AN ABSTRACT OF THE THESIS OF

JOHN DOUGLAS HOLT . for the degree MASTER OF SCIENCE
(Nane) (Degree)
in Computer Secience presented on February &, 1975
(Major Department) (Date)
Title: THE DESIGN OF FAULT DETECTION EXPERIMENTS

FOE SEQUENTIAL MACHINES USING HOMOGENEOUS

DISTINGUISHING SEQUENCES
Redacted for privacy

Abstract approved:

Professor Robert A, Short

The design of checking experiments for sequential machines
which do not initially have a distinguishing sequence is inves=-
tigated, Improvemsnts are suggested to an existing method for
augmenting the output logic so that the machine acquires homo-
geneous distinguishing sequences, To indicate how the procedurs
may be implemented on a computer, elements of graph theory ax:
applied to the design steps., A systematic process for the con-
struction of the checking experiment using homogeneous distin-
guishing sequences is deseribed, Upper and lower bounds for

each segmnent of the oxperiment are derived.

The Design of Fault Detection Experiments
for Sequential Machines using Homogeneous '
Distinguishing Sequences
by
John Douglas Holt

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of
Master of Science

Commencenment June 1975

APPROVED:

Redacted for privacy

Professor of Computer Science and
Chairman of Department of Computer Science

Redacted for privacy

Deén of Graduate School

Date thesis is presented February 4, 1975

Typed by Rosslyn E., Holt for John Douglas Holt

Chapter

I.
I1.

I11.

V.
VI.
VII,

VIIT,

INTRODUCTION
CREATING A DEFINITELY DIAGNOSABLE MACHINE
APPLICATION OF GRAPH THEORY

HOMOGENEQUS DISTINGUISHING SEQUENCES

SOME SPECTAL CASES

DESIGN OF THE CHECKING EXPERIMENT
BOUNDS ON THE LENGTH OF THE EXPERIMENT
CONCLUSIONS

BIBLIOGRAPHY

APPENDIX

18
32
37

63
65
67
68

THE DESIGN OF FAULT DETECTION EXPERIMENTS FOR SEQUENTTAL

MACHINES USING HCMOGENEOUS DISTINGUISHING SEQUENCES.
1. TNTRODUCTION

In recent years a great deal of attention has been focused
on methods of diagnosing faults in combinational and sequential
electronic digital circuits, Many sophisticated techniques have
been discovered for the detection and location of these faults, Un-
fortunately these techniques have not been employed to any extent in
the design of electronic hardware. One of the reasons for this is
that for complex circuits the algorithms become difficult and time-
consuming to implement in a systematic way. In addition, many of
these techniques require substantial modification of the basic.
design and the additional cost involved is considered unacceptable,

With the‘advenf of integrated circuits gnd modularization of
components the emphasis in fault diagnosis has shifted to fault
detection rather than fault location. Intergate 1lines are now
considersd inaccessible and this has led to the design of fault-
detection experiments which depend only upon the values at the input
and output terminals of the module, The nature of the experiments
treated in this papef is to apply a sequence of inputs to the module
and to examine the output response in order to determine whether the
machine is working corrsctly.v Tt has not been possible to design
experiments which cover all possible types and numbers of faults in
the circuit., It is necessary to classify the machines under consid-
eration according to the failures that the experiment is expected

to detect. Any sequential machine which has the correct output

response to the expsriment has a stabe table isomorphic to that of
the given table, or has a failure not in the given class, In order
to be able to program the design of these experiments some of the
matrix techniques emﬁloyed in graph theory are modified and ap-
plied to steps in the procedure, At the same time it 1is desirable
that the design be simple to implement by hand, and due attention
has been paid to this aspect,

A number of cost criteria are relevant in evaluating test
design procedures. The féllowing factors have been considered in
the design philosophy employed in this paper:

1. The amount of additional hardware required.

2. The length of the test segquence,

3. The aﬁount of information which must be handled to design

the test.

In general, the first two of these are inversely related and so also
are the last two; hence the designer has some flexibility in the
relative weighting he wishes to give to each factor. The hardware
module is assumed to be a sequential switching circuit. A sequen-
tial circuit is one whose next state is a function of the currsnt
inputs and the present state, The transition checking approach.
used here makes no specific failure assumptions which are related
to the circuit realization other than the number of states, Hence
these experiments are independent of the circuit realization of the
sequential function, and we need be concerned only with the logical
behavior of the circuit. This behavior is usually represented by a

state table displaying the inputs, state transitions and outputs.

This table is referred to as the seguential machine.

The following assumptions are in effect throughout this dis-
cussions

1. The sequential machine is of the Mealy type in which the
output response is a function of the present state and ths current

input. A block diagram of a Mealy sequential machine is shown in

Figurs 1.
x Combinational logic for Z

the next state and

Inputs { : ! }Outputs
. I,
i
i

Next State
output equations. X Variables

"”J_” . y

Figure 1. Mealy - Type Sequential Machine,

2. The machines are finite state, strongly comnected, reduced,
deterministic and completely specified and the state table is
available,

3., The faulis that may occur are permanent faults and ones
that do not cause any increase in the number of stateé of the mach~

ine, This latter assumption is not too restrictive since, for the

4

number of states to inereass, the effective number of delay elements
must also increass, and this is an extremely unlikely event.
The following basic definitions apply‘throughout this paper.

DEFINITION: A distinguishing sequence (DS) is a sequence of

inputs which, when applied to a correctly operating sequential
machine (M), yields a different output response for each initial
state, By observing the responses of M to the DS the initial state

can be determined. A homogeneous DS is one of afbitrary length but

which is constructed from only one input symbol. Not all sequential

machines have a distinguishing sequence.

DEFINITION: A homing sequence is a sequence of inputs which,

when applied to the inputs of M produces an output response that
uniquely defines the final state, independently of the initial state,

A1l sequential machines have a homing sequence,

DEFINITION: A synchronizing sequence is a sequence of inputs
which drives Y to a known final state independently of the output re-
sponse, Not all sequential machines have such a sequence.

DEFTNITION: A transfer‘sequence denoted T(Si,Sj) is a sequence

of inputs which will transfer the machine from Sj to Sj. Unless
otherwise specified, this is assumed to be one of the shortest such
sequences. For a strongly connected machine a transfer sequence
exists for every 1i,Jj.

DEFINITION: A definitely diagmosable machine is one in which

every input sequence of length n(n-1) /2 is a DS, Often such mach-

ines will possess at least one DS that is much shorter than this,

DEFINITION: A fault detection experiment or checking experi-

ment is a sequence of inputs which when applied to M produces an
output response, examination of which will determine whather the
machine is operating correctly according to its state table. The
experiments are simple (only one copy of the machine is available)
and preset (the entire input sequence is predetermined and camnot
be influenced by the outcome of the experiment,)

Fault detection for sequential machines which do have distin-
guishing sequences is usually accomplished with checking experi-
ments, The structure of such experiments is well-defined. However
there does not exist an efficient algorithm for designing the se-
quence of input symbols, For machines which do not have distinguish-
ing sequences, fault detection is approached from one of three poséin
ble directions: |

(a) The states of the machine are partitioned in such a way
that a sequence of inputs exists which distinguishes between the
partition blocks. These sequences, referrgd to as characterizing
sequences are then succeéded by a different sequence for each block
which distinguishes the states in the block, The complete set of in-
put sequences, called identifying sequences, will then identify the’
states of the machine. Because thsse identifying sequences are
usually quite long, the checking experiments that they define are
very long comparad to the other methods available, A mére recent
approach Kohavi {6) has been to make use of adaptive DS's to create
a set of variable length DS's which, by an appropriate choice,

yield minimal checking expariments,

o

6

(b) The modification eof the machine such that it will possess |
a minimal length homogensous DS and will require no transfer se-
quences during the experiment. The modified form is referred to as
an "easily testable" machine, One input is added which incorpor-
ates a permutation éolumn., An output assignment to this column ié
made using Smith's Algorithm (4), thersby guaranteeinz the minimal
homogeneous DS involving this added input symbol. Further input
columns are added until the transition graph of the machine is an
Eulerian digraph, a sufficient condition for the removal of transfer
sequences,

(¢) The addition of outputs to the given machine until it be~
comes definitely diagnosable. i.e. every input sequence of length
n, (n-1) /2 is a DS,

Only one paper has been written on the latter approach and
that was the original paper by Kohavi and Lavallee (1). We found
that the algorithm they preéentgd was not systematic and did not
yield good results for some sequential machines. Chapter II 6f this
paper formalizes the procedure suggested by Kohavi and Lavallee and
makes it applicable to a wider range of sequential machines. Follow-
ing this we present those elements of graph theory that can greatly
aid in the design and minimization of the checking experiment., We
also discovered that by modifying the machine such that it acquired
homogeneous DS's the problems inherent in the procedure described
in Chapter IT were greatly reduced in most cases and eliminated in
some. In ChapterIVwe investigate the modification of machines

which have a column of next state entries that is either a cyclic

7
psrmutation of the criginal state set or is a reset column, Tech-
niques, currently available in the 1itera£ure, for achieving min-
imal output assignments in permutation or reset columns are extended
to cover as many machines of this class as possible. Ths structure
of the checking experiment is then described. We found that elements
of a design procedure presented by Gonenc (3) were particularly
suitable for the design of experiments with homogeneous DS's, The
applicability of graph theory in specifying the order in which the
elements of the experiment should be prescribed is emphasized.

Rules for selecting input sequences of near minimal 1eﬁgth are pre-~
sented, Finally, upper and lower bounds on the length of the experi-

ment are computed,

IT., CREATING A DEFINITELY DIAGNOSABLE MACHINE

The following terms are fundamental to the discussion in this

chapter:

DEFINITIONS: A successor tree for a machine and an initial set

of states for this machine is a graphical display of the successor
states for all possible subsets of the input alphabet applied to

this initial set. A distinguishing tree (Figure 3) is a successor

tree in which the states appearing at each node of the tree are
grouped according to their outputs following a particular input.
DEFINITIONS: The components at each node of the tree comprise

an uncertainty vector, (e.g. (115)(32) in Figure 3.) A trivial un-

certainty vector is one in which each corponant contains only one

state. A homogeneous component is a component containing repeated

states, (e.g. (115) in Figure 3.)

EFINITIONS: A testing table for machine M displays, for each

possible initial pair of states, the successor state pair under all
possible input/output combinations. (See Figure 4.) A testing
graph is a digraph derived directly from the testing-table and which
has the state pairs as nodess and alsoc shows the next state pairs
when they exist. (See FigureVE.)

The procedﬁre described below is a slight modification of
Kohavi's original effort., It differs in the steps for eliminating

lines from the testing graph, This method is easy to apply to ma-

chines with few states, where the cycles in the testing graph are

simple and disjoint. As ths number (n) of states increases, the
number of nodes in the graph‘grows like n(n-1) /2. For large n the
solution to the problem of manipulating the lines in the testing
graph must lie within the realm of graph theory and has still to be
investigated,

The method given can easily be extended to allow for any num-
ber of inputs, but for simplicity it is assumed that we are dealing
with a sequential machine with binary input and output values.
Throughout the paper the machine shown in Figure 2 will be used as

an example,

Machine My

o

Present Next State, Output
State X==0 Xe=1
1 1,0 Iy,1 (12345)
2 1,0 5,1 ,
0 , 1
3 5,0 1,0 ! y
b 3,1 h,o (115)(32) (b55) (14)
5 2,1 5,1
Figure 2, State Table for Ml' Figure 3. Distinguishing Tree

For }{1 .

The branches of the distinguishing tree are terminated when any
of the following occur:
(1) a branch is associated with a vector containing a homogen-

eous component, which is a component with repeated states. e.g.

10
(1,2)—@1,1).

(2) an uncertainty vector in the kth 1evel appears in some
branch of a preceding level. This includes self=loops. e.g{
(2,3)—=(2,3) as well as loops (cycles) of the type (2,3)—(1,5)
(5,5)(2,3). |

If 211 branches of the tree terminate due to one of the above
conditions then the machine has no D3,

(3) a trivial uncertainty vector occurs in which case the in-
put sequence that leads to this branch is a DS, |

Applying these tests to the distinguishing tree of My we see
that it has no DS because repeated states occur in response to both
inputs. In order to make the machine definitely diagnosable we muét
prevent any branch from terminating in anything but a trivial uncer-
tainty vector by assigning additional outputs to Mj. The testing
table identifies the states that lead to homogensous components. The
testing graph highlights the loops occurring in the state pair re-
lationships., These loops are broken by the removal of connecting
lines using appropriate output assignments to the next state entries
of the machine, When all homogensous components have been separated
and all loops opened, the machine will be definitely diagnosable and
each branch of the distinguishing tree will e#entually terminate in
a trivial uncertainty vector. The length of the longest DS will be
one greater than the length of the longest path in the testing graph.

For My, a testing table (Figure L) is econstructed by dividing

the state table into its four possible combinations of input and out-

11
put symbols. Below this the states are taken in pairs and the bal~
ance of the table shows the implied pairs. For example, the pair
(1,2) canmot be distinguished by a sequence beginning with s
unless the pair (4,5) is distinguishable. Repeated pairs are éir— :
cled, The testing graph (Figure 5) is then constructed from the

uncircled pairs.

0/0 0/1 1/0 1/1

1 1 L
2 1 5
3 5 1

L 3 '

5 2 5
12 14D L5
13 |15
14
15 L5
23 15
24
25
34 14 CED
35 :
b5 23

Figure 4, Testing Table for M. Figure 5, Testing Graph for

My,

We now present the steps in the procedure for making My defin-
itely diagnosable., Step 1 and the first part of Step 3 comprise the
original algorithm by Kohavi and Lavallee. We have added Steps 2
and 4, Tt is essential that Step 2 be executed before Step 3. We
have also defined a set of rules that should govern the order in
which the two parts of Step 3 are performed. Step L has been added

so that outputs not specified by the first three steps may be speci~

12
fied in some systematic way to redues the length of the DS,

Step 1., We must prevent the distinguishing tree from terminat-
ing duevto the occurrencs of homogeneous components, These compo-
nents of uncertainty vectors appear as repeated entries 11 and 55 in
the testing table. They must be removed by an appropriate (in this

case arbitrary) asSignment‘of differsnt outputs to the pairs (1,2)

and (2,5),
19 -8 0 1
1] 1,00 4,1
2 | 1,01 5,10
3 5,0 1,0 (The added output entries are
Iy 3,1 L,0 shown underlined.)
51 21 511

N.B.,l. If the given machine has two homogeneous component pairs

in the same column, e.g.

1] 1,0
2 | 1,0
3

4| 5,0
51 50

it would be advantageous to check the two possible output assignments
to determine whether one yielded further simplification for the steps
to follow, There appears to be no way of avoiding an exhaustive
check of the possibilities.

2, If the homogensous component contains k identical states

13
then the number of additional outputs required is riogzk].’ The
implications of more than two identical states in the homogeneous
component is studied in detail in Chépter:TX.

Step 2. The next step is the eliminaﬁion of the condition in
which a given state pair implies itself as the next state entry,
€ee (A,B)-*(A,B).. This situation will be displayed as a self-loop
in the testing graph. The branch in the selﬁfloop is eliminated by
assigning additional outputs to the machine, This ﬁill.never in-
crease the number of éutput variables required by more than two, be-
cause if the two states involved in the loop have been assigned the
same output value in Step 1, we can simply change the output assign-
ment made in that step such that the homogeneous components have stili
been eliminated but the two states in the loop are now distinguish-

able, e.g. suppose that a segment of a machine after Step 1 is as

follows:
1 1,01
2 2,01
3 1,00
L 2,00

The self-loop (1,2)+(1,2) can be broken without violating Step 1 by

reassigning the outputs as shownt 1 1,01
2 | 2,00

3 | 1,00

L 2,01

14
There are no self-loops in Mj.
| Step 3. The next step is the opening of all cycles in the
testing graph by the elimination of branches using output aséignw
ments. The technigue for doing this must achieve the following:

(a) the opening of 211 loops by the elimination of the minimal
number of branches, or more specifically, by the addition of the
minimal number of outputs,

(b) the elimination of branches such that the length of the
longest path is minimized,

Since the 1éngth of the DS will be one greatér than the length
of the longest path, the goal in (b) is obvious, It will be assumed
that higher priority will be given to keeping the number of addition=-
al 6utputs to 2 minimum,

For machine My we have the loop (4,5)—(2,3)—(1,5)>(4,5).
Applying step 3 (a) we see that elimination of any one of the three
branches requires the minimal mumber of additional outputs., Hence

we consider ths effect of these eliminations on step 3 (b).

Eliminate Longest path left
(4, 5)>(2,3) 2
(2,3)—(1,5) 3
(1,5)—~(4,5) 3

After eliminating (4,5)—(2,3) M, and its testing graph have the

forms shown in Figures 6 and 7.

15

0 1

1|1,00 | 4,1

2 |1,00 | 5,10 - 11

» 14
31 50 1,0
1/0
4| 3,10 | 4,0
~ o/0 0/0

51211 | 511 3y Q315

Figure 6, Modified Ml(Mi). Figure 7. Testing Graph for Mi.

Again, it appears necessary to check all possible arrangements of
the output assignments to determine whether one leads to more branch
removals than another, In Mi the choice is arbitrary.

At this stége Mi is definitely diagnosable and we could con=-
sider the unspecified entries as "don't cares."” We would then have
a DS of length three, However, the remaining entries can be specif-
ied only if they further reduce the length pf the DS without increas~
ing the number of outputs,

Step 4. We wish to assign remaining entries such that branches
of the graph are eliminated and the remaining path lengths are
reduced,

(2) Scan the first (next) input (i) column for the first
(next) unspecified entry. (qu Mi this is BtiSS,O)

(b) Examine the paths in order (longest to shortest) for a
node containing this state (3) and with the outgoing branch labeled

if-.

16
4 O/““\l
For M, we have the paths (::)- unw

1
and @0/0\{5 »_1/1@

We arbitrarily assign the output (1) to state (3) such that the

(::)——e{::> branch is removed., (Figures 8,9.)

0 1
1| 1,00 | &1
2 | 1,00 | 5,10 @
3 5'0‘]_-_ 1.0
‘ 1/0
5! 3,10 | 4,0 |
51 2,11 5,11
Figure 8, Modified My’ (Mj). Figure 9. Testing Table for fy.

(e) Repeat (a) and (b) for the next unspecified statg in the
selected column, Continue until all columns and states have been
scanned, It is possible that specification,bf some entries has no
advantages, These entries will be left as "don't cares" in the final
machine,

When step 4 has been applied to both columns in M{its state
table, testing graph, and distinguishing tree will appear as shown
in Figures 10, 11, and 12, where § indicates a "don't care" specifi-

cation,

16a

) 1
1| 1,00 4,10 @ 1/1 @
2 1 1,00 | 5,10 ' ll II

s s 1/0 : 23
3 ,01 1,0 _ 0/

, 34 i e!a

b | 3,10 4, o0¢
5 | 2,11 5,11

Figure 10, Final Form of My (¥). Figure Il Testing Graph

Hy
E Of Mln
(1234 5)
0 1
] .]
(15(1)(3)(2) (B5) ()W) (5)
0 | 1] 0 | 1

f [|
WE@)ABEQ) WEGXEQIG) (3)2)@)3)2) W5 W) (#)(5)

Figure 12, Distinguishing Tree for My.

N.B.1l. In step &4 it is not necessary to specify an‘enbry:
unless it does reduce the length of the longest path.

2. Kohavi and Lavallee (1) remark that the rules that
thej prescribe are only a rough gui@e to the order of branch cancel-
lation and do not define it. They comment that the problem of pro-
viding an algorithm for finding the minimal number of additional |
required outputs is very complicated and has not been solved.

The modifications to Kohavi and Lavallee's technique that have
been introduced in this paper do define the order of cancellation.

However a great deal of exhaustive testing is required at each stage

17

in order to determine whether a particular output assignment is the
best. Applying the algorithm to many "worst case" machines has so

far failéd to yield a non-minimal output assignment and the minimal

number of additional outputs,

18

III, THE APPLICATION OF GRAPH THEORY

The procedure for efficiently assigning additional outputs to
remove loops in the testing graph and reduce the length of the DS,
described in the ‘preceding section, is relatively easy to apply to
machines with feﬁ states, If the number of states in the machine is
n, the 0(n?) growth in the rmmber of nodes in the testing graph in-
dicates the need for some programmable method for generating inform-
ation about the loops (cycles) and path lengths, Some of the matrix
properties and operations of directed graphs (digraphs) provide the
techniques to achieve this end,

The following definitions are relevant to this section:

DEFINITIONs A strong component of a digraph is one in which

each node is reachaﬁle from any other node in the digraph; Thus a
necessary and sufficient condition for the testing graph to have
cycles is that it possess a strong component. If we can identify
these strong components then we can proceed systematically to open
these cycles by removing lines,

DEFINITION: A weak component of a digraph is one in which there

are no cycles but there is at least one line joining each node to
another in the weak component. When a line is removed to open a
cycle the corresponding strong component is reduced to a weak com-
ponent,

DEFINITION: A source node in a digraph is one which has no
entering lines, As we will explain in Chapter VL a source node in a

digraph is a desirable staiting state for subsequences in the check-

19
ing sequence., It should be noted that although a source state does
not exist for a strongly connected digraph, we will be considering
digraphs displaying state transitions under subsets and extensions
of the input alphabet,

The matrix techniques to be described are quite familiar aspects
of graph theory (Harary (5))., However, they have not previously been
applied to this particular area of switching theory. The construc-
tion of the adjacency and reachability matrices is described. The
reachability matrix is then used to derive a matrix Which will idens
tify the strong components of the testing graph, When the cycles
have been broken we then derive a distance matrix that will display
the lengths of all paths in each weak component. A set of rules is
prescribed for the selection of weak components and spscific paths as
targets for further analysis,

Machine My is again used as an example, (Figures 13 and 14.)

0 1
1,0 b,1
1/1 |
1,0)1 ®__—JD
5,0 1,0 1/0 11 23)

3,1 4,0 / 0/0
@ O
2,1 5,1 ~o/o

Figure 13. M. Figure 14, Testing Graph for My

W W N

20

The Adjacency Matrix (A):

The adjacency matrix for the testing graph is constructed in

the following way:

i3

the rows and columns of A cor-

Let V4 and Vj be nodes of the digraph and V3 V: the line join-

ing them, directed from Vj to V3

respond to points of the digraph (D) where ajj = 1 if line Vj Vj is
in D and a53 = 0 if V5 Vj is not in D. For My this leads to the
adjacency matrix of Figure 15, |

12 13 1 15 23 24 25 3H# 35 k5

1216 0 0+ 0 0O O O © 0 1
13/0 0o oo 1 o 0 0O O O ©
lo o o o0 O O O O 0 O°

150 o o o o o0 ©0 ©0 0 1
230 0o © 1 0 0 O O 0 O
240 o o © o0 ©0 O O O O
250 0 o o o0 ©O0 O O O 0
%o o 1 o o0 ©O0 0 O O O

350 o o O O O O ©0 0 0

Figure 15. Adjacency Matrix for M.

N.B. 1., Repeated entries in the testing table do not appeé.r in
the adjacency matrix,
2, Self-loops need not appear in A since they are always

eliminated in step 2 of the procedure, Consequently, these matrix

21
techniques are needed for steps 3 and 4 only.

The Reachability Matrix (R):

The reachability matrix is derived from‘the adjacency‘matrix.
A node Vi is reachable from Vs if there exists a path in the testing

The elements of R ={rij}are defined as

graph from Vi to Vj.

follows:

ryy = 1 if Vj is reachable from Vj.

1if i= 3,
=0 if Vj is not reachable from Vj.

N.B. A useful property of R which can be employed in the con~
struction of checking sequences is if the 1% column of R is all O's
except for the diagonal element, then V; is a source,

To obtain the reachability matrix R from the édjacency matrix
A we form the following sub-sequences of matrices:

Rog =1

(I + A)# (# denotes that all operations are mod.2)

oyl
-
i

(I + 4 + 4%)4

o)
N
[t}

R-:(I‘!’A"’ 000+A1)#

This sequence is generated until Ry = Rj,3, whence R = Rj,

For Ml we gets

il

1

0

0

fo

0

1

0

o

o

s

(@]

22

=(1+.ﬁ.)7%

=(Ry+A2)

23

o o 1 o o o0 0o 0 0 0
o o o 1 1 0 0 0 0 1

Rg=f0 0 ©0 1 1 o 0 ©0 0 1 =(R2+A3)#
o 0o O ©© ©o0 1 0 0 .0 O0}|=Ry,
0 0 0 0 0 0 1 j 0 o 0| and hence
0o o 1 © o 0 0 1 0 O0|=R.
o o o o0 o0 ©o0 O ©o0 1 ©

Figure 16, Derivation of the Reachability Matrix for M.

This method of computing the reachability matrix may not be the
most efficient, The reader is directed to a faster algorithm de-
scribed by Washall (7).

Step 3 in the method described in Chapter II involves the open~
ing of all cycles in the testing graph., To identify these‘cycles
(strong components) and the weak components of the testing graph
that contains them we must generaté the connectedness matrix. This
matrix displays the connectedness category of each subsst of nodes
in the graph in the following way:

If entry (i,j)’= 3, nodes Vj, Vj are in the sams strong

component .,

il

2, nodes V; and Vj are in the same weak

component.,

2k

= 0, nodes Vi and Vj are not cannected,

The Connectedness Matrix (C):

The connected matrii for any digraph is éonétructed from the
reachability matrix (R) as follows:
1. Form R + R |
2, Add one to each non-zero entry of R 4 R,
For My the resulting matrix is:
12 13 1% 15 23 24 25 3% 35 L5
123 o o 2 2 0o o 0 0 2
13 0 3 0 2 | 2 0 0 0 0 2

4 1.0 0 3 0 0 0 0 2 0 0

15 /2 2 o 3 3 0 o0 O 0 3
23 l2 2 o 3 3 o0 o 0 O0 3
24 o o o o o 3 0 0 0 ©
2s 'o 0 O ©O O O 3 0 0 O
354 fo o 2 o o0 ©O0 0 3 0 0
3 to 06 0 O O O 0 0 3 0
45 2 2 o 3 3 o0 ©O0 O O 3

Figure 17, The Connesctedness Matrix for M.

The strong components of My can be found by examining each
column of the matrix for the occurrence of two or more entries of
the connectedness category "3". In Figure 17 we see that there is
only one strong component containing the nodes 15, 23, Lg, Columns

with only one such entry ﬁay be ignored since if the corresponding

25
node did have a self-loop it would be removed in Step 2.

The weak components of MMy are the intersections of all sets of
nodes with the connectedness category "2" appearing in avparticular
column, For example, in the first column we have the set (12, 15,
23, 45), in the second (13, 15, 23, 45), and so on. The resulting
intersections yield the weak components (12, 13, 15. 23, 45),

(14, 34), (24), (25), (35). For the same reason stated iﬁ the
previous paragraph we may ignore sets of one element.

Having now identified these components we must now decide which
lines in the strong components are to be removed first, e suggest
that this decision be based upon the effect of the removal of a line
on the length of the longest path in the corresponding weak component,
To find these lengths we need to compute the distance matrix for the
weak component,

The Distance Matrix N(D)s

The distance matrix of each weak component is computed from

the adjacency matrix for that component.

is the distance from node V3 to node V.

N(D) ={d; s}where d; 5

J

and

2. dij =00 if rij = 0,
3. otherwise, djj is the smallest power n to which A must be

raised so that ai§“)> 0. ie. the i,i% entry of A¥ is 1.

Procedure for Constructing N(D) from A:

1. Enter 0's on the diagonal of N(D) showing dij = O.

26

2. Enter 1 in N(D) whenever a;; = 1, thus showing that d;; = 1.

ij iT

3. Taking higher powers of A, whenever aign) = 1 and there is
no prior entry (i,j) in N(D) enter an n showing where djj = n.

L, Finally for some A" every 1 will occur where there is al-
ready an entry in N(D). Enter o0in all remaining locatians,

We will now demonstrate how the techniques described in this
chapter can be used in Steps 3 and 4 of the procedure of Chapter II,

By examining the reachability matrix for My we find that the
strong component (15, 23, 45) consists of the lines 4523, 23—15,
and 15--45, To examine the effect of the removal of these lines on
the weak component Wy = (12, 13, 15, 23, 45) we generate the adjacen=
cy matrix for Wj. We then generate the distance matrix for each of
the cases in which one of the lines of the strong component has been
removed, For W, the results are shown in Figure 18, As can be seen,

the elimination of branch 45--23 yields a weak digraph with the

smallest maximum distance (2),

Branch removeds 4523 2315 1545
[0 000 1] [0 002 1| (0321
0 0 1 0 2 0 1 3 2 4 0 1 o0 ob
0 0O b1 000 2 1 b B Qo0 O

b b b O 2

b o0 00 6

Figure 18,

D o6 b g ob

30 o o0 1 Q

find the weak component in which it is contained,

0 01 Q0

® 22 1 0]

Distance Matrices after Branch Removal.

In general we would then select the next strong component and

Branch eliminate-

27
jon would then be decided in the manner indicated above.

N.B. If there are several strong components in the digraph it
isvnot clear whether the order in which they’are selected by the -
above technique has any effect on the length of the DS obtained and
the number of additional outputs required, It would seem reasonable
to start with the component containing the longest path. One of the
difficulties in the analysis of wuch a problem is the inability to
find a sequential machine which has a testing graph of a particular
form., There appears to be no systematic aﬁd efficient way of design~-
ing a digraph with the form required and then specifying the machine
which has this graph,

Having opened all loops we now procesd with Step 4 - the spec- |
ification of remaining entries in the state table with the aim of
reducing the length of the longest path in the digraph. The current

state graph and testing table for My are shown in Figures 19, 20.

0 1

1l 1,00 | 4,1

2 1,01 | 510
3 {50 |1,0
b | 3,10 | 4,0
5 (21|51

Figure 19. Modified My, Figure 20, Testing Table for M.

The weak components will be the same as in the previous step

bécause removing one line from a strong component camnot create two

28
disconnected weakX components, The output from state 3. on an in-
put of O must now be specified. From the distance graph, after the
removal of the 4523 line we see that both ;3 and 23 start paths of
length two on an input of‘O. We arbitrarily chcosé 13 and eliminate
the line 13-—-15.

At this point we must re-compute the weak components of the
subsst Wi , (or in general, of the subset we are currently modifying,)
because the removal of the line 13—15 may have disconnected this.
subset into two weak components, The state table and testing graph

now have the form:

0 1

1 | 1,00 | 41

2 1,00 | 510 () (::}j56£e42§9 »
3 150 | 1,0 /0 11 T (23)

b | 3,10 | 4,0 (3w) SN L) of

5 |21 | 5m |

A1l additional output entries have been assigned to the next state
column for input 0, If we eliminate the line 13—15 from the adj-
acency matrix and re-compute the reachability and comnectedness

matrices for Wi we obtaint

29

1 0 o o0 1] 3 0 0 0 2
0o 1 0 o0 0 6 3 0 0 o0
R= |0 0 1 o0 1 C= |0 0 3 2 0
6 0 1 1 1 o 0 2 3 2
o 0o o 0o 1 2 0o 2 2 3|

From the connectedness matrix for Wy we see that node 13 has been dis—
connected hence we need consider only the remaining four nodes in any
further analysis., We will denote this weak componen£ by Wi

If we now consider the next column we find that the first un-
specified output entry is in the first row, There are two nodes in
W1 containing state 1, 12 and 15, We would then generate the dis=:
tance matrices for the two cases in which one of these lines isi re=
moved from Wy. These gatrices would show that the removal of the o
1line 15—45 would lead to a reduction in the maximum path length of

Wi. After this is done the state table and testing graph will be as

follows1
0 1
1 1,00 4,10 '
2 1,01 5,10 (12 jL@
3 5,01 1,08 1/0
h 3,10 L,op | | @5 . °
5 2,11 511

Figure 21, Final Form of the State Table and Testing Graph

for Mj.

30
In general, we would continus this process until all entries had been
specified, Each input column would be treated in turn until either
all outputs have been specified or confirmed as "don't care" assign-
ments, However, at each stage, it would be wise to ckeck whstﬁer
the assignments made so far prevent the removal of any lines still
remaining in Wq. In this case we would discover that the line 12->45
could not be removed without using another output variable., There~
fore it is not possible to obtain a minimal path length of less
than 1, We would then turn our attention to other weak components
and attempt line removals only if they contained path lengths of
greater than 1. For the modification of My that we have in Figure
21, no more lines would be removed. Hence this is the final form of
My and we will have a distinguishing sequence of length two,

In our analysis of machine M; we have worked in a defined order
across and down the table, We have done this only to be consistent
with the method described in Chapter II, However, it should be noted
that, if one is prepared to include some trial and error checking,
then a better method exists for obtaining an optimal output assign-
ment, We now outline this approach as another way of implementing
Step 4.

We begin with the machine in the form shown in Figures 19 and
20 where cycles have been opened, In general, we would like to
remove lines that are in the middle of ‘paths in the weak component.
We can detect the approximate position of such lines by determining
the indegree and outdegreerf each node in the weak component.

These can be obtained from the column and row sums respectively of

31

the adjacency matrix, We sesk a node for which the indegree is
riaximum and which has non-zero outdegree, If Vi is such a node thep
we remove the line ViVVj. There will be a unique Vj if we employ
the techniques to be developed in Chapter . It may happen however

that because of previoué output assignments this eliminati§n is not
possible. Then we must choose the node with next largest indegree,
and so on.

If we apply this to ¥y we find that the node 15 has maximum

indegree (two) and non-zero outdegree. If we remove the line 1545

we obtain the following final form for Mj:

0 1
1 1,00 §,10
1/1
2 1,01 | 5,10 (1) @—~——
3 5,06 | 1,08 [1/0 |
0/0
4 3,10 | 4,08 13}—{15
5 2,11 5,11

This differs from Figure 21 only in that we have one more "don't
care” assignment.

Clearly this method is not without its difficulties, A more
detailed analysis would be required if an automated implementation -
of the design procedure was attempted.

In this chapter we have discussed how elements of grzph theory
might be employed to aid in a systematic approach to the design

process, The persistent appearance of the ordering problem is one

3la
of the major difficulties with this method, When a choice is to be
made, can it be arbitrary or is there a priority of choices such that
one yields a more desirable end product than another? This is not
unlike the primé implicant problem or the maze problem where an exX-
haustive check of all possibilities appears to be “i:he only éolution.
Unfortunately, exhaustive checking, particularly for machines with a
large number of states, will generally be very time consuming.

levertheless it may be worthwhile implementing an algorithm

which may not always yield minimal configurations but which is well
defined in its seguence of operations and is not voracious in its

time demands,

32

1V, HOMOGENEOUS DISTINGUISHING SEQUENCES

Considerable simplification of the methods previously des=-
cribed can be achieved if we do not insist tﬁat the sequential
machine be definitely diagnosable but that it have DS's only for
homogeneous input sequences (ie, strings of all O's or 1l's.)
Homogensous distinguishing sequences are usually most desirable for
use in the design of checking experiments becauss they permit consid-
erable overlap in the state counting segment of the experiment and
thereby yield shorter experiments. Another significant advantage to
be obtained in restricting ourselves to such DS's is that the input
columns can be handled independently. Thers will be one testing table
and testing graph for each input column, Conséquently. in general,
the number of nodes in a testing graph will bes at least halved in
the binary input case, and the possibility of having cycles in ths
testing graphs is greatly reduced,

Using M; again as the example, Steps 1 and 2 will be applied as
Before, after which the state table, the testing graphs for each of

the two inputs, and the distinguishing tree will appear as follows:

33

0 1
111,00 L1
2 11,01 5,10
3 {50 1,0
5 13,1 4,0
5121 511

Figure 22a. State Table and Testing Graph for Ml'

(1234 5)
— 1
(1) (15)(23) (b5)(18)(5)
"f |)
(%) (1)‘<2)(15) (B)(5) (W) () (5)
—
@@ @) (2)

Figure 22b, Partial Distinguishing Tree for Ml.

Because each testing graph has no cycles then Mj must have a
homogeneous distinguishing sequence cdnsisting of each of its inputs,
one of length three (000) and one of length two (11). If cycles did
exist in either or both of the testing graphs then we would apply
Step 3 of the pfocedure to open them, If we had a homogeneous DS
for one of the inputs only, then a decision must be made as to wheth-
er we should use the existing homogeneous DS or attempt to open the
cycle in the testing graph of the other input even though an add-
itional output variable may be necessary. As there are no cycles in
My we can skip Step 3 and proceed with Step 4 ~ the assignment of

outputs to reduce the length of the longest path.

34

The first unassipgnsd output is state 3 on “0", From the test-
ing graph, and as the distance matrices sould show, the removal of
the line from 23 reduces the distance to one, ‘we accomplish this by
assigning the output O to the entry. The next unassigned output
is state 4 on "0", The removal of the branch 45->23 does not further
reduce the distance hence these outputs may be left unspecified,

Figure 23 displays the current form of Mj.

0 1

1 11,00 L,y

1/1 |
2 |1,00 | 510 on @) @12 45
3 |500 | 1,0 \@/ 1/0 1/1
0/0
o | w0 |00 @ @
5 12,14 5,11 .

Figure 23. Modified State Table and Testing CGraph for Mj.

On a "1" input the first unassigned oufput is state 1. A
choice of 12 or 15 is arbitrary so we choose 12, Although this as-
signment does not reduce the maximum length it is possiblé that all
lines will be eliminated if we proceed with the cancellation. In
this case, since 25 has been specified in Step 2 and 12 specified
above, then the line from 15 to 45 can never be removed. Hence the'
minimum distance is one and all unassigned entries, including the
output for state 1, may be left as "don't cares,” Final form of M3

(M) is shown in Figure 2U,

35

0 1
1 1,00 4,14
2 1,01 5,10
3 5,00 1,08 Distinguishing Sequencess
Iy 3,1 u,o¢' 00 and 11
5 2,1¢ 5,11

Figure 24, TFinal Form of Mj.

It is clear from consideration of the testing graphs that sev-
eral conclusions can be drawn about the effect of making machines
diagnosable with homogeneous distinguishing sequences and that these
conclusions strongly emphasize the great advantage to be obtained
with this approach,

1., For any given sequentizl machine that there can be no DS
containing mixed input symbols which is shorter than a DS containing
the same symbol repeated, if the DS is obtained by the ;bcve method,
This is clear from an inspection of the testing graph for the machine.
Because the testing sub-graph for each input is obtained from the
complete testing graph of the machine, no path in the former can be
longer than a path in the latter,
| 2, For a seguential machine to acquire hoﬁogeneous DS's by the
above ﬁethod it should require no more additional outputs than to
make the machine definitely diagnosabie. This follows from the first
conclusion, Any output assignment that opens a cycle in the complete

testing graph must do the same for the testing sub-graphs,

36

3. In the gensral case, for definitely diagnosable méchines, it
is possible to have testing graphs in which the strong components are .
not disjoint. When the machine has many states this can greatly com~-
plicate the problem of eliminating a minimal number of ‘branches to
open all closed loops, However, if the machins has only two inputls, ‘
then the above method ensures that all strong components are disjoint
and the elimination problem no longer exists. |

L, If a machine has an input column that require§ several ad-
ditional output variables to make it diagnosable for that input, it
may be possible to find another column which requires fewer varia-
bles, A preliminary examination of the testing subgraphs may lead
to the best choice initially, It would seem'reasonable to conject-
ure that the best choice would be an input column whose subgraph has
fewest cycles, or in the event of there being an equal number of
cycles the one with the shorter maximum cycle length,

5, More of the output entries in the state table are likely to
remain unspecified., In most cases, when the complete testing graph
is divided into the sub-graphs, the cycles will be broken and path
lengths reduced, Therefore fewer output assignments will be required
to obtain minimal path lengths, This will simplify the circuit

realization and reduce the hardware cost,

V. SOME SPESCIAL CASES

The special cases considered here are those sequential machines

which have either a resst column or a cyclic'permutation column, 4

reset column has the same state for each next state entry. A cyclic
Egrmutatibn column is one in which the next state sequence is somé |
cyclic permutation of the original set of states of the machine., The
reason that thess machines are considered to be special is that they
are the only cases for ﬁhich we have some prior information about the
humber of additional output variables required, For reset columns
this number approaches the maximum, For some of the cyclic permuta~
tions the number will be minimal, while for others the problem of as=
signing outputs in an optimal way has not been solved. 4An algorithﬁ
is presented for generating the sets of cycles in the testing graph,
iven the number of states and a particular cyclic permutation,

RESET COLUMNS:

Kohavi and Lavallee (1) introduced the basic technique for
analysing sequential machines with reset columns, They were able td
show that in certain cases, the technique of state~-splitting, provid-
ed it did not increase the number of internal state variables, could

make the machine definitely diagnosable, State-splitting involves

the addition of a redundant state to the machine in such a way that
the response of the machine to any input string is unaffected. The
state added is equivalent to one of the other states in the machine

and consequently the two are not distinguishable by an input sequence

38
of any length, An example of this technique is shown in Figures 25,
26, 27, To the original 3 state machine in Figure 25 state 3 has
been added and made equivalent to state 3 by giving it the same next |
state and output entries (Figure 26), The original machine requires
two additional outputs to make it diagnosable for homogeneous DS's,

The modified version requires only'one additional output (Figure 27).

0 1 0 1 0 1
1 | 3,0 2,0 | 1 {3,0 2,0 1 | 3,00 2,00
2 |3,0 1,0 2 13,0 1,0 2 {3,01 1,01
3 3,0 2,1 3 13,0 2,11 3 {300 | 2,0

/ / / /

3" 13,0 | 2,1 3 {3,01 2,1

Figure 25, Mp. Figure 26, State 3 Figure 27,
is split. Modified Mo,

The conditions under which state splitting is advantageous can
be deduced from the above example. The number of states in the mach-
ine should be at least one less than a power of two., Ifm (which may
be less than the number of states (n) in the machine) is the number of
identical hext state entries then (iogzﬁ] =1 will be the number of ad=-
ditional outputs required. The technique of state splitting éan
never save more than one additional output.

Where state splitting is not feasible then the number of addi-
tional outputs required will be flogzﬁq. If m is close to n then in
most cases the DS obtained will have length two and we will have the

shortest possible experiment for this machine,

39

CYCLIC PERMUTATION COLUMNS3

It will be assumed throughout fhis section that all n states
of the machine are involved in the cyeclic permutation. Where the
cyclic permutation involves a subset of the set of states iﬁ is
suggested that the techniques to be described here should be applied
to this subset and then the entire machine subjected to the procedure
of Chapter IV for assigning the remaining output entries,

In this analysis of machines with columns of this type we employ
the same design criteria described in Chapter I: wuse the smallest
number of additional output variables in an assignment égat minimizes
the resulting homogeneous DS's, For machines with cyclic permutation
columns that have the following properties:

either f (qj’ ip) Q341 and £ (ay, ir) = ays

[}

or £ (a3 ir) =qyy and £ (g, 1) =,
where f (qk, ir) is the next state function for state qk on the input
i,.; then it is possible to find an output assignment to the state

transitions under i, such that a minimal length hombgeneous DS is

r
obtained, Such an assignment can be made using Smith's Algorithm (4).
Given the number of states (n) and the number of symbols in the out=~
put alphabet (p) this algorithm generates a sequence of output symbols
such that each group of y (= [1ogzﬁ]) consecutive symbols; including
the end-around groups, is unique. Kane and Yau. (2) modified Smith's
Algorithm from the original version so that it would apply directly

to most machines of the type being considered here. This version is

pfesented here for the genéral case where n and p‘are arbitrary.

SMITH'S ALGORITHM

Let n = number of states in the machine,
P = number of output symbols, |
V= ﬁnggq.

1, Order the alphabet (output) in some hierarchial manner 0,1,
cesecey P-l.

Begin with 0 Y1 (p-1).

2, Add a new symbol if it is the highest symbol in thé hierarchy
which can be added without creating duplicate y-tuples in the
sequence,

3. Continue step 2 until the sequence is of length n,

If n = pY, STOP - this is the desired sequence,

If n<p’, and if the last symbol is not equal to 0,:or the last
symbol equals O and the next to last is not equal to O theh STOP =~
this is the desired sequence, Otherwise go to step 4.

th symbol from the end of f}

L4, For some value of j, 1<j<y, the J
the sequence will be other than 0 or 1, Append string Oy.llj to the

beginning of the sequence and delete the last (y-1)+j symbols,

N.B. The original algorithm was designed to produce zero-free se-
quences, ie. sequences that did not contain the string 0¥ (including
end around strings). The modification occurs in step 3 where we do
allow the possibility of one OV sequence, and in step 4 where the

sequence is modified if more than one 0Y string occurs,

L5

We discovered that for certain machines with p = 2,Step 4 of
Smith's Algorithm did not produce a DS at all, let alone one of min~-
imal length. This was caused by the appearance of duplicate y-tuples.
The first three such cases occurred for (y=H; n=12) and (y=5; n=20,2L)
In each case it was found possible to artificially adjust the sequence
so that each y-tuple was unique. It is conjectured that an output
assignment using these sequences will still yield DS's with near min-
imal length., |

We present below a full analysis of 4,5 and 6-state machines.
Smith's Algorithm is illustrated and we also highlight the problems
that still exist for cyclic permutation other than those with the
properties describsd earlier. An algorithm is given for generating
all cycle sets for any n state machine with cyclic permutation
columns.

FOUR STATE MACHINES:

Consider the following three possible cyclic permutation.

columns for four states:-

1 4,10 3,10 2,10
2 1,11 4,11 3,11
3 2,11 1,11 4,11
b 3,10 2,10 1,10
a. b, ' ¢

Figure 28a, Cyclic Permutations for 4 States.

b2

Cycle Set(Cs)=(2,4)

24

Figure 28b, Testing Graph for columns a., and c,

Figure 28b'sh6Ws the testing graph for column a. The graph for
column ¢. is essentially the same except that the arrows are reversed.
Using Smith®s Algorithm the output assignment will be 0110 as shown in
Figure 28a, The resulting canceliations (shown / in Figure 28b) yield

a DS of length two which is clearly minimal.

-
& B
34 b 23

8

Figure 29, Testing Graph for colum b,

CS = (15,22)

The cycle set for column b is shown in Figure 29 together with
the canczllations that would occur using the Smith Algorithm assign-
ment, It can be shown that no arrangement of output assignments
ﬁill open all closed loops. Hence an additional output variable
(the maximum number in this case) is needed to enable the machine

with this column to have a DS for the associated input,

b3

FIVE-STATE MACHINES:

The eyclic psrmutation cblumns for 5 states are shown in Figure

30, and the relevant testing graphs in‘Figure~31.

~

-1 5,10 4,1 3,1 2,10
2 1,10 5,1 b1 3,10
3 2,11 1,1 5,1 by11
b 3,11 2,1 1,1 5411
5 4,11 3,1 2,1 1,11
3. b, c. d.

Figure 30, Cyclic Permutations for 5 states,

Q30
cs = (5,)

{
\25)

.

Figure 31. Testing Graphs for columns a. and d.
For colums (a) and (d) the Smith algorithm yiélds 00111 as an output
assignment (Figure 31), The machine has a minimal homogeneous DS of

length three,
N O

) N g«—F‘@

Figure 32. Testing Graphs for columns b. and c.

For columns (b) and (¢) (Figure 32) the assignment 0011l produces the

cancellations (shoﬁn / in Figure 32) and a DS of length four results,

/ Ly
This is not optimal as another output assignment was found - 01010
(shown C) that produced a DS of length three, This latter &% clearly
not a sequence of the type generated by the Smith Algorithm and |
therefore it is highly unlikely that any modification of the Smith
Algorithm coald yield such a sequencs. We were ndt able to find a
systematic method for generating minimal output assignments for this
case,

SIX~-STATE MACHINES:

A summary of the cycle set pattern for Six-state machines is
given below.

Positions that the column

is rotated forward Cycle Set
1 (3,65)
2 (35)
3 (13,2¢)
b (35)
5 (3,65)

Output assignment using Smithfs algorithm is minimal for cycle
sets (3,6,) and (35). In fact, any assignment which contained an
equal number of 0O's and 1's was found to be minimal for the cyéle set
(35). No assignment yielded a DS with just one additional output for
the cycle set (13,26). Another output was required, but this was
still less than the maximum for this number of states.

In summary, the cycle sets for 4 to 8-state machines are given

in Table 1,

b5

~

TABLE 1. Cycls Sets.

An
o .
~
oo

nt 4

Rotation §
1 (2,4) (52) | (3,63) | (73) | (4,83)
(12,22) | (52) (35) (73) | (22,%g)
(2,4) (52) | (13,28) | (73) | (4,83)

(5,) (35) (73) | (Lye232)
(3,65) | (73) | (4,83)
(75) | (22,46)
(%,83)

~N N \n F W

The following algerithm was formulated to generate the cycle
sets for any cyclic permutation column of any sequential machine:
Let n = number of states in the machine,
X = number of positions the column has been rotated from the
standard position,

then the cycle set has the general formi-

(aj ’ bk)
where b = n
ged. tX,n)

for b even:

a = ’

nlo

j = ged (x,n),
k = (n-2).ged (x,n);
2

for b odd:
a=b,

J+k=(n1)eged (x,n) .
3 ‘

From the preceding analysis of theée special machine classes
some rather general conclusions can be drawn., Firstly, for each n
state class there is at least oremachine, specifically the one with
each state as iis own next state thereby having a testing graph with.
n(n-1)/2 self-loops, that will require the maximum number of addition-
al outputs, Secondly, for each n state class, with n even, there is
at least one machine that requires more than one additional output
but probably less than the maximum number.

Several important problems related to these cases remain un-
solved. For machines which are not covered by Smith's Algorithm
there must be algorithms which will yield the most efficient outﬁut
assigmments., For machines with an odd number of states it appears
that only one additional output is required. It is not.clear whether
this holds for large n. We wWere unable to determine whether the form
of the cycle set gives any indication of the algorithm that will yield
the best output assignment; or whether the form of the cycle set can
be used to predict the number of additional outputs:required.

In this chapter we have investigated some classes of machines
about which it is possible to predict the number of additional output
variables required and to make minimal output assignments, Unfortun-

ately there exists other related classes about which we have not been

L7
"able to obtain such information., Further investigation is needed in

this area, specifically with regard to the problems discussed above.

VI, DESIGN OF THE CHECKING EXPERIMENT

Having established a procedure for ensuring that a homogeneous
distinguishing sequence exists for the sequaﬁtial machine we now con-
sider the design of a checking experiment employing this séquence.
The ' checking experimeht muét verify the numbsr of states of the
machine and check the transitions from these states under all inputs.
If at any point in the experiment the output response differs from
the expscted response as indicated by the state table of the machine
then we can conclude that the machine is not fﬁnctioning correctly.
An algorithm is presented, based on work by Gonenc (3) but modified
here to take into account the advantageous properties of the homo-
geneous DS, that will yield a near minimal length checking experiment
for most seguential machines,

The method to be described here requires that the machine be
in a predstermined state., To achieve this we may first apply any
one of several typss of sequences., A synchronizing sequence, if
one exists, will drive the machine to a final state which is known
from the state table but which must be tested as the first step in
the experiment. Alternately, we may apply a homing sequence which
will leave the machine in a known and recognized state because the
corresponding output does uniquely identify the final state, If
the output response was not as expecdted then we have determined
that the machine is faulty and the expsriment terminates. if we
want the machine in a state that is not reachable directly by a

homing sequence then we must first apply a homing sequence and

follow it with a sequence that will transfer the machine to the
desired state. Again, for this latter case it will be necessary
to recognize the start state at the beginning of the experiment,

It has become common practice in designing checking experi-
ments to consider the experiment in two parts = the «~sequence iﬁ
which the number of distinct states in the machine is verified, and
a p-sequence in which the state transitions are chécked. This
partitioning Wili be used here since the incorporation of homo-
geneous distinguishing sequences in the < -sequence yields sub-
stantial reductions in the length of the experiment. It should be
noted however, that if the correct response to a DS is observed
during the transition checking portion of the experiment then this
step may be eliminated from the state counting segment. This means
that, in general, the checking expsriment can be based solely on
checking transitions, since for a strongly connected machine the
correct number of distinct output responses will be observed,
thereby verifying the number of states in the machine,

The following symbols are used in this chapter:

X4 = the distinguishing sequence.

1 - X4 = an input 1(0) followed by the distinguishing sequence.

T(Si,Sj) = a shortest transfer sequence from Sj to Sj.

Zj = tha output response sequence that distinguishes state Sj'
For an example machine we will use our previous machine My

which was modified in chapter IV to exhibit DS's of 00 and 1l.

0 1

1 1,00 | 4,14
2 1,01 5,10
3 | 5,00 1,08
b 3,18 4,08

5 2,1¢ 5,11
Figure 33. Modified M.

Organization of the «({~Sequences

The goal of the first part of the checking experiment is to
confirm that the number of states, verified by successive applica-
tions of the DS to the machine being tested, agrees with the num;
ber initiated by the state table, One application of the DS and
its corresponding output response will be referred to as a cell, It
follows that the number of distinct cells should correspond to the
number of states in the state graph., Because we are using a homo-
geneous D3 there will be considerable overlap of state checking cells
in the «~-sequence.

The first step in the design of the X-sequence is to con=
struct a digraph (Figure 34) displaying the next stats transitions
for the input used in the DS, For this example we will use the DS
of "00" for machine M{C

A desirable start state for the «-sequence is one which min-
imizes the number of transfer sequences required, A source state,
if one exists, satisfies this requirement since if we were to choose

a non-source state then at some point in the sequence we would have

5
to apply a transfer sequence to tha source state so that we could
check its output response to the DS, If no'source exists then the
digraph is strongly connected and the particular start state chosen
is immaterial. If more than one source state exists then we should
choose the one that minimizes the total length of all transfer se-
guences needed in the d~seqnence.v

If the transition graph has disjoiﬁt segments then transfer
sequences will be required, The optimal strategy would be to
choose the source states in an order that minimizes the tétal
length of all transfer sequences required, This situation would
be further complicated if for one of the segments there were mul-
tiple source states., There appears to be no way of selecting a
priori the best order of'states.

For machine M{ state 4 is the only source state and is
therefore the best start state, If any other state was chosen as
the initial state then at some point in the «-sequence a transfer
sequence to state 4 would be required, In addition, the overlap-

ping effect of the DS would be lost,

,)
Figure 34. M, State Transitions for input O,

52
The L=-sequence of this maching will therefore have the

following forms

Tnput o 0o o 0 0 o0 0
State 4 3 5 2 1 1 1 1
Output i o0 1§ 01 00 00 00

The first six inputs ?roduce five different output responses,
thereby ﬁerifying‘that the machine has five distinct states. The
final dnput causes a transition that has already occurred and been
tested, Consequently, provided the machine is not faulty, at the
end of the o{-sequence we are in a recognized final state. If théy
machine is faulty we may still héve the same output response at
this stage, but the remainder of the experiment will detect the
fault.

In general, following the correct number of different output
responses it will be necessary to apply the distinguishing sequence
again in order to repeat a transition and terminate in a known state.

The procedure for designing the «~sequence is now summarized:

1. If the given sequential machine has more than one homogen-
eous distinguishing sequence, choose one!of the shortest.

2. Choose one of the source states ﬁnder the same input symbol
used in the DS, If there is no source state, choose any state as
the start. Where there is a choice of start states whether it is
due to no source state or multiple source states, it would probably
be better to choose as the start state one of the states that can

be reached with one of the shortest transfer sequences.

53

3. Apply the IS,

4, If the state reached has not yet had a distinguishing se-
quence applied to it (ie, has not been recognized) then go to‘ '

step 3, Otherwise go to step 5.

5. If thers is a source state not yet recognized apply one
symbol of the DS and then a transfer sequence to reach that state,
then go to step 3. Otherwise go to step 6.

6, 1If therevis any state not yet recognized apply one symbol of
the DS and then a transfer sequence t§ reach that state, then go
to step 3, Otherwise go to step 7.

7. Apply the distinguishing sequence once more, in order to
reoach a known final staﬁe. The structure of the «(~saquence is now
completed,

In the above algorithm, prior to each introduction of a
transfer sequence, one input symbol of the same type as is used
in the DS is applied, This is done to ensure that not only does
the o~sequence check the number of states but it chacks all the
transitions under this same input symbol., It is this property of
the homogeneous distinguishing sequence that gives it such a great
advantagze over all other types of distinguishing sequences used
in the design of checking experiments.,

Again in the case where there are several sources, the ques=
tion arises: does one order in which sources are chosen yield a
shorter checking experiment than another? The order chosen
should be dependent on the ease with which we can reach the start

state, the total length of the transfer sequences required, and

the suitability of the final state as a start state for the g~
sequence, The inclusion of these considerations would be quite
straightforward and systematic, requiring exhaustive testing of
all the possibilities, The effort and time required to do this, |
in most cases, will probably outweigh the advantages of the potent—
ial reduction in the experiment length, Therefore they are not in-
cluded in the algorithm given above.

Furthermore, Because of the great variability in the form
of sequential machines it is desirable to have a procedure which
is generally applicable to all machines, and which does not

attempt to cater to this variability.

Organization of the B-Sequencet

The function of the 8-sequence is to check the state trans-
itions on 21l remaining inputs. The gensral approach is to apply
an input (i) to produce the transition and then to recognize the
state reached by applying the DS (Xd). This combination of inputs

will be referred to as a cell and its form can be represented

as shown:
Input i X3
State S5 Sj
Output Z Zj

When a state is reached for which all transitions have been checked
it will be necessary to apply a transfer sequence to a state which

still has unchecked transitions.

55

The construction of the S~sequence will be illustrated for Mz
and then the algorithm formulated for machines with several inputs,

As we have checked all the 0 transitions for MZ in thes sequence
it remains to check all of the 1 transitions., It the sequence 1 had
been used as a transfer sequence in the first part of the experiment
the transition it created could bhe ignoréd in this second part. A
graph is constructed showing all of ths next state entries on an

input of 1-Xd, If a transition had already been checked then the line

representing it would be removed from the graph.

@

/4
Figure 35. 1--Xd Graph for Ml'

The graph in Figure 35 has three sources., In general this
will indicate that three transfer sequences will be needed in the
pB=-sequence. However, if one of the source states is a terminal
state for the «-sequence we would nced one fewer transfer sequence,
| This latter condition does not apply to M{, consequently three
transfer sequences will be required. In this case it makes little
difference whether we commence checking transitions from state 1

or first transfer to a source state,

56
Using state 1 as the start state, the general form of the

sequence will be as follows:

Input 1-X 1-X 7@, 1-xX3 71(52) 1-X
State 1 5 1 L .5 2
Input T(1,3) 1-Xd

State 1 3

The order in which the source states were chosen was based
on the minimum distance between the current state and the remaining
source states, Specifically, the g-sequence will be:
Checkst 1onl 5onl Loon 1l | 2on1l " 3onl
Input: 1 0 0 1 ¢ 01 1 0 0 01T O O0O1O01C0CO
State: 1 4 3 5 5 2 1 4 4 3 5 2 52 1 4 3111
Output: 1¢ 1§ 00 11 14 01 1¢ of 1 00 1§ 10 1§ 01 1§ 1¢ 0f 00 00

H
The total length of the checking experiment for machine M; is

26, Any experiment based on the original machine My would require
substantially more inputvsymbols.

A general procedure permitting any number of additional input
columns, is now presented for the organization of ﬁhe/ﬁ—seéuence.
Tt is a modification of an algorithm devised by Gonenc. Gonenc's
algorithm has been changed to take into account the fact that we
are employing homogenscus DS's. Elements of graph theory have also
been introduced to indicate the techniques necessary in a programned
version of the précedure.

Let d§ ,'di represent the outdegree and indegres respectively

of node i in the graph, and S the set of states (nodes). The

57
nodes (5;) of the graph will belong to one of the following sets:
+ -

Fe{S;¢8 |dl>d}

P={s;es |af <dj}

We wish to select‘our start states for each segment of the exper-
iment such that the use of transfer sequences is minimized, If the
graph is Eulerian, that is, di = dj for all nodes, then there exists
a path starting at any node which travels along each line exactly
once and returns to the start node, Consequently no transfer se-
quences will be required, If the graph is not Eulerian then at
least one transfer sequence will be required, The selection of
optimum sequences is based on the following well-known theorem:

THEOREM s

If digraph D is comnected but not Eulerian every minimal cov-
ering of D consists of k paths each of which joins a vertex in F to
one in P, where

ke S - a) = T -

S;€F S4eP

The procedure described below is for connected graphs or for
connected subsets of a nonconnected graph. The minimal covering
for a nonconnected graph will be the union‘of the minimal coverings
for the comnected components,

Procedure for finding a Minimal Coverings

1. Choose a start state in F., The terminal state of the pre-

58
vious portion of ths experiment may be chosen as the start state.
If it is not in F then k + 1 paths will be required and k';ransfer
sequences used,

2. Follow a path from the start state, erasing each line as it
is used, This would require elimination of the appropriate entry
in the adjacency matrix, If a 1iné chosen is a bridge (a bridge
1line is one whose removal will degenerate a connacted graph to a non-
connected graph), choose another line emanating from the same node,
if one exists, Matrix techniques for determining bridges and find-
ing alternate paths are discussed in the Appendix, |

3, When it is not possible to go further, choose another start
state in F and go to step 2, When k paths have been generated the
procedure is terminated.

N.B. The minimal covering sequence will be one .of the set of
séquences generated by the above procedure, There will be at least
k members of the set and it is necessary to generate all of them
if the minimal covering is to be found, In general the reduction
to be achieved by forming all possible coverings is probably not
worth the effort, The following criteria for generating the cover-
ing is suggested as a means of achieving near-minimal results most
of the time:

Compute the distance matrix for the digraph. List the maxi-
mum path lengths emanating from the nodes in F. The start states
may then be chosen from F either in order of decreasing path length
or such that the lengths of the transfer sequences between paths is

in an increasing order. It is not clear which ¢f these two

59
alternatives yield the better results. In the latter case the
lengths of the transfer sequences would be obtained from the distance
matrix of the state graph of the machine.

As a final example a checking experiment will be designed for

the following sequential machine M3°

0 1 1

1 2,0 6,0
2 | 30 5,1
3 14 2,0
b | 5,0 1,0
5 | 6,0 L,
6 | 2,1 5,1

Figure 36, State Table and State Graph of Ms.

M3 already has distinguishing sequences, one of the shortest
being "001"., In the search for homogensous DS's the testing graph

for each input is constructed (Figures 37 and 38).

Cracl OO
B @ Ceecanc
B® C

Figure 37, Input O. Figure 38, Input 1.

60

An homogeneous D3 of "00000" exists, The 1 input column has

the repeated pair '55' which, if reméved, will give the machine a
distinguishing sequence of "11", Consequently with the addition of
only two output entries M3 adquires a short DS, The remaining en- |

tries may be left as “don't cares" giving maximum flexibility in

design, The modified machine M3 is shown in Figure 39.

0 1
1 | 2,08 6,08
2 | 3,08 5,10
3 | 4,1f 2,08
L | 5,1¢ 1,08
5 | 6,08 b,1¢
6 | 2,19 5,11

) 4
Figﬁlre 39 . M:Odified MB (MB) .

Construction of the L-sequence is guided by the source states
in a graph of state transition on a 1 input. From Figure 36 it can
be seen that 3 is the only source state. Hence, if it is chosen as
the start state, no transfer sequences will be required and the se-v
quence of states will be 325416541, The complete L~sequence

is shown below:

3onl 5onl lonl
Checks: 2onl Lonl 6onl

Inputs 1 1 1 1 1 1 1 1
States 3 2 5 4 1 6 5 & 1

61
The last two inputs are necessary to drive the machine to a known
state,

For the p-sequence we require the transitions on an input of

0 followed by the distinguishing sequence.(Xd). The "“0-Xd" graph
is given in Figure 40, ‘

B!

Figure 40, 0-Xg Graph.

In this case it makes no difference in the length of the B-sequence
whether we choose the terminal state of the «-sequence as the start
state for this segment or one of the source nodes of the 0-Ad graph,
Choosing 1 as the start state the minimal covering will be 1 &4 1 -
254 -36L4, Two transfer sequences are required and there will
be six 0-Xd cells checking the O transitions of all states. The
complete g~sequence is now giveni
Checkss 1 on O 4 on 0O 2on0 50n0 3on0
Ny ey ey Ty "
Inputt 01 1 0 1 1 0 011 01 11 0O0O0T121
State: 1 b 12 5 b 3 6
Checkss 6 on O
r__,_/"\._—\
Input: © 1 1

State: 6 L

A minimal checking experiment for MB has been designed with
a length of 30 input symbols, For the same original machine with
no modifications Gonenc obtained a minimal experiment of length 52

using the shortest distinguishing sequence,

62

63
V11, BOUNDS ON THE LENGTH OF THE FXPERIMENT

(2) Upper Bounds:

In deriving thé upper bounds for ﬁhis type of checking ex-
periment use is made of the assumption'thét ths machine is strongky
connécted and that consequently any state can be reached from any
other state in at most n-1 state transitions. The bounds are com-
puted for a two input machine, however an extension to nmore than

two inputs would be quite straightforward.

Let L = the length of the DS,
n = number of states in the machine.

For the X-sequence the worst case occurs when there is no overlap
between input cells (a cell is L + 1 inputs of the same symbol as
the DS.,) This cell rmust be applied n times, A further application
of L -1 symbgls that comprise the DS is needed to drive the machine
to a known terminal state. In addition, n-1 transfer sequences will
be needed, Because the machine is strongly-comnected the first
transfer sequence will require at most one symbol, the second at
most two symbols, and so on,
o« Maximum length of the<x~§iquence
(n=1).(L+1) + 2L + n§1

3=

n{l+1) + (@L-1) + (n=1)(n=-2)
2

1

1l

For the B-sequence a cell consisting of one input symbol

followed by the DS must be applied to each of the n states., The
’ n-1

‘total length of the transfer sequences will again be £§§i.

#

& maximun length of the g~sequence

n-1,
= T (I:‘!'l) + El
i=1

i

n. (I41) + (n=1)(n-2)
2

#e upper bound on experiment length

= 2n(L41) + (L-1) 4+ (n-1)(n-2)
If we permit only the minimum number of additional outputs to make
the machine diagnosable then the length of the distinguishing. se-
quence 1s bounded by n(‘rg:}_). Hence the upper baﬁnd, as a function
only of the number of stites, will be:

=2nn{n-1) +1 + n@n1) -1 + (n-1)(n=2)
2

Fortunately this bound is much greater than the checking ex-
periment length usually obtained. The length is generally quite
close to the following lower bound.

(b) Lower Bounds

The lower bound will be achieved when no transfer sequences
are required, With maximum overlap the length of the d-sequencé
becomes n + L. The g-sequence will have a length of n,.(L+1). |
o LOWER BOUND = n + L + n,(I+1)

If sufficient additional outputs are permitted to reduce the

DS to one symbol the absoiute Jower bound becomss 3n+l.

65

CONCLUSIONS

In this paper a systematic procedure has been described for
modifying a sequential switching circuit in order that it should
have short homogeneous distinguishing sequences, and for designing
near minimal fault chscking experiments, Elements of graph theory
have been considered as the preferred vehicle by which the procedure
can be programmed on a computer. Some specific classes of machines.
have been considered, namely those with reset or cyclic permutation
columns, It is clear that the techniques employed in these special
cases can be applied when only some subset of all of the states has
the reset or cyclic permutation propsrty.

The overall procedure is very simple to appiy by hand for a
small sequential machine since the graph ahalysis can be done by
inspection, If trial and error methods are avoided completely, in
most cases the length of the resulting checking experiment will
still be close to minimal. However, the designer has the choice
of inecluding exhaustive testing in the implementation, in which
case a minimal experiment will be obtained, For large machines '
this latter process would be unacceptably time consuming, One sol-
ution to this problem is to have an interactive program in which
the graphs are modified by inspection where possible, thereby
eliminating some of the more complex matrix techniques, The order-
ing of specific tasks such as branch elimination, subgraph select-
ion, choice of starting states, etc., presents a problem which is

analagous to the prime implicant problem and is unsolved,

66

The questions left unanswered in this investigation are
either related to a very small subset of the sequential machines
or are likely to contribute only nominally towards optimizing the
procedure, However, an attempt has been made to at least note 2all
of the aspects of the subject that remain to be éxamined,or that
should be considered when the procedure is implemented. These
include:

(1) determining how the order in which many of the branch
elimination aspects may be defined such that the whole process is
optinmized;

(2) dbtaining output assignment algorithms for all machines
containing cyclic permutation columns;

(3) selecting suitable start states for the checking experi-
ment and determining the order in which source states should be
chosen.

It is felt that a computer implementation of the methods described
will lead to at least partial solutions to some of these problems,
and that it may be possible to derive some heuristic functions to aid
the optimization process,

An upper bound on the experiment 1ength,h§s been calculated
which is lower than any previocusly obtained, However, this bound
is still a gross overestimate of the length usually possible. In
most cases values close to the lower bound are more probable. This
lower bound is the sﬁallest cbtainable for a given homogeneous dis-
tinguishing sequence under the design philosophy employed in this

papsr,

1.

3.

5e

7

67

BIBLIOGRAPHY

%. Kohavi and P, Lavallee, "Design of sequential machines with
fanlt-dstection capabilities," IEEE Trans. Electron, Comput.,
vol., EC-16, pp. 473-484, Aug. 1967, |

J.R. Kane and S.S. Yau, "On the design of easily testable
machines," Proc, IEEE 12th Annual Symp. Switching and Automata
Theory, pp. 38-42, Oct, 1971. |

G, Conenc, "A method for the design of fault detection experi-
ments,” IEEE Trans. Comp., Vol. C-19, pp. 551=~558, June 1970.
AR, Smith, "General shift register sequences af arbitrary
cycle length," IEEE Trans. Comp., vol. C-20, pp. 456-459,
April 1971,

F, Harary, R. Norman and D, Cartuwright, Structural Models ~
An Introduction to the Theory of Dirscted Grapns, John Wiley
and Sons, Inc., 1965,

7. Kohavi, J,A, Rivierre, and I, Kohavi, "Checking experiments
for sequential machines," Information Sciences, vol, 7, No, 1,
pp. 11-28, Jan. 1974,

S, Washall, "A Theorem on Boolean Matrices," J.ACM 9, pp; 11-12,

Jan. 19620

APPENDIX

APPENDIX

The procedurs for finding a minimal covering of a diregted
graph (page 58) requires that the elimination of bridge lines be
avoided where possible, It is therefore necessaﬁy to be ablse to
recognize bridge lines and to be able to determine whether an al-
ternate path from the node at the beginning of the bridge exiéts,
Recognition of bridge lines using matrix,techniques is well known
and is discussed in detail in Harary (5). A summary of the seg~
ments of that discussion relevant to this application is présented
below,

To determine whether an alternative path exists at any point
it is necessary to keep an updated record of only the current in-
degres and out-degres of each node. These quantities are readily
obtained from the adjacency matrix A(D) of the original digraph.
The row sums of this matrix are the out-degrees and the column
sums the in-degrees of the respective nodes, When the initial node
of a bridge is reached, if that node has out-degree greater than
one then clearly an alternate path exists, These node degrees also
enable the easy recognition of source statss, and states which be~-
llohg to the subset F referred to in Chapter VI,

The principle steps in the process for identifying'bridge‘
lines are now presented,

1. Compute the connectedness matrix C(D) of the digraph D,

The procedure for this was given in chapter III. Recall that the

matrix C(D) gives complete :information about the connectedness

69
category of the components of D. If the (i,j}zé entry of C(D) is
3 are in the same strong or weak com-
poneht respectively. If the entry is zero, Vi and Vj are not con-

3 or 2 then the nodes V; and V

nected. The lines in strong components can be ignored for the
remainder of the analysis since no strong component can contain a
bridge.

2. A start state is chosen and the weak component (Dy) con-
taining this state is determined from C(D).

3, To determine whether a line x € Dy is a bridge we obtain
A(Dl) and from this A(Dlwx). (The entry of 1 in A(Dl) which re-
flects the presence of x becomes a 0 in A(Dy-x).)

L, Derive C(Dl—x). If the minimum entry of C(Dl-x) is zero
then x is a brige.

Tn programming the design of the checking experiment the pro-
cedure described above is probably the least satisfactory aspect of
the entire process. Every line of every weak component must be sub-
jected to analysis. In addition, after each path has been estab~-
1lished it is necessary to recompute all strong and weak components
of the digraph D, Although considerable reduction in the amount of
computation can be achieved with sparse matrix techniques and other
shorteuts it is arguable that the time involved in avoiding the el-
imination of bridges is not justified by the potential reduction in

the length of the‘experiment.

