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The Davey-Stewartson Equations: A Numerical Study

Chapter 1

Introduction

1.1 Background

One of the major successes in the field of applied mathematics in the last decade or
two is the method of inverse scattering, associated with the names of Ablowitz,
Gardner, Greene, Kaup, Kruskal, Lax, Miura, Newell, Segur, Zakharov, and
others; see (1] and [5] for historical reviews. Originally developed in the context

of the Korteweg-de Vries equation
KdvV: Up + OUULy + Ugpr = 0,

the method of inverse scattering allows one to construct solutions by linking the
PDE to a certain linear scattering problem, thereby enabling one to solve the
nonlinear PDE with essentially linear techniques.

After the initial success of the method of inverse scattering on the KdV, it
was soon discovered that the method had wider applicability. For example, the
nonlinear Schrédinger and Sine-Gordon equations were both shown to be solvable

by the method of inverse scattering. These equations are respectively defined by
NLS: Wy + Ugg + 2Jul?u = 0,

and

SG: Uy — Uggy + sinu = 0.



In these equations the boundary conditions are usually taken to be periodic on
a finite domain, or decay to zero at infinity on an infinite domain. The KdV
and NLS are both models of nonlinear water waves in one dimension while the
SG equation models a coupled pendulum chain. In two space dimensions the

Kadomtsev-Petviashvili and the Davey-Stewartson I and II equations, given by
KP: (s + 6uty + Uggy ), + 307y, =0,
and

1
DSI and DSII: 1y + 502(14” +o*uy) = —alul*u + ud,

boz = 07y, = 20 (Juf?) (1.1)

2’
where these equations have been scaled so that 62 = +1 and o = +1, are also
known to be solvable by the method of inverse scattering. (The case ¢? = 1
corresponds to the DSI system and 0? = —1 corresponds to the DSII system).
Note that if the z-dependence is removed in the DS system, then the NLS equation
is recovered.

These equations have several common properties which include an infinite
number of conserved quantities and the occurrence of soliton solutions!. Per-
haps the most fundamental common feature is that these equations may all be
expressed as Hamiltonian systems of infinite dimension, which are moreover in-
tegrable thanks to the infinite number of conserved quantities. The method of
inverse scattering was realized to be the infinite dimensional analogue of the
action-angle transformation by which finite dimensional Hamiltonian systems are
commonly solved [13].

Whereas the method of inverse scattering is very general and powerful, it is

not easy to apply when arbitrary initial conditions are specified. This is especially

'A soliton is a traveling wave which becomes localized in finite time and then maintains its

shape indefinitely, except for brief moments during nonlinear interaction.



true in the case of two space dimensions such as the DSI, DSII and KP equations.
For this reason accurate numerical simulation remains an indispensable tool in
the study of these equations. Whereas the one-dimensional problems such as
NLS, KdV, and SG have received considerable attention in the numerical analysis
literature, see for example [17], [27], and [31], the same cannot be said for the
two-dimensional problems such as the KP and DS equations. The only references
known to this author are [22] which involves a non-integrable case of the DS
system

iut + Uz + Uyy + ’UIQU - ¢rU = Oa

boot by = — (ul?) | (1.2)

and [29] where we have presented what we believe to be the first known simula-
tions of soliton and dromion solutions of the DS system. This absence of reported
results is in some part due to the computational complexity of these problems:
not only are they nonlinear, but they are typically posed on a doubly infinite
domain, and in the case of the DS equation there is the added complication of
dealing with a coupled system of equations.

In this thesis we introduce and analyze a numerical method for the DS systems
(1.1) and (1.2). This method is based on an extension of the well-known and
successful split-step Fourier method originally proposed for the KdV equation by
Tappert [27], and also used in (28] on the NLS equation. The extension of the
split-step method from the NLS to the DS system is however not trivial. We
must address the following problems: (i) inverting the second equation in (1.1)
to solve for ¢, in both the elliptic and hyperbolic cases (c? =1 and 0% = —1
resp.), (ii) incorporating boundary conditions, (i) truncating from an infinite to
a finite domain, and (iv) optimizing the method to deal with the large number
of computational grid points needed.

Testing the quality of schemes such as the ones introduced here can be achieved

in one of two ways: first, by rigorous convergence proofs and error estimates, or
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second, by ensuring that the relevant physical properties in the continuous equa-
tions are represented accurately by the numerical method. We will follow the
second approach here. Classical convergence proofs and error estimates, which
typically do not take the particular nonlinear dynamical features of these equa-
tions into account, have had limited success in predicting how good or bad a
particular method works in practice. A reason for this is that such convergence
proofs are designed to predict what happens in the limit as the mesh-size, both
in space and time, shrinks to zero. A computer works with finite values of the
mesh-size however, and nonlinear features such as blow-up and numerical chaos
may be observed which cannot be accounted for by classical analysis. Perhaps
the best example is presented in the paper by Ablowitz and Herbst [2], where the

following two discretizations of the NLS are compared

.d 1
1 Ui + 35 i1 = 2U; + Us) + 2|05 U5 = 0, (1.3)
and
.d 1
15 Ui + 55 (Ui = 205 + Usd) + U (Ujer + Uj) = 0. (1.4)

The numerical results of Ablowitz and Herbst show that when the nonlinear phe-
nomenon of recurrence (defined below) is simulated, scheme (1.3) quickly collapses
into chaos (see Figure 1), whereas scheme (1.4) maintains a nice and smooth pe-
riodic solution in a long-time integration (see Figure 2). The crucial difference
between the two schemes is that (1.4) has been designed to be integrable, which
is not the case for (1.3). Whereas both schemes are formally accurate to order
O(h?), only one of them reflects the dynamical property of integrability and is
therefore superior.

In the above simulations a standard Runge-Kutta method was employed. It
should be pointed out that the use of a finer space grid in (1.3) will produce
recurrence for a period of time, but at some later time numerical chaos will

occur.
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Instead of pursuing classical convergence proofs, we will therefore attempt to
ensure that the relevant dynamical properties of the DS system are accurately
reflected in the numerical approximations. To this end we will show that our
semi-discrete approximation is a finite dimensional Hamiltonian system which
approximates the infinite dimensional Hamiltonian of the continuous problem.
We will also show that the split-step method that we use to integrate our system
is a symplectic transformation, a feature that is increasingly recognized to be of
paramount importance in the integration of Hamiltonian systems.

To set the background it is perhaps best to review the relevant issues as they

pertain to the NLS equation.

1.2 Review of NLS
The NLS equation is given by

Py =0, (1.5)

Z"Ut + Ugz + 2]’(,6

where u(z,¢) € C and 7 = /~1. Two of the conserved quantities of (1.5) are the

L?-norm

ditj =0, where I= / |u|® dz, (1.6)

and the Hamiltonian

%H =0, where H = —z'/ ([ur|2 — |u|4) dz. (1.7)
Here the integration is over one period in the case of periodic boundary conditions
u(z,t) = u(z + Pt), for all ¢ > 0,

or over all of R in the case of decaying boundary conditions

u(z,t) =0, uy(r,t) >0 as |z| — oo.
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A proof of (1.6) and (1.7) will follow from the analysis in the next chapter, where
we derive the analogous conserved quantities of the DS system. The reason for

referring to H as the Hamiltonian is as follows. The NLS (1.5), and its conjugate
Ut = (Usg + 20|ul?u, and ul = —iut, — 2i|u|*u”,

may be expressed as

__6_H .__oH 1.8
ut_&u*’ Y = Su’ (1.8)

where H is written as

H(u,u") = -z'/ (uru; - u2(u*)2) dz.

The variational derivatives on the right-hand side of equation (1.8) are defined

so that
H(u-{-eﬁ,u*)——H(u,u) §H

lim — udz,
e—0 € bu

for all suitably smooth functions % which decay to zero at infinity.

To see that H is the Hamiltonian, note that
1 ~ * *
—(H(u+et,u”) — H(u,u"))
€
— f { )pul SN2 ()2 2 4
= — U+ €u)puy — (u+ etr)®(u*)? + |ug) —-jul}dw
=——/{eu$ — 2etiu(u”)? — 2 (u )}d:c

Now use integration by parts on the first term in the integral and cancel a factor

of € to get
—16— (H(u + etl,u™) — H(u,u")) = 2/ {(u;r + 2ul?u*)u + 6172(11*)2} :

So as € — 0 we get

6H
—(S—U— = w;r + QiIUIQU*,
and then
6H
uy = —iuy, — 2ijulfut = ——

bu’



The other equation in (1.8) follows in a similar manner.

Two nonlinear phenomena that will be of particular interest to this thesis are
those of solitons and recurrence. As for solitons, these solutions may be obtained
by the method of inverse scattering, see [1] for example. An example of a 2-soliton
solution to the NLS equation can be seen in Figure 3. The two solitons collide and
then emerge without a change of shape. In Figure 4 a contour plot corresponding
to Figure 3 shows how the nonlinear interaction of the solitons causes a phase
shift in the paths taken by the solitons during the collision.

The other interesting nonlinear phenomenon, that of recurrence, is related to

the modulational instability described by the NLS. First note that
u(z,t) = qelo*
is a solution to (1.5). Consider a perturbation to this solution given by

u(z,t) = aeilaf (1 +¢e(z,t)),

where ¢(z,1) € € and |¢(z,0)| < 1. Substitute this perturbed solution into (1.5)

and keep only first order terms in ¢ to get

€t = 1€gz + 2i|al* (e + £7). (1.9)
Now assume that the perturbation, e, is periodic on the interval [—3P,1P] and
write
(X> .
£ = Z 5m(t)e“"”r,

where y1, = 22 Substituting into (1.9) gives a system of ordinary differential
equations

d [ én Em

— =G m %0

dt S S
where

2lal* — 2 2]al?
szi(ll i 2 )

—2fal®  =2af* + 47,
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Soliton Collision

Figure 3. Soliton interaction in the NLS equation

Soliton Collision

T

Figure 4. Contour plot of soliton interaction in the NLS equation
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The eigenvalues of the growth matrix G, are given by +u,,+/4la|? — p2 . One of

the eigenvalues is a positive real number if
0 < 2, < 4lal?, (1.10)

which is a region of instability associated with the names of Benjamin and Feir;
see [8] and also the discussion in Section 5.1. Whenever u,, is inside this region
the mode (é‘m, E* m)T will grow exponentially. However, this exponential growth
in the Fourier modes of the perturbation does not continue indefinitely. In [30]
Yuen and Ferguson show that the long-term evolution displays the recurrence
phenomenon: the unstable modes take turns in dominating the solution, with
intermittent returns to the almost uniform state. Figure 5 shows an example
where only one mode of the perturbation lies in the instability region (1.10).

This corresponds to P = v27, a = 1, and
u(z,0) =1+ 0.1 cos(v/2z). (1.11)

Figure 6 shows the evolution of the primary and the unstable modes of the solu-
tion. An example where two modes dominate may be seen later in Figure 7.
These pictures were produced by the split-step Fourier scheme. In this thesis
we will extend the split-step scheme to the DS system of equations. We will
then use this scheme to simulate solitons and modulational instability in the DS

system.
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NLS Recurrence

3~

2.5*1

29
S 1.5+ 3
Ny i

4 0 time t

Figure 5. Recurrence in the NLS equation.

NLS Fourier Modes

Figure 6. Primary mode: solid line and unstable mode: dashed line, in the NLS corresponding

to one unstable mode.
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Chapter 2

Analytic Aspects

In this chapter we review some of the literature related to the physical aspects of
the DS system. The main sources for this review are [3], [12] and [15]. Although
no original results will be produced, this chapter will establish the DS system in
the context of water waves and introduce properties of the DS system which will
play an important role in establishing the validity of the numerical scheme used

to solve the DS system.

2.1 Derivation of DS System

In this section we reproduce some of the analysis found in [12] which results in a

system of equations of the form
s + Q1 Ugy + Q2Uy, + aslulfu + agud, =0 (2.1)

Pz + Brdyy = 52(]”‘2% ) (2-2)

where a,..., a4, f1, B2 € R, u(z,y,t) € C and ¢(z,y,t) € R. We will refer to
these partial differential equations as the DS system.

Davey and Stewartson considered a cartesian coordinate system with the zy-
plane coinciding with the undisturbed free surface of a body of water [12]. The

positive z-axis is directed so that the bed of the water is at z = —h. At ¢t =0
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it is assumed that a progressive wave is established such that the free surface is

raised to z = (, where
9¢(z,y,0) = tcwa(ez,cy) exp(ikz) + c.c..

Here g is the acceleration due to gravity, k is the wave number and w is the
frequency of the progressive wave, a is a given function, ¢ is a small positive
constant and c.c. indicates the complex conjugate of the preceding term. A
progressive wave such as this corresponds to a wave of wavelength 27 /k traveling
in the positive z direction with an amplitude slowly varying with position and on
a scale inversely proportional to its height. We will assume the linear dispersion
relation for water waves, w = v/gko where o = tanh(kh), holds.

Let ¢(z,y,z,t) denoted the velocity potential of an incompressible, irrota-
tional, inviscid fluid. The incompressibility condition implies that ¢ satisfies the

Poisson equation
Gox+ Py + 6. =0 in —h<z<(. (2.3)
The corresponding boundary conditions are an impermeable bottom, so
¢,=0, when z=—h, (2.4)
and two conditions at the free surface, the kinematic boundary condition

¢: = G+ ¢:(c + $yCy, when z=(, (2'5)

and

29+ 24, + 82+ 62+ ¢2 =0, when z=2¢, (2.6)

which is a statement of uniform pressure at the surface, which follows from
Bernoulli’s law. For the moment we have neglected the effects of surface ten-

sion.
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Since the disturbance is a progressive wave, we can look for a solution of

(2.3)-(2.6) of the form

b= 3 6B, (=3 B 2.7)

n=—oo n=-—0o0

where £ = exp {i(kz — wt)}, ¢-n = ¢%, (- = (; and * denotes the complex

conjugate. Also write

be= Y by o= 3, (n20), (23)

7=n
where ¢,; is a function of ¢, 7, z, and 7 only, (,; is a function of £, 7, and 7 only

and ¢go = (oo = 0. The variables ¢,  and 7 are given by
E=c(z—ct), n=cy, and 7T =ce%,
where ¢, is the group velocity of the primary progressive wave given by
— (k) =L — o2
cg =w' (k) = o {a+kh(1 o )}

Substitute (2.7) and (2.8) into (2.3) and use (2.4) to get

cosh k(z + h)

on =4 cosh kh
cosh 2k(z + h)
pn=F cosh 2kh

and

coshk(z + h) 4 (z + h)sinh k(z + h) — ho cosh k(z + h)

b =D— =0 e cosh kh

where A, D and F' are unknown functions of £, 5, and 7 only. ¢o, and ¢g, are

independent of z and

Odos Ppo1 | o
92 ——(z—{—h){ EYE + an? }
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Now substitute (2.7) and (2.8) into the boundary conditions (2.5) and (2.6).

Equating coefficients of ¢/ E™ gives

eE°: Co1 =0, (2.9)
eE*: gC11 = wA, (2.10)
e*E° : glon = ¢, 28 — kK2 (1 — o?)| AP, (2.11)
e’E': 9612 = wD + ¢, 58, (2.12)
EE: g0n=kA(53), wF=3ik4% (5. (2.13)

The coefficient of ¢*E°® in (2.5) involves %%2 from the chain rule when & is

calculated, and a contribution from a—g%% Using (2.11) to eliminate (o, gives

0? 0? d]A)?
(oh =) G+ ah Gt == (20, 1 o, (1= o) Tl 214)

where ¢, = w/k denotes the phase speed of the primary wave. Equating the
coefficients of e>E! in (2.5) and (2.6) gives two algebraic equations for ¢15 and

C13. These equations are compatible only if

2iw% — (2 — gh(1 - 0%) (1 — kho)) 22 + 0, 2048 =

K (9072 = 124 1307 — 20) [A]PA + k2 (26, + ¢, (1 — 0%)) A% (2.15)

Together (2.14) and (2.15) describe the evolution of the progressive wave up
to first order in €, where A(¢,7,0) = a(€,n) is given. Note that the form of
equations (2.14) and (2.15) is the same as that of (2.1) and (2.2). One set of
physically reasonable boundary conditions is that the wave dies away sufficiently

far from its center. Thus
|A] = 0, Voo —0 as 4+ 1? 5 .

In the next section we will show that up to first order in ¢ the nonlinearity in

(2.15) only effects the phase of the progressive wave.
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The above analysis leading to the DS system is formal and no rigorous justifi-
cation of it appears to have been given in the literature. In the NLS case however,
such justification has been presented by Craig, Sulem and Sulem [11].

In this derivation the coefficient of (Go1)¢e in (2.14) is positive for all wave
numbers k and all mean water depths h. The coefficient of Age in (2.15) is
negative. So the analysis of Davey and Stewartson leads to what is now commonly
called the DSII system (after rescaling). In this analysis it was assumed that
there was no surface tension. When the effects of surface tension are included,

the linearized dispersion relation becomes
w? = (gk + £*T) tanh h, k=Vk*+ 12,

where k = (k,1) is the horizontal wavenumber characteristic of the disturbance
(I < k) and T is the ratio of the surface tension coefficient to the fluid density.

The boundary condition (2.6) now becomes

TCrx(l + C;) + ny(l + Cﬁ) ‘ QCrng:Cy.

(1+GE+¢)?

The method of multiple scales now leads to the DS equation

g(+¢t+%(¢i+¢§+¢§)=

1A + Mee + pAy, = x|APPA+ X1A4P,

a®g + O, = —B(|A),,

where ® is the mean motion of the wave packet and

N .
o =tanhkh, T=— W =gko(1+T)>0,
g
2 2 ke d
2 _/cw,m _/cw”__C_g> —_(i).
wWo =gk, A= 2wo T 2w wo’o’ s dk’

— — +8 2
4w 02 —-T(3 —0?) ’

302T}
1+T])

T { (1 =o)O= o) +TQR = "7~ o?)

-2(1 =21 +T) —
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KC >~
xi=14521-0")(1+T) >0,
h — 2
a="1 Cg,
gh

T R e R S
and where all of the above functions are evaluated at { = 0 (flow in nearly one
direction).

The signs of A and o depend on &, h and T and can assume the values (4, —),
(=, +) or (+,4+) giving the DSI, DSII and equation (1.2) respectively. For small
values of T compared to kh we get the DSII system. When T is large compared
to kh then we get the DSI system. The third type of DS system, equation (1.2), is
achieved for values of the parameters between those of the DSI and DSII systems.
See [15, Figure 2] or [4, Figure 1] for graphs of the relationship between the type

of DS equation and the parameters T and kh.

2.1.1 Stokes Wave Formulation

In this section we will show that a position independent solution for A in (2.15)
leads to traveling wave profile or Stokes wave in (. In Chapter 5 we will analyze
the modulational stability of this Stokes wave.

Substituting (2.7) into (2.8) and using (2.9), (2.10) and the fact that (40 = 0,

we see that the free surface satisfies
W .
(= —g—Aexp {i (kz —wt)} + c.c. (2.16)

up to first order in €. If A is independent of £ and 7 then (2.14) becomes

Now assume that gh > ¢2. Then (2.15) becomes

8A .,
5. TiwalAfA=0, (2.17)
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where

k4 (9072 — 12 + 1302 — 204)
Wy = .
2 dw

The solution to (2.17) is easily found to be

A = agexp (—iwgagr) (2.18)

with ag real. Substituting back into (2.16) shows that up to O(¢?), nonlinearity

changes the wave phase only. That is, the wave profile is given by

iwao

(=

exp {t(kz — &t)} + c.c., (2.19)

up to leading order, where & = w + wya2e?.

The modulational stability of (2.19) depends only on the stability of the posi-
tion independent solution (2.18) of the DS system. Modulational stability refers
to the possible effects on the progressive wave from the presence of waves which
have side-band frequencies and wave-numbers adjacent to w, and % interacting
with the fundamental progressive wave. In section 5.1 we will analyze the sta-
bility of (2.19) using a linear stability analysis on the solution (2.18) of the DS

system.

2.2 Existence, Uniqueness and Boundary Conditions

In this section we will state some of the results of [15] concerning existence and
uniqueness of solutions of the DS system. We will then discuss appropriate bound-
ary conditions for the DS system (3].

Ghidaglia and Saut [15] discuss the existence and uniqueness of solutions to

the general form of the DS system
Uy + Q1Ugy + Qotlyy + as|ul*u 4+ agud, = 0

Pax + By = (|U‘2)r (2.20)
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Under certain choices of the coefficients, (2.20) can be solved (at least in theory)
by the method of inverse scattering. The theory behind the method of inverse
scattering has existence, uniqueness and continuous dependence on initial condi-
tions results built into it, see [1]. However, Ghidaglia and Saut develop results
for the DS system using more general theories of nonlinear partial differential
equations. Their analysis also cover cases where the method of inverse scattering
1s not applicable.

In [15] the coefficients of (2.20) have been normalized so that az = 1 and |ay| =
|B] = 1. These systems of equations can be classified as elliptic-elliptic, elliptic-
hyperbolic or DSI system, hyperbolic-elliptic or DSII system and hyperbolic-
hyperbolic depending on the signs of (a1, 8): (+,+), (+,—), (=, +) and (—, —)
respectively. The last case, h/h, does not seem to occur in the context of water
waves and no existence theorems are given for this case.

Ghidaglia and Saut prove that the DS system have several constants of motion
1
J [tuldedy, [ [astual+ u, + Saskd® + au(62 + 8¢2) da dy,

which we will verify in section 2.3, and

//(uu; — u*ug) dz dy, //(uu; — uTu, ) dz dy.

They use these constants of motion to help prove existence results in all but the
h/h case of the DS system. Ghidaglia and Saut have shown three results for the
e/e and h/e systems.

The e/e and h/e systems:

Ezistence and Uniqueness: (i) Let ug € L*(IR?). There exists a unique solution

(u, @) of (2.20) (with #=1) on [0,T), T > 0 such that
uechT%Emw)mﬁQmwxmﬁ

Ve L2 ((0,1) x R?)
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u(0) = wy, 0<t<T.
(i1)If u is sufficiently small in L*(R?), then T’ = co: the solution is global.
Regularity: (i) If uo € H'(R?), the previous solution satisfies
ueC ([o,T),Hl(JRz)) ne! ([o,T),H—l(JRz))
Vue I'((0,) x R?),  VéeC (lo, 1), 7(R?))
Vi € I*((0,2), (R?))
for every ¢ € [0,T"), p € [2,00) and ¢ € [2,4].
(ii) If furthermore uo € H2(IR?), then
e C([0,T), HX(R*) nC* (0,T), IA(R?))

Ve e C([0,1), HA(R?)).

Continuous dependence: The map u — (u, V@) is continuous from HY(R?)
into C (I, H'(R?)) x C (1, I7(R?)), where I = [0,] and p > 2 in the following
sense. Let u € C (I, H'(R?)), Vo € C (I, I/(R?)) be a solution of (2.20)
and let uo, — u(0) in H}(IR?) as » — oo. Then the solution (Un, r) with
un(0) = uo, exists on I provided n is sufficiently large and (Un, V) = (u, ) in
C (I, H(RY)) x C (I, IP(R?)), p > 2.

To prove these results they start by expressing ¢ in terms of u by inverting
the second equation in (2.20). We will follow this method of inverting the elliptic

operator in section 4.1. Solving for ¢, gives
6o = E(lul), 2.21)

where F, defined in Fourier variables by
_ e

E(f)(&,&) = & +ﬂ€%f(€1,€2), (2.22)

is a bounded operator in I?(IR?) and there exists a constant ¢ = ¢, > 0 so that

I92llzomz) < colfullrerrey 1< p < oo (2.23)
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Then (2.20) becomes a nonlinear, non-local Schrodinger equation
Wt + O Ugg + Uy = —aslul’u — aguB(Jul?), o = +1,

which is given the initial value
u(z,y,0) = uo(z,y).
This is a particular case of the more general form
s + Lu = Fu),

where the operator L is given by

:ZZa]kawﬁwk in R™,

5=1 k=1
and the real symmetric matrix (a;;) is invertible. They then use classical argu-
ments to prove the above assertions.
The e/h system:
In the e/h case the DS system is given by

Tt + Ugs + Uyy + aslul®u + ayud, = 0,

Bz — by, = (Juf*):, (2.24)
U(ZE,y,O) = uo(:c,y),

where # < 0 and ¢ = /—p. Ghidaglia and Saut found that for every uo € H'(IR?)
satisfying

[gl—j—‘ﬂ +max(a3,O)J /R2 luol? dz dy < 1

there exist u and ¢ with
u€ L7 (Ry, H'(RY) N C (Ry, H'(RY))

¢ € L (Ry,Cy(RY)), Ve L™ (Ry,L{ (R?)) 1<q<2



which satisfies u(0) = up and (2.24) in the sense of distributions.
To prove this they first use characteristic coordinates, ¢ = cz — y and n =

¢z + y, and solved for ¢ in
Gzz — c2¢yy = fa

where f € L'(IR?) and ¢ satisfies
lim ¢ = lim ¢ = 0.
é—o00 7}—>00
For ever f € L'(IR?), ¢ = K(f) where the integral operator, K, is given by

K(f)= /R2 k(z,y;z1,91) f(21, y1) dzy dys,

1
k(x>y;xl>yl) = §h(C(£L’l - LL’) + Y- yl)h(c(xl - LL’) + hn — y)

and h is the usual Heaviside function. The DS system now becomes
tuy + Au = —aslul*u — auu (K ((IUIQ) ))

U(:L’,y,O) = Uo(:l?,y). (225)
Since the operator K has no regularizing effects, the same classical arguments

do not apply. Thus, Ghidaglia and Saut find solutions to (2.25) as a limit of

solutions, u®, to a regularised equation
iuf 4 1eA% + A = —as|ut)?ut — aqu’ (K ((|u5]2> ))
T T

ut(z,y,0) = ug(z,y).

Boundary conditions:

In [3], Ablowitz, et. al., investigate the question of the proper boundary con-
dition for applying the method of inverse scattering to the e/h or DSI system and
the h/e or DSII system of equations. They embed the DS system within the KP
evolution equation, maintaining well posedness in time. They then sought physi-

cally acceptable boundary conditions on the DS system when decaying boundary
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conditions are assurmned on the KP equation. They found that in both the DSI
and DSII systems |u| — 0 as 2? + y? — oo. For the DSII system ¢, vanishes at
infinity. However in the DSI system ¢, — 0 either as ¢ — o0 or £ — —o0, but not
both, are necessary to apply the method of inverse scattering. In section 4.2 we
will see that soliton like solutions can be driven by nonzero boundary conditions
on ¢, in the DSI system [14].

In this thesis we will use |u| — 0 and ¢, — 0 as 2 + y? — oo for the h/e
and e/e DS systems when considering solitons in section 4.1 and solutions which
become singular in Chapter 6. In Chapter 5 periodic perturbations of (uniform)

Stokes wave solutions to the h/e and e/e DS systems will be analyzed.

2.3 Invariants of DS System

In this section we show that the solutions to the DS system must satisfy several

conservation laws. In particular, we shall show that

d 2
(—ﬁf— 0, where 1= //}u} dz dy,

and

d 1
EH =0, where H = z// {—allu_TIQ — agluy|* + -2—]u]2 (agfu]Q + a4¢r)} dz dy.

These two quantities should be compared with (1.6) and (1.7) in the NLS case.
We follow the approach used in [15], where conservation laws are derived for a
more general form of the DS system which includes as special cases (1.1).

Consider the system of partial differential equations

Wy + A Ugg + Qolyy + azlultu + agug, = 0, (2.26)
¢rr + ﬂ¢yy = (lu[2)x7 (227)
where u € C, ¢ € R and ay,. .., a4, 8 are real constants. The complex conjugate

of (2.26) is

— duf + oqul, + ooul, + aslulut + oqud, =0, (2.28)
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where u* denotes the complex conjugate of u. To derive the Hamiltonian of the
DS system as a conserved quantity, multiply (2.26) by u} and (2.28) by u; and
add to get

£ * * *
a1 (Ugz U + Ul uy) + az (uyyut + uyyut)

+ aslul? (wul + v uy) + asds (vl + v uy) = 0. (2.29)

Thus

// {al (ueatsy +uz,00) + 02 (“w“? + “Zy“t)
sl () e (uF), Jdedy = 0. @

If either periodic or decaying boundary conditions are assumed on u, then inte-

gration by parts on the first two terms yields

—onfusl? — azluy 2 + Sas (juf)) +asde (uf), b dedy = 0. (231)
2 t

To write the last term as a time derivative, differentiate (2.27) by ¢ and multiply
the result by ¢ to get

PPror + BOdyy: = & <|u|2)zt

($651), + B (8641), — bo6ot — By = [(1ul?), 6] — (Iul?), ¢=.

Now integrate and use the assumption of periodic or decaying boundary condi-

tions to get

[[ 8 (u), dedy = [ [{6260+ 86,04} dzdy
1d
= 5= // {6 +8(9,)*} dedy.  (2.32)
Integration by parts of the right hand side of this equation yields

J[ 6= (1), dedy =35 [ [ (6uut 56,) 6 dady.
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Then the use of (2.27) gives

J[ 6o (), dedy =55 [ [ (1), 6 ey,

and integration by parts gives

[[ 6. (), ddy = 25 [ [ 16 dady.

Therefore, (2.31) becomes

d 1
7 // {-a1luz|2 — agluy |* + iluﬁ (aglulﬁ + a4¢m)} dz dy = 0.

Thus, we see that

H= z// {——aliuzlz — aaluy |t + %!u[z (a3}u|2 + a4¢z)} dz dy, (2.33)

is conserved. Note that if there is no z-dependence, then (2.33) becomes the ‘
Hamiltonian for the NLS equation (1.7). ‘
To see that H is the Hamiltonian for the DS system note that (2.26) and |

(2.28) form a system of equations in the variables v and u*
— 2
Uy =1 (alum + oy, + aslul‘u + a4u¢z) ,

U: = — (Q]U:z + aguzy -+ QBIU]ZU* + a4U*¢z) 5
bz + Bbyy = (lul )z

The Hamiltonian formulation of this system is

ou 6H Our 6H
—_— = —— 2.
ot  Sur’ Ot du (2.34)

where H can be written as

) 1 1
H=— // {aluzu: + cpuyuy, — §a3u2 (u*)2 — -2—a4uu*¢$}

and the variational derivative used on the right hand sides of (2.34) satisfy
H(u + et,u*) — H(u,u" ) _[6H

lim — udz,
€e—0 € 6u
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for all  which are suitably smooth and decay to zero at the boundary. To see

this, first note that if v = ¢,, then

Vgg + BUyy = (IUI |

which has solution

v=[ [ Gl oy =) e,y (v do’dy,

where the Green’s function is given by (see 1, page 255])

Glz,y) = - fln(y +ﬁ:v)
Next note that the variational derivatives of all but the last term in the Hamil-

tonian are derived in the same manner as for the NLS case. Thus, it remains to

be shown that if

J(u,u™) = ~2//uu vdz dy,

then
6J

bu

Let ¢ = u(z,y) be the generalized coordinates and r = u*(z,y) be the generalized

= —21u"v.

momenta and denote ¢’ = ¢(z',y’) and r’ = r(z’,y’). Then

J(q + 6@ T) - J(q> T)

= L [+ ar [ [ 6=y 0 + @ do'df dody
+£ [ [ [ [6e—a'y—9) g7 do'dy' dudy

= / / gr / / Gz — 'y —y') [§7),., dz'dy’ dz dy
“Z'//@"//G(fv — 2"y —y) g7 ]y dz' dy dz dy

—i / / €Gr / / Glz — ',y — ) [§7),, d2’ dy’ dzdy,

where we have multiplied out the terms in the first integral and then canceled

like terms. Now let € — 0 to get

.1 ~
lel_Er&Z(J(q+eq,r) - J(q,r))
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= —i//qr//G(fv =2,y —y)§" )y da' dy’ dzdy
— / / Gro dz dy

= - / / 7., / / Gz — 2,y — y)grdz dy dz’ dy’
—z'//qrvda:dy, (2.35)

where we have changed the order of integration and used the symmetry of G.

But
//G(fv’ — 2,y —y)grdzdy

is a function of 2’ and y’. Define this function to be w z',y’). Then w satisfies
y

So, integration by parts twice in (2.35) gives
! .
ll_r,rg;(J(q +egr) — Jgr))

= —z'//[(j'r’] wh . de' dy' — z'//(jrv dz dy ,

where we have used the notation w’ = w(z’,y’). Now note that w,, satisfies the

same equation as v, namely

(Wo2)5q +B(w”)yy = (‘uIQ)m )

T
Since the solution to this equation is unique we may set v = w,, provided we
assume the same boundary conditions on v and w,,. Then the desired result is
attained.

Note that with an additional integration by parts

. 1
H = z// {(aluu + aguy, ) u” + 5 (a3|u|2 + a4¢z) IUIQ} dz dy. (2.36)

For computational purposes (2.36) will be used.
To see that the L*-norm of u is conserved, multiply (2.26) by u* and (2.28)

by u and subtract to get

e (uuy + ung) + o (W g — uul,) + o (u*uyy - uu;y) = 0.
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Thus

d%// ful’ de dy = ’// {on (ul, — wugs) + ag (v, = u*uy,) } de dy.

Integrate by parts and assume either periodic or decaying boundary conditions

on u to arrive at

dilt//luﬁdw dy = (. (2.37)

Note that this is the two dimensional analog of tke NLS case (1.6).
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Chapter 3
Numerical Method

In this chapter a numerical method for solving the DS system is introduced. A
method for approximating the space derivatives is discussed, and then a semi-
discrete system of ordinary differential equations is introduced as an approxi-
mation to the DS system of partial differential equations. This semi-discrete
system is shown to have a conserved Hamiltonian and &-norm which are discrete
approximations to the corresponding continuous quantities derived in Chapter 2.

The split-step integration technique is then introduced as a numerical scheme
for solving the semi-discrete system. The accuracy of the split-step method and
its computational complexity are discussed. The integration technique is then

shown to be a symplectic method.

3.1 Fourier Differentiation

To approximate the DS equations it is necessary to have discrete approximations
to a_agb 58%2 and —883/—22. If u is periodic and sufficiently smooth, then u can be written
as a Fourier series. If u decays to zero at infinity and is sufficiently smooth, then
u can be approximated on a truncated domain by the Fourier series:

u(@,y,t) = Y. S ama(t)ermTtiny (3.1)

m=—00 N=—00

where g, = 2—;’?, vn = 2 and P is either the period of u or chosen sufficiently

large so that the derivatives of u are negligible outside of the region [~1P, 1 P] x
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[—3P, 3P]. Equation (3.1) may be approximated by the finite series

N-1 N-
et = X T am(petr,

provided a,, is negligible for [m| > N or |n| > N. Then the derivatives of u are

given by
N-1 N-1
_ . U T+1
= S et
m=—N n=—-N
N-1 N-1
_ 2 tm THivny
Upe = D D —HpGmn€ T,
m=—N n=~N
and

N-
_ T T+ivny
Uyy = Z Z —v? nQmn € .

m=-N n=-N
Now we can discretize the space variables, « and y. Let Az = Ay = L,
T; = —%P + 9Az and y; = —%P + kAy. If U is a 2N by 2N matrix such that

U;k(t) approximates u(z;, y,t), then the approximation to u, is given by
L.U=F"E,FU,

where L, is a matrix approximation of -;—z, F is the discrete Fourier Transform

1 —2mi(j — D)k
Fie= e enp ()

and F, = diag {(iptr,) : m = —N, ..., N — 1} is the diagonal matrix of eigenvalues

matrix given by

for the differentiation matrix. It is easily verified that F is unitary, i.e., FH =

F~1. An approximation to u, is then given by
L.,U=FYE,,FU, (3.2)

where E,, = E2. A similar approach is used to approximate u,,.
Approximating the space derivatives is therefore accomplished by calculating
the Fourier coefficients U = FU, multiplying the Fourier coefficient matrix by

the diagonal matrix of eigenvalues for the derivative matrix and then applying an
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inverse Fourier Transform matrix. If U is a n by n matrix, then a Fast Fourier
Transform algorithm can be used instead of the standard matrix multiplication
to calculate UJ. This is particularly efficient if n is a power of 2. The number of
multiplications needed in approximating the space derivatives L, L, and Ly, is
O((nlogn)?) multiplications for the Fourier and inverse Fourier Transforms and

n? multiplications for the multiplication by a diagonal matrix.

3.2 Invariants for the Semi-Discrete DS System

In this section we introduce a system of ordinary differential equations in the
variable ¢ which will be used as an approximation to the DS equations. This

semi-discrete DS system will be shown to have conserved quantities analogous to
those found for the DS system (2.36) and (2.37). The DS equation (2.26) can be
written in operator form as
uy = 1Ly + N (u)u,
where
Lu = ontzg + Qattyy,
N(u) = a3lul2 + 4,
with ¢ satisfying:
Pz + By = (‘U‘Q)

Assume a periodic solution of period P and let U and ® be the matrix ap-

T

proximation to the continuous variables v and ¢. That is, discretize the space
domain so that z; = —%P + Az and y;, = —%P + kAy, with 7,k =1,...,n and
Az = Ay = %. We denote the approximation of u(z;,yx) by Uk, and é(z;, yk)
by @ .

The semi-discrete DS equations are the system of ordinary differential equa-
tions

d
—U =iLU +iN(U) o, (3.3)
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where
L~ = Cl]Lxx + ClQLyy, (34)
N(U) s N(l]) = Ct3l/Y o U™ + CZ4L$(D, (35)
Loo® + AL,,® = Lo(U o U), (3.6)

and (U*);x = (Ujx)* is the complex conjugate of U;; (Note: the conjugate trans-
pose of a matrix is denoted by (UH); = U};). Ls, Lsz and Ly, are matrices
which are the discrete approximations of ;—x, 5%22' and % defined in the previous
section. (M o N)jr = M;;Nj is the scalar or Hadamard product of matrices.

We will now show that this discrete system of ODE’s has the conserved quan-

tities
d T T
—H =0, where H= 222 [ (LU)jx + N( )jklUjkIQ]a
dt =1 k=1 2
and
d n n
d—tI = O, where [ = ZE JUjkIQ.

7=1 k=1
These should be compared with the analogous continuous quantities (2.36) and

(2.37). First consider the jk-th equation in (3.3)

d

EZUJ']C =1 [(LU)]k + iV(U)ijjk] ) (37)

and its complex conjugate

d_ . ) )
Ui =i (LU + N(U)U] - (3.8)

Multiply equation (3.7) by LUz and (3.8) by £U;; and subtract to get

) d d
0 = Z{Ct] {(LxxU)Jkdt 7k T(LxxU)JkdtU]kjl

d . , d
+ oy {(LZWU)JIC d ng + (LyyU)jk;zzUjk}

d . d
+ N(U)jk [Ujkd_t ik T jkd—tUjk}}
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or

d d
0 = { [(L(L'(L'U)]kdt ik + (L:m: )]kdt U]k}

d d
T a2 {(LyyU)Jkdt ik (LyyU)Jkdt(/ ]

Feallal g (UF) + oLl (UaF) | 69
Now we can sum equation (3.9) over all j and k to get
R d . . d
Z;k o | (Laal) i Ufie + (LaalU )y — Ui
J=1 k=1

d ., , d
+ a3 {(LQQU)JIC dt Ujk + (LyyU)jkd—tUjk}

Z‘ [1a3 (1U1* )] + au(La®)je (lUJk[ )} (3.10)

We will now show that the terms in the first two square brackets can be

written as a time derivative. Since F~1 = F¥ and
17 = (F'EF)" = FAEFF = - FUEF = - L.,
we can write L., as
Lo = FPE2F = FEE, FFRE,F = —LYL,.
This shows that L., is self adjoint
18 = (-181.)" =171, = L...

If i is any time-dependent column vector, then L., being self adjoint gives

nrod A (da a(d
> (me)zaw, + (L2 W); dtwl] = (dtw )(me)—i—(me) (dtw>

=1
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Similarly
Zn: (Lyyw)l‘d_wT + (Lyy@); d Zwl yy W (3.12)
P dt | T @
Thus, substituting (3.11) and (3.12) into (3.10) gives
d n n
= iz ) ) [al ik(LozU)jk + a2Uf(Lyy U) e + aslngl ]

t] 1 k=1

+Zn:zn:a4 dt lUjk‘Q). (313)

1=1 k=1

To write the second sum in (3.13) as a time derivative, first look at

Zn: Xn: (lUykl ) D) = Zn: Zn: > (}UjkiQ) (Lz)j1®Pu

1=1 k=1 1=1k=11

= Zn: Xn: (Lo(UoU™))y Qe (3.14)

where we have used (L;)jx = (Lz)i;. Now since U o U* is real, (Lo(U o U™))j, =
(Lz(U o U*)),, so (3.6) implies

Zn: (1U3]2) (L®)56 = Zn: Zn: (Laz® + BLyy®) ., P (3.15)

1 k=1 i=1 k=1

M=

.
i

Next, let w be a real column vector and look at

dizn: :L':L'w lwl = [wHLzzw}

4
dt

(in> (Loph) + ij—t (me)}

DN =

1
2
!
2
L
2

_ éw’ (Lm <%w>>l, (3.16)

where we have again used the self adjoint property of L, in the third line. So
1 =1 k= ik

2dt

7= k= 71=1 k=1
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and similarly
(Lyy®),;, Pie =Y. ( W ) D ;. (3.18)
=1 J=1k=1 Jk
Now differentiate (3.15) with respect to ¢ and use (3.17) and (3.18) to get
577 2 2 (103) (Lo®)je = 3 3 ”dt A\ Lwz®] | @ik (3.19)
5=1k=1 j=1k=1 ik ik
Differentiating (3.6) with respect to ¢ and substituting into (3.19) yields
1 d n n n n .
§d—tZZOUJkI) Q)= > |L ‘—UOU) D,
1=1 k=1 1=1 k=1 ik
and using the same procedure as in (3.14), this equation becomes

T2 2 () (00 = 323 & (W) (L) (320

7=1 k=1

N +—

Now (3.13) becomes

So
=33 [U(L0)+ N Wl (3.21)

is conserved by the semi-discrete DS system.
We will now show that (3.21) is the Hamiltonian for the semi-discrete DS

system

d

Ui = (LU )k + astUi|*Ujk + iUk (Lo ®) i,

Lyz® + BLyy® = L (UoU),

and its conjugate

EE ;k = ‘Z.(LU*)jk — a3Z.‘Ujk|2U;k - a4iU;k(Lr(I))jk



36

To see this, first expand H
e [ 1 21 .
H=i) 3. [Ujk(LU)jk + sl (U3)"+ §a4Uijjk(Lx<I>)jk] :
1=1 k=1

and note that ® depends on U and U*. Note also that in this Hamiltonian
formulation U and U* play the roles of the generalized coordinates and generalized

momenta of the system. Then

d oH d 0H
U=y U=
is the Hamiltonian formulation for the equations of motion.
To show that H is the Hamiltonian, differentiation of the terms involving L,®

is the only nontrivial operation; thus we will expand that term and show that

0
oU,,

> (L®),, |U;k]? =2 (L:®),, U,
1,k

In the case 8 = 1 we can write

(Lo®);, = (FIBoF(UoUY))

Ik
n

= (7 e X Pl

=1 m=1
= Zﬂ’gblk Z f.lmlUmku
=1 m=1

where F is the Fourier Transform matrix and B is a constant matrix which we
will formally derive in section 4.1. Thus

Y (Le®) Uik = S FribuFim| Umi 21U

Ik gk lm

Now differentiate with respect to U,

d . x
i 2 (Le®) |Ul? = 32 FiibuFipUy, Uso
Pe gk Li#p
+ Z flzblq}—lmlUmquUJq
l;m#p

2
+Z]:l’;blq]:lp <2qu (U;q) )
1
= QZ‘E’;nblq}—lp[UanPU;q
l,m

= 2(L,9), UL,
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But L;® is real so we get the desired result. In the case § = —1 the linear
transformation which describes L,® is more complicated but the same result
holds.

Finally, we will show that the &-norm of the semi-discrete DS system is con-

served. Multiply (3.7) by U% and (3.8) by U, and add to get

d

, d
U]k +Ujkd

i o= [UR (L) = Uin(LU)3]

Summing over j and k yields

EORNTED AT

7=1 k=1 7=1 k=1

If @ is a column vector and L, is self adjoint as in (3.11), then

i (Wi (Lzo®)i — W) (Lpg®)]] = & Lyp® — (Lop@)¥ @
- = 0.
Stmilarly )
;[wz (Lyy @)1 — wi(Lyy®);] =0
Thus ) -
;z]; 2 Uinl" = 0. (3.22)

3.3 Split-Step Method

In this section we introduce the split-step Fourier method. The split-step method
is shown to be second order accurate in time when applied to the DS system in
the case where § =1 in (3.6). It is shown to be only a first order method in the
case # = —1. We then discuss the computational complexity of the scheme and
show that the split-step method conserves the L-norm of the solution.

Consider the system of differential equations,

d
ZU=(L+NU), (3.23)
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where the linear and nonlinear operators, L and N, operate on the complex vector

valued functions U(t). Discretize the time variable and denote
U™ =Ul(tm),

where U(tp) is a given initial condition, ¢,, = o + m7 and 7 is an increment of
time.

The time integration method that will be considered is a split-step method
which has been discussed in [25] and [26]. See also the discussion and other

references in {28]. The split-step method takes the form of

W™ = exp <—12—7'N(Um)) um,
W™ = exp(rL)W™, (3.24)
U™ = exp <%7‘N(Wm)> wm.

In the case of the semi-discrete DS system the linear and nonlinear terms, L and
N, are given by (3.4) and (3.5). If Fourier differentiation is used for the linear
term then, as in (3.2),

Thus
exp(TLez) = FHexp(TEz)F, (3.25)

where
(eXP(TErr))jk = exp(7(Euz)jk)-

The nonlinear step is calculated as follows

[exp (%TN(U’”)) U] = exp <%7'N(Um)jk> Usjp.

ik
We will discuss in detail the inversion of (3.6) to solve for @ in section 4.1 for
the h/e and e/e cases and in section 4.2 for the e/h case. The above linear step

corresponds to solving %U = LU approximately. In section 4.1 we will show that
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the above nonlinear step corresponds to solving £U = N(U) o U exactly in the
case where § = 1 in (3.6) (the h/e and e/e DS systems). In section 4.2 we show
that the nonlinear step corresponds to solving %U = N(U)oU approximately in
the case 8 = —1 (the e/h DS system).

To calculate the formal order of accuracy of the method when applied to the

DS system, first expand U about t¢,, and use (3.23),

1
Ultm +7) = U(tm)+rUt(tm)+572Utt(tm)+0(73)
1 ,d

= Ultm)+7[L+NU{tR)]U(tn) + 5T % (L+NO)HU](tm)
+0(7%)
— Ultg) 7 L+ M) Ut
1, N
+—2-7' [(L + N(U(t))) Ui(tm) + E(U(tm))U(tm)}
+0(7%)
= Ultg) + 7 L+ MU Ut
1 N
+7 [+ M @+ N + G| )
+0(r%)
Ultm+7) = Ultn)+ 7L+ NUER)U(tm) + %7‘2 {%(U(tm))

FLE 4 LN(U () + (U )L + (U] 0)

+0(7°) (3.26)

Note that, in general, L and N do not commute.
Next expand (3.24)
™m m 1 m m 1 2 m\27rm 3
wm=U +—2—TN(U U +37 NU™?U™ + O(7%).
Thus

— 1
W™ = W4+ rLW™ 4+ 57'2L2Wm + (9(7'3)
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1
- Um 47 [L + —2—N(U’")] o
1
+57° [LZ +LN(U™) + iN(Um)Q] um
+0(7%), (3.27)

which leads to

NPT N
Ut = [I + 5 N(W™) + gTQN(W’")Q] W™+ 0(r%)

- U7 [L + %N(U’") + %N(W’")] U™+ %TQ[LQ +IN(@U™)
%N(U’")Q + N <L + %N(U’")> + %N(W’")Q] o™

+0O(7%). (3.28)

At this point it is necessary to know the form of N(U), namely N(U) = ia3U o
U* +ia4L,.®, where ® is a linear transformation of UoU*. Thus, N(U) is a linear
transformation of the nonlinear quantity UoU*. Let ¥ denote this transformation

matrix, i.e. N(U) =W (U oU*). Then with the use of (3.23) we get

dN

—gt—(U) = \IJ(UtOU*+UOUt*)

= U(LU U+ U o LU +2N(U)U o U*). (3.29)

NW™) = @ (W™o(Wm))
= U(Umo(Um) + %T{LU"L o (Um™Y + U™ o L(U™)"

+2N(U™)U™ o (U™)"} + O(72))
1 dN

= NU™)+ 71— (U™) + O(7?). (3.30)
2 di
Then
Ut = U (L4 N U g[S o 4 1

+LN(U™) + N(U™L + N(U’")Q] U™ +0(r%). (3.31)
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Comparison of (3.26) and (3.31) indicates that U(t, + 7) = U™ + O(73),
or that the scheme is accurate to second order. In the case where g = —1, N(U)
is solved only up to first order in 7, so the method is also first order accurate in

this case. Similarly

W™ = exp (%TL) um,
W™ = exp(rN(W™)W™, (3.32)
U™t = exp (%TL) wm,

is accurate to second order when 8 =1 and first order for f = —1.
Computationally, the scheme (3.24) requires calculating N(U) and exponen-
tiating 2j times per j iterations. If Fourier derivatives are used, then 2j two
dimensional Fast Fourier Transforms (FFT2) per j iterations are also needed for
the linear step. Note that if j > 1 iterations are to be performed between outputs,

then the second method (3.32) reduces to

Wn = exp (L) U™,

W™ = exp (TN(W™) W™,

for k=1,j—1
Wrtk = exp (7L) W1,
W™t = exp (TN(W/"+k)) wntk
end

Urti = exp (%TL) W”"'j‘l,

which requires calculating N(U) and exponentiating j times and 25 4 2 FFT2’s.
This concatenation of the linear terms can cause a significant savings in compu-
tation time in the case of the DS system where, as we will see in the next chapter,
calculating N(U) requires two or more FFT2’s.

This amalgamation is due to McLachlan [20], [21], and was not known to this

author until after the simulations of solitons and dromions had been conducted.
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The simulations in Chapter 4 where conducted using (3.24) and later it was
verified that (3.32) produced the same results in two-thirds the time.
To see that the split-step method conserves the lp-norm of the solution we

proceed as follows. First recall the form of the semi-discrete DS system

d
U =iLU +iN(U) o U,

L=oLge+asly, =F ' (Eo)F, and N(U) = asU oU* + asL,®,

where

Leo® + BLy,® = L (U o U"),

and F is a real, constant matrix. Then the split-step method becomes

1 . m m
& = exp (ETZN(U )jk) i
W™ = Flexp(riE)o FW™
Ujk+l = exp (ETZN(W)jk> e

In the first step, since N(U) is real, we get

il

* 1 . m m 1 : m m\*
Wi (V)" = e (GriN 0] U ese (=rid 0™ (U7)

= Up (Ug)

Thus |[[W™||;, = [|U™|li,- Similarly, U™, = W™, In the second step we
use the fact that F is unitéry and F is real to get ||[W™ ||, = [|W™]|;,. Therefore,
the split-step method conserves the /;-norm of the numerical solution of the semi-
discrete DS system.

In the next section we show that the split-step method is symplectic when

applied to the semi-discrete DS system.
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3.4 Symplectic Transformations

3.4.1 Symplecticness of the Split-Step Method

In this section we will show that the split-step scheme is symplectic when applied
to the DS system. A transformation, W = MV where M is a 2n x 2n matrix 1s

called symplectic if
0 -1
MEJIM =J where J= N

First consider the easier one dimensional case of applying the split-step method
to the NLS equation
U = itge + 21[ul?u, (3.33)

where v = u(z,t) is complex valued. Let v = p + iq, where p = p(z,t) and

q = q(z,t) are real valued, then the NLS can be written as a system

Pt = —Qzz— 2(172 + q2)q

This system has a linear and a nonlinear part. Consider solving the linear part

of this system:

Pt = —Yzz

This can be discretized as
d{f 0 —L(L’(L’ 5
@\, o )7

6:(P1>--->Pn>‘Z1>--->qn)T and Ll’l':fHEz'zf

where

Here L., is the n x n second derivative matrix. Advancing the linear part via the

split-step method becomes

7+ = exp(r D)3, (3.36)
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where
0 _La:a:
D =
Lyg 0
FE 0 0 —En\[(F O
= . (3.37)
0 FH E.: 0 0 F
Thus, the linear transformation matrix for advancing the linear part is

exp(7D) = FEEFR

F 0 0 —FEu
F = and £ =exp .
0 F E.. 0

If A is any real diagonal n x n matrix, then basic calculations give
0 —-A cos(A) —sin(A)
exp =
A 0 sin(A)  cos(A)
0 —A\" 0 -4
exp J exp =J.
A 0 A 0

oA 3.38
eXp(A 0) (3.38)

is symplectic for A any real diagonal n x n matrix. Likewise, a direct calculation

where

and

Thus

gives

FEJF = J.

Similarly FJFH = J.
To show that advancing the linear part in the split-step method is symplectic,
look at

exp(rD)¥ Jexp(D) = (F7EF)" JF7eR
- J (3.39)
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Now consider the nonlinear part of the NLS equation
uy = 2ijul?u.

Let u = p + 19 as before to get

pe = —2(p*+4%)q
@ = 2(p*+¢°)p. (3.40)
Note that
ppt + qg: = 0,

which implies

d
P Hd)=0 o pig=c

where c is independent of ¢. Thus (3.40) becomes

pr = —2cq
g = Z2ep, (3.41)

dz (0 —I)
— =2c v,
dt I 0

where ¥ is as above. Now advancing the nonlinear part becomes

0 —2erl
7 = exp 7.
2¢r] 0

In this case the transformation matrix

0 —2crl
exp
el | 0

is of the form in (3.38) and is therefore symplectic.

which can be discretized as

Since the composition of symplectic maps is symplectic, the split-step scheme

is a symplectic integrator when applied to the one dimensional NLS equations.
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To apply the split-step method to the DS system, consider the linear and

nonlinear parts

Uy = 100 Ugy T 10Uy,

and

u; = tasjul*u + tagpru

oo + Bdyy = ([ul?)e- (3.42)

Advancing the linear part of the DS system and showing that the map which
advances the linear part is symplectic follows from two dimensional arguments
analogous to the above one dimensional arguments. In the nonlinear part write
v = p + iq where p and ¢ are real functions of z, y and ¢. Then the nonlinear

part can be written as

po = —(as(p® + ")+ uds) q
(a3(p2 +¢*) + a4¢z) p. (3.43)

qt

Multiply the first equation by p and the second by ¢ and add to get

d
3;(132 +¢) =0, or p’+¢ =c,

where ¢ is independent of ¢. Since |u|? is independent of ¢, the second equation in
(3.42) implies that ¢, is independent of ¢ provided that the boundary conditions
on ¢ are time independent. In the h/e and e/e DS systems we assume that the

boundary conditions are independent of ¢, so (3.43) becomes

pp = —cq
Q@ = cp, (3.44)

where € is independent of time. Thus, the map which advances the nonlinear part

of the DS system and its symplecticness follows in a similar manner to the one

dimensional NLS.
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In the e/h DS system the boundary conditions can depend on time. It is
not clear how this effects the symplecticness of the split-step method. However,
in section 4.2 we will see that the split-step method accurately simulates known

dromion solutions of the e/h DS system.

3.4.2 Why Use a Symplectic Integrator?

Why is it preferable to use a symplectic integration method over a non-symplectic
one? To answer this question, consider the one dimensional NLS equation instead
of the more computationally complicated DS system. The NLS equation (3.33)

can be approximated by the system of ordinary differential equations

dituj- =1 ((LM'EZ)]- + 2|uj|2u]-) , (3.45)
where the computational domain, [—%P, %P], is discretized by Az = %, T; =
—2P + jAz and u;(t) & u(z;,t) the approximation of the solution to the NLS
equation, which is assumed to be periodic. This is basically the same as (1.3)
except that now we are using Fourier transforms rather than finite differences to
approximate the derivatives. With this discretization we showed that a standard
Runge-Kutta method does not do a good job of simulating recurrence. We now
give an example of how the split-step method does simulate recurrence with this
discretization.

The software package MATLAB was used to solve the system (3.45) for an ex-
ample corresponding to the recurrence phenomenon discussed in section 1.2 with
two unstable modes in the region (1.10). The parameters used were P = 4\/577,
N =32, 7 =0.01 and an initial condition u(z,0) = 0.5(1 + 0.05 cos(27rz/P)).

Both the second order split-step method and MATLAB’S ode23 routine were
used to approximate the solution to the NLS equations with the above parameters.
MATLAB’S ode23 routine uses second and third order Runge-Kutta integrators

with an adaptive step-size to solve initial value problems. Figure 7 shows the
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numerical solutions generated by the symplectic split-step method and the non-
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symplectic Runge-Kutta method. Figure 8 shows contour plots of Figure 7. Note
that the Runge-Kutta method has lost the symmetry of the solution by ¢ = 80.
The symplectic split-step method, by contrast, maintained the recurrent behavior
and the symmetry of the solution throughout the simulation.

In this case the split-step method proved superior to the Runge-Kutta method
because it preserves the symplectic structure of the solution. The split-step
method does this by solving the linear and nonlinear parts of the NLS sepa-
rately and in the case of the NLS, the nonlinear part is solved exactly. The
Runge-Kutta method is not designed to solve the nonlinear part accurately with
this discretization and thus it fails to simulate the nonlinear effects as well as the
split-step method. In this example, it appears that it is not necessary to have an
integrable discretization of the NLS to avoid numerical chaos. The non-integrable
discretization of the NLS does exhibit the nonlinear phenomenon of recurrence in
a long-time integration provided that the numerical method applied is symplectic.
For this reason, we will use the split-step method to integrate the semi-discrete

DS system (3.3)—(3.6).
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Chapter 4

Solitons

In this chapter soliton and soliton-like solutions of the DS system are discussed.
We begin by showing how the split-step method can be applied to the DSII
system. The DSII system is first split into linear and nonlinear parts. The
inversion of the second equation in the DSII system is then formally derived
and the split-step method is shown to be equivalent to solving a linear and a
nonlinear problem separately. Finally the method is used to simulate a rational
soliton solution of the DSII system.

Next, the DSI system is studied. The DSI system is transformed into charac-
teristic coordinates so that the second equation in the DSI system can be inverted.
The solution to the nonlinear part of the DSI system is then discussed and ex-
amples of dromion simulations are presented.

These simulations represent what we believe to be the first numerically gen-

erated soliton and dromion solutions to the DS system and will appear in [29].

4.1 DSII System

4.1.1 Applying the Split-Step Method

Recall the DSII equations (1.1), with ¢ = —1,

u = (L4 N(u))u,
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Lu = %(u” — Uyy) s N(u) = (a]ul2 r) ’

and ¢ satisfies
Gos + Sy = 20 ([uf?) . (4.1)

In order to use the split-step method to calculate an approximation to the solution
of the DSII equation, we must solve for ¢, at each time step. Thus, it is necessary
to invert the operator % + %.

In this case a spectral method can be used to calculate ¢ up to a constant.

Write ¢ as
[e o]
¢($,y,t)= Z Z ¢k u1r+uky)
j=—00 k=—o00
where p; = 277;1, v = % and = and y are restricted to intervals of length P. If
|u|? is also written as a Fourier expansion,

= 3% aalnet)

j=—00 k=—c0

then (4.1) becomes

Z Z ( _Vk)¢ke (njx+vgy) — i i iﬂjajkei(wr-*-yky).

j=—00 k=—0c0 j=—00 k=—00
Thus, for j and k such that p? + v # 0, @k is given by

¢A‘k — — U k-
J J
+

This determines ¢ up to an additive constant. Thus,

[e9) o0

:C y, Z Z bgk e 1T +vky)

Jj=—00 k=—oc0

where
0, ifj=0and k=0
bjk = 2 )
Tﬁiu_,i“j’“ , otherwise.
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Now applying the split-step method to the DSII system corresponds to solving

. 1
iU + §(uyy — Ugg) = 0, (4.2)
and
iy + alulfu —ug, = 0
¢a:a: + ¢yy — 2« (lUP)r = 0, (43)

the linear and nonlinear parts of the DSII system. Thus, (3.24) corresponds to
time integrations of (4.3) over a half time step, then integration of (4.2) over a
full time step and finally, integration of (4.3) over a half time step. To see this,
first consider (4.2). Since we assume that v — 0 and ¢ — 0 as 2% + y? — oo,
the computational domain can be restricted to (z,y) € [-3P, 1P] x [-1P, 1P],
where P is sufficiently large so that u, ¢ and their derivatives may be accurately

approximated by finite Fourier series. Let

Ujk = Z Z ﬁmnei(uml‘]'i'l/nyk)’ (44)
where Uj, = u(z;, yi),
1 1 P
:Cj:—-EP +]AZE, yk—*§P+kAy7 Aw—-Ay_Q_N——’
and
27

Pm = mAp, v, =nlAv, Ap=Av= B

The indices m,n, j, k range over —N to N — 1. (Note that it is possible to use a
rectangular rather than a square grid). The equivalent equation in Fourier space
to (4.2) is then

~ 1
Umn a
t * 2

&'&

7
which has solution

~ 1 . ~
Drn(ts + 7) = exp <§i (12, = 2) At> Drn(t1). (4.5)
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Thus, the linear part of the split-step method is computed by transforming Uir(tr)
into Fourier space thereby giving the values of Upen in (4.4), then advancing the
solution in Fourier space via (4.5) and finally, the solution Ujx(¢; + 7) is given by
an inverse Fourier transform.

To solve the nonlinear problem, the second equation in (4.3) is solved for
¢z. To solve the first equation in (4.3), we use a method which is similar to the
approach used in [24] for finding the strong coupling limit of the DS equations.
Let u = rexp(:0), where r and 6 are real functions of z, y and ¢. Then (4.3)
yields

r, =0, and 0, =ar?—¢,.

The first equation implies that r = ro(z,y) is independent of time. The sec-
ond equation in (4.3) now becomes ¢,; + ¢,, — 2a(r2); = 0, so ¢ is also time-
independent. Thus,

0= (ard — ¢ )t + 0,

and the solution of (4.3) over one time-step becomes
u(z,y,ti+7) = u(z,y,t) exp (i (alu(z,y, )] — ¢o(z,y,)) 7).
Notice that in the above, (4.3) is solved exactly and (4.2) is solved up to the

number of Fourier modes included.

4.1.2 Numerical Test for DSII

As a test of the split-step method applied to the DSII system, consider the rational

one-soliton solutions derived in [7] and also reproduced in [1]

2vexp{A(z + ty) — X (z —iy) — (A2 + (A*)2)t}
@+ ig) i GNP+ o]

where A, p and v are arbitrary (complex) constants. Setting these constants all

u(z,y,t) =

?

to 1 gives a solution to the DSII system of

_ 2exp(2i(y — t))
wz,9,0)= 77 (z+ 1)+ (y—20)2 (46)




t=-3.5 t=0 t=3.5

Figure 9. Numerical simulation of the rational 1-soliton of the DSII system, as computed by

the split-step method. Here N = 64, Az = Ay = 0.5, z,y € [-16,16], 7 = 0.01.

Using t = —3.5in (4.6) as an initial condition for the split step method, Figure 9
shows |u|, as a function of  and y, which is a single hump traveling with speed
2 along the line ¢ = —1. For this simulation the computational domain was
[—16,16] x [-16,16], 64 grid points were used in both the = and y directions, i.e.,
Az = Ay = 0.5, and the time step was 7 = 0.01. Even on this coarse grid, the
computed solution simulated the true solution to an acceptable degree. Figure 10
shows contour maps of the simulated and the true solution. Note that the speed
of the soliton is also approximated accurately.

Rational solitons of this form are notoriously hard to simulate numerically,
even in the case of one space dimension. As an example, such solitons arise in the
Benjamin-Ono equation; see [18]. The difficulty in simulating rational solitons
arises because of the slow rate of decay as |z| — co. A much larger computational
domain is required than in the case of exponentially decaying soliton solutions.
This causes a lack of resolution. However, the scheme used here did not have any

difficulty in simulating the true solution accurately.
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Figure 10. Comparison of the theoretical and numerical solutions of the rational soliton. Level

curves of |u| are shown.

As another check on the split-step scheme, the Hamiltonian (3.21) and the -
norm for the numerical solution were calculated. The split-step scheme preserved
the L-norm exactly (up to the accuracy of the computer). Thus, for the numerical
simulation of this rational soliton, (3.22) is satisfied. The split-step scheme does
not conserve the Hamiltonian exactly, but in this simulation (3.21) was conserved

to at least six significant digits over ¢t € [—3.5, 3.5].

4.2 DS 1 System

4.2.1 Applying the Split-Step Method

Following the convention in [14] and [23], and changing the notation of the space

variables for later convenience, the DS I system is given by

. 1
tuy + 5 (U + uee) + a]u]QU —uge =0 (4.7)
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bec — dm — 20 (Jul”), =0 (48)
where it is assumed that u — 0 as {2 + 7% — oo and a = 1. To apply the split-
step method to this system, the second operator (4.8) must first be inverted. To
this end, change the space variables to characteristic coordinates: = £ + 7 and

y = £ —1. So (4.7) becomes
ity + g + gy +u (aful? = ¢ — 6,) =0, (4.9)
and (4.8) becomes
4z, — 20 (W)r ~ 20 (]u]2)y = 0.

This in turn implies that

Y

1 2 1 2
b =50 [ (1uP), dy+ 5alul® + u(e, —00,0),

-0
and

¢y = é—a_/ (lu]Q)y dz + %a]ul2 + ¢y (—00,y,1),

o

where the last term on the right of each equation represents boundary conditions

which must be specified. Now (4.9) can be written in the form

W + Ugg + Uyy — uV =0,

where
Vi=ge [ (), dut go [ (), de+ e —o0.1) 4 6, 00,00,

The DS I system can therefore be written in the form
uy = (L + N(uw))u,

where

Lu =g +uy, and N(u)=V.
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In this case the nonlinear problem, 1u; — uV = 0, can be solved as follows: let

u = rexp(tf) with r and 0 real to get

1
r=ro(z,y), 0= —/th+90.
0

Over one time step, § may be approximated by

L4
9(t1+]) = —/‘/dt-{-gO

12}

= =V(t)T + O(7?) + b,.

So
’LL(LL’, Y, tl + T) = ’LL(LL’, Y, tl) exp (—ZV(:L’, Y, tl)T) )

approximately.

To calculate V, the integrals

T Y

/(|u|2)y dz and /(lu[Q)rdy

—Co0 — 00
must be approximated. Since it is assumed that u — 0 as 22 + y? — oo, a
spectral method may be used to approximate these integrals. That is, consider
[—2P,1P] x [-LP LP] to be an approximation to IR x R, where P is chosen so
that u and its derivatives are sufficiently small for |z > P and |y| > 1P so that

u can be approximated by a finite Fourier series

N-1 N-1
z mT 1V
(@y,1) = D D ama(t)e e,
m=—N n=—N
where p,, = 2%y = ¥ and N is a positive integer. Then
s z p

—
—__
s
s
S’
<
=W
8
[
!
th\:i

[ N-1 N-1 ‘ ‘
< Z Z z'z/namn(t)e’“'"re“’"y) dz

=-Nn=-N

-1 T3

2 Z iVnamne’”"y/e’“mrd:v

m#FOn=—N P
F3

Il
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P N-1
+(wj+—‘) M 1Wpag €Y
2 n_—l_—:N
N-1
= 2 X (ijlam ety {e“‘mzi e 2“’”2})
m#0 n=— Hm
P N-1 '
+(wj+§) Z Wnag e . (4.10)
n=—N
Similarly
Vg N
(,ulz) dy = Z Z (———amnewmz [eil’nyk _ e—iun?})
_£ ‘ m=—N n#0
2
P N-1 '
Tt g) D imamocn. (4.11)
m=—N

With the boundary conditions, ¢,(z,—o0,t) and é,(—o0,y,t), now assumed to
be given at y = —%P and z = —%P respectively, V' can be calculated with three
two-dimensional Fast Fourier Transforms (FFT2’s) and two one-dimensional Fast

Fourier Transforms (FFT1’s).

4.2.2 Simulation of Dromions

The initial-boundary value problem for the DSI system can be solved using the
method of inverse scattering. In [14] Fokas and Santini show that in the case of
non-zero boundary conditions the DSI system can have solutions which are local-
ized, exponential decaying structures which travel in the plane. These dromion
solutions are given by the following algebraic systems, as given in [14] and [23].
Let u4(y,t) be given by
9 L
ur(y,t) = _2_8; ; [Z exp [—/\’;(y + i/\;t)] Yi(y,t), (4.12)

where the Y;’s solve the system

L
Z CY)kYe = ljexp[—Aj(y —iAt)],
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and the matrix CV is given by

Ll
vy, — J'k

exp [—=(A; + AL) (¥ — i(A; — A1)

Similarly uy(z,t) is given by

8 M
uz(x,1) = —Q—Zm eXp[ (T + st )} Xj(z,1),

M
Z C™) Xi = mjexp [—pi(z — ipj1)] |

(€)= Z;m;* expl=(u; +pi) (& =iy —p)t)).  (413)

In (4.12) through (4.13) above l;, m;, A;, ; € C and Re();), Re(y;) € RY. Then

the solution to the DSI system is given by
M L
ZL’ y7 QZZX] ZL’ t Y;c y) )ij(il,’,y,t),
71=1 k=1
where Z;; satisfies

M
Zik — € ApZui = pir,

r=1

and Aji is given by
-1 =1 * T
A=p(I+C)[I+C) ],

where the superscript T' denotes the transpose of a matrix, and the matrix p
depends on the initial data. The above solution is called a (M, L)-dromion.
Using a combination of the software packages Mathematica and MATLAB, this
author was able to solve the above system. The split-step method was applied to
the DSI system using initial and boundary conditions corresponding to A, = 2—21,
A2 =4—-050, 5L =244, 1,=142{, py=1-1.5, po =3—-0.5, m =1+1,
m2 =243, pu1 =141, pr2 = p21 = 0 and py; = 2 + 37 to simulate the solution
represented in Figures 4-6 in [14]. With a grid size of 256 in both the z and y
directions, a computational domain of [—20,20] x [-20,20] and 7 = 0.01, Figure
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time =-2.5 time = -1

time=0 time =1

time=1.5 time=25

Figure 11. Numerical simulation of a (2,2)-dromion solution of the DSI system with symmetric

pfort=-~25...,25.
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11 shows two dromions passing through one another. As noted in [14], when

p12 = pa there is no exchange of energy in the collision.

In Figure 12 contour plots of the true and simulated solutions corresponding

to times ¢ = 0 and ¢ = 2.5 of Figure 11 are shown. From these contour plots it is

apparent that the split-step method accurately simulated the overall shape and

speed of these dromions.

Theoretical Solution (t=0)
5

-5
-5 0 5

Theoretical Solution (t=2.5)
15

10

v

Numerical Solution (t=0)
5

-5
-5 0 5

Numerical Solution (t=2.5)
15

10

0

Figure 12. Comparison of the theoretical and numerical solutions of a (2,2)-dromion solution

of the DSI system with symmetric p. Level curves of |u| are shown.
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As a more stringent test of the split-step method, a (2,2)-dromion with non-
symmetric p was also simulated. With p1o = 3 + 2, po; = 4 + ¢ and the other
constants the same as above, the split-step method was applied with a grid of 256
points in the z and y directions, a computational domain of [—22, 22] x [-22, 22]
and 7 = 0.01. Figures 13 through 15 show the result of the simulation. The
theoretical solution was used to generate the initial condition for the simulation

which is shown in Figure 13.

time=-3

4

Figure 13. Numerical simulation of a (2,2)-dromion with non-symmetric p. A, = 2 — 2,
Ao =4-054, 11 =2+4,ls =142, py =1—154, up =3—=05¢, my =144, mg =2+ 34,
pr1 =141, p12 =342 pa1 =441, pga=2+3i, at t = -3.
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time=-1

time=0

Figure 14. Continuation of Figure 13. t = —1 and ¢ = 0.
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time=3

44

Figure 15. Continuation of Figure 14. ¢ = 3.

time=3

4

Figure 16. Numerical solution of (2,2)-dromion with N = 512 and 7 = 0.0025, at t = 3.
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Figures 13-15 correspond to |u| which is initially composed of four exponen-
tially decaying humps, localized in the third quadrant of the (z,y) plane. They
move towards the origin, where they collide at approximately ¢t = 0. After the
collision four localized coherent structures continue to move into the first quad-
rant. Note that during the collision energy was exchanged. This differs from the
interaction of solitons which do not exchange energy.

As a comparison to the theoretical solution, Figure 17 shows level curves of |u|
for the theoretical and numerical solutions. Again the overall shape and speed of
the localized structures are accurately simulated using the split-step method with
a relatively course grid and large time step. The deviation from the theoretical

solution which can be seen as low amplitude bands in Figure 15 can be reduced by

Theoretical Solution (t=0) Numerical Solution (1=0)
5 5

0 0 (@1&

5 0 5 5 0 5
Theoretical Solution (t=3) Numerical Solution (1=3)
15 15
10 10
5 5
® ®
00 5 10 15 00 5 10 15

Figure 17. Comparison of the theoretical and numerical solutions of a (2,2)-dromion with

non-symmetric p. Level curves of |u| are shown.
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choosing the computational parameters so that they more accurately portray the
physical situation. With a finer grid of 512 points in both the z and y directions
on a computational domain of [—23,23] x [—23,23] and a step size of 7 = 0.0025

this “noise” is reduced as seen in Figure 16.
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Chapter 5
Modulational Instability

In this chapter the modulational stability of the Stokes wave profile (2.19) is
analyzed through the stability of position independent solutions of the DS system.
This stability analysis is an extension to two dimensions of the analysis carried
out on the NLS equation in Chapter 1. In [8] it is shown that energy is transferred
from the primary mode of a Stokes wave to the side bands and that the rate of
growth in the side bands can increase exponentially. In [30] the instability of
the uniform Stokes wave is studied for the NLS equation. In this setting the
instability leads to an exponential growth in the unstable modes for a period of
time and then a return to a nearly uniform state. In the NLS equations this
process of growth and decay recurs periodically in time. When using the NLS
to analyze modulational instability in the Stokes wave, the modulations are in
one space direction only. In nature, modulation in any direction is possible. In
[9] and [19] side-band disturbances which propagate obliquely to the primary
Stokes waves were studied. However, these studies did not make use of the
DS system. In this chapter the DS equations are considered as extensions of
the one dimensional NLS equation and a linear stability analysis of the uniform
solution is studied and compared to that of the NLS. Instability regions are given
and simulations are conducted to show that the split-step method accurately
simulates these analytic instabilities. Theoretical and simulated growth rates for

the instabilities are compared.
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5.1 Linear Stability Analysis

The Davey-Stewartson (DS) equations are given by
WUy + QUgy + oty + azfulPu 4+ aguv = 0,

Uz + /vay = (Iul2)rr7 (51)

where u = u(z,y,t) € C,v = ¢.(z,y,t) € R, g > 0 and 8 > 0. Then ¢ =
a exp(iaslal’t), & = 0 is a position independent solution of (5.1). To analyze
the modular stability of the Stokes wave, we must analyze the stability of this
solution of the DS system. To that end, let w = (1 + ¢)&, v = § be a small
perturbation of the above solution where ¢ = ¢(z,y,t) € C, § = §(z,y,t) € R,
le(z,y,0)] < 1 and |6(z,y,0)] < 1. Substituting this perturbed solution into

(5.1) and keeping only first order terms yields:
1€ + Q1Ezz + @28y, + agla[2(6 +e )t ab=0,

bzz + By = lal*(eza + €7,); (5.2)

where €* is the complex conjugate of «.
If ¢ and ¢ are assumed to be periodic in the space variables, with period P, in
the z-direction and period P, in the y-direction, then ¢ and § can be expanded

formally into Fourier Series:

o0 o0

(z,0,8) = Y. Y Emnalt)exp(i(umT + vay))

m=-—00 N=—00

(z,y,1) Z 2 5m n(t) exp(i(tmz + vny))
. 2rm B 2mn
/’Lm - Pr ’ Up = Py .

Substituting into (5.2) yields:

o0
2 =~ 22
Z Z ( my — Q1 Emn — a2Vn€m,n> Em,n

M=Z—00 N=—00

+a3|a| (gm,nEm,n + g:n’nE—m,—n) + a4gm,nEm,n = 07
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i f: (—:u?ngm,n - ﬂl/z;gm,n) Em,n =

M=—00 N=~—00

Z Z 'al2 (_'ugngm,n - ﬂ?n?k_m,_n) Em,n, (5.3)

m=—0C N=—00
where E., , = exp(é(#tm+v5y)) and we note that u2_ = p2 . Since the functions
E,. . form an orthogonal set we have

. d

~ 2 2 24 2/~ P z
17 Emin T Q1 Emn — CoVyEmp + @3lal (Emn 4+ €L, L) + Cubmn = 0,

o 3

- ﬂ72n6m,n - 5V35m,n = ,a'2('—ﬂ72n§m,n - iufna—m,—n)' (5'4)

From (5.4) we find that

2,2
- %(@nm +E&n)s m? +n? £ 0.
Then equation (5.1) can be written in the form:
d - . 2 2 2 a4‘a,2:u3n ~
dtsm,n =1 (_al;um - Qr, + a3’a‘ + 'uzn T ,Bl/% Em,n
: 2 a4la’2iu12'n o
— o)
T 5.5
or ~ ~
d [ ) 2 G S P+n?#£0 (5.6)
d\e, ) T \e. . mrmr |

where the matrix G,, , is given by
Bm,n - Am,n Bm,n
Gm,n = i ?
. —Bm,n Am,n - Bm,n

a4ia|2ﬂfn

2 2 2
Am,n = iy, + QoVy, Bm,n = a3lal + 2 2"
fm + BV

The eigenvalues of G, ,, are given by:

Afn,n = Am,n(QBm,n - Am,n)

or
2 O‘l:u;zn + O‘2V3L 91,12 2 2.2
)‘m,n = /12 + ﬁl/2 ["”a' (a3 + a4)lum + 2a3ﬁ]a' Uy

~(0apul, + aovy)(ul, + Bv2)]. (5.8)
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Eq. Type | a3 | a4 | fig.
efe 11|18
hfe |—1(1 |19
efe 1 | =1]20
hjfe |—1]|-1]21

Table 1. Coeflicients of DS equations for instability plots.

When )2 | is positive, we can expect an eigenvalue of G,,, with positive real
part and hence exponential growth, at least locally in &, ,. Note that if the

perturbation is only dependent on y then

A2 =1} (2a3|a|2 — 1/2) :

n n

where we have set a; = 1. This gives the same region of instability found in
the NLS equation and by Benjamin and Feir in [8] (recall equation (1.10)) when
az = 2. ‘

Figures 18-21 show contour plots of A\* as a function of x and v, with A?

defined by

2 2
o e+ agv

N =
l‘Lz +,81/2

(2laf*(as + aa)p® + 205Blalv® — (rp® + )4 + B1%)) .

In Figures 18-21 a; = 1, az = 2, § = 1 and the other coefficients are given
in Table 1, where “Eq. Type” refers to the equation type, i.e., e/e refers to
an elliptic/elliptic type equation, and h/e refers to an hyperbolic/elliptic type
equation. In Figures 19 and 21 the instability regions are of a shape found in [19,
Figure 4.3].

In Figures 18-21 the shaded region indicates values of A where exponential
growth can occur. In Figure 18, darker regions indicate higher values of A and

hence faster growth rates for modes in the darker regions.



72

Contour Piot of Lambda

Figure 18. Instability region for elliptic/elliptic.

Contour Piot of Lambda

Figure 19. Instability region for hyperbolic/elliptic.
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Contour Piot of Lambda
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Figure 20. Instability region for elliptic/elliptic.

Contour Plot of Lambda

Figure 21. Instability region for hyperbolic/elliptic.



5.2 Numerical Results

5.2.1 The DSII System

We extend the example presented in Chapter 1, Figure 5, to two dimensions. We

look at the DSII equations,
Uy + Uyy — Uge + 2|u)*u + uv = 0,

Voz + Vyy = ([u]?) sz, (5.9)
where v = ¢,. Let P = /2r and

u(z,y,0) = 1 4 0.1 cos(+v/2y) + 0.0001 cos (\/i(:c + y)) : (5.10)

This system is essentially the same as that stated in Chapter 1 (1.11), with the
roles of z and y interchanged and the introduction of a small z-dependence in
the initial condition. The corresponding instability region is given by Figure 22
where the region of instability for these parameters corresponds to Figure 21. The
solid line from (0, —2) to (0,2) corresponds to the instability region for the NLS
equation, the circles indicate where the Fourier modes (y;, v;) are located for this
value of P, the circled *’s correspond to the modes associated with cos(\/iy) and
the circled +’s correspond to the modes associated with cos (\/ﬁ(tc + y)) The
evolution of the Fourier modes, @0, %10 and Uy 1, are shown in Figure 23 where
o0 1s indicated by the solid line, @; o by the dashed line and U1, by the dotted
line.

Figures 25-26 are surface plots of the magnitude of the simulated solution to
(5.9) with a grid size of 128 by 128 and 7 = .00025, using the split-step method.
Figures 27-28 show the magnitude of the Fourier Transform of the simulated
solution. In this case the recurrence phenomenon observed in Figure 6 of the
NLS equations is short lived. Energy is transferred to the higher modes along the
diagonals of the stability region. This causes a solution which is highly irregular

as can be seen in the last frame of Figure 26.
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It should be pointed out that although the solution becomes irregular the split-
step method conserved the h-norm to machine accuracy and the Hamiltonian to
five significant digits (see Figure 24).

The question arises whether the behavior observed in Figure 23, t > 5, is
chaos, or just complicated behavior. If it is chaos, is it present in the continuous
problem, or is it a numerical artifact? It is unlikely that the continuous equations
are chaotic, since the DSII system is known to be integrable, at least in the infinite
domain case and this is very likely also true in the periodic case. To check whether
the irregular behavior might be numerical chaos, as in the discretization (1.3) in

the introductory chapter, we investigated whether the evolution of the Fourier

Contour Plot of Lambda

Figure 22. Instability region and Fourier mode locations. Level curves at A2 = —10 and 0 are

shown.
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DS Fourier Modes

©
3

©
[

Magnitude of Fourier Modes
(=] o (=2
W »

o
[N
T

©
=

Figure 23. Evolution of the Fourier modes in the DSII system. #p,0: solid line, @y o: dashed

line and @; ;: dotted line.

Hamiitonian

1.0202 T — T T T T T T
1.0201 |- b

1.02} ]
1.0199f B
1.0198 1 5 L - L | ) L 1
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timet

Figure 24. Hamiltonian of simulation.
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modes was affected by the mesh size. Simulations with N = 64, 128 and 256 all
resulted in exactly the same transfer of energy to the modes on the diagonal of
the instability region and hence the same irregular behavior.

To investigate whether the solution was indeed chaotic we tested for sensitiv-

ity to the initial conditions. We used the following perturbations to the initial

condition (5.10):
u(z,y,0) =1+ 0.10001 Cos(ﬁy) 4 0.0001 cos (\/5(:1: + y)) ,

u(z,y,0) =1+0.1 cos(\/ﬁy) +0.0001 cos (\/5(:1: + y)) +0.0001 cos (2\/5(;,; + y)) ,
u(2,y,0) = 1+ (0.1 +0.000014) cos(v/2y) + 0.0001 cos (V2(z +y))

and
u(z,y,0) =1+0.1 cos(\/iy) + 0.0001 cos (\/5(:1: + y)) + 0.00001i cos(v/2z).

None of these initial conditions produced any significant changes from Figure
23. Thus, we conjecture that the behavior observed in Figure 23 is not chaos,
but complicated behavior. Computer resources precluded us from doing more

extensive tests involving a finer grid over a longer period of time.
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t=3.5

1=45
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l 65
//I Ill 0 "I,"l;
I[ 'l 1"03;'-
l/

t=5.5

/"\ \, “‘""/}'\ ’ "“
! o.‘g%\“‘vv;::‘! d\“{'f‘\"dﬁ
02 \?{’;“" 9!&\\]/ \:2“"/ \"'

Figure 26. Continuation of Figure 25. Time t = 3.0-5.5.
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t=0 t=0.5

t=2.0 t=2.5

Figure 27. Magnitude of Fourier modes for numerical simulation. Time t = 0-2.5.



t=3.0 t=3.5

t=4.0 t=4.5

t=5.0 t=5.5

Figure 28. Continuation of Figure 27. Time ¢t = 3.0-5.5.
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To verify at least the onset of the instability, we compare the initial growth
rate of the unstable mode in the simulation corresponding to Figure 23 with the
rate predicted by the linear stability analysis. From equation (5.7) of the linear
stability analysis, if P = /2x, then v; = /2 and

AO,I = 2, and BO,] = 2.

0 2
G(),] =1 y
-2 0

and equation (5.6) then implies that

d _ .
d_t€0’1 - 22601_1
d _, o~
8?601_1 — _2260,1' (5'11)
Solving for &y, gives,
gO,l - C] 62t + 026_%. (512)

With an initial condition of u(z,y,0) = 140.1 cos(v/2y)+0.0001 cos (\/§(w + y)),
£0,1(0) = 0.05 and & _,(0) = 0.05, so Cy = C5 = 0.025 + 0.025:.

Figure 29 shows a comparison of the growth rate of g, of the numerical
simulation with the growth rate predicted from the linear stability analysis. The
circles correspond to equation (5.12) at time intervals of 0.1 and the solid line is
the evolution of g . ,

As can be seen in Figure 29 the split-step method accurately simulates the
initial rate of growth predicted by the linear stability analysis. After about ¢ = 1
the assumption of |¢] < 1 is no longer valid and the nonlinear properties of the
DS system, such as conservation laws, determine the long-time behavior of the

solution.
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Initial Growth Rate

1 —T T =T - —T T T
0.9f .
O
0.8 .
0.7} © 4

Figure 29. Growth rate of U,;. tg,1: solid line, Cy exp(2t) + C exp(—2t): circles.

5.2.2 The Other Cases of the DS System

In the previous sections the h/e case of the DS system with ay = 1 was used as
an extension to the NLS equation. The h/e case of the DS system with a4y = —1
has a similar instability region and the behavior of both systems was found to
be similar as well. In the case of the e/e DS systems, the instability regions are
bounded ellipses and the behavior of the numerical solution differs from the h/e
cases dramatically.

As an example consider the e/e case
. 2 _
Wy + Ugg + Uyy + 2|ul“u + ug, =0

¢rr + ¢yy = (]‘”2)

with the initial condition u(z,y,0) = .85 + .1 cos(wy/2) + .0001 cos(w(z + ¥)/2)
where P = 4, N = 128 and 7 = .00025. In this case the region of instability
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given by Figure 30 has energy input into the two unstable modes indicated by
the circled x’s. The evolution of the three Fourier modes which were initially
nonzero is shown in Figure 31, where g is indicated by the solid line, %o, by
the dashed line and @, ; by the dotted line. Some of the other Fourier modes are
shown in Figure 32. In this case the nonlinear effects of the DS equation quickly
spread energy to modes outside the region of instability as shown by Figure 33
and the solution begins to show signs of approaching a singular solution, Figure
34, which we will discuss in the next chapter. We remind the reader that the efe
case i1s not integrable, which is consistent with the unlimited spreading of energy.
However, the initial growth in the unstable mode does behave as predicted by

the linear stability analysis as can be seen in Figure 35.

Contour Plot of Lambda

3 .
3 o] o} o] o} o]
4
mu

Figure 30. Region of instability for e/e case and a = .85.



e/e Fourier Modes
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time t

Figure 31. Fourier modes in e/e case. ug,0: solid, U 1: dashed, uy,1: dotted.

0.35 T T T T 1 T

0.3

0.25
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0.15
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Figure 32. Fourier modes in e/e case. g 1: solid, @ o: dashed, uy o: dotted, Uy 5: dash-dotted.
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time=0 time = 2

-10 -10 -10 -10

time=3 time = 3.5

-10 -10

Figure 33. Mesh plot of Fourier modes for e/e case at ¢ = 3.5.

time = 3.5

i
2 )
5% ',:"'/z///;////[/;IIl' "

=
o B3OS
S5 AL I XX
:"’fz':gg;'{:g'g/o,:o‘o
25550555
s

=5
5225
S
S555555
S
5555555555

Figure 34. Mesh plot of solution for e/e case at ¢t = 3.5
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In conclusion, we observe that the uniform solution of the DS system, which
leads to a traveling wave in the free surface of the Davey and Stewartson deriva-
tion, is unstable to side-band interaction of modes which lie within the regions
given. The growth in the unstable side-band modes is initially exponential as was
also seen in the NLS equation. However, in the tests conducted here, no long-
term recurrence was observed. The effects of the nonlinearity in the DS system
differed from that in the NLS in that energy was quickly transferred to modes
which were not unstable. It remains to be seen what the effect of changing the
coeflicients of the DS system and hence the geometry of the unstable regions has
on the above observations. One question which remains open is whether or not

there exists values of the coefficients which produce recurrent instabilities.

Growth Comparison
0.8 T T

0.7+ i
0.6 1

0.5F 1

0 0.5 1 15 2 25 3 3.5
time t

Figure 35. Growth comparison in unstable Fourier mode. Ug,o: solid line, theoretical growth

curve y = .033e'88%% 4 017e~2-185%; ¢ircles.
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Chapter 6

Blow-up in the DS System

In [22] solutions of the elliptic/elliptic Davey Stewartson system which develop
singularities in finite time are discussed. A condition for when singular solutions
arise and a rate of blow-up are derived. In this chapter the split-step method is
applied to the Davey Stewartson system to simulate the singularity numerically.
The rate of blow-up derived in [22] is compared with the numerical solution

produced by the split-step method.

6.1 Applying the Split-Step Method
In the case of the elliptic/elliptic Davey Stewartson (DSEE) system
Wt + Uz + Uy + |u|2u — ¢gu =0,

et by = — (uf?)_, (6.1)

the split step method is applied in the same manner as in the DS II system. The
only difference is the introduction of an adaptive grid size.

As the singularity time, ¢,, is approached both |u| and |Vu| become large for
some (z,y). In order to accurately approximate u and its derivatives with Fourier
Transforms, a finer grid is needed as the singularity time is approached. Thus,
methods for detecting when the number of grid points must be increased and a

technique for interpolating u at the new grid points are needed.
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When approximating u by a finite Fourier series

N-1 N-1

@)= T % Gultererins,

j=—N k=—
1t is assumed that @n, is negligible when |m| > N or |n| > N. As the singularity
time is approached, N must be increased to satisfy this assumption. An indication
that more Fourier modes are needed is when any of the @, become significant
in size for [m| or |n| near N. When the split step scheme is applied to the DSEE

system the discrete quantity

;2[ (LU)jx + ;N( )jkan‘klz]’ (6.2)

of the numerical solution, which corresponds to the conserved Hamiltonian of
the semi-discrete DS system (2.36), is not conserved exactly by the split-step
method. However, from numerical experiments, the variation in (6.2) is related
to the size of the time step used in the split step method and to the relative size
of the higher Fourier modes used in the approximation of u. When the higher
Fourier modes become significant in size, the variation in (6.2) increases. Thus,
the variation in (6.2) can be used as an indicator for when more grid points are
needed to accurately model the continuous DS system.

Next, a technique for interpolating the numerical solution over a finer grid
1s needed for when the grid size is increased. Consider a computational domain
of [-2P,1P] x (3P, 1 P) with N grid point in both the z and the y directions.
Then Az = Ay = &. If Fast Fourier Transforms (FFT’s) are to be used in
the approximations to the derivatives of u, then N should be a power of 2 for

optimum efficiency. Thus, the approximation of u on the grid is given by

zmr+iu
Uir = ulzj,y) = ZZU HmTy FWnk

where z; = —%P + jAz, yi = —%P + kAy and the indices, j and k range over
1,..., N and m and n range over the values {—%N, cee %N — 1}. If the number
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of grid points in both the z and the y directions is doubled whenever a finer grid

1s needed, then FFT’s can be used for the interpolation. The interpolation then

becomes
Az ~ _ e
U(xj + __,yk) = Z Zumnetﬂm(rj'i‘ > )+“’nyk
2 —
= D03 et it i, (6.3)
m n

and similarly

A , o
w(j, Yk + __y) =3 ﬁmne’”"%ae”"'"rﬁw"yk,

2 moon
ALL’ Ay N . Az - Ay L
(it 50+ ) = T Gt B0 3 i,
m n

This corresponds to one FFT?2 to find the Umn, and three series of multiplications
of the 4,,, by constants and FFT2’s to get the interpolated values of w.

In addition to increasing the grid size, the time step should also be reduced as
the singularity time is approached. If the time step were too large, then the split-
step method could attempt to step past the singularity time causing numerical

1naccuracy.

6.2 Numerical Simulation

In [22] it has been shown that the DSEE system produces solutions which be-
come singular in a finite period of time provided the initial condition satisfies a
minimum amplitude requirement. We applied the split-step method to the DSEE
system (6.1) using an initial condition u(z,y,0) = 4 exp (—(z2 + y?)/4). The grid
size initially was 128 x 128 with a computational domain of [—8, 8] x [8, 8] and
7 = 107%. The grid size was modified based on a tolerance of 5 x 10~ in the
variation of (6.2). Each time a grid modification was indicated, the grid size was
doubled in both the z and y directions and the 7 was reduced by a factor of 4.
Figure 36 shows the profile of the numerical solution as the solution approaches

the singularity time. Figure 37 shows the amplitude of the numerical solution



time =0 time =0.09

Figure 36. Evolution of the numerical solutions of the DSEE system.
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Elliptic/Eftiptic Blowup

T T T T T T

T

15 : ]

u(0,0,1)

AL

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Timet

Figure 37. Amplitude of the numerical solution. The change in grid size is indicated by the
change in line style. 128 x 128 grid: solid, 256 x 256 grid: dashed, 512 x 512 grid: dotted.

and indicates the grid size during the simulation. In Figure 38 MATLAB was used
to compare the growth rate of the numerical solution to the asymptotic estimate

derived in [22]. Theoretically, the growth rate is

A — O (1_1_<:>) |

(t. —1)

as t — t.. In Figure 38 the circles represent the amplitude of the numerical

solution and the solid line represents the function

y=C lnln(t*l_t) : |
(t. —1)
where we used the MATLAB routine FMINS in calculating the values of C' =

0.907221 and t, = 0.130305 which give the best least squares fit.




u(0,0,t) vs t
22 Y T T . T T T T

u(©,0,H)

06.'11 0.112 0.114 0.116 0.118 0.12 0.122 0.124 0.126 0.128
time

Figure 38. Comparison of the growth in amplitude with the theoretical estimate.
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Conclusions

The split-step Fourier method has successfully been applied to the NLS equation
to simulate soliton solutions and to investigate modulational stability in Stokes
waves. In this thesis we have extended the application of the split-step Fourier
method from the one dimensional NLS equation to the DS system. We have
tested our method on known soliton and dromion solutions [29], and found good
agreement between the theoretical and numerical results. We have studied the
stability of the Stokes wave through the modulational stability of the h /e and e/e
DS system using a linear stability analysis and found that position independent
solutions of the DS system are susceptible to side-band instability. Regions of
instability were found for these cases and we showed that the split-step method
accurately simulated the initial growth in the side-band modes as predicted by the
instability analysis. We then modified the split-step method in order to simulate
solutions that blow-up in finite time. By introducing an adaptive grid scheme
to the split-step method, we were able to efficiently simulate solutions to the
e/e DS system for times which approach a singularity. We then compared the
rate of blow-up in the simulation to known theoretical results and found that the
numerical solution had the same asymptotic growth rate.

Some of the questions which have arisen in this study are as follows: (i)
How can the split-step method be applied to the DS system in the case that u
does not vanish at infinity? Such solutions were found by Anker and Freeman
[6]. (ii) What is the effect of changing the coefficients of the DS system in the
linear stability analysis? The coefficients can be chosen so that the regions of
instability for the h/e case are bounded lines other than the forty-five degree
lines in Figures 19 and 21. Thus, modes do not lie on the boundary of the region
of instability. What is the physical significance and evolution of unstable modes
in this case? (iii) In the case of solutions which become singular, can a dynamic

rescaling algorithm, as in [22], be developed which is symplectic? In [22] it is not



95

clear whether the algorithm preserves the symplectic structure of the DS system.
Finally, no convergence proof has yet been given for the split-step method.

To date, the material in this thesis has generated one paper on the computa-
tion of soliton and dromion solutions [29]. It is also believed that another paper
can be produced from a more comprehensive study of the linear stability analysis

in the DS system.
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A Programs

In this appendix the matlab code used in the simulations of the NLS equation
and Fortran code for the simulations of the DS system are given. In the follow-
ing Matlab program the initial condition and some of the parameters must be

specified.

Ax**k%k  Second order split step method for NLS skkskxx
A

A u_t = iu_x + iqlul-2u

% Variables which must be specified:

/A dt - time step size.

% M1 - number of outputs (columns of U).

% M2 - number of iterations between outputs.
% N - number of grid points.

% q - coefficient in NLS equation.

} u0 ~ initial condition.

U = [u0];

u = ul;

tcount=0;

n = [-N/2:1:N/2-1]";

mu = fftshift(i*2*pi*n/L);

e = exp(-4*n.*n*pi*pi*dt*i/L/L); Y% Multipliers for linear step.
e = fftshift(e);

du = ifft(mu.*fft(u));

H = -sum(abs(du)."2) + (q/2)*sum(abs(u).~4); % Hamiltonian
t=tcount;

form= 1:1:M1 % M1
for m2=1:1:M2 % M2

number of outputs.
number of iterations between outputs.

% Advance according to nonlinear term with 1/2 a time step.
v = exp(0.5*dt*i*q*(abs(u).*abs(u))).*u;

% Advance according to linear term.
w = ifft(e.*fft(v));

% Advance according to nonlinear term with 1/2 a time step.
u = exp(0.5*dt*i*q*(abs(w).*abs(w))).*w;

tcount=tcount+dt;
end

t=[t tcount]; % t = vector with times corresponding to outputs.
U = [U,u]; % U = solution matrix. Each column a different
% time.

du = ifft(mu.*fft(u));
h = -sum(abs(du)."2) + (q/2)*sum(abs(u)."4);
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H = [H,h];

end

h*¥x*x*x  End of Program %

The code for solving the DS system is broken into four parts. The first part

contains the main line code in which the size of the computational grid and the

coeflicients in the DS equations are specified. The following code is for solving

the DSII and the elliptic/elliptic DS equations.

program ds

C****************************************************************

0000000000000 0000000000000000000N00O0O0O0O0

This program finds a numerical solution to the DS equations.

u_t = i(alxu_xx + a2*u_yy + a2+ux|ul"2 + ad*uxy)
v_xx + blxv_yy = b2*(|ul"2)_xx

The values in the parameter statement below and the initialize
subroutine may need modification for particular physical and
initial conditions.

Note: this solution technique assumes a periodic initial
condition and periodic solution.

Variables:

d2 - constant multipliers used in calculation of ham.

dt - time step size.

du - working space variable, derivative of u.

e - constant multipliers used in linear step.

el2 - 2 norm of u.

f - array used to calculate FFT.

g - constant multipliers used in calculating v.

ham -~ Hamiltonian of u.

hamlast - used in stopping criteria.

htol - used in stopping criteria.

hx, hy - period lengths in x and y directions.

inct - number of iterations between outputs.

nxo, nyo - used in output routine to control amount of
output.

lastu - holds previous u value for output upon termination.

nd - maximum number of grid points in x or y direction.

nmax - maximum of nx and ny, used in FFT routine.

nt - number of iterations (time steps) to perform.

nX, ny - number of grid points in x and y directions.

tf - keeps track of time of iteration of last output.

ti - initial time of simulation.

tol - used in output to control number of digits of output.

u, v - solution to DS equations.

uf - Fourier Transform of u.

w - working space variable.
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C****************************************************************

implicit real*8(a-h,o-z), integer*4(i-n)

parameter (nd=256)

parameter(al=-1.0d0, a2=1.0d0, a3=2.0d0, a4=1.0d40)
parameter(b1i=1.040, b2=1.040)

complex*16 i

parameter(i=dcmplx(0.0d0,1.040))
complex*16 u(nd,nd), v(nd,nd), w(nd,nd)
complex*16 uf(nd,nd), lastu(nd,nd)
complex*16 e(nd,nd), du(nd,nd)

dimension f(2*nd,nd), g(nd,nd), d2(nd,nd)

open(lo,fi1e=’u.dat’,status=’unknown’)
open(ll,file=’v.dat’,status=’unknown’)
open(12,file=’uf.dat’,status=’unknown’)
open(13,file=’t.dat’,status=’unknown’)
open(15,file="12.dat’,status=’unknown’)
open(16,file="ham.dat’,status=’unknown’)
open(17,file="stopstat.dat’,status=’unknown’)

nx = nd
ny = nd
nmax = nd

call initialize(u,nd,nx,ny,nxo,nyo,hx,hy,nt,inct,dt,ti,tol,

, htol)

9000 format(i4)
9001 format(i6)
9002 format(£8.4)
9003 format(f12.8)
9004 format(£f18.15)

do 9010 j=10,12
write(j,9000)
write(j,9000)
write(j,9000)
write(j,9000)
write(j,9002)
write(j,9002)
write(j,9001)
write(j,9004)
write(j,9001)
write(j,9004)
9010 continue

call getmult(d2,e,g,nd,nx,ny,hx,hy,al,a2,b1,b2,dt)

call calcv(u,v,g,f,uf,w,nd,nx,ny,nmax)
call output(u,v,nd,nx,ny,nmax,nxo,nyo,uf,w,f,tol)

write(13,9004) ti

nx
ny
nxo
nyo
hx
hy
nt
dt
inct
ti



102

call calc_h(u,v,uf,w,f,du,d2,a3,a4,nd,nx,ny,nmax,ham,e12)
write(15,9003) el2
write(16,9003) ham

hamlast = ham

tf = ti
call backup(u,lastu,nd,nx,ny)
tflast = tf

C****************************************************************

C

Start of main loop

C****************************************************************

9020
9021

9030

do 9020 loop=1,nt
call calc_u(u,v,uf,w,f,e,g,nd,nx,ny,nmax,a3,a4,dt)

if (mod(loop,inct).eq.0) then
call calc_h(u,v,uf,w,f,du,d2,a3,a4,nd,nx,ny,nmax,ham,e12)
if ((dabs(hamlast-ham)).lt.htol) then
write(15,9003) el2
write(16,9003) ham
call output(u,v,nd,nx,ny,nmax,nxo,nyo,uf,w,f,tol)
call backup(u,lastu,nd,nx,ny)
tflast = tf + dt
write(13,9004) tflast
open(20,file=’tflast.dat’,status=’unknown’)
write(20,9004) tflast
close(20)
else
write(17,*) ’htol exceded’
goto 9021
end if
end if

tf = tf + dt
continue

open(14,file=’1data.dat’,status=’unknown’,
, form="unformatted’)

write(14) nx
write(14) ny
write(14) nxo
write(14) nyo
write(14) hx
write(14) hy
write(14) nt
write(14) dt
write(14) inct
write(14) tflast
do 9030 k=1,ny

do 9030 j=1,nx

write(14) lastu(j,k)
continue

close(10)
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close(11)
close(12)
close(13)
close(14)
close(15)
close(16)
close(17)
end
cxkx*x*x End of Main Line Code *x¥x*

The second part of the code is the initialization section which either reads the
initial condition from disk or generates the initial condition from equations which
must be modified in the routine to fit the simulation.

subroutine initialize(u,ndim,nx,ny,nxo,nyo,hx,hy,nt,inct,

, dt,ti,tol,htol)
c****************************************************************

c
Cc Subroutine initialize initializes the matrix of function

¢ values. It sets the initial value of the IBV problem. The
¢ initial condition should be periodic (if changed)
c
c
c

Inputs: nx,ny -- the dimension of the data matrix.
file 17 -- file ’stopstat.dat’.

c
¢ Output: hx,hy -- the length of the sides of the solution
c domain.
c nt -- number of time steps to perform.
c inct -- number of time steps between outputs.
c dt -- time step size.
c ti -- initial time.
c u(nx,ny) -- the initial values.
c tol -- used to control the number of digits of
c output.
c htol -- used for stopping criteria.
c .
¢ Other: fileinput -- true if initialization from disk.
c false if initialization from equations
c in this routine.
c
CHkkokoK Kook ook ok ok Kok ok o ook ok ok ok ok skok ok sk sk ok ok 3K ok o o o ok ok ok ok ok ko ok o ok ok ok ok o ok ok Kok ok o o

implicit real*8(a-h,o0-z), integer*4(i-n)
complex*16 u(ndim,ny), i

logical fileinput

parameter (fileinput = .true.)
parameter (i = dcmplx(0.0d0,1.0d0))

tol = 9.9994-5
htol = 5.0d4-5

if (fileinput) then



c This section reads the initializing data from the file

¢ lastdata in the current directory. Iastdata stores the

c variables at the end of the program run so that the solution
¢ can be continued by runing this program with fileinput set

¢ to .true.

open(9,file=’1data.dat’,status=’old’,form=’unformatted’)

read(9) nnnx

read(9) nnny

if (.not.((nx.eq.nnnx).and.(ny.eq.nnny))) then
close(9)
write(17,*) ’lastdata does not match’
stop
endif

read(9) nxo

read(9) nyo

read(9) hx

read(9) hy

read(9) nt

read(9) dt

read(9) inct

read(9) tf_lastrun

do 305 k=1,ny
do 305 j=1,nx

read(9) u(j,k)
305 continue
close(9)
ti = tf_lastrun
else

c This section assigns the initializing data for a first run.
¢ The values should be modified accordingly.

nxo = 64

nyo = 64 -

hx = sqrt2#*pi

hy = hx

nt = 40000

inct = 400

dt = 0.00025d0

ti = 0.040

dx = hx/nx

dy = hy/ny

x = -hx/2

do 300 j=1,nx
y = -hy/2

do 310 k=1,ny
$=1.0d0+0.1d0*dcos(sqrt2*y)+1.0d-4*cos(sqrt2+* (x+y))
u(j,k)=dcmplx(s,0.0d0)
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y=y+dy
310 continue
X = x + dx
300 continue
endif
return
end

cx*xx*x End of Section 2 kkkkx

The third section contains the subroutines for applying the split-step method and
outputting the solution.

subroutine calcv(u,v,g,f,uf,w,ndim,nx,ny,nm)
Cok oKk ok ok ke ok ok ok ok ok ok ook ok ok ok ko ek o ok ok ok ok ok ok ok ok ok sk ke o o ok kK ok ok ok ok s K e o o Kok 3 ok ok ok ok ok o o ok 3 o ok ok

This routine calculates v, where v satisfies
V_XX + blxv_yy = b2*(lul"2)_xx

c
c
c
c
c
¢ and b1>0.
c

c

****************************************************************

implicit complex*16(a-h,0-z), integer*4(i-n)
complex*16 u(ndim,ny), v(ndim,ny), uf (ndim,ny), w(ndim,ny)
real*8 f(2*ndim,ndim), g(ndim,ny)

do 400 k=1,ny
do 400 j=1,nx
v(j,k) = cdabs(u(j,k))**2
400 continue

call four2(v,uf,w,f,-1,ndim,nx,ny,nm)

do 410 k=1,ny
do 410 j=1,nx
uwf(j,k) = g(j,k)*uf(j,k)
410 continue

call four2(uf,v,w,f,1,ndim,nx,ny,nm)

return
end

subroutine getmult(d2,e,g,ndim,nx,ny,hx,hy,al,a2,b1,b2,dt)
Tk ook ok ok ok ok ok ok koo ok ok ok ko ok o ok KoK ok o ok sk K ok ok ok K ok ok ok ok o ok ok ok o ok sk ok o ok ok ok ok o o ok ok ok ok o
c
¢ This subroutine calculates the multipliers used in finding v
¢ and in advancing the linear term.
c
ook ok ok ko ok ok ook sk ok ok ok sk ok ok ko ok ok sk ok o sk ok o ok o ook ook ok ok ok o sk ok ok ks ok o sk K ok o ok ok o sk ok ok o ok o
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implicit real*8(a-h,o-z), integer*4(i-n)
dimension g(ndim,ny), d2(ndim,ny)
complex*16 i, const, e(ndim,ny)

i = demplx(0.040,1.040)
pi = 2.0d0*dasin(1.0d0)

const = -4.0d0*pix*pi

do 520 j=1,nx

m=-nx/2+ j -1

cm = m*m/ (hx*hx)

do 510 k=1,ny
n=-ny/2+ k-1
cn = n*n/(hy*hy)
d2(j,k) = const*(al*cm + a2*cn)
e(j,k) = cdexp(d2(j,k)*dtxi)
if ((m.eq.0).and.(n.eq.0)) then

g(j,k) = 0.0do

else
g(j,k) = b2xcm/(cm + bikcn)
end 1if
510 continue
520 continue

call rf2shift(d2,ndim,nx,ny)
call cf2shift(e,ndim,nx,ny)
call rf2shift(g,ndim,nx,ny)
return

end

subroutine output(u,v,ndim,nx,ny,nmax,nxo,nyo,uf,w,f,tol)
€ 3% 3k ok ok ok e ke ok ke ok ok ke ok ke o ke o sk ke ok ke ok e ok ek ok kK Kok o 3 ok ke ok e e ok K oKk sk e ok s ok e ok sk sk o sk ok e sk ok 3k ok ok K

c
¢ This subroutine outputs u, v and uf

c Inputs:

c u, v - the solution (nx by ny matrices)

c tol - number of decimal digits to output
C Outputs:

c u, v, uf are written to files

c Workspace:

c w, T (nmax is used by routine four2)

c

c

3K o oo o o o oo ok sk e o o o 3 Ko o o Kk o o ok ke o sk sk e s o e kK o o o kK ook o sk oo o ek sk 3k K o o o ok ok
implicit real*8(a-h,o0-z), integer*4(i-n)
complex*16 u(ndim,ny), v(ndim,ny), uf(ndim,ny), w(ndim,ny)
dimension f(2*ndim,ndim)

601 format(£f7.4)
602 format(f8.4)
603 format(£f9.4)
604 format(f12.4)
605 format(il)

call four2(u,uf,w,f,-1,ndim,nx,ny,nmax)
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call cf2shift(uf,ndim,nx,ny)
do 610 k=1,ny
do 610 j=1,nx
temp = cdabs(uf(j,k))
if (temp.lt.tol) then
write(12,605) 0
else if (temp.1lt.100) then
write(12,601) temp
else
write(12,604) temp
end if
610 continue

nxinc=nx/nxo
nyinc=ny/nyo

do 620 k=1,ny,nyinc
do 620 j=1,nx,nxinc
temp = cdabs(u(j,k))
if (temp.1lt.100) then
write(10,601) temp
else
write(10,602) temp
end if
620 continue

do 630 k=1,ny,nyinc
do 630 j=1,nx,nxinc

temp = dreal(v(j,k))

if (dabs(temp).1t.100) then
write(11,602) temp

else
write(11,603) temp

end if

630 continue

return
end

subroutine calc_h(u,v,uf,w,f,du,d2,a3,a4,ndim,nx,ny,nm,ham,
, el2)
C****************************************************************

c
c¢ This routine calculates the Hamiltonian and 1°2 norm of the

c solution.

c Inputs:

c u, v - the solution (nx by ny matrices)

c d2 - coefficients used to calculate Lu, where L is the
c linear part of the DS equations

c OQutputs:

c ham - Hamiltonian of solution

c el2 ~ 172 norm of solution

c Workspace:

c uf,w,du,duf (am is used by routine four2)
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c
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implicit real*8(a-h,o-z), integer*4(i-n)
complex*16 u(ndim,ny), v(ndim,ny), uf (ndim,ny), w(ndim,ny)
complex*16 h, du(ndim,ny)
dimension d2(ndim,ny), f(2*ndim,ndim)

call four2(u,uf,w,f,-1,ndim,nx,ny,nmax)

do 800 k=1,ny
do 800 j=1,nx
uf (j,k) = d2(j,k)*uf(j,k)
800 continue
call four2(uf,du,w,f,1,ndim,nx,ny,nmax)

do 810 k=1,ny
do 810 j=1,nx
w(j,k) = cdabs(u(j,k))**2

810 continue
h = 0.0d0
el2 = 0.0d0

do 820 k=1,ny
do 820 j=1,nx
h = h + dconjg(u(j,k))*du(j,k)
h =h + w(j,k)*(a3*w(j,k) + ad*v(j,k))/2.0d0
el2=el2+w(j,k)
820 continue
ham = cdabs(h)/(nx*ny)
el2 = dsqrt(el2/(nx*ny))

return
end

subroutine calc_u(u,v,uf,w,f,e,g,ndim,nx,ny,nmax,aB,a4,dt)
oKk kKoo ook ok o o o ok ok ok ok o ok ok sk ok ok Kok ok ok o ok ok ok ok ok ko o ok ok ko o ok o K 3K ok ok o ok ko ok ok o o koK ok ok o ok o

¢ This routine does one time step of the split-step method on
¢ the DS equations

c Inputs:

c u, v - the solution at the previous time step (nx by ny
c matrices)

c e, g - nx by ny matices of constants

c Outputs:

c u, v - the solution at the current time step

c Workspace:

c ¢, uf - used as intermediate values

c w, £ - used by the subroutine four2 (which also needs
c nmax)

SRk sk ok o o ok ok o ok oo o o ok ok oK KoK ok ok o o o o o ok K Kok ok sk ok oK o o o o o o ok o ok sk ok o o o o o o o ok ok o o ok ok ok

implicit real*8(a-h,o-z), integer*4(i-n)
complex*16 i,cl,c2
parameter(i=dcmplx(0.0d0,1.0d0))

complex*16 u(ndim,ny), v(ndim,ny), uf (ndim,ny)
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complex*16 w(ndim,ny), e(ndim,ny)
dimension f(2*ndim,ndim), g(ndim,ny)

cl
c2

dt*a3%*1i/2.0d0
dt*i*a4/2.0d0

do 900 k=1,ny
do 900 j=1,nx

u(j,k) = cdexp (ci*u(j,k)*dconjg(u(j,k))+c2*v(j,k))*u(j,k)
900 continue

call four2(u,uf,w,f,—l,ndim,nx,ny,nmax)

do 910 k=1,ny
do 910 j=1,nx
uf(j,k) = e(j,k)*uf(j,k)
910 continue

call four2(uf,u,w,f,1,ndim,nx,ny,nmax)
call calcv(u,v,g,f,uf,w,ndim,nx,ny,nmax)

do 920 k=1,ny
do 920 j=1,nx
u(j,k) = cdexp(ci*u(j,k)*dconjg(u(j,k))+c2xv(j,k))*u(j,k)
920 continue

call calcv(u,v,g,f,uf,w,ndim,nx,ny,nmax)

return
end

subroutine backup(u,lastu,ndim,nx,ny)
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c
¢ This routine copies u into lastu.
c
(€% 3k 3k sk o ok o ok ok ok ok ok ook s o sk ks ok ks ks sk sk ok o ok ok ke s o o o ok o sk sk ok sk sk ko ok o ok o ok oK ok 3k kK
implicit real*8(a-h,o-z), integerx*4(i-n)
complex*16 u(ndim,ny), lastu(adim,ny)

do 1000 k=1,ny
do 1000 j=1,nx
lastu(j,k) = u(j,k)
1000 continue

return

end
ck**xx*x End of Section 3 *kxkkx%

The fourth section contains two routine used to calculate the fast Fourier trans-

forms. These routines can be found in most numerical methods manuals. The
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routines have been modified so that the code can easily be run using a vector
processor.

subroutine four2(u,v,w,f,isgn,ndim,nx,ny,nm)
(€33 ok ok ok e ook ok ok sk o ok sk ok sk ok sk 3 o ok 3ok o sk sk o ook s sk sk 3 3k sk 3k ok ek ok kK sk sk 3k ok sk 3 ok ik ok sk ok ok

c
¢ Subroutine four2 computes the 2-dimensional Fourier transform
c

c Input: u(nx,ny) -- data

c isgn -- sign of "i" in transform, i.e., isgn =

c +1 for transform and -1 for inverse.

c nx, ny -- number of points in x and y directiomns

c respectively. They must each be a power
c of 2 (the subroutine does not check for

c this) .

c nm -- maximum of nx and ny

c

c Output: v(nx,ny) -- transform if isgn = -1, inverse if isgn =
c +1.

c

c Workspace: w(nx,ny),f(2*nm)

c

ottt o o ok ok sk o o K ok kKo ok ok o o o ok ek 3k Kok 3K oK o ok ok o o K K sk sk sk sk sk ok ok ko ok o ok ok ok o ok

implicit complex*16(a-h,0-z), integer*4(i-n)
real*8 f(2*ndim,ndim)
complex*16 u(ndim,ny), v(ndim,ny), w(ndim,ny)

do 100 k = 1,ny
do 100 j = 1,nx

f(2%j-1,k) = dreal(u(j,k))
f(2%j,k) = dimag(u(j,k))
100 continue

call fft(f,ndim,nx,ny,isgn,nm)
do 110 k=1,ny
do 110 j = 1,nx
w(j,k) = demplx(f(2%j-1,k),£(2%j,k))
110 continue
do 130 j = 1,nx
do 130 k = 1,ny

f(2*k-1,j) = dreal(w(j,k))
f(2%k,j) = dimag(w(j,k))
130 continue

call f£ft(f,ndim,ny,nx,isgn,nm)
do 140 j=1,nx
do 140 k = 1,ny
v(j,k) = demplx(f(2%k-1,7),£(2%k,j))
140 continue
if(isgn.eq.-1) then
do 160 j = 1,nx
do 160 k = 1,ny
v(j,k) = v(j,k)/nx/ny
160 continue
endif
return



C
C
C
C
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C

C
C
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end
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subroutine fft(data,ndim,nn,nl,isgn,nm)
ok ok ok sk ook o Kok R K sk ok ook sk e sk ok Kok o KoK o ok o sk ok o ok ok sk ko o ok ok s ok ok sk ok ok ok sk ok o o ok ok

The subroutine FFT computes the Fourier-transform of the data,
by the algorithm in Numerical Recipes, p. 394.

165

170

180
190

data(nn,nl) -- discrete transform if isgn =

inverse discrete transform if isgn
33K ok o s o ks ok o ko o Kok K ok o ok sk ok ok ok ko ok sk sk koK R kK o K ks ok sk ok ok o Kk ok o sk ok o ok ok ok

implicit real*8(a-h,o0-z), integer*4(i-n)
dimension data(2*ndim,nl)

pli = 2.0d0*dasin(1.0d0)
n = 2%nn
j=1
do 180 i = 1,n,2
if(j.gt.i) then
do 165 k=1,nl
tempr = data(j,k)
tempi = data(j+1,k)
data(j,k) = data(i,k)
data(j+1,k) = data(i+1,k)
data(i,k) = tempr
data(i+1,k) = tempi

continue
endif
m = n/2
if((m.ge.2).and.(j.gt.m)) then
J =]
m=m/2
go to 170
endif
j=jtm
continue
mmax = 2

if(n.gt .mmax) then
istep = 2*mmax
theta = 2.0d0*pi/(isgn*mmax)
wpr = -2.0d0*dsin(0.5d0*theta)**2.0d0

Input:
data(nn,nl) -- data is nl complex arrays of nn elements or
real arrays of 2*nn elements that are to be
transformed.
nn, nl -- dimension of data (if complex). nn must be
a power of 2 (the subroutine does not check
for this).
isgn -- if isgn = +1 then replace data with its
discrete transform, if isgn =
replace data with nn times its inverse
discrete transform.
Output:



wpl = dsin(theta)
wr 1.0d0
wi 0.0d40
do 210 m = 1,mmax,?2
do 200 i = m,n,istep
j =1 + mmax
do 195 k=1,nl
tempr = wr*data(j,k)-wi*data(j+1,k)
tempi = wr*data(j+1,k)+wi*data(j,k)
data(j,k) = data(i,k) - tempr
data(j+1,k) = data(i+1,k) - tempi
data(i,k) = data(i,k) + tempr
data(i+1,k) = data(i+1,k) + tempi
195 continue
200 continue
wtemp = wr
WI = WI*Wpr-wi*wpitwr
Wi = wi*ypr+wtemp*wpi+wi
210 continue
mmax = istep
go to 190
endif
return
end

subroutine fftshift(data,n)
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c
¢ Subroutine fft shift swaps the left and right hand sides of the
¢ vector data.

c

¢ Inputs:

c data(n) -- data to be shifted (complex array of n elements)

c n —- number of elements in u, n should be even.

c

¢ Output:

c data(n) -- the data with the left and right sides swapped.

c

3k sk s ok o o sk ok ks k3K ok o Kok sk o o o sk ok ok o Kok o K ok K s ok ok sk ok ok sk ok sk sk ok ok K ok sk sk ok ok

integer j,k,n
complex*16 data(n), temp

j =n/2

do 220 k=1, j
temp = data(k)
data(k) = data(j+k)
data(j+k) = temp

220 continue
return
end

subroutine cf2shift(u,ndim,nx,ny)
C 2k 3ok ke ek ok o o o sk o ook ok 3 s o ok oo ok o ok sk sk 3k o s o o sk ok sk ok ok 3k 3k o o ok sk ok o o ok 3 3 oKk K o ok ok ik
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Subroutine four2 shift swaps the diagonal quadrants of a
matrix of data. Used to "unshift" the output of the 2-d
fourier transform.

Inputs:
u(nx,ny) -~ data to be shifted (complex values matrix)
nx, ny -- dimensions in the x and y directions. nx
and ny should be even.
Output:

u(nx,ny) -- the data with the top-left quadrant swapped
with the bottom-right and the top-right
swapped with the bottom-left.

e 2k ke e ok e o ok ke ok sk ok 3k 3 Sk sk ok s K koK ok ok sk ok sk ok ok ok ok 3k ok sk ok ok 3k s 3K 3k Sk 3k sk ok 3k ok ok sk 3k sk ok ok 3 3K ok ok sk 3K 3k sk ok 3k 3K oK

implicit complex*16 (a-h,o-z), integer*4 (i-n)
complex*16 u(ndim,ny)

j = nx/2

k = ny/2

do 240 m=1, ]

do 240 n=1,k

temp = u(m,n)
u(m,n) = u(m+j,n+k)
u(m+j,n+k) = temp
temp = u(m,n+k)
u(m,n+k) = u(m+j,n)
u(m+j,n) = temp

240 continue

return
end

subroutine rf2shift(u,ndim,nx,ny)

C 3 3k 3k ko ok ok s sk ok ok ok sk ok kK ok ok 3k ok 3k 3K ok sk sk ok 3k sk sk sk sk sk 3k K ok ok ok ok ok sk ok 3k 3k ok 3K 3K ok 3K 3k ok ok 3k ok 3 sk ok ok 3k 3k 3k ok 3K

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Subroutine four2 shift swaps the diagonal quadrants of a
matrix of data. Used to "unshift" the output of the 2-d
fourier transform.

Inputs:
u(nx,ny) -- data to be shifted (real valued matrix)
nx, ny -- dimensions in the x and y directions. nx and ny
should be even.
Output:

u(nx,ny) -- the data with the top-left quadrant swapped
with the bottom-right and the top-right
swapped with the bottom-left.

****************************************************************

implicit real*8 (a-h,o-z), integer*4 (i-n)
dimension u(ndim,ny)
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j = nx/2

k = ny/2

do 250 m=1,3j

do 250 n=1,k
temp = u(m,n)
u(m,n) = u(m+j,n+k)
u(m+j,n+k) = temp
temp = u(m,n+k)
u(m,n+k) = u(m+j,n)
u(m+j,n) = temp
250 continue
return
end

ckxx*** End of Section 4 #¥x*x

To apply the split-step method to the DSI system the routines which initialize

the multipliers and calculate v must be modified.





