive package. The effect of sampling time in DDC control was shown using very fast sampling and slow sampling times. The performance of Dahlin's algorithm for various values of the parameter λ was also shown.

The simulation results were compared with the results obtained from analog computer and NOVA minicomputer. It was observed that the results were the same in all cases which indicates that the executive package developed works effectively for systems similar to the test cases.

An Executive for Simulation of Process Dynamics and Control

by
Ferdi Tahir 0lgun

A THESIS
submitted to
Oregon State University

in partial fulfillment of the requirements for the degree of
 Master of Science

Completed Novernber 18,1977

Commencement June 1978

Redacted for Privacy

Redacted for Privacy

Head of Department of Chemical Engineering

Redacted for Privacy

Dean of Graduate School

Date thesis is presented \qquad Nov. 18, 1977

Typed by Joan Yvonne Ziobron for Ferdi Tahir 01 gun

ACKNOWLEDGEMENT

I would like to express my sincere appreciations:
To Dr. Eugene Elzy for his advice, support and encouragement during the course of my studies.

To Dr. Ferhan Kayıhan for his helpful suggestions.
To Dr. Charles E. Wicks and the rest of the Chemical Engineering Department for their financial and moral support during the past two years.

And to, Mel Olson for his assistance in support of the NOVA minicomputer.

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. THE EXECUTIVE SYSTEM LIBRARY 3
Main Program 3
Numerical Integration Routine 5
DSIM 8
Transfer Functions 11
TRFN 11
TRF2 13
Controllers 14
PRCONTR 15
PICONTR 16
PIDCON 17
DPICON 18
DPIDCON 19
Valve Routine 22
Function Generator Routines 22
STEP 22
PEAK 23
SPULSE 23
Convergence and Arbitrary Function Generator Routines 25
CONV 25
FUN 25
Time Delay Routine 27
XDEL 27
Page
III. ANALOG AND DIGITAL SIMULATION OF A NON-LINEAR SYSTEM 31
The Problem Description 31
Analog Computer Simulation 32
Digital Computer Simulation 32
IV. SIMULATION OF THE CONTROL OF A GAS ABSORBER 37
Analog Computer Simulation 37
Digital Computer Simulation 39
v. DIRECT DIGITAL CONTROL OF A GAS ABSORBER 45
NOVA Computer control of the Simulated Gas Absorber with Fast Sampling Time 45
Effect of Sampling Time on DDC Control 47
Simulation of the Effect of Sampling Time with the Digital Computer 47
VI. FEEDFORWARD CONTROL OF A GAS ABSORBER AND A FIFTH-ORDER SYSTEM 52
Steady-State Feedforward Control 52
Control with NOVA 53
Simulation of the Control 55
Feedforward Control with Dynamic Compensation 55
The Fifth-Order System 57
Dynamic Feedforward Control with NOVA 59
Simulation of the Control 63
VII. AN ADVANCED CONTROL TECHNIQUE 66
Design of Control Algorithm Using Z-Transforms 66
Dahlin's Method With NOVA 68

TABLE OF CONTENTS (cont.)
Page
Simulation of the Control 71
VIII. CONCLUSIONS 73
BIBLIOGRAPHY 74
APPENDICES
Appendix A
Example Problem for the Use of the Executive System 75
Appendix B

1. Listings of Executive Library Sys tem Routines 79
2. Sample Problem for Testing Some of the Executive Library System Routines 100
Appendix C
3. The Gas Absorber 102
4. Main Program Listing and Results for the Simulation of the Gas Absorber 105
5. Main Program Listing and Results for the Simulation of the Fifth-Order Sys tem 108
Appendix D
Main Program Listing and Results for the Simulation of the PI Controller 113
Appendix E
6. Position Algorithm in DDC Control 122
7. Main Program Listing for DDC Control with NOVA 124
Main Program Listing for Simulating Sampling Time Effect on DDC Control 126

TABLE OF CONTENTS (cont.)
Page
Appendix F

1. Model for Feedforward Control 128
2.a. Program Listing for Feedforward Control of the Gas Absorber with NOVA 131
b. Main Program Listing and the Results of the Simulation of Feedforward Control 132
3.a. Program Listing for Dynamic Feedforward Control of a System with NOVA 135
b. Main Program Listing and the Results of the Simulation of Dynamic Feedforward Control 136
Appendix G
2. The Derivation of the Controller Equation for Dahlin's Method 140
2.a. Program Listing for Control with Dahlin's Algorithm 143
b. Main Program Listing for the Simulation of Dahlin's Control Algorithm 145

LIST OF FIGURES

Figure Page
1 Flow chart of the main calling program 4
2 Organization of the main program using DSIM 9
3 Use of the state variable numbers with the subroutine TRFN 12
4 Flow chart of the delay routine, XDEL 29
5 Computer circuit for the analog simulation of the gas absorber 33
6 Response of $X(1)$ to step changes in inlet gasconcentration with flow rate34
7 Response of $X(5)$ to step changes in inlet gas concentration and flow rate 35
8 Transient response of the gas absorber ($K_{C}=2500$, $T_{I}=0.1666$) 40
9 Transient response of the gas absorber ($K_{c}=2500$, $\mathrm{T}_{\mathrm{I}}=0.233$) 41
10 Transient response of the gas absorber ($K_{c}=2500$, $T_{I}=0.126$) 42
11 Transient response of the gas absorber ($K_{c}=3250$, $T_{I}=0.1666$) 43
12 Transient response of the gas absorber ($K_{C}=1750$, $T_{I}=0.1666$) 44
13 DDC Control with sampling time $=10 \sec \left(K_{C}=2500\right.$, $\mathrm{T}_{\mathrm{I}}=0.1666$) 48
14 DDC Control with sampling time $=10 \mathrm{sec}\left(K_{C}=2500\right.$, $\mathrm{T}_{\mathrm{I}}=0.126$) 49
15 DDC Control with sampling time $=10 \mathrm{sec}\left(\mathrm{K}_{\mathrm{C}}=3250\right.$, $\mathrm{T}_{\mathrm{I}}=0.1666$) 50
16 Transient response of the gas absorber with steady- state feedforward control 54
17 Block diagram of the fifth-order system 58

LIST OF FIGURES (cont.)

Figure Page
18 Computer circuit for the analog simulation of the fifth-order system 60
19 Response of the fifth-order system to step changes 61
20 Determination of the parameter for dynamic feedforward control 62
21 Schematic for simple time-delay logic 64
22 Response of the fifth-order system with dynamic feedforward control to a step change in input 65
23 Block diagram for a digitally controlled system 67
24
Response of the fifth-order system for different values 70
25 Block diagram of the fifth-order system with Dahlin's control algorithm 72
26 The gas absorber 103
27 Block diagram of the fifth-order system with feed- forward control 129

LIST OF TABLES

Table
Page
1 Controller arguments 21
2 Controller and valve arguments for different runs 38
3 Values of the potentiometers used in the simulation 38
$4 \quad K_{C}$ and T_{I} values for DDC control 51

I. INTRODUCTION

The objective of this work has been the development of a simple package of routines, to simulate dynamic systems and computer control of typical systems found in the process industries. The emphasis has been on the development of simple routines that can be easily implemented on a process control minicomputer.

Very elaborate executive systems are available for simulating dynamic chemical processes (Dynsys (1), Dyflo (2)). But these systems are usually very large because they include numerous, specific equipment routines, i.e. dynamic simulation of a distillation column using dynamic energy and mass balances, which make them difficult to implement on a small computer. In this system, the dynamic simulation is approached by utilizing lower transfer functions which would be determined experimentally. Most of the chemical processes can be approximated by first or second order transfer functions with dead time. (Murrill (3), Smith (4))

Another emphasis was on simulating Direct Digital Control (DDC) algorithms in order to predict the performance of a process control computer before actual implementation. In actual practice, the economic justification of a process control computer in industry, is based upon the benefits which are expected from improved control. This research will assist the engineer in developing an economic justification by simulating computer control in order to predict the improvement that might be obtained. It will also assist in investi-
gating the alternative control techniques so that the method yielding the greatest improvement could be implemented. In this study, supervisory computer control was not implemented but it can also be simulated as well with no difficulty. In practice, the simulation of supervisory digital computer control would utilize different variables and input information such as cost of raw materials, value of products, constraints on the operation and specifications on products, in a model to compute optimum control set points which would be used to modify the set points and the parameters of the control algorithms. The model to determine set points depends on each specific application and once the model is available the simulation is straightforward.

In some applications, the use of material and energy balances may be required or preferred to the use of simple transfer functions, which would require the solution of a set of differential equations. These routines can be implemented easily utilizing the subroutine DSIM to solve the dynamic set of equations. But it is outside the scope of this research to provide equipment routines based on material and energy balances.

The computer programs of the executive system were developed on the Oregon State University Computer (Control Data Corporation (CDC) 3300). The simulation of the processes and their control were done on the Oregon State University Chemical Engineering Department's Computer (Data General NOVA 840) and analog computer (EAI TR.20).

II. THE EXECUTIVE SYSTEM LIBRARY

Basic approach used in the development of the routines in this research is the collection of subroutines which can be utilized to simulate a wide variety of dynamic systems with or without control. The simulation of the system can be either done by solving the differential equations of the system or by using first or second order transfer functions with dead time. The simulation of the control can be done by computing the equations representing the control action or by using appropriate control routines. In every case, the user writes a main program which calls the necessary subroutines to accomplish the simulation required for a particular study.

Main Program

The way the main program is structured for calling subprograms, printing and plotting is the same as Evans' (5) computer program for dynamic simulation. However, it is internally different.

A flow chart of the main program is shown in Fig. 1. Listing of the main program for an example problem is given in Appendix A. The main program consists of five steps:

1. Initialization: Initial conditions, constants, and control parameters are set or read as data in this section.
2. Derivative Calculations: The values of the derivatives are computed using current values of the state variables and time.

Figure 1. Flow chart of the main calling program
3. Printing: Necessary results are computed and values are printed for any given print interval.
4. Plotting: Necessary results are computed and values are saved for plotting, if desired.
5. Termination: Any remaining calculation is performed and the simulation is completed.

The subroutine DSIM which is called after the initialization conducts the flow of the simulation program. A more general explanation about DSIM and the flow of the simulation is presented in the next section.

Numerical Integration Routine

The key routine in the present study is the subroutine for solving systems of ordinary differential equations (O.D.E.). Numerous techniques are available and have been extensively discussed in the literature. Only algorithms capable of automatic step-size adjustment to maintain a desired accuracy were considered in this work. The state of the art technique most widely recognized for numerical solution of systems of O.D.E. is Gear's method. However, the complexity of Gear's method makes its use very difficult for small minicomputer. The fourth-order Runge-Kutta technique proposed by England (6) has been demonstrated to be efficient and convenient for step-size adjustment when compared with other methods. England discusses several algorithms but the one algorithm using eight evaluations per step was more efficient than others discussed. This Runge-Kutta-England
algorithm was implemented in the present research as subroutine DSIM. The coefficients for this method are:

$$
\begin{aligned}
& k_{0}=h f\left(x_{0}, y_{0}\right) \\
& k_{1}=h f\left(x_{0}+\frac{1}{2} h, y_{0}+\frac{1}{2} k_{0}\right) \\
& k_{2}=h f\left(x_{0}+\frac{1}{2} h, y_{0}+\frac{1}{4}\left(k_{0}+k_{1}\right)\right) \\
& k_{3}=h f\left(x_{0}+h, y_{0}-k_{1}+2 k_{2}\right)
\end{aligned}
$$

At this point, the value of the variable is calculated:

$$
\begin{aligned}
y_{1}= & y_{0}+1 / 6\left(k_{0}+4 k_{2}+k_{3}\right) \\
k_{4}= & h f\left(x_{0}+h, y_{1}\right) \\
k_{5}= & h f\left(x_{0}+3 / 2 h, y_{1}+\frac{1}{2} k_{4}\right) \\
k_{6}= & h f\left(x_{0}+3 / 2 h, y_{1}+\frac{1}{4}\left(k_{4}+k_{5}\right)\right) \\
k_{7}= & h f\left(x_{0}+2 h, y_{0}+1 / 6\left(-k_{0}-96 k_{1}+92 k_{2}-121 k_{3}\right.\right. \\
& \left.\left.+144 k_{4}+6 k_{5}-12 k_{6}\right)\right)
\end{aligned}
$$

The error estimate is calculated at this point:
Error: $r=r_{1}+r_{2}=\frac{1}{90}\left(-k_{0}+4 k_{2}+17 k_{3}-23 k_{4}+4 k_{6}-k_{7}\right)$

The absolute value of the estimated error is compared with the given tolerance and if absolute r is greater than the tolerance, all values are discarded and the computation proceeds with an interval of $h / 2$. If r is tolerable, the computation is completed:

$$
\begin{aligned}
& k_{8}=h f\left(x+2 h, y_{1}-k_{5}+2 k_{6}\right) \\
& y_{2}=y_{1}+1 / 6\left(k_{4}+4 k_{6}+k_{8}\right)
\end{aligned}
$$

If the absolute value of the error estimate divided by tolerance is less than 0.003 the step-size is doubled for the next step.

DSIM

Subroutine DSIM solves a system of ordinary differential equations using the method discussed above. The organization and the method of calling upon the main program are indicated in Fig. 2.

DSIM is always called by a pair of statements:
CALL DSIM (N, T, HPRINT, HPLOT, H, HMIN, TMAX, ERR, E, IERR, ITASK) GO TO (1, 2, 3, 4, 5) ITASK

Where:
$N=$ number of differential equations
$T=$ independent variable, time
HPRINT = intervals at which values are to be printed
HPLOT = intervals at which values are to be plotted
$H=$ current value of the step-size
HMIN = minimum step-size allowable
TMAX = maximum time at which the simulation is to be terminated
$E R R=$ accuracy desired, i.e., if the solution is desired to 0.0001 then $E R R=0.0001$
E = estimated errors of the state variables
IERR $=$ flag set to 1 if the step-size is less than HMIN
ITASK $=$ flag set to $1,2,3,4,5$ depending on the task to be performed by the main program

1. Monitor the calculations at each step
2. Compute the derivatives
3. Print out results
```
        FROGFAM MAIN
C INITIALIIATION SECTION
C
E
    10 EALL DEIM(N, T, HPRINT, HPLOT, H, HMIN, TMAX,
        1 E, ERFR, IEFR, ITASK)
C
C
    : SECTION TO MONITOR CALCULATIONS
        GO TO 10
\square
    2 SECTION TO COMPUTE THE DERIVATIVES
        GO TO 10
C
    3 SECTION TD PRINT REEULTS
        GO TD 10
\square
    4 \text { EECTION TO SAVE RESULTS FOR FLOTTINIS}
        g0 TO 10
C
    5 ~ T E R M I N A T I O N
C
    END
```

Figure 2. Organization of the main program using DSIM
4. Save results for plotting
5. Terminate the simulation

After the designated task has been performed, control is transferred back to the statement which calls DSIM, except when ITASK $=5$. The values of the state variables X, derivative function values F, and KSTEP values are passed through COMMON/VAL/ during the simulation.

Transfer Functions

TRFN

This routine is implemented to calculate the derivative values for the differential equations representing N first-order transfer functions having the same gains and constants.

TRFN (NXI, NXO, TC, GAIN, N)

```
NXI = input variable number
NXO = output variable number
    TC = time constant
GAIN = gain
    N = number of first-order transfer functions
```

NOTE: The use of the state variable numbers in TRFN containing more than one first-order transfer function can be ambigious. A simple illustration of the use of the state variables for TRFN is given in Fig. 3. The variable numbers from $N X O+1$, to $N X O+N$ should not be used by other routines, since they are used internally by TRFN.

Figure 3. Use of the state variable numbers with the subroutine TRFN
TRF2

This routine is implemented to calculate the derivative values for a second-order transfer function. The denominator of the transfer function can be in the following forms

GAIN
a) $\frac{}{T C^{2} S^{2}+2(T C)(D A M P) S+1}$ or
b) $\frac{\text { GAIN }}{((T C) S+1)((T C 2) S+1)}$ or

The first equation will be computed if TC2 is given as zero.

TRF2 (NXI, NXO, TC, DAMP, GAIN, TC2)
NXI = input variable number
NXO = output variable number
$T C=$ first time constant
TC2 $=$ second time constant
DAMP: = damping ratio
GAIN = gain

NOTE: The calculations of the derivatives are performed on the space of the variable, $N X O+1$. Additional care should be taken not to use the variable number for other purposes.

Controllers

Subroutines are developed to simulate the action for each of the three basic modes of industrial controllers which are:

1. Single mode or proportional
2. Two mode or proportional, integral
3. Three mode or proportional, integral plus derivative

There are two different terminologies used for the parameters of these controllers (2), (7). In the present work the terminology used by Franks in his dynamic simulation package, DYFLO will be used. In Table 1, a listing of the terms and their relations is given.

In addition to these routines, another set of control routines, performing the same action without calculating the derivative values are implemented. These routines allow the user to simulate the effect of sampling time in DDC control for slow sampling times.

PRCONTR (proportional controller)

This routine is implemented to simulate the action of a proportional controller. The input signal is normalized based on the reference point and range of the instrument which are usually zero and 100, and the control equation calculates the output. This subroutine can be also used in DDC control with slow sampling time.

```
    PRCONTR (NXI, NXO, ZR, RAN, ACT, SP, PB, XMN)
    PRCONTR (NXI, NXO, ZR, RAN, ACT, SP, GAIN, XMN)
NXI = input variable number
NXO = output variable number
    ZR = zero
    RAiV = range
    ACT = action: + 1. direct, - 1. reverse
    PB = proportional band
GAIN = gain
    XMN = manual reset, set to a value that will reduce the error
        close to zero under normal steady-state conditions
```


PICONTR (Proportional, integral controller)

This routine is implemented to simulate the action of a proportional, integral controller. The equation describing the action is:

$$
X(N X O)=100 / P B(A C T)\left(E R R O R+R T \int E R R O R d t\right)
$$

The error is the difference between the current value of the state variable $X(N X I)$ and the set point $S P$.

PICONTR (NXI, NXO, ZR, RAN, SP, ACT, PB, RT)
PRCONTR (NXI, NXO, ZR, RAN, SP, ACT, GAIN, TI)

```
NXI = input variable number
NXO = output variable number
    ZR = zero of the instrument
    RAN = range of the instrument
    ACT = action: + 1. direct, - 1. reverse
    PB = proportional band
GAIN = gain
    RT = repeats/unit time
    TI = time/repeat
```

NOTE: The calculations of the integral part are performed on the space of the variable, NSI +1 . Additional care should be taken not to use this variable number for other purposes.

PIDCON (proportional, integral, plus derivative action controller)

This routine is implemented to simulate the action of a proportional, integral, plus derivative action controller. This can be regarded as being merely a PI Controller with derivative action added. This derivative action can be either acting on the error signal or on the input variable. If the action is on the error signal, it will be applied to any change in the input signal as well as in the set-point. Since, this is not desired in the implementation of these routines, the alternate form was used. The derivative section provides an additional change in the output, which is proportional to the rate of change in the input variable. The following integral equation describes the derivative action:

$$
V I D=R A\left(V I+\frac{1}{R T} \int(V I-V I D)\right) d t
$$

PIDCON (NXI, NXO, ZR, RAN, SP, ACT, PB, RPT, RT, RA)
PIDCON (NXI, NXO, ZR, RAN, SP, ACT, GAIN, TI, TD, ALFA)

NXI = input variable number
NXO = output variable number
$Z R=$ zero
RAN $=$ range
$S P=$ set point
ACT = action: + 1. direct, - 1. reverse
$\mathrm{PB}=$ proportional band

```
GAIN = gain
    RPT = repeats/unit time
        TI = time/repeat
        RT = rate time
        TD = derivative time
        RA = rate amplitude
ALFA = alfa
```

NOTE: The calculations of the integral and derivative parts are performed on the spaces of the variables, NXI +1 and NXI +2 . Additional care should be taken not to use these variable numbers for other purposes.

```
DPICON (proportional, integral controller)
```

This routine is implemented to simulate the action of a proportional, plus integral controller used in direct digital control. The equations used in the subroutine are as follows:

Sum of errors $=$ SUME $=$ SUME + ERROR
$X(N X O)=(100 / P B)(E R R+\operatorname{SUME}(T I) D E L T)$

DPICON (NXI, NXO, ZR, RAN, SP, ACT, PB, TI, DELT)

NXI $=$ input variable number
NXO = output variable number
$Z R=$ zero

```
    RAN = range
        SP = set point
    ACT = action = + 1. direct, - 1. reverse
        PB = proportional band
        TI = repeats/ unit time
    DELT = sampling time
```

NOTE: This routine should be called every time period equal to DELT.
DPIDCON (proportional, integral plus derivative controller

This routine is implemented to simulate the action of a proportional, integral plus derivative action controller used in direct digital control. The derivation for the control equation is given in Appendix E-1.

DPIDCON (NXI, NXO, ZR, RAN, SP, ACT, PB, TI, TR, DELT)

NXI = input variable number
NXO = output variable number
$Z R^{\circ}=$ zero
RAN $=$ range
$S P=$ set point
$\mathrm{ACT}=$ action: +1. direct, -1 . reverse
$\mathrm{PB}=$ proportional band
$T I=$ repeats/unit time
$T R=$ rate time

DELT = sampling time

NOTE: This routine should be called every time period equal to DELT.

Table 1: Controller Arguments

Proportional band, PB	Gain, GAIN	GAIN $=100 /$ PB
Repeats/unit time, RPT	Time/repeat, TI	TI $=I / R P T$
Rate time, RT	Derivative time, TD	TD $=$ RT
Rate amplitude, RA	Alfa, ALFA	ALFA $=I / R A$

Valve Routine

This routine is implemented to calculate the output flow rate of a valve given the stem position. Three different port characteristics are used (2), (8):

1. Linear
2. Square Root
3. Equal Percentage

VALVE (NXI, NXO, P1, P2, LV, KT, VC,R)
NXI = state variable number which corresponds to the stem position

NXO = state variable number which corresponds to the flow rate
P1 = upstream pressure
P2 = downstream pressure
LV = liquid or vapor ($0=$ vapor)
$K T=$ port characteristics, $1=$ linear, $2=$ equal $\%$ 3 = square root
$V C=$ valve capacity
$R=$ rangeability $=1 / A_{0}$, where A_{0} is the valve opening with fully closed stem position

Function Generator Routines

STEP

This routine generates a step function of amplitude (X2 - X1)
from time A to time B. At time B the value of the function is set to $X 3$.

$$
\begin{aligned}
& \operatorname{STEP}(T, A, B, X 1, X 2, X 3) \\
& T=\text { time } \\
& A=\text { time value when the step change starts } \\
& B=\text { time value when the step change terminates } \\
& X 1=\text { function value before time } A \\
& X 2=\text { function value for } A<\text { time }<B \\
& X 3=\text { function value after time } B
\end{aligned}
$$

PEAK

This routine generates a symmetrical triangular peak starting at time A and terminating at time B.

$$
\operatorname{PEAK}(T, A, B, X 1, X 2, X 3)
$$

$$
\begin{aligned}
T & =\text { time } \\
A & =\text { time value when the change starts } \\
B & =\text { time value when the change terminates } \\
X 1 & =\text { function value before time } A \\
X 2 & =\text { maximum or minimum function value } \\
X 3 & =\text { function value after time } B
\end{aligned}
$$

SPULSE

This routine generates a half sinusoidal function of amplitude (X2 - X1) starting at time A and terminating at time B.

$$
\begin{aligned}
& \text { SPULSE }(T, A, B, X 1, X 2, X 3) \\
& T=\text { time } \\
& A=\text { time value when the change starts } \\
& B=\text { time value when the change terminates } \\
& X 1=\text { function value before time } A \\
& X 2=\text { maximum or minimum function value } \\
& X 3=\text { function value after time } B .
\end{aligned}
$$

Convergence and Arbitrary Function Generator Routines

These routines are identical to the routines used in the dynamic simulation executive DYFLO (2). They were included in this executive system to enlarge the capacity. Their use is shown in the example problem given in Appendix B-2.

CONV

This routine is used for the algebraic convervence of a variable. The method is based on Weigstein's technique for algebraic convergence.
$\operatorname{CONV}(X, Y, N R, N C)$

$$
\begin{aligned}
X & =\text { trial value } \\
Y & =\text { calculated value } \\
N R & =\text { routine call number } \\
N C & =\text { converge index }(N C=1, \text { convergence })
\end{aligned}
$$

FUN

This routine calculates a value of Y for a particular value of X. The coordinates of each point should be stored in X and Y arrays in the calling program. A linear interpolation is done around the adjacent coordinate points of X for intermediate values.

$$
\operatorname{FUN}(A, N, X, Y)
$$

```
A = input variable
N = total number of coordinate points
X = X array
Y = Y array
```


The Delay Routine

XDEL

In chemical processes, the presence of a transport lag is very common. The approximation of these processes can be done by using simple transfer functions with dead time. XDEL is implemented to simulate the delay of 25 different variables for a given time period in the simulation of a process.

The implementation of such routines is usually very simple for systems using constant step-size integration routines. The values are stored in an array and the number of the values to be stored is equal to the delay time divided by the step-size. (This number has to be an integer) If a changing step-size integration routine is used, the number of the stored values will change every time the step-size is changed. Other problems, i.e., the last values are discarded if the step-size is halved, the step-size is adjusted for exact printing time or plotting time, make the use of these simple routines impossible. The objective was to solve these problems and write a subroutine which would be completely compatible with the integration routine DSIM. The subroutine DSIM is implemented for this purpose, however it has a highly complex logic. A diagram showing the flow chart is given in Fig. 4.

The operating principle of this routine is to allocate N spaces for the values of the variable to be delayed and N spaces for the time the value was stored. Every time the routine is
called readin and readout move from one space to the next one. The stored time value is equal to actual time added to delay time (this is actually the time when the variable should be readout). For the readout of a value, the present time is compared to the stored time values until the same or the closest is found. The delayed variable value corresponding to this time or the value found by interpolation between the two closest times is readout as $X(N \times O)$. In case, the step-size is halved, the values that are discarded in the routine DSIM, are also discarded in XDEL.

XDEL (NXI, NXO, DELAY, T, JC)

$$
\begin{aligned}
\text { NXI } & =\text { input variable number } \\
\text { NXO } & =\text { output variable number } \\
\text { DELAY } & =\text { delay time } \\
T & =\text { actual time } \\
J C & =\text { subroutine call number }
\end{aligned}
$$

NOTE: XDEL should be considered as an equipment having an input and an output. Two different numbers should be assigned as input and output variables.

Figure 4. Flow chart of the delay routine, XDEL

ili. ANALOG AND digital Simulation of a nonlinear system

The system used for the simulation was a gas absorber. The analysis and the dynamic behavior are thoroughly discussed by Coughanowr and Koppel (7). They also developed an analog computer circuit to simulate the gas absorber. The description of the gas absorber, the assumptions made to simplify the modeling, and the equations describing the absorber are given in the Appendix $\mathrm{C}-1$.

The Problem Description

An air- SO_{2} mixture containing 2 mole percent SO_{2} enters the column at a flow rate of $V=0.051 \mathrm{lb}$ moles $/ \mathrm{min}$. of gas mixture. Pure water enters at the top with a rate of $X_{3}=0.4 \mathrm{lb}$. moles $/ \mathrm{min}$. The equilibrium relation at $25^{\circ} \mathrm{C}$ and 1 atm is:

$$
y=27 x-0.00324
$$

The holdup, same for each plate, is $\mathrm{H}=0.1666$. The liquid dynamics time constant for each plate is, $T C=0.1 \mathrm{~min}$.

For the gas absorber described above, the dynamic response of the column was found for the following step changes:

Run a. A step change from 0.02 to 0.0226 mole fr. SO_{2} was made in Y_{0}, all other conditions remaining the same.

Run b. A step change from 0.4 to 0.2 lb . moles $/ \mathrm{min}$. was made in X_{3} all other conditions remaining the same.

Analog Computer Simulation

A computer diagram for simulating the problem is shown in Fig. 5. The settings of the coefficients are shown in Table 2. The time scale factor β, has been set to 60 in order to slow down the response of the analog computer.

The procedure for getting the circuit into operation is given by Coughanowr and Koppel.

Fig. (6), and (7) show the response of X_{1} and X_{5} for changes in inlet gas composition and in liquid flow rate as described by Run a and b. As expected, the response of X_{5} to a change in concentrating was an overdamped second-order response and the response of X_{1} appeared as first-order. The nonlinearity of the system is seen in the response of X_{1} to the liquid flow rate change, where X_{7} dropped slightly before rising to its new steady-state value.

Digital Computer Simulation

The simulation was done by solving the differential equations using subroutine DSIM. The values of the variables were not changed in order to be able to compare the responses obtained by analog simulation with the responses of the simulation.

The main program and the results are given in Appendix C-2. Fig. (6) and (7) show the plotted results.

The perfect matching of the responses proved the

Figure 5. Computer circuit for the analog simulation of the gas absorber

Figure 6. Response of $X(1)$ to step changes in inlet gas concentration and flow rate (A) inlet gas concentration step change , (B) flow rate step change

Figure 7. Response of $X(5)$ to step changes in inlet gas concentration and flow rate (A) flow rate step change , (B) inlet gas concentration step change
capability of the executive system in simulating a system described by its dynamic equations. The next step was a successful simulation of the control of a process. This is shown in the next chapter.
IV. SIMULATION OF THE CONTROL OF A GAS ABSORBER

The purpose of this part of the research was to simulate the control of the gas absorber and to study the effect of the gain and time constant of the controller on the analog computer, and then simulate the same controller with the digital computer.

A proportional-integral controller was chosen because of the limitations of the analog computer used for this simulation and its relevant application to industry.

Along with the controller, a value having first-order dynamics with time constant T_{v} and gain K_{v} was used to complete the simulation. The values used for different runs are shown in Table 2.

Analog Computer Simulation

The computer circuit for the simulation is shown in Fig.
5. The values of the potentiometers are in Table 3.

The response obtained with the controller having $K=$ gain $=0.5$ and time constant $T_{I}=10 \mathrm{sec}$. was chosen as a reasonably good control action and higher and lower values of K and T_{I} were used to show the effect of the gain and the time constant. Plots showing these responses are in Fig. 8-12. Only the response of the variable X_{1} was plotted for the reason that X_{1} was the controlled variable.

Table 2: Controller and Valve Arguments for Different Runs

Run	K_{c}	T_{I}	K_{v}	$\mathrm{~T}_{\mathrm{v}}$
1	2500	0.1666	0.705	0.0833
2	2500	0.126	0.705	0.0833
3	2500	0.233	0.075	0.0833
4	3250	0.1666	0.705	0.0833
5	1750	0.1666	0.705	0.0833

Table 3: Values of the Potentiometers Used in the Simulation

Potentiometer	Value	Potentiometer	Value
1	0.1	12	0.1
2	0.141	13	0.4
4	0.1375	14	0.2
6	0.5	15	0.1666
8	0.05	16	0.1666
9	0.1375	17	0.1375
10	0.1666	18	0.1
11	0.43	19	0.1375
		20	0.1666

Digital Computer Simulation

The routines PICONTR and TRFN were used for the simulation of the controller, and the valve. These routines were called in the derivative section of the main program. The values of the gain and the time constant of the controller were kept the same as in Table 2. The results for these simulations were obtained and plotted. Fig. 8-12 show the responses of the variable X_{1}. The identical responses obtained for both cases show that the executive system can be effectively used as a tool to improve the control of a process.

A listing of the main program and the results are given in Appendix D.

Figure 8. Transient response of the gas absorber $\left(\mathrm{K}_{\mathrm{c}}=2500, \mathrm{~T}_{\mathrm{I}}=0 . \mathrm{I} 666\right)$

Figure 9. Transient response of the gas absorber ($\mathrm{K}_{\mathrm{c}}=2500, \mathrm{~T}_{\mathrm{I}}=0.233$)

Figure 10. Transient response of the gas absorber $\left(K_{c}=2500, T_{I}=0.126\right)$

Figure 11. Transient response of the gas absorber $\left(\mathrm{K}_{\mathrm{c}}=3250, \mathrm{~T}_{\mathrm{I}}=0 . \mathrm{I} 666\right)$

Figure 12. Transient response of the gas absorber $\left(K_{C}=1750, T_{I}=0.1666\right)$

V. DIRECT DIGITAL COMPUTER CONTROL OF A GAS ABSORBER

There are two approaches for digitally representing the conventional or electronic controllers. The first one is the position algorithm where the computer output is the corrected valve position, and the integration is done in the computer. The second one is the velocity algorithm, where the computer output is the change that the valve should have between sampling times and the integration is done by the final element. In this study, the position algorithm is used because of the limitations on the use of the velocity algorithm. Although, equations describing PID control are given in Appendix E-l only PI control action was used in order to compare the responses obtained with the responses already obtained from analog computer.
NOVA Computer Control of the Simulated
Gas Absorber with Fast Sampling Time

The input and output operations used between NOVA and the analog computer were done by using the Real-Time Subroutine Package developed by Stan Fukui (9).

The control of the system was done by sending a voltage signal representing the concentration X_{1} to NOVA from the analog computer, and sending back a voltage signal representing the value of the valve setting calculated by NOVA back to the analog computer. The valve was simulated in the analog computer as before, using the
same K_{v} and T_{v} values. A listing of the computer program used in the control is given in Appendix E-2.

A sampling time of $1 / 100$ of a second was found satisfactory for controlling the system as an analog controller.

Fig. 8-12 show the transient response of the DDC controlled absorber to a step change in inlet concentration. These runs were made by using the tabulated values of K_{c} and T_{I} listed in Table 2, for the same step input change of the concentration. The identity of the responses show that the control action of an analog controller is obtained by DDC control for fast sampling time.

Effect of Sampling Time on DDC Control

A very large sample time, such as 10 seconds was used in the control of the same process. The responses were obtained for different gains and time constants of the controller. The high oscillatory behavior of the control response is shown in Fig. 13-15. The gain and time constant values used in each case are listed in Table 4.

Simulation of the Effect of Sampling

Time with Digital Computer

The simulation of the effect of sampling time was done by using DPICON routine instead of PICONTR routine. The call was done in the plotting section and HPLOT was set to 0.1666 . The results were plotted and a perfect matching was obtained as it is seen in Figures 13, 14, and 15. A complete listing of the main program is given in Appendix E-2. It is seen that the executive system can be satisfactorily used in finding the performance of digital controller for different sampling times.

Figure 13. DDC Control with sampling time $=10 \mathrm{sec}\left(\mathrm{K}_{\mathrm{c}}=2500, \mathrm{~T}_{\mathrm{I}}=0.1666\right)$

Figure 14. DDC Control with sampling time $=10 \mathrm{sec}\left(\mathrm{K}_{\mathrm{c}}=2500\right.$, $\mathrm{T}_{\mathrm{I}}=0 . \mathrm{I} 26$)

Figure 15. DDC Control with sampling time $=10 \mathrm{sec}\left(\mathrm{K}_{\mathrm{c}}=3250, \mathrm{~T}_{\mathrm{I}}=0.1666\right)$

Table 4: K_{C} and T_{I} Values for DDC Control

$\frac{K_{C}}{1}$		$\frac{T_{I}}{2500}$
2		0.1666
3		3250

VI. FEEDFORWARD CONTROL OF A GAS

ABSORBER AND A FIFTH ORDER SYSTEM

Feedback control is based on the measurement of the controlled variable, its comparison with the desired value, and the use of the difference as a mean to compute an input to the process, in order to eliminate this difference. The feedforward control is based on the measurement of a variable which is subject to upsets, and the compensation of any deviation in its value by manipulating another input before the upset affects the controlled variable.

In practice, the feedforward control systems make energy and material balances to compute the necessary changes. The computer should be programmed in order to maintain the balances in the steadystate and also in transient intervals between steady-states. It must have a model of the process, consisting of a steady-state and dynamic parts. In this study both steady-state feedforward control and feedforward control with dynamic compensation were applied.

Steady-State Feedforward Control

In this partial feedforward control, the appropriate change in the manipulative variable is made only by considering the energy and material balances of the system. For nonlinear systems, the steady-state changes can be easily found numerically by using the nonlinear steady-state equations of the process. The differential equations representing the process are set equal to zero and the
resulting equations are solved for the manipulative variables as a function of the disturbed variables.

In this study a steady-state feedforward control of the gas absorber was done both by using NOVA computer as a controller of the system simulated on analog computer, and by simulating the gas absorber and the controller on the digital computer.

Control With NOVA

The computer was programmed to control the value of concentration X_{1} for changes in inlet gas concentrations by manipulating the flow rate of the liquid input. The derivation of the equation representing the relation between the flow rate and the inlet gas concentration is shown below.

The derivative equations of the gas absorber are set equal to zero,

$$
\begin{aligned}
& \frac{d X 1}{d t}=0=\frac{1}{H}\left(L_{2} X_{2}-L_{1} X_{1}\right)+\frac{V m}{H}\left(X_{0}-X_{1}\right) \\
& \frac{d X 2}{d t}=0=\frac{V m}{H}\left(X_{1}-X_{2}\right)-\frac{1}{H}\left(L_{2} X_{2}\right) \\
& \frac{d L 1}{d t}=0=L_{3} / T_{2}-L_{2} / T_{2} \\
& \frac{d L 2}{d t}=0=L_{2} / T_{2}-L_{1} / T_{2} \\
& \text { Where } L_{1}=X_{3} \text { and } L_{2}=X_{4}
\end{aligned}
$$

The solution of these equations by substitutions gives

Figure 16. Transient response of the gas absorber with steady-state feedforward control

$$
L^{2} x_{1}-L\left(v_{m} x_{o}-V_{m} x_{1}\right)-V_{m}^{2}\left(x_{0}-x_{1}\right)=0
$$

Using the quadratic solution technique,

$$
L=\underline{v_{m}}\left(x_{0}-x_{1}\right)+\sqrt{v_{m}^{2}\left(x_{0}-x_{1}\right)\left(x_{0}-x_{1}+4 x_{1}\right)}
$$

$$
2 x_{1}
$$

L is the flow rate that should be used to compensate the inlet gas concentration change.

Fig. 16 shows the transient response of the absorber to the step input change on the gas concentration. The fast return of the concentration to the set point value shows the successful use of feedforward control if the response of the system to a change is known.

Simulation of the Control

The equation describing the relation of the liquid flow rate with the gas inlet concentration was added to the derivative section of the simulation program. The listing of this program and the simulation results are given in Appendix F-2.

The results were plotted and found identical to the ones obtained by NOVA.

Feedforward Control With Dynamic Compensation

Different approaches have been taken to formulate the dynamic compensation, easy to apply to real processes (3), (8),
(10). The practical model suggested by Shinskey was implemented in this study.

The ratio D_{2} / D_{1} described in Appendix $F-1$ representing the dynamic elements of the system can be approximated by a lead-lag unit, if the dead-times for D_{1} and D_{2} are close enough to provide nearly complete cancellation. The output $m(t)$ of this unit follows a step input m as,

$$
\left.m(t)=m\left(1+\frac{\tau_{1}-\tau_{2}}{2} e^{-t / \tau 2}\right)\right) \text { where }
$$

τ_{1} is the lead time and τ_{2} the lag time. This can be digitally realized simply by iterative procedure. The differential equations for lead and lag units will be:

$$
\begin{aligned}
& n=y+\tau_{2} \frac{d y}{d t} \quad z=y+\tau_{1} \frac{d y}{d t} \\
& z=x+\left(\tau_{1}-\tau_{2}\right) d y / d t \quad \text { or } \quad \frac{d y}{d t}=\frac{1}{\tau_{2}}(x-y)
\end{aligned}
$$

where x is the input, y is the input lagged by τ_{2} and z is y led by τ_{1}. The differentials above must be written as difference equations because digital computers can only compute at every interval Δt. First, the value of z_{n} is calculated from the values of x_{n} and y_{n} for that interval

$$
z_{n}=x_{n}+\frac{\tau_{1}-\tau_{2}}{2}\left(x_{n}-y_{n}\right)
$$

Then, y_{n} is incremented before the next calculation of z_{n+1} :

$$
y_{n+1}=y_{n}+\frac{\Delta t}{\tau_{2}}\left(x_{n}-y_{n}\right)
$$

The NOVA computer was used to compute the corrective action from these equations and to send the voltage signal necessary to correct the step input change to the system simulated on the analog computer. As the next step, the system and the controller were simulated on the digital computer and the results were compared.

The Fifth-Order System

The steady-state feedforward and PI control of a system represented by its dynamic equations being already done, the simulation and control of a different system was developed. The system consisted of five tanks with first-order transfer functions. In the simulation of the process by the executive system, the process was approximated as a first-order transfer function with dead-time followed by another first-order transfer function.

Both analog and digital simulations of the system were obtained and results were shown in Appendix C-3. A block diagram showing the system is in Fig. 17. The time constant values and the dead-time value used in the approximation of the process were obtained from the response of the system to a step change as it is

Figure 17. Block diagram of the fifth-order system
shown in Fig. 19. Fig. 18 shows the computer circuit used in the analog simulation.

The necessary values used to determine the ratio D_{2} / D_{1} were obtained from the response curves of the system to step change in variables X_{1} and X_{2} as shown in Fig. 20.

The dynamic correction was obtained as:

$$
\frac{D_{2}(s)}{D_{1}(s)}=\frac{e^{-\tau_{0} s} /\left(1+\tau_{2} s\right)}{1 /\left(1+\tau_{2} s\right)}=\frac{e^{-\tau_{0} s}\left(1+\tau_{1} s\right)}{\left(1+\tau_{2} s\right)}
$$

where

$$
\begin{aligned}
& \tau_{0}=0.26 \text { seconds } \\
& \tau_{1}=0.11 \text { seconds } \\
& \tau_{2}=0.35 \text { seconds }
\end{aligned}
$$

Dynamic Feedforward Control With NOVA

The sampling time was chosen as 0.01 seconds for this control. The lead-lag function was realized as discussed above, and the action obtained was delayed for the time $\boldsymbol{\tau}_{0}$. The logic for delaying the values is shown below.

The maximum number of stored values was obtained by $N=($ delay time) $/($ sampling time)

The input values were stored in an array. At each sampling

Figure 18. Computer circuit for the analog simulation of the fifth-order system

Figure 19. Response of the fifth-order system to step changes

Figure 20. Determination of the parameters for dynamic feedforward control
time, the readin and readout was made on this array, represented schematically in Fig. 21. Each time, one value was readout, and its place was replaced by the new value. A computer listing of the computer program is given in Appendix F-3.

Fig. 22 shows the response of the process to a step change of magnitude 0.5.

Simulation of the Control

The simulation of the system was first made using the values obtained from Fig. 19. The results were plotted and the same response was obtained as the one obtained with analog computer. The calculations done for the control action were kept the same, and they were computed every 0.01 seconds by solving them in the plotting section. The dead-time of the process and the dead-time used in the control were successfully simulated by the routine XDEL.

The results of the control action were obtained for a step change of 0.5 in variable X_{1} and were plotted. Fig. 22 shows the response of the system. The similarity of the two responses obtained from NOVA and from the simulation, showed the successful use of the executive system.

Figure 21. Schematic for simple time-delay logic

Figure 22. Response of the fifth-order system with dynamic feedforward control to a step change in input

VII. AN ADVANCED CONTROL TECHNIQUE

Design of Control Algorithms Using Z - Transforms

The closed loop system of Fig. 23 can be approximated as a first-order-lag-dead-time which can be written in discrete form as follows:

$$
\frac{C(z)}{R(z)}=\frac{\left(1-e^{-T / \lambda}\right) z^{-N-1}}{\left(1-e^{-T / \lambda} z^{-1}\right)}
$$

where T is the sampling time
λ is the lag time
For a given process described as first-order-lag-plus-dead-time, the controller equation can be written as follows:

$$
\begin{aligned}
& G(S)=\frac{K e^{-\theta s}}{\tau S+1} \quad \text { (the process) } \\
& D(z)=\frac{\left(1-e^{-T / \lambda}\right)\left(1-e^{-T / \tau} z^{-1}\right)}{K\left(1-e^{-T / \lambda} z^{-1}-\left(1-e^{-T / \lambda}\right) z^{-N-1}\right)\left(1-e^{-T / \tau}\right)}
\end{aligned}
$$

or as

$$
D(z)=\frac{\tau}{\lambda} \frac{\left(1+\left(\frac{T}{\lambda}-1\right) z^{-1}\right)}{\left(1-(1-T / \lambda) z^{-1}-(T / \lambda) z^{-N-1}\right)}
$$

A detailed derivation of these equations is given in Appendix G-1.

Figure 23. Block diagram for a digitally controlled system

Dahlin's Method With NOVA

The transfer function describing the system is obtained from its transient response to a unit step change and it is:

$$
G(z)=\frac{e^{-0.25 s}}{0.35 s+1}
$$

The closed-100p response is formulated as:

$$
c(z)=\frac{e^{-0.25 s}}{(\lambda s+1)}
$$

Given these equations, the controller $D(z)$ was calculated for sampling time T equal to 0.05 seconds:
$D(z)_{1}=\frac{\left(1-e^{-0.05 / \lambda}\right)\left(-e^{-0.05 / 0.35} z^{-1}\right)}{\left(1-e^{-0.05 / \lambda} z^{-1}-\left(1-e^{-0.05 / \lambda}\right) z^{-5}\left(1-e^{-0.05 / 0.35}\right)\right.}$
or

$$
D(z)_{2}=\frac{0.35}{\lambda} \frac{1+\left(\frac{0.05}{0.35}-1\right) z^{-1}}{1-\left(1-\frac{0.05}{\lambda} z^{-1}-\left(\frac{0.05}{\lambda}\right) z^{-5}\right.}
$$

Since $D(z)=\frac{M(z)}{E(z)}$

M at each sampling time was calculated as:

$$
\begin{gathered}
M_{1}=\frac{\left(1-e^{-0.05 / \lambda}\right)}{\left(1-e^{-0.05 / 0.35}\right)}\left(E_{n}-e^{-0.05 / 0.35} E_{n-1}\right)+e^{-0.05 / \lambda}\left(M_{n-1}\right) \\
\quad+\left(1-e^{-0.05 / \lambda}\right) M_{n-5}
\end{gathered}
$$

or

$$
\begin{gathered}
M_{2}=\frac{0.35}{\lambda}\left(E_{n}+(0.05 / 0.35-1)\left(E_{n-1}\right)\right)+(1-0.05 / \lambda) M_{n-1} \\
\\
+(0.05 / \lambda)\left(M_{n-5}\right)
\end{gathered}
$$

The transient response of the system to a unit step change was obtained using different λ values such as $0.4,0.24,0.1$. Fig. 24 shows the response of the system.

The values of the error and M were stored at each sampling time because of the use of past values in the computation of M. A listing of the computer program is given in Appendix G-2.

The responses of the system using M_{1} and M_{2} were identical which showed either of the equation could be used.

Figure 24. Response of the fifth-order system for different λ values

Simulation of the Control

The system was simulated as a first-order-lag-plus-deadtime and the control equation M was calculated for every 0.05 seconds. A block diagram showing the system is given in Fig. 25. The control action was calculated in plotting section and HPLOT was set to 0.05 . A complete listing of the program is given in Appendix G-2.

The results obtained for $\lambda_{1}=0.4, \lambda_{2}=0.24$ and $\lambda_{3}=0.1$ were plotted and the responses were found very close to responses obtained with NOVA. Fig. 24 shows the transient responses plotted.

Figure 25. Block diagram of the fifth-order system with DAHLIN's control algorithm

VIII. CONCLUSIONS

An executive system for simulation of dynamic systems and their control was developed. The routines were explicitly tested using different simulation and control techniques. The simulation results of two different systems using conventional and modern control techniques were compared with results obtained from analog computer and NOVA minicomputer for the same systems, and exact agreement was observed in all of the examples. These results demonstrated that the executive system has performed reliable simulation of dynamic systems with or without control. The simplicity of the routines and the ease of implementation on a process control minicomputer make this executive system a useful tool for laboratory and industrial use.

BIBLIOGRAPHY

1. Johnson, A., Dynsys Manual, McMaster University, (1971).
2. Franks, R. G. E., Modeling and Simulation in Chemical Engineering, Wiley-Interscience, (1972).
3. Murrill, P. W., Automatic Control of Processes, Intext Educational Publishers, Scranton, Pa., (1967).
4. Smith, L. S., Digital Computer Process Control, Intext Educational Publishers, Scranton, Pa., (1972).
5. Evans, B. L., A Computer Program for Dynamic Simulation, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
6. England, R., Computer Journal, V. 12, pp. 166-170, (1969).
7. Coughanowr, R. D., Koppe1, B. L., Process System Analysis and Control, McGraw-Hill, New York, (1965).
8. Luyben, W. L., Process Modeling, Simulation, and Control for Chemical Engineers, McGraw-Hill, New York, (1973).
9. Fukui, C. S., Development of a Real-Time Digital Computing Facility in Chemical Engineering, Master Thesis, Oregon State University, (1977).
10. Shinskey, F. G., ISA Journal, pp. 61-65, November, (1963).
11. Shinskey, F. G., Process Control Systems, McGraw-Hill, New York, (1967).
12. Lapidus, L., Luus, R., Optimal Control of Engineering Processes, Blais dell Publishing Co., p. 61, (1967).
13. Cox, J. B., Hellums, L. J., Williams, T. S., Banks, R. S., Kirk, G. J., ISA Journal, pp. 65-72, October, (1966).
14. Dahlin, E. B., Instruments and Control Systems, V. 41, pp. 77-83, June, (1968).
15. Chiu, K., Corripio, A. B., Smith, C. L., Instruments and Control Systems, pp. 57-59, October, (1973).

APPENDICES

APPENDIX A-1

Example Problem for the Use
of the Executive System

Photochemical Reaction carried out isothermally in a CSTR From L. Lapidus and R. Luus (12)

The molecular equations for the interactions of species A, B, C. D, E, F, and G are given by,

$$
\mathrm{A}+\mathrm{B} \xrightarrow{\mathrm{~K}_{1}} 2 \mathrm{D}
$$

$$
\mathrm{C}+\mathrm{B} \xrightarrow{\mathrm{~K}_{2}} \mathrm{CB}
$$

$$
\mathrm{CB}+\mathrm{B} \xrightarrow{\mathrm{~K}^{*}} 3 \mathrm{E}
$$

$$
\mathrm{E}+\mathrm{D} \xrightarrow{\mathrm{~K}_{3}} 2 \mathrm{~F}
$$

$$
\mathrm{F}+\mathrm{A} \xrightarrow{\mathrm{~K}_{4}} 2 \mathrm{G}
$$

$C B$ is an intermediate which is present in immesurable quantities, so;
$\frac{d(C B)}{d t}=0$
Desired parameter values are:
$K_{1}=17.6 \quad K_{2}=73.0 \quad K_{3}=51.3 \quad K_{4}=23.0$
K^{*} very large $F_{1}=3.00 \quad F_{2}=4.75 \quad F_{3}=1.25$
$I=0.60$
where
K's are the reaction rate constants
F's are inlet feed rates
I is light intensity

The rates of reaction can be written for all components in terms of the system parameters and rate constants. After simplification one obtains:

$$
\begin{aligned}
& \dot{x_{1}}=F_{1}-F x_{1}-k_{1} x_{1} x_{2}-k_{4} x_{1} x_{6} I^{\frac{1}{2}} \\
& \dot{x}_{2}=F_{2}-F x_{2}-k_{1} x_{1} x_{2}-2 k_{2} x_{2} x_{3} \\
& \dot{x}_{3}=F_{3}-F x_{3}-k_{2} x_{2} x_{3} \\
& \dot{x}_{4}=-F x_{4}-2 k_{1} x_{1} x_{2}-k_{3} x_{4} x_{5} \\
& \dot{x}_{5}=-F x_{5}+3 k_{2} x_{2} x_{3}-k_{3} x_{4} x_{5} \\
& \dot{x}_{6}=-F x_{6}+2 k_{3} x_{4} x_{5}-k_{4} x_{1} x_{6} I^{\frac{1}{2}} \\
& \dot{x}_{7}=-F x_{7}+2 k_{4} x_{1} x_{6} I^{\frac{1}{2}}
\end{aligned}
$$

with initial conditions:

$$
\text { at } t=0, x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{6}=x_{7}=0
$$

A listing of the main program used in the calculations is given on the next page. Also, results are given for the case having values as follows:

HPRINT $=0.1$
HPLOT $=0.0$
HMIN $=0.001$
TMAX $=1.5$
$E R R=0.0001$

```
    #8GGGEgAM=1
    GmMG/VAL/X(AD),G(IG),GETEP
```



```
    TGETHERMAK_Y IN A ESTR
    GMEMGTOM E(1%)
```



```
    |
```



```
    T=0,0
        0! % 4 = %:7
        E(M)=0.0
        G X (M)=0, 变
```



```
    HETE(G1,20%)
```



```
    1 4, (%(6)'4X9X:7%')
```



```
        昭:TAE%
```



```
    \a-i, - %
    Z =Ft+EZ-EZ
```



```
        G(S)=Ez-E*X(E)-K(z*x(2)*X(S)
```



```
        G(G)=-5* (5)+马,*rZ*X(2)*Y(3)-kS*X(4)**(3)
```



```
        G-5 %
```



```
    \therefore GT T 10
    G GMTIME
        EN
```

0.1
0.001
1.5

か．ロめが

T	$X(1)$	$x(Z)$	$x(3)$	$x(4)$	$x(5)$	$x(6)$	$x(7)$
0	9	9	0	0	9	0	0
． 100000	． 17216	．ここのに7	． 104877	． 04606	． 07642	－ 0895	． 00077
.20000	． 20458	． 24003	． 94762	． 06858	． 16571	． 06665	．01752
． 30000	． 20047	． 24377	． 04635	． 07512	． 17797	． 11479	． 05472
． 40 ¢0¢	． 174 ス2	． 24630	－ 04645	． 09352	．179ヲた	.13173	． 08087
． 50000	． 19114	． 24795	． 04620	． 09175	． 18187	． 13635	． 09865
． 60000	． 13.97	． 24381	． 04695	． 09080	． 18307	． 13738	． 08938
． 7 0000	． 1897	． 24721	． 04577	． 89089	．13373	． 13759	.10170
.800003	． 13743	.24739	． 194596	－ 0 － 9 －	． 18402	． 13764	． 10261
	． 18738	． 24744	． 04594	． 89 916	.18414	． 13766	．10297
1． 6000000	． 18936	． 24747	． 94594	． 07014	． 1841%	． 13766	． 10311
1．100000	． 13935	． 24948	． 04594	．07013	． 15421	．13767	.10317
1．20000	． 18735	$.2474 \%$	． 64594	． 07013	．1842て	． 13767	.10317
1．30006	． 12935	． 24947	． 04592	． 07613	． 13422	． 13767	． 10820
1．40000	． 13935	． 24749	． 04.473	． 07612	． 13422	． 13767	． 10 ここ0
1．50000	． 13935	． 24747	． 04593	．07012	． 13422	．13767	． 10320

APPENDIX B-1

Listings of Executive Library System Routines

EUERDUTINE [ISIMSN, T, HFFINT, HFLIT, H, HMIN, TMAX, EFFR, E, 1 IEFF, ITAEF)
GOMMHVAL! $x(10), F(10)$, GETEF
G THIE EUEFOUTINE EGLVES A EYETEM DF DFDINAFY FIFET DRDER
 LIMENEION EAVEX(10), GAVEXZ (10), AK (10, 10), E(10)
IF (ITASK) 玉,
\Leftrightarrow G0 TO $(101,102,105,104,105,106,107,109,109,110,111,112,113$
1)FETEF
5 IEFREO
AECUM1 $=0.0$
ACOUMZ=0. 0
INEIEX $1=0$
INDEXZ-0
-: THE EEGTION FOR THE EALDILATIGN DF THE ETAFTING ETEF EIZE
$\mathrm{HH}=\mathrm{H}$
$\mathrm{H}=\mathrm{HFLGT}$.

IF (HFF:INT. ED O. O: GOTO $1:$
IF (HFLOT. EO O. O) EOTO 7
IF (HFFINT-HFLIT) $7,13,13$
7 H=HFFINTI.
GTO $1 马$
E IF (HMIN EO O. O. ANE HH EO. O. O) 12.9
O IF (HMIN EQ. O. O. ANII. HH. NE O. O) 11,10
$10 \mathrm{H}=\mathrm{HM}$ IN
ETOM 18
11 HFH
Tin T! 13
$12 H=O .1$
E
\square FIFET FAES
1Ξ ITAEK $=1$
KETEF=1
FETIIFN
\square
\square EEGOND FMES
101 ITASK =
FSTEF=:
FETUFN
\square

```
ETH FAGE ANL THE LINIG TI DEEIIEE FOS FFINTINE
    102 IF(HFRINT. ENO.0) GiO TIG 11E
        IF(HFFINGT. GT. TMAX) EOIG TO 10:
        IF(AES(ALCHM1-HFFINT).LT. 1. E-9) 1&,17
        16 INGEX 1=0 &ACOUN11=0.
        17 ACLH1=ACLIM1+Z*H
            IF(ALOUM1. LE. HFFINT) EIO TD 1E
            IF(AES(AOCIM1-HFRINT). LT. 1. E-G) IVIN TE
            HLAST=H कIH=2
            H=(HFFINT-ACIMM1+Z, 淔)/2.
            NCGIM1=HFFINT
        1: IF(INREX1. EG O) 117,10G
    117 INLEX1=1
    11E ITAEF=O
        GETEF=\Xi
        FETIFN
\square
```



```
    103 IF(HFLOT, EG. O. O) BIG TG 121
            IF(HFLGT. GT. TMAX) EIG TIG 104
            IF(AES(ADIBM-HFLOT). LT. 1. E-F) 1%,20
        1% INLEXZ=0 क AROUNZ=0.
        ZO ABUUMZ=ACOUMZ+Z, たH
            IF(fGQ|Mz. LE HFLOT) BIO TG Z1
            IF(AES(AGCUMZ-HFLOT). LT. 1. E-G) EOG TG Z1
            IF(IH.EGZ Z) EOTOZ1
            HLAST=H & IH=Z
    2%1 HADCUMz=H
            H=(HFLOT-ACLUMZ+Z,*H)/Z
            ACGUMZ=HFLOT
```



```
        Z1 IF(INDEKZ.EQ. G) 12O,104
    120 INCEY: }2=
    1Z1 ITASK=4
        GETEF=4
        FETUFN
E: STH FAES AND THE GHEGK FOR THE END DF THE EOLIILATIONE
    104 IF(!TMAX-T). IT. 1. E-G) GOTVO
        ITn=\=E
        6GTEF-5
        SETIEN
```

```
    105 EOMTINUE
C
E EALGILATION EEGTIGN
E
E FIFET ETEF
        2S T-T+H/Z
            EQ %4, l=1,N
            EAVEX(.1)=X(.1)
            AN(6,1,1) =F(.1) KH
            E(.1)=-AE(.1,1)
        Z4 X(.1)=5AMEX(.1)+0.5*AK(.1,1)
            ITAE&=2
            FSTEF=6
            FETUFN
E ZNLE ETEF
    10G [M 25 ,=1,N
            AK(,1,Z)=F(,1):H
        25 x(.1)=SAVEX(.J)+0. ZS* (AK(.1,1)+AK(.1,Z))
            ITABE=Z
            &GTEF=7
            EETIFNN
E GEL ETEF
    107 T=T+H/2
            [1012%,I=1,N
            nk(.1, O)=F(.1) kH
            X(,1)=SAMEX(.1)-AK(.1,2)+2. הAK(,1, 3)
```



```
            ITAEK=Z
            GETEF=S
            RETINW
# TTH STEF
    108 [10 27 ,=1,N
            AK(.1, 4)=F(,1) :H
            E(,1)=E(.1)+17. #AK}(.-1,4
```



```
        27 GNVEKZ(.-1)=x(.1)
            ITAEF=Z
            CETEF=%
            RETIFN
E STH ETEF
    109 T=T+1//2.
        [G) 2G =1,N
```

```
            AF(a, 5, 5)=F(,1) %H
            E(,1)=E(,1)-2B, *AF(, 1, 5)
```



```
            ITAS<=%
            FGTEF=10
            FETIIFIN
G}\quad\thereforeTHETE
    110 Dn 20, -=1,N
            AK(?,1, 6)=F(,1) KH
        Z,
            ITAS*=Z
            KGTEF=11
            FETIIFN
    I: FTH ETEF
        111 T=丁 T+H/ =
            [IIOO, O=士,N
            AE(,I, 7) =F (, 1) FH
            E(,1)=E (,1)+4. *1% (, 1, 7)
```



```
            ITAS**=Z
            GSTEF=12
            FETUFN
E: EHEEL FGF THE EFRIOF ESGIMATE
    11Z [O| =1=1,N
            AK(,1, E
            E(.1)={E(,1)-A!<(,1, B)),
            IF(AES(E(.l)). GT.EFFF) GiIN TOZ S
E: ETH ETEF
        Z1X(,1)=SMUEXQ(,1)-AK(,1, &})+2,ZAF(,1,7
```



```
            WFITE(G1,1010) T
    1O1O FGFMAT:" EF" EFFF.EAN EE GETAINELIFDFG H. BE.HNIN ATT- T= "
        1 E11 旨)
            IEFFF=O
            GIOTE #4
E: EEGTIGN FGF HALVING THE STEF EIZE ANLG EIVING TG THE
E: VAFIAELEE THEIF: FFEEELIENT vALIIES
    # IF(IERF. EG 1) GOITG #4
            T= 矢-H**
```



```
            ASOHE=ACOUNO-H
```

```
            [IG S,M=1,N
            X(.,_1)=SGUEX(,1,1)
        ZF(,1,1)=AK(, 1,1, 1),H
            H=H%
            IF(H. SE. HMIN) EIG TEI 14
            ACOMM1=ACOUH1-H%2. +% *HNIN
```



```
            H=HMIN
            IEFE:=1
            WFITE(G1,1000) T
    1OOO FQFMAT:" H. LT. HMIN FGR SFEGIFIEG EFFNR AT T="
            1 E11. 5;
        14 INEIEX:=1
            INJEEX:=1
            IH=1
            GIM TE Z
        34 EOWTINDIE
            ITAC*゙=Z
            GTEF=13
            FEETIIFNW
E GTH STEC GNL THE LGIG: FDFR [UOLELNG THE ETEF GIZE
    11与 [! S , 工=1, N
            AE(,1,G)=F(,1)+H
```



```
            IF(AEG(E (.1)/EFF). GT. O.OO1; BIOT TOG
            GENNTINIE
            IF(IH. EDE Z) #7, #
    ET H=HLLAST
        IH=1
        GO
    # H=2, +H
    GM TG 1E
    #%F(IH, EOZ-20,41
    10:H=HLAGT
        IH=1
    41 %OM
        ENL
```

```
    EMEFGHITINE TFFN(NXI,NXI,TE,BAIN,N
    EGMMIN,VAL, }X(10),F(10),FETE
    M=NXO-N-1
    I口1 I I=NK口,M
    II=|M-I+NXI
    II=IO+1
    IF:I.EG.NXG) II=NXI
1F(IG)=(GAIN+X(II)-X(II))/TE
    FETI|FRN
    ENLI
```

EUEFDUTINE TFFZ（NXI，NXG，TE，［1FWF，EAIN，TEZ）
EDVIGN／VAL／X（10），F（10），F゙STEF
IF（TE－LT．1．E－G）1，：
$1 A 1=1 .\left(T G_{0}+\underset{y}{*}\right)$

$\because N X[1=N \times D+1$

$F(N, G)=X(N X L I)$
FiETUFN
$\because A 1=1 . \quad(T I G T O)$
AI＝（TEトTEZ）（Tに＊Tに
GiO Til 2
Ericio


```
EOWm|NGAL, X(10),F(10),F゙ETEF
FANHE=AES (FIAN-ZFi
YN=X(NXI)
IF(K(NXI). ITT. FIAN) YNS=FIANS
IF(X(NXI).LT. ZFi) YN=ZFi
EFF:=100. *AUT* (YN-EF)/FANSE
X(NX目)=100. FFE&EFEFHYMR
IF(X(NXG).LT.O.0) X(NX口)=0.0
IF(X(NXOG).ET. 1OO.) X(NXOI)=100.O
FETIMFN
ENTI
```



```
GOMMDN,YAL! Y(10),F(10),F゙GTEF
FANNIE=AE: (FIAN-ZFS
YI= (N, NXI)
IF(X(NXI).LT.ZF') YI=ZF
IF}(X(NYI). EiT. FIGN) YI=FIA
EFF=10O.*AGT*(YI-GF)/FANGE
NX[I=NXI +1
F(NXII)=EFFF:*FT*100, FFE
IF (X(NX[I).LT.O.) X(NX[1)=0.0
IF(X(NXII). GT, 100, ) X(NXII)=100.
X(NXOI)=100.,FEEEFFR+Y(NY[I)
IF(X(NXO).GT, 100.) X(NXO})=100
IF(X(NXOI).LT.O.) X(NXIO)=0.
FEETIFNN
ENLI
```



```
    EMNHDN`AL, X(10),F(10),F゙ETEF
    'I=100. 隹(X(NXI)-ZF)/AES(FFAN-ZF)
    IF(YI.LT.G.) YI=O.
    IF!Y', ET, 1OO. ) 'YI=100.
```



```
    IFLAE:=1
    N:LL=NXI+1
    X(NYL)=YIた(1./FiA-1.)
1YI=FAA%(YI + (N(NKL):
    F(NYL)=(YI-Y[I)/FIT
    UNGF=10G * (EF-ZF: /AEG (FIAN-ZFO)
    EFR=(YO-VNGF)*FAT*10O.,FE
    NK[I=NXL+1
    IF!X(NX[1).LT.O.) Y(NX[1)=0.
```



```
    F(NX[I)=EFFFたFFFT
    \therefore(NXG)=EFFF+X(NX[I)
    IF(X(NXG).LT.O.) X(NXOU=0.
    IF (X(NXG).GT. 100. ) X(NXO)=100.
    FETILFN
    END
```

EUEFIUTINE DFICOW (NXI, NXO, ZR, FAN, EF, ACT, FE, TI, IELT)
EOMMONAVAL, $\times(10), F(10)$, KGTEF
LOMMIONESGME(10)
\square
$Y I=X(N X I)$
$I F(X(N X I) . L T . Z F) \quad Y I=2 F$
$I F(X$ ($N X I$). GT. FAN $) Y I=F A N$
:
$E F F=A C T H(Y I-E F)$
\square
GUME (NXI)=SIME (NXI) +EFRF
$X(N X D)=100$. $F E F(E F F+G D E(N X I) * T I * D E L T)$
E
FETLIFN
END
\square
EUEFIUITINE LFIDICN(NXI, NXG, ZF, FAN, EF, AET, FE, TI, TF, DELT)

1 KEFF (NXI, I) = XEFR (NXI, N) FETUFN
ENLI

```
    FLNQTIGN STEF(T,A,E,X1,XZ,XO)
    IF((A-T). IT. 1. E-G) 1,Z
OTEF=X1
FETIIFN
Z IF(E. EO.O. SIG TR Z
    IF!(T-E).ET, 1.E-G) 4, Z
\Xi STEF=%%
    FETLIEN
{G7EF=NE
FETMFN
ENLI
```

FINETION FEAK (T, A, E, X1, X2, X X)
IF ($(A-T)$ GT. 1. E-9) 1,2
1 FEAK $=\mathrm{X}_{1}$
FETIIRN
$\geq A E=A+(E-A) / 2$.
IF ((AE-T). БT. 1. E-9) $\mathrm{E}, 4$
$3 \mathrm{FEAK}=X 1+(X 2-X 1) *(T-A) /(A E-A)$
FETURN
4 IF ((E-T: GT. 1. E-G) 5OTO 5
FEAK=XE
FETUFN
5 FEAK $=x 2+(X B-X Z) \div(T-A E) /(E-A E)$
FETIIRN
ENLI

FUNGTIDN EFULSE (T, A, E, X1, XZ, XG)
$\operatorname{IF}((A-T)$. GT. 1. E- 9$) \quad 1,2$
1 GFULSE=K1
RETIIRN
\geq IF ($\mathrm{E}-\mathrm{T}$) GT. 1. E-G) GTIS EFILSE=X FETURN
$\because \mathrm{FI}=\mathrm{E} .141592$
$\mathrm{BFLLEE}=(X 2-X 1)$ r:IN $(F I /(E-A) *(T-A))+K 1$ FETIRN
ENL

```
    BI!EFSI!ITINE EGNU(X,Y,NF,NG:)
    IIMENSIGN XA(10), YA(10)
    IF(AES((X-Y)r(X+Y)).LT..OOG1) GIG TGG
    IF(NN:LE.1) Ei_ TB E
    XT=(XA(NFi) &Y-YA(NFi)&Y)
    XA(NFF)=X
    YA(NF:)=Y
    K=XT
    FETIIFN
5 XA(NF: )=X
    YA(NFi)=Y
    X=Y
    NL=C
    FETMFN
GYY
    N
    FEETIFNN
    ENLI
    FLNIGTIGN ETEF(T,A,EI,X1, XZ, XZ)
    IF((A-T).ET. 1. E-G) 1.Z
STEF=Y:1
    FETIIFIN
IF(E.EO.O. TOM TG Z
    IF((T-E). BT. 1. E-9) 4, Z
\XiTEF=X:
    F:ETIIFN
& STEF=Y:
    FIETIIFN
    ENDI
```

```
    FINNGTIN FIN(A,N,X,Y)
    GINENEION }X(10),Y(10
    IF (A-Y(1)) 5, S, %
GIF(N-X(N)) 1,Z,Z
Z FBN=Y(N)
    FETHFN
G FlN-Y(1)
    FETIFRN
LHZ S I=2,N
    IF\A.LT.X(I)) TIO TIG}
G CONT INUE
\prime II=I-1
    FIN=Y(II)+(A-X(II))*(Y(I)-Y(II))/(X(I)-X(II):
    FETIFRN
    ENLI
```

```
    EMEFIDITINE VALVE(NXI,NXI,F1,FQ,LV,FT,VI,F%
```



```
    EF=X(NXI)
    FLI=AES(F1-F%%)
    IF(CLILT. 1. E-O) SiOTIT
    ETG (1,Z, E) &T
1 A=SF%100.
    EiO TE| 4
ZA=F早EXF(-SF*ALO|(F):/100.
    GiO TE 4
ZA=FigSTST(SF)/100
4 IF(I_U.EG.O) EIG TG
```



```
    FETIIFIN
```



```
    EETIIFN
```



```
    FETOIENN
7 \{NX口O=0.0
        FETUFNA
        ENEI
```

EUEFRIUTINE XDEL（NXI，NXG，DELAY，T，NE） EIMMDNAAL X $(10), F(10)$, KTEF ［IMENEION XA（25，ZOO），TIME（25，ZOO），MM（Z5），NN（25）

THIE GUEFOUTINE LELAYG THE VAFIAELE $X(N X I)$ FGF A EEFTAIN Time fefigli，ielay．The gutfult is the ielayed VAFIAELE X（NXI）．
$X A=T W G$ IIMENEIONAL AFFFAY TG STORE ETATE VAFIAELEE
$\therefore(N X I)=I N F I I T$ TG ETGFE

DELAY＝DIELAY TIME
$T=T I M E$
GOEUEFIOITINE NUMEER
$M=N+10$（
$N=N N(\operatorname{HC})$
IF（T．LE．O．O）EiO TTI 1
IF（KETEF．EQ G DF KETEF，EQ E）GiO TG
IF（KETEF．EQ 1O GF．ESTEF．EQ 12）GIG TO

IF（AES（TIME（NE，M）－T）．LT．1．E－9）Tila 100

IF（（TIME（，IL，M）－T）．GT．1．E－9）VO TO 300
$1 M=1$
$\mathrm{N}=1$
IFLAG＝1
［1］ $13 \mathrm{I}=1,200$
$13 X A(N G)=K(N X I)$
$X A(N, N)=X(A X, I)$
TIME（．IL， N ）$=$ T＋IIELAY
$X(N \times D)=X A(N G, N)$
$\mathrm{M} \mid \mathrm{N}(\mathrm{CO})=\mathrm{M}$
NH（SIC）$=\mathrm{N}$
FETIEN
$2 \times(N X 日)=x A(. \pi=200)$
IF（KSTEF．EG．1玉）TOG TG
$N=N+1$
IF（NEE 201） 21,22
21 WFITE（ 61,1000 ）

```
    1000 FGFMAT(1X," [IIMENSIGM FGF ETGFAGE GHD|LIE EE MADE LAFGEF")
        CALL EXIT
        2Z YA(SIG,N)=Y(NXI)
        TIME(.NE,N)=T+LIELAY
        IM=N-1
        IF(TIME(.NG,N).LT.TIME(,NG,IM)) 20, %
        20 N=N-3
        XA(.NO,N)=X(NXI)
        TIME(.NQ,N)=T+[IELAY
        3 M(NT)=M
            NN(N一N
            FETIIRN
E
E EHECK FGF THE STEF
    100 50 TOG S,55,3,3,3,3,4,3,5,3,6,3,7)HETEF
```



```
            IF(N.LT.4) N=200+N
            IF(M.LT. E) M=200+M
            H=N-S
            M=M-Z
            IFLAG=1
            G0] TG 10
        S X(NXO)=XA(,N,M)
    5 5 N = N + 1
            IF(N.EQ.2O1) N=1
            M=M+1
            IF(N.EQ 201) N=1
            XA(NG,N)=X(NXI)
            TIME(.NE,N)=T+[IELAY
            MM(NO)=M
            NN(,N
            FEETUFH
        6 IFLAG=2
            GOTS
        7 IFLAG=1
            X(NXG)= XA(.NT,M)
            FETUFH
E
E: SEAFOH FOF THE EXAGT TIME WHIOH IE EOUAL TG AGTUAL TIME.
C
    200 RMON+100
    IMI E I=M,NM
```

```
        I I=I
        IF(I. ITT. 200) 14,15
    14 II=I-2OO
```



```
        E EONTINUE
        GTLI=TIME(.NI, II)-T
        KI=II-1
        TLZ=TIME(.NG, II ) TINE(.NG, KI )
E LINEAF INTEFFFGLATIGN
        XX=XA(.IE,II)-(XA(,N,II)-XA(NL,KI))*TLI/TLZ
        XA(,IE: I I ) = Y X
        TIME (.IL, I I )=7
        N-II
        GTOTLOO
Z
E
    300 KG=M+100
    LOL 1: 
    KN=2*M-K-1
    IF(FN. LE. 1) EIG TE 100
```



```
    11 EDNTINLIE
    12 TG1=T-TIME(.NO,NN
    FNH=F゙N+1
I: LINEAF: INTEFFGLATIGN
```



```
    TIME(,IE,FN)=T
    XA(.NO,NN})=X
    M=rN
    GOTG 100
    EN[D
```


APPENDIX B-2

Sample Problem for Testing Some of the Executive Library System Routines

```
            FFOGRAM GAGE
            GOMMEN/VAL/ X(10),F(10),KETEF
            IIMENSIGN E(1%),SFA(10),AVA(10)
            FEAL K
```



```
            * 97.,1百召.)
```



```
            * E4..1昌召)
I-
INITIAL ENIITIDNE ANE FARAMETEFE
TW=40.0 尔 FW=6%77.0
TEO=0.0
```



```
NE=1
```



```
    x(5) =TEM=70.0
```



```
    X(7)=SF=60.0
    FE=1%.0 क FFFM=0.5
    FEI=30.0
    10 EALL [GIM(S,T,HFFINT,O.,G.,HMIN,TMAX,ERF,
    * E,IEFFi, ITAGH,
    GTO(1,Z,S,4,5) ITASK
    GGTG 10
    2 EALL TFFN(4, 隹,2,1.0,1)
    GALL FIGONTF(5,7,30.,130.,7%.,1.,FE,FFM)
    EALL TFFZ(%,7,0.1,1.0,1.,TEZ)
    AV=F|NN(X (7),10,EFA,AVA)
    GFW=&0.*AV*SOFT (40.-F!口)
    F[1=0. - E - 5*FW**1.t+15.
    GALL LDNV(FD,F[IL,1,NL
    IF(NE.E日.Z) G口TG&
    K=2.5%E5*EXF(-50%g./(X(4)+27%.))
    Fi=ki*X(1)* X(2)
    G=4.E4*(X(Y)-X(4))
    F(1)=-F
    F(z)=-F
```



```
    @口TOTO
    #WFITE(G1, 100) T,X(4),X(#),X(1), X(5),X(g),X(7),AV,FW,F[1
10% FGFMAT(F10.4,2X,5E12.E/12X,GE|Z.\Xi)
    4 GITI 1%
    E EONTINUE
        ENC:
```

Case Study : Temperature Control of a Batch Reactor

The exothermic reaction $A+B \longrightarrow C+D$ is carried out in a jacketed reactor. A variable flow of cooling water F_{w} passes through the jacket entering at a temperature of $\mathrm{T}_{\mathrm{ji}}\left(40^{\circ} \mathrm{C}\right)$

The control of the temperature is obtained using the following data:

1. Total volume of the liquid $=30 \mathrm{Ft}^{3}$, no density change with reaction
2. Initial charge: 30 moles A 24 moles B
3. The reaction rate is second order, proportional to the concentration (mole/ Ft^{3}) of each component. The rate coefficient is $\mathrm{k}=2.58 \cdot 10^{5} \cdot \mathrm{e}^{-5000 / \mathrm{T}\left({ }^{0} \mathrm{~K}\right)}\left(\mathrm{Ft}^{3} / \mathrm{min}\right.$ mole $)$
4. The heat of reaction is $10.8 \cdot 10^{4} \mathrm{PCU} / \mathrm{mole}$ of A or B reacting and the average heat capacity of the reaction mass is $300 \mathrm{PCU} / \mathrm{mole}{ }^{0} \mathrm{C}$
5. The overall heat transfer coefficient between jacket and reactor contents is $4000 \mathrm{PCU} /{ }^{\circ} \mathrm{C}$ min. The heat capacity of the water in the jacket is $2000 \mathrm{PCU} /{ }^{\circ} \mathrm{C}$.
6. The pressure drop across the jacket is a function of the coolant flow F_{w} : $\mathrm{P}_{\mathrm{D}}-\mathrm{P}_{0}=0.2 .10^{-} 5 \mathrm{~F}_{\mathrm{w}}^{1.6}$
7. Upstream pressure PU :40.PSIA
15.PSIA
8. Control valve $\mathrm{CV}: 6000\left(1 \mathrm{bs} / \mathrm{min} \mathrm{PSI}^{\frac{1}{2}}\right)$

The area characteristics are given as:

$\%$ stem position	valve area \% open
0	0
20	4
40	13
55	20.5
67.5	30
77	40
86	55
93	71
97	84
100	100

9. The thermowell can be approximated by a first-order response with a 0.2 min time constant
10. The dynamic response of the valve follows a second-order response ; i.e,

$$
\frac{\text { OUT }}{I N}=\frac{1}{0.01 s^{2}+0.2 s+1}
$$

11. Control instrument has a range of $30-130^{\circ} \mathrm{C}$

Its proportional band is 10.0 and its RPM(repeats per minute)
is 0.5 .


```
    E.00000E 01 2.4300%E 01 6. 37597E 0% 1.77591E g1
```



```
        5.75E71E 01 2.35862E 01 6.79507E 0% 1.7707:E 01
```



```
        5.47587E %1 2.0.794E 01 5. S4768E 03 1.71291E 01
```



```
        5.33S45E 01 1.96673E 01 5.65にす0E 03 1.70191E 01
```



```
        5.3%E00E 01 1.7%G00E 01 5.7435%E 03 1.70GSEE 01
    .6000 7.201ESE 01 6.75.S0E 01 9.45.722E-01 7.07077E 01 6.6016tE 01
```



```
    .E00% 7.32767E 01 &.76706E 01 %.27S0EE-01 7.20275E 01 E.05E&GE 01
        6.71t73E @1 2. 77471E 01 8.24007E 03 1.36857E 01
```



```
        7.37807E 01 S.66114E 01 9. 34790E 03 1.7%021E 01
```



```
        E.05645E O1 4.5740SE 01 1.1ES1SE 04 2. 15752E 01
```

APPENDIX C-1
The Gas Absorber

The gas absorber consists of two plates, where air containing SO_{2} gas is contacted with fresh water in order to remove part of SO_{2} from the gas.

The symbols used in the formulation are:
$H=$ holdup for each plate
$T C=$ the liquid dynamic time constant
$V=$ flow rate of air $-\mathrm{SO}_{2}$ mixture
$X=$ concentration of liquid
$Y=$ concentration of gas
Fig. 26 shows the gas absorber described. The dynamic equations of the system are:

$$
\begin{aligned}
& \frac{d X(1)}{d t}=\frac{1}{H}(X(4) X(5)-X(3) X(1))+\frac{V m}{H}\left(X_{0}-X(1)\right) \\
& \frac{d X(5)}{d t}=\frac{V m}{H}(X(1)-X(5))-\frac{1}{H} X(4) X(5) \\
& \frac{d X(3)}{d t}=\frac{X(8)}{T C}-\frac{X(4)}{T C} \\
& \frac{d X(4)}{d t}=\frac{X(3)}{T C}-\frac{X(4)}{T C}
\end{aligned}
$$

The following assumptions were made:

1) Temperature and pressure are constant throughout the column.
2) The plate efficiency is 100 percent; the plates are ideal.

Figure 26. The gas absorber
3) The equilibrium relation is:
$y_{n}=m x_{n}+b$
where m and be are constants.
4) The holdup of liquid H, is constant and is the same for each plate.
5) The gas flow rate V is constant on each plate.

APPENDIX C-2

Main Program Listing and Results
for the Simulation of the Gas Absorber

```
            FFROGFAM EONTFIOL
            GIMMIN/VAL/ X(10),F(10), KETEF
            LIMENEION E(10)
            N=S
            H=0.16G& 年 TO=0.1
            VH=1. 377 $ X(E)=0.4
            A=1.0 & E=2. 5
            Y1=0. 000Et
            Z1=0.4
            I=4.0 क [1=6.O
            x(1)=0.0008072
            x(E)=0,40
            X(4)=0.40
            x(5)=0.0006255
            FEA[I (GO, 1OO) HFFIINT, HMIN, TMAX, EFFR
            FEALI(6O, 100) YZ,YS,Z%,ZS
100 FOFMAT(4FEG)
    10 XO=STEP(T,A,E,Y1,YZ,YG)
            X(S)=STEF(T, 亿, [1, Z1, Z2,Z\Xi)
            EALL DEIM(N, T, HFFINT,O,O,O.O,HMIN, TMAX, EFF,
            # E, IEFF, ITAOK)
            GIOTO(1, 2, #, 4, E) ITAES
        1% TO 10
    ZF(1)=1.AH*(X(3)*X(E)-X(4)*X(1))+UM/H*(X0-X(1)
            F(E)=UM/H*(X(1)-X(E))-1./H*X(S)*X(E)
            F(Z)=X(S)/TG-X(S)/TG
            F(4)=X(3)/TE-X(4)/TE
            GGTG 10
    Z WFITE(G1,200) T,X(1),X(5),X(3),X(4)
2O0 FOFMAT (5F10.7)
    4 BGTO 10
    S CONTINUE
            END
```


9	． 7 278672	－ 7 \％6ここ大	． 40 \％0\％	
± 660680	－ 0 606672	． 0706250	． 4 \％06\％6\％	－ 4 万6060\％
二063060	． 3678072	－ 00062 O	－ 4060760	－ 4 \＃600
6\％ 600	． 6078 y 72	－ 7062 C	． 4 \％606 6	， 40 万03
4.368703	－ 0638672	－ 0 On大2二	． 6000 b	，40才 6 \％ 6
二a00600	． 7 098072	－\％\％\％2ここ	． 4 क00\％3	． 40 \＃\＃\＃\＃
－ 6 \％ 6 \％06	， 6 y 为72	－ 066283		－ 40 \％ 0 为 0
． 7060 ODO	． 0068072	． 0606255	． 4070060	＝ 406060
，$: 660606$	． $8 \mathrm{byS772}$	－ 0 002\％		¢600607
－ 70006	－ 606 yb		． $40060 \% 3$	4 4 4060
－ 0360060	－\％036072	． 00762 C		\triangle 可 0
	－ $0035 \% 8$	－b606\％	－ 40670808	． 40
－ 2060060	－ 0 \％ 6 S65		－ 430060%	． 406
． 206630	－66zE\％0\％	． 7006796		－ 40
， 4 勺tobo	． $073 \mathrm{E} 5=$	－7006Es	－ $20 \mathrm{mb0} 0 \mathrm{~m}$	47
\therefore ．$=6063$	． 060808	． 606827		－40006
1． 6 － 700000	－ 200878	－ $08069=0$		． 4.6
． 7780600	． 0 万7ctios	－ 0 6066\％ 6	． 40 \％00\％	40
$\therefore .8606070$	． 30777306	－00\％6\％74	，－30\％\＃\％\％	． 4 \％\％
－ 7300030	． 306906	－ 0666776		30
	． 0687087	． 0 为6980		46
2,506006	－ 06378 ± 6	． 0606781		． 43600
z＝ 2000600	－ 7607010	． 606692	． 4 万力\％ 6 \％	． 406
2 ，300606	． $606791 \pm$	． 0806882	． 40767%	$40 \% 0$
2.406306	－\％\％6701：	－ 0066782	－ 406760%	4 \％ 6
	－ 2077611	． 0066782	－ 4 万刀\％\％	． 47606
$\therefore .5060060$	． 06870 ± 1	.000672	－ 40 Brg	－＋ $\mathrm{y}_{6} \mathrm{~m}$
\therefore－ 70606006	． 606011	． 206678	－－2\％\％あ\％あ	
		－ 00668 y	－ 406760	4 \％ 0
二． 9060006	． 030705	． 0068782	． 4030 O 0 b	20307
	， 6097611	． 1036782		A0\％ 0

0．006E\％	0， 0606	B，	T

\％	， 60686
$\pm 0060 \% 3$	
2000606	． 06080872
－00006刀	． 608672
4060 \＃0	
	－ 0 里 672
	－6008072
． 7 万0\％万力口	－\％638072
E0\％6060	－ 0 008072
706\％670	． 0008072
	－ 6 20987
， 030060 \％	－ 6087562
－प0\％ある 0	． 307777
． B 060630	－ 036081
． 4760606	， 6082 E
－Sb0bnt	－\quad 7089 4
． 6070076	
，73\％6\％万6	－mbess
－ 5060006	．90384：7
． 600 万刀6	． 027248
2． B \％00600	－ 200856
二． 20060300	－ 0 万39442
－ 300760	． 606548
二． 400069%	． 060844.4
	－ 7006444
－ 70600607	－ 700544
\therefore－ 80 Ob\％	－7053544
	－ $6 \mathrm{6QE} 444$
2．0070006	． 0605444

.006625

－ 0062585
$.060625 \quad .430 \% 0 \% 0$
， $006625 \quad .400206$
－ $200625 \quad .4360606$
－ 200625 －勿0625 ． 0606255 ． 00665 ． 003625 ． 6036425 ． 006665
－ 0006324
． 060688
． 0 万071：
.0067213
－ 8067276
.6907816
． 7067541
． 60678 BE
－ 8007363
－ 067562
－ 0007875
． 0067972
： 0067373
， 0607873
． 6007872
． 7007873
－ 8067372
． 7067575

4030600
$.4066 क \%$ ة
－ $50 \% 0 \%$
－460660
－ $40 \% 6 \% 6$

－4060606
－ 40 有 06
－4620606
． 403060
.4076000
$=4060206$
$\therefore 171467$
－Ez2957
． 24625
， 28156
－Z刀口马
－ 265764
－201．二小
.200637
－2b724 2
.206877
－2016＋ 1
－Gbotab

－200302E

，2000004
－E0\％

－ 20060

APPENDIX C-3

Main Program Listing and Results
for the Simulation of the Fifth-Order System

FFGIGFAM ALTI
E
DOMMONAVAL $X(10), F(10)$, KETEF DIMEHEION E（1O）
\square
G INITIAL EONLITIONE ANL EGNETFNTE
\square
$N=S$
A＝0．0 $+\mathrm{E}=5 \mathrm{O}$
$Y 1=0.5$ 生 $Y Z=1.0$ 丰 $Y S=1.0$
$X(2)=0.455$ \＆$X(3)=0.455$
$x(4)=0.0$
$X(5)=0.45$ \＆$x(E)=0.0$
FEALI（ 61,100$)$ HFFINT，HFLGT，HMIN，TMAX，EFFF
FEAD（ 60,100$) \quad[1 E L Z, T 1, T Z, T T 1, T T Z$
100 FDFMAT（EFE 6）
WFITE（ $G 1,200)$

$⿷$
$10 \times(1)=S T E F(T, A, E, Y 1, Y Z, Y S)$
EALL DEIM（N，T，HFFINT，HFLGT，O．O，HMIN，TMAX，EFFF，E， \＄IEFF：ITAEK）

GO TG（ $1,2,2,4,5$ ）ITAEK
1 GロTロ 10
CIEFIVATIVE EEGTIDN
$\therefore x(7)=x(1)-x(9)$
GALL TFFN $(7,2, T 1,1,1)$
CALL XIEL $(Z, 5,0,146, T, 1)$
$x(6)=x(5)+X(A)$
EALL TFFN（6， $3, T 2,1,1)$
$\mathrm{X}(9)=\mathrm{X}(\Xi) \neq 10.1$
GIT TO
\square
E
FFINTINE EEETIEN
Ξ WRITE（61，BOO）T，X（1），X（2），X（ 3$), X(7), x(E)$
EOO FDENAT（6F10．7）
GOTO 10
4 EINTINUE
MOTO 10

5 LONT INUE

 END| 0.1 | 0.30 | 0.001 | 5.0 | 0.005 |
| :--- | :--- | :--- | :--- | :--- |
| 0.0 | 0.304 | 0.1 | 0.0 | 3.0 |
| TIME | $x(1)$ | $x(2)$ | $x(3)$ | $x(7)$ |

$8 \div .0000000$ 1.30000000 $\pm .80060006$ 1.0000600 1. 6000000 1.0006000 1. 0000000 1.0060060 1.0600000

1. 10006060 1. 0006060 1.00000069 1.00000000 1.0000000 1.0600000 1.0060900 1. 00000000 1.00606006 1. 00000606 1.0060000 1. 70.70000 1.000060% 1.060700000 1.00060606 1. 000000000 $1 \cdot 60600606$ 1.66060616 1 . 0600060 1. 70000600 1.0000600 1. 06060006
.4550600
.5850805
-6E7E625
.7481486 .766477 .830627
.8545669
.8712730
. 2325754
.978929 .8763130
.906982
.7057620 B
.9049176
.9062022 .9970915 .9077070 .9921331 .9654230 .7096221 . 7097754 . 9065711 .7587586 . 9889856 .7070186 .7076405 .7070560 .7090668 . 7099742 .7690793 .7090927
.4550006
.45500000
.4718954
.5486743
.695160
.7897676
.7666622
. 8085639
.956646
. 8599036
.8747434
.8853675
.872655
.8977025
.9712082
.7086272
.7059097
.9064735
.7672791
.7075967
.7032229
.7084702
.7686751
.7080631
.7688917
.7089531
. 9095955
.7999624
.7090452
.7095593
.9096670
$\pm .60000000$
.9545060
. 950755
.7435256
.9952 .9
.9281347
.9226789
.7186956
.9156176
.9137829
.7129503
.7113556
.7106612
.9101790
. 969645
.9576127
$.7074522 \quad .7067392$
$.7679410 \quad .9674632$
$.7772640 \quad .7070643$
.9092107 . 9883112
$.769438 \quad .708 \mathrm{EE} 2$
$.9091483 \quad .7697174$
$.961483 \quad .962374$
$.9691184 \quad .7687120$
$.7091077 \quad .7689671$
$.7691641 \quad .7090852$
$.7991900 \quad .7090356$
$.7076972 \quad .709646$
$.7090950 .00962 E$
$.7690987 \quad .7096712$
$.7090980 \quad .9090778$
$.45=0670$
. 4 与上6070
.5302707
.6401954
. 72 25ES
.7771361
.8176072

- 646431
. 876706
. 837754
.3742792
. 898467
. 9020061
.062824
. 705683
-

66	\%
3.2000600	1.9000000
3. 30000000	1.0060000
3. 48960060	1.0000060
3.50000000	1.0000000\%
3.60009000	1.0060000
3.70006000	1. 0.0000000
3.2006000	1.00000600
3.7906060	1. 0.0060600
4.060060000	1.0603000\%
4, 10\%6060	1.0060000
4.20000606	1.00000000
4.3000000	1.0000060
4, 40000000	
4. 5006\%06	1. 60000006
4.60600039	1.0000000
4.7606930	1.000000000
$4.60 \% 6 \pi 30$	1.7000000
4.70000660	1. 200300000
0060000	

.76998 E 4
.7078871
.9090883
$.909089 \pm$
.9090896
.9696906
.7070703
.9676705
.9070906
.7670767
.9096963
.9670908 .9970903 .9096909 .9096909 .9899909
.9096967
.9090889
.7076909
.9890969
.7090758
.7090604
.7070837
.7070859
.7070874
.9796885
.9696892
.9690873
.9076901
. 96709904
.9690905
.7099706
.7976707
.7896965
.9096708
.7970903
.7890909
.9796907
.9696909
.9098969
.7696924
.7696917
.9090815
.9690844
.7697916
.9090864
.7076378
.7070857
.9070894
. 7090897
.9090962
.9070964
.9670966
. 9690907
.7690907
.9090763
.9696768
.9070707
.9696909
.907696
.7698909
.9696909
.7670767

APPENDIX D
Main Program Listing and Results for the Simulation of the PI Controller

```
    FFIGIGFAM EGNTFRGL
    EGWNONAGAL, X(10),F(10),FETEF
    IINENGISN E(10)
    N=7
    H=O. 1,G6 $ TO=0, 1
    UM=1.377 & X (E)=0.4
    A=0,1 क E=Z. 5
    Y1=0.0006%
    X(1)=0.0005072
    X(3)=0.40
    X(4)=0,40
    x(5)=0.0006255
    X(G)=0.0
    X(7)=0.0
    X(Z)=0.0
    ZF=O.0 t FiGN=1.0
    EF=0,000E07%
    FEA[I (GO, 1OO) HFFIINT, HMIN, THAX, EFF
    FEAL(6O,100) YZ,YS,F[H,TI
    WFITE(G1, #OO)
```



```
100 FGFIMAT(4FS.G)
    10 回=ETEF(T,A,E,Y1,YZ,YZ)
            EALL [ISIM(N, T,HFFINT,O,O,O,O,HMIN, TMAX, EFFR,
        * E, IEFF, ITASF)
```



```
    IGOTET 10
    Z EFFOGF=(Y(1)-0.000507%)*100.0
            IALL FIGINTF(1,7, ZF,FAN,:EF, 1.0,FH,TI)
            GALL TFFN(7,6,0.0GEG,0.705,1)
            F(1)=1. 且*(X(S)
```



```
            F(\Xi)=(X(G)+X(G))/TE-X(S)/TL
            F(4)=Y(:)/TE-X(4)/TE
            [i| T\ 1O
    Z WFITE(61,:00) T, X(1), X(5), X(#), X(4)
ZOO FOFMAT(5F11.7)
    4 BIO TB 10
    5 EONTINME
        ERND
```

10.1	7.001	7.5	0.0001
0.00096	0.09076	4.0	6.0

i
X(1)
$x(5)$
$x(3)$
$X(4)$

0	. 00000072	. 0006255	. 40000006	. 4600060
-1000000	. 00085072	. 0606255	. 40000027	. 40000007
. 20060000	. 09068603	. 0060417	. 4157363	. 4036305
. 30000000	. 0008985	. 0006650	. 4751343	. 4311854
. 40000000	. 0068885	. 0006496	. 5645243	. 4707813
. 2000800	. 00088780	- 00066279	. 6665917	. 5746580
- 60000000	. 0008584	. 009595	. 7647844	.66943!1
. 70000000	. 0006668	. 0005600	. 245763	. 7606015
. 80000060	. 00003327	. 0808565	.8979887	. 5351687
. 90000000	. 6008558	. 06084797	. 718715	. 8841467
1.0000000	. 0007848	. 0084819	. 7107545	.9041717
-. 10000000	. 00007711	. 0004735	. 8791804	. 8974439
1.2000000	. 0090765	. 00084786	. 8353264	. 8704860
1. 30000000	. 0907670	. 00064805	. 7875463	. 800557
1.40000060	. 00007735	. 00604921	. 7432547	. 7867421
1.5000600	, 0007832	. 00735057	. 7877669	. 7456512
1. 60000000	. 000077941	. 3005178	. 6858793	. 7122763
1.7000000	. $\mathrm{bg080} 47^{\circ}$. 8605317	. 6725630	. 6875278
1.80000006	. 0000138	. 07005407	. 6727694	.6733728
1.90006500	.00088204	. 00005460	. 6828115	. 6781466
2.0000000	. 0008841	. 0005471	.6972773	.6567054
2.10000000	. 6008248	. 00005443	. 7179157	. 7617157
	. 50008230	-0005461	. 7886973	. 72000453
2.30000000	. 0008192	. 0005839	. 7585976	.7582590
2. 400000608	. 0308144	. 01055276	. 7677965	. 7539842
2.50000000	. 00080894	. 0005528	. 7743886	. 7654375
2.60609000	. 00006050	. 0006177	. 7754410	. 7717528
2.7000009	. 6008013	. 0005151	. 77182 L	. 7727614
2.80000009	. 00677897	.0065143	. 7647124	. 7678277
2.70000000	. 10007974	. 0605147	. 7562794	. 7635977
3.0006000	. $000606 \pm$. 7005 ± 63	. 7475097	. 7557212
2. 0 009006	. 0008616	. 0608173	. 7397775	. 7476017
3.20060006	. 000808 s	. 0005221	.7397854	. 7434071
3.3000000	. 0008057	. 0005246	. 7305650	. 7349629
3.40000000	. 00080977	. 00005 c 26	. 7275502	.7316762
3.50006000	. 0808092	. 0005277	. 7304625	. 7836427

36
З， 7606006
$3.800 \% 600$
－ 70060080
4,70960600
4.1006000
4． 20060000
4， 20000600
4.4060606
4.5607060
4.69800806
4.7060600
4.3060 \％ 00
4． 7 \％60606
－ 60060300
E． 1000000
5.2060000
5.3060000
二， $4000 \% 0 \%$
E．$=000006$
三． 7000300
与． 50000060
7，7000060
6.0060000
6.1000000
． 20606073
6,5000060
6．4060000
G，E006000
． 60606090
6.7000600
S． 806006700
6． 70600600
7．006060\％
$7 . \pm 60$ \％ 700
7． 2060606
7.30000006
7.40600006

－ 7602230
－ 0005235
． 0005249
.0005245
－30055248
－ 0005253
.0605250
． 0006524
.0605243
． 00065245
.0005243
－006524！
.0005243
.0005237
.0065238
.0005257
． 0000523%
.000524
.0005241
.0005242
． 0005243
.0005243
． 0006243
$.0005<43$
－0005243
－ 006524
．0005242
.0005242
－0005242
． 0005 E 5
－ 0009284
． 0000527
.0035266
－0005254
． 0006248
－ 0006523
.0005227
.0005223
.0005223
.0605226
.0009071
.0008072
． 0006078
． 0008073
． 0000878
.0608073
.0008073
－ 00008073
.0003072
.0608072
.9005102 －0003． － 06510
.00080 E
－0000060
． 00680.5
． 000 gec 3
0090071
.0000075
000日070
－ 0068078
.0068078
－
． 7068072
.0008071
.0008070
.6008067
.7006969
． 10008069
． 0008070
． 00000771

6.	0.601	7.5	
13.709776	9.09095	4.7	7.8

T
$x(1)$
$x(3)$
$x(3)$
$x(4)$

.1060070	
	. 20000000
	. 3000000
	40000007
	. 50006000
	. 6006060
	. 7 W60009
	. 8066000
	. 90000060
	. 000000000
	1. 100607000
	1.20000000
	1.3006000
	1. 40006000
	1.3090000
	1.6000000
	$\pm .7000000$
	1. 3000000
	$\pm .70000000$
	2.00000000
	2.10000600
	2. 2.0006000
	2. 80006000
	2.4000000
	2.60000000
	2.70000709
	2.0006006
	2.70006000
	3.9006000
	3.1006000
	3.2000060
	3.2000000
	3.4000600
	50000000

. 3008072

$$
.0008072
$$. 00086053 . 0006E力4 . 06 088977

.0008985 - 10008524 . 100285 S 1 .0008176 .0007539 .0007583 .0007437 .00067409 .01007477 . 00067619 .0007805 .0008008 .0003205 . 0006332 . 0008439 - 0006540 .0008516 . 00038421 . 0003275 .0008107 .0007748 .0007826 $.006775 \%$. 0607739 .1607774 . 0006784 $.0067 \div 46$. 0008054 .0003155
.0008232
.0005292
, 0003625. .0006255 . 0006418
.0006542
. $2003 \mathrm{~b} \leqslant 4$
.0006201
.0065815 . 0005334 .0004785 . 0064676 .0034470 .0004435 . 0004501 . 0004667 .0004764 . 0005177 . 0005445 $.000566 \%$.0005816 .0705866 .0605313 - 0005685 .0005496 .0005237 .0605073 .0004742 .0004651 $.0004 \mathrm{EC7}$. 00004866 . 0063495 . 0006504 - 700525 - 00065357 . 0005466 .0005533 .0005550
.4000000
.4000031
.4164443
.4817960
.5854425
.7098312
.8386071
$.73714 \% 6$ 1.0725733 1.0208274 .7932723 . 7298534 .3453112
.7552126 .6732460 .6097260
. 571176
.5603301
.576474
.615714
.671555
.7344796
.7950682
.843472
.8727643
.879353
$.85437 \pi 9$
.852293
.7899106
.7447276
.7036797
.6722501
.653910
.6503060
.6675096
.6823911
.4000600

$$
.4000967
$$

$.40: 37634$
.-231687
.5006095
.5972897
.7151355
.6277137
.7240096
.9858948
. $98991: 4$
.9785045
.7164801
. 3 378761
. 7547377
.6786902
. 6195110
.5855180
.5754763
. 5 537651
.6256412
.6776376
.7862435
.7920847
.8364508
.5627960
. 8680224
.8547367
. 525364
.7862862
.7442552 .7065344
.6774913
.6664866
.6571143
.6665505

$\because=6000609$	． 7068207
E． 7060600	．0005283
S．30060090	－ 760236
3.7600600	． 7005161
4．03060300	． 130068373
	． 000 0 02
4．2000000	． 0907744
4.3000060	． 00007910
4.40000000	．0007705
4．5000600	． 6097724
4.60000000	． 0007963
4.7000060	－ 0 008015
4． 20000606	－ 0000071
$4.7060 \% 00$	－ 0008122
E． 0000060	
5.1060000	． 0068136
E． 2 \％ 60060	． 3003171
S． 200006%	． 6002178
5.4000600	－ 3068149
S． 50060000	－ 0008110
E． 600000000	． 00008067
三． 78000007	． 10008022
三． 30000000	－ 06085004
E． 7060960	－ 01007887
E．0000060	－ 30607989
6.5000600	． 0667797
E． 20060000	． 0068620
二． 200000000	． 0003047
6.40006000	－ 0008076
6.56800600	． 0 003101
6.60006000	． 0605120
$\leqslant .7000060$	－ 000131
	－ 0088132
大－ 70006300	－ 2008123
7．0000000	－ 0068109
7.12003006	． 060863
7．2006000	－ 3003068
7.3000900	－ 0008050
7.40000000	． 000606
7.5000660	－ 3603030

3.6000006

00．0．0．
3.7000000

4． 000003000

4． 2000020
4,3000000

4 50060300
4.6000000
$4 . E 000060$
4.7000060
5.2000960
5.1600000

E． 20606060
E． 2000669
5.50060006

ᄃ
三． 70600073
三． 50000600

6．0000000
． 1000000
－ 20000.300
6.4006060

E． 560 g 0 g 0

76000060
.80001700
－ 70003700
－0600000
7.2060 可 50
7.
7.40061000
.10065207
． 0005253
－ 06236
－ 0003161
． 10 万05873
.000 BDO
.0607744
.0097965
0637724
－
－ 00002021
－000 0122
.0005162
－ 0032186
－ 0003171
－6002178
． 5068147
－ 0 00 0110
－ 0008067
． 10002022
－ 0006504
． 0106787
－汤607989
． 0667797
0005620

6005076
0403101

0009131
－ 068132
． 060512
6028165
2008085
0003063
.0005036

.0005517
.0005447
． 1000535
.0005247
.0005154
.3005051
.0005020
． 8065030
.0005054
.0005104
.0005171
－ 7000243
． 0000310
． 0005361
． 00005891
． 003595
． 20005377
.0005337
－ 6005296
． 0005258
．0005：7：
.0605156
． 0065 ± 37

． 060 E 149
． 00 0． 5176
－0005こ：
． 0005248
． 00055281
－ 0005305
－ 000518
． 006518
． 0965307
． 00005287
－ 70005262
． 0605236
． 0005213
.0005176
． 200518 E
． 000518 E
.7117367
.7437695
.6372027
.7734240
年4797
－74．8．
.7962563
$.8071887 \quad .764753$
.3109803 .8042757
$.8025131 \quad .8058186$
$.7834839 \quad .7977519$
$.7638529 \quad .7621827$
$.7410779 \quad .7621716$
$.7207005 \quad .7411355$
．70．4751 ．7222724
.6771677 ． 7632174
.6764077 ． 7005657
$.7027056 \quad .6979195$
$.7145 \% 67 \quad .7058184$
.7279622 .7168577
$.7460729 \quad .78108 \mathrm{E}$
$.7605906 \quad .7467486$
.7718567 ．7574411
$.7770166 \quad .7692418$
$.77711 .3 \quad .7745122$
$.7729897 \quad .7745477$
.7621907 ． 7653854
$.7523794 \quad .7656276$
$.7406312 \quad .7513475$
.7305847 .7407646
$.7233106 \quad .7314818$
$.7176482 \quad .7247676$
.7178424 ． 721467 E
.7255526
．7297471 ．7250642
．7578654 ．7819276
$.7459725 \quad .7883637$
$.7530850 \quad .7458786$
$.7581485 \quad .7524222$
$.7605763 \quad .7570801$
．76021た1 ．7572783
$.7575561 \quad .755944$
.7526414 ．756277！

T
$X(1)$
$x(5)$
$x(3)$
$X(4)$

> .0008072
> .0008672
> . 60086060
> . 0098648
> .0008762
> . 7005780
> . 6000906
> . 0008768
> . 060 E 5 B
> - 00008 0 7
> .0005211
> . 0005278
> .0003063 . 0005133
> . $0007965 \quad .0065097$
> $.60007702 \quad .6004972$
> . 0607375
> . 6007875
> .0004984 . 00065003
> . 00055041 . 0005639 .0005137 . 0065186 . 00652 c 6 -0005257 .0065278 . 0005289

> - 0005206
> .0005283
> .0005274
.4006000
.4000020
.4110031
.4522837
. 5135825
. 5E 4056
.6525836
$.7147912 \quad .65157: 5$
.7647578
.7976367 . 7565126
$.8174714 \quad .792523$
.8260662
.5221440
.8112042
.7965 E16
.7502480
.7647016
.7516383
. 74124 E 1
.7337267
.7295764
.7276154
.72815 .5
. 7258697
.7525607
.7566172
.758544
.7413437
.4030606
. 4000006
.402 4:1
. $42: 7627$
.462 ESE
.5204250
$.58602 \pi$
. 7167363
-812e911
.8234009
. 8176464
. 8052859
.7948040
.7798760
.765402 c
.7527245
.7426161
.7553775
.7569417
.7258248
.729625
.790522
.7327277
.753752
.7885967

2.	. 0008898	. 0805 E 24	. 748526	. 74.1661
2.7006000	. 0000088	. 7005253	. 7451169	. 7432727
E. 0.060000	. 09068680	. 0000546	. 7468762	. 7448270
3.1006000	. 36050874	. 0005848	. 7465445	. 7458196
2.2090060	.0008070	. 00005235	. 7465557	. 7468015
3.30000000	. 00000066	. 0005053	. 7462476	. 7463622
3.40000000	. 70083065	. 0005282	. 7457385	. 7461897
E.5000000	. 60008064	. 000822	.7451347	. 74.6554
3.60000060	- 0008665	. 0000238	.744541	. 78.51001
- 700000000	. 00008066	. 0008285	. 74.39761	. 7445280
3.50000000	. 06068067	. 0805237	.7485139	. 7446317
3.70600008	. 00008069	. 0606523	. 74.1753	. 7435625
4.6009000	. 30008070	. 00005241	. 7425563	. 74.3213
4.19060000	. 170000071	. 0006242	. 7428479	. 7430125
4.20000906	. 00008072	. 00005243	. 7428289	. 742857
4.3000000	. 6008073	. 00005244	. $7428 \mathrm{Em0}$. 7428764
4.40000900	. 00009073	. 0605244	. 7427745	. 7427575
4.50600000	. 100988074	. 0005844	. 74309.8	. 7429781
4.6069000	. 60000073	. 6005244	. 7432139	. 7331006
4.7000000	. 60088073	.0005543	. 7438263	. 7432145
4.8000000	. 70090973	. 060 E 43	. 7434217	. 7432215
4.70009000	. 10088073	. 60005248	7434737	. 7434125

0.1 क.001 6.0 6.0001

T
X(1)
x (5)
$x(3)$
$X(4)$

-10930606	
	2060000
	\%00600
	40060000
	50060606
	6000000
	7000000
	E000000
	000600
	.0000900
1.10\%0\%00	
. 20606060	
1.30000400	
1.4006000	
	F0000600
$\pm .60000000$	
$\pm .7000060$	
	8030060
- 90000000	
己. 00000608	
- 10000006	
	- 20000000
2. 3060000	
C. 400000000	
	2.50000000
$\because .6000060$	
2.7000000	
二. 80000600	
-. 7070000	
- 60 00060	
E. 1000000	
3.2000000	
3.30000000	
3.4000000	
	. 5000600

.0003072 . 0005072 .0005602 .0003855 . 10008974 . 0008971 . 0008357
. 0008673
. 10003458
. 0008257
.0008095
. 0007986
.0097928
. 00067918
.0097927
.6030775
.18007973
.9005036
. 0008067
.0009089
.0003102
.9008106
. 0055104
.00058078
.6068990
.0000082
.0008075
. 00000067
. 00038066
. 00080085
.07008065
. 00085066
. 19065063
.6008070
.0008071
.0008072
.6006255
. 0006255
. 0006417
. 0006557
. 00006526
. 00036354
. 0006067
.0065813
. 00055547
. 0005300
. 00005177

- $0: 605065$
.0005053
. 00005057
.0005072
.0005137
. 0005184
. 0005226
.0005256
. 0605275
. 00055234
. 0005283
.0005276
.0035267
. 00005256
.0005247
.0005240
. 0005236
. 00005234
.0005236
.000524
.0005236
.0005238 .0005240 . 00005242 .0005243
.4000900
.4000023
.4006000
.40000677
.40350344
.4239775
. 4314765
.5514172
.6264051
.6753596
.7502075
.7868194
.8050365
.8077412
$.797=203$
.7852488
.7671543
.7543230
.7426026
. 7347501
.7306946
.7293240
.7312565
.7343472
.7373567
.7465228
.7431192
.7447378
.745752
.7462678
.7463537
.7455243
.7145488
.7441789
.7436134
.7492038
.7427613
.7426764

000006	. 0009673	. 0065244	. 7429645	. 7428951
2.70600000	- 2000073	. 0006544	. 7431177	. 7427953
3.80003500	. 60088573	. 0065243	. 7432751	. 7431317
3.7000000	. 60098673	. 00005243	. 7434878	. 7432727
4.00000008	. 0008073	. 0069243	. 7436037	. 743385
4.1000006	. 0008073	. 0005082	. 74.35617	. 7434872
4.20650607	. 00080072	. 60605242	. 74 35343	. 7435442
4. 30000000	. 0008072	, 0005242	. 74.35797	.74:5671
4.40060000	. 00080872	. 0065242	. 7435572	. 74.55622
4. 506000090	. 6008072	. 06065242	.743525	. 748580
4.6000000	. 8068072	. 0008542	. 7434733	.7435227
4.7909606	. 0008072	. 0605242	. 74.34647	. 74.34933
4.5006000	. 00008072	. 0005242	. 7434431	. 7434668
4.70006000	. 00088072	. 00005242	.7434295	. 7434464
5.6000600	. 0008072	. 0005242	. 7434234	. 7434 Sa
5. 1000000	. 5006072	. 00605242	. 7434234	. 7434267
5. 20000000	. 0000072	. 60005242	. 7434275	. 74×4260
5.3000000	. 0008972	.0005242	. 7434337	. 74.34271
5. 3000609	. 00080072	. 01005242	. 7424405	. 74.94845
二.5000000	. 00080072	. 00651242	. 7434467	. 7434406
5.600060090	. 6008072	. 0000522	. 74.4515	. 7434463
E. 700000000	. 00080972	. 0005242	. 7434546	. 7434508
5.8900000	. 00008072	. 00005242	. 74.34 .562	. 74.34537
5.90006000	. 00008072	. 00005242	. 7434.564	.743455
6.00006506	. 00006072	. 0608542	. 74.3455	. 7404558

APPENDIX E-1

Position Algorithm in DDC Control

A PID Controller can be presented as (13):

$$
\begin{aligned}
& P_{n}=K_{c}\left(e+T_{D} \frac{\Delta e}{\Delta t}+\frac{1}{T_{I}} \sum_{0}^{n} e(\Delta t)+P_{m}\right. \\
& e=S-V
\end{aligned}
$$

where

$$
\begin{aligned}
P_{n} & =\text { valve position at time } n \\
P_{m} & =\text { initial valve position } \\
K_{C} & =\text { proportional gain } \\
T_{D} & =\text { derivative time } \\
T_{I} & =\text { integral or reset time } \\
\Delta & =\text { change or difference } \\
e & =\text { error } \\
S & =\text { set point } \\
V & =\text { variable }
\end{aligned}
$$

The derivative expression is usually calculated with a fourpoint difference technique as:

$$
v=\left(v_{n}+v_{n-1}+v_{n-2}+v_{n-3}\right) / 4
$$

where V is the variable
$\frac{\Delta V}{\Delta t}=\left(\frac{V_{n-}-V}{1.5 \Delta t}+\frac{V_{n-1}-V}{0.5 \Delta t}+\frac{V-V_{n-2}}{0.5 \Delta t}+\frac{V-V_{n-3}}{1.5 \Delta t}\right) / 4$
or
$\frac{\Delta V}{\Delta t}=\frac{1}{6 \Delta t} \quad\left(V_{n}-V+3 V_{n-1}-3 V+3 V-3 V_{n-2}+V-V_{n-3}\right)$
$\frac{V}{\Delta t}=\frac{1}{6 \Delta t}\left(V_{n}-V_{n-3}+3 V_{n-1}-3 V_{n-2}\right)$
if $\frac{\Delta V}{\Delta t}=\frac{\Delta e}{\Delta t}$;

$$
\frac{\Delta e}{\Delta t}=\frac{1}{6 \Delta t}\left(e_{n}-e_{n-3}+3 e_{n-1}-3 e_{n-2}\right)
$$

The term $\sum_{\mathrm{e}}^{\mathrm{n}}$ e $\Delta \mathrm{t}$ can be obtained by using the expressions:
SUME $=$ SUME + ERROR
$\Sigma e \Delta t=\operatorname{SUME}(\Delta t)$
where Δt is the sampling time.
Replacing the values in the control equation:
$P_{n}=K_{c}\left(e+\frac{T_{D}}{6 \Delta t}\left(e_{n}-e_{n-3}+3 e_{n-1}-3 e_{n-2}\right)+\frac{1}{T R} \operatorname{SUME}(\Delta t)\right.$

APPENDIX E-2

Main Program Listing for
DDC Control with NOVA
Main Program Listing
for Simulating Sampling Time Effect on DDC Control

```
G INITIAL VALUEE
G
    SIME=0.
    EFFV=O.
    OAL=0.
G EET FIINT
E
EALL AIFIW(1, 1,2,IVAL, IEFF)
    SSV=FLGAT(IVAL)*O.00S
    TYFE GGU=",SGU
    IF(AES(SEV-EVAL).LT. O.0001) BO TG Z
    EVAL=SSV
    GALL WAIT(S,Z,IEFF)
    GOTO}
I
Z EONTINHE
    GETF=EVAL
    TYFE GEET FOINT= `EETF
    AGCEFT "GAIN= , GAIN
    ACEEFT "RT= "RT
    [ELT=0.01
    EONT INUE
    C: EONTROL AGTIOW
E
E EALL AIF[W(1, 1,2,IVAL,IEFF)
    SEV=FLDAT (IVAL ) *O. 00S
    EFFV=SSU-SETF
    EMME=EMME+EFRF
    FM=GAIN*(EFFV+(GIME/FRT):LELT)
    INEW=IFIX(FM)O.00S)
    EONTINUE
    EALL AGW(1,11, INEW, IEFF)
    EALL WAIT(10,1, IEFFF)
    GOTG:
    ENLI
```

```
E INITIAL VALHEG
E
    SI|PE=0
    EFFRM=0
    EVAL=0.
    EET FWINT
I
1 FALL AIFIMW(1, 1, Z,IVFL,IEFFi)
    BG=FLIAT (IVAL)*O. OGC
    TYFE SGW= S,SW
    IF(AE:(SGV-GVAL).LT. O.gOO1) Eig TE z
    SVAL=SSY
    EALL WAIT(5,2,IEFF)
    GiITI
E
Z ENTIMUE
    EETF=EWAL
    TYFE `EET FGINT= , EETF
    ACEFT GAIN= BAIN
    ALLEFT *FT = F,FT
    IELT=10.0
    B:DNTINIEE
    ESNTFOLLSTOMN
#
Z EALL AIFILW(1, 1, Z,IVAL, IEFFi)
    BU=FLDAT(IVAL)*O.005
    EFSVMEOG-EETF
    E||VE=SUME EFFU
    FIN=GAIN*(EFFFV+(GI|NE/FT)*LELT)
    INEW=IFIX(FHOO).OOS)
    EONT INBE
    EALL ARW!(1,11,INEW, IEFFF)
    GALL WAIT(1O,2,IEFFi)
    GiGTO
    ENL
```

```
            FFRGGFAMM EONTEGM
            GOMMN,YAL;
            GOHMMDNESEMNE(10)
            IINENSION E(10)
I: INITIAL VALUES AND EINSTANT:E
E
    N=7
    H=0. 1:GG & TE=0. 1
VM=1. シ7% $ X (E)=0.4
A=0.1 & E=& E
LII 11 I=1,10
    11 EIMME(I)=0.0
    Y1=0. 000:%
    X(1)=0.000E07%
    X(E)=0.40
    X(4)=0.40
    x(5)=0.0006,55
    X(6)=0.0
    X(7)=0.0
    x(:=)=0.0
    ZF=0.O $ F:AN=1.0
    GF=0.000SO7%
    FEEALI (SO, 1OO) HFFRINT, HMIN, TMAX, EFF:
    FEA[I(60,100) Y&, YO,F[1, TI
    WF:ITE(&1, EOO;
```



```
    100 FGFMAT (4FE.E)
    10 XO=OTEF(T,A,E,Y1,Y爫,YO)
            IALL LGIM(N, T,HFFINT,O. 1GG6,O.O,HMIN, TMAX, EFF,
        * E, IEFFF, ITAE&)
            GMG(1,:2, 隹, 5) ITASK
        1 GIG TG 10

\section*{DEFIVATIVE SEETIDN}
```

 ZF(1)=1.AHE(X(S)*X(5)-X(4)*X(1))+WM,HK(XO-X(1))
 F(S)=VMfH* (X(1)-X(5))-1.fH*X(S)*X(5)
 GALL TFFHQ7,G,0,OSO,O 7OS,1)
 F(S)=(X(\Xi)+K(S))/TE-X(S),TE
 F(4)=X(#),TE-X(4)/TE
 EiG TE 10
 FFINTING EESTIGN
    ```
\(\exists\) WFITE( 61,200\() \mathrm{T}, \mathrm{X}(1), \mathrm{X}(5), \mathrm{X}(3), \mathrm{X}(4)\)
200 FOFMAT (EF11.7)
Gig TG 10
 GITG 10
5 EORTINIUE END

\section*{APPENDIX F-1}

Mode 1 for Feedforward Control

If we consider the system shown in Fig. 27, the output variable can be represented as:
\[
C(s)=G_{1}(s) M(s)-G_{2}(s) U(s)
\]

The object will be to keep \(C(s)=R(s)\);
\[
R(s)=G_{1}(s) M(s)-G_{2}(s) U(s)
\]
then, the manipulative variable is:
\[
M=\frac{R+G_{2(s) U}}{G_{1}(s)}
\]

Since a transfer function can be broken down into a static and a dynamic part such as:
\[
G(s)=S D(s)
\]
the equation for \(M\) can be written in two different forms:
\[
M=\frac{R+S_{2 U}}{S_{1}} \text { where the dynamic part is neglected. This }
\]
control is called a steady-state feedforward control, and,
\[
M=\frac{R+S_{2} D_{2}(s) U}{S_{1} D_{1}(s)}
\]


Figure 27. Block diagram of the fifth-order system with feedforward control

A practical version of this equation can be obtained by grouping the dynamic elements as a first approximation:
\[
M \approx\left(\frac{R+S_{2} U}{S_{1}}\right)\left(\frac{D_{2}(s)}{D_{1}(s)}\right)
\]

This control system is called the dynamic feedforward control. The values of the dynamic elements are usually determined from the transient response data. The first part is the study of the change of the controlled variable resulting from a change in \(U\). The second part is the study of the change of the controlled variable resulting from a change in \(M\) sufficient to compensate for the change in \(U\). These data are usually presented as plots of the transient response of the variable. A first-order transfer function with dead-time is generally used to fit these curves. If this is done
\[
\begin{aligned}
\frac{D_{2}(s)}{D_{1}(s)} & =\frac{\bar{e}^{t_{02} s}}{1+\tau_{2}^{s}} / \frac{\bar{e}^{t_{01} s}}{1+\tau_{1}^{s}} \\
& =\frac{e^{t_{0} s}\left(1+\tau_{1} s\right)}{\left(1+\tau_{2} s\right)}
\end{aligned}
\]
where \(t_{0}=t_{02}-t_{01}\)

\section*{APPENDI X F-2}
a) Program Listing for Feedforward Control of the Gas Absorber with NOVA
b) Main Program Listing and the Results of the Simulation of Feedforward Control

EVAL=0. 0
IALL AIFDW( \(1,1,2\), IVAL, IEFF)
GOVFLGAT (IVAL : *O OOE
TYFE "SSV =": SV
IF (AEG (SEV-EVAL). LT. O. OOO1) GO TG 2
SUAL =SEV
GALL WAIT(1, 3, IEFF:)
Big TG 1
CIOMTINUE
\(\mathrm{VH}=1.377\)
\(H=0.166\)
\(T \mathrm{C}=0.1\)
X1=EVAL SOOO.
SETF=SWAL
TYFE "EET FOINT =", EETF
GALL AIFDW! \(1,1,3\), IVALZ, IEFF:
ETEF=FLIMAT (IVALZ)*O. OOS
\(x 0=5 T E F T O O O\).

1 (2. 九 1 1)
\(X F L D W=-1 . *(F L D W * 10 .-4.0)\)
\(I F E W=I F I X(X F L O W O Q\) ODS
GALL AOW(1, 11, INEW, IERF)
EALL WAIT (SOO, 1, IEFF)
GTO TO
ENL:
```

 FFKGIGFAM EG|TTFBLL
 EG&|N|N\mp@code{VAL; X(10),F(10),FETEF}
 LIMENEION E(10)
 N=5
 H=0.1&66 牛 Tに=0.1
 VM=1.:377 $ X(E)=0.4
 A=0.5 & E=S O
 Y1=0.0000600 末 YZ=0.000%,0 $ Y F=0.000S600
 XO=Y1
 X(1)=0.000%079
 X(%)=0.40
 X(4)=0.40
 x(5)=0.000G2G1
 XX1=X(1)
 FEAC (GO, 10O) HFFINT, HFIN, TMAX, EFF:
 1OG FGFVHAT(4FS G;
10 XO=OTEF(T,A,E,Y1,YQ,YO)
IF(XO.EG.Y1) EG TG 11

```

```

 直(% (2.*XX1)
 11 EINTINIIE
 EALL [GIM(N,T,HFFINT,O.O,O. O, HMIN, TMAX, EFFR,
 # E, IEFF, ITAEF)
    ```

```

 BLOTB 10
    ```


```

 F(S)=X(E)/TE-X(S)/TE
 F(4)=X(#),TE-X(4)/TE
 IGTO
 #WFITE(G1, 200) T,X(1), X(E),X(:0), X(4)
 ZOG FGFMAT (5F10.7)
4 EiG TO-10
5 EONTINIIE
EN[!

```
0.05
9.901
2.5
0.00601
.0500076 . 10000070 .15000000 . 2000000 . 2500000 .3000000 .3509060
.40000109
.4500050
.5000000
.5500060
.6090000
. 6500060
.7000090
.75000070
. 80000000
.8500000
\(.900600 \%\) .7500060
1.0000060
1.05009060
\(1.106000 \%\)
1.1500000
1.2060000
1.2500900
1.30000000
1.3500000
1.4060000
1.450000 a
1.5000000

0065077
. 00008077 . 0008075 . 0098974
. 00006074
. 0905673
.0003072
. 0608973
.0903078
.0008072
. 0008072
. 0005480
.0005761
- 0068 e 7 B
. 0000593
. 0065877
.0965672 . 0008582 . 0008481 . 9008373 . 0008321 . 0008263 . 000213 . 00083183 .00081 .56 . 0008136 .0003121 . 0008110 . 0008102 .0008095 .0008571

0006261
.0006260
000000
.0066257
4000000
40000000
. 40900600
.45000060
.4000906
.40000060
.40000060
.4000060
.4000000
.5341707
.6155478
.6647085
.6943462
.7130643
.7240177
.7366977
.7347474
.7372066
.7836978
. 0005515
. 600.54513
. 00005411
. 0005537.3
. 00005344
. 0 0055321
. 0005304
.0005271
.0005281
.0005273
.0005263
.7376018
\(.74014 \% 7\)
.7434828
.7406840
.7408063
.7498305
.7409255
.7497528
.7407694
.7489794
.4060606
.48060003
. 40000060
. 4 0060000
.40000006
.4006000
.4030006
.4006006
.4000000
.4000000
\(.400090 \%\)
.4337595
.4701053
. 5.57796
.6625492
.6430281
.6730864
.6746579
.7697672
.7261683
.7272073
.7317367
.7850782
.7271479
.7585073
.7299913
.7397654
. 7403558
.7405741
.7497267
.746246
\begin{tabular}{|c|c|c|c|c|}
\hline 00 & - 0000888 & . 00005254 & . 7479855 & 9 \\
\hline 1.60600000 & . 90608035 & . 0065261 & . 7409892 & . 7469266 \\
\hline 1.6500000 & . 00338884 & . 0005585 & . 7409715 & 7409517 \\
\hline 1.7050006 & . 0009082 & . 0005257 & . 740972 ZS & . 7407677 \\
\hline 1.75000000 & . 0058081 & . 0006556 & . 7498936 & . 7499778 \\
\hline 1.3000000 & . 0008081 & . 0065255 & . 74097941 & . 7478981 \\
\hline 1.85000000 & . 00000800 & . 70055254 & . 74099945 & . 7409881 \\
\hline 1.9600000 & . 0008883 & . 00085254 & . 74189946 & . 74099907 \\
\hline 1.7500000 & . 00008086 & . 000585 & . 7439747 & . 7469722 \\
\hline 2.0000000 & . 900080979 & . 0005253 & . 7409748 & . 7409932 \\
\hline 2.0500000 & . 00000077 & . 0005253 & . 7469747 & . 7407989 \\
\hline 2.1000060 & . 00008079 & . 0005253 & . 74.69949 & . 7407948 \\
\hline 2.15000000 & . 0098679 & . 0005253 & . 7409747 & . 74897945 \\
\hline 2.2000000 & . 00080879 & . 0005253 & . 7489749 & . 7409894 \\
\hline 2.2506000 & . 00080879 & . 0095853 & . 7409747 & . 7497948 \\
\hline 2.3000009 & . 0005077 & . 00005253 & . 74089949 & . 7409748 \\
\hline 2.3500000 & . 00088077 & . 00005253 & . 7409749 & . 7407947 \\
\hline 2.40060500 & . 00008077 & . 0005253 & . 74097948 & . 7408947 \\
\hline 2.4506000 & . 00000077 & . 000025 & . 7498948 & . \(7487 \% 49\) \\
\hline 2.5000000 & . 0008977 & . 0005253 & .7489749 & 74 \\
\hline
\end{tabular}

\section*{APPENDIX F-3}
a) Program Listing for Dynamic Feedforward Control of a System with NOVA
b) Main Program Listing and the Results of the Simulation of Dynamic Feedforward Control
```

 GINENSIDN XN(50),YN(50),ZN(50)
 G INITIAL VALIEE GNLI EINETANTE
DELTA=0.1
I=1
[10] 1 I=1,30
XN(I)=0.
YN(I)=0.
1 IN(I)=0.
nCCEFT "T1= ",T1
ACLEFT "TZ= ",TZ
AECEFT "ITE= ",ITS
E: Etealy state valie
L
EALL AIFILW(1, 1, 2,IVAL,IERR)
EV=FLDAT (IVAL)*O.005
TYFE "GSV= ",SEV
EALL WAIT(2,Z,IEFR)
E EONTFOL EETION
Z GALL AIFCW(1, 1, z,IVAL:IEFF)
EVAL=FLDAT (IVAL)*O.00S
INEW=IFIX(ZW(I) (O.00S)
EALL AOW(1,11, INEW, IEFR)
XN(I)=SVAL-GOV
ZN(I)=XN(I)+(T1-TZ)/TZ*(XN(I)-YN(I))
.l=I+1
IF(.1.GT. ITS) .l=1
YN(.I)=YN(I)+[ELTA/TZ*(XN(I)--YN(I))
I=I+1
IF(I.GT. ITE) I=1
GALL WAIT(100, 1, IEFR)
BGTO2
ENLI

```
```

 FFIOGRAM ALTI
 E
GONMLNWAL, X(10),F(10),F゙GTEF
GIPENGION E(1O)
Z
E INITIAL EINLITIENS ANLI EONSTANTS
I
N=F
A=0.0 韦 E=5 G
Y1=0.S t YZ=1.0 卉 YS=1.0
X(2)=4SE \$ X(Z)=.4SE
X(4)=0.0
X(5)=0.455 寺 X(要)=0.0
FEAL|G1, 100) HFFINNT, HFLIT, HMIN, TMAX, EFFF
FEALI(GO,100) LEL:,T1,TZ,Tך1,TTZ
100 FGFMAT(SF:%)
HEITE(G:, QO0)

```

```

 #GX, "员(5)", %!%)
 AA=(TT1-TTZ)/TT%

 10 X(1)=STEF(T,A,E,Y1,YZ,YO)
 LELT=O. S-X(1)
 IALL [IEINGH, T,HFFINT,HFLGT,O.O,HMIN, TMAX,EFF,E,
 # IEFF, ITASE)
    ```

```

 1GOTG 10
 E

 IEFIVATIVE SEGTION
 Z
 EALL TFFN(7,2,T1,1.,1)
 GALL XDEL (2,5,0.14&,T,1)
 GALL X[IEL{(B,4, [IELこ,T, %)
 X(G)=X(E)+X(A)
 EMLL TFFN{&, 二, T: 1., 1)
 X(O)=x(:)*O. }
 GIT TO 10
 G
FFIHTTING EER:TIGN
Z WFITE(\&1,SOO) T, X(1),X(Z),X(Z),X(4),X(S)
OOO FDFNAT(GF10.7)

```

50 TO 10
4 GINTINUE
\(Y N=Y N+H F L O T\) 'TTZ* (DELT-YN)
\(X(S)=\) [ELT \(+A A K(\) LELT \(-Y N)\)
GOTO 10
5 EORTINUE
END
\begin{tabular}{llllll}
0.1 & 0.01 & 0.001 & 5.0 & 0.001 \\
0.26 & 0.334 & 0.1 & 0.11 & 0.35 & \\
TIME & \(\times(1)\) & \(.0(2)\) & \(x(2)\) & \(x(4)\) & \(x(5)\)
\end{tabular}
\(x(3)\)
\(X(4)\)
\(x(5)\)

.4550000
.5843233
.6060015
.7479485
.8024111
.8417356
.8710015
.8726951
.9087436
.7206207
.9274011
.7356976
.7407057
.7442677
.7469985
.7435674
.9503216
.9514017
.7522046
.9528017
.7532457
.7535766
. 9533230
.9540065
.9541433
.7542453
.9543214
.7543781
.9544205
.7544521
.9544757
\begin{tabular}{|c|c|}
\hline & . 4550069 \\
\hline 80 & 00 \\
\hline 78.4 & . 5276582 \\
\hline 63700.1946797 & . 6398807 \\
\hline 7167-0.2715109 & . 7264346 \\
\hline 523747-0.3290086 & . 7801087 \\
\hline 4513521-0.3726375 & . 3250687 \\
\hline 520379-0.4042364 & . 8586157 \\
\hline 4532153-0.4233361 & . 3 e 5 5 9 g \\
\hline \(41463-0.4463678\) & . 7017610 \\
\hline 547643-0.4578655 & . 71.5 \\
\hline 4351113-9.4679651 & . 725636 \\
\hline 4552667-0.4775232 & . 7831506 \\
\hline 552758-6.4831793 & . 738671 \\
\hline 52547-0.437412: & \\
\hline 4551770-0.4705793 & . 74.57912 \\
\hline 4550704-6.4727563 & \\
\hline 4550023-6.4747243 & . 7477060 \\
\hline 4547204-6.4560517 & . 7508444 \\
\hline 5437-0.47704.54 & . 9518646 \\
\hline 47879-6.4777887 & . 9525488 \\
\hline 4.547374-0.4988453 & . 7580577 \\
\hline 4546964-0.4797617 & . 7534865 \\
\hline 4.546633-0.4790736 & . 7537186 \\
\hline 4546367-07.4773065 & . 7539287 \\
\hline 4546162-6.4794810 & . 954085 \\
\hline 4545977-6.4776116 & . 9542821 \\
\hline 4545373-3.4997094 & .754.981 \\
\hline 45775-0.4797825 & 5484 \\
\hline 5677-0.4978372 & . 7544025 \\
\hline 545641-0.4793732 & . 7544 \\
\hline
\end{tabular}
\(.4550000 \quad .45500600\)
\(.4550000 \quad 0 \quad .4550000\)
\(.4722784 \quad 0 \quad .5276 .582\)
\(.4916370-0.1746797 \quad .6395607\)
\(.4617167-6.27151069 .7264346\)
.4523747-0.3270086 .7801097
\(.4513521-0.3720375 \quad .3250637\)
\(.4520899-0.4042854 \quad .8586157\)
\(.4532153-0.4283361 \quad .3235206\)
\(.4341463-0.4463678 \quad .7017610\)
\(.4547643-0.4578655 \quad .7156614\)
.4551:18-7.4679651 . 2256836
\(.4552667-9.4775232 \quad .7331500\)
\(.4552758-6.4331793 \cdot .7536716\)
\(.4552547-0.4374121 .5427609\)
\(.4551770-3.4705798 \quad .7457912\)
.7490834
.7477060
.7507444
.9518646
.95248 E
. 9530577
. 95.34865
.9537186
.7539267
.754053
. 9542021
. 954897
.754351
.7544025
.9544357
\begin{tabular}{|c|c|}
\hline 90, & 1.03060006 \\
\hline 0 00603 06 & 1.00000906 \\
\hline 3696006 & 1.8300000 \\
\hline 3.40060403 & 1.000000\% \\
\hline 0600000 & 1. 6060606 \\
\hline 606000 0 &  \\
\hline  & 1.00606060 \\
\hline E090606 & 1.90000000 \\
\hline . 79080000 & 1. \\
\hline 4. 900000506 & 1.90000000 \\
\hline 4. 100006080 & 1.0000000 \\
\hline 4. 20606060 & 1. \\
\hline 4. 30060600 & 1. 00000600 \\
\hline 4.4006060 & 1. 06060960 \\
\hline 4, 50\%00060 & 1.06000030 \\
\hline 4. 60000000 &  \\
\hline 4.70308030 &  \\
\hline 4.3606036 & 1. 60000000 \\
\hline 4. 70606060 & 1. 0006080808 \\
\hline  & 1.00000000 \\
\hline
\end{tabular}
.7544933
- 754565
. 7545163
. 754527
. 5842272
- 75432
. 7545364
.9545337
. 9545404
.9545417
.7545426
. 754543
.9545437
.9545443
.7545446
.7545449
.754545
.7545451
.7545452
.9545452
.4545576-0.477793:
. \(4545562-6.4797313\)
\(.4545536-3.479437\)
.4545516-76.4777218
.4545501-0.4797714
\(.4545470-0.4797736\)
\(.4545431-6.4777346\)
\(.4545475-49.479890\)
\(.4545470-0.4977910\)
\(.4545466-76.4777733\)
. \(4547463-6.4777950\)
\(.4545461-4.779762\)
\(.4545459-0.4779772\)
\(.4545453-0.4977779\)
\(.4545457-6.4797734\)
\(.4545457-6.4797963\)
. \(4545456-0.4777971\)
\(.4545456-3.4797993\)
.4 .4545 5. 0.4777775
\(.4545455-0.4797976\)
.954657
.7544857
.7545067
.754512
.754 .06
.754 .267
.7545316
.754535
.7545377
.7545376
.754511
.9545422
.9545430
.9545436
.754541
.7545444
. 754.547
.9545447
.754545
\(.954545!\)

APPENDIX G-1
The Derivations of the Controller Equations for Dahlin's Method

\section*{Direct Synthesis of Digital Controller Equations}

The closed loop system of Fig. 23 may be assumed to behave like a continuous first-order-lag-with-dead-time, which is written in discrete form as follows:
\[
\frac{C(z)}{R(z)}=\frac{\left(1-e^{-T / \lambda}\right) z^{-N-1}}{\left(1-e^{-T / \lambda} z^{-1}\right)}
\]
where \(\lambda\) is the time constant.
The controller then becomes:
\[
D_{1}(z)=\frac{1}{H(z)} \frac{\left(1-e^{-T / \lambda}\right) z^{-N-1}}{1-e^{-T / \lambda} z^{-1}-\left(1-e^{-T / \lambda}\right) z^{-N-1}}
\]
where \(H(z)\) is the pulse function.
The pulse function can be determined by assuming first or secondorder models for the process. (14)

If the first-order-lag-with-dead-time is used as a process model,
\[
\begin{aligned}
& G(s)=\frac{K e^{-\theta s}}{\tau s+1} \\
& H(z)=\frac{K\left(1-e^{-T / \tau}\right) z^{-N-1}}{1-\left(e^{-T / \tau}\right) z^{-1}}
\end{aligned}
\]
and the controller equation is:
\[
D_{1}(z)=\frac{\left(1-e^{-T / \lambda}\right)\left(1-\left(e^{-T / \tau}\right) z^{-N-1}\right)}{K\left(1-\left(e^{-T / \lambda}\right) z^{-1}-\left(1-e^{-T / \lambda}\right) z^{-N-1}\right)\left(1-e^{-T / \tau}\right)}
\]

\section*{Digital Equivalent of Analog Controller}

Another route for obtaining this controller equation is
to design an analog controller and then use its discrete equivalent (4), (14), (15).

If the transfer function \(G(s)\) of the system is:
\[
G(s)=\frac{K e^{-\theta s}}{c s+1}
\]

The controller equation becomes:
\[
D(s)=\frac{\tau s+1}{K e^{-\theta s}} \cdot\left(\frac{C(s) / R(s)}{1-C(s) / R(s)}\right)
\]

If \(\frac{C(s)}{R(s)}\) was chosen as:
\[
\begin{aligned}
& \frac{C(s)}{R(s)}=\frac{e^{-\theta s}}{\lambda s+1} \\
& D(s)=\frac{(\tau s+1) / K}{\lambda s+\left(1-e^{-\theta s}\right)}=\frac{M(s)}{E(s)}
\end{aligned}
\]

In the time domain \(D(s)\) can be represented as:
\[
\lambda \frac{d X(t)}{d t}+X(t)-X(t-\theta)=\left(\tau \frac{d e(t)}{d t}+e(t)\right) / K
\]

Expressing the derivatives in difference equations:
\[
\begin{aligned}
& \frac{\left(M_{n}-M_{n-1}\right)}{T}+M_{n-1}-M_{n-N-1}=\left(\tau \frac{\left(e_{n}-e_{n-1}\right)}{T}+e_{n-1}\right) / K \\
M_{n}= & \left(1-\frac{T}{\lambda}\right) M_{n-1}+\frac{T}{\lambda} M_{n-N-1}+\frac{\tau}{K \lambda}\left(e_{n}+\left(\frac{T}{\tau}-1\right) e_{n-1}\right)
\end{aligned}
\]
\(D(z)\) can be obtained in \(z\) domain from the equation above
\[
D(z)=\frac{M(z)}{E(z)}=\frac{\left.\frac{\tau}{K \lambda}\left(1+\frac{T}{\tau}-1\right) z^{-1}\right)}{1-(1-T / \lambda) z^{-1}-(T / \lambda) z^{-N-1}}
\]

\section*{APPENDIX G-2}
a) Program Listing for Control with Dahlin's Algorithm
b) Main Program Listing for the Simulation of Dahlin's Control Algorithm
```

 LIMENEIDN XL(E),E(5)
 [: IMITIAL VALIEE
 E
[i] 1 I=1,E
XL(I)=0.0
1 E(I)=0.0
T=0.5
E
E
EALL AIFDW(1, 1, 2,IVAL:IEFF)
SETP=FLDAT (IVAL)*O. OOE
TYFE SET FGINT= ",SETF
GALL WAIT(1,2,IERF)
I
ACCEFT TC= *,TE
ACLEFT "LANLIA= `, XLI
TT1=T/XLI
TTZ=T/TC
E
GONTFIGL ALTION
EALL AIFELW(1,1, z,IVAL,IEFFR)
SV=FLOAT(IVAL)*O.005
E(5)=5\-SETF
xL(5)=TG/LD*(E(5)+(TTZ-1.)*E(4))+(1. -TT1)*XL(^)+

```

```

TYFE 'XL(S)=`,XL(E), "E(S)= =, E(S)
INEW=IFIX(XL(E),O.OOS)
GALL AOW(1, 11, INEW, IEFFF)
E(4)-E(5)
XL(1)=XL(2)
XL(Z)=XL(Z)
XL(S)=XL(A)
XL(4)=XL(5)
GALL WAIT(5OG, 1, IEFF;
GOTO
ENMI

```
```

 GIMEHEIDNXL(S),E\S)
 E INITIAL VALHEE
B
Dig 1 I=1, 5
XL(I)=0.0
E(I)=0.0
T=0.5
E
E SET FOINT
L
GALL AIFDW(1, 1,Z,IVAL,IEFF)
GETF=FLOAT (IVAL)*O.0OS
TYFE "EET FOINT= %SETF
CALL WAIT(1,Z,IEFF:
E
ALCEFT "TE= *,TE
AGEEFT "LANLIA= ",XLD
TT1=T/KLI
TTZ=T/TLC
AA=EXF(--TT1)
EE=EPF(-TTZ)
E EONTFOL AOTION
E
Z DALL AIFIW(1,1,Z,IVAL, IEFF)
SVV=FLDAT (IVAL) *O.005
E(S)=SSV-SETF
XL(5)=(1.-AA) /(1.-EE)*(E(EI)-EE*E(4))+AAkXL(4)+
\$ (1. -AA)*XL(1)
TYFE *XL(S)=`,XL(S), "E(S)=`, E(S)
INEW=IFIX(XL(5)/O.OOS)
EALL AOW(1,11, INEW, IEFiF)
E(4)=E(5)
XL(1)=XL(z)
XL(2)=KL(Z)
XL(E)=XL(4)
XL(4)=XL(5)
EALL WAIT(SOO, 1, IEFF)
GiOTO
ENID

```
```

 FFDGFAM [AHHLIN
 GIMMON/VAL, X(10),F(10),FETEF
 GIMENSION E(10), XL(10), XEFFF(10)
 I
E INITIAL GONLITIONE
C
N=4
[uGGI=1,10
X(I)=0.0
XL(I)=0.0
\& XEFF:(I)=0.0
A=O.0
E=5,0
Y1=O.O \$ YZ=1.0 \$ YS=1.0
EF=0.0
REALI(EO, 100) HFRINT, HFLOT, HMIN, TMAX, EFF
FEEAL(G0,100) TE1, XDEE, TLZ, TE, YLE
TT1=0.0S/KLI
TT:=0.0S/TE
AA =EXF(-TT1)
EE=EXF(-TTZ)
WFITE(61, 200)
100 Fofimat (EFE, 6)

```

```

L
IERIVATIVE EEETIDN
10 XO=ETEF(T, A, E,Y1,YZ,Y\Xi)
EALL [EIM(N, T, HFFINT, HFLIT, O, O, HMIN, TMAX, EFF, E, IEFF,
\# ITASE)
EOTG (1, 2, 3,4,5) ITAEK
10TO TO
Z (% 1) = x 0-y(7)+y(G)
GALL TFFFN(1,2,TE1,1,,1)
GALL XDEL(Z,3, XDET,T,1)
GALL TFFN(E,4,TEL,1,,1)
x(7)=x(4)*0. 1
[10 TO
FRINTINGGEETIGN
S WFITE(61,SOO) T,XO,X(4),X(6), X(1)

```

200 FORMAT (SF10.7)
0
GIGTO 10
4 XEFF \((2)=\mathrm{BF}-\mathrm{X}(4)\)
\(X(6)=(1 .-A A) /(1 .-E E) *(X E F F(2)-E E * X E F F(1))+\) MA* \(X(4)\)
事 \(+(1 .-A A): X L(1)\)
\(X L(1)=X L(Z)\)
\(X L(Z)=X L(\Xi)\)
\(X L(E)=X L(4)\)
\(X L(4)=X(6)\)
YEFF( 1 )=YEFF(Z)
GiG TO 10
\(\Xi\)
5 GONTINIE
END```

