
AN ABSTRACT OF THE THESIS OF

JOHN DOUGLAS HOLT . for the degree MASTER OF SCIENCE

(Name) (Degree)

in Computer Science presented on February 4, 1975

(Major Department) (Date)

Title: THE DESIGN OF FAULT DETECTION EXPERIMENTS

FOR SEQUENTIAL MACHINES USING HOMOGENEOUS

DISTINGUISHING SEQUENCES

Abstract approved:

Redacted for privacy

Professor Robert A. Short

The design of checking experiments for sequential machines

which do not initially have a distinguishing sequence is inves-

tigated. Improvem,Jnts are suggested to an existing method for

augmenting the output logic so that the machine acquires homo-

geneous distinguishing sequences. To indicate how the procedure

may be implemented on a computer, elements of graph theory

applied to the design steps. A systematic process for the con-

struction of the checking experiment using homogeneous distin-

guishing sequences is described. Upper and lower bounds for

each segment of the experiment are derived.

The Design of Fault Detection Experiments

for Sequential Machines using Homogeneous

Distinguishing Sequences

by

John Douglas Holt

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Commencement June 1975

APPROVED:

Redacted for privacy

Professor of Computer Science and
Chairman of Department of Computer Science

Redacted for privacy

Dean of Graduate School

Date thesis is presented February 4, 1975

Typed by Rosslyn E. Holt for John Douglas Holt

TIIPTV OF CONTENTS

Chapter Page

I. INTRODUCTION 1

CREATING A DEFINITELY DIAGNOSABLE MACHINE 8

APPLICATION OF GRAPH THEORY 18

IV. HOMOGENEOUS DISTINGUISHING SEQUENCES 32

V. SOME SPECIAL CASES 37

VI. DESIGN OF THE CHECKING EXPERLMENT 48

VII. BOUNDS ON THE LENGTH OF THE EXPERIMENT 63

VIII. CONCLUSIONS 65

BIBLIOGRAPHY 67

APPENDIX 68

THE DESIGN OF FAULT DETECTION EXPERIMENTS FOR SEQUENTIAL

MACHINES USING HOMOGENEOUS DISTINGUISHING SEQUENCES.

1, INTRODUCTION

In recent years a great deal of attention has been focused

on methods of diagnosing faults in combinational and sequential

electronic digital circuits. Many sophisticated techniques have

been discovered for the detection and location of these faults. Un-

fortunately these techniques have not been employed to any extent in

the design of electronic hardware. One of the reasons for this is

that for complex circuits the algorithms become difficult and time-

consuming to implement in a systematic way. In addition, many of

these techniques require substantial modification of the basic

design and the additional cost involved is considered unacceptable.

With the advent of integrated circuits and modularization of

components the emphasis in fault diagnosis has shifted to fault

detection rather than fault location. Intergate lines are now

considered inaccessible and this has led to the design of fault-

detection experiments which depend only upon the values at the input

and output terminals of the module. The nature of the experiments

treated in this paper is to apply a sequence of inputs to the module

and to examine the output response in order to determine whether the

machine is working correctly. It has not been possible to design

experiments which cover all possible types and numbers of faults in

the circuit. It is necessary to classify the machines under consid-

eration according to the failures that the experiment is expected

to detect. Any sequential machine which has the correct output

response to the experiment has a state table isomorphic to that of

the given table, or has a failure not in the given class. In order

to be able to program the design of these experiments some of the

matrix techniques employed in graph theory are modified and ap-

plied to steps in the procedure. At the same time it is desirable

that the design be simple to implement by hand, and due attention

has been paid to this aspect.

A number of cost criteria are relevant in evaluating test

design procedures. The following factors have been considered in

the design philosophy employed in this paper:

1. The amount of additional hardware required.

2. The length of the test sequence.

3. The amount of information which must be handled to design

the test.

In general, the first two of these are inversely related and so also

are the last two; hence the designer has some flexibility in the

relative weighting he wishes to give to each factor. The hardware

module is assumed to be a sequential switching circuit. A sequen-

tial circuit is one whose next state is a function of the current

inputs and the present state. The transition checking approach

used here makes no specific failure assumptions which are related

to the circuit realization other than the number of states. Hence

these experiments are independent of the circuit realization of the

sequential function, and we need be concerned only with the logical

behavior of the circuit. This behavior is usually represented by a

state table displaying the inputs, state transitions and outputs.

This table is referred to as the sequential machine.

The following assumptions are in effect throughout this dis-

cussions

1. The sequential machine is of the Mealy type in which the

output response is a function of the present state and the current

input. A block diagram of a Mealy sequential machine is shown in

Figure 1.

Inputs
x Combinational logic for

the next state and

output equations.

1,

Outputs

I

}Next State
Variables

y

Figure 1. Mealy - Type Sequential Machine.

2. The machines are finite state, strongly connected, reduced,

deterministic and completely specified and the state table is

available.

3. The faults that may occur are permanent faults and ones

that do not cause any increase in the number of states of the mach-

ine. This latter assumption is not too restrictive since, for the

4

number of states to increase, the effective number of delay elements

must also increase, and this is an extremely unlikely event.

The following basic definitions apply throughout this paper.

DEFINITION: A clistAnmahlassemence (DS) is a sequence of

inputs which, when applied to a correctly operating sequential

machine 00, yields a different output response for each initial

state. By observing the responses of M to the DS the initial state

can be determined. A homogeneous DS is one of arbitrary length but

which is constructed from only one input symbol. Not all sequential

machines have a distinguishing sequence.

DEFINITION: A homing sequence is a sequence of inputs which,

when applied to the inputs of N produces an output response that

uniquely defines the final state, independently of the initial state.

All sequential machines have a homing sequence.

DEFINITION: A ariaL....1.ehroniiseauence is a sequence of inputs

which drives M to a known final state independently of the output re-

sponse. Not all sequential machines have such a sequence.

DEFINITIOINTI A transfer sequence denoted T(Si,Sj) is a sequence

of inputs which will transfer the machine from Si to S. Unless

otherwise specified, this is assumed to be one of the shortest such

sequences. For a strongly connected machine a transfer sequence

exists for every

DEFINITION: A def....:2ait2ly.:_diamqsaiple machine is one in which

every input sequence of length n(n-1) /2 is a DS. Often such mach-

ines will possess at least one DS that is much shorter than this.

5

DEFINITION: A fault detection experiment or 21122Lingaual-

ment is a sequence of inputs which when applied toll produces an

output response, examination of which will determine whether the

machine is operating correctly according to its state table. The

experiments are simple (only one copy of the machine is available)

and preset (the entire input sequence is predetermined and cannot

be influenced by the outcome of the experiment.)

Fault detection for sequential machines which do have distin-

guishing sequences is usually accomplished with checking experi-

ments. The structure of such experiments is well-defined. However

there does not exist an efficient algorithm for designing the se-

quence of input symbols, For machines which do not have distinguish-

ing sequences, fault detection is approached from one of three possi-

ble directions:

(a) The states of the machine are partitioned in such a way

that a sequence of inputs exists which distinguishes between the

partition blocks. These sequences, referred to as characterizing

sequences are then succeeded by a different sequence for each block

which distinguishes the states in the block. The complete set of in-

put sequences, called identifying sequences, will then identify the

states of the machine. Because these identifying sequences are

usually quite long, the checking experiments that they define are

very long compared to the other methods available. A more recent

approach Kohavi (6) has been to make use of adaptive DS's to create

a set of variable length DS's which, by an appropriate choice,

yield minimal checking experiments.

6

(b) The modification of the nachino such that it will possess

a minimal length homogeneous DS and will require no transfer se-

quences during the experiment. The modified form is referred to as

an "easily testable" machine. One input is added which incorpor-

ates a permutation 6olumn. An output assignment to this column is

made using Smith's Algorithm (4), thereby guaranteeing the minimal

homogeneous DS involving this added input symbol. Further input

columns are added until the transition graph of the machine is an

Eulerian digraph, a sufficient condition for the removal of transfer

sequences.

(c) The addition of outputs to the given machine until it be-

comes definitely diagnosable. i.e. every input sequence of length

n.(n-1) /2 is a DS.

Only one paper has been written on the latter approach and

that was the original paper by Kohavi and Lavallee (1). We found

that the algorithm they presented was not systematic and did not

yield good results for some sequential machines. Chapter II Of this

paper formalizes the procedure suggested by Kohavi and Lavallee and

makes it applicable to a wider range of sequential machines. Follow-

ing this we present those elements of graph theory that can greatly

aid in the design and minimization of the checking experiment. We

also discovered that by modifying the machine such that it acquired

homogeneous DS the problems inherent in the procedure described

in Chapterilwere greatly reduced in most cases and eliminated in

some. In ChapterlYwe investigate the modification of machines

which have a column of next state entries that is either a cyclic

permutation of the original state sat o is a reset column. Tech-

niques, currently available in the literature, for achieving min-

imal output assignments in permutation or reset columns are extended

to cover as many machines of this class as possible. The structure

of the checking experiment is then described. We found that elements

of a design procedure presented by Gonenc (3) were particularly

suitable for the design of experiments with homogeneous DS's. The

applicability of graph theory in specifying the order in which the

elements of the experiment should be prescribed is emphasized.

Rules for selecting input sequences of near minimal length are pre-

sented. Finally, upper and lower bounds on the length of the experi-

ment are computed.

II. CREATING A DEFINITFLY DIAGNOSABLE MACHINE

The following terms are fundamental to the discussion in this

chapter:

DEFINITIONS: A successor tree for a machine and an initial set

of states for this machine is a graphical display of the successor

states for all possible subsets of the input alphabet applied to

this initial set. A distinguishing tree (Figure 3) is a successor

tree in which the states appearing at each node of the tree are

grouped according to their outputs following a particular input.

DEFINITIONS: The components at each node of the tree comprise

an uncertainty vector, (e.g. (115)(32) in Figure 3.) A trivial un-

2arlainty229LII: is one in which each component contains only one

state. A homor,eneous comoon nt is a component containing repeated

states, (e.g. (115) in Figure 3.)

DEFINITIONS: A testino. table for machine M displays, for each

possible initial pair of states, the successor state pair under all

possible input/output combinations. (See Figure 4.) A testing

graph is a digraph derived directly from the testing table and which

has the state pairs as nodes and also shows the next state pairs

when they exist. (See Figure 5.)

The procedure described below is a slight modification of

Kohavits original effort. It differs in the steps for eliminating

lines from the testing graph. This method is easy to apply to ma-

chines with few states, where the cycles in the testing graph are

simple and disjoint. As the number (n) of states increases, the

number of nodes in the graph grows like n(n-1) /2. For large n the

solution to the problem of manipulating the lines in the testing

graph must lie within the realm of graph theory and has still to be

investigated.

The method given can easily be extended to allow for any num-

ber of inputs, but for simplicity it is assumed that we are dealing

with a sequential machine with binary input and output values.

Throughout the paper the machine shown in Figure 2 will be used as

an example.

Present

State

1

2

3

4

5

Machine M1

Next State, Output

x=0 x=1

1,0 4,1

1,0 5,1

5,0 1,0

3,1 4,0

2,1 5,1

(1 2 3 4 5)

(455)(14)

Figure 2. State Table for M1. Figure 3. Distinguishing Tree

For MI.

The branches of the distinguishing tree are terminated when any

of the following occurs

(1) a branch is associated with a vector containing a homogen-

eous component, which is a component with repeated states. e.g.

(2) an uncertainty vector in the kt level appears in some

branch of a preceding level. This includes self -- loops. e.g.

(2,3)--(2,3) as well as loops (cycles) of the type (2,3)-41,5)

(4,5) (2,3).

If all branches of the tree terminate due to one of the above

conditions then the machine has no DS.

(3)

10

a trivial uncertainty vector occurs in which case the in-

put sequence that leads to this branch is a DS.

Applying these tests to the distinguishing tree of Ml we see

that it has no AS because repeated states occur in response to both

inputs. In order to make the machine definitely diagnosable we must

prevent any branch from terminating in anything but a trivial uncer-

tainty vector by assigning additional outputs to M1. The testing

table identifies the states that lead to homogeneous components. The

testing graph highlights the loops occurring in the state pair re-

lationships. These loops are broken by the removal of connecting

lines using appropriate output assignments to the next state entries

of the machine. When all homogeneous components have been separated

and all loops opened, the machine will be definitely diagnosable and

each branch of the distinguishing tree will eventually terminate in

a trivial uncertainty vector. The length of the longest DS will be

one greater than the length of the longest path in the testing graph.

For M1, a testing table (Figure 4) is constructed by dividing

the state table into its four possible combinations of input and out-

11

put symbols. Below this the states are taken in pairs and the bal-

ance of the table shows the implied pairs. For example, the pair

(1,2) cannot be distinguished by a sequence beginning with "1"

unless the pair (4,5) is distinguishable. Repeated pairs are cir-

cled. The testing graph (Figure 5) is then constructed from the

uncircied pairs.

0/0 0/1 1/0 1/1

Figure 4. Testing Table for M1. Figure 5. Testing Graph for

Ml.

We now present the steps in the procedure for making M1 defin-

itely diagnosable. Step 1 and the first part of Step 3 comprise the

original algorithm by Kohavi and Lavallee. We have added Steps 2

and 4. It is essential that Step 2 be executed before Step 3. We

have also defined a set of rules that should govern the order in

which the two parts of Step 3 are performed. Step 4 has been added

so that outputs not specified by the first three steps may be speci-

12

fled in some systematic way to reduce the length of the DS.

Step 1. We must prevent the distinguishing tree from terminat-

ing due to the occurrence of homogeneous components. These compo-

nents of uncertainty vectors appear as repeated entries 11 and 55 in

the testing table. They must be removed by an appropriate (in this

case arbitrary) assignment of different outputs to the pairs (1,2)

and (2,5).

e.g.

1

2

3

5

0 1

1,00 4,1

1,01 5,10

5,0 1,0

3,1 4,0

2,1 5,11

U.B.1. If the given machine

in the same column, e.g.

(The added output entries are

shown underlined.)

has two homogeneous component pairs

3

1,0

1,0

4 5,0

5 5,0

it would be advantageous to check the two possible output assignments

to determine whether one yielded further simplification for the steps

to follow. There appears to be no way of avoiding an exhaustive

check of the possibilities.

2. If the homogeneous component contains k identical states

then the number of additional outputs required is rlog2k1. The

implications of more than two identical states in the homogeneous

component is studied in detail in Chapter 11.

Step 2. The next step is the elimination of the condition in

which a given state pair implies itself as the next state entry,

e.g. (A,B)-*.(A,B). This situation will be displayed as a self-loop

in the testing graph. The branch in the self-loop is eliminated by

assigning additional outputs to the machine. This will never in-

crease the number of output variables required by more than two, be-

cause if the two states involved in the loop have been assigned the

same output value in Step 1, we can simply change the output assign-

ment made in that step such that the homogeneous components have still

been eliminated but the two states in the loop are now distinguish-

able. e.g. suppose that a segment of a machine after. Step 1 is as

follows:

The self-loop (l,2)- '(l,2) can be broken without violating Step 1 by

reassigning the outputs as shown: 1 1,01

2,00

3 1,00

2,01

There are no self-loops in Ml.

Step 3. The next step is the opening of all cycles in the

testing graph by the elimination of branches using output assign-

ments. The technique for doing this must achieve the followings

(a) the opening of all loops by the elimination of the minimal

number of branches, or more specifically, by the addition of the

minimal number of outputs.

(b) the elimination of branches such that the length of the

longest path is minimized.

Since the length of the DS will be one greater than the length

of the longest path, the goal in (b) is obvious. It will be assumed

that higher priority will be given to keeping the number of addition-

al outputs to a minimum.

For machine M1 we have the loop (4,5)-4-(2,3) (l,5)-(4,5).

Applying step 3 (a) we see that elimination of any one of the three

branches requires the minimal number of additional outputs. Hence

we consider the effect of these eliminations on step 3 (b).

Eliminate Longest path left

(4.5)-'(2,3) 2

(2,3)-1,5) 3
(1,5)-4-(4,5) 3

After eliminating (4,5)-2,3) ;and its testing graph have the

forms shown in Figures 6 and 7.

1

2

3

4

5

0 1

1,00 4,1

1,01 5,10

5,0 1,0

3,10 4,0

2,11 5,11

Figure 6. Modified Ml(M;). Figure 7. Testing Graph for M.

Again, it appears necessary to check all possible arrangements of

the output assignments to determine whether one leads to more branch

removals than another. In M
1
the choice is arbitrary.

At this stage MM is definitely diagnosable and we could con-

sider the unspecified entries as "don't cares." We would then have

a DS of length three. Howover, the remaining entries can be specif-

ied only if they further reduce the length of the DS without increas-

ing the number of outputs.

Step 4. We wish to assign remaining entries such that branches

of the graph are eliminated and the remaining path lengths are

reduced.

(a) Scan the first (next) input (i) column for the first

(next) unspecified entry. (For Ml this is 3-0-5,0)

(b) Examine the paths in order (longest to shortest) for a

node containing this state (3) and with the outgoing branch labeled

i/-.

For M we have the paths
0/0 lA

---" C

<19
0/0 /

1
1/1

and ---4; 5

We arbitrarily assign the output (1) to state (3) such that the

branch is removed. (Figures 8,9.)

1

2

3

4

5

0 1

1,00 4,1

1,01 5,10

5,01 1,0

3,10 4,0

2,11 5,11

Figure 8. Modified r[I'

16

Figure 9. Testing Table for M1.

(c) Repeat (a) and (b) for the next unspecified state in the

selected column. Continue until all columns and states have been

scanned. It is possible that specification of some entries has no

advantages. These entries will be left as "don't cares" in the final

machine.

When step 4 has been applied to both columns in M its state

table, testing graph, and distinguishing tree will appear as shown

in Figures 10, 11, and 12, where 0 indicates a "don't care" specifi-

cation.

1

2

3

4

5

0 1

1,00 4,10

1,10 5,10

5,01 1,00

3,10 4,00

2,11 5,11

Figure 10. Final Form of 141 1

(1 2 3 4 5)

(15(1)(3)(2)

,o I

(1)(2)(1)(5)(1) (4)(5)(4)(1)(5)

16a

Figurell. Testing Graph

11/

of Mi.

(45)(1)(4)(5)
0

(3)(2)(1)(3)(2)

P/

Figure 12. Distinguishing Tree for MI.

(4)(5)(4)(4)(5)

N.B.1. In step 4 it is not necessary to specify an entry,

unless it does reduce the length of the longest path.

2. Kohavi and Lavallee (1) remark that the rules that

they prescribe are only a rough guide to the order of branch cancel-

lation and do not define it. They comment that the problem of pro-

viding an algorithm for finding the minimal number of additional

required outputs is very complicated and has not been solved.

The modifications to Kohavi and Lavaileele technique that have

been introduced in this paper do define the order of cancellation.

However a great deal of exhaustive testing is required at each stage

17

in order to determine whether a particular output assignment is the

best. Applying the algorithm to many "worst case" machines has so

far failed to yield a non-minimal output assignment and the minimal

number of additional outputs.

18

III. THE APPLICATION OF GRAPH THEORY

The procedure for efficiently assigning additional outputs to

remove loops in the testing graph and reduce the length of the D5,

described in the'preceding section, is relatively easy to apply to

machines with few states. If the number of states in the machine is

n, the 0(n2) growth in the number of nodes in the testing graph in-

dicates the need for some programmable method for generating inform-

ation about the loops (cycles) and path lengths. Some of the matrix

properties and operations of directed graphs (digraphs) provide the

techniques to achieve this end.

The following definitions are relevant to this section

DEFINITION: A strong component of a digraph is one in which

each node is reachable from any other node in the digraph. Thus a

necessary and sufficient condition for the testing graph to have

cycles is that it possess a strong component. If we can identify

these strong components then we can proceed systematical7y to open

these cycles by removing lines.

DEFINITION: A weak component of a digraph is one in which there

are no cycles but there is at least one line joining each node to

another in the weak component. When a line is removed to open a

cycle the corresponding strong component is reduced to a weak com-

ponent.

DEFINITION: A source node in a digraph is one which has no

entering lines. As we will explain in ChapterIE a source node in a

digraph is a desirable starting state for subsequences in the check-

19

ing sequence. It should be noted that although a source state does

not exist for a strongly connected digraph, we will be considering

digraphs displaying state transitions under subsets and extensions

of the input alphabet.

The matrix techniques to be described are quite familiar aspects

of graph theory (Harary (5)). However, they bave not previously been

applied to this particular area of switching theory The construc-

tion of the adjacency and reachability matrices is described. The

reachability matrix is then used to derive a matrix which will iden-

tify the strong components of the testing graph. When the cycles

have been broken we then derive a distance matrix that will display

the lengths of all paths in each weak component. A set of rules is

prescribed for the selection of weak components and specific paths as

targets for further analysis.

Machine MI is again used as an example. (Figures 13 and 14.)

2

3

4

5

0

1,0 4,1

1,0 5,1

5,0 1,0

3,1 4,0

2,1 5,1

Figure 13. Ml.

1/0

Figure 14. Testing Graph for MI.

20

The Adjacency Matrix (A):

The adjacency matrix for the testing graph is constructed in

the following ways

Let Viand Vj be nodes of the digraph and Vi Vj the line join-

ing them, directed from Vi to Vi; the rows and columns of A cor-

respond to points of the digraph (D) where aij = 1 if line Vi Vj is

in D and aii = 0 if Vi Vj is not in D. For M1 this leads to the

adjacency matrix of Figure 15.

12 13 14 15 23 24 25 34 35 45

12 0 :0 0 0 0 0 0 0 0 1

13 0 0 0 1 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 1

23 0 0 1 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0

34 0 0 1 0 0 0 0 0

35 0 0 0 0 0 0 0 0

45 0 0 0 0 1 0 0 0

Figure 15. Adjacency Matrix for N1.

N.B. 1. Repeated entries in the testing table do not appear in

the adjacency matrix.

2. Self-loops need not appear in A since they are always

eliminated in step 2 of the procedure. Consequently, these matrix

21

techniques are needed for steps 3 and 4 only.

The Reachability Matrix (R):

The reachability matrix is derived from the adjacency matrix.

A node Vi is reachable from Vj if there exists a path in the testing

graph from Vi to V3. The elements of R t4rijlare defined as

follows:

rij = 1 if Vj is reachable from VI.

= 1 if i = j.

= 0 if Vj is not reachable from Vi.

N.B. A useful property of R which can be employed in the con-

struction of checking sequences is if the ith column of R is all 0's

except for the diagonal element, then Vi is a source.

To obtain the reachability matrix R from the adjacency matrix

A we form the following sub-sequences of matrices:

Ro = I

Ri = (I + A)# (# denotes that all operations are mod.2)

R2 = (I + A + A2)#

Ri (I + A + + A)#

This sequence is generated until Ri = Ri+1, whence R = Ri,

For M we get:

1 0 0 0

o 1 0 1

o 0 1 0

0 a Q 1

0 0 0 1
=

0

0

0

0

o 0 0 0

0

22

0 0

0 0

0 0

1 0

0

0

0

1

1
R2 = =(Ri+A2)#

0 0 0 1 0

0 0 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 1 0 0

0

1

0

0

0

0

Lo 0

0

1

1

o

1

1

0

0

o

0

1

1

1 0

0 0 0 0

1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

o 0 0 0

1 0 0 0

23

Figure 16, Derivation of the Reachability Matrix for Ml.

This method of computing the reachability matrix may not be the

most efficient. The reader is directed to a faster algorithm de-

scribed by Washall (7).

Step 3 in the method described in Chapter II involves the open-

ing of all cycles in the testing graph. To identify these cycles

(strong components) and the weak components of the testing graph

that contains them we must generate the connectedness matrix. This

matrix displays the connectedness category of each subset of nodes

in the graph in the following way:

If entry (j) = 3, nodes Vi, Vj are in the same strong

component.

= 2, nodes Vi and Vj are in the same weak

component.

r=0,.nodeslt.arld.Vj are not connected.

The Connectedness Matrix (C):

The connected matrix for any digraph is constructed from the

reachability matrix (R) as follows:

1. Form R RT

2. Add one to each non-zero entry of R

For M1
the resulting matrix is:

12 13 14 15 23 24 25

12 3 0 0 2 2 0 0

13 0 3 0 2 2 0 0

14 0 0 3 0 0

15 2 2 0 3 3

23 2 2 0 3 3

24 0 0 0 0 0 3

25 0 0 0 0 0 0 3

34 0 0 2 0 0 0 0

35 0 0 0 0 0 0 0

45
L
2 2 0 3 3 0 0

+RT.

34 35 45

0 0 2

0 0 2

2 0 0

0 0 3

0 0 3

0 0 0

0 0 0

3 0 0

0 3

0 0

Figure 17. The Connectedness Matrix for M1.

24

The strong components of M1 can be found by examining each

column of the matrix for the occurrence of two or more entries of

the connectedness category "3". In Figure 17 we see that there is

only one strong component containing the nodes 15, 23, 45. Columns

with only one such entry may be ignored since if the corresponding

25

node did have a self-loop it would be removed in Step 2.

The weak components of Mi are the intersections of all sets of

nodes with the connectedness category "2" appearing in a particular

column. For example, in the first column we have the set (12, 15,

23, 45), in the second (13, 15, 23, 45), and so on. The resulting

intersections yield the weak components (12, 13, 15, 23, 45),

(14, 34), (24), (25), (35). For the same reason stated in the

previous paragraph we may ignore sets of one element.

Having now identified these components we must now decide which

lines in the strong components are to be removed first. We suggest

that this decision be based upon the effect of the removal of a line

on the length of the longest path in the corresponding weak component.

To find these lengths we need to compute the distance matrix for the

weak component.

The Distance Matrix N(DI:

The distance matrix of each weak component is computed from

the adjacency matrix for that component.

N(D)=Idijiwhere dij distance from node Vi to node V.

and

1. = 0,

2. dij = 045 if rij = 0,

3. otherwise, dij is the smallest power n to which A must be

(
raised so that aij

n)
> 0. ie. the i,jt.1 entry of An# is 1.

Procedure for Constructinsigialzals

1. Enter 0`s on the diagonal of N(D) showing dii =

26

2. Enter 1 in N(D) whenever aij = 1, thus showing that dij = 1.

3. Taking higher powers of A, whenever aik) = 1 and there is

no prior entry (i,j) in N(D) enter an n showing where dij = n.

4 Finally for some An every 1 w 33 occur where there is al-

ready an entry in N(D). Enter cobin all remaining locations

We will now demonstrate how the techniques described in this

chapter can be used in Steps 3 and 4 of the procedure of Chapter II.

By examining the reachability matrix for M1 we find that the

strong component (15, 23, 45) consists of the lines 45.-23, 23 --'-15,

and 15-4-45. To examine the effect of the removal of these lines on

the weak component W1 = (12, 13, 15, 23 45) we generate the adjacen-

cy matrix for W1. We then generate the distance matrix for each of

the cases in which one of the lines of the strong component has been

removed. For WI the results are shown in Figure 18. As can be seen,

the elimination of branch 45-*23 yields a weak digraph with the

smallest maximum distance (2).

Branch removed:

0

..°

'4

::

c

0

"b

°6

(24

45

66

1

0

'e/

06

>23

4.6

.. 0

0

o.6

1

2

1

2

.90

06

t6

23-4.15

00 0C) 2 1

0 1 3 2

0° 0 2 1

0 c4

c=< 06 1 0

0

.06

0.-6

'°'°

15-*45

...0 3 2

0 1 06

06 0 0"0

'0 1 0

4.°2 1

1

0,6

0

Figure 18, Distance Matrices after Branch Removal.

In general we would then select the next strong component and

find the weak component in which it is contained. Branch eliminat-

27

ion would then be decided in the manner indicated above.

N.B. If there are several strong components in the digraph it

is not clear whether the order in which they are selected by the

above technique has any effect on the length of the DS obtained and

the number of additional outputs required. It would seem reasonable

to start with the component containing the longest path. One of the

difficulties in the analysis of wuch a problem is the inability to

find a sequential machine which has a testing graph of a particular

form. There appears to be no systematic and efficient way of design-

ing a digraph with the form required and then specifying the machine

which has this graph.

Having opened all loops we now proceed with Step 4 - the spec-

ification of remaining entries in the state table with the aim of

reducing the length of the longest path in the digraph. The current

state graph and testing table for M1 are shown in Figures 19, 20.

2

3

14,

5

0 1

1,00 4,1

1,01 5,10

5,0 1,0

3,10 4,0

2,11 5,11

Figure 19. Modified H1.

1/0

0

Figure 20. Testing Table for Mi.

The weak components will be the same as in the previous step

bebause removing one line from a strong component cannot create two

28

disconnected weak components. The output from state 3 on an in-

put of 0 must now be specified. From the distance graph, after the

removal of the 45-23 line we see that both 13 and 23 start paths of

length two on an input of 0. We arbitrarily choose 13 and eliminate

the line 13-415.

At this point we must re-compute the weak components of the

subset W
1 (or in general, of the subset we are currently modifying,)

because the removal of the line 13-415 may have disconnected this

subset into two weak components. The state table and testing graph

now have the forms

1

2

3

4

5

0 1

1,00 4,1

1,01 5,10

5,01 1,0

3,10 4,0

2,11 5,11

1/0

All additional output entries have been assigned to the next state

column for input 0. If we eliminate the line 13-415 from the adj-

acency matrix and re-compute the reachability and connectedness

matrices for W1 we obtains

1 0

1

R 0 1

0 1

0 0 0

3 0 0

[

2

0 2 3

0 2 2

0 0

= 0 3

0

29

From the connectedness matrix for W1 we see that node 13 has been dis-

connected hence we need consider only the remaining four nodes in any

further analysis. We will denote this weak component by W1.

If we now consider the next column we find that the first un-

specified output entry is in the first row. There are two nodes in

N1 containing state 1, 12 and 15. We would then generate the dis-

tance matrices for the two cases in which one of these lines is re-

moved from Wl. These matrices would show that the removal of the

line 15-A6 would lead to a reduction in the maximum path length of

Ni. After this is done the state table and testing graph will be as

follows:

2

3

5

0 1

1,00 4,10

1,01 5,10

5,01 1,00

1 10 4,00

2,11 5,11

Figure 21. Final Form of the State Table and Testing Graph

for Ml.

30

In general, we would continue this process until all entries had been

specified. Each input column would be treated in turn until either

Pli outputs have been specified or confirmed as "don't care" assign-

ments. Homever, at each stage, it would be wise to ckeck whether

the assignments made so far prevent the removal of any lines still

remaining in Wi. In this case we would discover that the line 12->-45

could not be removed without using another output variable. There.

fore it is not possible to obtain a minimal path length of less

than 1. We would then turn our attention to other weak components

and attempt line removals only if they contained path lengths of

greater than 1. For the modification of Ml that we have in Figure

21, no more lines would be removed. Hence this is the final form of

M1 and we will have a distinguishing sequence of length two.

In our analysis of machine M1 we have worked in a defined order

across and down the table. We have done this only to be consistent

with the method described in Chapter 11. However, it should be noted

that, if one is prepared to include some trial and error checking,

then a better method exists for obtaining an optimal output assign-

ment. We now outline this approach as another way of implementing

Step 4.

We begin with the machine in the form shown in Figures 19 and

20 where cycles have been opened. In general, we would like to

remove lines that are in the middle of paths in the weak component.

We can detect the approximate position of such lines by determining

the indegree and outdegree of each node in the weak component.

These can be obtained from the column and row sums respectively of

31

the adjacency matrix. We seek a node for which the indegree is

maximum and which has non-zero outdegree. If Vi is such a node then

we remove the line Vi Vi. There will be a unique if we employ

the techniques to be developed in Chapter IV. It may happen however

that because of previous output assignments this elimination is not

possible. Then we must choose the node with next largest indegree,

and so on.

If we apply this to Iii we find that the node 15 has maximum

indegree (two) and non-zero outdegree. If we remove the line 15-45

we obtain the following final form for 141;

1

2

3

4

5

0 1

1,00 4,10

1,01 5,10

5,00 1,00

3,10 4,00

2,11 I 5,11

This differs from Figure 21 only in that we have one more "don't

care" assignment.

Clearly this method is not without its difficulties. A more

detailed analysis would be required if an automated implementation

of the design procedure was attempted.

In this chapter we have discussed how elements of graph theorY

might be employed to aid in a systematic approach to the design

process. The persistent appearance of the ordering problem is one

31a

of the major difficulties with this method. When a choice is to be

made, can it be arbitrary or is there a priority of choices such that

one yields a more desirable end product than another? This is not

unlike the prime implicant problem or the maze problem where an ex.-

haustive check of all possibilities appears to be the only solution.

Unfortunately, exhaustive checking, particularly for machines with a

large number of states, will generally be very time consuming.

Nevertheless it may be worthwhile implementing an algorithm

which may not always yield minimal configurations but which is well

defined in its sequence of operations and is not voracious in its

time demands.

IV. HOMOGENEOUS DISTMTGUISHING SEQUENCES

Considerable simplification of the methods previously des-

cribed can be achieved if we do not insist that the sequential

machine be definitely diagnosable but that it have DS's only for

homogeneous input sequences (ie. strings of all O's or l's.)

Homogeneous distinguishing sequences are usually most desirable for

use in the design of checking experiments because they permit consid

erable overlap in the state counting segment of the experiment and

thereby yield shorter experiments. Another significant advantage to

be obtained in restricting ourselves to such DS's is that the input

columns can be handled independently. There will be one testing table

and testing graph for each input column. Consequently in general,

the number of nodes in a testing graph will be at least halved in

the binary input case, and the possibility of having cycles in the

testing graphs is greatly reduced.

Using M1 again as the example, Steps 1 and 2 will be applied as

before, after which the state table, the testing graphs for each of

the two inputs, and the distinguishing tree will appear as follows:

2

3

.5

0 1

1,00 4,1

1,01 5,10

5,0 1,0

3,1 4,o

2,1 5,11

33

Figure 22a. State Table and Testing Graph for Ml.

(1 2 3 4 5)

'0 I 1

I I

(1)(15)(23) (45)(14)(5)

0

(1)(1) 1(2)(15)
-0 i

(1) (1) (1) (1) (2)

Figure 22b. Partial Distinguishing Tree for M
1.

1

(4)(5)(4)(4)(5)

Because each testing graph has no cycles then M1 must have a

homogeneous distinguishing sequence consisting of each of its inputs,

one of length three (000) and one of length two (11). If cycles did

exist in either or both of the testing graphs then we would apply

Step 3 of the procedure to open them. If we had a homogeneous DS

for one of the inputs only, then a decision must be made as to wheth-

er we should use the existing homogeneous DS or attempt to open the

cycle in the testing graph of the other input even though an add-

itional output variable may be necessary. As there are no cycles in

M1 we can skip Step 3 and proceed with Step 4 -, the assignment of

outputs to reduce the length of the longest path.

34

The first unassigned output is state 3 on "0". From the test-

ing graph, and as the distance matrices sould show, the removal of

the line from 23 reduces the distance to one, We accomplish this by

assigning the output 0 to the entry. The next unassigned output

is state 4 on "0". The removal of the branch 45-*23 does not further

reduce the distance hence these outputs may be left unspecified.

Figure 23 displays the current form of M1.

3

5

0 1

1,00 4,1

1,01 5,10

5,00 1,0

3,10 4,0

2,10 5,11

Figure 23. Modified State Table and Testing Graph for Mi.

On a "1" input the first unassigned output is state 1. A

choice of 12 or 15 is arbitrary so we choose 12. Although this as-

signment does not reduce the maximum length it is possible that all

lines will be eliminated if we proceed with the cancellation. In

this case, since 25 has been specified in Step 2 and 12 specified

above, then the line from 15 to 45 can never be removed. Hence the

minimum distance is one and m71 unassigned entries, including the

output for state 1, may be left as "don't cares." Final form of Ma

(M3) is shown in Figure 24.

2

3

4

5

0 1

1,00 4,10

1,01 5,10

5,00 1,00

3,10 4,00

2,10 5,11

Distinguishing Sequences;

Figure 24. Final Form of M1.

00 and 11

35

It is clear from consideration of the testing graphs that sev-

eral conclusions can be drawn about the effect of making machines

diagnosable with homogeneous distinguishing sequences and that these

conclusions strongly emphasize the great advantage to be obtained

with this approach.

1. For any given sequential machine that there can be no DS

containing mixed input symbols which is shorter than a DS containing

the same symbol repeated, if the DS is obtained by the above method.

This is clear from an inspection of the testing graph for the machine.

Because the testing sub-graph for each input is obtained from the

complete testing graph of the machine, no path in the former can be

longer than a path in the latter.

2. For a sequential machine to acquire homogeneous DS's by the

above method it should require no more additional outputs than to

make the machine definitely diagnosable. This follows from the first

conclusion. Any output assignment that opens a cycle in the complete

testing graph must do the same for the testing sub-graphs.

3. In the general case, for del

36

itely diagnosable machines, it

is possible to have testing graphs in which the strong components are

not disjoint. When the machine has many states this can greatly com-

plicate the problem of eliminating a minima], number of branches to

open all closed loops. However, if the machine has only two inputs

then the above method ensures that all strong components are disjoint

and the elimination problem no longer exists.

4. If a machine has an input column that requires several ad-

ditional output variables to make it diagnosable for that input, it

may be possible to find another column which requires fewer varia-

bles. A preliminary examination of the testing subgraphs may-lead

to the best choice initially. It would seem reasonable to conject-

ure that the best choice would be an input column whose subgraph has

fewest cycles, or in the event of there being an equal number of

cycles the one with the shorter maximum cycle length.

5. More of the output entries in the state table are likely to

remain unspecified. In most cases, when the complete testing graph

is divided into the sub-graphs, the cycles will be broken and path

lengths reduced. Therefore fewer output assignments will be required

to obtain minimal path lengths. This will simplify the circuit

realization and reduce the hardware cost.

57

V. SOME SPECIAL CASES

The special cases considered here are those sequential machines

which have either a reset column or a cyclic permutation column. A

reset column has the same state for each next state entry. A cyclic

permutation column is one in which the next state sequence is some

cyclic permutation of the original set of states of the machine. The

reason that these machines are considered to be special is that they

are the only cases for which we have some prior information about the

number of additional output variables required. For reset columns

this number approaches the maximum. For some of the cyclic permuta-

tions the number will be minimal, while for others the problem of as

signing outputs in an optimal way has not been solved. An algorithm

is presented for generating the sets of cycles in the testing graph,

given the number of states and a particular cyclic permutation.

RESET COLUMNS:

Kohavi and Lavallee (1) introduced the basic technique for

analysing sequential machines with reset columns. They were able to

show that in certain cases, the technique of state - splitting, provid-

ed it did not increase the number of internal state variables, could

make the machine definitely diagnosable. State-splitting involves

the addition of a redundant state to the machine in such a way that

the response of the machine to any input string is unaffected. The

state added is equivalent to one of the other states in the machine

and consequently the two are not distinguishable by an input sequence

38

of any length. An example of this technique is shown in Figures 25,

26, 27. Tb the original 3 state machine in Figure 25 state 3 has

been added and made equivalent to state 3 by giving it the same next

state and output entries (Figure 26). The original machine requires

two additional outputs to make it diagnosable for homogeneous DS s.

The modified version requires only one additional output (Figure 27).

3

0 1

3,0 2,0

3,0 1,0

3,0 2,1

1

2

3

3,

0 1

3,0 2,0

3,0 1,0

1

3,0 2,1

/

3,0 2,1

Figure 25. M2. Figure 26. State 3

3

3

0 1

3,00 2,00

3,01 1,01

/

3,00 2,10

3,01 2,11

Figure 27.

is split. Modified M2.

The conditions under which state splitting is advantageous can

be deduced from the above example. The number of states in the mach-

ine should be at least one less than a power of two. If m (which may

be less than the number of states (n) in the machine) is the number of

identical next state entries then rlog2xfl -1 will be the number of ad-

ditional outputs required. The technique of state splitting can

never save more than one additional output.

Where state splitting is not feasible then the number of addi-

tional outputs required will be rlog2M1. If m is close to n then in

most cases the DS obtained will have length two and we will have the

shortest possible experiment for this machine.

39

CYCLIC PERMUTATION COLUMNS:

It will be assumed throughout this section that all n states

of the machine are involved in the cyclic permutation. Where the

cyclic permutation involves a subset of the set of states it is

suggested that the techniques to be described here should be applied

to this subset and then the entire machine subjected to the procedure

of ChapterVfor assigning the remaining output entries.

In this analysis of machines with columns of this type we employ

the same design criteria described in Chapter Is use the smallest

number of additional output variables in an assignment that minimizes

the resulting homogeneous DSs. For machines with cyclic permutation

columns that have the following properties:

either f (q j, ir) = q34.1 and f (qn, ir) = qi,

or
f (qi, ir) = qj -1 and f (ql, ir) = °It

where f (qk, ir) is the next state function for state qk on the input

ir; then it is possible to find an output assignment to the state

transitions under ir such that a minimal length homogeneous DS is

obtained. Such an assignment can be made using Smith's Algorithm (4).

Given the number of states (n) and the number of symbols in the out-

put alphabet (p) this algorithm generates a sequence of output symbols

such that each group of y rlog2n1) consecutive symbols, including

the end-around groups, is unique. Kane and Yau (2) modified Smith's

Algorithm from the original version so that it would apply directly

to most machines of the type being considered here. This version is

presented here for the general case where n and p are arbitrary.

SMITH'S ALGORITHM

Let n = number of states in the machine,

p = number of output symbols,

y = riog2n1.

1, Order the alphabet (output) in some hierarchial manner 0,1

04100O01 p-1.

Begin with 0 Y-1 (p-1).

2. Add a new symbol if it is the highest symbol in the hierarchy

which can be added without creating duplicate y-tuples in the

sequence.

3. Continue step 2 until the sequence is of length n.

If n = pY, STOP - this is the desired sequence.

If n<pY, and if the last symbol is not equal to 0, or the last

symbol equals 0 and the next to last is not equal to 0 then STOP -

this is the desired sequence. Otherwise go to step 4.

4. For some value of j, the jth symbol from the end of

the sequence will be other than 0 or 1. Append string 0Y-11i to the

beginning of the sequence and delete the last (y-1)-.j symbols.

N.B. The original algorithm was designed to produce zero-free se-

quences, ie. sequences that did not contain the string OY (including

end around strings). The modification occurs in step 3 where we do

allow the possibility of one OY sequence, and in step 4 where the

sequence is modified if more than one OY string occurs.

We discovered that for certain machines with p = ;Step 4 of

Smith's Algorithm did not produce a DS at all, let alone one of min-

imal length. This was caused by the appearance of duplicate y-tuples.

The first three such cases occurred for (y=4; n=12) and (y=5; n=20,21)

In each case it was found possible to artificially adjust the sequence

so that each y-tuple was unique. It is conjectured that an output

assignment using these sequences will still yield DS's with near min-

imal length.

We present below a full analysis of 4,5 and 6-state machines.

Smith's Algorithm is illustrated and we also highlight the problems

that still exist for cyclic permutation other than those with the

properties described earlier. An algorithm is given for generating

all cycle sets for any n state machine with cyclic permutation

columns.

FOUR STATE MACHINES:

Consider the following three possible cyclic permutation

columns for four states:-

1 4,10 3,10 2,10

2 1,11 4,11 3,11

3 2,11 1,11 4,11

4 3,10 2,10 1,10

a. b. C.

Figure 28a. Cyclic Permutations for 4 States.

42

Figure 28b. Testing Graph for columns a. and c.

Figure 28b shows the testing graph for column a. The graph for

column c. is essentially the same except that the arrows are reversed.

Using Smith's Algorithm the output assignment will be 0110 as shown in

Figure 28a. The resulting cancellations (shown / in Figure 28b) yield

a DS of length two which is clearly minimal.

2A
Figure 29. Testing Graph for column b.

(14

CS = (12,22)

The cycle set for column b is shown in Figure 29 together with

the cancellations that would occur using the Smith Algorithm assign-

ment. It can be shown that no arrangement of output assignments

will open all closed loops. Hence an additional output variable

(the maximum number in this case) is needed to enable the machine

with this column to have a DS for the associated input.

43

FIVE-STATE MACHINES:

The cyclic permutation columns for 5 states are shown in Figure

30, and the relevant testing graphs in Figure 31.

1 5,10 4,1 3,1 2,10

2 1,10 5,1 441 3,10

3 2,11 1,1 5,1 4,11

4 3,11 2,1 1,1 5,11

5 4,11 3,1 2,1 1,11

a. b. c. d.

Figure 30. Cyclic Permutations for 5 states.

0_5;

Figure 31. Testing Graphs for columns a. and d.

For columns (a) and (d) the Smith algorithm yields 00111 as an output

assignment (Figure 31). The machine has a minimal homogeneous DS of

length three.

Figure 32. Testing Graphs for columns b. and c.

For columns (b) and (c) (Figure 32) the assignment 00111 produces the

cancellations (shown / in Figure 32) and a DS of length four results.

44

This is not optimal as another output assignment was found - 01010

(shown 0) that produced a DS of length three. This latter it clearly

not a sequence of the type generated by the Smith Algorithm and

therefore it is highly unlikely that any modification of the Smith

Algorithm could yield such a sequence. We were not able to find a

systematic method for generating minimal output assignments for this

case.

SIX-STATE MACHINES:

A summary of the cycle set pattern for Six-state machines is

given below.

Positions that the column

Cycle Setis rotated forward

1 (3,62)

2 (35)

3 (13,26)

4 (35)

5 (3,62)

Output assignment using Smith's algorithm is minimal for cycle

sets (3,62) and (35). In fact, any assignment which contained an

equal number of 0's and l's was found to be minimal for the cycle set

(3
5
) No assignment yielded a DS with just one additional output for

the cycle set (13,26). Another output was required, but this was

still less than the maximum for this number of states.

In summary, the cycle sets for 4 to 8-state machines are given

in Table 1.

n:

Rotation

1

2

3

4

5

6

7

TABLE 1. Cycle Sets.

45

(2,4)

(12,22)

(2,4)

(52)

(52)

(52)

(52)

(3,62)

(35)

(13,26)

(35)

(3,62)

(73)

(73) ,

1 (73)

(73)

(73)

(73)

(4,83)

(22,46)

(4,83)

(14,212)

(4,83)

(22,46)

(4,83)

The following algorithm was formulated to generate the cycle

sets for any cyclic permutation column of any sequential machine:

Let n = number of states in the machine,

x = number of positions the column has been rotated from the

standard position,

then the cycle set has the general forms-

(aj , bk)

where b = n
gcd.(x,n)

for b evens

a. = b ,

2

j = god (x,n),

k = (n- 2).gcd (x,n
2

for b odds

a = b

j k = (n- l).gcd (x,n) .

2

From the preceding analysis of these special machine classes

some rather general conclusions can be drawn. Firstly, for each n

state class there is at leastmeniachine, specifically the one with

each state as its own next state thereby having a testing graph with

n(n-1)/2 self-loops, that will require the maximum number of addition-

al outputs. Secondly, for each n state class, with n even, there is

at least one machine that requires more than one additional output

but probably less than the maximum number.

Several important problems related to these cases remain un-

solved. For machines which are not covered by Smith's Algorithm

there must be algorithms which will yield the most efficient output

assignments. For machines with an odd number of states it appears

that only one additional output is required. It is not clear whether

this holds for large n. We were unable to determine whether the form

of the cycle set gives any indication of the algorithm that will yield

the best output assignment; or whether the form of the cycle set can

be used to predict the number of additional outputstrequired.

In this chapter we have investigated some classes of machines

about which it is possible to predict the number of additional output

variables required and to make minimal output assignments. Unfortun-

ately there exists other related classes gbout which we have not been

L7

able to obtain such information. Further investigation is needed in

this area, specifically with regard to the problems discussed above.

VI. DESIGN OF THE CHECKING EXPERIMENT

Having established a procedure for ensuring that a homogeneous

distinguishing sequence exists for the sequential machine we now con-

sider the design of a checking experiment employing this sequence.

The checking experiment must verify the number of states of the

machine and check the transitions from these states under all inputs.

If at any point in the experiment the output response differs from

the expected response as indicated by the state table of the machine

then we can conclude that the machine is not functioning correctly.

An algorithm is presented, based on work by Gonenc (3) but modified

here to take into account the advantageous properties of the homo-

geneous DS, that will yield a near minimal length checking experiment

for most sequential machines.

The method to be described here requires that the machine be

in a predetermined state. To achieve this we may first apply any

one of several types of sequences. A synchronizing sequence, if

one exists, will drive the machine to a final state which is known

from the state table but which must be tested as the first step in

the experiment. Alternately, we may apply a homing sequence which

will leave the machine in a known and recognized state because the

corresponding output does uniquely identify the final state. If

the output response was not as expeCted then we have determined

that the machine is faulty and the experiment terminates. If we

want the machine in a state that is not reachable directly by a

homing sequence then we must first apply a homing sequence and

49

follow it with a sequence that wi31 transfer the machine to the

desired state. Again, for this latter case it will be necessary

to recognize the start state at the beginning of the experiment.

It has become common practice in designing checking experi-

ments to consider the experiment in two parts thec(-sequence in

which the number of distinct states in the machine is verified, and

a p-sequence in which the state transitions are checked. This

partitioning will be used here since the incorporation of homo-

geneous distinguishing sequences in theck-sequence yields sub-

stantial reductions in the length of the experiment. It should be

noted however, that if the correct response to a DS is observed

during the transition checking portion of the experiment then this

step may be eliminated from the state counting segment. This means

that, in general, the checking experiment can be based solely on

checking transitions, since for a strongly connected machine the

correct number of distinct output responses will be observed,

thereby verifying the number of states in the machine.

The following symbols are used in this chapters

Xd = the distinguishing sequence.

1 - Xd = an input 1(0) followed by the distinguishing sequence.

T(Si,Sj) = a shortest transfer sequence from Si to Si.

Zj = the output response sequence that distinguishes state Sj.

For an example machine we will use our previous machine 1141

which was modified in chapter IV to exhibit DS's of 00 and 11.

50

1

2

3

.5

o 1

1,00 4,10

1,01 5,10

5,00 1,00

3,10 4,00

2,10 5,11

Figure 33. Modified Ml.

Organization of the v(-Sequence:

The goal of the first part of the checking experiment is to

confirm that the number of states, verified by successive applica-

tions of the DS to the machine being tested, agrees with the num-

ber initiated by the state table. One application of the DS and

its corresponding output response will be referred to as a cell. It

follows that the number of distinct cells should correspond to the

number of states in the state graph. Because we are using a homo-

geneous DS there will be considerable overlap of state checking cells

in the o(-sequence.

The first step in the design of the c-sequence is to con-

struct a digraph (Figure 34) displaying the next state transitions

for the input used in the DS.

n
of "00" for machine M1.

For this example we will use the DS

A desirable start state for the sequence is one which min-

imizes the number of transfer sequences required. A source state,

if one exists, satisfies this requirement since if we were to choose

a non-source state then at some point in the sequence we would have

51

to apply a transfer sequence to tha source state so that we could

check its output response to the DS. If no source exists then the

digraph is strongly connected and the particular start state chosen

is immaterial. If more than one source state exists then we should

choose the one that minimizes the total length of all transfer se-

quences needed in the o(- sequence.

If the transition graph has disjoint segments then transfer

sequences will be required. The optimal strategy would be to

choose the source states in an order that minimizes the total

length of all transfer sequences required. This situation would

be further complicated if for one of the segments there were mul-

tiple source states. There appears to be no way of selecting a

priori the best order of states.

For machine Mi state 4 is the only source state and is

therefore the best start state. If any other state was chosen as

the initial state then at some point in the d.-sequence a transfer

sequence to state 4 would be required. In addition, the overlap-

ping effect of the DS would be lost.

0

0

Figure 34. M1 State Transitions for input 0.

The o(- sequence of this machine will therefore have the

following forms

Input 0 0

State 4 3 5 2 1 1 1 1

Output 10 00 10 01 00 00 00

The first six inputs produce five different output responses,

thereby verifying that the machine has five distinct states. The

final input causes a transition that has already occurred and been

tested. Consequently, provided the machine is not faulty, at the

end of theo(-sequence we are in a recognized final state. If the

machine is faulty we may still have the same output response at

this stage, but the remainder of the experiment will detect the

fault.

In general, following the correct number of different output

responses it will be necessary to apply the distinguishing sequence

again in order to repeat a transition and terminate in a known state.

The procedure for designing the o(-sequence is now summarized:

1. If the given sequential machine has more than one homogen-

eous distinguishing sequence, choose one:of the shortest.

2. Choose one of the source states under the same input symbol

used in the DS. If there is no source state, choose any state as

the start. Where there is a choice of start states whether it is

due to no source state or multiple source states, it would probably

be better to choose as the start state one of the states that can

be reached with one of the shortest transfer sequences.

53

3. Apply the DS.

4. If the state reached has not yet had a distinguishing se-

quence applied to it (ie. has not been recognized) then go to

step 3. Otherwise go to step 5.

5. If there is a source state not yet recognized apply one

symbol of the 136 and then a transfer sequence to reach that state,

then go to step 3. Otherwise go to step 6.

6. If there is any state not yet recognized apply one symbol of

the DS and then a transfer sequence to reach that state, then go

to step 3. Otherwise go to step 7.

7. Apply the distinguishing sequence once more, in order to

reach a known final state. The structure of the o(- sequence is now

completed.

In the above algorithm, prior to each introduction of a

transfer sequence, one input symbol of the same type as is used

in the LS is applied. This is done to ensure that not only does

the d-sequence check the number of states but it checks all the

transitions under this same input symbol. It is this property of

the homogeneous distinguishing sequence that gives it such a great

advantage over all other types of distinguishing sequences used

in the design of checking experiments.

Again in the case where there are several sources, the ques-f

tion arises: does one order in which sources are chosen yield a

shorter checking experiment than another? The order chosen

should be dependent on the ease with which we can reach the start

state, the total length of the transfer sequences required, and

the suitability of the final state as a start state for thep-

sequence. The inclusion of these considerations would be quite

straightforward and systematic, requiring exhaustive testing of

all the possibilities. The effort and time required to do this,

in most cases, will probably outweigh the advantages of the potent-

ial reduction in the experiment length. Therefore they are not in-

cluded in the algorithm given above.

Furthermore, because of the great variability in the form

of sequential machines it is desirable to have a procedure which

is generally applicable to a31 machines, and which does not

attempt to cater to this variability.

Organization of theAL:12222122:

The function of the/3-sequence is to check the state trans-

itions on all remaining inputs. The general approach is to apply

an input (i) to produce the transition and then to recognize the

state reached by applying the DS (Xd). This combination of inputs

will be referred to as a cell and its form can be represented

as shown:

Input

State Si Si

Output zi

When a state is reached for which all transitions have been checked

it will be necessary to apply a transfer sequence to a state which

still has unchecked transitions.

55

ii

The construction of the iS- sequence will be illustrated for Ml

and then the algorithm formulated for machines with several inputs.

As we have checked all the 0 transitions for N1 in the sequence

it remains to check all of the 1 transitions. It the sequence 1 had

been used as a transfer sequence in the first part of the experiment

the transition it created could be ignored in this second part. A

graph is constructed showing all of the next state entries on an

input of 1-Xd. If a transition had already been checked then the line

representing it would be removed from the graph.

1-Xd

1 -Xd

1-Id

Figure 35. 1-Xd Graph for 111.

The graph in Figure 35 has three sources. In general this

will indicate that three transfer sequences will be needed in the

fi-sequence. However, if one of the source states is a terminal

state for theo4-sequence we would need one fewer transfer sequence.

This latter condition does not apply to M1, consequently three

transfer sequences will be required. In this case it makes little

difference whether we commence checking transitions from state 1

or first transfer to a source state.

Using state 1 as the start state, the general form of the

sequence will be as follows:

Input 1 Xd 1 Xd T(1,4) 1 - Xd T(5,2) 1 - Xd

State 1 5 1 4 5

Input T(1,3) 1 - Xd

State 1 3

The order in which the source states were chosen was based

on the minimum distance between the current state and the remaining

source states. Specifically, the/3- sequence will be:

56

2

Checks: 1 on 1 5 on 1 4 on 1 2 on 1 3 on 1

Input: 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0

State: 1 4 3 5 5 2 1 4 4 3 5 2 5 2 1 4 3 1 1 1

Output: 10 10 00 11 10 01 10 00 10 00 10 10 10 01 10 10 00 00 00

The total length of the checking experiment for machine 141 is

26. Any experiment based on the original machine Mi would require

substantially more input symbols.

A general procedure permitting any number of additional input

columns, is now presented for the organization of thep-sequence.

It is a modification of an algorithm devised by Gonenc. Gonenes

algorithm has been changed to take into account the fact that we

are employing homogeneous DS's. Elements of graph theory have also

been introduced to indicate the techniques necessary in a programmed

version of the procedure.

Let di , dl represent the outdegree and indegree respectively

of node i in the graph, and S the set of states (nodes). The

57

nodes (Si) of the graph will belong to one of the following sets:

R=1SiES I dt cll. I

F diyd1}d;

P fsi S 4<di

We wish to select our start states for each segment of the exper

iment such that the use of transfer sequences is minimized. If the

graph is Eulerian, that is, di = di for all nodes then there exists

a path starting at any node which travels along each line exactly

once and returns to the start node. Consequently no transfer se-

quences will be required. If the graph is not Eulerian then at

least one transfer sequence will be required. The selection of

optimum sequences is based on the following well-known theorem:

THEOREM:

If digraph D is connected but not Eulerian every minimal cov-

ering of D consists of k paths each of which joins a vertex in F to

one in P, where

k ,(di = >tc11

SiE F Sic P

The procedure described below is for connected graphs or for

connected subsets of a nonconnected graph. The minimal covering

for a nonconnected graph will be the union of the minimal coverings

for the connected components.

Procedure for finding a Minimal Covering:

1. Choose a start state in F. The terminal state of the pre-

vious portion of the experiment may be chosen as the start state.

If it is not in F then k + 1 paths will be required and k transfer

sequences used.

2. Follow a path from the start state, erasing each line as it

is used. This would require elimination of the appropriate entry

in the adjacency matrix. If a line chosen is a bridge (a bridge

line is one whose removal will degenerate a connected graph to a non-

connected graph), choose another line emanating from the same node,

if one exists. Matrix techniques for determining bridges and find-

ing alternate paths are discussed in the Appendix.

3. When it is not possible to go further, choose another start

state in F and go to step 2. When k paths have been generated the

procedure is terminated.

N.B. The minimal covering sequence will be onaof the set of

sequences generated by the above procedure. There will be at least

k members of the set and it is necessary to generate all of them

if the minimal covering is to be found. In general the reduction

to be achieved by forming all possible coverings is probably not

worth the effort. The following criteria for generating the cover-

ing is suggested as a means of achieving near-minimal results most

of the time:

Compute the distance matrix for the digraph. List the maxi-

mum path lengths emanating from the nodes in F. The start states

may then be chosen from F either in order of decreasing path length

or such that the lengths of the transfer sequences between paths is

in an increasing order. It is not clear which of these two

.59

alternatives yield the better results. In the latter case the

lengths of the transfer sequences would be obtained from the distance

matrix of the state graph of the machine.

As a final example a checking experiment will be designed for

the following sequential machine 113.

1

2

3

4

5

6

0 1

2,0 6,0

3,0 5,1

4,1 2,0

5,0 1,0

6,0 4,1

2,1 5,1

1

Figure 36. State Table and State Graph of M3.

M3 already has distinguishing sequences, one of the shortest

being "001". In the search for homogeneous DS's the testing graph

for each input is constructed (Figures 37 and 38).

Figure 37. Input 0.

13, 26

1 1

-@)

56)

Figure 38. Input 1.

60

An homogeneous DS of "00000" exists. The 1 input column has

the repeated pair '55' which, if removed, will give the machine a

distinguishing sequence of "11". Consequently with the addition of

only two output entries 143 adquires a short DS. The remaining en-

tries may be left as "don't cares" giving maximum flexibility in

design. The modified machine M3 is shown in Figure 39.

Figure 39. Modified m3 (,13).

Construction of the o(-sequence is guided by the source states

in a graph of state transition on a 1 input. From Figure 36 it can

be seen that 3 is the only source state. Hence, if it is chosen as

the start state, no transfer sequences will be required and the se-

quence of states will be 3 2 5 4 1 6 5 4 1. The complete 0<-sequence

is shown below:

3 on 1 1.221 1 on 1
Checks: 2 on 1 4 on 1 6 on 1

Input: 1 1 1 1 1 1 1 1

State: 3 2 5 4 1 6 5 4 1

61

The last two inputs are necessary to drive the machine to a known

state.

For the we require the transitions on an input of

0 followed by the distinguishing sequence,(Xd). The "0-Xd" graph

is given in Figure 40.

Figure 40. O-Xd Graph.

In this case it makes no difference in the length of the / - sequence

whether we choose the terminal state of thee(- sequence as the start

state for this segment or one of the source nodes of the 0-Xd graph.

Choosing 1 as the start state the minimal covering will be 1 4 1 -

2 5 4 - 3 6 4. Two transfer sequences are required and there will

be six 0-Xd cells checking the 0 transitions of all states. The

complete p-sequence is now given:

Checks: 1 on 0 4 on 0 2 on 0 5 on 0 3 on 0

Input: 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1

States 1 4 1 2 5 4 3 6

Checks: 6 on 0

Input: 0 1 1

States 6 4

62

A minimal checking experiment or 3 has been designed with

a length of 30 input symbols. For the same original machine with

no modifications Gonenc obtained a minimal experiment of length 52

using the shortest distinguishing sequence.

63

V11. BOUNDS ON THE LENGTH OF THE EXPERIMENT

(a) Upper Bounds:

In deriving the upper bounds for this type of checking ex-

periment use is made of the assumption that the machine is strongly

connected and that consequently any state can be reached from any

other state in at most n-1 state transitions. The bounds are com-

puted for a two input machine, however an extension to more than

two inputs would be quite straightforward.

Let L = the length of the DS.

n = number of states in the machine.

For the o(-sequence the worst case occurs when there is no overlap

between input cells (a cell is L + 1 inputs of the same symbol as

the)8.) This cell must be applied n times. A further application

of L 1 symbols that comprise the £6 is needed to drive the machine

to a known terminal state. In addition, n-1 transfer sequences will

be needed. Because the machine is strongly-connected the first

transfer sequence will require at most one symbol, the second at

most two symbols, and so on.

:. Maximum length of the c4-sequence
n-1

= (n-1).(L+1) + 2L +

= n(L+l) + (L-1) + (n-1).(n-2)
2

For thep-sequence a cell consisting of one input symbol

followed by the DS must be applied to each of the n states. The
n-1

total length of the transfer sequences will again be
1=1

.1. maximum length of bhep-sequence

n-1
= ne(IA-1) +

i=1

= n.(L+1) + (n-1).(n-2)

2

. upper bound on experiment length

= 2n (L+1) + (L-1) + (n-1).(n-2)

If we permit only the minimum number of additional outputs to make

the machine diagnosable then the length of the distinguishing se

quence is bounded by n(n -i). Hence the upper bound, as a function

2
only of the number of states, will be

=211.n(n-1) + 1 n(n-l) - 1 + (n- l).(n -2)

2 2

=n3 - n2 + 2n + n2 - n 1 + n2 - 3n + 2
2 2

n3 + n2 - 4- 1

"-f 2

Fortunately this bound is much greater than the checking ex-

periment length usually obtained. The length is generally quite

close to the following lower bound.

(b) Lower Bound:

The lower bound will be achieved when no transfer sequences

are required. With maximum overlap the length of the oc-sequence

becomes n + L. Thep-sequence will have a length of n.(L+1).

:. LOWER. BOUND = n + L + n. (L+1)

If sufficient additional outputs are permitted to reduce the

DS to one symbol the absolute lower bound becomes 3n+1.

65

CONCLUSIONS

In this paper a systematic procedure has been described for

modifying a sequential switching circuit in order that it should

have short homogeneous distinguishing sequences, and for designing

near minimal fault checking experiments. Elements of graph theory

have been considered as the preferred vehicle by which the procedure

can be programmed on a computer. Some specific classes of machines

have been considered, namely those with reset or cyclic permutation

columns. It is clear that the techniques employed in these special

cases can be applied when only some subset of all of the states has

the reset or cyclic permutation property.

The overall procedure is very simple to apply by hand for a

small sequential machine since the graph analysis can be done by

inspection. If trial and error methods are avoided completely, in

most cases the length of the resulting checking experiment will

still be close to minimal. Howeverr, the designer has the choice

of including exhaustive testing in the implementation, in which

case a minimal experiment will be obtained. For large machines

this latter process would be unacceptably time consuming. One sol-

ution to this problem is to have an interactive program in which

the graphs are modified by inspection where possible, thereby

eliminating some of the more complex matrix techniques. The order-

ing of specific tasks such as branch elimination, subgraph select-

ion, choice of starting states, etc., presents a problem which is

analagous to the prime implicant problem and is unsolved.

66

The questions left unanswered in this investigation are

either related to a very small subset of the sequential machines

or are likely to contribute only nominally towards optimizing the

procedure. However, an attempt has been made to at least note ail

of the aspects of the subject that remain to be examined or that

should be considered when the procedure is implemented. These

include:

(1) determining how the order in which many of the branch

elimination aspects may be defined such that the whole process is

optimized;

(2) obtaining output assignment algorithms for all machines

containing cyclic permutation columns;

(3) selecting suitable start states for the checking experi-

ment and determining the order in which source states should be

chosen.

It is felt that a computer implementation of the methods described

will lead to at least partial solutions to some of these problems,

and that it may be possible to derive some heuristic functions to aid

the optimization process.

An upper bound on the experiment length has been calculated

which is lower than any previously obtained. However this bound

is still a gross overestimate of the length usually possible. In

most cases values close to the lower bound are more probable. This

lower bound is the smallest obtainable for a given homogeneous dis-

tinguishing sequence under the design philosophy employed in this

paper.

67

BIBLIOGRAPHY

1. Z. Kohavi and P. Lavallee, "Design of sequential machines with

fault-detection capabilities," IEEE Trans. Electron. Comput.,

vol. EC-16, pp. 473-484, Aug. 1967.

2. J.R. Kane and S.S. Tau, "On the design of easily testable

machines," Proc. IEEE 12th Annual Symp. Switching and Automata

Theory, pp. 38-42, Oct. 1971.

G. Gonenc, "A method for the design of fault detection experi-

ments," IEEE Trans. Comp., Vol. C-19, pp. 551-558, June 1970.

4. A.R. Smith, "General shift register sequences of arbitrary

cycle length," IEEE Trans. Comp., vol. C -20, pp. 456-459,

April 1971.

F. Harary, R. Norman and D. Cartwright, Structural Models -

An Introduction to the Theory of Directed Graphs, John Wiley

and Sons, Inc., 1965.

6. Z. Kohavi, J.A. Rivierre, and I. Kohavi, "Checking experiments

for sequential machines," Information Sciences, vol. 7, No. 1,

pp. 11-28, Jan. 1974.

7. S. Washall, "A Theorem on Boolean Matrices," J.ACM 9, pp. 11-12,

Jan. 1962.

APPENDIX

APPEND:a

The procedure for finding a minimal covering of a directed

graph (page 58) requires that the elimination of bridge lines be

avoided where possible. It is therefore necessary to be able to

recognize bridge lines and to be able to determine whether an al-

ternate path from the node at the beginning of the bridge exists.

Recognition of bridge lines using matrix techniques is well known

and is discussed in detail in Harary (5). A summary of the seg-

ments of that discussion relevant to this application is presented

below.

To determine whether an alternative path exists at any point

it is necessary to keep an updated record of only the current in-

degree and out-degree of each node. These quantities are readily

obtained from the adjacency matrix A(D) of the original digraph.

The row sums of this matrix are the out-degrees and the column

sums the in-degrees of the respective nodes. When the initial node

of a bridge is reached, if that node has out-degree greater than

one then clearly an alternate path exists. These node degrees also

enable the easy recognition of source states, and states which be-

long to the subset F referred to in Chapter VI.

The principle steps in the process for identifying bridge

lines are now presented.

1. Compute the connectedness matrix C(D) of the digraph D.

The procedure for this was given in chapter III. Recall that the

matrix C(D) gives complete information about the connectedneSs

69

category of the components of D. If the (i,j) entry of C(D) is

3 or 2 then the nodes Vi and V. are in the same strong or weak com-

ponent respectively. If the entry is zero, Vi and Vj are not con-

nected. The lines in strong components can be ignored for the

remainder of the analysis since no strong component can contain a

bridge.

2. A start state is chosen and the weak component (Di) con-

taining this state is determined from C(D).

3. To determine whether a line x e Di is a bridge we obtain

A(Di) and from this A(Di-x). (The entry of 1 in A(Di) which re-

flects the presence of x becomes a 0 in A(Di-x).)

4. Derive C(DI-x). If the minimum entry of C(Di-x) is zero

then x is a brige.

In programming the design of the checking experiment the pro-

cedure described above is probably the least satisfactory aspect of

the entire process. Every line of every weak component must be sub-

jected to analysis. In addition, after each path has been estab-

lished it is necessary to recompute all strong and weak components

of the digraph D. Although considerable reduction in the amount of

computation can be achieved with sparse matrix techniques and other

shortcuts it is arguable that the time involved in avoiding the el-

imination of bridges is not justified by the potential reduction in

the length of the experiment.

