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The principal objective of this study was to compare the results of a proposed

method based upon the response surface model to the Taguchi method. To modify the

Taguchi method, the proposed model was developed to encompass the following

objectives. The first, with the exception of the Taguchi inner array, was obtain optimal

design variable settings with minimum variations, at the same time achieving the target

value of the nominal-the best performance quality characteristics. The second was to

eliminate the need for the use of a noise matrix (that is, the Taguchi outer array),

resulting in the significant reduction of the number of experimental runs required to

implement the model. The final objective was to provide a method whereby signal-to-

noise ratios could be eliminated as performance statistics.

To implement the proposed method, a central composite design (CCD)

experiment was selected as a second-order response surface design for the estimation of

mean response functions. A Taylor's series expansion was applied to obtain estimated

variance expressions for a fitted second-order model. Performance measures, including

mean squared error, bias and variance, were obtained by simulations at optimal settings.
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Nine test problems were developed to test the accuracy of the proposed CCD method.

Statistical comparisons of the proposed method to the Taguchi method were performed.

Experimental results indicated that the proposed response surface model can be used to

provide significant improvement in product quality. Moreover, by the reduction of the

number of experimental runs required for use of the Taguchi method, lower cost process

design can be achieved by use of the CCD method.
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Comparison of Response Surface Model and

Taguchi Methodology for Robust Design

CHAPTER 1

INTRODUCTION

1.1 Manufacturing Quality

In recent years, for reason of strong competitiveness throughout international

markets, manufacturing quality has become a major concern of worldwide importance.

Since it is believed that one means to increase market share is to provide high quality

products at low costs, continuous quality improvements and cost reductions are regarded

as the essential tools to remain in business. In other words, consumers want both high

quality and low prices (Kackar, 1986). Since the clientele for manufactured goods have

significantly increased their quality requirements and competitive pressures have intensi-

fied within numerous business organizations, the need for quality improvements have

become increasingly and readily apparent.

Nonetheless, the specific meaning of the word "quality" is difficult to define since

there is no single word which can be used to describe all of the possible aspects of qual-

ity. These aspects may include, for example, performance, features, reliability, confor-

mance, durability, and serviceability. In addition, the most important aspects of quality

change with the nature or characteristics of both the product and customer requirements.

Historically, quality has been defined as the ability to perform according to specifications

(or a targeted ideal) that satisfy and meet customer requirements. For example,
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customers want high speed computers, but only at the lowest possible levels of pricing.

Genechi Taguchi, who with Edward Deming and others, is considered one of the

principal authorities with respect to quality control issues, has drawn considerable atten-

tion to an otherwise neglected dimension of quality: the degree to which societal loss

could be attributed to a given product. According to Taguchi, "quality is the loss im-

parted to society from the time a product is shipped" (Taguchi and Wu, 1980). In this

sense, losses were due to product performance characteristic deviations from targeted

values. Examples of societal losses thus include: failure to meet customer fitness for use

requirements; product deterioration during shipping time; and product failure to meet

performance ideals. Taguchi's standard of quality measurement was based upon the

assertion: the smaller the loss, the more desirable the product. Furthermore, he sug-

gested that the product deviations from ideal standards should be minimized, and consid-

ered to be the key to quality improvement. Therefore, only minor production variations

from targeted goals (i.e., the ideal) was the preferred standard of quality.

The Taguchi approach was illustrated by a study of customer preferences with re-

spect to Sony televisions (Phadke, 1989a). Investigators reported that the color density

distributions for sets made at two different factories were the key factor in customer per-

ceptions of quality (that is, color density distributions were the primary quality charac-

teristic upon which customers based their purchasing decisions). As demonstrated in

Figure 1.1, m is the target color density and m ± 5 are the tolerance limits. The distribu-

tions for the SonyJapan factory were approximately normal with the mean in relation to

the target at a standard deviation of 1.67. The distributions of the SonyUSA sets were

approximately uniform in the range of m ± 5. Among the sets shipped by SonyJapan,

approximately 0.3% were outside of the tolerance limits, whereas practically all of the

sets shipped by the SonyUSA were within the limits. From this comparison, it was

obvious that the fraction of defective sets was not the key to customer preferences.
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Figure 1.1. Distribution of color density in television sets (Phadke, 1989a).

According to manufacturer specifications, the sets with color density in closest

relation to the target (m) performed the best, and were therefore classified as grade A; as

color densities deviated from m, performance was regarded as increasingly substandard.

The SonyJapan plant produced a higher percentage of sets which approached target

color densities, whereas the SonyUSA factory concentrated upon producing sets that

were within the tolerance limits. Thus, the sets produced by SonyJapan earned the bet-

ter average grades and were accorded higher preferences from Sony customers in the

U.S. The study supported the principal point established by Taguchi, that the effort to

minimize deviations of product performance characteristics from an ideal target could be

defined as the most important key to quality improvement.

Thus, Taguchi sought to minimize deviations from targets by the introduction and

use of the loss function. The objective of this approach was to determine the combina-

tions of values for controllable design variables which minimized expected losses (that is,
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minimized the mean squares of product performance characteristic deviations from the

targets) with respect to an uncontrollable noise space. However, the actual form of the

loss function for any given performance characteristic was difficult to express. There-

fore, a quadratic approximation of the loss function was recommended as a meaningful

approach for most situations. Let y be a response vector variable (i.e., a performance

quality characteristic) and T a target value of y; then y is a random variable with some

probability distribution, and may be observed for the quantification of quality level and

for the optimization of robust design. Variations in y cause losses to consumers and to

producers. Thus, let 1(y) represent the loss in dollars due to the deviation of y from T .

For practical purposes, the quadratic loss function which represents economic losses due

to performance variation, as suggested by Taguchi (1980), is of the form:

1(y) = k*(y - T )2 , (1)

where k is the constant, quality loss coefficient. The unknown constant k can thus be

determined if 1(y) is known for any value of y (Kackar, 1985). Then suppose that

('t A, ti + A) is the customer's tolerance interval and

(T 6, "C + 6) is the manufacturer's tolerance interval, where

$A is the cost of lost customers and

$B is the cost of repair/rework.

An example of the symmetric quadratic loss function is given in Figure 1.2. How-

ever, the loss function can be either symmetric or asymmetric (Kackar, 1985). Variations

of the quadratic loss functions (Phadke, 1989b) are as shown in Figure 1.3. In addition,

the expected loss can easily be defined for the distribution of y during both the product

life span and across different users of product units as:

L(y) = E[1(y)1 = k * E[(y T )2] . (2)
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It is clear that since the mean square deviation is proportional to the expected loss, as

shown in (2), minimizing the expected loss is equivalent to minimizing the mean square of

the deviation of the product performance characteristic from the target.

Furthermore, the expected loss, or the mean square deviation from the target, can

be decomposed into two main parts, including (1) the mean (the location effect) and (2)

the variance (the dispersion effect), which can be easily shown by expressing the term

E[(y ti )2] as:

ERY- t )21 = ERY E(Y)) (E(Y) )}2

= E[y - E(y)]2 + E[E(y) - ti ]2 + 2 * E[y - E(y)1 E[E(y)

G
Y L

2 + r(y)_,E ]2

xy)

$A

$B
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Figure 1.2. Loss function.
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As a result, for his experimental parameter design, Taguchi (1980) emphasized the appli-

cation of "orthogonal arrays," recommending the use of inner and outer arrays for the

purpose of accommodating the mean effect and variance effects within the design. The

design variables that were determined to influence the mean within the inner array were

used to adjust the mean to the target, and were called the adjustment variables. The

purpose of the outer array was to obtain variance estimates for each design point within

the inner array.

1.2 ,Summary of the Taguchi Approach

The Taguchi approach can be described from the two aspects of strategy and tac-

tics. Recall that the objective of the Taguchi approach is to minimize an expected loss, or

to minimize mean square deviations from the target. Taguchi strategy is focused upon

finding the design that best minimizes the expected loss (or mean square deviation) over

an uncontrollable noise space. The source of noise is classified in the two categories of

external and internal sources of noise (Kackar, 1985). The external sources of noise

normally are environmental variables, whereas the internal sources of noise include prod-

uct deterioration or manufacturing imperfections. Due to physical limitations and/or lack

of knowledge, not all sources of noise can be included in a parameter design experiment.

Those which cannot be included are referred to as uncontrollable noise space. In turn,

Taguchi tactics consist of the specific methods and techniques, including design consid-

erations and the signal-to noise ratios, used to accomplish the objectives of the approach.

As noted in section 1.1, Taguchi experimental design consists of the use of an in-

ner array (or a design matrix) and an outer array (or a noise matrix). The inner array, or

design matrix, consists of a sample that is controllable from the design variable space.

The outer array, or noise matrix, consists of a sample from the noise space. The col-

umns of the noise matrix represent noise factors, whereas the matrix rows represent dif-
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ferent combinations of noise factor levels. A complete Taguchi experimental parameter

design consists of a combination of design and noise matrices in which the n rows of the

design matrix represent n test runs for p observations in each run, as indicated in Table

1.1.

Table 1.1. Taguchi experimental design plan.

Test run
Design matrix
(parameters)

Noise matrix
(noise factors) PCa PSb

1 xil,x12,.-,xlp

wit wi2 wlq

wkl wk2 wkq

Wrl Wr2 Wrq

Y1 I

Yik

Ylr

{S/N} i

2 x21,x22,..,x2p
3 x3i,x32,...,x3p : : -

.

.

.
.
.
.

. :
. .

.
.
.
. :

.

.
.

. .
.
. :

.

.

. .. .
.

.

.

n -1 xn-1,1,xn-1 ,2,-. , xn-1,p
. .

n xn1,xn2, , xnp

w11 W12 Wiq

wk 1 wk2 wkq

wrl wr2 Wrq

Yn 1

Ynk

Ynr

{S/N6

Notes: a = performance characteristics; b = performance statistics.

The use of an orthogonal array was recommended for both matrices and, for data

collection plans, the system was tested for a three-level fractional-factorial experiment ,

based upon signal-to-noise ratios as the sole source of performance statistics (Kackar,



9

1985). The signal-to-noise ratio statistics (S/N) can be categorized as follows for one of

three types of fixed targets for given quality characteristics:

1. "The smaller the better": S/Ns = -10*log(I yi2/n),

2. "The larger the better": S/NL = -10*log(I (1/yi2)/n), and
=1

3. "Target value is the best": S/Nt = 10*log(y 2/s2),

where 37 = and s2 = 1/(n-1)/ (yi-y)2. It should be noted that the Taguchi

signal-to-noise ratio has been regarded as one of the principal weaknesses of the experi-

mental parameter design plan (Pignatiello, 1988).

The steps to identify optimal design parameter settings for the maximization of

performance statistics, or the "signal-to-noise ratios," can be addressed as follows:

1. Identify the design parameters and the noise factors, including their

ranges.

2. Construct the design matrix and the noise matrix.

3. Plan and conduct the design experiment. (Taguchi recommended use of a

fractional-factorial experiment based upon an orthogonal array for physi-

cal experimentation, or the collection of real data from the design. Note

that the experiment can be based upon either physical trials or a computer-

based simulation.)

4. Calculate the performance statistics (the signal-to-noise ratios) for each

test run of the design parameter matrix (Table 1.1).

5. Based upon analyses of variance (ANOVA) of the signal-to-noise ratios

and the means, identify the controllable variables which influence both
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means and variances and those which influence only the means (i.e., the

"adjustment" variables), respectively.

6. Determine the optimal settings for the design parameters by determining

the combinations of the controllable variables (as identified in step 5) that

maximize the signal-to-noise ratios. (First, to fine-tune the solution to-

ward the target, select the controllable variables which exercise an effect

upon the mean. The remaining controllable variables, which influence

neither means nor variances are set at their most economical condition of

performance.)

7. Confirm that the new optimal settings serve to improve the performance

statistics.

The Taguchi method has been successfully applied to a number of industrial proc-

esses, including the automotive industry (McElroy, 1985; Ea ley, 1988), robotics pro-

cessing (Wu et al., 1991; Jiang et al., 1991), plastics industries (Warner and O'Connor,

1989), and computer-aided design/electrical engineering tasks (Liu et al., 1990; Young et

al, 1991). When this method is carefully considered, it may be observed that Taguchi

limited possible choices of values for the design variables to those values contained

within the design matrix (i.e., the inner array). However, any combination of just these

specified values may not be the best to minimize expected losses (i.e., mean square devia-

tions from the target). Moreover, since the design matrix and the noise matrix are

crossed, the Taguchi method requires an excessive number of experimental test runs.

Thus, it has been hypothesized that if the noise matrix could be eliminated, the number of

experimental test runs could be reduced substantially. Given the expense of experimental

test runs, as well as the fact that it is often impossible to conduct them during experi-

ments based upon physical experimentation (Kackar, 1985), this approach is considered

in Chapter 3. Moreover, designs based upon a three-level fractional-factorial design may
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be extremely complicated, producing situations in which the experimenters cannot obtain

correct answers for reason of the large two-factor interactions between the controllable

design variables.

1.3 Research Objectives

Intensive competitive pressures within international markets have necessitated the

application of parameter design concepts to production processes. Lin and Kackar

(1985), Pao et al., (1985), Phadke et al., (1983), Prasad (1982), and Taguchi and Wu

(1980) have demonstrated significant uses of these concepts for the improvement of

manufacturing quality. In recent years, attention has been directed primarily at the

Taguchi methodology. The principal objective of the current investigation is to compare

the results of a proposed approach based upon a response surface model to the Taguchi

method. The proposed approach was developed to encompass and test the following

objectives as modifications of the Taguchi method:

1. To obtain a set of values, other than those within the inner array, with

minimum variations while achieving the target value of a nominal-the

best type performance quality characteristic;

2. To eliminate the need for the use of the noise matrix (i.e., the outer array);

and

3. To eliminate the use of signal-to-noise ratios for the generation of per-

formance statistics.

To implement this approach, a central composite design experiment was chosen

as the response surface design for obtaining a fitted second-order response model. Ac-

cording to Lucas (1976), Draper (1982), and Myers et al. (1992), the central composite

design, from among all possible second-order response surface designs, has been used to

generate the most favorable results. A Taylor's series expansion was applied to obtain
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estimated variance expressions for the fitted second-order model. Statistical comparisons

of the proposed approach to the results obtained from the application of the Taguchi

method have been performed. These experimental comparisons have indicated that the

proposed response surface model can be used to provide significant improvements in

product quality as well as lower cost process designs by reducing the number of experi-

mental test runs required by application of the Taguchi method. Thus, the proposed ap-

proach may serve to reduce manufacturing costs and quality loss, resulting in the pro-

duction of increased numbers of the high-quality products at lower cost factors.

However, due to unknown performance characteristic functions in cases in which

the first-order derivatives, or the gradient of the true performance functions, are approx-

imately zero, the proposed model encompasses certain limitations . According to Poston

and Stewart (1976), if all derivatives vanish at zero during application of true smoothing

functions, approximations based upon a Taylor's series expansion will result in substand-

ard performance. Thus, further research, based upon the removal of this flaw or the use

of alternative second-order response surface model designs in place of a central com-

posite design, is suggested. In addition, explorations of the use of weighted least-squares

to obtain the improved quadratic response function estimations should be conducted.
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CHAPTER 2

LITERATURE REVIEW

The Taguchi approach to parameter design provides an excellent starting point

for further research in the statistical analyses of product and process design improve-

ments (Kackar, 1985). As reviewed in Chapter 1, the Taguchi method can be ap-

proached from both the strategic and the tactical points of view. Taguchi strategy pro-

vides a conceptual framework for planning product and process design experimentation,

directed at the determination of designs that are robust with respect to the uncontrollable

variables within the product manufacturing and use environments. The quadratic loss

function, 1(y) = k*(y ti )2, is applied to the minimization of performance quality charac-

teristic variations from target goals. Thus, the best design is one which serves to mini-

mize expected losses (i.e., mean square deviations of product performance characteristics

from the target) with respect to uncontrollable noise space such as those represented by

environmental conditions (e.g., temperature, humidity, or human skill levels).

Tactics consist of the specific methods and techniques that can be applied to

Taguchi strategies. As such, these tactics include signal-to-noise ratios and the design

process. Box (1985) has stated that it is important for engineers to absorb these Taguchi

concepts and then to apply them to processes of quality improvement. However, it was

also noted that the Taguchi tactics, as represented by proposed statistical procedures,

were often unnecessarily complicated and inefficient. For example, the most common

design choices advocated by Taguchi were limited to 2k factorial, 2k-P fractional-

factorial, and three-level fractional-factorial experiments, as well as the use of compli-

cated orthogonal arrays composed of both inner and outer levels. Moreover, most of the
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Taguchi design experiments were not capable of accommodating interactions, and thus

could provide misleading interpretations of the nature of the experiment or of the inter-

ested model. Reviewing considerations of Taguchi strategies and tactics, Pignatiello

(1988) observed that much of the controversy surrounding Taguchi methodology has

been focused more upon the tactics than the strategies. Therefore, to the end of improv-

ing the efficiency and the statistical sufficiency of the Taguchi method, it has become ap-

parent that alternative strategic designs and performance measures should be applied

within the context of Taguchi methodology.

2.1 Considerations of Taguchi Performance Statistics

The performance statistics that Taguchi implemented for the determination of the

settings of product and process design parameters are called "the signal-to-noise ratios."

In Taguchi methodology, the connections between the signal-to-noise ratios and the

quadratic loss functions lead to a general principle for the selection of performance mea-

sures. As summarized by Kackar (1985), when the performance characteristics Y are

continuous variables, the loss functions 1(y) are usually presented as one of three forms,

dependent upon whether smaller is better, larger is better, or a specific target value is

best. For the first two cases, it was demonstrated that the connections in question lead to

the following performance statistics, respectively: signal-to-noise ratios of (S/Ns = 10

* log( yi2 /n)) and (S/NL = 10 * log(I (1/yi2)/n)). However, for the third case, it

was demonstrated that two different engineering situations could lead to two different

sets of performance statistics, including one which had been recommended in the Taguchi

method and one which had not been recommended. Thus, if product performance char-

acteristic variances were linked to the means (i.e., variances and means were functionally

dependent upon each other), then the most appropriate performance statistics were those
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recommended by Taguchi for the target. However, if the performance characteristic vari-

ances were not linked to the mean, the most reasonable performance statistics were

log(s2), which was not included in the Taguchi methodology.

At nearly the same time, Lucas (1985) observed that the emphasis in the Taguchi

method was only upon the signal-to-noise ratios performance statistics, and expressed his

opinion that it was easier to separately analyze and explain the various responses, includ-

ing both the signal and noise responses. Lucas noted that with readily available computer

capabilities, multiple responses could be analyzed with little effort beyond that required

for a single response. However, Lucas did not develop any new methodologies for the

separate analysis of the signal and noise responses.

Hunter (1985) presented a new approach to the determination of the design vari-

able settings for "the targetthe best." When the signal-to-noise ratios for "the

targetthe best" were defined as S/INT = 10 * log(y- 2/s2), the term y- 2/s2 was obviously

recognizable as the reciprocal of the square of the coefficient of variation, sly. To max-

imize the signal-to-noise ratios (to obtain the best parameter design settings, as advo-

cated within the Taguchi methodology) was the equivalent of minimizing the coefficient

of variation, sly. The methodology recommended by Hunter was to consider the logar-

ithms of the observations, and then to determine the design variable settings that would

yield the minimum s2 computed from the logarithms of Y.

Leon et al. (1987) also illustrated an inappropriate use of the signal-to-noise ratio

for the targetthe best, S/N ti , for a problem in which the signal-to-noise ratio was de-

pendent upon the adjustment parameters (i.e., the controllable variables that exercise an

effect upon the location effects of the mean). In other words, as recommended previ-

ously by Kackar (1985), the S/Nt should not be applied as a performance statistic when

the performance characteristic variances were not independent from the means. In addi-

tion, Leon et al. (1987) demonstrated that if certain models for the product or process
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responses were assumed, then the maximization of the signal-to-noise ratio led to the

minimization of average squared error loss. Furthermore, it was stated that when the

parameters existed, the use of the signal-to-noise ratio allowed theparameter design op-

timization procedure to be decomposed into two smaller steps reflecting a division of the

design parameters into two groups, one affecting locations and the other affecting disper-

sions (or both locations and dispersions). Based upon the assumption of a quadratic loss

and a particular multiplicative transfer-function (performance characteristics) model, it

was further observed that the Taguchi signal-to-noise ratio and the two-step procedure

was valid. However, exposed to different types of transfer-functions (e.g., additive

models), the validity of using the signal-to-noise ratio for the targetthe best, S/NT , was

not justified. Therefore, performance measures independent of adjustment (PerMIA)

were introduced as new performance measures, in which approach the Taguchi signal-to-

noise ratio, S/NT , was considered to be a special case of the performance measure,

PerMIA.

Box et al. (1988) commented on the unnecessary and inefficient use of the signal-

to-noise ratios for the targetthe best, S/N , an integral part of the Taguchi method

when the experimental analysis for both the dispersion and location effects was under

study. With respect to S/NT , it was stated that the Taguchi analysis implied that the

elimination of unnecessarily coupling of dispersion effects and location effects could be

effected by application of a log-transformation to the data. The signal-to-noise ratio for

the targetthe best could then be addressed as

S/Nt = 10 * log(y2/s2) = 20 * (log(y) log(s)) .

It was noted that in some situations, either no transformation or some other form of

transformation was needed to produce the uncoupling.

Examples of the use of a "lambda plot" for determination of an appropriate trans-

formation was presented by Box (1988) and Fung (1986). A lambda plot (Box and
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Fung, 1983) was a practical tool used for the selection of an appropriate scale for data

transformation, based upon the following: Consider a class of transformation yX indexed

by the scalar parameter X . To construct a plot, data are transformed with respect to Y =

ln(y); X = 0, and Y = yX, where X is not equal to zero. The main effects and interac-

tions among the variables are calculated for each set of transformed data (using different

values of X). The t-ratios or F-ratios for these effects are calculated and used as suitably

relevant statistics for both the dispersion effects and the location effects. The plot of

these ratios against the X values is obtained as an aid for the selection of an appropriate

transformation. The best scale, X , for the data transformation is at the location of the

maximum simplification and the separation of the t-ratios or the F-ratios. The fitted

model thus consists of the effects that have the largest t-ratios or F-ratios, and that simul-

taneously reflect a minimum number of main effects and interaction terms (i.e., the sim-

plest model yields).

In addition, Box and Fung (1986) demonstrated that the Taguchi procedure did

not necessarily yield an optimal solution, and that the use of the signal-to-noise ratio was

therefore without value. Rather, information obtained from experimental data, both ex-

pected and unexpected, could be reviewed by simple data analytical methods based upon

means and standard deviations in place of the signal-to-noise ratios, which were not only

unnecessarily complicated, but which were also inefficient (Box, 1988). This study had

indicated that the signal-to-noise ratios for "the smaller the better" (S/Ns) and "the larger

the better" (S/NL) were completely ineffective for identification of the dispersion effects.

The use of the signal-to-noise ratio as a performance measure for the response variable

S/Ns served to confound the location and the dispersion effects since

S/Ns = -10 * log(te yi2/n)

and
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yi2/n = 1/n(E yi2 - ny2) = y2 + (n -1)s2/n
i=1 i=i

This example supported the previous recommendation to separately analyze the

location and the dispersion effects (Lucas, 1985). Box (1988) used an experimental ex-

ample reported by Quinlan (1985) to demonstrate a simpler means for the separate ana-

lysis of the dispersion and location effects, based upon the conduct of normal plots. It

was noted that the function (1/yi2) in the expression of the signal-to-noise ratio for
i=1

the larger-the better, S/NL, which was in turn dependent upon the squared reciprocals of

the data, was likely to be exceptionally non-robust with respect to the effects of outlying

observations. Moreover, it was observed that the data in the larger-the better case may

require the reciprocal transformation, Y-1, to induce approximate properties of constant

variance, normality, and additivity. Therefore, it was determined that S/NL was not a

wholly appropriate performance statistic. Finally, since the S/Ns and S/NL ratios in-

volved y2 and 1/y2, both of which were sensitive to either extraordinary values (outliers)

or values near zero, Montgomery (1991) provided a strong recommendation against the

use of signal-to-noise ratios for the smaller-the better (S/Ns) and the larger-the better

(S/NL). It was noted that these ratios were not invariant to the linear transformation of

the original response.

2.2 Considerations of Taguchi Design

The Taguchi experimental design recommendations were also subject to careful

criticism. According to Kackar (1985), experimental designs tested through physical ex-

perimentation based upon Taguchi methodology may be impossible to conduct, or may

contribute to an excessively large number of experimental runs at considerable expense.

Box and Meyer (1986) have stated if the dispersion effects of several factors of influence
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are investigated using replications of a design, the number of experimental runs based

upon use of the Taguchi method could prove excessive. To solve the problem of an

excessive number of experimental runs, Box and Meyer (1986) introduced the use of

two-level fractional-factorial experiments for the identification of those factors that affect

variances as well as those that affect the means. This experimental approach has been

recommended for screening as many as 16 factors with an equal number of experimental

runs, whereas four replications of the factorial approach could be used to screen only

three factors.

'Box et al. (1988) traced the origin of the Taguchi designs and indicated that some

of the orthogonal designs based upon this approach reflected very complex alias struc-

tures. In particular, the Plackett-Burman (1946) design, a saturated resolution III two-

level design, and all of the other designs based upon three-level factors, involved partial

aliasing of two-factor interactions with the main effects. In cases where the two-factor

interactions were large, the experimenter may not have been able to obtain the correct

response with respect to the design objectives.

According to Montgomery (1991), Taguchi had argued that explicit consider-

ations of two-factor interactions were not required, stating that it was possible to elimi-

nate these interactions either by correctly specifying the response and design factors or by

using a sliding setting approach to choose the factor levels. These two approaches are

particularly difficult to implement since they require a high level of process knowledge,

which is rarely the case for most experimental situations. Hence, the lack of adequate

method for accommodating potential interactions between controllable factors and the

noise variables is one of the weak points in the Taguchi parameter design. A safer means

is to identify the potential effects and the interactions that may be of importance among

the concerned factors, and then provide further consideration only to those which are
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important. This would lead to the need for fewer experimental runs, simpler interpreta-

tion of the data, and better understanding of the process.

Montgomery (1991) observed that there were several alternative experimental

designs which could provide results superior to those generated within the inner and

outer arrays of the Taguchi parameter design. It was also stated that the use of both ar-

rays was not often necessary and, in any event, the use of this technique would contribute

substantially to the size of experiments. Montgomery (1991) demonstrated these criti-

cisms by proposing an alternative design requiring a smaller number of experimental runs

and which demonstrated greater statistical efficiency for the pull-force problem. For this

problem, Byrne and Taguchi (1987) had used 72 test runs to investigate only seven fac-

tors (four of which were controllable factors). However, estimates of the two-factor

interactions among the four controllable factors could not be obtained. Montgomery

(1991) suggested the use of an experiment that ran all seven factors at two levels. This

approach proved to be a superior design for the pull-force problem, and was based upon

a one-fourth fractional-factorial design (27'2) at resolution IV. At 32 test runs, this al-

ternative required fewer than half as many runs as had been conducted by Byrne and

Taguchi (1987). The alias relationships for this design have been considered by Mont-

gomery (1991).

Montgomery (1991) introduced two alternative schemes for the assignment of

process controllable and noise variables. Each encompassed techniques that allowed ex-

perimenters to investigate the interactions between both types of variables, illustrating

cleaner relationships among all factors than had been presented in the Byrne and Taguchi

(1987) design. Montgomery (1991) concluded that a superior strategy for the

improvement of the basic Taguchi design should be based upon a single design inner ar-

ray which incorporated both the controllable and the noise factors. It was suggested that

the design have sufficient resolution, at least resolution IV or higher, to allow for the esti-
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mation of all interactions of interest. (The design of resolution k implies that no r factors

are aliased with another effect containing less than k r factors.)

2.3 Alternative Second-Order Designs

Response surface methodology (RSM) consists of a collection of tools for the

determination of optimum operating conditions, and is commonly used for the improve-

ment of the basic Taguchi design as well as in the construction of a number of industrial

applications. In a review of RSM techniques, Myers et al. (1989) observed that RSM

was affected by technological advances effected in other and associated fields of inquiry,

including the engineering sciences, the food sciences, and the biological and clinical sci-

ences. The conclusion was that RSM constituted the most favorable means to determine

an optimal set of conditions throughout a broad expanse of otherwise unrelated areas of

research.

Based upon prior research by Myers and Carter (1973), and Vining and Myers

(1990) developed the dual response technique as an implementation of the Taguchi

methodology. In this sense, RSM was applied to a dual response problem and an

appropriate second-order response surface experiment was conducted. In the area of

inquiry of the current investigation, second-order response surface designs are always

referred as alternative designs used for the improvement of the Taguchi method. In the

dual response problem, two quadratic response functions were fitted, representing the

responses of primary interest and secondary interest, respectively. The objective of this

approach was to optimize the primary response subject as an appropriate constraint upon

the values of the secondary response, to the end of determining appropriate primary and

secondary responses. For example, if the objective of the experiment was "the target is

the best," or minimizing variance while achieving a target value, the primary quadratic

response would be the appropriate function of the variance and the secondary quadratic
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response would be the mean value or the target value. The Lagrangian multiplier was

applied to optimize as well as to determine the set of design variables that would best

satisfy the experimental objective. Based upon this approach, repeated experimental runs

were required to obtain the quadratic response function for the standard deviation.

Recently, Myers et al. (1992) have sought to determine appropriate second-order

response surface design by the use of a variance dispersion graph (VDG) for the predic-

tion of standard second-order design variance properties. As previously developed by

Giovannitti-Jensen and Myers (1989), the VDG can be used for the instrumental assess-

ment of the predictive capabilities of design properties for given regions of interest. The

VDG "footprint" provides a two-dimensional plot of average prediction variances (APV)

with respect to the distances that design points lie from the design center (i.e., the radius

values), allowing users to identify both maximum and minimum prediction variances

throughout the region of interest.

The second-order designs investigated by Myers et al. (1992) were the central

composite design (CCD), the Box-Behnken design (BBD), and the small composite de-

sign (SCD) developed by, respectively, Box and Wilson (1951), Box and Behnken

(1960), and Hartley (1959). These designs were analyzed over both their spherical and

cubodial regions, as follows: Where xl, x2,...,xk represent design variables that have

been coded and scaled for use in modeling the response, a spherical region is defined by

k

xi2 < k, and thus consists of all points on or inside a hypersphere of radius k; a

cubodial region is defined by -1 < xi < 1, for i = 1,2,...,k, and thus consists of all points

on or inside the hypercube. The standard second-order response surface model is then

given by :

k A k

y(x)= o + + +
vk
.4.11<j
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At this point, with the use of the VDG, it was clearly indicated that adding the number of

center points (runs) for the central composite design experiment resulted in an improve-

ment of design support for the model at or near its center, while adversely affecting

model performance at the perimeters of the spherical regions. Therefore, it was con-

cluded that if the area of interest was design support for the model at the perimeters of

the region, the expense of the additional center runs was not justified. However, when

the VDG readings were considered, it was determined that the CCD provided the prob-

ability of being the most efficient standard second-order response surface model design

for experimentally obtaining the estimates 13 over both spherical and cubodial regions.

(Note that Lucas (1976) had previously suggested central composite experimentation

provided one of the most favorable designs for a quadratic response surface model.) For

the current investigation, the CCD was employed for the conduct of experimental de-

signs.

Despite the obvious drawbacks of the Taguchi methodology, as previously re-

viewed, the Taguchi parameter design procedures have gained widespread support as a

useful basis for the estimation of manufacturing and process quality improvements. To

summarize, Taguchi methods are frequently statistically inefficient with respect to the use

of the "signal-to-noise ratios" and the excessive number of experimental runs necessitated

by crosses between the inner and outer arrays. Moreover, most of the Taguchi designs

consist of alias structures which are excessively complicated. Thus, considerable re-

search efforts have been devoted to the purpose of providing necessary improvements to

the basic Taguchi methodology. This is also true of the current investigation, which con-

sists of an analysis of an alternative approach to the determination of settings for the

design variables that will contribute to quality improvements.

The research problem is formulated in the following chapter, including an expla-

nation of the means to reduce the excessive number of experimental runs required by the
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Taguchi method, as well as the means to eliminate the use of the signal-to-noise ratios as

the basis for the Taguchi performance statistics.
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CHAPTER 3

RESEARCH APPROACH

The working principle of the Taguchi theory is to minimize the deviation of prod-

uct performance characteristic from ideal target values through consideration of a quad-

ratic loss function. The specific objective is thus to determine that combination of con-

trollable design variables which best serves to minimize expected losses (that is, the mean

square deviation of the product performance characteristics from their targeted goals)

over an uncontrollable noise space. The fundamentals of robust design are employed to

accomplish this goal. However, the Taguchi experimental design, based upon both inner

and outer orthogonal arrays, requires an excessive number of experimental runs, is ex-

cessively complicated, and incapable of dealing with interactions (Box, 1985). The pre-

sent research study, through the introduction of a probable best second-order response

surface design, identified as the central composite design (CCD), presents an approach

which reduces the excessive number of runs to a significant degree. To clarify this re-

search approach, the influence factors in product or process design experimentation are

classified for further consideration.

In Figure 3.1, a block diagram representing a manufacturing process illustrates

the involvement of various types of influence factors. Response variables or performance

characteristics are denoted by the symbol "Y." The factors that influence the

performance characteristics, and which are of concern to the present investigation, may

be categorized in two mutually exclusive groups as follows:

1) Control factors (X): factors that can be specified freely by the design ex-

perimenter. Each control factor can assume different values or levels.
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The changing levels of some control factors may increase total manufac-

turing costs, while those of other control factors may not. The experi-

menter is responsible for determining the best values for the robust design

parameters, generally identified as the "design variables."

2) Noise factors (W): factors that cannot be controlled by the experimenter.

The levels of noise factors are either difficult and/or expensive to control.

For reason of physical limitations and lack of system knowledge, not all of

the noise factor sources can be identified, and only the statistical charac-

teristics (e.g., means and variances) of the noise factors can be known

and/or specified. In addition, noise factors can cause response deviations

of Y from target values. Thus, noise factors may contribute to quality

loss.

"Noise factors, W"

"Control factors, X"

x1 x2

w2

wm

xp

PROCESS

Y I

Y2

Yn

"Response variables, Y"

Figure 3.1. Manufacturing process block diagram.

The task of design experimenters and manufacturing engineers is to correctly

identify responses, noise factors, and control factors in the process prior to the implemen-

tation of statistical analysis procedures. Since cost reduction is one of the essential tools

of survival in business competitions, it is also important to recognize which of these fac-

tors will affect manufacturing costs and which will not. At the same time, as an equally

important requirement to remain in business, the company in question must continue to
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pursue quality improvement. The principal objective of both the CCD approach and the

Taguchi method is to manage both the control factors and the noise factors, but both

methods can be used equally as tools in product or process design for the purpose quality

improvement. Both methods seek to determine combinations of design variables for an

uncontrollable noise space. Thus, the purpose of the current investigation was to com-

pare sets of design variable values (control factors) obtained from the application of the

two approaches. In the following sections, problem formulations for the Taguchi method

and the proposed CCD approach are compared.

3.1 Problem Formulation

The objective of Taguchi parameter design is to select a set of values for the con-

trollable design variables that will minimize the expected loss function over an uncontrol-

lable noise space. The mathematical formulation of the problem is described as follows:

Let Y = [yi Y2 yp]r be an nxl vector of response variables (performance qual-

ity characteristics), where 't = ... Trill' represents the target values of Y.

Then let X = [x 1 x2 ... xp]T be a px1 vector for the quantitative, continuous, and

controllable design variables, where xi are stochastic random variables with either

known or unknown distributions, E[X] = [µ1 1.12 pip]T is controllable, and

Cov(X) = Vx is the variancecovariance matrix of X. Then let W = [wi

win'''. be an mxi vector of the noise variables where the variancecovariance

matrix of W is Vw. Assume that Y is related to X and to W as

Y = g(X,W) + e ,

where e =[ei e2 en]T is an nxl vector of either pure or measurement errors.

Then assume that E[e = 0, and that the variancecovariance matrix of e is

Cov(e ) = Ge2I. (Note that the relationship of the performance characteristics

and the product parameters can be either an additive model (Y = g(X,W) + e) or
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a multiplicative model (Y = g(X,W) e ). However, for the purposes of the pre-

sent investigation, concern is directed only to the additive model.) Furthermore,

assume that Ey = Cov(e ,X,W) is the variancecovariance matrix of Y and that

Vxw is the covariance matrix for x and w, as follows:

Cov(e ,X,W) =

6,21 0

NIX VX1A/

0 Vxvv Vw

where, in general, Vxw = Q ,

and the variancecovariance matrix of X and W is Ex,w =

Vx VXW

VXVV VW

Thus, the Taguchi quadratic loss function can be denoted by

1(X,W) = k*(Y-T)2 = k*[g(X,W) + e T]2 ,

where k is a constant.

The objective of the Taguchi approach is to determine a set of design variables

that minimize expected losses over an uncontrollable noise space. Expected losses are

clearly in proportion to the mean square deviation of the product performance character-

istics. Therefore, minimization of the expected losses is equivalent to minimization of the

mean square deviation of the product performance characteristics. Furthermore, since

the Cov(e , g(X,W)) = 0 , and E[e = 0, the mean square deviation of the product per-

formance characteristics can be expressed as:

L(X,W) = E[Y -'t]2 = E[g(X,W) + e - T]2

= E[(g(X,W) T) + ;]2

= E[{ g(X,W) T}2 + 2;(g(X,W) T) + ;2]

= E[ {g(X,W) T }]2 + 2E[; [g(X,W)] -2T; + ;2]

= E[g(X,W) T]2 + 6e21

Thus,
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L(X,W) = 62y(X,W) + [1.11(X,W) - + Ge2I

As a result, the objective of the Taguchi method is then to determine the optimal

setting for the design variables, X, to minimize L(X,W). This problem may be defined as:

Minx Z = fl(X,W) f2(X,W)

where f1(X,W) = [11,y(X,W) "rj2 and f2(X,W) = 62y(X,W) + 6e21. Note that f1(X,W)

is the squared bias of the product performance characteristics, and that f2(X,W) is the

variance. However, the functions f1(X,W) and f2(X,W) are usually unknowns with re-

gard to unknown performance characteristics function, Y. The question is then how the

estimates f1(X,W) and f2(X,W) can be obtained?. For instance, are the first-order mod-

els (linear functions) the best estimates for f1(X,W) and f2(X,W)? Are the second-order

models (quadratic functions) the best estimates of f1(X,W) and f2(X,W)? These two

queries form the basis for the current research investigation.

3.2 Central Composite Design Approach

Assume that the product parameters and that performance (quality) characteris-

tics are related in an unknown but possibly non-linear function. The principle goal of

central composite design is to exploit the quadratic model, approximating the nonlinear

relationship of the product parameters and the performance characteristics. Moreover,

the emphasis of CCD applications is to determine a set of values for the product

parameters which minimize variations in the product performance characteristics while at

the same time achieving the target values. The Taguchi method uses an "outer" array to

obtain the estimated variances (s2), where (s2) is the product of small changes effected in

selected factors (that is, the product control factors and the noise factors) within each

point of an "inner" array. To the contrary, the CCD employs a Taylor's series expansion

to obtain estimated means and variances for the quadratic approximating response

function.



As demonstrated in Figure 3.2, a Taylor's series expansion can be used to

approximate a function.

Y

0
Ax

0

Figure 3.2. Relationships of y to x.

X
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Let y = ft) be a performance characteristic function. If the value of the function f(x0) is

known at a point xo, the estimated function of f), applying a Taylor's series expansion,

is:

y = f(xi) = f(x0) + (df Ixo)* (xi-x0) + o(lxi-x01)2
cbc

As xi 4 xo, the term o(Ixi-x01)2 vanishes to zero. The estimated mean (y) and the es-

timated variance (52y) can then be derived as

E(y) = E[f(xi)] = E[f(x0)] + (dfko) *E(xi-x0)
dx

= f(x0) + (df ixor [E(xi)-x0]
dr



where, if x0 = 1.tx, then E[y] = f(x0). Since Cov(xi,x0) = 0, and Var(x0) = 0, it follows

that

Thus,

ara2
Y

= V (y) = Var[f(x0) + (df ixo)* (xi-xo)]
dx

= Var[f(x0)] + Var[(df 1x0)* (xi-xo)}
dx

= 0 + (df 1x0)
2

Var[(xi-x0)]

= (df--Ix0)41Var(xi) - 2Cov(xi,x ) + Var(x0)]
dx

= (df Ixo)L [Var(xi)]
dx

62 (x0)2(52x.
Y dx

Now, consider the functions, fi (X,W) and f2(X,W), where

f1(X,W) = [11y(X,W) - T]2 and f2(X,W) = 02y(X,W) + 6e2I .

A second-order response surface design, the central composite design, is used for

the determination of the estimated quadratic mean response function for the product

performance characteristics. This function is expressed in the form

E[Y] = 113,(X,W) =130 + p'(x,w) +(x,w)' B (X,W) + error.

Then, let D = [z0 : X : W] be a data matrix of the size nx(p+m+1), where

1) z0 is an nxl unit vector for which (X,W) = [xi x2 ... xp wi wm];

2) xi is an nxl vector of the design variables; i = 1,2,..., p; and

3) wj is an nxl vector of the noise variables; j = 1,2,..., m

4) B is a symmetric (p+m) x (p+m) matrix of the quadratic coefficients and

the cross-product coefficients terms of (X,W), defined as:

31
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B =

011

012

2

012

2

1322

132:(p+m)

4.
P1,(p+m)

2 P(P+m),(p+m),

.. Rup,m)

where 13 = [131132 Np+m)Ir is the (p+m)xl vector of the linear coefficients of the

term (X,W). Thus,

fi(x,w) 0.1),(x,w) Tj2 = [{ 00 + 13'(X,W) + (X,W)' B (X,W)}- t[2

Furthermore, a polynomial expression of degree d can be thought of as a Taylor's

series expansion of the true underlying theoretical function,

f() = E[Y] = E[g(X,W)] ,

truncated after the terms of dth order (Box & Draper, 1987). The estimated variance of

the estimated quadratic mean response function is then obtained by expanding the vari-

ance formula in equation (1) for the univariate case (a2 y (df xo)2a2x). The vari-

ance function of the product performance characteristics,

f2(X,W) = 02),(x,w) + 6e2i ,

is approximately equal to [13 + 2B(X,W)]' Ex ,w[13 + 2B(X,W)]. This is because

W)
[1.) 2B(X,W)] .

d(X ,W)

Therefore,

,2 , dtx(X,W) x ,w )" Yki",v) d(X ,W) ° °

= [13 + 2B (X 0,W o)]'

where Y.ix,w =

VX vxw

VXW Vw

(dii(X ,W) ix
d(X ,W) °

ExAv [i3 2.8(x0,w0)] ,
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in which is the variancecovariance matrix of X and W, and in general Vxw = O.

Thus, utilizing a second-order response surface model to estimate g(X,W) by

means of linear least-squares regression, the estimates, f1(X,W) and f2(X,W) are

(X,W) [{ Po + 13'(X,W) + (X,W)' B(X,W)1 T12

and

f2(X,W) = [p 2B(X,W)]' Ex,w [p 2B(X,W)1 .

Recall that the objective of the Taguchi method is to identify the combinations of

design variables values that best minimize expected losses over an uncontrollable noise

space, defined as:

Minx Z = f1(X,W) + f2(X,W) ,

where f1(X,W) = [ily(X,W) - 'T]2 and f2(X,W) = 62y(X,W) + 6e2I.

The CCD alternative approach pursues similar goals, utilizing estimates of

(X,W) and f2(X,W) to determine optimal settings for the design variables X that best

minimize estimated variances from product performance characteristics, while achieving

the target values, T. Hence, the problem, as formulated in section 3.1, may be defined for

the CCD approach as

Minx Z = 62y(X,W)

where 11.13,(X,W) - TI .5_ a, x > 0, w> 0, and a > 0; or

Minx Zo = [p + 2B (X,W)]' 1,w[(3 + 2B (X,W)]

where 1{130 + f3'(X,W) + (X,W)' B(X,W))- T1 < a. Note that the values for w are fixed at

their mean prior to optimization of the problem. The value a is the width of the specifica-

tion limits, a > 0. The values for x, obtained by optimizing the non-linear program above,

are the optimal set of the variables which minimize variations of product performance

characteristics, while achieving the target values.
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3.2.1 Conceptualization of the Central Composite Design

The purpose of the development of the CCD was to eliminate the excessive num-

ber of experimental runs required by applications of the Taguchi method. The underlying

concepts for the alternative model are described in the following steps.

STEP 1: Define the design variables (X) and the noise variables (W), obtaining

their respective ranges and corresponding means and variances.

STEP 2: Plan the experiment, utilizing the central composite design approach as

the basis for a second-order response surface design.

The design matrix for this approach includes both the design variables and the

noise variables. Note that the noise matrix (i.e., the "outer" array of the Taguchi

method) is not utilized. Useful central composite design experiments should at the least

be "rotatable." According to Hunter (1985), in addition to requirements of orthogon-

ality, rotatability and robustness to biases due to unestimated higher order terms are the

essential keys to good design. Thus, rotatability, assures that the variances and co-

variances of the second-order design effects remain unaffected by rotation. (On the other

hand, note that orthogonality implies that the design variables may be varied

independently.)

STEP 3: Conduct the experiment and obtain values for the performance charac-

teristics (response variables).

STEP 4: Estimate the second-order polynomial used to approximate means for

the system ('..ty(X,W)) via linear least-squares regression.

STEP 5: Apply a Taylor's series expansion to obtain estimated variances for the

response variables.

Recall the noise matrix ("outer" array) used in the Taguchi method for deter-

mination of estimated variances is not required. Given that the use of an outer array

crossed with an inner array has often resulted in an unnecessary large number of experi-

mental runs in the Taguchi design, this omission contributes to a reduction in the number
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of experimental runs . For example, for a 2-variable design problem, the Taguchi method

would require the use of a 32 factorial experiment for the inner array as well as a 22

factorial experiment for the outer array. This would require a total of 36 experimental

runs. In comparison, a design based upon the CCD would require only 9 runs. The CCD

experiment for k variables problem, as demonstrated in Table 3.1, consists of 2k runs

(i.e., the maximum possible number of runs) for the cubed part, 2*k runs for the star

points, and one center point. Therefore, application of the CCD alternative would result

in a 75% reduction in the number of experimental runs required.

Table 3.1. Comparison of number of experimental runs, Taguchi method vs. CCD.
No. of
design

variables
Taguchi

inner array
Taguchi

outer
array

No. of
runs/Taguchi

No. of
runs/CCD

Percentage
reduction

2 32 22 9 x 4 =36 9 75
5* 34-2 25-2 9 x 8 = 72 43 40.28
10* 39-4 210-5 7,776 1,045 86.56
20* 319-8 220-10 181,398,528 1,048,597 99.42

* implies that one of the total number of design variables is a noise variable.

Since the exact formula for the design of the inner and outer arrays was not provided in

the Taguchi method, specifications provided in Table 3.1 are based upon estimates

derived from the implications of the Taguchi approach. In addition, for experimental

purposes, the number of experimental runs for those arrays can added to or decreased

upon the initiative of the experimenter.

STEP 6: Prior to problem optimization, substitute the values of the means for

the noise variables in the estimated quadratic mean response function,

and the estimated variance function of the product performance charac-

teristics obtained by applying the Taylor's series expansion.
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This step is undertaken since the levels of the noise variables are both difficult and

expensive to control. Nonetheless, these variables are required to obtain closer approxi-

mation of the slope used in a Taylor's series expansion. Thus, the noise variables are in-

cluded in the design matrix and their levels are varied only to obtain the slopes of the es-

timated quadratic mean response function.

STEP 7: Utilizing non-linear programming optimization, determine optimum

values for the design variables to minimize variations in production

processes while achieving the target values.

STEP 8: Reoptimize the problem around the optimum set determined in Step 7

by repeating Steps 2 to 7, as required. The difference between the two

optimum sets (based upon the percentage error allowed in the experi-

mental design) provide the criterion for termination of the central

composite design approach.

Note that since it is convenient to avoid the use of actual numerical measures for

the variables, standardized variables can be developed prior to the application of the

CCD method. This is because distinctive design variable scales may lead to a numerically

unstable during the optimization problem in Step 7. The standardized variables will help

solving this difficulty.

In summary, the proposed method is less complicated, and decreasing the number

of experimental runs that would have been required from the application of the Taguchi

method. In addition, the use of unsatisfactory performance statistics (i.e., the "signal-to-

noise ratios") of the Taguchi method can be eliminated in the CCD method. However,

due to unknown performance quality characteristic functions, there may be limitations to

the utility of the CCD approach. If the first-order derivatives, or the gradient of the true

performance function, are approximately zero (i.e., the function is very flat), then the

CCD method may not work as well as the Taguchi method. Moreover, the quadratic
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function may not approximate the true performance characteristics function with

accuracy when the true function consists of very high-order degrees for the polynomial

terms. This is because the slopes of the true performance characteristics function and the

estimated quadratic function are quite different.

For the present investigation, the CCD method was tested using response surface

design as provided in STATGRAPHICS, version 5.0 (Statistical Graphics Corporation),

to obtain the design matrix outline in Step 2. Experimentation, as outlined in Step 3, has

not been conducted. The estimated quadratic mean response function of the product

performance characteristics was also obtained by the application of regression analysis

techniques provided in STATGRAPHICS. Note that this program has been used to per-

form statistical analyses throughout the current investigation. In additions, GAMS

(developed by Brooke, Kendrick, and Meeraus, 1988) was employed as the nonlinear

programming optimization software for the determination of optimal design variable set-

tings based upon application of the CCD. In the following section, an example is pro-

vided to demonstrate how the design variable settings are obtained using, respectively,

the Taguchi method and the CCD.

3.2.2 Example Problem

A force problem* is used to illustrate the application of the CCD to obtain the op-

timal design variable settings in comparison to the method of application of the Taguchi

approach. The problem is given as:

y = (300 + 16x5) * (140/x1 1) + x3 * (x2 + (x5-20) * (280/x1 - 1) x4) * (280/x 1 I )

where y = force (grams),

x1 = front edge of the paper to pivot,

* As developed by Dr. David Ullman, Associate Professor of Mechanical Engineering, Oregon State
University, personal communication to Dr. Edward McDowell, Associate Professor of Industrial and
Mechanical Engineering, Oregon State University, March, 1988.



38

x2 = spring connection point,

x3 = spring stiffness,

x4 = spring free length,

x5 = paper thickness,

x1 e (100, 180) mm,

x2 e (35, 75) mm,

x3 c (5, 15) mm,

x4 e (20, 50) mm,

ax 1 = 6x2 = 1 mm,

6x3 = ax4 = 2 mm,

x5 is distributed Uniform(0, 50), and is a noise variable. The target value of force

is 400 grams.

Hence, the performance (quality) characteristic (or a response variable) in this

problem is "force (y).". The design variables are the front edge of the paper (xi), the

spring connection point (x2), the spring stiffness (x3), and the spring free length (x4).

The noise variable is the paper thickness (x5).

A 34-2 or 1/9 replicate factorial experiment for the Taguchi method design matrix

or inner array was employed (Table 3.2). A 25-2 or 1/4 replicate was employed for the

noise matrix or outer array (Table 3.3). The data matrix was obtained by crossing the

design and noise matrices. Therefore, 72 (9 x 8) observations resulted, and signal-to-

noise ratios for the target, the best case (S/N1 = 10 * log(372/s2), were calculated (Table

3.4). Analyses of variances for the means and for the signal-to-noise ratios were con-

structed to determine the adjustment variables (i.e., the design variables that affected

only the means of the performance characteristics) and the design variables that affected

both the means and the variances of the performance characteristics.
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Table 3.2. Force problem design matrix for the the Taguchi method.

run x i x2 x/ x4 X5

1 100 (0) 35 (0) 5 (0) 20 (0) 25

2 140 (1) 35 (0) 15 (2) 35 (1) 25

3 180 (2) 35 (0) 10 (1) 50 (2) 25

4 100 (0) 55 (1) 10 (1) 35 (1) 25

5 140 (1) 55 (1) 5 (0) 50 (2) 25

6 180 (2) 55 (1) 15 (2) 20 (0) 25

7 100 (0) 75 (2) 15 (2) 50 (2) 25

8 140 (1) 75 (2) 10 (1) 20 (0) 25

9 180 (2) 75 (2) 5 (0) 35 (1) 25

* represents level codes within the design matrix

Table 3.3. Force problem noise matrix for the Taguchi
method.

x1 x2 xl )(4 X5

-1 -1 -2 +2 39

+1 -1 -2 -2 11

-1 +1 -2 -2 39

+1 +1 -2 +2 11

-1 -1 +2 +2 11

+1 -1 +2 -2 39

-1 +1 +2 -2 11

+1 +1 +2 +2 39
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Table 3.4. Data matrix obtained via the Taguchi method.
run x i )(2 X1 x4 x5 y mean S/Ni

99 34 3 22 39 639.01
101 34 3 18 11 184.07
99 36 3 18 39 671.92

1 101 36 3 22 11 173.43 493.34 2.82
99 34 7 22 11 140.12

101 34 7 18 39 973.04
99 36 7 18 11 216.91

101 36 7 22 39 948.22
139 34 13 37 39 221.25
141 34 13 33 11 -104.26
139 36 13 33 39 300.37

2 141 36 13 37 11 -129.90 74.27 -9.76
139 34 17 37 11 -205.74
141 34 17 33 39 324.11
139 36 17 33 11 -102.28
141 36 17 37 39 290.59
179 34 8 52 39 -234.18
181 34 8 48 11 -190.62
179 36 8 48 39 -207.09

3 181 36 8 52 11 -199.37 -223.71 19.43
179 34 12 52 11 -259.97
181 34 12 48 39 -232.98
179 36 12 48 11 -219.35
181 36 12 52 39 -246.11

99 54 8 37 39 1139.39
101 54 8 33 11 255.39
99 56 8 33 39 1227.15

4 101 56 8 37 11 227.04 799.42 2.60
99 54 12 37 11 209.10
101 54 12 33 39 1519.55
99 56 12 33 11 340.73
101 56 12 37 39 1477.01

139 54 3 52 39 71.39
141 54 3 48 11 -11.87
139 56 3 48 39 89.64

5 141 56 3 52 11 -17.79 49.25 -4.32
139 54 7 52 11 -47.20
141 54 7 48 39 164.10
139 56 7 48 11 -4.60
141 56 7 52 39 150.30
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Table 3.4 (continued).
run x1 x2 x3 x4 X5 y mean S/Ni

179 54 13 22 39 112.05
181 54 13 18 11 113.15
179 56 13 18 39 156.06

6 181 56 13 22 11 98.93 159.04 10.25
179 54 17 22 11 154.53
181 54 17 18 39 222.07
179 56 17 18 11 212.08
181 56 17 22 39 203.47
99 74 13 52 39 1731.18
101 74 13 48 11 415.34
99 76 13 48 39 1873.79

7 101 76 13 52 11 369.26 1195.51 3.14
99 74 17 52 11 369.49
101 74 17 48 39 2154.67
99 76 17 48 11 555.97
101 76 17 52 39 2094.41
139 74 8 52 39 585.04
141 74 8 48 11 368.30
139 76 8 48 39 633.73

8 141 76 8 52 11 352.52 599.31 9.80
139 74 12 52 11 525.27
141 74 12 48 39 877.49
139 76 12 48 11 598.31
141 76 12 52 39 853.83
179 74 3 37 39 -120.54
181 74 3 33 11 -48.62
179 76 3 33 39 -110.38

9 181 76 3 37 11 -51.91 -36.97 -4.0
179 74 7 37 11 22.37
181 74 7 33 39 -12.54
179 76 7 33 11 46.07
181 76 7 37 39 -20.19

In Table 3.5, by ranking the sum of the squares, the design variables that affect

the means were, respectively, in descending order x1, x2, x3, and x4. From Table 3.6,

the variables that affected the signal-to-noise ratios (both means and variances) were, re-

spectively, in descending order x3, x4, x1, and x2. The Taguchi method first calls for the

selection of the variables that have the least effect on the means and variances and which

have the greatest effect on the means. In this approach,whether x 1 or x2 should be se-
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lected first for the adjustment of the target is an unknown. The ratios of the sums of the

squares of x 1 and x2 were calculated from Tables 3.5 and Table 3.6.

Table 3.5. Analysis of variance for the means, Taguchi
approach.

Sources of Sums of
variation squares d.f. Mean squares

xi 1,167,129.2 2 583,564.61
x2 333,623.1 2 166,811.57
x3 151,645.4 2 75,822.72
)(4 28,819.2 2 14,409.58

residual -1.42 x 10-10 0
Total (corrected) 1,681,217.0 8

Table 3.6. Analysis of variance for the mean and variances,
Taguchi approach.

Source of
variation

Sums of
squares d.f. Mean square

xi 150.62 2 75.31
x2 3.16 2 1.58
x3 252.46 2 126.23
x4 227.15 2 113.57

residual -5.68 x 10-14 0
Total (corrected) 633.3859 8

Though xi had an effect upon the mean that was approximately triple that of x2, the x2

effect upon the signal-to-noise ratios was smaller than that of xi. by a ratio of approxi-

mately 1 to 50. Therefore, x2 was selected first. Similarly, the ratios of the sum of the

squares for x3 and x4 were calculated. The order of the design variables selected to ad-

just the values to meet the target values was x2, xi, x3, and x4, respectively. The means

table for the signal-to-noise ratios (Table 3.7) was then used to determine the levels of

the design variables for maximization of the signal-to-noise ratios. The starting values of
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the design variables before adjusting to meet the target were x2 =35 mm, x1 = 180 mm,

x3 = 10 mm, and x4 = 20 mm (recall x5 was fixed at a mean level of 25 mm).

Table 3.7. Estimates of the means for the
signal-to-noise ratios.

Level Count Average
xi

0 (100) 3 2.8533
1 (140) 3 -1.4267

x2,

2 (180)

0 (35)

3

3

8.5600*

4.1633*
1 (55) 3 2.8433

x3
2 (75) 3 2.9800

0 (5) 3 -1.8333
1 (10) 3 10.6100*
2 (15) 3 1.2100

M
0 (20) 3 7.6233*
1 (35) 3 -3.7200
2 (50) 3 6.0833

* represents levels of the variable for which the
signal-to-noise ratios yielded a maxi-
mum.

Substuting the starting values of the design variables into the force equation

resulted in a negative value of force (-56.79 grams), the value of x2 was first adjusted by

effecting a maximum increase in x2 in order to meet the target. The result was x2 = 75

mm. and the force (y) = 165.432 grams. Second, the values of x 1 was adjusted to meet

the target value, resulting in x 1 = 156 mm. and a force of (y) = 396.976 grams, values

which were reasonably close to those for target. Thus, the optimal settings resulting

from application of the Taguchi approach were:

xi = 156 mm,

x2 = 75 mm,
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x3 = 10 mm,

x4 = 20 mm, and

x5 = 25 mm.

The estimated mean response of the force (y) was 396.976 grams.

For the CCD experimental design, a 25 rotatable force problem is used as an ex-

ample to demonstrate how the optimal settings for the design variables are obtained.

Based upon a 25 factorial experiment for the cubed part of the rotatable CCP design,

with two central points for the force problem, a design matrix was constructed with the

use of STATGRAPHICS. Based upon response surface design, the data matrix was ar-

ranged so that the design points were in given variable ranges, adjusting the low and high

values accordingly. The resultant low and high values that used as the inputs for the de-

sign variables in all cases are presented in Appendix A. Based upon the data given in

Table 3.8, approximated quadratic mean response functions for the force problem was

obtained through application of mulitiple linear regression . The estimated quadratic

mean response function was :

A A 5 A 5 5

,t y(X) = -1- I Pi Xi +Iplixi2+II,,, 13 xixi
i=1 i.1

where 13o = 507.055564, ri 12 = -0.144516, 1325 = -3.299x10-14 = 0,

= -15.338159, 1313 = -0.436905, 1333 = -0.01481,

32 = 20.287442, (314 = 0.144516, [31 34 = -1.023226,

(33 = 39.339175, (315 = -0.411358, 1335 = 1.093982,

4 = -20.005715, 13 22 = -0.001053, (344 = -0.00237,

135 = 57.511553, 1323 = 1.023226, 1345 = 7.456x10-14 = 0,

A A

1311 := 0.083098, (324 = -2.83x10-13 = 0, (355 = -0.000592.
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Table 3.8. Data matrix for a 25 rotatable CCD for the force
problem.

run xi x2 xl x4 xi
1 140 55 14.7568 35 25
2 175.676 55 10 35 25
3 125 47.5 8 30 35
4 125 47.5 12 40 35

5 140 55 10 35 25
6 125 47.5 12 40 15

7 140 55 10 35 1.21586
8 140 37.1619 10 35 25
9 155 47.5 12 40 15

10 125 62.5 8 40 35
11 140 55 10 46.8921 25
12 155 62.5 12 40 35
13 155 62.5 8 30 35
14 125 47.5 12 30 35
15 125 62.5 12 40 35
16 155 47.5 12 30 35
17 125 62.5 12 30 35
18 155 62.5 12 40 15

19 155 47.5 12 30 15

20 155 47.5 8 40 35
21 155 62.5 8 40 35
22 155 62.5 12 30 35
23 155 62.5 8 40 15

24 125 47.5 8 30 15

25 155 47.5 8 40 15

26 125 62.5 12 40 15

27 155 47.5 12 40 35
28 155 62.5 8 30 15

29 125 47.5 8 40 35
30 155 62.5 12 30 15

31 140 55 10 35 48.7841
32 125 62.5 8 30 15

33 155 47.5 8 30 35

34 140 55 10 35 25

35 155 47.5 8 30 15

36 125 62.5 12 30 15

37 125 47.5 8 40 15

38 140 72.8381 10 35 25

39 140 55 5.24317 35 25

40 125 62.5 8 30 35

41 125 47.5 12 30 15

42 140 55 10 23.1079 25
43 104.324 55 10 35 25
44 125 62.5 8 40 15
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Since the purpose was to obtain the best estimates possible for slopes from the

estimated quadratic mean response function, statistical significance tests are not

performed for all coefficient terms to distinguish them from zero. In this case, the results

revealed that the best estimates of slope resulted in improved approximations of variance

for the response (y) from the application of the Taylor's series.

From the previous section, the nonlinear programming problem for the CCD

method was defined as:

Minx Zo = [13 + 2B(X,W)]' Ix,w [13 + 2B(X,W)] ,

where s.t.1430 +131(X,W) +(X,W)' B(X,W)) - 'El< a. For the 25 rotatable CCP case,

the nonlinear programming problem could be defined as:
A A A A

Minx Z0 = [0 + 2B X]' /x,w [13 + 2BX] ,
A A A

where s.t.1{ [30 +13/X + X'BX) 4001< 0,

and where
A

DO :=
A

=

A
B=

507.055564,

[- 15.338159

0.083098
-0.144516/2

-0.411358

20.287442 39.339175

-0.144516/2
-0.001053

0

-20.005715

-0.411358

-0.000592

57.511553

X = [ xi x2 x3 x4 25]T.

(Note: x5 is a noise variable, thus its value is set at mean level prior to optimization of

the nonlinear programming problem. 6x1 = 6x2 = 1 mm., 6x3 = 6x4 = 2 mm., 6x5 =

14.434 mm, and the covariances for x are zero.) Then, recall that Vx, Vw, and Vxw are

the variancecovariance matrices for the control variables, xi, i = 1,2,3,4, and for the

noise variables, x5, and for the covariance matrices of the control variables and the noise

variable, respectively. Thus,



Hence,

1 0 0 0

Vx = 0 1 0 0 , and Vim, = [208.33] (Vxw = LI) .

0 0 4 0
0 0 0 4

Vx Vxw

V XW VW

1 0 0 0 0
0 1 0 0 0
0 0 4 0 0
0 0 0 4 0
0 0 0 0 208.33
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A -A A
Substituting the values of [30, J3, B, X, and Ex,w in the nonlinear program list, provided

in Appendix C, and applying nonlinear programming optimization software (GAMS), the

optimal set of design variables for the 25 rotatable CCD force problem case is solved

with values of

xi = 176.48 mm,

x2 = 75 mm,

x3 = 15 mm,

x4 = 20.72 mm, and

x5 = 25 mm.

The force (y), obtained by substituting optimal values for xi in the force function, is

358.7047 grams. (Note that the force function is given further consideration in section

3.4.2.)

3.3 Research Questions

From application of the CCD to problem situations, a number of questions remain

at issue. First, the CCD approach is based upon a second-order response surface model,

considered as a Taylor's series expansion, to obtain estimated variance functions for the
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response, Y. Experimenters must remain aware of differences between the Taylor's

series expansion and the second-order response surface model. Note that the

approximation possibilities for a polynomial function of a given degree are improved in

relation to reductions in the size of the region R over which the approximations are made

(Box & Draper, 1987). This can be demonstrated based upon examples of a univariate

case, as given in Figures 3.3 and 3.4, each of which provides a comparison of estimated

quadratic functions to Taylor's series expansion. Figure 3.3 indicates, when the quad-

ratic function is obtained from data consisting ofpoints around xo (i.e., within the small

region around the point of interest ,x0), that the Taylor's series expansion at xo yields

approximately the same result as the quadratic approximation of a true function, f(x0).

In contrast, Figure 3.4 indicates, when the quadratic function is obtained from data con-

sisting of points distant from xo (i.e., from a wider region around the point of interest

,x0), how the Taylor's series expansion at xo yields a different result from the quadratic

approximation of a true function, f(x0). Thus, in comparison to results obtained by appli-

cation of the Taguchi method, reasonable doubts may be raised with respect to the accu-

racy with which the CCD approach can be used to estimate variance response functions

for the performance characteristics. In other words, the principal issue of concern is the

performance of the CCD in comparison to Taguchi method performance.

Second, the second-order response design of the central composite design experi-

ment can be formed in various ways. The CCD consists of a cubed part (i.e., a 2k-P or

2k factorial experiment), star points, and center points. The design can be rotatable, or-

thogonal, or both rotatable and orthogonal. The research question which arises is

whether rotatability is a necessary property of the design required for the implementation

of this approach. Or is it necessary to use a 2k-P or 2k factorial experiment for the cubed

part of the design experiment? Moreover, what are the best designs to use for the

approximation of Ly(X, W)?
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Figure 3.3. Quadratic functions identical to Taylor's series approximations.

B

YO
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x
0

Figure 3.4. Quadratic functions differing from Taylor's series approximations.

Notes: A = true function f), B = estimated quadratic function approximation of
true function, C = estimate from Taylor's series approximation).
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Finally, the use of linear least-squares regression for the estimation of the quad-

ratic mean response functions of the product performance characteristic, g(X, W), may

be questioned. What are the problems in the use of weighted least-squares regression in

conjunction with the CCD'? It may be speculated that accurate weights could serve to

improve estimations of the quadratic mean function, as well as the estimations of variance

functions for the product performance characteristics. Thus, following implementation of

the research approach, the questions which remain at issue for the current investigation

are as follows:

1) How does CCD performance compare to results achieved by application

of the Taguchi method?

2) What are the "best" designs for the approximation of the quadratic func-

tion, Ily(X, W)?

3) Should weighted least-squares regression be used to obtain the estimated

quadratic function?

Therefore, the evaluation procedures developed for the current investigation, including

the means to generate test problems, are considered in the following section.

3.4 Evaluation of Solution Methods

Since the principal objective of the current investigation was to compare the re-

sults obtained by application of the CCD method, based upon the use of response surface

techniques, to those obtained by application of the Taguchi method, nine test problems

were considered, including the "force problem" developed in section 3.2.2 to demon-

strate how design variable settings were obtained using both the CCD and the Taguchi

approach. In addition, for the CCD approach, various types of central composite design

experiments were considered for the approximation of the quadratic mean response func-

tion. Design matrices were varied by employing either fractional-factorial or full-factorial
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experiments for the cubed part and such properties as rotatability and orthogonality were

also considered. Furthermore, in response to question 3 (section 3.3), five different

weights were applied to obtain estimated quadratic mean response functions.

Finally, simulation studies were conducted at the design variable settings ob-

tained, respectively, from application of the CCD and the Taguchi approach. For each

approach, 10 simulation runs were performed, each of which in turn consisted of 500 ob-

servations. From the simulation, the means and the variances for the product perform-

ance characteristics (y) were then used to calculate the performance measures for each

approach for all of the test problems. The performance measures considered included

estimated (absolute) biases, variances, and the mean square errors of the product per-

formance characteristics. With the objective of determining whether the CCD approach

yielded statistically significant differences in the performance measure mean values from

comparable measures obtained by application of the Taguchi method, statistical analyses

were implemented. Detailed descriptions of the evaluation procedures as well as the

generation of test problems are considered below.

3.4.1 Evaluation Procedures

For comparison of the results of the CCD approach to those obtain from consid-

eration of the Taguchi method, the following procedural steps were developed:

A) Taguchi method:

1) Define a design matrix based upon a three-level fractional-factorial

experiment (using means for the values of the noise variables).

2) Define a noise matrix based upon a two-level fractional-factorial

experiment.

3) Obtain a data matrix from consideration of the matrices developed

in 1) and 2).



52

4) Calculate the signal-to-noise ratios (as described in Chapter 1),

then determine the initial set of the design variables for the maxi-

mization of the signal-to-noise ratios.

5) Adjust the design variable values to meet the target.

B) Central composite design method:

1) Define a design matrix based upon a central composite design ex-

periment, encompassing both design variables and noise variables.

To determine the values of the experimental variables, arrange the

design matrix based upon STATGRAPHICS analysis; adjust all de-

sign points to exist within defined ranges.

2) Obtain the approximated quadratic mean response function using

multiple regression analysis in STATGRAPHICS , and estimate

variance functions from the application of Taylor's series expan-

sions.

3) Based upon GAMS analysis, obtain optimum values for the design

variables. Use these values to minimize the estimated variance

function and to meet the specified target based upon the estimated

quadratic mean response function, as described in 2); prior to the

optimization of the estimation functions, values for the noise

variables are fixed at mean estimates.

During the application of the CCD approach, various types of the designs were

investigated to determine the best design for the approximation of the quadratic mean

response function. Designs were varied by the use of either a fractional-factorial

experiment or a full-factorial experiment for the cubed part: In addition, design

properties such as orthogonality, rotatability, and both orthogonality and rotatability,
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were employed for the consideration of six possible cases for the cubed part of the

problem:

i) orthogonal CCD based upon a fractional-factorial experiment,

ii) rotatable CCD based upon a fractional-factorial experiment,

iii) both orthogonal and rotatable CCD based upon a fractional-factorial experi-

ment,

iv) orthogonal CCD based upon a full-factorial experiment,

v) rotatable CCD based upon a full-factorial experiment, and

vi) both orthogonal and rotatable CCD based upon a full-factorial experiment.

In addition, weighted least-squares regression was applied to the test problems to

determine whether this means of analysis would result in the improvement of the estima-

tions of the quadratic mean functions to the target as well as the estimations of the vari-

ance functions. Five different weights (wt) were used, as follows:

1. wt = 1,

2. wt = lily-TI,

3. wt = 1/(ly-T1)2,

4. wt = laxi.2)1/2, and

5. wt = 1/(Exi2).

The reason for consideration of the weights 2 and 3 is that they provide higher weights to

the points that are the closest to the target. Thus, the fitted quadratic mean function ob-

tained from the use of these weights may yield estimated means that are closer to the tar-

get values. Since the information function (Ix) for a rotatable design, which is the inverse

of the variance function (i.e., Ix = Vx-1), is dependent upon distance from the origin,

(Exi2)1/2, weights 4 and 5 were used (Box & Draper, 1987). This was based upon the

assumption that the term (ai2) may serve to improve the estimations of the variance
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functions or the solution capabilities of this methodology. The results of the application

of the weights considered are presented in Appendix B.

The designs which resulted from development of the two approaches were tested

by the simulation of optimum set of values for the design variables. Simulation pro-

grams, based upon 10 simulation runs of 500 observations for each approach, were pre-

pared in BASIC (program listings are provided in Appendix C). The mean response

values and the variances for the product performance characteristics at optimal sets of

design variable values for each approach were calculated, in addition to biases (absolute)

and mean square errors. The absolute biases were equal to the absolute values of the

differences between the means for the simulation and for the target values. The mean

square errors were the sum of the variances and the squared biases. Examples of

simulation results, based upon a 25 rotatable CCD design for the force problem (section

3.2.2) are shown in Table 3.9. Finally, the performance statistics for the (absolute)

biases, the variances, and the mean square errors were used to indicate which approach

was superior, based upon statistical analyses.

Table 3.9. Comparison of simulated results for the force problem.

Estimated Mean
mean Estimated square

Approach xi x? xl x4 xs (Ibias)) variance error

Taguchi 156 75 10 20 25 396.3571 14,390.3 14,403.6
(3.6429) 3 0

25 rotatable 176.48 75 15 20.72 25 358.38 5,769.86 7,502.08
CCD (41.62)

3.4.2 Test Problems

Since the product parameters and the performance characteristic are usually re-

lated in a complicated non-linear function, which is normally unknown, the scope of the
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test problems was focused upon the high-order power functions. Thus, both the additive

and multiplicative high-order functions were generated. Multiplicative high-order func-

tions were of the form: x11-1 * x2132 * x31-3 * x4434 + e. Four additive and four

multiplicative high-order functions were tested for the CCD to investigate its limitations

with respect to the order degree polynomial of the true response function. It was

hypothesized that a second-order response surface model approximation of the true re-

sponse function would not be efficient insofar as the true function consisted of a very

high-order degree polynomial. If the order polynomial of the true function was too high

(e.g., a fourth- or fifth-degree polynomial), then the slopes of the quadratic ap-

proximation of the function would differ significantly from those of the true function.

For example, consider x = 1, 2, 2.5, 3, 3.2, 4, 5 }. If the true function was of the

form y = x3, then the estimated quadratic function obtained via STATGRAPHICS regres-

sion would be y = 16.81 - 23.39x + 8.95x2. Hence, the slope of the true function

evaluated at x = 1 would be equal to 3, whereas that of the slope of the estimated quad-

ratic function would be 2.37. Obviously, there is little difference in the values of the

slopes obtained from either the true function or the estimated quadratic function. How-

ever, if the true function was y = x4, then the estimated quadratic function obtained via

regression would be y = 157.32 197.986x + 57.63x2. The slope of the true function at

x = 1 would then be 4 and that for the estimated quadratic function would be 16.96, or

approximately quadruple the slope of the true function. The difference in slopes between

the true function (with a very high-order degree polynomial) and the estimated quadratic

function approximating the true function would then contribute to poor variance function

estimates when the Taylor's series expansion was applied. The question then becomes:

"What is the highest degree polynomial of the true function which allows for accurate

functioning of the CCD approach?"
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The order of degree polynomials of the multiplicative high-order function were

selected using a random number generator in the range (0,d), where d was the highest

order of interest. The set of order degree polynomials for the variables xi was chosen

systematically to consist of the highest order d. The additive higher order functions were

randomly selected from the list of the functions provided in (Bazaraa & Shetty, 1979).

The eight test problems were as follow:

model 1: y = 2x12 - 3x22 + 3x 1x2 + 1.5x32 + 4x24 - 6x2x3 + 5x42 + 0.5xix4 + E,

model 2: y = 5x12x25x3 + 10x13x22x32 + 6x 1 x2x4 + x l x33x44 + e,

model 3: y = 4x13 + 2x2-3x32 + exp(x4/2) + e,

model 4: = + 2)(12 3x1x2 + 5x11.6 x21.8 1.5x30.5 x42 e,

model 5: = x 3x20.5 x3x42 e,

model 6: x 1/2 x23/4 x31/3 x42/3 + e,

model 7: y = x1512 x2x33 x44 + E, and

model 8: y xi3 x25 x33/2 x42 + e.

Note that the range of design variables and noise variables were limited in (0,1), thus

none of the problems were optimized with the GAMS software (i.e., standardized vari-

ables into the (0,1) scale were used). Furthermore, each model had a specified target and

the means and standard deviations for xi were randomly selected based upon round-up

(only two significant digits) of the random number (0,1). The results were:

axl = ax2 = 0.1 ,

6x3 = 0.15 ,

and

ax4 = 0-09

(where x4 is a noise variable) for mx4 = 0.5.

However, there were nine test problems considered for the current investigation.

The final problem, the "force problem," was previously used (section 3.2.2) to demon-
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strate how the optimal design variable values were obtained using the CCD method.

Furthermore, the objective of consideration of the force problem was to determine the

settings for the system parameters, to the end of minimizing the mean square errors of the

force target while achieving the target values. The force problem was given as shown in

Figure 3.5.

14.

O
9c,

Figure 3.5. Diagram of the force problem.

Results were as follows:

y = (300 + 16x5) * (140/xi - 1)

+ x3 * (x2 + (x5 - 20) * (280/xi 1) x4) * (280/x1 1) ,

where y = force (grams)

xi = front edge of the paper to pivot,

x2 = spring connection point,

x3 = spring stiffness,

x4 = spring free length, and

x5 = paper thickness,

xi e (100, 180) mm,

x2 e (35, 75) mm,

x3 e (5, 15) mm,

x4 e (20, 50) mm,
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Gxl = 6x2 = 1 mm,

6x3 = 6x4 = 2 rm.

x5 is distributed Uniform(0, 50) and is a noise variable. The target value of the

force was 400 grams.

The results of all nine test problems, as solved by the various methods considered

(section 3.4.1), are presented in Chapter 4, accompanied by statistical analyses of the re-

sults.



CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

59

The principal objective of this investigation was to compare the results of the

central composite design, based upon response surface methodology, to the Taguchi ap-

proach. The CCD was developed to:

1. Obtain a set of values, other than those within the inner array, by minimi-

zation of variations in product performance characteristics, while achiev-

ing target values of the nominal-the best type;

2. Eliminate the need for consideration of a noise matrix (the outer array);

and

3. Eliminate the use of signal-to-noise ratios as the basis for performance

statistics.

Nine performance characteristic function test problems (as developed in section

3.4.2) were investigated and solved for the two contrasting approaches. The data for

each test problem were derived from the application of STATGRAPHICS, version 5.0,

for response surface design. Note that real experiments were not conducted. In addition,

the inputs, consisting of the lower and upper bounds of the design variables (Appendix

A), were controlled to the extent that points within the data matrix (the design matrix)

were within given ranges for the design variables and covered the greater parts of regions

of interest. The results of the design variable settings and the statistical test results for all
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test problems are presented in Appendix B. Listings for the simulation program and the

nonlinear optimization program are presented in Appendix C.

Given the principal objective of this study, performance measures were repre-

sented by the mean square errors for the two approaches, consisting of the biases and

variances. Which parts of the mean square errors provided the greatest contributions to

differences between the two approaches was examined. Therefore, the final performance

measures were considered to be the mean square errors, biases, and variances in the

product performance characteristics, (y). Results for the three performance measures

were obtained by simulating optimal settings for the design variables yielded from con-

sideration of the two approaches. Since research interest was concentrated upon the

magnitude (i.e., the deviation of the estimated mean response from the target value)

rather than the direction (overestimated or underestimated) of mean responses from the

specified target, for purposes of statistical analyses absolute biases were determined.

The CCD approach was investigated for each of the test problems. Initially,

seven contrasting design matrices were to be considered, but they could be applied only

to the force problem. The seven design matrix problems were identified as follows:

1) TAGUCHI (0) for the Taguchi approach,

2) FRAC-ORTH (1) for the CCD based upon fractional-factorial orthogonal de-

sign,

3) FRAC-ROTATE (2) for the CCD based upon fractional-factorial rotatable

design,

4) FRAC-ORRO (3) for the CCD based upon fractional-factorial orthogonal and

rotatable design,

5) FULL-ORTH (4) for the CCD based upon full-factorial orthogonal design,

6) FULL-ROTATE (5) for the CCD based upon full-factorial rotatable design,

and
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7) FULL-ORRO (6) for the CCD based upon full-factorial orthogonal and rotat-

able design.

For models 1-8, the four-variable problems, only four of the above approaches

could be employed. Since, due to limitations upon design resolution, the fractional-fac-

torial design could not be considered for the four-variable problems. This is because the

CCD method employs a central composite design experiment which is a resolution IV

design or higher. (Note that the resolution design k implies that no r factors are aliased

with another effect containing less than k-r factors.) Thus, the problems considered for

the investigation of models 1-8 were limited to: TAGUCHI, FULL-ORTH, FULL-

ROTATE, and FULL-ORRO. Nevertheless, the results obtained from FULL-ORRO

were either identical or equivalent to those for the CCD based upon full-factorial

rotatable design (FULL-ROTATE) for models 1-8. With the exception of model 7, the

results for the case FULL-ORRO were identical to those obtained from the case FULL-

ROTATE (Appendix B, Table B15). Moreover, the FULL-ORRO case required a

greater number of experimental runs than the FULL-ROTATE case. The additional

number of experimental runs required implies greater expenditure. Thus, for purposes of

statistical analysis, consideration of models 1-8 did not include the FULL-ORRO case.

Therefore, only three approaches, TAGUCHI, FULL-ORTH, and FULL-ROTATE,

were compared for purposes of the discussion of the results of this investigation.

To compare statistically significant differences between the results for the

Taguchi method and the CCD approach, statistical analyses for the present study were

performed with the nonparametric Kruskal-Wallis analysis of variance (ANOVA) for all

three performance measures. The test statistics were distributed Chi-squares for k-1

degrees of freedom, where k represents the number of samples. This method of analysis

was thus equivalent to the approaches used for each of the test problems. The null

hypotheses tested were that there would be no differences in the performance statistic
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averages, including variances, absolute biases, and mean square errors, between the CCD

method and the Taguchi method at a 5% level of significance for all test problems. The

test results are presented in Appendix B (Tables B19B26).

As noted above, statistical analyses were conducted for the TAGUCHI, FULL-

ORTH, and FULL-ROTATE test cases. In addition, a weighting function of one was

assigned to a linear least-squares regression analysis to obtain estimated mean response

functions for the CCD method for purposes of comparison with the results obtain for the

Taguchi method. For example, comparing biased results for the force problem yielded by

the FULL-ORTH, FULL-ROTATE, and TAGUCHI test problems, the number of sam-

ples (k) is equal to 3 as determined by Kruskal-Wallis ANOVA. (Note that the biases

consisted of the differences between mean responses and the target values.) Biases were

then obtained from the problem simulations, each run 10 times at design variable settings

determined for each approach. For example, the test statistics considered were distrib-

uted as Chi-squares with two degrees of freedom, where each sample was of size 10.

The results of this method of analysis indicated that, with the exception of model 4, all of

the null hypotheses were rejected at the 5% level of significance. Overall, these test

results imply that the CCD method is to be preferred to Taguchi methods of analysis.

The balance of this chapter is organized as follows. Statistical test results for the

three performance measures for variances, biases, and mean square errors are presented,

respectively, in sections 4.2-4.4. In each section, overall comparisons of results for the

CCD and Taguchi methods for the additive models (models 1-4), the multiplicative

models (models 5-8), and the force problem are presented, including comparisons of the

design properties of each case considered (i.e., orthogonality vs. rotatability). The results

of comparisons for two types of experimental designs for the cubed part of the CCD de-

sign (i.e., full-factorial vs. fractional-factorial experiments), as well as the results of in-

vestigations for five different weighting functions were presented previously and dis-



63

cussed in section 3.4.2. All of the results of this investigation are summarized in section

4.5, whereas a comparison of the results obtained for all test problems for each of the

two methods under consideration is presented in section 4.6.

4.2 Analysis of Results for Variances

The results analyzed in this section were obtained by applying a weighting func-

tion of one to obtain the estimated quadratic mean response function.

4.2.1 CCD Method vs. Taguchi Method

The results from three of four additive high-order models (models 1-3), all of the four

multiplicative high-order models (models 5-8), and the force problem indicated stat-

istically significanct differences (p-ranges from 0.000 to 0.0412) between the variance

averages obtained for the CCD (either FULL-ORTH or FULL-ROTATE) and the

Taguchi methods (Appendix B, Table B19). The exception was model 4, for which no

statistically significant differences were demonstrated. However, the settings obtained by

the use of either FULL-ORTH or FULL-ROTATE resulted in performance characteristic

(y) variations that were smaller than those obtained by use of TAGUCHI for all test

problems (Appendix B, Table B20). Specifically, for models 1 and 2, FULL-ORTH

yielded the smallest variances, whereas for models 3, 6-8 and the force problem, FULL-

ROTATE yielded the smallest variances. For models 4 and 5, FULL-ORTH and FULL-

ROTATE yielded variances that were approximately equal. Thus, with the exception of

model 4, results obtained with the CCD method were superior to those obtained with the

Taguchi method. In addition, as shown in Figures 4.1-4.3, variance averages for the

Taguchi method were somewhat larger than variance averages for the CCD method for

all the test problems (including model 4).
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Figure 4.1. Variances for additive models (1-4).
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The average variance for FULL-ORTH models 1 and 2, were, respectively,

0.3293 with a standard error of 0.0078 and 0.6552 with a standard error of 0.0378, in

comparison to, respectively, 0.5369 with a standard error of 0.0198 and 0.9019 with a

standard error of 0.0313 for the Taguchi method. The average variance for FULL-

ROTATE models 3, 6, 7, 8 and the force problem were, respectively, 0.0574 with a

standard error of 0.0037, 2.98x10-3 with a standard error of 5.37x10-5, 1.24x10-7 with

a standard error of 1.51x10-8, 1.29x10-6 with a standard error of 1.44x10-7, and

5,769.87 with a standard error of 109.45 in comparison to, respectively, 0.1744 with a

standard error of 0.0084, 3.74x10-3 with a standard error of 1.30x10-4, 1.52x10-5 with

a standard error of 1.68x10-6, 1.91x10-6 with a standard error of 2.03 x 10-7, and

14,390.30 with a standard error of 323.67 for the Taguchi method. Moreover, the aver-

age variance for FULL-ORTH (FULL-ROTATE) models 4 and 5 were, respectively,

0.7107 (0.7208) with a standard error of 0.025 (0.0246) and 1.33x10-4 (1.38x10-4) with

a standard error of 7.19x10-6 (4.87x10-6), in comparison to, respectively, 0.7574 with a

standard error of 0.0203 and 3.28x10-4 with a standard error of 1.68x10-5 for the

Taguchi method.

Furthermore, the test results for orthogonal and rotatable design properties

favored the CCD method. Though results for five of nine test problems failed to indicate

statistically significant differences in variance averages for models 3-5, 8 and the force

problem (p-values from 0.1988 to 0.8798) between FULL-ORTH and FULL-ROTATE,

it was determined that results for seven of nine FULL-ROTATE test problems yielded

smaller or equivalent variances in comparison to those for FULL-ORTH, as discussed

above. (Note that the exceptions were models 1 and model 2, for which FULL-ORTH

yielded the smaller variances.) Moreover, from thorough investigation of model 8, use of

rotatable design resulted in statistically significant differences between the proposed

method and the Taguchi method for variance averages when there were no signals. That
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is, though there were no statistically significant differences among FULL-ORTH, FULL-

ROTATE, and TAGUCHI for variance averages at p-value t 0.1383, between FULL-

ORTH and FULL-ROTATE for variance averages at p-value t 0.2899, or between

FULL-ORTH and TAGUCHI for variance averages at p-value t 0.4495, test results did

demonstrate statistically significant differences between FULL-ROTATE and TAGUCHI

for variance averages at p-value t 0.0412. As a result, rotatability was determined to be

a significant property for the proposed CCD design.

4.2.2 Design Experiments

Force problem results indicated that the CCD method, employing either the

fractional-factorial experiments or the full-factorial experiments (models 4-6), was supe-

rior to the Taguchi method. From Table B25 (Appendix B), all six designs employing the

CCD method yielded variance average results which were statistically significant im-

provements upon Taguchi method at p-values less than 0.05. Additional analysis was

performed for the full-factorial vs. fractional-factorial experimental designs. Results indi-

cated that the full-factorial designs were provided results which were statistically signifi-

cant improvements upon variance averages for the fractional-factorial designs at p-values

less than 0.05. However, within either the full or fractional factorial groups, there were

no statistically significant differences for average variances in the force problem with re-

spect to orthogonal or rotatable design properties. At the same time, the full-factorial

experiments resulted in larger average variances than the averages for the fractional-

factorial experiments (Figure 4.3). Thus, for the determination of variances, the

fractional-factorial approach was preferred to the full-factorial approach.

4.2.3 Weighting Functions

Since it may be speculated that assurance of the accuracy of weighting functions

could serve to improve the estimation of the quadratic mean response functions as well as
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of variance function estimation for the product performance characteristics, consider one

of the research questions introduced in section 3.3: "Should weighted least-squares

regression be used to obtain the estimated quadratic function?" The weighting functions

employed for the CCD method based upon full-factorial rotatable design were:

1) w1 = 1,

2) w2 = 1/1y-TI,

3) w3 = 1/(y-et)2,

4) w4 = 1/(Ex2)1/2, and

5) w5 = 1/(Ex2).

The bases for the choice of these five different weighting functions were discussed in

section 3.4.1.

As indicated in Figures 4.4-4.6, for the application of a weighting function of

one, variances for the additive high-order functions (models 1-4) and the multiplicative

high-order functions (model 5-8) were decreased, respectively, by 22.4% and 4.24% for

consideration of the inverse of the squared distance from the origin of the variables x

(w5). However, the weighting function of one (i.e., ordinary least-squares regression)

was sufficient for the force problem. The average of variances of weighting function w5

for the additive models was 0.3908, with a standard error of 0.1329, whereas the average

of weighting function of one (wl) for the same models was 0.5064, with a standard error

of 0.1827. For the multiplicative models, the average of variances of weighting function

w5 was 0.000746, with a standard error of 6.94x10-4, whereas the average of weighting

function one was 0.000774, with a standard error of 7.35x10-4. For the force problem,

the average variance based upon ordinary least-squares regression (i.e., a weighting

function of one) was 5,769.86, in comparison to 5,908.28 for the weighting function w4

(i.e., the next smallest weighting function).
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Hence, it was determined that weighted least-squares regression improved

estimation of the variances functions for the product performance characteristics of the

high-order functions (models 1-8). In addition, the appropriate and reasonable weighting

function for the high-order functions was the inverse of the squared distance from the

origin of the variables x (w5 = 1/0x2)). This was because the information function (Ix),

which is the inverse of the variance function (i.e., Ix = Vx-1), was dependent only upon

the distance from the origin for the rotatable design, and the weighting function w5 was

the inverse of the square of that distance. The next point of interest was whether the

application of weighted least-squares regression would result in an improvement of

estimates of the quadratic mean functions, and which of the five distinctive weights

would provide an appropriate choice in that context.

4.3 Analysis of Results for Biases

As in the previous section, the results discussed in sections 4.3.1-4.3.2 were ob-

tained by applying a weighting function of one to the proposed method.

4.3.1 CCD Method vs. Taguchi Method

Statistical analysis based upon Kruskal-Wallis ANOVA (Appendix B, Table B21)

demonstrated statistically significant different average absolute biases existed between the

CCD method (FULL-ORTH and FULL-ROTATE) and the Taguchi method

(TAGUCHI). Results for three of four of the additive high-order models (models 1-3),

all of the multiplicative high-order models (models 5-8), and the force problem demon-

strated statistically significant differences at p-value ranges from 0.0000 to 0.0043.

Again, the exception was that there were no significant differences between CCD FULL-

ORTH and FULL-ROTATE and the Taguchi method for model 4. However, the FULL-

ROTATE CCD (full-factorial rotatable design) yielded the smallest absolute bias for
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model 4 (Figure 4.7). In addition, with the exception of model 1 and the force problem,

results from seven of nine test problems indicated that the CCD methods (either FULL-

ORTH or FULL-ROTATE) yielded average absolute biases which were smaller than

those for TAGUCHI (Figs 4.7-4.9). Thus, with the exception of model 4, the CCD

method was determined to be superior to the Taguchi method for the determination of

average absolute bias. In addition, as demonstrated in Figures 4.7-4.9, for three of four

additive models (2-4) and all of the multiplicative models (5-8), the use of either the

FULL-ROTATE or FULL-ORTH CCD method resulted in the smallest average absolute

biases. Specifically, for models 2-5 and 8, FULL-ROTATE yielded the smallest absolute

biases, whereas for model 6-7, FULL-ORTH yielded the smallest absolute biases.

The average absolute biases for model 2-5 FULL-ROTATE were, respectively,

2.99%, 0.4%, 1.07%, and 5.34% in comparison to, respectively, 7.26%, 0.96%, 1.96%,

54.9% for the Taguchi method. The average absolute biases of model 2 for FULL-

ROTATE was 50.57%, in comparison to 83.91% for the Taguchi method. In turn, the

average absolute biases of models 6-7 for FULL-ORTH were, respectively, 1.45% and

33.01%, in comparison to, respectively, 3.61% and 75.36% for the Taguchi method.

Though the Taguchi method resulted in smaller absolute biases by percentages for model

1 and the force problem, the results from other test problems, in particular those for the

multiplicative high-order functions, indicated that the performance of the Taguchi method

was inferior to CCD method performances.

From the statistical analyses of the design properties, results indicated that for

three of four of the additive models (models 1-3 at p-value ranges from 0.0002 to

0.0032) and one of the four multiplicative models (model 7, p-value = 0.0002) there were

statistically significant differences for average absolute biases which favored rotatability

vs. orthogonality. The exception was model 7, the results for which favored FULL-

ORTH. Thus, rotatability was determined to be a significant property for the proposed
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CCD design for the bias case as well as for the variance case. Moreover, the bias results

(Appendix B, Table B22) demonstrated that the CCD methods tended to result in the

underestimation of mean responses (i.e., negative bias), whereas the Taguchi method

tended to result in the overestimation of mean response (i.e., positive bias).

In addition, absolute biases for the multiplicative high-order functions (models 7

and 8) obtained via the CCD method were substantial, at a range from 33% to 87% of

the target value. From Table B22 (Appendix B), model 7 FULL-ROTATE resulted in an

86.67% underestimation of mean response from the target value of 0.0015 (i.e., estima-

ted bias = -0.0013), whereas model 8 FULL-ROTATE resulted in a 50% overestimation

of mean response from the target value of 0.0005 (i.e., estimated bias = 0.00034). For

model 7, FULL-ORTH resulted in a 33.33% underestimation of mean response from the

target value, whereas the model 8 results revealed a 68% overestimation of mean res-

ponse from the target value. In contrast, estimated biases for the remaining models ob-

tained from the proposed CCD method were rather small, reflecting estimations of mean

response which could be as little as 10% less than or greater than the target values.

4.3.2 Design Experiments

Though the results from the force problem (Figure 4.9, and Tables B25-B26, Ap-

pendix B) did not generally favor the CCD method (including both the full-factorial and

the fractional-factorial designs) with respect to bias, the results did indicate that the full-

factorial design yielded statistically significant improvements, at p-values less than 0.05,

with respect to the fractional-factorial design. Moreover, the absolute bias for the full-

factorial design was approximately twice as small as that for the fractional-factorial de-

sign (Appendix B, Table B26). For example, the average absolute bias for FULL-

ROTATE was 10.41%, whereas that for FRAC-ROTATE was 20.76%; the average

absolute bias for FULL-ORTH was 10.36%, whereas that for FRAC-ORTH was
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21.75%; finally, the average absolute bias for FULL-ORRO was 9.57%, whereas that for

FRAC -ORRO was 20.96%. Thus, the full-factorial design provided superior perform-

ance with respect to bias.

4.3.3 Weighting Functions

Since the target values for each test problem differed, percentages of absolute

bias from the target were investigated, based upon consideration of weighted least-

squares regression to obtain the quadratic mean response functions. Graphs for the aver-

age percentages of absolute bias for the additive high-order functions (models 1-4), the

multiplicative high-order functions (models 5-8), and the force problem are presented in

Figures 4.10-4.12, respectively. From these results, no clear evidence was provided

which favored a specific type of weighting function. For the additive high-order models,

ordinary least-squares regression (wl), since it resulted in the smallest absolute percent-

age of bias (i.e., approximately 32.49% smaller than that of the next smallest yielded by

applying the inverse of absolute differences of the responses from the target (w2)), was

appropriate. For multiplicative high-order models, the inverse of the absolute differences

of responses from the target (w2) yielded the next smallest percentages of absolute bias

among all of the weighting functions. However, for this model type, the inverse of the

distance from the origin (w4) yielded approximately the same values as the weighting

function (w2); that is, approximately a 2.4% difference from that of the next smallest

(w2).

For the force problem, the inverse of the squared distance from the origin (w5)

yielded the smallest percentage of absolute bias (i.e., the square of the inverse of absolute

response difference from the target (w3), approximately 28.87% smaller than for the next

smallest). Nevertheless, since the absolute distance of the performance characteristics

from the target (w2) yielded the smallest average absolute biases (e.g., absolute bias,



9

8

2

wl w2 w3 w4

Weight Type
w5

Figure 4.10. Average absolute bias for additive models (1-4).

80



81

45

40

co
th
15 35'002
8 30

c0 ).......

U)
GI

in 25

a)
=
0
co

<
a)
c3)

E../
15

a)

<
10

5
w1 w2 w3

Weight Type
w5

Figure 4.11. Average absolute bias for multiplicative models (5-8).



82

14

12

10

8

\\\
\ \

\N\
\\,\

6

4

2
w1 w2 w3 w4 w5

Weight Type

Figure 4.12. Average absolute bias for the force problem (FULL-ROTATE).



83

14.99%), averaging all models resulted in an appropriate alternative because this appro-

ach provided superior performance for the estimation of mean response with respect to

target values. Applying the weight function w2 provided higher weights to the points

that were closer to the target value. The fitted quadratic mean function resulting from

the use of this weighting function yielded the estimated means that were closest to the

target. Thus, the absolute distance of the performance characteristics from the target

(w2) is an appropriate alternative when selecting a weighting function for the improve-

ment of estimates of mean response with respect to target values.

4.4 Overall Analysis of Mean Square Errors

In sections 4.4.1-4.4.2, as for previously reported results, a weighting function of

one was applied to the results for mean squared errors.

4.4.1 CCD method vs. Taguchi Method

Mean square errors for the performance characteristics (y) were represented by

the sum of the squared biases and variances. This measure provides the most compre-

hensive means of analysis among all the measures considered. For three of four additive

models (models 1-3), all of the multiplicative models (model 5-8), and the force prob-

lem, there were statistically significant differences for mean squared error averages be-

tween the CCD methods (FULL-ORTH and FULL-ROTATE) and the Taguchi method

(TAGUCHI) at a p-value range from 0.0000 to 0.0233. Statistical analysis performed

with the Kruskal-Wallis ANOVA (Appendix B, Table B23) indicated that for all models,

with the exception of model 4, the CCD method was superior to the Taguchi method.

As indicated in Figures 4.13-4.15, for all nine test problems the CCD methods (FULL-

ORTH or FULL-ROTATE) yielded the smallest mean squared errors. In addition, even
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the smallest mean squared error for model 4 was achieved based upon a CCD method

(FULL-ORTH).

The smallest mean squared errors for models 1-8 and the force problem FULL-

ROTATE were, respectively, 0.4315 with a standard error of 0.0103, 0.6645 with a

standard error of 0.0358, 0.0576 with a standard error of 0.0037, 0.7187 with a standard

error of 0.0245, 0.000135 with a standard error of 7.61 x 10-6, 0.00302 with a standard

error of 5.93 x 10-5, 1.36 x 10-6 with a standard error of 1.51 x 10-7, 1.36 x 10-6 with

a standard error of 1.51 x 10-7, and 7,513.92 with a standard error of 109.77 in compari-

son to, respectively, 0.5445 with a standard error of 0.0205, 0.9738 with a standard error

of 0.3432, 0.1753 with a standard error of 0.0084, 0.7643 with a standard error of

0.0202, 0.000383 with a standard error of 2.24 x 10-5, 0.000383 with a standard error of

0.000135, 1.66 x 10-5 with a standard error of 1.8 x 10-6, 2.1 x 10-6 with a standard

error of 2.23 x 10-7, and 14,431.4 with a standard error of 318.32 for the Taguchi

method. Thus, for two of four additive models (models 1 and 3), for three of four mul-

tiplicative models (models 6-8), and for the force problem, FULL-ROTATE yielded

mean squared errors which were smaller than those for FULL-ORTH (Figs. 4.13-4.15).

For five of nine test problems, there were no statistically significant differences for aver-

aged mean squared errors between the two design properties, whereas four of nine test

problems indicated statistically significant differences for averaged mean squared errors

at p-value ranges from 0.0004 to 0.0343. Specifically, for models 1-3 and 7, statistically

significant differences were indicated between the two design properties in favor of

rotatability. Therefore, for mean squared errors, the rotatable design yielded the most

favorable results when compared to the orthogonal design. This result was similar to

those for variance and bias.
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4.4.2 Design Experiments

The results for the force problem with respect to experimental design indicated

that the CCD methods, based upon either the full-factorial or fractional-factorial experi-

ments, were superior to the Taguchi method. Between the two methods, there were sta-

tistically significant differences for average mean squared errors at p-values less than 0.05

(Appendix B, Table B25). In addition, the full-factorial CCD design experiments yielded

statistically significant differences for average mean squared errors at p-values less than

0.05. Results, as indicated in Tables B25B26 (Appendix B) and Figure 4.15, demon-

strated the superiority of the full-factorial CCD design when compared to the fractional-

factorial CCD design. In comparison to the use of the fractional-factorial CCD design,

the reduction of mean squared errors was approximated one-third more often when

employing the full-factorial CCD design. For example, the mean squared error for

FULL-ROTATE was 7,513.92, whereas that for FRAC-ROTATE was 11,705.48.

However, if costs were a major consideration, then the use of the fractional-factorial

CCD design would be appropriate in applicable situations.

4.4.3 Weighting Functions

The results for weighting functions, as shown in Figures 4.16-4.18, favored the

use of the inverse of the squared distance from the origin (w5) to decrease mean squared

errors for all test problems. However, the next smaller values for the mean squared er-

rors, yielded by alternative weighting functions, were only from 2.45% to 4.42% larger

than the mean squared errors obtained from the use of weighting function w5. More-

over, since it resulted in very little difference in the values of mean squared errors, a

weighting function of one was seemingly sufficient for the CCD method when compared

to the use of the weighting function w5 (i.e., a range from 3.5% to 16.99% larger than

for the weighting function w5). In addition, the results of the use of a weighting function

of one (w1) for the CCD method were superior to the results obtained from the use of
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the Taguchi method. Therefore, if bias or variance are not major considerations, then the

ordinary least-squares method (i.e., weighting function of one) remains appropriate for

the CCD method with respect to the overall performance measures (MSE's).

4.5 Summary of the Results

Overall, the results of the current investigation favored the use of the proposed

CCD methods. Results for the three performance statistics, including variance, bias, and

mean squared error, revealed statistically significant differences between the CCD

methods and the Taguchi method in location (i.e., averages) at the 5% level of signifi-

cance for all the test problems, with the exception of model 4. The CCD methods tended

to provide underestimations for mean responses, whereas the Taguchi method tended to

overestimate the mean response. Differences in design properties tended toward differing

results. Moreover, for the force problem, the statistically significant differences for the

performance measure averages between the two types of design experiments, full-

factorial and fractional-factorial, were yielded at p-values less than 0.05. Optimal settings

for the design variables obtained via the CCD approach favored the full-factorial,

rotatable design. The introduction of the weighting function served to decrease variance,

bias, and mean squared error. Discussion of the comparison of results for the CCD and

Taguchi methods is presented in the following section.

4.6 Discussion of the Findings

Overall, the optimal settings of the design variables obtained with the CCD

method yielded the smallest mean squared errors for all test problems. There were

differences in terms of biases for some of the test problems (i.e., models 1 and the force

problem), the use of the CCD method provided statistically inferior results to the Taguchi
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method. However, for all test problems, estimated variances for the estimated mean

response from the CCD method were smaller than for the Taguchi method.

As noted in the previous section, consideration of design properties yielded sta-

tistical differences in the results obtained with the use of the alternative CCD approaches.

However, for some of the test problems, there were no differences in the performance

measure locations (averages) between the two designs. For example, statistical analyses

at the 5% level of significance for estimated variance (models 3-5 and 8) and for esti-

mated bias as well as mean squared error (model 3-5,8, and the force problem) indicated

there were no statistically significant differences between the two design properties. At

the same time, the CCD design with rotatability was preferred to the design with or-

thogonality since the former yielded smaller or approximately equivalent mean squared

errors for all test problems, with the exception of model 2. As stated by Box and Draper

(1987), "rather than attempt to generalize the property of orthogonality to second order,

we shall instead generalize the property of rotatability" (p. 484). Thus, the findings

seemingly favor selection, where possible, of a second-order design in which the vari-

ances and covariances of the estimates tend to remain constant as the design is rotated.

Moreover, for all test problems, the CCD design with rotatabilty frequently yielded re-

sults which were identical or approximately equivalent to those obtained from the use of

CCD design with both orthogonality and rotatability. The exception was model 7, for

which the former case was to be preferred. Thus, at a minimum, CCD design with rotat-

ability is to be preferred when considering alternatives among the proposed CCD meth-

ods.

The results also indicated that differences in the design experiments for the cubed

part of the proposed CCD method yielded statistical differences for the performance

measures. However, the full-factorial experiment for the cubed part of the CCD design

was superior to the fractional-factorial experiment since the former more often resulted in
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smaller overall performance measures (i.e., mean squared errors). Consider the results of

the force problem. The average mean squared error yielded by the employment of full-

factorial experiments provided a range approximately 35.8% to 39.46% smaller than for

the fractional-factorial experiments (that is, when compared for the same design proper-

ties: orthogonality, rotatability or both orthogonality and rotatability). This effect occur-

red on some occasions as a result of the exclusion of some design points thatwere parts

of the region of optimal settings for the test problem, based upon fractional-factorial

experimentation. Though the full-factorial experiment provided superior mean response

estimates (i.e., smaller biases) than the fractional-factorial experiment, the former case

tended to generate higher variances. This was because the wider ranges for x in the

fractional-factorial experiments resulted in improved estimations of slope. Thus, the

estimated variance function provided better performance and results for smaller variances

than for the full-factorial cases (i.e., refer to 1-3 vs. 4-6, Tables B25 and B26, Appendix

B). However, it should be noted that among all approaches (0-6), the full-factorial

experiments yielded the smallest mean squared errors.

When the multiplicative high-order functions (model 5-8) are considered, the re-

sults indicated that the estimated mean responses for models 7 and 8 differed significantly

from the target value. This was because the slope differences between the true function

(with very high-order degree polynomials) and the estimated quadratic mean response

function approximating the true function were quite large. For instance, the first-order

derivative with respect to x1 for models 7 and 8 were, respectively, 0 and 0.00274, when

taken from the true function at optimal settings obtained from, respectively, FULL-

ORTH (which yielded smaller variances than FULL-ROTATE) and FULL-ROTATE

(which yielded smaller variance than the FULL-ORTH), whereas those taken from the

estimated quadratic mean response function of, respectively, FULL-ORTH and FULL-

ROTATE, at identical settings was, respectively, 0.01168 and 0.00643 (i.e., almost triple
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the gradient from the true function). The differences for both cases were considered to

be large in comparison to the target values of both models (i.e. the target value of models

7 and 8 were 0.0015 and 0.0005, respectively). It may be observed that large slope

differences will contribute to poor estimations of the variance function when a Taylor's

series is applied to the estimated mean response function. Moreover, model 7 consisted

of a fourth-degree polynomial and model 8 consisted of a fifth-degree polynomial.

Hence, the results implied that the highest-order of polynomials for multiplicative high-

order functions should be the third-order. Beyond third-order degree polynomials, the

results obtained from the CCD method yielded larger bias (i.e., in excess of 10% of the

target value, or even approaching 90% of the target value, as noted in section 4.3.1).

However, the results for the additive high-order functions (models 1-4) did not reflect

this problem.

Nevertheless, from further investigation of model 4, the performance characteris-

tics function was found to be rather flat around the region of the optimal settings for the

design variables. Thus, the Taylor's series expansion did not perform as well. According

to Poston and Stewart (1976), if all derivatives vanish at zero during application of true

smoothing functions, approximations based upon a Taylor's series expansion will result in

substandard performance. In addition, a polynomial expression of the degree d can be

thought of as a Taylor's series expression of the true underlying theoretical function f()

= B[Y], truncated following the terms of dth order (Box & Draper, 1987). Comparing

Taylor's series expansion to the fitted quadratic mean response function, the derivative

terms can be thought of as the coefficient terms for the fitted quadratic mean response

2 2of a f o f
function (i.e., the terms , and can be regarded as coefficients, respect-

ax, ax,xj ax;2

ively, of the first-order term xi ((3i), the cross-product terms xij ((3iJ, where i < j), and the

second-order terms xi2 ((3ii)). Since most of the coefficient terms of the fitted quadratic
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mean response function for model 4 were rather small (close to zero) or zero, especially

for the cross-product terms in both the full-factorial orthogonal and the full-factorial

rotatable designs for the CCD methods, the estimated variance function of model 4 ob-

tained by applying a Taylor's series to the fitted quadratic mean response function was

somewhat substandard in performance. Therefore, the proposed CCD method encomp-

assed certain limitations when the performance characteristics function was flat around

the region of the optimal settings.

Finally, the results obtained from weighted least squares regression analysis indi-

cated that applying particular weights for the proposed method could serve to decrease

mean squared error, bias, and variance. However, there were no clear conclusions with

regard to the most favorable weighting. Even investigating the test problems themselves

did not reveal any pattern. To improve mean squared error findings, the inverse of the

square of the distance from the point of origin of x (w5) was seemingly appropriate to all

test problems. For bias, the absolute distance of the performance characteristics from the

target (w2) would be appropriate, which in any case yielded better results than alternative

approaches (i.e., the estimated mean responses were closer to the target values). For

variance, ordinary least-squares regression (wl) analysis was seemingly sufficient for the

force problem. However, the use of the inverse of the squared distance from the point of

origin could decrease estimated variances for the high-order functions (models 1-8).

Nevertheless, bias was the most significant contribution to mean squared errors for the

CCD method. Bias was an exceptional case in that the results yielded statistically signi-

ficant differences which favored the Taguchi method, especially with respect to the force

problem. The absolute bias (%) of the Taguchi method was 1.45%, in comparison to

9.57% for full-factorial with both orthogonal and rotatable design. As a result, the

absolute distance of the performance characteristics from the target (w2 = lily 'CI)
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provide the most favorable alternative since this approach serves to improve the mean

response with respect to the target value.

In summary, the proposed CCD approach was superior to the Taguchi approach

for all test problems developed and considered for the current investigation. However,

the CCD method encompassed certain limitations when the performance characteristics

function was flat around the region of the optimal settings. The full-factorial CCD design

with rotatability, among all CCD design alternatives, appeared to be the most favorable

design for the approximation of the quadratic mean response function. The limit of the

highest-order polynomial degree for multiplicative high-order functions was determined

to be the third-order, at which level the CCD method continued to provide acceptable

bias values (i.e., bias less than 10% of the target value). No conclusions were reached

with respect to an appropriate weight for the CCD method. However, the inverse of the

squared distance from the point of origin would be the correct choice when the objective

is to improve (decrease) mean squared errors for functions similar to those considered in

the test problems. However, since bias was the most significant contributor to mean

square error, the absolute distance of the performance characteristics from the target

(w2 = lily TI) provides the most favorable alternative. In the final chapter, the principal

accomplishments of this research investigation are summarized and suggestions for

further research are provided.
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CHAPTER 5

CONCLUSIONS

The purpose of this chapter is to summarize the principal objectives accomplished

by the conduct of this research study and to suggest areas of further investigation in re-

lated research.

5.1 Principal Accomplishments

This research investigation has presented a new methodology for obtaining opti-

mal design variable settings for product/process design. The principal objective was to

compare results obtained with a proposed central composite design approach to those

obtained by application of the Taguchi method. However, it should be noted that for

consideration of these two methods there was a minor difference with respect to the

definition of the optimization problem. The objective of the Taguchi method is to mini-

mize the mean square error (MSE), whereas the objective of the CCD method is to

minimize product performance characteristic variations while achieving the target value.

In addition, the CCD method employed only design matrices based upon central com-

posite design experimentation, thus requiring fewer experimental runs than the Taguchi

method.

The results of the statistical analyses presented in Chapter 4 indicated that the

CCD approach, with the exception of a single model (model 4), was superior to the

Taguchi approach for all test problems at the 5% level of significance. The reason for the

exception was that the performance characteristics function for problem model 4 was

rather flat in the areas of the optimal settings for the design variables. Therefore, CCD
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performance superiority was not so marked as for the remainder of the test problems.

However, it should be observed that the CCD method results for model 4 still yielded

smaller performance measure values, including mean square errors, biases and variances,

in comparison to similar measure for the Taguchi method. In addition, though the prod-

uct performance characteristic variations for the CCD were minimized (in comparison to

those for the Taguchi method), the optimal settings for the CCD method tended to yield

the underestimations of mean responses,

It should be noted that the development of the full-factorial rotatable central com-

posite design is significant to the success of the proposed CCD method with respect to

the shortcomings of the Taguchi method. Applying the CCD method based upon this

approach to multiplicative high-order functions, the results illustrated the limitations of

the order degree polynomial. Thus, the estimated quadratic mean response function will

be less appropriate when multiplicative high-order functions consist of fourth-degree

polynomials or higher. The substantial slope differences between the estimated quadratic

function and the true multiplicative function of the fourth degree or higher will result in a

large bias and/or poor estimations of the variance function. Therefore, this approach

would serve to reduce the level of performance of the proposed CCD method, the per-

formance of which is adequate when the highest-order degree polynomials of the multi-

plicative high-order functions are not extended beyond the third order.

Investigation on the use of weighted least-squares regression analysis to obtain

the estimated mean response function with the CCD method indicated that the use of

weighted least-squares is of some assistance in decreasing mean square errors. In addi-

tion, the inverse of the squared distance from the point of origin of the design variables

(1/Ex2), since its use resulted in the smallest average mean square errors for the additive

models (models 1-4), the multiplicative models (models 5-8), and the force problem, was

an appropriate weight for decreasing mean square errors in all of the test problems con-
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sidered for the current investigation. In addition, mean square errors yielded by applying

the 1/Ex2 weighting function to the CCD method were approximately from 3.43% to

14.5% smaller than those yielded by applying a weighting function of one (ordinary least-

squares regression) using the same method. However, since the most contributing part

of the mean square error is the bias, the absolute distance of the performance charac-

teristics from the target (w2 = lily TI) would be the best alternative.

Thus, the proposed CCD method based upon response surface methodology has

been successfully developed and can be used to improve product or production design

quality. A complete response surface methodology for the determination of optimal de-

sign variable settings which minimize the product performance characteristic variations

while achieving specified target values has been presented. Results from all test prob-

lems, with the single exception of model 4, indicated that the CCD method was superior

to the Taguchi method. However, the proposed response surface model can be used to

provide significant improvements in product quality as well as lower cost process designs

when compared to applications of the Taguchi method. In addition, the proposed CCD

method also requires significantly fewer experimental runs than the Taguchi method. For

example, consider the force problem examined in this study. The CCD method based

upon full-factorial rotatable design required approximately 40.28% fewer experimental

runs than the Taguchi method (i.e., 44 runs vs. 72 runs). In turn, the CCD method based

upon fractional-factorial rotatable design required approximately 61.11% fewer experi-

mental runs than the Taguchi method (i.e., 28 runs vs. 72 runs). However, due to un-

known performance characteristic functions in those cases for which the gradients of the

performance functions are approximately zero, the proposed CCD model encompasses

certain limitations.
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5.2 Recommendations for Further Study

For practical purposes, the influence factors in the manufacturing process can be

categorized in three mutually exclusive groups: control factors, noise factors, and signal

factors (Phadke, 1989b). The first two of these groups were considered in Chapter 3,

and solutions for the problems they posed have been encompassed within the proposed

method. However, the signal factors, M, which are normally selected by the design engi-

neer based upon engineering knowledge of the product being developed, have not been

considered in the proposed method. Since this study has disregarded signal factors in the

formulation and analysis of the proposed CCD method, further research should consider

the inclusion of signal factors into the problem, thus modifying the objective function of

the CCD approach to minimize product performance characteristic variations for the

worst signal factors cases, as follows:

Minx {MaxM 02y(X,W,M)} ,

s.t. 11.1y(X,W,M) TI < a, where x > 0, w > 0, m > 0, and a > 0, or

Minx{Maxm [13 + 2B(X,W,M)]1Ex,w,m 213(X,w,m)]

s.t. y(X,W,M) tiI < a, where x > 0, w > 0, m > 0, and a > 0.

Note that the values for w are fixed at their means prior to problem optimization with the

proposed CCD method. The values of the signal factors are set by the user or the opera-

tor to express the intended values for product response.

Since estimated mean responses obtained via the proposed CCD method tend to

be underestimated, additional explorations of the use of weighted least-squares regression

analysis would also be an appropriate area for further study. Determining an appropriate

weight constitutes an interesting problem. The introduction of different weighting func-

tions to obtain estimations of the quadratic mean function and the variance function is

one possibility. Moreover, since study of the CCD method is based upon the use of the

central composite design throughout the process, other types of second-order response



102

surface design should be considered. For example, the Box-Behnken design, a minimum

bias design, or a small composite design could be investigated with respect to the pro-

posed CCD method. Finally, an additional area for possible investigation would be the

relation of the proposed approach to other types of functions. This could be accomp-

lished in the context of central composite design experiments, or it could encompass

alternative second-order response designs.



103

REFERENCES

Bazaraa, M.S., and Shetty, C.M. (1979). Nonlinear Programming Theory and
Algorithms. Wiley, New York.

Box, G.E.P. (1985). "Off-line Quality Control, Parameter Design and the Taguchi
Method." Journal of Quality Technology, Vol. 17, No. 4, pp. 189-190.

Box, G.E.P. (1988). "Signal-to-Noise Ratios, Performance Criteria and Transforma-
tions." Technometrics, Vol. 30, No. 1, pp. 1-40.

Box, G.E.P., and Behnken, D.W. (1960). "Some New Three-Level Designs for the
Study of Quantitative Variables." Technometrics, Vol. 2, pp. 455-475.

Box, G.E.P., and Draper, N.R. (1987). Empirical Model-Building and Response Sur-
faces. Wiley, New York.

Box, G.E.P., and Fung, C.A. (1983). "Some Considerations in Estimating Data Trans-
formation." MRC Technical Summary Report #2609, Mathematics Research
Center, University of Wisconsin-Madison.

Box, G.E.P., and Fung, C.A. (1986). "Minimizing Transmitted Variation by Parameter
Design." Report No. 8, Center for Quality and Productivity Improvement. Uni-
versity of Wisconsin-Madison.

Box, G.E.P., and Meyer, R.D. (1986). "Dispersion Effects from Fractional Designs."
Technometrics, Vol. 28, pp. 19-27.

Box, G.E.P., and Wilson, K.B. (1951). "On the Experimental Attainment of Optimum
Conditions." Journal of the Royal Statistical Society, Series B, Vol. 13, pp. 1-45.

Box, G.E.P.; Bisgaard, S.; and Fung, C.A. (1988). "An Explanation and Critique of
Taguchi's Contributions to Quality Engineering." Quality and Reliability Engi-
neering International, Vol. 4, pp. 123-131.

Brooke, Kendrick, and Meeraus. (1988). GAMS: A User's Guide. The Scientific Press,
Redwood City, CA.

Byrne, D.M., and Taguchi, S. (1987). "The Taguchi Approach to Parameter Design."
Quality Progress, December 1987, pp. 19-26.



104

Draper, N.R. (1982). "Center Points in Second-Order Response Surface Designs."
Technometrics, Vol. 24, pp. 127-133.

Ea ley, L. (1988). "Taguchi Methods: The Thought Behind the System." Automotive
Industries, Vol. 168, pp. 68-70.

Fung, C.A. (1986). "Statistical Topics in Off-Line Quality Control." Ph.D. thesis, De-
partment of Statistics, University of Wisconsin-Madison.

Giovannitti-Jenzen, A., and Myers, R.H. (1989). "Graphical Assessment of the Predic-
tion Capability of Response Surface Designs." Technometrics, Vol. 31, pp. 159 -
171.

Hartley, H.O. (1959). "Smallest Composite Design for Quadratic Response Surfaces."
Biometrics, Vol. 15, pp. 611-624.

Hunter, J.S. (1985). "Statistical Design Applied to Product Design." Journal of Quality
Technology, Vol. 17, No. 4, pp. 210-221.

Jiang, B.C.; Black, J.T.; Chen, D.W.H.; and Hool, J.N. (1991). "Taguchi-Based Meth-
odology for Determining/Optimizing Robot Process Capability." HE Transac-
tions, Vol. 23, No. 2, pp. 169-184.

Kackar, R.N. (1985). "Off-Line Quality Control, Parameter Design, and the Taguchi
Method." Journal of Quality Technology, Vol. 17, No. 4, pp. 176-188.

Kackar, R.N. (1986). "Taguchi's Quality Philosophy: Analysis and Comment." Quality
Progress, December, pp. 21-29.

Leon, R.V.; Shoemaker, A.C., and Kackar, R.N. (1987). "Performance Measures Inde-
pendent of Adjustment: An Explanation and Extension of Taguchi's Signal-to-
Noise Ratios." Technometrics, Vol. 29, No. 3, pp. 253-265.

Lin, K.M., and Kackar, R.N. (1985). "Wave Soldering Process Optimizing by Orthogo-
nal Array Design Method." Electronic Packaging and Production (February), :
pp. 108-115.

Liu, L.; Nazaret, W.A., and Beale, R.G. (1990). "Computer-Aided Design for Quality
(CADQ)." AT&T Technical Journal, Vol. 10, pp. 103-115.

Lucas, J.M. (1976). "Which Response Design is Best: A Performance Comparison of
Several Types of Quadratic Response Surface Designs in Symmetric Regions."
Technometrics, Vol. 18, No. 4, pp. 411-417.

Lucas, J.M. (1985). "Off-Line Quality Control, Parameter Design and the Taguchi
Method." Journal of Quality Technology, Vol. 17, pp. 195-197.



105

McElroy, J. (1985). "Experimental Design Hits Detroit (A Primer on the Taguchi
Method)." Automotive Industries, Vol. 165, pp. 48-50.

Montgomery, D.C. (1991). Design and Analysis of Experiments, 3rd ed. Wiley &
Sons, New York.

Myers, R.H., and Carter, W.H. (1973). "Response Surface Techniques for Dual Re-
sponse Systems." Technometrics, Vol. 15, No. 2, pp. 301-317.

Myers, R.H.; Khuri, A.I., and Carter, W.H. (1989). "Response Surface Methodology:
1966-1988." Technometrics, Vol. 31, No. 2, pp. 137-155.

Myers, R.H.; Vining, G.G.; Giovannitti-Jenzen A., and Myers, S.L. (1992). "Variance
Dispersion Properties of Second-Order Response Surface Designs." Journal of
Quality Technology, Vol. 24, No. 1, pp. 1-11.

Pao, T.W.; Phadke, M.S., and Sherrerd, C.S. (1985). "Computer Response Time Op-
timization Using Orthogonal Array Experiments." Proceedings of ICC, IEEE
International Conference on Communications, IEEE Communications Society
(June), pp. 890-895.

Phadke, M.S. (1989a). Quality Engineering Using Design of Experiments. In K.
Dehnad (Ed.), Quality Control, Robust Design (pp. 31-50). Wadsworth &
Brooks Cole, Pacific Grove, CA (information from a seminar given by Genichi
Taguchi at AT&T Bell Laboratories, 1980, as initially reported in the Japanese
language newspaper, The Asahi, April 17, 1979).

Phadke, M.S. (1989b). Quality Engineering Using Robust Design, AT&T Bell Labora-
tories. Prentice-Hall, Englewood Cliffs, NJ.

Phadke, M.S.; Kackar, R.N.; Speeney, D.V., and Grieco, M.J. (1983). "Off -Line Qual-
ity Control for Integrated Circuit Fabrication Using Experimental Design." The
Bell System Technical Journal, Vol. 62, pp. 1273-1309.

Pignatiello, J.J. (1988). "An Overview of the Strategy and Tactics of Taguchi." IIE
Transactions, Vol. 20, No. 3, pp. 247-254.

Plackett, R.L., and Burman, J.P. (1946). "The Design of Optimum Multifactorial Ex-
periments." Biometrika, Vol. 33, pp. 305-325.

Poston, T., and Stewart, I.N. (1976). Taylor Expansions and Catastrophes. Pitman
Publishing, London.

Prasad, C.R. (1982). Statistical Quality Control and Operational Research: 160 Case
Studies in Indian Industries. Indian Statistical Institute, Calcutta, India.



106

Quinlan, J. (1985). "Product Improvement by Application of Taguchi Methods." Third
Supplier Symposium on Taguchi Methods, American Supplier Institute, Inc.,
Dearborn, MI.

Taguchi, G., and Wu, Y. (1980). Introduction to Off-Line Quality Control. Central Ja-
pan Quality Control Association (available from American Suppliers Institute,
Romulus, MI).

Vining, G.G., and Myers, R.H. (1990). "Combining Taguchi and Response-Surface
PhilosophiesA Dual Response Approach." Journal of Quality Technology, Vol.
22, No. 1, pp. 38-45.

Warner, J.C., and O'Connor, J. (1989). "Molding Process is Improved by Using the
Taguchi Method." Modern Plastics, Vol. 66, pp. 65-66.

Wu, C.M.; Black, J.T., and Jiang, B.C. (1991). "Using Taguchi Methods to Deter-
mine/Optimize Robot Process Capability for Path Following." Robotics and
Computer-Integrated Manufacturing, Vol. 8, No. 1, pp. 9-25.

Young, D.L.; Teplik, J., and Weed, H.D. (1991). "Application of Statistical Design and
Response Surface Methods to Computer-Aided VLSI Device Design: Desirability
Functions and Taguchi Methods." IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and System, Vol. 10, pp. 103-115.



APPENDICES



107

APPENDIX A

Inputs for Data Matrices

This appendix demonstrates the low and high values for the design variables, as

inputs to STATGRAPHICS response surface designs to obtain data matrices for all test

problems considered for the CCD method.

Table Al. Inputs for STATGRAPHICS.

Test Problem
Variable
names low high

xl 0.3 0.7
models 1 -8 x2 0.3 0.7

x3 0.3 0.7
x4 0.3 0.7
xi 125 155

"force problem" x2 47.5 62.5
for all full- x3 8 12

factorial cases x4 30 40
xs 15 35

x1 120 160
"force problem" x2 45 65

for all fractional- x3 8 12

factorial cases x4 27.5 42.5
xs 15 35

Note: For three-level factorial experiments via the Taguchi method, the levels of x for
models 1-8 are represented as follows: level 0, x = 0.25, level 1, x = 0.5, and
level 2, x = 0.75. Furthermore, the 33-1 fractional-factorial experiment is used
for the design matrix (an inner array) and the 24-2 fraction-factorial experiment is
used for the noise matrix ( an outer array) for models 1-8 for the Taguchi method.
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APPENDIX B

Simulation Results

In the pages which follow, simulation results for all test problems are provided in

Tables BlB26.



Table 131. Simulation results for the force problem (t = 400).

Approach Taguchi 25-1
orthogonal

CCP

25-1
rotatable

CCP

25-1 rotatable
& orthogonal

CCP

25
orthogonal

CCP

25
rotatable

CCP

25 rotatable
& orthogonal

CCP

Mean 396.36 312.99 316.97 316.16 358.55 358.38 361.73

Estimated
variance

14,390.33 4,667.53 4,801.29 5,018.46 5,996.25 5,769.86 5,828.22

Mean
square error 14,403.60 12,238.86 11,695.24 12,048.11 7,714.35 7,502.08 7,292.46

xi
*

, s x i
*

= 156 xl*= 180 xl*= 180 *xl = 180 xi *= 176.67 xi "= 176.48 *xi zi-: 176.39(xs*=25) x7** = 75 x? --.,; 73.83 x7 = 74.08 x7 = 73.89 x ? *= 75 x? = 75
*= x? = 75x3* = 10 = 15 xv: 15 x1 = 15 x,;3*= 15 x3 15 x43* = 15x4 = 20 x4 *= 20.42 x4 *= 20 x4*= 20.06 x4 *= 20.58 x4*= 20.72 x4 =-- 20.57



Table B2. Simulation results for the force problem with weight (25 rotatable CCD).

Approach Taguchi CCP w/o weight
(w =1)

CCP
w = 1/Iy- TI

CCP
w =igy ,o2

CCP
w = 1 Azx2)1/2

CCP
w = 1 ax2)

Mean 396.36 358.38 368.35 369.80 353.87 378.52

Estimated
variance

14,390.33 5,769.86 6,376.74 6,142.47 5,908.28 6,424.23

Mean
square error 14,403.60 7,502.08 7,378.26 7,054.42 8,036.42 6,885.51

xi*
*

, s
(xs =25)

*
xi = 156
x?* = 75
xi" = 10
x4 = 20

x i *= 176.48
*

x? = 75
x3

*=
15

x4
*=

20.72

x i
*=

176.19
x?"= 75

*
x14,= 15
x4 = 20

x i *= 176.06
*

x? = 75
*

x3*= 15
x4 = 20

xi*= 176.78
*

x? = 75
x3*= 15

x4
*=

20.94

*x1 = 175.33
x?* = 75

*
x3* = 15
x4 = 20



Table B3. Simulation results for model 1 (t = 2.5).

Approach Taguchi 25
orthogonal CCP

25
rotatable

CCP

25 rotatable
& orthogonal

CCP

Mean 2.5618 2.1327 2.2519 2.2519

Estimated
variance

0.5373 0.3293 0.3679 0.3679

Mean
square error 0.5411 0.4642 0.4294 0.4294

* * * * *xii. , s xi 4.= 0.7075 xi = 0.56506 xi = 0.60380 xi* = 0.60380
(x5 =25) x94. = 0.25 x9 = 0.02883 x7* = 0.03431 x? = 0.03431

xi *= 0.75 9.* = 0 xi* = 0 x
* = 0

x4 = 0.5 x4 = 0.5 x4 = 0.5 x4 = 0.5



Table B4. Simulation results for model 1 with weight (24 rotatable CCD).

Approach Taguchi CCP w/o weight
(w =1)

CCP
w = lily- 'cl

CCP
w .,1/(y ...02

CCP
w = 1 ax2)1/2

CCP
w = 1/(x2)

Mean 2.5618 2.2519 2.1638 2.1964 2.1444 2.1387

Estimated
variance

0.5373 0.3679 0.3329 0.7250 0.3492 0.3441

Mean square
error 0.5411 0.4294 0.4460 0.8171 0.4757 0.4747

xiic
*

, s
*

x1 *= 0.7075 x t* = 0.6038 xl* =*0.60342 xi: = 0.9352 xl* =0.57863 xl* =*0.5833
(xs =25) x9 0.25 )1? =*0.03431 x? = 0 x9 = 0.6921 x? = 0 x? = 0

x3 0.75 xi = 0 x
*l - 0 x1* = 1.0, ,

X *= = 0 xi = 0*=
X4 = 0.5 x4 = 0.5 x4 = 0.5 x4 = 0.5 x4 = 0.5 x4 = 0.5



Table B5. Simulation results for model 2 (t = 2.5).

Approach Taguchi 25
orthogonal CCP

25
rotatable

CCP

25 rotatable
& orthogonal

CCP

Mean 2.6815 2.4132 2.4681 2.5093

Estimated
variance

0.9019 0.6552 0.8763 0.8725

Mean
square error 0.9349 0.6627 0.8773 0.8725

* * * * *xik , s xi = 0.895 xi = 0.78544 xi = 0.74577 xi = 0.74589
(xS =25) x2 = 0.75 x9* = 0.84771 x2 = 0.80347 30 = 0.80333

xi = 0.25
z4 = 0.5

xi* = 0.15641
*

x4 = 0.5
xi* = 0.31302

*
x4 = 0.5

xi* = 0.31346n ,
x4

*
U= *3



Table B6. Simulation results for model 2 with weight (24 rotatable CCD).

Approach Taguchi CCP w/o weight
(w =1)

CCP

w = lily- ti
CCP

w =igy ,T)2
CCP

w = 1/(1)(2)1/2
CCP

w ....: 1/(1x2)

Mean 2.6815 2.4681 2.5564 2.6368 2.2453 2.2045

Estimated
variance

0.9019 0.8763 1.1008 1.0944 0.5369 0.4758

Mean
square error 0.9349 0.8773 1.1040 1.1131 0.6017 0.5632

*
xi , s

*
xi = 0.895

*
xi* = 0.74577

*
xi* = 0.69412

*
xi* = 0.72148

*
xi* = 0.79781

*
xi = 0.79489

(x5*=25) x?* = 0.75 x? = 0.80347 x? = 0.74172 x? = 0.76432 x? = 0.89346 x? = 0.87586
xi* 0.25 xi* = 0.31302 xi* = 0.55382 xi* = 0.45928 xlc* = 0 xl = 0*=
x4 = 0.5 x4* = 0.5 x4* = 0.5 x4* = 0.5 x4 = 0.5 x4 = 0.5



Table B7. Simulation results for model 3 (r = 2.5).

Approach Taguchi 25
orthogonal CCP

25
rotatable

CCP

25 rotatable
& orthogonal

CCP

Mean 2.4986 2.4650 2.5038 2.5038

Estimated
variance

0.17438 0.06326 0.06074 0.06074

Mean
square error 0.17438 0.06448 0.06076 0.06076

x
*

, sif
*xi = 0.4655 xi*

*
= 0.22378 xi* = 0.20833 xi

*
= 0.20833

(xi =25) x7* = 0.5 x7 = 0.58688 x?* = 0.61321 x7* = 0.61321
xl**= 0.25 x3

*
= 0.00001 x3

*
= 0.00002 x3

*
= 0.00002

kt = 0.5 x4
* = 0.5 x4

*
= 0.5 x4

*
= 0.5



Table B8. Simulation results for model 3 with weight (24 rotatable CCD).

Approach Taguchi CCP w/o weight
(w =1)

CCP
w = 1/Iy- 71

CCP
w =1Ay -02

CCP
w = 1ax2)1/2

CCP
w = 1/(12)

Mean 2.4986 2.5038 2.4596 2.4418 2.5289 2.5161

Estimated
variance

0.17438 0.06074 0.05691 0.05492 0.05615 0.05391

Mean
square error 0.17438 0.06076 0.05855 0.05830 0.05633 0.05462

* * * * * * *kit, , s xi z 0.4655 xi* = 0.20833 xi* = 0.20953 xi* = 0.22128 xi* = 0.20270 xi* = 0.19719(xi =25) x7 = 0.5 x7 = 0.61321 x7 = 0.57451 x7 = 0.57451 x7 = 0.60578 x7 = 0.60070
x3* 0.25

*x3 = 0.00002 xi* = 0 xi* = 0 0xi = ty xi = 0*=

x4 = 0.5 x4* = 0.5 x4 = 0.5 x4 = 0.5 x4 = 0.5 x4 = 0.5



Table B9. Simulation results for model 4 (t = 3.5).

Approach Taguchi 25
orthogonal CCP

25
rotatable

CCP

25 rotatable
& orthogonal

CCP

Mean 3.5396 3.4621 3.4670 3.4670

Estimated
variance

0.7574 0.71073 0.72079 0.72079

Mean
square error 0.7590 0.7122 0.7219 0.7219

*x , s xi
(x5 =25)

*
= 0.75

x?* = 0.46
xi* *= 0.25
X4 = 0.5

*
xi* = 0.82381
x? = 0.33488

*
x3* = 0.0
xzt = 0.5

*xi = 0.82213
x? = 0.33790

*
xl* = 0.0
xit = 0.5

*xi = 0.82213
x? = 0.33790

*
X1 = 0.0

* ,
ui(zt = .5



Table B10. Simulation results for model 4 with weight (24 rotatable CCD).

Approach Taguchi CCP w/o weight
(w =1)

CCP

w = lily- ti
CCP

..=1/(y ,T)2
CCP

w = 1/(Ex2)1/2
CCP

w = 1 /(Ex2)

Mean 3.5396 3.4670 3.4688 3.6222 3.4433 3.4489

Estimated
variance

0.7574 0.72079 0.7021 0.5829 0.7312 0.6894

Mean
square error 0.7590 0.7219 0.7031 0.5978 0.7344 0.6920

xi
*

, s xi** = 0.75 xi * = 0.82213 xi*
*

= 0.79883 ?lc i
*

= 1.0 xi*
*

= 0.82612 xi*
*

= 0.82998
(x5*=25) x7* = 0.46 *x7 = 0.3379 x7 = 0.36341 x7 = 0.15720 x7 = 0.33277 x7 = 0.32763

x3 = 0.25 xi* = 0 xi = 0 xi* = 0 xi* = 0 xi* = 0
x4* = 0.5 x4 = 0.5 x4 = 0.5 x4 = 0.5 x4 = 0.5 x4 = 0.5



Table B11. Simulation results for model 5 (t = 0.015).

Approach Taguchi 25
orthogonal CCP

25
rotatable

CCP

25 rotatable
& orthogonal

CCP

Mean 0.02323 0.01578 0.01594 0.01594

Estimated
variance

0.0003281 0.0001376 0.00013352 0.00013352

Mean
square error 0.000396 0.0001382 0.0001344 0.0001344

xi* , s
*

x*i = 0.75
*xi = 0.5166
*

*
xi* = 0.52876 xi: = 0.52876

(x5 =25) xl = 0.03596 x9 = 0.5111 x9* = 0.49994 x9* = 0.49994
x3**= 0.75 x3* = 0.57369

*
x3 = 0.54208

*
x3 = 0.54208

*x4 = 0.5 x4 = 0.5 x4 = 0.5 x4 = 0.5



Table B12. Simulation results for model 5 with weight (24 rotatable CCD).

Approach Taguchi CCP w/o weight
(w =1)

CCP
w = 1/Iy- ti

CCP
=1/(y ,c)2

CCP
w = 1 ax2)1/2

CCP
w = 1/(Ex2)

Mean 0.02323 0.015941 0.017079 0.016801 0.016287 0.016344

Estimated
variance

0.0003281 0.0001335 0.000184 0.0001773 0.0001643 0.000157

Mean
square error 0.000396 0.0001344 0.0001885 0.00018058 0.0001659 0.0001588

*
s,%

*xi = 0.75 *xi = 0.52876 *xi = 0.54109 *xi = 0.61771 *
xi = 0.53523 *xi = 0.51471

(x5 =25) x, = 0.03596 x?* = 0.49994 x?* = 0.51713 x7* = 0.28221 x?* = 0.7262 x7* = 0.53599
x.3* 0.75 x3 = 0.54208 x3* 0.52145 x1 = 0.48816 x3 = 0.54115 x3 = 0.56014*=

x4 = 0.5 x4 = 0.5 x4 = 0.5 x4 = 0.5 x4 = 0.5 x4 = 0.5



Table B13. Simulation results for model 6 (T = 0.25).

Approach Taguchi 25
orthogonal CCP

25
rotatable

CCP

25 rotatable
& orthogonal

CCP

Mean 0.24097 0.24922 0.24507 0.24507

Estimated
variance

0.003741 0.0034831 0.002983 0.002983

Mean
square error 0.0038225 0.003484 0.003007 0.003007

* * * * *
NI, , s xi = 0.29373 xi* = 0.50297 xi* = 0.50209 xi* = 0.50209

(x5 =25) x?* = 0.75 x? = 0.62699 x? = 0.57256 x? = 0.57256
x3 = 0.75 x3 = 0.52084 x3* = 0.61556 xl* = 0.61556
x4 = 0.5 x4

*
= 0.5 x4

*
= 0.5 x4

*
= 0.5



Table B14. Simulation results for model 6 with weight (24 rotatable CCD).

Approach Taguchi CCP w/o weight
(w =1)

CCP

w = 1/1Y- TI

CCP
w =i[Ay ..02

CCP
w = 1ax2)1/2

CCP
w = lax2)

Mean 0.24097 0.24507 0.24285 0.24425 0.24522 0.24552

Estimated
variance

0.003741 0.002983 0.003044 0.003140 0.003097 0.002824

Mean
square error 0.0038225 0.003007 0.003095 0.003174 0.003120 0.002844

* * * * * * *xit, , s x i = 0.29373 xi = 0.50209 x i* = 0.48076 xi* = 0.41710 xi* = 0.50248 xi* = 0.50283
(xs =25) x.,** = 0.75 x?* = 0.57256 x?* = 0.56695 x? = 0.57078 x9 = 0.57360 x7* = 0.57472

xi 0.75 xi* =-1, 0.61556 xi = 0.67238 xi* = 0.80585 xi* = 0.61231 xi = 0.60890*=
x4 = 0.5 x4 *= 0.5 x4* = 0.5 x4* = 0.5 x4* = 0.5 x4* = 0.5



Table B15. Simulation results for model 7 (t = 0.0015).

Approach Taguchi 25
orthogonal CCP

25
rotatable

CCP

25 rotatable
& orthogonal

CCP

Mean 0.0026305 0.00100485 0.00020517 0.0015574

Estimated
variance

0.0000152 0.00000219 0.000000124 0.00000392

Mean
square error 0.0000165 0.00000244 0.000001801 0.000003924

*
, s% xi

*
= 0.75 xi

*
= 0.65628

*
xi* = 0.34846

*
xi* = 0.52161

(x5 =25) xi?* = 0.75 = 0 x?* = 0.53782 x? = 0.39891
xi = 0.40349

*x?
x3 = 0.74668 xl* = 0.35135 x3* = 0.59993

x4 *= 0.5 x4 *= 0.5 x4* = 0.5 x4* = 0.5



Table B16. Simulation results for model 7 with weight (24 rotatable CCD).

Approach Taguchi CCP w/o weight
(w =1)

CCP
w = 1/Iy- Il

CCP
w =1/6, .02

CCP
w = 1/(Ex2)1/2

CCP
w = 1 ax2)

Mean 0.00263 0.00020517 0.0007808 0.000000152 0.0007031 0.00020465

Estimated
variance

0.00001521 0.0000000124 0.000001997 4.8x10-13 0.00000151 0.0000002967

Mean
square error 0.00001649 0.000001801 0.000002514 0.00000225 0.000002145 0.000001975

*
NI, , s

(x5 =25)

*
xi* = 0.75
x47 = 0.75

xl = 0.40349
x4* = 0.5

*
xi = 0.34846

*
x7* = 0.53782
xi = 0.35135

*
x4 = 0.5

*xi = 0.18108
* , n

,x,7 = 1.0
xi = 0.76567

*
x4 = 0.5

* n
xi* = u
x7 = 0

x1 = 0.09141
*

x4 = 0.5

xi* = 0.33335
* , nx7 = 1.0

xi* = 0.46255
*x4 = 0.5

xi* = 0.76036
*x7 = 1.0

xf = 0
x4 = 0.5



Table B17. Simulation results for model 8 (t = 0.0005).

Approach Taguchi 25
orthogonal CCP

25
rotatable

CCP

25 rotatable
& orthogonal

CCP

Mean 0.0009196 0.0005359 0.000753 0.000753

Estimated
variance

0.00000191 0.000001629 0.00000129 0.00000129

Mean
square error 0.00000208 0.000001546 0.000001355 0.000001355

* * *
*=*

xi* , s II = 0.75 xi *= 0.52523 xi* 0.48167 xi*= 0.48167
(xs =25) x? = 0.37381

*
xi 0.75

x?* = 0.5382
x3 = 0.47527

x? = 0.55268
x3

*
= 0.45373

x7* = 0.55268
x3* = 0.45373*=

3(4 = 0.5 x4
*

= 0.5 x4* = 0.5 x4* = 0.5



Table B18. Simulation results for model 8 with weight (24 rotatable CCD).

Approach Taguchi CCP w/o weight
(w =1)

CCP
w = lily- II

CCP
w =1Ay t)2

CCP
w = 1 i(a2)1/2

CCP
w :.._. 1 nx2)

Mean 0.00091958 0.000753 0.0007206 0.0008918 0.0007128 0.0006953

Estimated
variance

0.00000191 0.000001291 0.000001243 0.00000143 0.0000011398 0.000001122

Mean
square error 0.000002086 0.000001355 0.0000012917 0.0000015835 0.000001185 0.00000116

.*x , s *
3,tki = 0.75

*
x i* = 0.48167

*
x i* = 0.52673

*
x i* = 0.51749

*
x i* = 0.48686 *

x i* = 0.50943
(x5 =25) x? = 0.37381 x? = 0.55268 x? = 0.50845 x? = 0.53630 x? = 0.54025 x? = 0.49761

xi* = 0.75 xi = 0A5373 xi = 0.51460 xi* = 0.51368 xi = 0.47050 xi = 0.53261
x4

*
= 0.5 x4* = 0.5 x4

*
= 0.5 x4

*
= 0.5 it4

*
= 0.5 x4* = 0.5



Table B19. Kruskal-Wallis analyses of variance.

Model

Comparing
Approaches

1 2 3 4 5 6 7 8 Force
problem

0 & 4 & 5 21.8348 * 14.1523 * 20.1006 * 2.2607 19.4856 * 16.5239 * 25.8065 * 3.9570 20.1006 *(0.0000) (0.0008) (0.0000) (0.3229) (0.0001) (0.0003) (0.0000) (0.1383) (0.0000)

0 & 4 14.2857 * 12.0914 * 14.2857 * 1.4629 14.2857 * 1.8514 14.2857 * 0.5719 14.2857 *(0.0002) (0.0005) (0.0002) (0.2265) (0.0002) (0.1736) (0.0002) (0.4495) (0.0002)

0 & 5 14.2857 * 1.4629 14.2857 * 1.8514 14.2965 * 13.1657 * 14.2857 * 4.1689 * 14.2857 *(0.0002) (0.2265) (0.0002) (0.1736) (0.0002) (0.0003) (0.0002) (0.0412) (0.0002)

4 & 5 5.49143 * 7.4057 * 1.6514 0.0229 0.2802 9.6057 * 14.2857 * 1.1200 1.6514(0.0191) (0.0065) (0.1988) (0.8798) (0.5966) (0.0019) (0.0002) (0.2899) (0.1988)

xx..xxxx represents the value of test statistics for comparing approaches.
shows the significant difference at 0.5 level.

(x.xxxx) represents the p-value (smallest probability of rejecting the null hypothesis).

0 = TAGUCHI, 4 = FULL-ORTH, 5 = FULL-ROTATE



Table B20. Average variances (sample size for each approach = 10).

Model

Approach
1 2 3 4 5 6 7 8 force

problem

TAGUCHI 0.53692 0.901948 0.174377 0.757434 3.28x10-4 3.74x10-3 1.52x10-5 1.91x10-6 14,390.3
(0.019842) (0.031268) (0.008357) (0.020265) (1.68x10-5) (1.30x10-4) (1.68x10-6) (2.03x10-7) (323.665)

FULL-ORTH 0.329295 0.655156 0.063256 0.710729 1.33x10-4 3.48x10-3 2.19x10-6 1.63x10-6 5,996.25
(0.007844) (0.037769) (0.002144) (0.024974) (7.19x10-6) (1.11x10-4) (1.89x10-7) (2.29x10-7) (123.437)

FULL-ROTATE 0.367876 0.87632 0.057406 0.720795 1.38x10-4 2.98x10-3 1.24x10-7 1.29x10-6 5,769.86
(0.009099) (0.070925) (0.003748) (0.024584) (4.87x10-6) (5.37x10-5) (1.51x10-8) (1.44x10-7) (109.451)

(*.******) represents the standard error of the average of the estimated variances.



Table B21. Kruskal-Wallis ANOVA for absolute bias.

Model

Comparing
Approaches

1 2 3 4 5 6 7 8 force
problem

0 & 4 & 5 25.8065 * 14.2684* 11.0168* 3.2284 19.3574 * 10.5953* 20.4929 * 10.911* 19.3574*
(0.0000) (0.0008) (0.0041) (0.1991) (0.0001) (0.0050) (0.0000) (0.0427) (0.0001)

0 & 4 14.2857 * 10.08* 1.12 0.1429 14.2857 * 10.08 14.2857 * 2.7657 14.2857*
(0.0002) (0.0015) (0.2899) (0.7055) (0.0002) (0.0015) (0.0002) (0.0963) (0.0002)

0 & 5 14.2857 * 0.5714 6.6057* 1.12 14.2857 * 5.3197* 2.52 * 10.0800 * 14.2857 *
(0.0002) (0.4497) (0.0102) (0.2899) (0.0002) (0.0211) (0.1124) (0.0015) (0.0002)

4 & 5 14.2857 * 10.5657* 8.6914* 3.5714 0.0057 0.28 14.2857 * 3.2914 0.0057
(0.0002) (0.0012) (0.0032) (0.0588) (0.9397) (0.5967) (0.0002) (0.0696) (0.9397)

xx..xxxx represents the value of test statistics for comparing approaches.
shows the significant difference at 0.5 level.

(x.xxxx) represents the p-value (smallest probability of rejecting the null hypothesis).
0 = TAGUCHI, 4 = FULL-ORTH, 5 = FULL-ROTATE



Table B22. Average bias (sample size for each approach = 10).

Model

Approach
1

Cr = 2.5)
2

Cr = 2.5)
3

Cr = 2.5)
4

et = 3.5)
5

Cr = 0.015)
6

Cr = 0.25)
7

Cr =

0.0015)

8

Cr = 0.0005)

force
problem
('r = 400)

TAGUCHI 0.0618 0.1815 -0.0014 0.0396 0.0082 0.0090 0.0011 0.00042 -3.6429
(0.0206) (0.0179) (0.0098) (0.0243) (0.00045) (0.00093) (8.2x10-5) (2.87x10-5) (1.7578)

FULL-ORTH -0.3673 -0.0868 -0.0350 -0.0379 0.0009 -0.0008 -0.0005 0.00034 -41.4501
(0.0057) (0.0143) (0.0068) (0.0269) (0.00026) (0.0014) (2.4x10-5) (3.72x10-5) (1.0564)

FULL- -0.2481 -0.0319 0.0038 -0.0330 0.0008 -0.0049 -0.0013 0.00025 -41.6209
ROTATE (0.0152) (0.0264) (0.0042) (0.0092) (0.00023) (0.0011) (7.63x10-6) (1.84x10-5) (1.1430)

(*.******) represents the standard error of the average of the estimated biases.



Table B23. Kruskal-Wallis ANOVA for mean squared error.

Model

Comparing
Approaches

1 2 3 4 5 6 7 8 force
problem

0 & 4 & 5 16.7097 *
(0.0002)

14.2632
*

(0.0008)

20.4929
*

(0.0000)

2.5729
(0.2762)

19.52 *
(0.0001)

16.88*
(0.0002)

25.0555 *
(0.0000)

4.9007
(0.0863)

19.6129*
(0,0001)

0 & 4 8.2514*
(0.0041)

12.0914
*

(0.0005)

14.2857
*

(0.0002)

1.4629
(0.2265)

14.2857
*

(0.0002)

2.52
(0.1124)

14.2857 *
(0.0002)

0.8229
(0.3643)

14.2857 *
(0.0002)

0 & 5 12.6229*
(0.0004)

1.6514
(0.1988)

14.2857
*

(0.0002)

2.2857
(0.1306)

14.2857
*

(0.0002)

13.1657
*

(0.0003)

14.2857 *
(0.0002)

5.1429*
(0.0233)

14.2857 *
(0.0002)

4 & 5 4.48*
(0.0343)

7.4057 *
(0.0065)

2.52
(0.1124)

0.0514
(0.8206)

0.3657
(0.5454)

9.6057 *
(0.0019)

12.6229 *
(0.0004)

1.2857
(0.2568)

0.5714
(0.4497)

xx..xxxx represents the value of test statistics for comparing approaches.
shows the significant difference at 0.5 level.

(x.xxxx) represents the p-value (smallest probability of rejecting the null hypothesis).
0 = TAGUCHI, 4 = FULL-ORTH, 5 = FULL-ROTATE



Table B24. Average mean squared error (sample size for each approach = 10).

Model

Approach
1 2 3 4 5 6 7 8 force

problem

TAGUCHI 0.54454 0.973777 0.17525 0.76434 0.000383 0.00383 1.655x10-5 2.096x10-6 14,431.4
(0.02049) (0.034317) (0.008358) (0.020212) (2.24x10-5) (0.000135) (1.8x10-6) (2.23x10-7) (318.32)

FULL-ORTH 0.464524 0.664512 0.064898 0.71867 0.000135 0.003501 2.444x10-6 1.754x10-6 7,724.41
(0.00976) (0.035762) (0.002483) (0.02446) (7.61x10-6) (0.00011) (1.74x10-7) (2.51x10-7) (155.41)

FULL-ROTATE 0.43149 0.88359 0.05758 0.72265 0.000139 0.003018 1.358x10-6 1.36x10-6 7,513.92
(0.010313) (0.07154) (0.003743) (0.0243) (4.98x10-6) (5.93x10-5) (1.51x10-7) (1.51x10-7) (109.77)

(*.******) represents the standard error of the estimated mean square errors.



Table B25. Kruskal-Wallis test for the force problem.

Absolute Biases Estimated Variances Mean Squared Errors

Test of Test of Test of

Average Homogenous Average Homogeneous Average Homogeneous

Approach Rank Group Rank Group Rank Group

TAGUCHI (0) 5.50 x 65.50 x 65.50 x

FRAC-ORTH (1) 62.10 x 13.30 x 50.40 x

FRAC-ROTATE (2) 50.60 x 14.80 x 39.40 x

FRAC-ORRO (3) 53.80 x x 21.90 x 46.70 x x

FULL-ORTH (4) 28.10 x 47.30 x 18.70 x

FULL-ROTATE (5) 28.20 x 41.90 x 16.00 x

FULL-ORRO (6) 20.20 x 43.80 x 11.80 x

(test significant at .0.05 level)

* Approach results that aligned vertically are not statistically different.
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Table B26. Averages for performance measures, force problem (c = 400 grams).

Approach Absolute

Bias (%)

Estimated

Variance

Mean Square

Error

0 1.45 14,390.33 14,431.41

1 21.75 4,667.53 12,242.7

2 20.76 4,801.29 11,705.48

3 20.96 5,018.46 12,057.65

4 10.36 5,996.25 7,724.41

5 10.41 5,769.86 7,513.92

6 9.57 5,828.22 7,299.18

0 represents TAGUCHI.
1 represents FRAC-ORTH.
2 represents FRAC-ROTATE.
3 represents FRAC-ORRO.
4 represents FULL-ORTH.
5 represents FULL-ROTATE.
6 represents FULL-ORRO.
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APPENDIX C

Computer Programs

The programs used for this study included a simulation program (written in

BASIC) and a nonlinear optimization program (GAMS). The program listings are as fol-

lows:

Cl: Simulation program for the additive high-order model ( models 1-4)

5 REM Define variables: Y = response variable

XI =xi
XII =x2
XIII = x3

XIV = x4

XBAR1 = the optimal values of xi

XBAR2 = the optimal values of x2

XBAR3 = the optimal values of x3

XBAR4 = the optimal values of x4

VAR1 = the variance of xi

VAR 2 = the variance of x2

VAR 3 = the variance of x3

VAR4 = the variance of x4

10 DIM Y(800)

20 DIM XI(800)

30 DIM XII(800)

35 DIM XIII(800)

40 DIM XIV(800)

50 PRINT "ENTER MEAN OF Xi"

60 INPUT XBAR1

70 PRINT "ENTER VARIANCE OF Xi"

80 INPUT VAR1

90 PRINT "ENTER MEAN OF X2"

100 INPUT XBAR2

110 PRINT "ENTER VARIANCE OF X2"

120 INPUT VAR2

130 PRINT "ENTER MEAN OF X3"

140 INPUT XBAR3

150 PRINT "ENTER VARIANCE OF X3"

160 INPUT VAR3
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170

180

190

200

PRINT "ENTER MEAN OF X4"

INPUT XBAR4

PRINT "ENTER VARIANCE OF X4"

INPUT VAR4

300 WW = 0

305 00 = 0

310 FOR L = 1 TO 10

320 REM GENERATE X1

330 FOR I = 1 TO 500

340 GOSUB 2000

350 XI(I) = XBAR1 + (VAR1^0.5)*Z

360 NEXT I

370 REM GENERATE X2

380 FOR II = 1 TO 500

390 GOSUB 2000

400 XII(II) = XBAR2 + (VAR2'0.5)*Z

410 NEXT II
420 REM GENERATE X3

430 FOR J = 1 TO 500

440 GOSUB 2000

450 XIII(J) = XBAR3 + (VAR3^0.5)*Z

460 NEXT J

470 REM GENERATE X4

480 FOR JJ = 1 TO 500

490 GOSUB 2000

500 XIV(JJ) = XBAR4 + (VAR4A0.5)*Z

510 NEXT JJ

520 REM COMPUTE RESPONSE Y

530 SUMY = 0

540 SUMS() = 0

550 FOR K = 1 TO 500

555 REM for example Y = 4x13+2x2-3x2+exp(x4/2)

560* Y1 = 4*XI(K)*XI(K)*XI(K)

570* Y2 = 2*XII(K)

580* Y3 = 3 *XIII(K) *XIII(K)

590* Y4 = EXP((XVI(K)/2))

600 Y(K) = Y1+ Y2+ Y3+ Y4

610 SUMY = SUMY + Y(K)

620 SUMS0 = SUMO + Y(K)^2
630 NEXT K

640 WW = WW + SUMY

650 MEAN = SUMY/500

660 QC) = (A? + (SUMS6)-500* (MEAN^2))

670 VAR , (SUMSQ 500*(NEAN'2))/499

680 LPRINT

690 LPRINT

700 LPRINT "MEAN = "; MEAN; " VARIANCE Y = ";VAR

710 LPRINT

720 LPRINT

730 LPRINT "B1 = " ;B1; " B2 = "; 52; " B3 = "; B3; " B4 = ";B4

740 LPRINT "Xi* = ";XBAR1; " X2* = ";XBAR2; " X3* = "; XBAR3;" X4*

";XBAR4

750 AVEMEAN = WW/(10*500)
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760 AVEVAR = (-)0/(499*10)

770 LPRINT "AVEMEAN ";AVEMEAN;" AVEVAR = ";AVEVAR

780 END

2000 REM SUBROUTINE GENERATE RANDOM NUMBER

2100 NR = 0

2200 RANDOMIZE TIMER
2300 FOR LL = 1 TO 12

2400 NR = NR + RND
2500 NEXT LL

2600 Z = NR 6

2700 RETURN

INgte: * implies that the command lines must be changed in correspondence with the
function of a response, Y.

C2: Simulation program for the multiplicative high-order model (models 5-8)

5 REM Define variables: Y = response variable

XI = xi

XII =x2
XIII =x3
XIV = x4

B1 = the degree polynomial of xi

B2 = the degree polynomial of x2

B3 = the degree polynomial of x3

B4 = the degree polynomial of x4

XBAR1 = the optimal values of xi
XBAR2 = the optimal values of x2
XBAR3 = the optimal values of x3
XBAR4 = the optimal values of x4
VAR1 = the variance of xi

VAR2 = the variance of x2
VAR3 = the variance of x3
VAR4 = the variance of x4

10 DIM Y(800)

20 DIM XI(800)

30 DIM XII(800)

35 DIM XIII(800)

40 DIM XIV(800)

50 PRINT "ENTER Ri"

60 INPUT Bl

70 PRINT "ENTER B2"

80 INPUT B2

00 PRINT "ENTER P3"

100 INPUT B3

110 PRINT "ENTER B4"

120 INPUT B4

130 PRINT "ENTER MEAN OF Xi"

140 INPUT XBAR1
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150

160

170

180

190

200

PRINT "ENTER VARIANCE OF Xi"

INPUT VAR1

PRINT "ENTER MEAN OF X2"

INPUT XBAR2

PRINT "ENTER VARIANCE OF X2"

INPUT VAR2

210 PRINT "ENTER MEAN OF X3"
220 INPUT XBAR3

230 PRINT "ENTER VARIANCE OF X3"
240 INPUT VAR3

250 PRINT "ENTER MEAN OF X4"

260 INPUT XBAR4

270 PRINT "ENTER VARIANCE OF X4"

280 INPUT VAR4

290 WW = 0

300 CA) = 0

310 FOR L = 1 TO 10
320 REM GENERATE X1
330 FOR I = 1 TO 500
340 GOSUB 2000

350 XI(I) = XBAR1 + (VAR1^0.5)*Z

360 NEXT I

370 REM GENERATE X2

380 FOR II = 1 TO 500

390 GOSUB 2000

400 XII(II) = XBAR2 + (VAR2A0.5)*Z
410 NEXT II

420 REM GENERATE X3
430 FOR J = 1 TO 500
440 GOSUB 2000

450 XIII(J) = XBAR3 + (VAR3^0.5)*Z

460 NEXT J

470 REM GENERATE X4

480 FOR JJ = 1 TO 500

490 GOSUB 2000

500 XIV(JJ) = XBAR4 + (VAR4A0.5)*Z
510 NEXT JJ

520 REM COMPUTE RESPONSE Y
530 SUMY = 0

540 SUMSC) = 0

550 FOR K = 1 TO 500

555 REM make sure x's is greater than or equal to zero before raising the

power

560 Y1 (XI(K)*XI(K))'0.5)^B1
570 Y2 (XII(K)*XII(K))^0.5)^B2
580 Y3 (XIII(K)*XIII(K))^0.5)^B3

590 Y4 ((XIV(K)*XIV(K))A0.5)AB4

600 Y(K) = Y1* Y2* Y3* Y4

610 SUMY = SUMY + Y(K)

620 SUMSQ = SUMS() + Y(K)^2

630 NEXT K

640 WW = WW + SUMY
650 MEAN = SUMY/500



139

660 00 = 00 + (SUMSQ-500*(MEAN^2))

670 VAR = (SUMS(D_ 500*(MEAN^2))/499

680 LPRINT

690 LPRINT

700 LPRINT "MEAN = "; MEAN; " VARIANCE Y = ";VAR

710 LPRINT

720 LPRINT

730 LPRINT "Bi = ";B1; " B2 = "; B2; " B3 = "; B3; " B4 = ";B4

740 LPRINT "X1* ";XBAR1; " X2* = ";XBAR2; " X3* = "; XBAR3;" X4* =

";XBAR4
750 AVEMEAN = WW/(10*500)

760 AVEVAR = 0_0/(499*10)

770 LPRINT "AVEMEAN = ";AVEMEAN;" AVEVAR = ";AVEVAR

780 END

2000 REM SUBROUTINE GENERATE RANDOM NUMBER
2100 NR = 0

2200 RANDOMIZE TIMER

2300 FOR LL = 1 TO 12

2400 NR = NR + RND
2500 NEXT LL

2600 Z = NR 6

2700 RETURN

C3: Simulation program for the force problem

5 REM Define variables: Y = response variable

XI =

XII = x2

XIII =x3
XIV = x4

XV = x5

XBAR1 = the optimal values of x1

XBAR2 = the optimal values of x2

XBAR3 = the optimal values of x3

XBAR4 = the optimal values of x4

XBAR5 = the optimal values of x5

SDl = the standard deviation of x1

SD2 = the standard deviation of x2
SD3 = the standard deviation of

SD4 = the standard deviation of

x4 SD5 = the standard

deviation of x5

10 DIM Y(800)

20 DIM XI(800)

30 DIM XII(800)

35 DIM XIII(800)

40 DIM XIV(800)

45 DIM XV(800)

50 PRINT "ENTER MEAN OF Xi"

60 INPUT XBAR1

70 PRINT "ENTER STANDARD DEVIATION OF Xi"
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80 INPUT SD1

90 PRINT "ENTER MEAN OF X2"

100 INPUT XBAR2

110 PRINT "ENTER STANDARD DEVIATION OF X2"

120 INPUT SD2

130 PRINT "ENTER MEAN OF X3"

140 INPUT XBAR3

150 PRINT "ENTER STANDARD DEVIATION OF X3"
160 INPUT SD3

170 PRINT "ENTER MEAN OF X4"
180 INPUT XBAR4

190 PRINT "ENTER STANDARD DEVIATION OF X4"

200 INPUT SD4

210 PRINT "ENTER MEAN OF X5"

220 INPUT XBAR5

230 PRINT "ENTER STANDARD DEVIATION OF X5"

240 INPUT SD5

250 WW = 0

260 QQ = 0

270 FOR L = 1 TO 10

280 REM GENERATE X1

290 FOR I = 1 TO 500

300 GOSUB 2000

310 XI(I) = XBAR1 + SD1*Z
320 NEXT I

330 REM GENERATE X2

340 FOR II = 1 TO 500

350 GOSUB 2000

360 XII(II) = XBAR2 + SD2*Z

370 NEXT II

380 REM GENERATE X3

390 FOR J = 1 TO 500

400 GOSUB 2000

410 XIII(J) = XBAR3 + SD3*Z
420 NEXT J

430 REM GENERATE X4

440 FOR JJ = 1 TO 500

450 GOSUB 2000

460 XIV(JJ) = XBAR4 + SD4*Z
470 NEXT JJ

480 REM GENERATE X5

490 FOR M = 1 TO 500

500 XV(M) = 50*RND(112233!)

510 NEXT M

520 REM COMPUTE RESPONSE Y
522 A = 140

524 Cl = 16

526 C2 = 300

530 SUMY = 0

540 SUMSQ = 0

550 FOR K = 1 TO 500

560 K1 = (Ci*XV(K)) + 52

565 K2 = (A/(XI(K)) 1
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570 Y1 = K1*K2

580 K3 = (2*A XI(K))/XI(K)

585 K4 = XV(K) 20

590 K5 = XII(K) + K3*K4 XIV(K)

595 Y2 = K5*XIII(K)*K3

600 Y(K) = Y1 + Y2

610 SUMY = SUMY + Y(K)

620 SUMS() = SUMSQ + Y(K)A2

630 NEXT K

640 WW = WW + SUMY
650 MEAN = SUMY/500
660 0Q = (X) + (SUMS()-500*(MEAN^2))

670 VAR = (SUMS() 500*(MEANA2))/499

680 LPRINT

690 LPRINT

700 LPRINT "MEAN = "; MEAN; " VARIANCE Y = ";VAR

710 LPRINT

720 LPRINT
730 LPRINT "Xi* = ";XBARI; " X2* = ";XBAR2; " X3* XBAR3;" X4* =

";XBAR4

740 LPRINT "X5* = ";XBAR5

750 AVEMEAN = WW/(10*500)

760 AVEVAR = (X)/(499*10)

770 LPRINT "AVEMEAN ";AVEMEAN;" AVEVAR = ";AVEVAR

780 END

2000 REM SUBROUTINE GENERATE RANDOM NUMBER
2100 NR = 0

2200 RANDOMIZE TIMER
2300 FOR LL = 1 TO 12

2400 NR = NR + RND
2500 NEXT LL

2600 Z = NR 6

2700 RETURN

C4: Nonlinear optimizing program using_GAMS software

The program listed below is an example of the optimizing program written in

GAMS format for the force problem.

$ TITLE A PROGRAM FOR OPTIMIZING THE PROBLEM VIA THE NEW METHOD
$ OFFUPPER

VARIABLES
X1 DECISION VARIABLE

X2 DECISION VARIABLE

X3 DECISION VARIABLE

X4 DECISION VARIABLE
X5 DECISION VARIABLE

A RESPONSE FUNCTION
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Z OBJECTIVE FUNCTION;

POSITIVE VARIABLE X;

EQUATIONS

EQN1

EON2

EQN3

EQN4

EONS

EQN6

EQN7

EON8

EQN9

EQN10

RESPONSE

OBJETN;

X1.L = 154;

X2.L = 60.5;

X3.L = 8.0;

X4.L = 28.0;

RESPONSE.. A =E= BO+Bi*X1+ B2*X2 +B3*X3+B4*X4+B5*X5
+ B11*X1*X1+B22*X2*X2+B33*X3*X3+B44*X4*X4+B55*X5*X5
+ B12*X1*X2+B13*Xl*X3+B14*X1*X4+B15*Xi*X5

+ B23*X2*X3+B24*X2*X4+B25*X2*X5
+ B34*X3*X4+B35*X3*X5+B45*X4*X5;

EON1.. A =L= 400.01;
EQN2.. A =G= 399.99;

EQN3.. X1 =L= 180;

EQN4.. X1 =G= 100;

EONS.. X2 =L= 75;

EQN6.. X2 =G= 35;

EQN7.. X3 =L= 15;

EQN8.. X3 =0= 5;

EONS.. X4 =L= 50;

EQN10.. X4 =G= 20;

OBJTFN.. Z =E= V1*(B1+2*Bil*Xl+B12*X2+B13*X3+B14*X4+B15*X5)
*(B1+2*B11*Xl+B12*X2+B13*X3+Bi4*X4+B15*X5)

+V2*(B2+2*B22*X2+B12*X1 +B23*X3+B24*X4+B25*X5)

* (B2+2*B22*X2+B12*Xl+B23*X3+B24*X4+B25*X5)

+V3*(B3+2*B33*X3+B13*X1 +B23*X2+B34*X4+B35*X5)

* (B3+2*B33*X3+B13*X1+B23*X2+B34*X4+B35*X5)

+V4*(B4+2*B44*X4+B14*X1 +B24*X2+B34*X3+B45*X5)

*(B4+2*B44*X4+B14*X1 +B24*X2+B34*X3+B45*X5)

+V5*(B5+2*B55*X5+B15*X1 +B25*X2+B35*X3+B45*X4)

* (B5+2*B55*X5+B15*X1+B25*X2+B35*X3+B45*X4);

MODEL OP /ALL/;

SOLVE OP USING NLP MINIMIZING Z;
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OPTION DECIMALS = 6;

DISPLAY Z.L, A.L;

OPTION DECIMALS = 5;

DISPLAY Xl.L, X2.L, X3.L, X4.L;

Note: Since X5 is a noise variable, the value of X5 is substituted by its mean prior to
optimization. Therefore, X5 in the program must be placed by 25 for the force problem.
Moreover, for BO, Bl, B2,...,B5, B11, B22, ...,B55, B12, B13,..., and B45, values must
be replaced by the coefficient terms of the fitted quadratic mean response function. For
example, BO must be placed by the constant term of the estimated quadratic response
function, B1 must be placed by the coefficient of xi, B11 must be placed by the coeffi-
cient of x12, and B12 must be placed by the coefficient of x1 and x2, and so on.

Also note that A represents the fitted quadratic (mean) response function, and OBJFTN

represents the estimated variance function.

The optimization programs for models 1-8 are obtained by modifying the program

above for the four variables problem, treating x4 in each model as the noise variable.




