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The Davey-Stewartson Equations: A Numerical Study

Chapter 1

Introduction

1.1 Background

One of the major successes in the field of applied mathematics in the last decade or

two is the method of inverse scattering, associated with the names of Ablowitz,

Gardner, Greene, Kaup, Kruskal, Lax, Miura, Newell, Segur, Zakharov, and

others; see [1] and [5] for historical reviews. Originally developed in the context

of the Korteweg-de Vries equation

KdV: ut 6uu =-- 0,

the method of inverse scattering allows one to construct solutions by linking the

PDE to a certain linear scattering problem, thereby enabling one to solve the

nonlinear PDE with essentially linear techniques.

After the initial success of the method of inverse scattering on the KdV, it

was soon discovered that the method had wider applicability. For example, the

nonlinear Schrodinger and Sine-Gordon equations were both shown to be solvable

by the method of inverse scattering. These equations are respectively defined by

NLS: iut uxx 21u12u = 0,

and

SG: utt + sin u O.



and

DSI and DSII:
1jut + (usx
2 w'YY)

Oxx a2Oyy

= u0,

2a (1.1)

where these equations have been scaled so that o-2 = +1 and a = +1, are also
known to be solvable by the method of inverse scattering. (The case o-2 = 1
corresponds to the DSI system and cr2 = 1 corresponds to the DSII system).

Note that if the x-dependence is removed in the DS system, then the NLS equation

is recovered.

These equations have several common properties which include an infinite

number of conserved quantities and the occurrence of soliton solutions'. Per-

haps the most fundamental common feature is that these equations may all be

expressed as Hamiltonian systems of infinite dimension, which are moreover in-

tegrable thanks to the infinite number of conserved quantities. The method of

inverse scattering was realized to be the infinite dimensional analogue of the

action-angle transformation by which finite dimensional Hamiltonian systems are

commonly solved [13].

Whereas the method of inverse scattering is very general and powerful, it is

not easy to apply when arbitrary initial conditions are specified. This is especially

soliton is a traveling wave which becomes localized in finite time and then maintains its
shape indefinitely, except for brief moments during nonlinear interaction.

2

In these equations the boundary conditions are usually taken to be periodic on

a finite domain, or decay to zero at infinity on an infinite domain. The KdV
and NLS are both models of nonlinear water waves in one dimension while the

SG equation models a coupled pendulum chain. In two space dimensions the

Kadomtsev-Petviashvili and the Davey-Stewartson I and II equations, given by

KP: (ut 6uux uxxx), 30-2uyy 0,
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true in the case of two space dimensions such as the DSI, DSII and KP equations.
For this reason accurate numerical simulation remains an indispensable tool in
the study of these equations. Whereas the one-dimensional problems such as
NLS, KdV, and SG have received considerable attention in the numerical analysis

literature, see for example [17], [27], and [31], the same cannot be said for the
two-dimensional problems such as the KP and DS equations. The only references

known to this author are [22] which involves a non-integrable case of the DS
system

iut uyy lul2u = 0,

+ = - (Iu12)T (1.2)

and [29] where we have presented what we believe to be the first known simula-

tions of soliton and dromion solutions of the DS system. This absence of reported

results is in some part due to the computational complexity of these problems:

not only are they nonlinear, but they are typically posed on a doubly infinite

domain, and in the case of the DS equation there is the added complication of

dealing with a coupled system of equations.

In this thesis we introduce and analyze a numerical method for the DS systems

(1.1) and (1.2). This method is based on an extension of the well-known and

successful split-step Fourier method originally proposed for the KdV equation by

Tappert [27], and also used in [28] on the NLS equation. The extension of the

split-step method from the NLS to the DS system is however not trivial. We

must address the following problems: (i) inverting the second equation in (1.1)

to solve for 0, in both the elliptic and hyperbolic cases (a' = 1 and o-2 = 1
resp.), (ii) incorporating boundary conditions, (iii) truncating from an infinite to

a finite domain, and (iv) optimizing the method to deal with the large number

of computational grid points needed.

Testing the quality of schemes such as the ones introduced here can be achieved

in one of two ways: first, by rigorous convergence proofs and error estimates, or
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second, by ensuring that the relevant physical properties in the continuous equa-

tions are represented accurately by the numerical method. We will follow the

second approach here. Classical convergence proofs and error estimates, which

typically do not take the particular nonlinear dynamical features of these equa-

tions into account, have had limited success in predicting how good or bad a

particular method works in practice. A reason for this is that such convergence

proofs are designed to predict what happens in the limit as the mesh-size, both

in space and time, shrinks to zero. A computer works with finite values of the

mesh-size however, and nonlinear features such as blow-up and numerical chaos

may be observed which cannot be accounted for by classical analysis. Perhaps

the best example is presented in the paper by Ablowitz and Herbst [2], where the

following two discretizations of the NLS are compared

d 1
2U3 U.7+ ) 21U312U, = 0, (1.3)

and
. d 1

2U3 + U3+1) 1U31 (U3-1 + U3+1) = 0. (1.4)

The numerical results of Ablowitz and Herbst show that when the nonlinear phe-

nomenon of recurrence (defined below) is simulated, scheme (1.3) quickly collapses

into chaos (see Figure 1), whereas scheme (1.4) maintains a nice and smooth pe-

riodic solution in a long-time integration (see Figure 2). The crucial difference

between the two schemes is that (1.4) has been designed to be integrable, which

is not the case for (1.3). Whereas both schemes are formally accurate to order

0(h2), only one of them reflects the dynamical property of integrability and is

therefore superior.

In the above simulations a standard Runge-Kutta method was employed. It

should be pointed out that the use of a finer space grid in (1.3) will produce

recurrence for a period of time, but at some later time numerical chaos will

OMIT.



Figure 1. Discretization (1.3)

Figure 2. Discretization (1.4)

20

20
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Instead of pursuing classical convergence proofs, we will therefore attempt to

ensure that the relevant dynamical properties of the DS system are accurately

reflected in the numerical approximations. To this end we will show that our

semi-discrete approximation is a finite dimensional Hamiltonian system which

approximates the infinite dimensional Hamiltonian of the continuous problem.

We will also show that the split-step method that we use to integrate our system

is a symplectic transformation, a feature that is increasingly recognized to be of

paramount importance in the integration of Hamiltonian systems.

To set the background it is perhaps best to review the relevant issues as they

pertain to the NLS equation.

1.2 Review of NLS

The NLS equation is given by

iut + uxs + 2jul2u = 0, (1.5)

where u(x,t) E C and i = \/-1. Two of the conserved quantities of (1.5) are the

L2-norm
d

= 0' where I = I 11112 dx, (1.6)

and the Hamiltonian

d
dtH = 0, where H = I (lus12 NO dx. (1.7)

Here the integration is over one period in the case of periodic boundary conditions

u(x,t) = u(x + P,t), for all t > 0,

or over all of R in the case of decaying boundary conditions

u(x,t) 0, u,(x,t) *0 as lx1 --4 oo.



ut = iuxs+ 2iIu12u, and

may be expressed as

and then

1

E(H(u u*) H(u,u*)) if
So as c 0 we get

SH
= iux*x+2i1u12u*,

Su

ut* = iux*x 2i1U12U* =(SH.
Su

= iu*x 2i1u12u ,x

x 21u12u*)ii cii2(u*)2} .

7

A proof of (1.6) and (1.7) will follow from the analysis in the next chapter, where
we derive the analogous conserved quantities of the DS system. The reason for
referring to H as the Hamiltonian is as follows. The NLS (1.5), and its conjugate

(SH 6H
Ut

6u*'
Ut = -

(Su' (1.8)

where H is written as

H(u,u*) = (uxu; u2(u*)2) dx.

The variational derivatives on the right-hand side of equation (1.8) are defined
so that

Jim
H(u H(u,u*) f

dx,--+0

for all suitably smooth functions ii which decay to zero at infinity.

To see that H is the Hamiltonian, note that

1

E(H(u u*) H(u,u*))

i f
id14}1(u + Eit)sus* (u fit)2(u*)2 lux12 dx

J ciixus* 2cliu(u*)2 E2u2(u*)2} dx.
E

Now use integration by parts on the first term in the integral and cancel a factor
of E to get



(21a12 21a12

21a12 21a12

8

The other equation in (1.8) follows in a similar manner.

Two nonlinear phenomena that will be of particular interest to this thesis are
those of solitons and recurrence. As for solitons, these solutions may be obtained
by the method of inverse scattering, see [1] for example. An example of a 2-soliton
solution to the NLS equation can be seen in Figure 3. The two solitons collide and
then emerge without a change of shape. In Figure 4 a contour plot corresponding
to Figure 3 shows how the nonlinear interaction of the solitons causes a phase
shift in the paths taken by the solitons during the collision.

The other interesting nonlinear phenomenon, that of recurrence, is related to
the modulational instability described by the NLS. First note that

u(x , t) e2t2t

is a solution to (1.5). Consider a perturbation to this solution given by

u(x, t) = ae2ilal2t (1 + 6(x, t)),

where e(x ,t) E C and le(x, o)1 < 1. Substitute this perturbed solution into (1.5)
and keep only first order terms in E to get

Et = iExx 2i1a12 (E E*). (1.9)

Now assume that the perturbation, E, is periodic on the interval [V, -12-P] and
write

E E Em(t)ei x ,

m. - cc

where a into (1.9) gives a system of ordinary differential
pm, =

equations

d (Ern )
dt E*

--m

= G
(E,

m 0

where
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Figure 4. Contour plot of soliton interaction in the NLS equation
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The eigenvalues of the growth matrix Gm are given by ±,u7441a12 tim2 . One of

the eigenvalues is a positive real number if

0 < itm2 < (1.10)

which is a region of instability associated with the names of Benjamin and Feir;

see [8] and also the discussion in Section 5.1. Whenever it, is inside this region

the mode (6,,,E*,,)T will grow exponentially. However, this exponential growth

in the Fourier modes of the perturbation does not continue indefinitely. In [30]

Yuen and Ferguson show that the long-term evolution displays the recurrence

phenomenon: the unstable modes take turns in dominating the solution, with

intermittent returns to the almost uniform state. Figure 5 shows an example

where only one mode of the perturbation lies in the instability region (1.10).

This corresponds to P = '\/7r, a = 1, and

u(x, 0) = 1 + 0.1 cos(\fix). (1.11)

Figure 6 shows the evolution of the primary and the unstable modes of the solu-

tion. An example where two modes dominate may be seen later in Figure 7.

These pictures were produced by the split-step Fourier scheme. In this thesis

we will extend the split-step scheme to the DS system of equations. We will

then use this scheme to simulate solitons and modulational instability in the DS

system.
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Chapter 2

Analytic Aspects

In this chapter we review some of the literature related to the physical aspects of

the DS system. The main sources for this review are [3], [12] and [15]. Although

no original results will be produced, this chapter will establish the DS system in

the context of water waves and introduce properties of the DS system which will

play an important role in establishing the validity of the numerical scheme used

to solve the DS system.

2.1 Derivation of DS System

In this section we reproduce some of the analysis found in [12] which results in a

system of equations of the form

iut + ciluxx + ce2uvy + ce3lul2u + a4u0s --= 0 (2.1)

Oxs + OPOyy = 02(!7212)s , (2.2)

where al, ... , a4, th, 02 E R, u(x, y,t) E C and 0(x, y, t) E R. We will refer to

these partial differential equations as the DS system.

Davey and Stewartson considered a cartesian coordinate system with the xy-

plane coinciding with the undisturbed free surface of a body of water [12]. The

positive z-axis is directed so that the bed of the water is at z = h. At t = 0

12
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it is assumed that a progressive wave is established such that the free surface is

raised to z = ( , where

g((x, y, 0) = iEw a(sx, Ey) exp(ikx) + c.c..

Here g is the acceleration due to gravity, k is the wave number and w is the

frequency of the progressive wave, a is a given function, e is a small positive

constant and c.c. indicates the complex conjugate of the preceding term. A

progressive wave such as this corresponds to a wave of wavelength 27r /k k traveling

in the positive x direction with an amplitude slowly varying with position and on

a scale inversely proportional to its height. We will assume the linear dispersion

relation for water waves, w Vgka where a -= tanh(kh), holds.

Let 0(x, y, z, t) denoted the velocity potential of an incompressible, irrota-

tional, inviscid fluid. The incompressibility condition implies that satisfies the

Poisson equation

Oxx Oyy Ozz = 0 in h < z < (2.3)

The corresponding boundary conditions are an impermeable bottom, so

Oz =- 0, when z = h, (2.4)

and two conditions at the free surface, the kinematic boundary condition

Oz =Ct + Ogs 0y(y, when z = C, (2.5)

and

2g( + 20t Os2 + 0,2 = 0, when z (2.6)

which is a statement of uniform pressure at the surface, which follows from

Bernoulli's law. For the moment we have neglected the effects of surface ten-

sion.



= 6(x cgt), ij = Ey , and T = S2t,

where cg is the group velocity of the primary progressive wave given by

c2 = (k) = kh(1 a2)} .

Substitute (2.7) and (2.8) into (2.3) and use (2.4) to get

cosh k(z h)
==

22F
and

,cosh k(z h) h) sinh k(z h) ha cosh k(z h)
012 =

cosh kh cosh kh

where A, D and F are unknown functions of 37, and T only. 001 and Ow are

independent of z and

80°3 = (z+h) 32a.cb2+ (9a2q(l):1}az

cosh kh

cosh 2k(z h)

cosh 2kh

14

Since the disturbance is a progressive wave, we can look for a solution of

(2.3)-(2.6) of the form

00 00

0 = E OnETh , nE CE', (2.7)
n=oo

where E = exp {i(kx wt)}, q, = , C_Th = Cr* and * denotes the complexn

conjugate. Also write

00 CXD

On = E Eion Cr/ , (n > 0), (2.8)
j=n j=n

where cbj is a function of 77, z, and T only, Cnj is a function of ?), and T only

and ckoo = Coo = 0. The variables 77 and 7 are given by



se : o1=0,

EE1 :

E2 E° g(02 cg ac401 k2(1 0.2)i A 12

62E1 9(12 = iwD c9

6.2 -72 k2A2 (c1;a-23) 3ik2A (1a4-t g(22 F 2

4o2

The coefficient of E3 E° in (2.5) involves'P--(9-aa from the chain rule when 2-C isat

calculated, and a contribution from at3 . Using (2.11) to eliminate (02 gives

0200i 2001(gh c2) 01'9 - k2 (2cp + c 0-2)) alAl2 (2.14)9 ae ao

where cp = w I k denotes the phase speed of the primary wave. Equating the

coefficients of E3 El in (2.5) and (2.6) gives two algebraic equations for 013 and

63. These equations are compatible only if

2iw'M (c29 gh (1 o-2) (1
2

kho-)) °Ad-ce 82Ap g an2 _

-11e (9_2 12 + 13o-2 2o-4)11112A k2 (2cp cg (1 2)) A8'. (2.15)

Together (2.14) and (2.15) describe the evolution of the progressive wave up

to first order in E, where A(,77, 0) = a(0-1) is given. Note that the form of

equations (2.14) and (2.15) is the same as that of (2.1) and (2.2). One set of

physically reasonable boundary conditions is that the wave dies away sufficiently

far from its center. Thus

1AI -+ 0, vow -4 as + 77 2 00.

15

Now substitute (2.7) and (2.8) into the boundary conditions (2.5) and (2.6).

Equating coefficients of s3 En gives

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

In the next section we will show that up to first order in E the nonlinearity in

(2.15) only effects the phase of the progressive wave.



w(2) = )= K2Wkk K2W11 ti,L e2 dw
g g> 0 C9

dK12w0 2wo 2wo

x= Loci 1(1 0-2)(9 o-2) i(2 (72)(7 0-2)
+ 8a4w1 a2 _ 1,(3 0.2)

30.2i;
2(1 a2)2(1

1+ T

16

The above analysis leading to the DS system is formal and no rigorous justifi-

cation of it appears to have been given in the literature. In the NLS case however,

such justification has been presented by Craig, Sulem and Sulem [11].

In this derivation the coefficient of (001)e in (2.14) is positive for all wave

numbers k and all mean water depths h. The coefficient of Au in (2.15) is

negative. So the analysis of Davey and Stewartson leads to what is now commonly

called the DSII system (after rescaling). In this analysis it was assumed that

there was no surface tension. When the effects of surface tension are included,

the linearized dispersion relation becomes

w2 = (gig K3T)tanh /k2 + 12,

where K = (k,1) is the horizontal wavenumber characteristic of the disturbance

(1 < k) and T is the ratio of the surface tension coefficient to the fluid density.

The boundary condition (2.6) now becomes

(xx(1+ C) + (n(1+ C) gxgsCYg(+0t+(02x+02+0D=T2 Y +

The method of multiple scales now leads to the DS equation

iA, = x12412A

a(DcE + Cr? =

where 0 is the mean motion of the wave packet and

a = tanh kh, = k2T 4,02 = g ko- (1 + T) > 0,



Xi == 1 + --(72)(1 j6) > 0,

gh c2

gh

w {1 0_2KC 29() 4. >0 =
4.00kh w 1 T

and where all of the above functions are evaluated at 1 = 0 (flow in nearly one

direction).

The signs of A and a depend on k, h and T and can assume the values (-F, ),

(, -F) or (+, +) giving the DSI, DSII and equation (1.2) respectively. For small

values of I" compared to kh we get the DSII system. When T is large compared

to kh then we get the DST system. The third type of DS system, equation (1.2), is

achieved for values of the parameters between those of the DSI and DSII systems.

See [15, Figure 2] or [4, Figure 1] for graphs of the relationship between the type

of DS equation and the parameters T and kh.

2.1.1 Stokes Wave Formulation

In this section we will show that a position independent solution for A in (2.15)

leads to traveling wave profile or Stokes wave in (. In Chapter 5 we will analyze

the modulational stability of this Stokes wave.

Substituting (2.7) into (2.8) and using (2.9), (2.10) and the fact that (00 = 0,

we see that the free surface satisfies

17

Now assume that gh > c92. Then (2.15) becomes

3A.
= 0, (2.17)

C = Aexp {i (kx wt)} + c.c. (2.16)

up to first order in o. If A is independent of e and 77 then (2.14) becomes

(gh __c2) 02001 fiha2001 =0.
y 3712



where
(9o--2 12 + 13a2 2a4)

=

The solution to (2.17) is easily found to be

A = ao exp (iw2a02r) (2.18)

with ao real. Substituting back into (2.16) shows that up to 0(E2), nonlinearity

changes the wave phase only. That is, the wave profile is given by

iwao
C exp {i(kx + c.c. , (2.19)

up to leading order, where LT, = w +4.'24E2.

The modulational stability of (2.19) depends only on the stability of the posi-

tion independent solution (2.18) of the DS system. Modulational stability refers

to the possible effects on the progressive wave from the presence of waves which

have side-band frequencies and wave-numbers adjacent to w2 and k interacting

with the fundamental progressive wave. In section 5.1 we will analyze the sta-

bility of (2.19) using a linear stability analysis on the solution (2.18) of the DS

system.

2.2 Existence, Uniqueness and Boundary Conditions

In this section we will state some of the results of [15] concerning existence and

uniqueness of solutions of the DS system. We will then discuss appropriate bound-

ary conditions for the DS system [3].

Ghidaglia and Saut [15] discuss the existence and uniqueness of solutions to

the general form of the DS system

18

iut a2Uyy a31u12u aoOx 0

+ Ory = Our). (2.20)
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Under certain choices of the coefficients, (2.20) can be solved (at least in theory)

by the method of inverse scattering. The theory behind the method of inverse

scattering has existence, uniqueness and continuous dependence on initial condi-

tions results built into it, see [1]. However, Ghidaglia and Saut develop results

for the DS system using more general theories of nonlinear partial differential

equations. Their analysis also cover cases where the method of inverse scattering

is not applicable.

In [15] the coefficients of (2.20) have been normalized so that o2 = I and a =
1. These systems of equations can be classified as elliptic-elliptic, elliptic-

hyperbolic or DSI system, hyperbolic-elliptic or DSII system and hyperbolic-

hyperbolic depending on the signs of (ai, (+, +), ), (, +) and (, )
respectively. The last case, h/h, does not seem to occur in the context of water

waves and no existence theorems are given for this case.

Ghidaglia and Saut prove that the DS system have several constants of motion

ini2 dx dY f ailux12 luyI2 -1:2-(a3lur a4(02s 0020) dx dy,

which we will verify in section 2.3, and

ff(uux u*ux)dx dy, f f(uu* u*uy) dx dy.

They use these constants of motion to help prove existence results in all but the

h/h case of the DS system. Ghidaglia and Saut have shown three results for the

e/e and h/e systems.

The e/e and h/e systems:

Existence and Uniqueness: (i) Let u0 E L2(E2). There exists a unique solution

(u, 0) of (2.20) (with i3 = 1) on [0, T), T> 0 such that

u E C ([0,T), L2(1R2)) n L4 ((o,t) x 1R2)

E L2 ((0,t) X 1R2)



u(0) uo, 0 < t < T.

(ii)If uo is sufficiently small in L2(1R2), then T = co: the solution is global.

Regularity: (i) If uo E 111(112), the previous solution satisfies

u E C ([0, T), H1(R2)) n (to, T), H-1(10))

Vu E L4 ((0,t) x 1112) VO E C ([0, T), LP (R2))

V20 E L4 ((0,t), L9(R2))

for every t E [0, T), p E [2, cc) and q E [2,4].

(ii) If furthermore u0 E H2 (1R2), then

u E C ([0, T ) , H2(13.2)) n c1 (to. T ) , L2 (I112 ))

VOEC ([0, t), H2 (1R2)) .

Continuous dependence: The map u ÷ (u, V0) is continuous from H1(1R2)

into C , Hl(R2)) x C (.1 , LP (IR2)) , where I = [0, and p> 2 in the following

sense. Let u E C (L,H1(R2)), V (75 E C , LP (1R2 )) be a solution of (2.20)

and let uom ---÷ u(0) in 1/1(J112) as n ---÷ oo. Then the solution (u, 0m) with

um(0) uom exists on I provided n is sufficiently large and (um, V0n) (u, 0) in

C , (IR2 )) x C , LP(IR2)), p > 2.

To prove these results they start by expressing 0 in terms of u by inverting

the second equation in (2.20). We will follow this method of inverting the elliptic

operator in section 4.1. Solving for 0x gives

= E(jul2), (2.21)

where E, defined in Fourier variables by

Elf)(6, 2) --= (2.22)

is a bounded operator in LP(112) and there exists a constant c = c > 0 so that

20

110.11L,p(R2) cpilul1L2p(R2) 1 <p < cc . (2.23)



Then (2.20) becomes a nonlinear, non-local SchrOdinger equation

iut aiuxx +21yy a3lu!2u a4uE(jui2), ci = +1,

which is given the initial value

u(x, y, 0) = uo(x,y).

This is a particular case of the more general form

iut Lu = F(u),

where the operator L is given by

Lu =
j=1

and the real symmetric matrix ((ilk) is invertible. They then use classical argu-

ments to prove the above assertions.

The e/h system:

In the e/h case the DS system is given by

iut uss uyy a3jui2u a4u0s --= 0,

0.xx c2Oyy == (1u12)T, (2.24)

u(x, y,0) uo(x,y),

where # < 0 and c = Ghidaglia and Saut found that for every no E Hi (R2)

satisfying
[21(:41

max(a3, 0)] fR2luoi2dx dy < 1

there exist u and 0 with

u E Lc." (R+, Hi(R2)) n c (R+, H1(iR2))

E (iR+, Cb(IR2)) , Vcb E L' (R+,Lloc(IR,2)) 1 < q <2

02u

jk aXjaXk

21
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which satisfies u(0) = u0 and (2.24) in the sense of distributions.

To prove this they first use characteristic coordinates, = cx y and 7/ =
CX y, and solved for in

OXX = f,

where f E LW) and 0 satisfies

lirn g6 = lirn = 0.
7?-00

For ever f E Ll(1Ft2), q = K(f) where the integral operator, K, is given by

K(f) 1R2k(x , y; X11 Yl)f(X11 Y1) dX1 41,

1
k(x, y; X1) Y1) = "'h(c(xi x)-1- y yi)h(c(x x) y)

and h is the usual Heaviside function. The DS system now becomes

iut + Au = cr31u12u cy4u ))x

u(x , y, 0) = uo(x,y). (2.25)

Since the operator K has no regularizing effects, the same classical arguments

do not apply. Thus, Ghidaglia and Saut find solutions to (2.25) as a limit of
solutions, /A', to a regularised equation

ieA2t4 + Au = a4u,' (K ((172E12)x))x

726 (x , y, 0) = u(x , y).

Boundary conditions:

In [3], Ablowitz, et. al., investigate the question of the proper boundary con-

dition for applying the method of inverse scattering to the e/h or DSI system and

the h/e or DSII system of equations. They embed the DS system within the KP

evolution equation, maintaining well posedness in time. They then sought physi-

cally acceptable boundary conditions on the DS system when decaying boundary
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conditions are assumed on the KP equation. They found that in both the DSI

and DSII systems lul --+ 0 as x2 + y2 DO. For the DSII system 0, vanishes at

infinity. However in the DSI system q5x 4 0 either as X -4 CO or x oo, but not

both, are necessary to apply the method of inverse scattering. In section 4.2 we

will see that soliton like solutions can be driven by nonzero boundary conditions

on q in the DSI system [14].

In this thesis we will use Jul 0 and 0, 4 0 as x2 y2 oo for the h/e

and e/e DS systems when considering solitons in section 4.1 and solutions which

become singular in Chapter 6. In Chapter 5 periodic perturbations of (uniform)

Stokes wave solutions to the h/e and e/e DS systems will be analyzed.

2.3 Invariants of DS System

In this section we show that the solutions to the DS system must satisfy several

conservation laws. In particular, we shall show that

d T - 0 where I = luI2 dx dy,
dt

and

ddtH = 0, where H=i1 I lux12 ct2luy12 211u12 (ce31u12 a40s) dx dy.

These two quantities should be compared with (1.6) and (1.7) in the NLS case.

We follow the approach used in [15], where conservation laws are derived for a

more general form of the DS system which includes as special cases (1.1).

Consider the system of partial differential equations

iut ceoxx cf2Uyy ce3It1l2u a4u0x 0, (2.26)

Oxx + 00yv = (2.27)

where u E C, E IR and al, , a4, /3 are real constants. The complex conjugate

of (2.26) is

iut* ux*s cy2uy*, a3lul2u* cr4u*cbs = 0, (2.28)



Thus

jj{al (uxxut* ux*xut) a2 (uyyut* uy*yut)

-Fa3lui2 (juj2) a40x (1u12) dx dy = 0.
t

Or

If either periodic or decaying boundary conditions are assumed on u, then inte-

gration by parts on the first two terms yields

al I ur 12 aduy12 - ct3 Our)) t+ ce4Os (11112) t} dx dy 0. (2.31)

To write the last term as a time derivative, differentiate (2.27) by t and multiply

the result by 0 to get

00xxt + ,300yyt = (1u12)xt

(00xt)s + fi(ooyt)y o.xoxt i@oyoyt = [(17112)t o]s (kilt os.

Now integrate and use the assumption of periodic or decaying boundary condi-

tions to get

fOr (17212) dx dy = I I {St + /30y001 dx dy
ld fir

= J J 1(0.)2 + (o021 dx

Integration by parts of the right hand side of this equation yields

IOs (17112) dx dY --21 ddt if kbxx + *400 dx dy.

24

where u* denotes the complex conjugate of u. To derive the Hamiltonian of the

DS system as a conserved quantity, multiply (2.26) by u't' and (2.28) by ut and

add to get

ai (uxxut* nut) a2 (ttyytit* 22:02t)

a3jul2 (uut* u* tit) a40, (nu,* u* ut) = 0. (2.29)

(2.30)

(2.32)



ut i (aiu,s a2Uyy a3lu2u ce4u0s)

(aiuX*X a2u* ee312/122/* a4U*Os)
YY

+ Ocbyy = (11112)x.

The Hamiltonian formulation of this system is

au SH au* SH
at at su

where H can be written as

H = I f
1 22 1

Ctitisti*x a2220* CY3U )
*\

2a4uti*Os}
'Y 2

and the variational derivative used on the right hand sides of (2.34) satisfy

lim
H(u ea, u*) H(u, u*) f H ,

--= u ax,cr0 Su

25

Then the use of (2.27) gives

_21 ddt (,u,2)
dx dy,I I Os (1u12) dx dy

and integration by parts gives

(i
1 ddt f f 2

Ox ttl2) dx dy I I dx dy.

Therefore, (2.31) becomes

--cd {ceilux12 a2luy12 -1-17/12 (a3lur a40s)} dx dy -= 0.

Thus, we see that

H i f f {ailur12 a2luy12 17112 (a311/12 CV40x)} dx dy, (2.33)

is conserved. Note that if there is no x-dependence, then (2.33) becomes the

Hamiltonian for the NLS equation (1.7).

To see that H is the Hamiltonian for the DS system note that (2.26) and

(2.28) form a system of equations in the variables u and u*

(2.34)
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for all li which are suitably smooth and decay to zero at the boundary. To see

this, first note that if v = 0,, then

v Ov = (1u12),

which has solution

v = G(x - , y - y')[u(x' , y')u* (x' , dx/ dy' ,

where the Green's function is given by (see [1, page 255])

G(x, y) = 47rio ln (y2 + i3x2) .

Next note that the variational derivatives of all but the last term in the Hamil-

tonian are derived in the same manner as for the NLS case. Thus, it remains to

be shown that if

J(u,u*) f uu*v dx dy ,

then
6J

= -2iu*v.
Sn

Let q = u(x , y) be the generalized coordinates and r = u* (x , y) be the generalized

momenta and denote q' = q(x' , y') and r' = r(x' , y'). Then

J (q + eq", r) - J (q, r)

.1 (q+ CO- f G(x - x',y - y')[(q'dx/ dy' dx dy

+-i qr G(x - x', y - y') dx' dy' dx dy

ff qr G(x - ,y y') dx/ dy' dx dy

i I"jr I G(x - x', y - y') [q/r1x.,x, dx/ dy' dx dy

fIc-jr f G(x - x', y - y') R/r11s, dx' dy' dx dy,,

where we have multiplied out the terms in the first integral and then canceled

like terms. Now let c 0 to get

1
lim - (J(q + c".4, r) - J (q, r))

E
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ff qr f G(x ,y yi) [q'r/jx,T, dx/ dy' dx dy

ff qrv dx dy

[Vrlx,s, f f G(x1 x, y)qr dx dy dx' dy/

f f q-rv dx dy , (2.35)

where we have changed the order of integration and used the symmetry of G.

But

fG(x' x, y' y)qr dx dy

is a function of x' and V. Define this function to be w(x' , y/). Then w satisfies

wxx Owyy jul2 (= qr).

So, integration by parts twice in (2.35) gives

1
lim (<1(q Eq,r) J(q,r))E.° 6

WT./1w x' dx' dy' f q'rv dx dy ,

Since the solution to this equation is unique we may set v wxx provided we

assume the same boundary conditions on v and wx,. Then the desired result is

attained.

Note that with an additional integration by parts

H=iff f(aluxs a2u)u* (a31u12 + a4c6x) dx dy. (2.36)

For computational purposes (2.36) will be used.

To see that the L2-norm of u is conserved, multiply (2.26) by u* and (2.28)

by u and subtract to get

i(u*ut uun al (u*uxr uux* x)-F ce2 (u*uyy uu;y) = 0.

where we have used the notation w' w(x' , y'). Now note that wxx satisfies the

same equation as v, namely



Thus

I f jur dx dy = i f fai (uu*sx u*uxs) 4 a2 (uu,:y u*uyy)} dx dy.

Integrate by parts and assume either periodic or decaying boundary conditions

on u to arrive at

fI jui2 dx dy = t. (2.37)

Note that this is the two dimensional analog of tiTe NLS case (1.6).

28



Chapter 3

Numerical Method

In this chapter a numerical method for solving the DS system is introduced. A

method for approximating the space derivatives is discussed, and then a semi-

discrete system of ordinary differential equations is introduced as an approxi-

mation to the DS system of partial differential equations. This semi-discrete

system is shown to have a conserved Hamiltonian and /2-norm which are discrete

approximations to the corresponding continuous quantities derived in Chapter 2.

The split-step integration technique is then introduced as a numerical scheme

for solving the semi-discrete system. The accuracy of the split-step method and

its computational complexity are discussed. The integration technique is then

shown to be a symplectic method.

3.1 Fourier Differentiation

To approximate the DS equations it is necessary to have discrete approximations

to a, 2
and If u is periodic and sufficiently smooth, then u can be writtenas as ay2

as a Fourier series. If u decays to zero at infinity and is sufficiently smooth, then

u can be approximated on a truncated domain by the Fourier series:

00 00

u(x,y,t)= E E a(t)
n=oo

27rrn , 27rnwhere pm = pand P is either the period of u or chosen

Am X +ilin

29

(3.1)

sufficiently

large so that the derivatives of u are negligible outside of the region [V, .1-11 x



[V, -1-1)]. Equation (3.1) may be approximated by the finite series

N-1N-1
U(X,y,t) E E a(t)eithrnx+ilinY

m=-N n=-N

provided amn, is negligible for ind > N or Ind > N. Then the derivatives of u are

given by
N-1 N-1

uxY Y11 iymaei4mx+zunY ,

m=-N n=-N
N-1 N-1

us, E E -Than,2amm
4, x+ivny

m=-N n=-N

and
N-1 N-1

_2 -f-ivnyUyy = E vnitnincmx
m=-N n=-N

Now we can discretize the space variables, x and y. Let Ax -= Ay 2N

Xi = V jAx and yk = V kAy. If U is a 2N by 2N matrix such that

U3k(t) approximates u(x3,yk,t), then the approximation to ux is given by

LxU .F11 Ex.FU,

where Lx is a matrix approximation of E, 1 is the discrete Fourier Transform

matrix given by
1 (-27i(j 1)k)

Y-3k = exp
V2N 2N

and Ex = diag {(pm) : m = N,...,N 1} is the diagonal matrix of eigenvalues

for the differentiation matrix. It is easily verified that Y. is unitary, i.e., .F11 =

T-1. An approximation to uxx is then given by

Lx,U = FHEXTFU, (3.2)

where Exx = E. A similar approach is used to approximate U.

Approximating the space derivatives is therefore accomplished by calculating

the Fourier coefficients U = FU, multiplying the Fourier coefficient matrix by

the diagonal matrix of eigenvalues for the derivative matrix and then applying an

30
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inverse Fourier Transform matrix. If U is a n by n matrix, then a Fast Fourier

Transform algorithm can be used instead of the standard matrix multiplication

to calculate O. This is particularly efficient if n is a power of 2. The number of

multiplications needed in approximating the space derivatives Lx, and L

0((n log n)2) multiplications for the Fourier and inverse Fourier Transforms and

n2 multiplications for the multiplication by a diagonal matrix.

3.2 Invariants for the Semi-Discrete DS System

In this section we introduce a system of ordinary differential equations in the

variable t which will be used as an approximation to the DS equations. This

semi-discrete DS system will be shown to have conserved quantities analogous to

those found for the DS system (2.36) and (2.37). The DS equation (2.26) can be

written in operator form as

ut = + iN(u)u,

where

.Cu = aittxx a2ttyy,

ATM -= Cf311112 CV4OXI

with cb satisfying:

Assume a periodic solution of period P and let U and (1. be the matrix ap-

proximation to the continuous variables u and 0. That is, discretize the space

domain so that x3 = --113 jAx and yk = kAy, with j,k = 1, ,n and

Ax = Ay = . We denote the approximation of u(x ,yk) by U3k, and 0(x3,Yk)

by 4.jk

The semi-discrete DS equations are the system of ordinary differential equa-

tions

dl
u iLU -1-iN(U) o U, (3.3)



and
n n

= 0, where I EIU3k12.
3=1 k=1

These should be compared with the analogous continuous quantities (2.36) and

(2.37). First consider the jk-th equation in (3.3)

7itU3k =i[(LU)ik+ N(U) U3k (3.7)

and its complex conjugate

d TT*
-d- [(LU);ic N(U) Pik].

Multiply equation (3.7) by iitU7k and (3.8) by Ujk and subtract to get

0 =-- {1 U;k (LxxU) U
jkl

a2 [(LyyU)jklU3*k+ (LU) Uid

+N(U)ik [Ujk Tid U7k U7k --d7d Uj k }

j=1 k=1

32

and (U*)jk (Ujk)* is the complex conjugate of Ujk (Note: the conjugate trans-

pose of a matrix is denoted by (U11)3k = Lx, and Lyy are matrices

which are the discrete approximations of and -6 defined in the previous

section. (M o N)ik MIkN3k is the scalar or Hadamard product of matrices.

We will now show that this discrete system of ODE's has the conserved quan-

tities

n n
1 1,m_ \

= 0, where H iEE [U;k(LU) + (u )k1U-02
2 3

(3.8)

where

L aiL a2Lyy, (3.4)

Ar(u) N(U) = ce3U o U* (LILA, (3.5)

LTA+ x(U 0 U*), (3.6)



Or

= [(LxxU)ikTtd U;k + (LxxU);k-clid Uid

a2 [(Lyynik-citd U7k (LyyU);k-d7d Erik]

d
+a3Pik127-it (rik12) + a4(Lx(1))Jk-c-ti (luid2)}.

Now we can sum equation (3.9) over all j and k to get

d
E [(Lxxzzoi-dvei + (L.tv)771tWli
1=1

nn
0 = i E UE{ai [(L.U)Jkdt

c7td

cv4(")jkiit ik12 1.

d
(3.10)

We will now show that the terms in the first two square brackets can be

written as a time derivative. Since .T-1 .F11 and

= Ex.F)11 = .F11 ETH = ExF = -Lx,

we can write as

= = E,.F.F11 Ex.F Lx11 LT.

This shows that is self adjoint

Lxilx = (-Lxiqx)11 = -LL = L.

If 7,Ti is any time-dependent column vector, then L being self adjoint gives

(d
x.w)H

7-1tW (LW)
Lx

(ddtW)

= (d
dtzgil) (Lxxli") + 1-1-111

d= dt(17611 L zi;)

d n= 7 (Lsxfp')1.dt =1

cdit L'ul)

(3.11)

33

(3.9)

j=1 k=1
k (Lxx()kdtUjkl

a2 [(LyyU)ik--d7U;k (Lyy U)k WidUjk]



To write the second sum in (3.13) as a time derivative, first look at
n n

E E (ukI2) (Lx(D)p, =
j=1 k=1

n n

E E E (Iuj,12) (L)1k
j=1 k=1 1=1

n n
E E E(r.,,)7i(u 0 u*)ikoik
j=1 k=1 1=1

E (Lxx (ddtW))
/ 1

where we have again used the self adjoint property of in the third line. So

1 d n n n n d
E E (Lxx(1))ik(1)jk = E E LT -0) 0 jk,

2 dt =1 x dtj=1 k=1 jkj=1 k

(3.16)

(3.17)

Similarly

* d
(Lyyg;)2dtw'i (Lyyw)idtwli

34

d *

WI (LYYti;)1* (3.12)
dt1=1 L 1=1

Thus, substituting (3.11) and (3.12) into (3.10) givesd '0 = iE E
dt j=1 k=1

1
{aiU7k(LxsU)ik + cE2U7k(LyyU).; a31U.k142 3

n n

+ E E a4(Lx0)ikddi(Mk12). (3.13)
j=1 k=1

ldTh
=2 dt

1=1

=

1

72cli

d

1(
R

r

Lw xxID

TItc 1 (71H ) (Lxxu-;)

H(Lsx11;) (L)11

Ttd (Lsx'65)]

)]

71

= E E (Lx(U 0 U*))7k lk (3.14)
k=11=1

where we have used (Ls)jk = (L,)3. Now since U o U* is real, (Ls(U 0 U*))*Ik =

(Lx(U o U*))11, so (3.6) implies

n n n n

E E (lUjkl2) (Lx4)).ik = E E (Lxso + oLyvo) (3.15)
j=1 k=1 j=1 k=1

Next, let IV be a real column vector and look at



and similarly

j=1 k=1 j=1 k=.1(

1 d n n

2 dtEE (LYY(I))jk jk E

1 d
2 dt 2-, 2_, J3k1- (LA)

3=1 k=1

dt(I)) (I)3k

Now differentiate (3.15) with respect to t and use (3.17) and (3.18) to get

d
ri d

L
VjYY )

1 d - En
(lUjkl2) (L41°)ik =

jk1 k=1 sx3
2-dt j=1, k=1

Differentiating (3.6) with respect to t and substituting into (3.19) yields

= En En ( (U 0 U*)) (19 jk
dtj=1 k=1 jk

and using the same procedure as in (3.14), this equation becomes

1 d 2\ n n d

dt 2_d 2_, (upd ) (Lx(D)i = E E (rik12)
j=1 k=1 j=1 k=1

Now (3.13) becomes

d {" 10 = E EU;k (Lxx U)ik a2U7k(Lyytnjk
2a3lIfik4]j=1 k=1dt

n n

+E E ±-ce4 (lui,12) (Lk}.
2j=1 k=1

So
n n

1
H=JEE {u;k(Lu),k + N (U)jklU 12] (3.21)

3=1 k=1

is conserved by the semi-discrete DS system.

We will now show that (3.21) is the Hamiltonian for the semi-discrete DS

system
d irr Tr r'k = i(LU)jk lujk 1 I2 r

jk ce4zojk(-LIT).idt 3

Lc1) /31,43. = L,(U o U*),

and its conjugate

dtU i(LU*) jk Ce3i1U 12U;k ce4iU;k(Ls.1))ik.

35

(3.18)

(1) jk (3.19)

(3.20)



To see this, first expand H
n n

36

1 \ 2 1H =iEE [U7k(LU)ik + ct3u,;, (u7k) + ci4ujku7,(LA)Jki ,
j=1 k=1

and note that (Io depends on U and U*. Note also that in this Hamiltonian

formulation U and U* play the roles of the generalized coordinates and generalized

momenta of the system. Then

d, aH d H
dtu ik au;k dtuik

is the Hamiltonian formulation for the equations of motion.

To show that H is the Hamiltonian, differentiation of the terms involving LA

is the only nontrivial operation; thus we will expand that term and show that

E (LA) jklU3k12 = 2 (LA)pq r2;7
aupq 3,k

In the case # = 1 we can write

(LA).1k

aujk'

= (THB 0 .F (U 0 U*))
jk

= E jiblk E Y-hr, lUrnk12
1=1 Tri=1

71

`Triblk E .Fin.lurr,k12,
m=1

where .F is the Fourier Transform matrix and B is a constant matrix which we

will formally derive in section 4.1. Thus

E (LA)ik IU3k 12 = -Trjb1k.TimlUmki2tu
12.

3,k

Now differentiate with respect to Upq

a
E(Lx4.) iu 21,1aUpq 3,k lk 3

-.= .Tribig,TipUp*q luiq 12

+ EFl*pblq1M, lUrnq I2Up*q
lon=p

+ E .Frpbigp (2Upq (Up*q) 2)

2 E 12 Up*q

1,m

--,-- 2 (Lx(1))*pgUp*q.



Thus
n n

E rik12 o.
dt j=1/1=1

3.3 Split-Step Method
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But LA is real so we get the desired result. In the case /3 = 1 the linear

transformation which describes L,(1) is more complicated but the same result

holds.

Finally, we will show that the 12-norm of the semi-discrete DS system is con-

served. Multiply (3.7) by U7k and (3.8) by Uji, and add to get

TT, d d * r

jkujk U3kUk Fik(LU) Uak(LU);k] .dt3 2

Summing over j and k yields

rik12 = {U;k(LU)Jk Uik(LU);k1
j=1 k=1 j=1 k=1

If Cu' is a column vector and L x x is self adjoint as in (3.11), then

E [w;(Lxxot w1(Lsx'tV)71 = Lti; (L)H zi5
1=1

=0.

Similarly

E[wi*(Lyyz-01 wi(Lyyt-)1= 0.
1=1

(3.22)

In this section we introduce the split-step Fourier method. The split-step method

is shown to be second order accurate in time when applied to the DS system in

the case where = 1 in (3.6). It is shown to be only a first order method in the

case = 1. We then discuss the computational complexity of the scheme and

show that the split-step method conserves the 12-norm of the solution.

Consider the system of differential equations,

dtU = (L N(U))U, (3.23)
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where the linear and nonlinear operators, L and N, operate on the complex vector

valued functions U(t). Discretize the time variable and denote

Um = U(t,),

where U(to) is a given initial condition, t, = to + MT and T is an increment of

time.

The time integration method that will be considered is a split-step method

which has been discussed in [25] and [26]. See also the discussion and other

references in [28]. The split-step method takes the form of

Wm exp (-1 N (Um)) Um ,
2

Wm = exp (7-L)Wm , (3.24)

Um+1 exp (-217N(tivm)) Wm.

In the case of the semi-discrete DS system the linear and nonlinear terms, L and

N, are given by (3.4) and (3.5). If Fourier differentiation is used for the linear

term then, as in (3.2),

.F11 Exx.F.

Thus

exp(rLxx) .FH exp(rEsx).E, (3.25)

where

(exp(rEsx))ik = exp(T(E.)

The nonlinear step is calculated as follows

[exp (-1 N(Um)) = exp (-2T N (Um)3k) U3 .

2 jk

We will discuss in detail the inversion of (3.6) to solve for 1. in section 4.1 for

the h/e and e/e cases and in section 4.2 for the e/h case. The above linear step

corresponds to solving ft U = LU approximately. In section 4.1 we will show that



U(t, T) U(t) TUt(tm) +
27-2Utt(tm)

0(T3)

U(t) + T [L + N(U(t))]U(t,) + T2 7-itd [(L + N (U)) U] (t,)

+0(rd)

= U(t) + T [L + N(U(t))]U(t,)
1 div

272
[(L + N(U(t,)))Ui(t) + dt(U(t,))U(t)1

+0(1-3)

= U(t) + T [L + N(U(t,))]U(t,)
1 dN

N(U(t)))(L N(U(t,))) - (U(t,))]U(t)
+-272

{(L + +
dt

+0(r3)

U(t + r) U(t,) + T + N (U (t))] U(t,)
dt

[(U (t))

+L2 + LN(U(t,))+ N(U(t))L + N(U(t,))21U(t)

+0(73) (3.26)

Note that, in general, L and N do not commute.

Next expand (3.24)

1 1
Wm = Um + T N (Um)Um + 72N (Um)2Um + 0(73).

Thus
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the above nonlinear step corresponds to solving U = N(U) 0 U exactly in the

case where 3 = 1 in (3.6) (the h/e and e/e DS systems). In section 4.2 we show

that the nonlinear step corresponds to solvingcd-i-tU = (U) 0 U approximately in

the case 3 1 (the e/h DS system).

To calculate the formal order of accuracy of the method when applied to the

DS system, first expand U about t, and use (3.23),

Wm = Wm + /LW"' 1T2L2Wm 0(r3)
2



which leads to

Un2+1 = [I + r/V(Wm) + T2N(1712m)21 Wm + 0(73)
2 8

1 1 ,
= Um + T [I/ + N (I I 7n ) + 2N (Wm )] Um + y7-2 [L- + LN(Um)

1 1

+4N(Um)2 + N(Wm) (L + N(U772)) +
1
iN(Wm)21tIn

+O(r). (3.28)

At this point it is necessary to know the form of N(U), namely N(U) = ia3U o

U* +ia4Lx0, where cl. is a linear transformation of U oU*. Thus, N(U) is a linear

transformation of the nonlinear quantity UOU*. Let tP denote this transformation

matrix, i.e. N(U) = tIf (U 0 U*). Then with the use of (3.23) we get

(U) = %If (Utor+UoUt*)
dt

= tlf (LU 0 U* + U o LU* + 2N(U)U o U*) . (3.29)

From (3.27)

1
= Um + T [L + N(Um d Um

1 1

+-27-2
[L2 + L N (Un) + -ziN (Um )2] Um

+ 0 (T3) ,

40

(3.27)

N(Wm)

=

iii (17v7-- 0 (W--)*)

1
T (Um 0 (Um)* + 7-11.Urn 0 (Um)* + Um 0 L(Urn)

+2N(Um)Um 0 (Urn)*} + O(2))

=
dN

N(Um)
(9(T2).

+ (3.30)
2 77/t (Um) +

Then

Um+1 = Um + 7 [L + N(Um)]Um + T2 dNL2
dt

(UN+
2

+LN(Um)+ N(Um)L + N(Um)21Um + 0(-3) (3.31)
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Comparison of (3.26) and (3.31) indicates that U (t, r) = Um+1 + 0(73),

or that the scheme is accurate to second order. In the case where 3 = -1, N(U)

is solved only up to first order in r, so the method is also first order accurate in

this case. Similarly

Wm exp (-2-1 7L) Um ,

exp (7N(Wm)) Wm ,

e x p (-1 T
2

(3.32)

is accurate to second order when ,3 = 1 and first order for 13 = -1.

Computationally, the scheme (3.24) requires calculating N(U) and exponen-

tiating 2j times per j iterations. If Fourier derivatives are used, then 2j two

dimensional Fast Fourier Transforms (FFT2) per j iterations are also needed for

the linear step. Note that if j > 1 iterations are to be performed between outputs,

then the second method (3.32) reduces to

Wn exp (71,) Un

Wn = eXp (T N (Wn))Wn

for k = 1,j - 1

Wn+k exp (7 L) n+k-1

wn+k = exp (7 N (wn+k)) wn+k

end

Un+i exp (-12-7_0 Wn+i- ,

which requires calculating N(U) and exponentiating j times and 2j 2 FFT2's.

This concatenation of the linear terms can cause a significant savings in compu-

tation time in the case of the DS system where, as we will see in the next chapter,

calculating N(U) requires two or more FFT2's.

This amalgamation is due to McLachlan [20], [21], and was not known to this

author until after the simulations of solitons and dromions had been conducted.



wm (w3k 3k exp (1
1 ,

--2riN(Um)ik) U9i7, exp (---2rzN(Urn)

=-- IT;111, (U) .

(u3
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The simulations in Chapter 4 where conducted using (3.24) and later it was

verified that (3.32) produced the same results in two-thirds the time.

To see that the split-step method conserves the 12-norm of the solution we

proceed as follows. First recall the form of the semi-discrete DS system

dtU = iLU iN(U) o U,

L = ctiLss cf2Lyy = (Eo) F, and NW) = cy3U o U* a4LA,

where

Lsx43 inyy4D Lx(U a U*)1

and E is a real, constant matrix. Then the split-step method becomes

WIZ1exp (-2riN(Um)ik)

Wm exp (riE)o TW7n

jkU+1 exp (-17-iN(17-17)ik) W,Tc.
2

m

In the first step, since N(U) is real, we get

Thus 11W112 = Um Similarly, 11 Um+1111, = lWmi. In the second step we

use the fact that .T is unitary and E is real to get 11-W7'111/2 1114777111/2. Therefore,

the split-step method conserves the 12-norm of the numerical solution of the semi-

discrete DS system.

In the next section we show that the split-step method is symplectic when

applied to the semi-discrete DS system.



3.4 Symplectic Transformations

3.4.1 Symplecticness of the Split-Step Method

In this section we will show that the split-step scheme is symplectic when applied

to the DS system. A transformation, W = MV where M is a 2n x 2n matrix is

called symplectic if

( 0 I)
I 0 )

First consider the easier one dimensional case of applying the split-step method

to the NLS equation

ut = iu (3.33)

where u = u(x,t) is complex valued. Let u p iq, where p p(x,t) and

q q(x,t) are real valued, then the NLS can be written as a system

Pt
2(p2 + q2)q

= Pxs 2(p2 q2)p. (3.34)qt

This system has a linear and a nonlinear part. Consider solving the linear part

of this system:

Pt qsx

qt == PTT. (3.35)

This can be discretized as

MH JM = J where J =

where

and =

Here Lzx is the n x n second derivative matrix. Advancing the linear part via the

split-step method becomes

dt1 (0
Tit Lxx

43

111+1 = exp(rD)v , (3.36)



where

( 0
0 )

(.FH 0 ( 0 Exx) 0

0 pH) E 0 ) 0

Thus, the linear transformation matrix for advancing the linear part is

exp(rD) = FHEF

where

Thus

F
.

and E = exp
( l

(F
0 0 E

0 .F) Exx 0

If A is any real diagonal n x n matrix, then basic calculations give

( 0 A) cos(A) sin(A))

A 0 sin(A) cos(A)

( 0 A) ( 0 A)
exp Jexp = J.

A 0 A 0

( 0 A\
exp

A 0 )
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(3.37)

(3.38)

is symplectic for A any real diagonal n x n matrix. Likewise, a direct calculation

gives

FHJF = J.

Similarly FJFH = J.

To show that advancing the linear part in the split-step method is symplectic,

look at

exp(TD)RJexp(rD) = (FHEF)H JFHEF

= J. (3.39)

exp

and



Now consider the nonlinear part of the NLS equation

ut = 2iIu12u.

Let u = p + iq as before to get

Pt . 2(p2 + q2)q

qt = 2(p2 + q2)p. (3.40)

Note that

ppt + qqt = 0,

which implies
d(2 + q2) n

u Or p2 + q2 = c,dt'
where c is independent of t. Thus (3.40) becomes

Pt = 2cq
qt = 2cP,

which can be discretized as

di/ =2 ( 0 I)
v,

dt e I 0

where V is as above. Now advancing the nonlinear part becomes

( 0 2c7 I)
--4-14

_.1
v = exp v .

2cr I 0

In this case the transformation matrix

( 0 2c7I)
exp

\2c T1 I 0 )

is of the form in (3.38) and is therefore symplectic.

Since the composition of symplectic maps is symplectic, the split-step scheme

is a symplectic integrator when applied to the one dimensional NLS equations.
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(3.41)



and

Pt = (a3(P2 q2) (140x) q

(ce3(p2 q2) a40x) p.

Multiply the first equation by p and the second by q and add to get

q2) n,
u Or p2 + q2 = c,

dt`
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To apply the split-step method to the DS system, consider the linear and

nonlinear parts

ut = iatu, i(A2Uyy

(3.43)

where c is independent of t. Since lul2 is independent of t, the second equation in

(3.42) implies that 0, is independent of t provided that the boundary conditions

on 0 are time independent. In the h/e and e/e DS systems we assume that the

boundary conditions are independent of t, so (3.43) becomes

Pt =

qt = (3.44)

where -6 is independent of time. Thus, the map which advances the nonlinear part

of the DS system and its symplecticness follows in a similar manner to the one

dimensional NLS.

ut = ice3jul2u ice40,u

xs + 130yy = u12), (3.42)

Advancing the linear part of the DS system and showing that the map which

advances the linear part is symplectic follows from two dimensional arguments

analogous to the above one dimensional arguments. In the nonlinear part write

U = p iq where p and q are real functions of x, y and t. Then the nonlinear

part can be written as
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In the e/h DS system the boundary conditions can depend on time. It is

not clear how this effects the symplecticness of the split-step method. However,

in section 4.2 we will see that the split-step method accurately simulates known

dromion solutions of the e/h DS system.

3.4.2 Why Use a Symplectic Integrator?

Why is it preferable to use a symplectic integration method over a non- symplectic

one? To answer this question, consider the one dimensional NLS equation instead

of the more computationally complicated DS system. The NLS equation (3.33)

can be approximated by the system of ordinary differential equations

clu = i ((L17) 2luil2u3) ,
dt 3

(3.45)

where the computational domain. V, P], is discretized by Ax = -)k, x3 =-

V) jAx and 723(0 u(x3,t) the approximation of the solution to the NLS

equation, which is assumed to be periodic. This is basically the same as (1.3)

except that now we are using Fourier transforms rather than finite differences to

approximate the derivatives. With this discretization we showed that a standard

Runge-Kutta method does not do a good job of simulating recurrence. We now

give an example of how the split-step method does simulate recurrence with this

discretization.

The software package MATLAB was used to solve the system (3.45) for an ex-

ample corresponding to the recurrence phenomenon discussed in section 1.2 with

two unstable modes in the region (1.10). The parameters used were P = 4V-2-7r,

N = 32, T = 0.01 and an initial condition u(x, 0) = 0.5 (1 + 0.05 cos(27x/P)).

Both the second order split-step method and MATLAB 'S ode23 routine were

used to approximate the solution to the NLS equations with the above parameters.

MATLAB 'S ode23 routine uses second and third order Runge-Kutta integrators

with an adaptive step-size to solve initial value problems. Figure 7 shows the
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numerical solutions generated by the symplectic split-step method and the non-

symplectic Runge-Kutta method. Figure 8 shows contour plots of Figure 7. Note

that the Runge-Kutta method has lost the symmetry of the solution by t = 80.

The symplectic split-step method, by contrast, maintained the recurrent behavior

and the symmetry of the solution throughout the simulation.

In this case the split-step method proved superior to the Runge-Kutta method

because it preserves the symplectic structure of the solution. The split-step

method does this by solving the linear and nonlinear parts of the NLS sepa-

rately and in the case of the NLS, the nonlinear part is solved exactly. The

Runge-Kutta method is not designed to solve the nonlinear part accurately with

this discretization and thus it fails to simulate the nonlinear effects as well as the

split-step method. In this example, it appears that it is not necessary to have an

integrable discretization of the NLS to avoid numerical chaos. The non-integrable

discretization of the NLS does exhibit the nonlinear phenomenon of recurrence in

a long-time integration provided that the numerical method applied is symplectic.

For this reason, we will use the split-step method to integrate the semi-discrete

DS system (3.3)(3.6).



SplitStep
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Figure 7. Solution of NLS equation: P = 4'12-7, N = 32, q ------ 2, 7 = 0.1 in split-step method,

u(x, 0) = 0.5(1 + 0.05 cos(27rx/P)). lul is shown for 0 <t < 100.

x t

RungeKutta

x t
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Figure 8. Contour plots of solution of NLS equation.
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Chapter 4

Solitons

In this chapter soliton and soliton-like solutions of the DS system are discussed.

We begin by showing how the split-step method can be applied to the DSII

system. The DSII system is first split into linear and nonlinear parts. The

inversion of the second equation in the DSII system is then formally derived

and the split-step method is shown to be equivalent to solving a linear and a

nonlinear problem separately. Finally the method is used to simulate a rational

soliton solution of the DSII system.

Next, the DSI system is studied. The DSI system is transformed into charac-

teristic coordinates so that the second equation in the DSI system can be inverted.

The solution to the nonlinear part of the DSI system is then discussed and ex-

amples of dromion simulations are presented.

These simulations represent what we believe to be the first numerically gen-

erated soliton and dromion solutions to the DS system and will appear in [29].

4.1 DSII System

4.1.1 Applying the Split-Step Method

Recall the DSII equations (1.1), with o-2 = 1,

ut = (L Ar (u)) u,
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where

Cu = (u,s
2

and 0 satisfies

to invert the operator

In this case a spectral method can be used to calculate 0 up to a constant.

Write 0 as
00

cb(x,y,t)=. E E oik(00,,s+u,),
3=-00 k-,--co

27rj 2irkwhere pj = p Vk = and x and y are restricted to intervals of length P. If

lul2 is also written as a Fourier expansion,

00 CC

= E E fijk(t) Ajx+vky)

=---00 k=-co

then (4.1) becomes

00 00

82 62
ax2 ay2

E (-14 q)
j=Qo k=oo

1711'' X+11/1Y)Yjkei = E E
3=-00 k=oo

Thus, for j and k such that tt 0, ç is given by

jk= j2 vk2Ujk

This determines 0 up to an additive constant. Thus,

00 00

y, t) =- E E bik(t)ez(g)x-i-vkY)
3=-00 k=-0,0

where

0, if j = 0 and k -= 0
bjk = 2

otherwise.

Ar(u) = i
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Oxx + On 2° (H12)s (4.1)

In order to use the split-step method to calculate an approximation to the solution

of the DSII equation, we must solve for 0x at each time step. Thus, it is necessary

(Mx,



and

where Ujk U(Xj,Yk),

1 1x = --P j Ax , yk --2P + kAy, Ax = Ay =
3 2 2N'

and

= rnAtt, vn nAv, Ap, = Ay =

The indices rn, n, j, k range over N to N I. (Note that it is possible to use a

rectangular rather than a square grid). The equivalent equation in Fourier space

to (4.2) is then
tymn (ft2rn un2) Omn = 0,

which has solution

iut u0s = 0
Oxs Oyy 2cv (12112)s = 0, (4.3)

the linear and nonlinear parts of the DSII system. Thus, (3.24) corresponds to

time integrations of (4.3) over a half time step, then integration of (4.2) over a

full time step and finally, integration of (4.3) over a half time step. To see this,

first consider (4.2). Since we assume that u 0 and cb 0 as x2 + y2 oo,

the computational domain can be restricted to (x, y) E [V, I=)] X [V, P],

where P is sufficiently large so that u, O, and their derivatives may be accurately

approximated by finite Fourier series. Let

Ujk = EorrineicAm,m n
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Now applying the split-step method to the DSII system corresponds to solving

jut+ 1(u ttxx) = 0,
2 " (4.2)

(4.4)

rnn(t1 r) = exp (itm2 vm2) At) rImn(ti). (4.5)
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Thus, the linear part of the split-step method is computed by transforming U3k(ti)

into Fourier space thereby giving the values of 0,27, in (4.4), then advancing the

solution in Fourier space via (4.5) and finally, the solution Uik(ti + 7) is given by

an inverse Fourier transform.

To solve the nonlinear problem, the second equation in (4.3) is solved for

0x. To solve the first equation in (4.3), we use a method which is similar to the

approach used in [24] for finding the strong coupling limit of the DS equations.

Let u r exp(i0), where r and 0 are real functions of x, y and t. Then (4.3)

yields

rt = 0, and Ot = ar2

The first equation implies that r ro(x, y) is independent of time. The sec-

ond equation in (4.3) now becomes cbyy 2a(r)x = 0, so 0 is also time-

independent. Thus,

= (art; Ox)t + 00

and the solution of (4.3) over one time-step becomes

u(x, ti+ 7). u(x, y, ti) exp (alu(x, y, ti)12 cb,(x,y,t1)) 7) .

Notice that in the above, (4.3) is solved exactly and (4.2) is solved up to the

number of Fourier modes included.

4.1.2 Numerical Test for DSII

As a test of the split-step method applied to the DSII system, consider the rational

one-soliton solutions derived in [7] and also reproduced in [1]

2v exp{A(x iy) A*(x iy) i(A2 (A*)2)t}u(x,y,t) =
j(x + iy)+ 2iAt12 1v12

where A, it and v are arbitrary (complex) constants. Setting these constants all

to 1 gives a solution to the DSII system of

2 exp(2i(y t))u(x,y,t) = (4.6)
1 + (x +1)2 + (y 202.



Figure 9. Numerical simulation of the rational 1-soliton of the DSII system, as computed by

the split-step method. Here N = 64, Ax = Ay = 0.5, x, y E [-16, 16], r = 0.01.

Using t = 3.5 in (4.6) as an initial condition for the split step method, Figure 9

shows lul, as a function of x and y, which is a single hump traveling with speed

2 along the line x 1. For this simulation the computational domain was

[-16, 16] x [-16, 16], 64 grid points were used in both the x and y directions, i.e.,

Ax = Ay = 0.5, and the time step was T = 0.01. Even on this coarse grid, the

computed solution simulated the true solution to an acceptable degree. Figure 10

shows contour maps of the simulated and the true solution. Note that the speed

of the soliton is also approximated accurately.

Rational solitons of this form are notoriously hard to simulate numerically,

even in the case of one space dimension. As an example, such solitons arise in the

Benjamin-Ono equation; see [18]. The difficulty in simulating rational solitons

arises because of the slow rate of decay as lx1 oo. A much larger computational

domain is required than in the case of exponentially decaying soliton solutions.

This causes a lack of resolution. However, the scheme used here did not have any

difficulty in simulating the true solution accurately.
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Theoretical Solution Numerical Solution

-10 0 10 -10 0 10

Figure 10. Comparison of the theoretical and numerical solutions of the rational soliton. Level

curves of lul are shown.

As another check on the split-step scheme, the Hamiltonian (3.21) and the 12-

norm for the numerical solution were calculated. The split-step scheme preserved

the 12-norm exactly (up to the accuracy of the computer). Thus, for the numerical

simulation of this rational soliton, (3.22) is satisfied. The split-step scheme does

not conserve the Hamiltonian exactly, but in this simulation (3.21) was conserved

to at least six significant digits over t E [-3.5, 3.5].

4.2 DS I System

4.2.1 Applying the Split-Step Method

Following the convention in [14] and [23], and changing the notation of the space

variables for later convenience, the DS I system is given by

1
iut + (unn u) aluI2u = 0 (4.7)



- - 2a (lul% = 0 (4.8)

where it is assumed that u 0 as 2 + 772 00 and a = +1. To apply the split-

step method to this system, the second operator (4.8) must first be inverted. To

this end, change the space variables to characteristic coordinates: x + y and

y = - 7/. So (4.7) becomes

iut uxx uyy u (alu c5y) = 0, (4.9)

and (4.8) becomes

40xy - 2a (1u6s - 2a (1u12)y = O.

This in turn implies that

1

x -a f (12112) dy +1 2 +(x,-,t),o2 x 2
-00

and
1 .xf ( 0 1 0

Oy = -a
)

dx +
2 Y 2

-00

where the last term on the right of each equation represents boundary conditions

which must be specified. Now (4.9) can be written in the form

iut + us, + uyy - uV = 0,

where

V x
1 1V = -a f (1u12) dy + -a 1 (1u12) dx + Os(x, -00,0+ Oy(-oo, y, 1).
2 x 2 \ /y

-o. -O.

The DS I system can therefore be written in the form

ut = (C Ar(u)) u,

where

ru = uyy and .N(u) = V.
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So

X3

I01112) dx
2

tt(x,y,t1+ r), u(x, y, t1) exp (iV(x, y, ti)r) ,

approximately.

To calculate V, the integrals

j dx and dy

must be approximated. Since it is assumed that u 0 as 3:2 + y2 oc, a

spectral method may be used to approximate these integrals. That is, consider

[V, -113] x [V, -1P] to be an approximation to IR x H, where P is chosen so

that u and its derivatives are sufficiently small for xi > -12-P and lyi > P so that

u can be approximated by a finite Fourier series

N-1 N-1
U(X, y, t) = E E amn(t)4.xewny

m=-N n=-N

where pn, = = 2" and N is a positive integer. Then

( NE- 1

p rn=-N n=-N
- 2

N-1

E E
7740n=-N
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In this case the nonlinear problem, iut uV = 0, can be solved as follows: let

u r exp(i0) with r and 0 real to get

r = ro(x,y), 0 V dt 00.

Over one time step, 0 may be approximated by

0(t1+1) = I Vdt-i-Oo

= V (ii)T 0(r2) + 00.

N-1
ivnamn(t)ei"m xeiunY) dx

X3

(
\

ivnaei"Y I e x dx
P
2 /



Similarly

a L

Ui(y t) = 2
ay

where the Yj's solve the system

Y.; + E(CY)jkYi, 1 exp [Ai(y
k=1

+(x3 + 2)

N -1

=1

(arnneiiimsVnm=-N nO0

uny

_amneivnY [eibtmxi

N

ivaE
n=-N

p N-1
+(Yk + 2) E ipmarn,oei"mx .

41m

[eivnNiz e -122 })
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(4.10)

(4.11)

With the boundary conditions, Os (x , oo, t) and cb,(oo, y, t), now assumed to

be given at y = AP and x = V respectively, V can be calculated with three

two-dimensional Fast Fourier Transforms (FFT2's) and two one-dimensional Fast

Fourier Transforms (FFT1's).

4.2.2 Simulation of Dromions

The initial-boundary value problem for the DSI system can be solved using the

method of inverse scattering. In [14] Fokas and Santini show that in the case of

non-zero boundary conditions the DSI system can have solutions which are local-

ized, exponential decaying structures which travel in the plane. These dromion

solutions are given by the following algebraic systems, as given in [14] and [23].

Let ui(y, t) be given by

exp [A3'(y iA;t)]yi(y ,t), (4.12)



and the matrix CY is given by

(CY)ik = 1i17' exP [-(Aj + AZ) (y i(A /V)t)].Aj + AZ

Similarly u2(x, t) is given by

u2(x,t) = -2a
ax

; exp 40] X3(x , t),

+ E(cs)3kxk = m3 exp [-it3(x - i 11;01 ,

k=i

(Cx) ik = mimZ exP it*k) (X 4/1 l'ai)]
fek'

In (4.12) through (4.13) above 13, m3, A3, p3 E C and Re), Re(p3) e R+. Then

the solution to the DSI system is given by

M L
21(X y ,t) = 2E E X3(x, t)Yk(y, t)Z3k(x, y, t),

3=1 k=1

where Zjk satisfies

Z jk AirZrk Pjk,

and Ajk is given by

A = p(I + Cu)-' + Cx)-1

where the superscript T denotes the transpose of a matrix, and the matrix p

depends on the initial data. The above solution is called a (M, n-dromion.

Using a combination of the software packages Mathematica and MATLAB, this

author was able to solve the above system. The split-step method was applied to

the DSI system using initial and boundary conditions corresponding to Ai = 2-2i,
A2 = 4 - 0.5i, 11 = 2 + i, 12 = 1 + 2i, pi = 1 - 1.5i, i12 = 3 - 0.5i, m1 = 1

m2 = 2 + 3, p11= 1 + i, P12 = P21 = 0 and p22 = 2 + 3i to simulate the solution

represented in Figures 4-6 in [14]. With a grid size of 256 in both the x and y

directions, a computational domain of [-20,20] x [-20,20] and 7 = 0.01, Figure

60

(4.13)



10 10
10 10

0 0 0

Figure 11. Numerical simulation of a (2,2)-dromion solution of the DSI system with symmetric

p for t = 2.5, ... , 2.5.
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11 shows two dromions passing through one another. As noted in [14], when

P12 = p21 there is no exchange of energy in the collision.

In Figure 12 contour plots of the true and simulated solutions corresponding

to times t 0 and t = 2.5 of Figure 11 are shown. From these contour plots it is

apparent that the split-step method accurately simulated the overall shape and

speed of these dromions.

Figure 12. Comparison of the theoretical and numerical solutions of a (2,2)-dromion solution

of the DSI system with symmetric p. Level curves of ltd are shown.

0 5

oo 5 10 15 5 10 15
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As a more stringent test of the split-step method, a (2,2)-dromion with non-

symmetric p was also simulated. With p12 = 3 + 2i, 1021 = 4 + i and the other

constants the same as above, the split-step method was applied with a grid of 256

points in the x and y directions, a computational domain of [-22, 22] x [-22, 22]

and T = 0.01. Figures 13 through 15 show the result of the simulation. The

theoretical solution was used to generate the initial condition for the simulation

which is shown in Figure 13.

time=-3

Figure 13. Numerical simulation of a (2,2)-dromion with non-symmetric p. = 2 2i,

A2 = 4 0.5i, l 2 + i, 12 = 1 + 2i, = 1 1.5i, tt2 = 3 0.5i, m1 = 1 i, m2 = 2 + 3i,

at t = 3.P11 = 1+ i, P12 = 3 + 2i, P21 = 4+i, P22 2 + 3i,



time=-1

time.°

Figure 14. Continuation of Figure 13. t = 1 and t = 0.
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time=3

Figure 15. Continuation of Figure 14. t = 3.

time=3

Figure 16. Numerical solution of (2,2)-dromion with N = 512 and T = 0.0025, at t = 3.
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oo
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Figures 13-15 correspond to lu which is initially composed of four exponen-

tially decaying humps, localized in the third quadrant of the (x, y) plane. They

move towards the origin, where they collide at approximately t = 0. After the

collision four localized coherent structures continue to move into the first quad-

rant. Note that during the collision energy was exchanged. This differs from the

interaction of solitons which do not exchange energy.

As a comparison to the theoretical solution, Figure 17 shows level curves of iu I

for the theoretical and numerical solutions. Again the overall shape and speed of

the localized structures are accurately simulated using the split-step method with

a relatively course grid and large time step. The deviation from the theoretical

solution which can be seen as low amplitude bands in Figure 15 can be reduced by

Figure 17. Comparison of the theoretical and numerical solutions of a (2,2)-dromion with

non-symmetric p. Level curves of lul are shown.

5 10 15
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choosing the computational parameters so that they more accurately portray the

physical situation. With a finer grid of 512 points in both the x and y directions

on a computational domain of [-23, 23] x [-23, 23] and a step size of T = 0.0025

this "noise" is reduced as seen in Figure 16.



Chapter 5

Modulational Instability

In this chapter the modulational stability of the Stokes wave profile (2.19) is

analyzed through the stability of position independent solutions of the DS system.

This stability analysis is an extension to two dimensions of the analysis carried

out on the NLS equation in Chapter 1. In [8] it is shown that energy is transferred

from the primary mode of a Stokes wave to the side bands and that the rate of

growth in the side bands can increase exponentially. In [30] the instability of

the uniform Stokes wave is studied for the NLS equation. In this setting the

instability leads to an exponential growth in the unstable modes for a period of

time and then a return to a nearly uniform state. In the NLS equations this

process of growth and decay recurs periodically in time. When using the NLS

to analyze modulational instability in the Stokes wave, the modulations are in

one space direction only. In nature, modulation in any direction is possible. In

[9] and [19] side-band disturbances which propagate obliquely to the primary

Stokes waves were studied. However, these studies did not make use of the

DS system. In this chapter the DS equations are considered as extensions of

the one dimensional NLS equation and a linear stability analysis of the uniform

solution is studied and compared to that of the NLS. Instability regions are given

and simulations are conducted to show that the split-step method accurately

simulates these analytic instabilities. Theoretical and simulated growth rates for

the instabilities are compared.
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5.1 Linear Stability Analysis

The Davey-Stewartson (DS) equations are given by

iut aiuss Cl2Uyy a3lui2u+ a4uv = 0,

vss +13v = (u12)

where u = u(x,y,t) E C,v Os(x,y,t) E JR, a2 > 0 and i3 > 0. Then u =

a exp(ia3jaFt), i= 0 is a position independent solution of (5.1). To analyze

the modular stability of the Stokes wave, we must analyze the stability of this

solution of the DS system. To that end, let u (1 + v = 6 be a small

perturbation of the above solution where E = E(X, y, t) E C, 6 = 6(x, y, 1) E

IE(x,y,0)1 < 1 and I6(x, y, 0)1 < 1. Substituting this perturbed solution into

(5.1) and keeping only first order terms yields:

iEt+ alExx ce31a12(E E*) a48 = 0,

6xx #6yy =-- lar(Exs exs), (5.2)

where e* is the complex conjugate of E.

If E and 6 are assumed to be periodic in the space variables, with period Ps in

the x-direction and period Py in the y-direction, then E and 6 can be expanded

formally into Fourier Series:

00 CO

E(x,y,t) = E E Fm ,n(t) exp(i(amx vny))
fl-00

00 00

(5(x,y,t) = E E Sm,n(t)exp(i(umx vy))
m=oo

27rm 27rn=vn =-
Ps Py

Substituting into (5.2) yields:

SS

oo oo
. dEE idtErn,n

011Lm2 Em ,n
m=co n=-00

2 Un2 Ern ,n) Erno,

d-a31a12 (em,nEnz,n azi;L,nEm,rt o,
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Or

or

00 CO

E E (itm2 n
m = - co n=- co

00 00EE Icti2 (//m2 gm,. itm2 Em,n, (5.3)
m-=-oo n=-00

where Em,n= exp(i(umx +/ins)) and we note that p2m = pm' . Since the functions

form an orthogonal set we have

2 d
zt:m n altim2 Em,n 02/in2grn,n a3 la 12(Ern,n + 4.8m,rtdt '

014i2-67n,72 = 12(Fm2 Em,n

From (5.4) we find that

m,n =
ial2firn2

? (Em ,n 7722 + n2 0.Ova

Then equation (5.1) can be written in the form:

d m,n

'-m,-n
,n(

Em,nE

-m,-n
where the matrix Gr,,,,n is given by

( Bin,n Am,
Grn,n

n

B771 ,71

2Am,n a1pm2 CY2//n,

The eigenvalues of Gm,n are given by:

Am2 = Am,n(2Bm,, An, ,n)

2 2
altim aVin [21a12(a3 (14),a2m 2C/301a12Vn2Ovrt2 L

(a1P22 Ce2Vn2)(pm2 Ovn2)].

A2
m,n

( , lap/12m )_avirn2 a2vn2 + a31a12 + '-'41

I2 + ovn2

+i (a3lal ala121122+ 4 . m ) --*iu22 + v2 E-717,-n

m2 + n2 0,

Bm,n

Am ,n Bm,,,

2 a4ial2birri2
Brn,n,

iirn2 Ov712

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)
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Table 1. Coefficients of DS equations for instability plots.

When A77,2 is positive, we can expect an eigenvalue of Gm,n with positive real

part and hence exponential growth, at least locally in Em,m. Note that if the

perturbation is only dependent on y then

An 2 = Vn2 (2a31a12 Vn2)

where we have set a2 = 1. This gives the same region of instability found in

the NLS equation and by Benjamin and Feir in [8] (recall equation (1.10)) when

a3 = 2.

Figures 18-21 show contour plots of A2 as a function of itt and v, with A2

defined by

aiti2 a2v2
A = 2ia12(a3 a4)112 2Ceoicti2v2 (ail2 a2v2)(112 i3v2))

/12 + t3v2

In Figures 18-21 a2 = 1, a3 = 2, = 1 and the other coefficients are given

in Table 1, where "Eq. Type" refers to the equation type, i.e., e/e refers to

an elliptic/elliptic type equation, and h/e refers to an hyperbolic/elliptic type

equation. In Figures 19 and 21 the instability regions are of a shape found in [19,

Figure 4.3].

In Figures 18-21 the shaded region indicates values of A where exponential

growth can occur. In Figure 18, darker regions indicate higher values of A and

hence faster growth rates for modes in the darker regions.
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Eq. Type al a4 fig.

e/e 1 1 18

h/e 1 1 19

e/e 1 1 20
h/e 1 1 21



Contour Plot of Lambda

Figure 18. Instability region for elliptic/elliptic.

Contour Plot of Lambda

Figure 19. Instability region for hyperbolic/elliptic.
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Contour Plot of Lambda

Figure 20. Instability region for elliptic/elliptic.

Contour Plot of Lambda

Figure 21. Instability region for hyperbolic/elliptic.
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5.2 Numerical Results

5.2.1 The DSII System

We extend the example presented in Chapter 1, Figure 5, to two dimensions. We

look at the DSII equations,

iut uyy usx 21U12U + UV = 0,

Vxx. Vyy = /Tx,(!u12 )TT, (5.9)

where v = Os. Let P = -\11- and

u(x, y, 0) = 1 + 0.1 cos(y) + 0.0001 cos (V-2-(x n)). (5.10)

This system is essentially the same as that stated in Chapter 1 (1.11), with the

roles of x and y interchanged and the introduction of a small x-dependence in

the initial condition. The corresponding instability region is given by Figure 22

where the region of instability for these parameters corresponds to Figure 21. The

solid line from (0, 2) to (0, 2) corresponds to the instability region for the NLS

equation, the circles indicate where the Fourier modes (j, vk) are located for this

value of P, the circled *'s correspond to the modes associated with cos(112-y) and

the circled d-'s correspond to the modes associated with cos (\/(x y)). The

evolution of the Fourier modes, 210,0, iti,o and 111,1, are shown in Figure 23 where

ilo,o is indicated by the solid line, by the dashed line and by the dotted

line.

Figures 25-26 are surface plots of the magnitude of the simulated solution to

(5.9) with a grid size of 128 by 128 and 7 = .00025, using the split-step method.

Figures 27-28 show the magnitude of the Fourier Transform of the simulated

solution. In this case the recurrence phenomenon observed in Figure 6 of the

NLS equations is short lived. Energy is transferred to the higher modes along the

diagonals of the stability region. This causes a solution which is highly irregular

as can be seen in the last frame of Figure 26.
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It should be pointed out that although the solution becomes irregular the split-

step method conserved the 12-norm to machine accuracy and the Hamiltonian to

five significant digits (see Figure 24).

The question arises whether the behavior observed in Figure 23, t > 5, is

chaos, or just complicated behavior. If it is chaos, is it present in the continuous

problem, or is it a numerical artifact? It is unlikely that the continuous equations

are chaotic, since the DSII system is known to be integrable, at least in the infinite

domain case and this is very likely also true in the periodic case. To check whether

the irregular behavior might be numerical chaos, as in the discretization (1.3) in

the introductory chapter, we investigated whether the evolution of the Fourier

Contour Plot of Lambda

Figure 22. Instability region and Fourier mode locations. Level curves at A' = 10 and 0 are
shown.



DS Fourier Modes
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Figure 23. Evolution of the Fourier modes in the DSII system. solid line, dashed

line and '1'114: dotted line.

Hamiltonian
1.0202

1.0201

1.02 -

1.0199 -

1.0198o 1 2 3 4 5
time t

Figure 24. Hamiltonian of simulation.

6 7 8 9 10
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modes was affected by the mesh size. Simulations with N 64, 128 and 256 all

resulted in exactly the same transfer of energy to the modes on the diagonal of

the instability region and hence the same irregular behavior.

To investigate whether the solution was indeed chaotic we tested for sensitiv-

ity to the initial conditions. We used the following perturbations to the initial

condition (5.10):

u(x, y,0) = 1 + 0.10001 cos(V4) + 0.0001 cos (\12-(x y)) ,

u(x, y, 0) = 1+0.1 cos(V4) + 0.0001 cos V2-(x y)) + 0.0001 cos (2V-2-(x + y))

u(x, y, 0) = 1 + (0.1 + 0.00001i) cos (1--2-y) + 0.0001 cos (\fi(x y))

and

u(x, y, = 1 + 0.1 cos(.12-y) + 0.0001 cos (f2-(x y)) + 0.00001i cos(x).

None of these initial conditions produced any significant changes from Figure

23. Thus, we conjecture that the behavior observed in Figure 23 is not chaos,

but complicated behavior. Computer resources precluded us from doing more

extensive tests involving a finer grid over a longer period of time.



Figure 25. Magnitude of solution for numerical simulation. Time t = 0-2.5.
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t = 1.0 t = 1.5
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Figure 26. Continuation of Figure 25. Time t = 3.0-5.5.
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t = 3.0 t = 3.5

t = 4.0 t = 4.5
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So

Solving for 10,1 gives,

0 2
G0,1

( 2 0
and equation (5.6) then implies that

2i1o,i.

E c^0,1

e2t c2e-2t.
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To verify at least the onset of the instability, we compare the initial growth

rate of the unstable mode in the simulation corresponding to Figure 23 with the

rate predicted by the linear stability analysis. From equation (5.7) of the linear

stability analysis, if P = V-2-r, then v1 = v--2- and

A0,1 = 2, and /30,1 = 2.

With an initial condition of u(x, y,0) = 1+0.1 cos(0y)+0.0001 cos (0(x y)),

1o,i(0) = 0.05 and 4,_1(0) = 0.05, so CI = C = 0.025 + 0.025i.

Figure 29 shows a comparison of the growth rate of fio,i of the numerical

simulation with the growth rate predicted from the linear stability analysis. The

circles correspond to equation (5.12) at time intervals of 0.1 and the solid line is

the evolution of

As can be seen in Figure 29 the split-step method accurately simulates the

initial rate of growth predicted by the linear stability analysis. After about t = 1

the assumption of lel < 1 is no longer valid and the nonlinear properties of the

DS system, such as conservation laws, determine the long-time behavior of the

solution.
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0.7
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0.4

0.3

0.2

0.1

00

Initial Growth Rate

Figure 29. Growth rate of 'um. solid line, C1 exp(2t) Cik exp(-2t): circles.

5.2.2 The Other Cases of the DS System

In the previous sections the h/e case of the DS system with a4 = 1 was used as

an extension to the NLS equation. The h/e case of the DS system with oe4 ,---- 1

has a similar instability region and the behavior of both systems was found to

be similar as well. In the case of the e/e DS systems, the instability regions are

bounded ellipses and the behavior of the numerical solution differs from the hie

cases dramatically.

As an example consider the e/e case

iut usx uy, 21u12u u0s = 0

Oyy = (17112) x

with the initial condition u(x, y,0) -= .85 + .1 cos(iry/2) + .0001 cos(7r(x y)/2)
where P = 4, N = 128 and T = .00025. In this case the region of instability
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0.5 1 1.5 2.52
time t

3 3.5 4



Figure 30. Region of instability for e/e case and a = .85.
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given by Figure 30 has energy input into the two unstable modes indicated by

the circled x's. The evolution of the three Fourier modes which were initially

nonzero is shown in Figure 31, where ii0,0 is indicated by the solid line, ii0,1 by

the dashed line and U1,1 by the dotted line. Some of the other Fourier modes are

shown in Figure 32. In this case the nonlinear effects of the DS equation quickly

spread energy to modes outside the region of instability as shown by Figure 33

and the solution begins to show signs of approaching a singular solution, Figure

34, which we will discuss in the next chapter. We remind the reader that the e/e

case is not integrable, which is consistent with the unlimited spreading of energy.

However, the initial growth in the unstable mode does behave as predicted by

the linear stability analysis as can be seen in Figure 35.

Contour Plot of Lambda
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Figure 31. Fourier modes in e/e case. solid, iz0,1: dashed, dotted.
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Figure 32. Fourier modes in e/e case. a0,1: solid, dashed,1,1,2: dotted, 7-12,2: dash-dotted.
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Figure 33. Mesh plot of Fourier modes for e/e case at t = 3.5.
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In conclusion, we observe that the uniform solution of the DS system, which

leads to a traveling wave in the free surface of the Davey and Stewartson deriva-

tion, is unstable to side-band interaction of modes which lie within the regions

given. The growth in the unstable side-band modes is initially exponential as was

also seen in the NLS equation. However, in the tests conducted here, no long-

term recurrence was observed. The effects of the nonlinearity in the DS system

differed from that in the NLS in that energy was quickly transferred to modes

which were not unstable. It remains to be seen what the effect of changing the

coefficients of the DS system and hence the geometry of the unstable regions has

on the above observations. One question which remains open is whether or not

there exists values of the coefficients which produce recurrent instabilities.
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Chapter 6

Blow-up in the DS System

In [22] solutions of the elliptic/elliptic Davey Stewartson system which develop

singularities in finite time are discussed. A condition for when singular solutions

arise and a rate of blow-up are derived. In this chapter the split-step method is

applied to the Davey Stewartson system to simulate the singularity numerically.

The rate of blow-up derived in [22] is compared with the numerical solution

produced by the split-step method.

6.1 Applying the Split-Step Method

In the case of the elliptic/elliptic Davey Stewartson (DSEE) system

iut ttyy Osu = 0,

Oxs Oyy (12112)s (6.1)

the split step method is applied in the same manner as in the DS II system. The

only difference is the introduction of an adaptive grid size.

As the singularity time, t., is approached both lul and 1Vul become large for

some (x, y). In order to accurately approximate u and its derivatives with Fourier

Transforms, a finer grid is needed as the singularity time is approached. Thus,

methods for detecting when the number of grid points must be increased and a

technique for interpolating u at the new grid points are needed.



When approximating u by a finite Fourier series

N-1 N-1
u(x,y,t) = E E (t)

j=---N k=N

it is assumed that ilmr, is negligible when Ind > N or In' > N. As the singularity

time is approached, N must be increased to satisfy this assumption. An indication

that more Fourier modes are needed is when any of the 'limn become significant

in size for 1ml or In' near N. When the split step scheme is applied to the DSEE

system the discrete quantity

N N
E E [U;k(LU)jk2N(U)jklUik121,
j.1 k=1

of the numerical solution, which corresponds to the conserved Hamiltonian of

the semi-discrete DS system (2.36), is not conserved exactly by the split-step

method. However, from numerical experiments, the variation in (6.2) is related

to the size of the time step used in the split step method and to the relative size

of the higher Fourier modes used in the approximation of 2t. When the higher

Fourier modes become significant in size, the variation in (6.2) increases. Thus,

the variation in (6.2) can be used as an indicator for when more grid points are

needed to accurately model the continuous DS system.

Next, a technique for interpolating the numerical solution over a finer grid

is needed for when the grid size is increased. Consider a computational domain

of -12-13] X [--12-P, 13] with N grid point in both the x and the y directions.

Then Ax = Ay = If Fast Fourier Transforms (FFT's) are to be used in
the approximations to the derivatives of u, then N should be a power of 2 for

optimum efficiency. Thus, the approximation of u on the grid is given by

U jk u(xj, yk) E E ilM71 ArrzX 1-iVnYk

m n
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(6.2)

where xi = jAx, yk = kAy and the indices, j and k range over
1, ,N and m and n range over the values {_N,. , N 1}. If the number



and similarly

Ay ,
u(x3, yk = E

2 m

Ax
U(X+

2 'Yk) = EEit-
m n

p,m(xj+ .--42=)+11'n"Yk

ejun 2 eitimxj+iunyk

90

of grid points in both the x and the y directions is doubled whenever a finer grid

is needed, then FFT's can be used for the interpolation. The interpolation then

becomes

Ax Ay\
ti(X3 k ) EE m -I- /.,n 2 eimX3-1-tvnyk

2 2 m n

This corresponds to one FFT2 to find the umn, and three series of multiplications

of the limn by constants and FFT2's to get the interpolated values of u.

In addition to increasing the grid size, the time step should also be reduced as

the singularity time is approached. If the time step were too large, then the split-

step method could attempt to step past the singularity time causing numerical

inaccuracy.

6.2 Numerical Simulation

In [22] it has been shown that the DSEE system produces solutions which be-

come singular in a finite period of time provided the initial condition satisfies a

minimum amplitude requirement. We applied the split-step method to the DSEE

system (6.1) using an initial condition u(x, y, 0) =-- 4 exp ( (x2 + y2)/4). The grid

size initially was 128 X 128 with a computational domain of [-8, 8] x [-8, 8] and
T 10-4. The grid size was modified based on a tolerance of 5 x 10-6 in the

variation of (6.2). Each time a grid modification was indicated, the grid size was

doubled in both the x and y directions and the T was reduced by a factor of 4.

Figure 36 shows the profile of the numerical solution as the solution approaches

the singularity time. Figure 37 shows the amplitude of the numerical solution

= EEUmnGimmx3U1,nyk (6.3)
m n
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Figure 36. Evolution of the numerical solutions of the DSEE system.
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Figure 37. Amplitude of the numerical solution. The change in grid size is indicated by the

change in line style. 128 x 128 grid: solid, 256 x 256 grid: dashed, 512 x 512 grid: dotted.

and indicates the grid size during the simulation. In Figure 38 MATLAB was used

to compare the growth rate of the numerical solution to the asymptotic estimate

derived in [22]. Theoretically, the growth rate is
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(1n(litl (t.-717-i;)) 2

1

as t t.. In Figure 38 the circles represent the amplitude of the numerical

solution and the solid line represents the function

(1n1n(L7-:ii

))/\
(t. t)

where we used the MATLAB routine FMINS in calculating the values of C =

0.907221 and t. = 0.130305 which give the best least squares fit.



o

22

20

18

16

(514

12

10

8

lu(0,0,01 vs t

6
0.11 0.112 0.114 0.116 0.118 0.12 0.122 0.124 0.126 0.128

time
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93



Conclusions

The split-step Fourier method has successfully been applied to the NLS equation

to simulate soliton solutions and to investigate modulational stability in Stokes

waves. In this thesis we have extended the application of the split-step Fourier

method from the one dimensional NLS equation to the DS system. We have

tested our method on known soliton and dromion solutions [29], and found good

agreement between the theoretical and numerical results. We have studied the

stability of the Stokes wave through the modulational stability of the h/e and e/e

DS system using a linear stability analysis and found that position independent

solutions of the DS system are susceptible to side-band instability. Regions of

instability were found for these cases and we showed that the split-step method

accurately simulated the initial growth in the side-band modes as predicted by the

instability analysis. We then modified the split-step method in order to simulate

solutions that blow-up in finite time. By introducing an adaptive grid scheme

to the split-step method, we were able to efficiently simulate solutions to the
e/e DS system for times which approach a singularity. We then compared the

rate of blow-up in the simulation to known theoretical results and found that the

numerical solution had the same asymptotic growth rate.

Some of the questions which have arisen in this study are as follows: (i)

How can the split-step method be applied to the DS system in the case that u

does not vanish at infinity? Such solutions were found by Anker and Freeman

[6]. (ii) What is the effect of changing the coefficients of the DS system in the

linear stability analysis? The coefficients can be chosen so that the regions of

instability for the h/e case are bounded lines other than the forty-five degree

lines in Figures 19 and 21. Thus, modes do not lie on the boundary of the region

of instability. What is the physical significance and evolution of unstable modes

in this case? (iii) In the case of solutions which become singular, can a dynamic

resealing algorithm, as in [22], be developed which is symplectic? In [22] it is not
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clear whether the algorithm preserves the symplectic structure of the DS system.

Finally, no convergence proof has yet been given for the split-step method.

To date, the material in this thesis has generated one paper on the computa-

tion of soliton and dromion solutions [29]. It is also believed that another paper

can be produced from a more comprehensive study of the linear stability analysis

in the DS system.



BIBLIOGRAPHY

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse
Scattering, (Cambridge University Press, Cambridge, 1991).

M. J. Ablowitz and B. M. Herbst, On Homoclinic Structure and Numerically Induced
Chaos for the Nonlinear SchrOdinger Equation, SIAM J. Appl. Math. 50 no. 2 (1990)
339-351.

M. J. Ablowitz, S. V. Manakov and C. L. Schultz, On the Boundary Conditions of the
Davey-Stewartson Equations, Phys. Lett. A 148 (1990) 50-52.

M. J. Ablowitz and H. Segur, On the Evolution of Packets of Water Waves, J. Fluid Mech.
92 (1979) 691-715.

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM,
Philadelphia (1981).

D. Anker and N. C. Freeman, On the Soliton Solution of the Davey-Stewartson Equation
for Long Waves, Proc. Roy. Soc. London A. 360 (1978) 529-540.

V. A. Arkadiev, A. K. Pogrebkov and M. C. Plivanov, Inverse Scattering Transform Method
and Soliton Solutions for Davey-Stewartson II Equation, Physica D 36 (1989) 189-197.

T. B. Benjamin and J. E. Feir, The Disintegration of Wave Trains on Deep Water, J. Fluid
Mech., vol. 27, part 3 (1967) 417-430.

D. J. Benney and G. J. Roskes, Wave Instabilities, Studies Appl. Math 48 (1969) 377-385.

M. Boiti, J. J. Leon, L. Martina and F. Pempinelli, Scattering of Localized Solitons in the
Plane, Phys. Lett. A 132 (1988) 432-439.

W. Craig, S. Sulem and P. L. Sulem, Nonlinear Modulation of Gravity Waves: A Rigorous
Approach, Nonlinearity 5 (1992) 497-522.

A. Davey and K. Stewartson, On Three-dimensional Packets of Surface Waves, Proc. Roy.
Soc. London A 338 (1974) 101-110.

96



97

L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons,
Springer-Verlag, Berlin-Heidelberg-New York (1987).

A. S. Fokas and P. M. Santini, Dromions and a Boundary Value Problem for the Davey-
Stewartson 1 Equations, Physzca D 44 (1990) 99-130.

J. M. Ghidaglia and J. C. Saut, On the Initial Value Problem for the Davey-Stewartson
System, Nonlinearity 3 (1990) 475-506.

II. Hasimoto and H. Ono, Nonlinear Modulation of Gravity Waves, J. Phys. Soc. Japan
33 (1972) 805-811.

B. M. Herbst and M. J. Ablowitz, Numerically Induced Chaos in the Nonlinear Schrodinger
Equation, Phys. Rev. Lett., 62 (1989a) 2065-2068.

R. L. James and J. A. C. Weideman, Pseudospectral Methods for the Benjamin-Ono
Equations, in: R. Vichnevestky, K. Doyle, and G. Richter (eds.), Advances in Computer
Methods for Partial Differential Equations VII (IMACS, 1992.)

C. C. Mei, The Applied Dynamics of Ocean Surface Waves, (World Scientific 1989).

R. McLachlan, On the Numerical Integration of Ordinary Differential Equations by Sym-
metric Composition Methods, preprint.

R. McLachlan, Symplectic Integration of Hamiltonian Wave Equations, Numerische Math-
ematik, 66 (1994) 465-492.

G. C. Papanicolaou, C. Sulem, P. L. Sulem and X. P. Wang, Focusing Singularities of
Davey-Stewartson Equations for Gravity-Capillary Waves, preprint.

P. M. Santini, Energy Exchange of Interacting Coherent Structures in Multidimensions,
Physica D 41 (1990) 26-54.

C. L. Schultz and M. J. Ablowitz, Strong Coupling Limit of Certain Multidimensional
Nonlinear Wave Equations, Stud. App!. Math. 80 (1989) 229-238.

G. Strang, On the Construction and Comparison of Difference Schemes, SIAM J. Numer.
Anal. 5 (1969) 506-517.

T. R. Taha and M. J. Ablowitz, Analytical and Numerical Aspects of Certain Nonlinear
Evolution Equations. II. Numerical, Nonlinear Schrodinger equation. J. Comp. Phys. 55
(1984) 203-230.

F. D. Tappert, Numerical Solutions of the Korteweg-de Vries Equation and its General-
izations by the Split-Step Fourier Method, Led. App!. Math. Am. Math. Soc. 15 (1974)
215-216.



98

J. A. C. Weideman and B. M. Herbst, Split-Step Methods for the Solution of the Nonlinear
SchrOdinger Equation, SIAM J. Numer. Anal. 23 (1986) 485-507.

P. W. White and J. A. C. Weideman, Numerical Simulations of Solitons and Dromions in
the Davey-Stewartson System, to appear in: Journal of Mathematics and Computers in
Simulation (Special Issue on Nonlinear Wavelike Equations).

H. C. Yuen and W. E. Ferguson, Relationship between Benjamin-Feir Instability and
Recurrence in the Nonlinear Schrodinger Equation, Phys. Fluids, 21 (1978) 1275-1278.

F. Zhang and Luis-Vazquez, Two Energy Conserving Numerical Schemes for the Sine-
Gordon Equation, Applied Mathematics and Computation 45 (1991) 17-30.



Appendix



A Programs

In this appendix the matlab code used in the simulations of the NLS equation

and Fortran code for the simulations of the DS system are given. In the follow-

ing Nlatlab program the initial condition and some of the parameters must be

specified.

%***** Second order split step method for NLS *****

u_t = iu_x + iqIu1-2u

% Variables which must be specified:
dt - time step size.
M1 - number of outputs (columns of U).
M2 - number of iterations between outputs.
N - number of grid points.
q - coefficient in NLS equation.
u0 - initial condition.

U = [u0];
u = u0;
tcount=0;
n = [-N/2:1:N/2-1]';
mu = fftshift(i*2*pi*n/L);
e = exp(-4*n.*n*pi*pi*dt*i/L/L); % Multipliers for linear step.
e = fftshift(e);
du = ifft(mu.*fft(u));
H = -sum(abs(du).-2) + (q/2)*sum(abs(u).-4); % Hamiltonian
t=tcount;

for m = 1:1:M1 % M1 = number of outputs.
for m2=1:1:M2 % M2 = number of iterations between outputs.

% Advance according to nonlinear term with 1/2 a time step.
v = exp(0.5*dt*i*q*(abs(u).*abs(u))).*u;

% Advance according to linear term.
w = ifft(e.*fft(v));

% Advance according to nonlinear term with 1/2 a time step.
u = exp(0.5*dt*i*q*(abs(w).*abs(w))).*w;

tcount=tcount+dt;
end

t=[t tcount]; % t = vector with times corresponding to outputs.
U = [U,u]; % U = solution matrix. Each column a different

time.

du = ifft(mu.*fft(u));
h = -sum(abs(du).-2) + (q/2)*sum(abs(u).-4);
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H = [H,h];

end
%***** End of Program *****

The code for solving the DS sternis broken into four parts. The first part

contains the main line code in which the size of the computational grid and the

coefficients in the DS equations are specified. The following codeisfor solving

the DSII and the elliptic/ellipticDS equations.

program ds
c****************************************************************

c This program finds a numerical solution to the DS equations.

u_t = i(al*u_xx + a2*u_yy + a2*u*Iu1-2 + a4*u*v)
v_xx + bl*v_yy = b2*(1u1-2)_xx

c The values in the parameter statement below and the initialize
c subroutine may need modification for particular physical and
c initial conditions.

c Note: this solution technique assumes a periodic initial
c condition and periodic solution.

c Variables:
d2 - constant multipliers used in calculation of ham.
dt - time step size.
du - working space variable, derivative of u.
e - constant multipliers used in linear step.
e12 - 2 norm of u.
f - array used to calculate FFT.
g - constant multipliers used in calculating v.
ham - Hamiltonian of u.
hamlast - used in stopping criteria.
htol - used in stopping criteria.
hx, hy - period lengths in x and y directions.
inct - number of iterations between outputs.
nxo, nyo - used in output routine to control amount of

output.
lastu - holds previous u value for output upon termination.
nd - maximum number of grid points in x or y direction.
nmax - maximum of nx and ny, used in FFT routine.
nt - number of iterations (time steps) to perform.
nx, ny - number of grid points in x and y directions.
tf - keeps track of time of iteration of last output.
ti - initial time of simulation.
tol - used in output to control number of digits of output.
u, v - solution to DS equations.
uf - Fourier Transform of u.
w - working space variable.
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c****************************************************************
implicit real*8(a-h,o-z), integer*4(i-n)

parameter(nd=256)
parameter(a1=-1.0d0, a2=1.0d0, a3=2.0d0, a4=1.0d0)
parameter(b1=1.0d0, b2=1.0d0)

complex*16 i

parameter(i=dcmplx(0.0d0,1.0d0))
complex*16 u(nd,nd), v(nd,nd), w(nd,nd)
complex*16 uf(nd,nd), lastu(nd,nd)
complex*16 e(nd,nd), du(nd,nd)
dimension f(2*nd,nd), g(nd,nd), d2(nd,nd)

open(10,file='u.dat',status='unknown')
open(11,file='v.dat',status='unknown')
open(12,file='uf.dat',status='unknown')
open(13,file='t.dat',status='unknown')
open(15,file='12.dat',status='unknown')
open(16,file='ham.dat',status='unknown')
open(17,file='stopstat.dat',status='unknown')

fix = nd
fly = nd
nmax = nd

call initialize(u,nd,nx,ny,nxo,nyo,hx,hy,nt,inct,dt,ti,tol,
, htol)

9000 format(i4)
9001 format(i6)
9002 format(f8.4)
9003 format(f12.8)
9004 format(f18.15)

do 9010 j=10,12
write(j,9000) nx
write(j,9000) ny
write(j,9000) nxo
write(j,9000) nyo
write(j,9002) hx
write(j,9002) hy
write(j,9001) nt
write(j,9004) dt
write(j,9001) inct
write(j,9004) ti

9010 continue

call getmult(d2,e,g,nd,nx,ny,hx,hy,a1,a2,b1,b2,dt)

call calcv(u,v,g,f,uf,w,nd,nx,ny,nmax)
call output(u,v,nd,nx,ny,nmax,nxo,nyo,uf,w,f,tol)
write(13,9004) ti



call calc_h(u,v,uf,w,f,du,d2,a3,a4,nd,nx,ny,nmax,ham,e12)
write(15,9003) el2
write(16,9003) ham

hamlast = ham

tf = ti
call backup(u,lastu,nd,nx,ny)
tflast = tf

c****************************************************************
Start of main loop

c****************************************************************
do 9020 loop=1,nt

call calc_u(u,v,uf,w,f,e,g,nd,nx,ny,nmax,a3,a4,dt)

if (mod(loop,inct).eq.0) then
call calc_h(u,v,uf,w,f,du,d2,a3,a4,nd,nx,ny,nmax,ham,e12)

if ((dabs(hamlast-ham)).1t.htol) then
write(15,9003) el2
write(16,9003) ham

call output(u,v,nd,nx,ny,nmax,nxo,nyo,uf,w,f,tol)
call backup(u,lastu,nd,nx,ny)
tflast = tf + dt
write(13,9004) tflast
open(20,file='tflast.dat',status='unknown')
write(20,9004) tflast
close (20)
else

write(17,*) 'htol exceded'
g oto 9021

end if
end if

tf = tf + dt
9020 continue

9021 open(14,file='1data.dat',status='unknown',
, form= 'unformatted')

write(14) nx
write(14) fly
write(14) nxo
write(14) nyo
write(14) hx
write(14) hy
write(14) nt
write(14) dt
write(14) inct
write(14) tflast
do 9030 k=1,ny

do 9030 j=1,nx
write(14) lastu(j,k)

9030 continue

close(10)
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close (ii)
close(12)
close(13)
close(14)
close(15)
close(16)
close(17)
end

c***** End of Main Line Code *****

The second part of the code is the initialization section which either reads the

initial condition from disk or generates the initial condition from equations which

must be modified in the routine to fit the simulation.

subroutine initialize(u,ndim,nx,ny,nxo,nyo,hx,hy,nt,inct,
, dt,ti,tol,htol)

c****************************************************************

c Subroutine initialize initializes the matrix of function
c values. It sets the initial value of the IBV problem. The
c initial condition should be periodic (if changed)

c Inputs: nx,ny -- the dimension of the data matrix.
file 17 -- file 'stopstat.dat'.

c Output: hx,hy -- the length of the sides of the solution
domain

nt -

inct -

dt -

ti -

u(nx,ny) -
tol

htol

c Other: fileinput

c****************************************************************
implicit real*8(a-h,o-z), integer*4(i-n)
complex*16 u(ndim,ny), i
logical fileinput
parameter (fileinput = .true.)
parameter (i = dcmplx(0.0d0,1.0d0))

tol = 9.999d-5
htol = 5.0d-5

if (fileinput) then

number of time steps to perform.
number of time steps between outputs.
time step size.
initial time.
the initial values.
used to control the number of digits of
output.
used for stopping criteria.

- true if initialization from disk.
false if initialization from equations
in this routine.
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This section reads the initializing data from the file
c lastdata in the current directory. lastdata stores the
c variables at the end of the program run so that the solution
c can be continued by runing this program with fileinput set
c to .true. .

open(9,file='idata.dat',status='old',form='unformatted')
read(9) nnnx
read(9) nnny
if (.not.((nx.eq.nnnx).and.(ny.eq.nnny))) then

close(9)
write(17,*) 'lastdata does not match'
stop
endif

read(9) nxo
read(9) nyo
read(9) hx
read(9) hy
read(9) nt
read(9) dt
read(9) inct
read(9) tf_lastrun
do 305 k=1,ny

do 305 j=1,nx
read(9) u(j,k)

305 continue
close(9)
ti = tf_lastrun

else

This section assigns the initializing data for a first run.
c The values should be modified accordingly.

pi = 2.0d0*dasin(1.0d0)

sqrt2 = dsqrt(2.0d0)

nxo = 64
nyo = 64
hx = sqrt2*pi
hy = hx
nt = 40000
inct = 400
dt = 0.00025d0
ti = 0.0d0

dx = hx/nx
dy = hy/ny
x = -hx/2
do 300 j=1,nx

y = -hy/2
do 310 k=1,ny

s=1.0d0+0.1d0*dcos(sqrt2*y)+1.0d-4*cos(sqrt2*(x+y))
u(j,k)=dcmplx(s,0.0d0)
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y = y + dy
continue

x = x + dx
continue

endif
return
end

c***** End of Section 2 *****

The third section contains the subroutines for applying the split-step method and

outputting the solution.

subroutine calcv(u,v,g,f,uf,w,ndim,nx,ny,nm)
c****************************************************************

This routine calculates v, where v satisfies

v_xx + bl*v_yy = b2*(1u1-2)_xx

and b1>0.

c****************************************************************

implicit complex*16(a-h,o-z), integer*4(i-n)
complex*16 u(ndim,ny), v(ndim,ny), uf(ndim,ny), w(ndim,ny)
real*8 f(2*ndim,ndim), g(ndim,ny)

do 400 k=1,ny
do 400 j=1,nx

v(j,k) = cdabs(u(j,k))**2
400 continue

call four2(v,uf,w,f,-1,ndim,nx,ny,nm)

do 410 k=1,ny
do 410 j=1,nx

uf(j,k) = g(j,k)*uf(j,k)
410 continue

call four2(uf,v,w,f,1,ndim,nx,ny,nm)

return
end
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subroutine getmult(d2,e,g,ndim,nx,ny,hx,hy,al,a2,b1,b2,dt)
c****************************************************************

This subroutine calculates the multipliers used in finding v
and in advancing the linear term.

c****************************************************************

310

300



implicit real*8(a-h,o-z), integer*4(i-n)
dimension g(ndim,ny), d2(ndim,ny)
complex*16 i, const, e(ndim,ny)

i = dcmplx(0.0d0,1.0d0)
pi = 2.0d0*dasin(1.0d0)

const = -4.0d0*pi*pi

do 520 j=1,nx
in = -nx/2 + j - 1

cm = m*m/(hx*hx)
do 510 k=1,ny

n = -ny/2 + k - 1
cn = n*n/(hy*hy)
d2(j,k) = const*(a1*cm + a2*cn)
e(j,k) = cdexp(d2(j,k)*dt*i)
if ((m.eq.0).and.(n.eq.0)) then

g(j,k) = 0.0d0
else

g(j,k) = b2*cmgcm + bi*cn)
end if

510 continue
520 continue

call rf2shift(d2,ndim,nx,ny)
call cf2shift(e,ndim,nx,ny)
call rf2shift(g,ndim,nx,ny)
return
end

subroutine output(u,v,ndim,nx,ny,nmax,nxo,nyo,uf,w,f,tol)
c****************************************************************

c This subroutine outputs u, v and uf
Inputs:
u, v - the solution (nx by ny matrices)
tol - number of decimal digits to output

Outputs:
c u, v, uf are written to files

Workspace:
w, f (nmax is used by routine four2)

c****************************************************************
implicit real*8(a-h,o-z), integer*4(i-n)
complex*16 u(ndim,ny), v(ndim,ny), uf(ndim,ny), w(ndim,ny)
dimension f(2*ndim,ndim)

601 format(f7.4)
602 format(f8.4)
603 format(f9.4)
604 format(f12.4)
605 format(il)

call four2(u,uf,w,f,-1,ndim,nx,ny,nmax)
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call cf2shift(uf,ndim,nx,ny)
do 610 k=1,ny

do 610 j=1,nx
temp = cdabs(uf(j,k))
if (temp.lt.tol) then

write(12,605) 0
else if (temp.lt.100) then

write(12,601) temp
else

write(12,604) temp
end if

610 continue

nxinc=nx/nxo
nyinc=ny/nyo

do 620 k=1,ny,nyinc
do 620 j=1,nx,nxinc

temp = cdabs(u(j,k))
if (temp.lt.100) then

write(10,601) temp
else

write(10,602) temp
end if

620 continue

do 630 k=1,ny,nyinc
do 630 j=1,nx,nxinc

temp = dreal(v(j,k))
if (dabs(temp).1t.100) then

write(11,602) temp
else

write(11,603) temp
end if

630 continue

return
end

subroutine calc_h(u,v,uf,w,f,du,d2,a3,a4,ndim,nx,ny,nm,ham,
el2)

c****************************************************************

c This routine calculates the Hamiltonian and 1-2 norm of the
c solution.

Inputs:
u, v -

c d2 -
c

Outputs:
ham -

c e12 -
c Workspace

uf,w,du

the solution (nx by ny matrices)
coefficients used to calculate Lu, where L is the
linear part of the DS equations

Hamiltonian of solution
1-2 norm of solution

,duf (rim is used by routine four2)
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c****************************************************************
implicit real*8(a-h,o-z), integer*4(i-n)
complex*16 u(ndim,ny), v(ndim,ny), uf(ndim,ny), w(ndim,ny)
complex*16 h, du(ndim,ny)
dimension d2(ndim,ny), f(2*ndim,ndim)

call four2(u,uf,w,f,-1,ndim,nx,ny,nmax)

do 800 k=1,ny
do 800 j=1,nx

uf(j,k) = d2(j,k)*uf(j,k)
800 continue

call four2(uf,du,w,f,1,ndim,nx,ny,nmax)

do 810 k=1,ny
do 810 j=1,nx

w(j,k) = cdabs(u(j,k))**2
810 continue

h = 0.0d0
el2 = 0.0d0
do 820 k=1,ny

do 820 j=1,nx
h = h + dconjg(u(j,k))*du(j,k)
h = h + w(j,k)*(a3*w(j,k) + a4*v(j,k))/2.0d0
el2=e12+w(j,k)

820 continue
ham = cdabs(h)/(nx*ny)
el2 = dsqrt(e12/(nx*ny))

return
end

subroutine calc_u(u,v,uf,w,f,e,g,ndim,nx,ny,nmax,a3,a4,dt)
c****************************************************************
c This routine does one time step of the split-step method on
c the DS equations

Inputs:

u, v - the solution at the previous time step (nx by ny
matrices)

e, g - nx by ny matices of constants
Outputs:
u, v - the solution at the current time step

Workspace:
c, uf - used as intermediate values
w, f - used by the subroutine four2 (which also needs

nmax)
c****************************************************************

implicit real*8(a-h,o-z), integer*4(i-n)
complex*16 i,c1,c2
parameter(i=dcmplx(0.0d0,1.0d0))
complex*16 u(ndim,ny), v(ndim,ny), uf(ndim,ny)



complex*16 w(ndim,ny), e(ndim,ny)
dimension f(2*ndim,ndim), g(ndim,ny)

cl = dt*a3*i/2.0d0
c2 = dt*i*a4/2.0d0

do 900 k=1,ny
do 900 j=1,nx

u(j,k) = cdexp(cl*u(j,k)*dconjg(u(j,k))+c2*v(j,k))*u(j,k)
900 continue

call four2(u,uf,w,f,-1,ndim,nx,ny,nmax)

do 910 k=1,ny
do 910 j=1,nx

uf(j,k) = e(j,k)*uf(j,k)
910 continue

call four2(uf,u,w,f,1,ndim,nx,ny,nmax)
call calcv(u,v,g,f,uf,w,ndim,nx,ny,nmax)

do 920 k=1,ny
do 920 j=1,nx

u(j,k) = cdexp(c1*u(j,k)*dconjg(u(j,k))+c2*v(j,k))*u(j,k)
920 continue

call calcv(u,v,g,f,uf,w,ndim,nx,ny,nmax)

return
end

subroutine backup(u,lastu,ndim,nx,ny)
c****************************************************************

c This routine copies u into lastu.

c****************************************************************
implicit real*8(a-h,o-z), integer*4(i-n)
complex*16 u(ndim,ny), lastu(ndim,ny)

do 1000 k=1,ny
do 1000 j=1,nx

lastu(j,k) = u(j,k)
1000 continue

return
end

c***** End of Section 3
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The fourth section contains two routine used to calculate the fast Fourier trans-

forms. These routines can be found in most numerical methods manuals. The
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routines have been modified so that the code can easily be run using a vector

processor.

subroutine four2(u,v,w,f,isgn,ndim,nx,ny,nm)
c****************************************************************

c Subroutine four2 computes the 2-dimensional Fourier transform

Input: u(nx,ny) -- data
isgn -- sign of "i" in transform, i.e., isgn =

+1 for transform and -1 for inverse.
nx, ny -- number of points in x and y directions

respectively. They must each be a power
of 2 (the subroutine does not check for
this).

nm -- maximum of nx and fly

Output: v(nx,ny) -- transform if isgn = -1, inverse if isgn =
+1

Workspace: w(nx,ny),f(2*nm)

c****************************************************************
implicit complex*16(a-h,o-z), integer*4(i-n)
real*8 f(2*ndim,ndim)
complex*16 u(ndim,ny), v(ndim,ny), w(ndim,ny)

do 100 k = 1,ny
do 100 j = 1,nx

f(2*j-1,k) = dreal(u(j,k))
f(2*j,k) = dimag(u(j,k))

100 continue
call fft(f,ndim,nx,ny,isgn,nm)
do 110 k=1,ny

do 110 j = 1,nx
w(j,k) = dcmplx(f(2*j-1,k),f(2*3,k))

110 continue
do 130 j = 1,nx

do 130 k = 1,ny
f(2*k-1,j) = dreal(w(j,k))
f(2*k,j) = dimag(w(j,k))

130 continue
call fft(f,ndim,ny,nx,isgn,nm)
do 140 j=1,nx

do 140 k = 1,ny
v(j,k) = dcmplx(f(2*k-1,j),f(2*k,j))

140 continue
if(isgn.eq.-1) then

do 160 j = 1,nx
do 160 k = 1,ny

v(j,k) = v(j,k)/nx/ny
160 continue

endif
return



end

subroutine fft(data,ndim,nn,n1,isgn,nm)
c****************************************************************

c The subroutine FFT computes the Fourier-transform of the data,
c by the algorithm in Numerical Recipes, p. 394.

Input:

data(nn,n1) -- data is nl complex arrays of nn elements or
real arrays of 2*nn elements that are to be
transformed.

nn, nl -- dimension of data (if complex). nn must be
a power of 2 (the subroutine does not check
for this).

isgn -- if isgn = +1 then replace data with its
discrete transform, if isgn = -1 then
replace data with nn times its inverse
discrete transform.

Output:

data(nn,n1) -- discrete transform if isgn = -1,
inverse discrete transform if isgn = +1.

c****************************************************************
implicit real*8(a-h,o-z), integer*4(i-n)
dimension data(2*ndim,n1)

pi = 2.0d0*dasin(1.0d0)
n = 2*nn
j =1
do 180 i = 1,n,2

if(j.gt.i) then
do 165 k=1,n1

tempr = data(j,k)
tempi = data(j+1,k)
data(j,k) = data(i,k)
data(j+1,k) = data(i+1,k)
data(i,k) = tempr
data(i+1,k) = tempi

165 continue
endif
m = n/2

170 if((m.ge.2).and.(j.gt.m)) then
j = j-m
m = m/2
go to 170

endif

j i+m
180 continue

mmax = 2
190 if(n.gt.mmax) then

istep = 2*mmax
theta = 2.0d0*pigisgn*mmax)
wpr = -2.0d0*dsin(0.5d0*theta)**2.0d0
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wpi = dsin(theta)
wr = 1.0d0
wi = 0.0d0
do 210 m = 1,mmax,2

do 200 i = m,n,istep
j = i + mmax
do 195 k=1,n1

tempr = wr*data(j,k)-wi*data(j+1,k)
tempi = wr*data(j+1,k)+wi*data(j,k)
data(j,k) = data(i,k) - tempr
data(j+1,k) = data(i+1,k) - tempi
data(i,k) = data(i,k) + tempr
data(i+1,k) = data(i+1,k) + tempi

195 continue
200 continue

wtemp = wr
wr = wr*wpr-wi*wpi+wr
wi = wi*wpr+wtemp*wpi+wi

210 continue
mmax = istep
go to 190
endif

return
end

subroutine fftshift(data,n)
c****************************************************************

Subroutine fft shift swaps the left and right hand sides of the
c vector data.

Inputs:
data(n) -- data to be shifted (complex array of n elements)

-- number of elements in u, n should be even.

Output:

data(n) -- the data with the left and right sides swapped.

c****************************************************************
integer j,k,n
complex*16 data(n), temp

j = n/2
do 220 k=1,j

temp = data(k)
data(k) = data(j+k)
data(j+k) = temp

220 continue
return
end

subroutine cf2shift(u,ndim,nx,ny)
c****************************************************************
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c Subroutine four2 shift swaps the diagonal quadrants of a
c matrix of data. Used to "unshift" the output of the 2-d
c fourier transform.

C Inputs:

u(nx,ny) -- data to be shifted (complex values matrix)
fix, fly -- dimensions in the x and y directions. nx

and ny should be even.

c Output:
u(nx,ny) -- the data with the top-left quadrant swapped

with the bottom-right and the top-right
swapped with the bottom-left.

c****************************************************************
implicit complex*16 (a-h,o-z), integer*4 (i-n)
complex*16 u(ndim,ny)

j = nx/2
k = ny/2
do 240 m=1,j

do 240 n=1,k
temp = u(m,n)
u(m,n) = u(m+j,n+k)
u(m+j,n+k) = temp
temp = u(m,n+k)
u(m,n+k) = u(m+j,n)
u(m+j,n) = temp

240 continue
return

end

subroutine rf2shift(u,ndim,nx,ny)
c****************************************************************

c Subroutine four2 shift swaps the diagonal quadrants of a
c matrix of data. Used to "unshift" the output of the 2-d
c fourier transform.

Inputs:
u(nx,ny) data to be shifted (real valued matrix)
fix, fly dimensions in the x and y directions. nx and ny

should be even.

Output:
u(nx,ny) the data with the top-left quadrant swapped

with the bottom-right and the top-right
swapped with the bottom-left.

c****************************************************************
implicit real*8 (a-h,o-z), integer*4 (i-n)
dimension u(ndim,ny)



j = nx/2
k = ny/2
do 250 m=1,j

do 250 n=1,k
temp = u(m,n)
u(m,n) = u(m+j ,n+k)
u(m+j ,n+k) = temp
temp = u(m,n+k)
u(m,n+k) = u(m+j,n)
u(m+j,n) = temp

250 continue
return
end

c***** End of Section 4 ****

To apply the split-step method to the DSI system the routines which initialize

the multipliers and calculate v must be modified.
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