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THE DIFFRACTION OF CYLINDRICAL WAVES BY
TWO PARALLEL HALF PLANES

1. INTRODUCTION

Maxwell's equations for free space are

E = 0

When the sources are line currents parallel to z-axis, the electric

and magnetic fields are such that E = E = 0. The

equations (I) then reduce to

2

U = 1 U
ac2 at

where
c = , U(x, y, t) = E (x, y, t)

V 7 ;17

iwtWith the time dependency c, (II) reduces to (IIa)

V2 u + k2u = 0 Ila

where
k =

----- -II



or

The boundary conditions are

an

u= 0.

= 0 on the boundary represents acoustic excitations in thean

presence of a rigid surface whereas u 0 on the boundary

represents electromagnetic excitations in the presence of a per-

fectly conducting surface.

In the present investigation we assume the solution of (Ha)

to be of the form u(x, y) = U. + Us.

I-1(2)( k 4-xI)2 + (Y-Y1)20

where U. is the field incident at the point A(x, y) due to a line

source of unit strength at B (xi, yi) and Us is the secondary field

which is regular in the entire region under consideration.

The results of plane wave diffraction by a perfectly reflect-

ing half plane were published in the late nineteenth century using

multivalent solutions of the wave equation. These were followed by

those of line source (cylindrical excitations) diffraction by the half

plane. The solution to the corresponding wedge problem (for both

the plane wave and the cylindrical source) was published by Carslaw

(6). For sometime.the interest in diffraction problems slackened

2

U.
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due to the extraordinary difficulties presented by this method in its

application to new problems.

The publication of (33) in 1931 revived the interest of

research workers in this field a..s can be seen .from the number of

papers published since then. Magnus (17) expressed the solution

of the half plane problem with incident plane waves in terms of an

integral equation of the Wiener-Hopf type. He then solved the inte-

gral equation by computing coefficients in terms of Bessel functions.

Copson (7) solved the same integral equation by using the Weiner-

Hopf teehnique. The solutions for complicated gratings (2, 3, 4, 5,

10, 11,14) demonstrates the power of this technique in :solving dif-

fraction problems. A typical Wiener-Hopf homogeneous equation is

(IV)

where

f(X)1 (x-X)dX + g(x) = h(x)

- oo

f(a) (a) g (a) = h (a)

,co
ax

(x)e dx and i7 (a), g (a), 1i(a) are) =
-co

defined in a similar manner.

oo < x < oo

where f (X) and h(x) are unknown functions. It is, however,

known that f (X) -7 0, X <0 and h(x) = 0, x> 0 . Multiplying both

sides by eiax and integrating with respect to x, one obtains
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The equation (IV) holds in a common strip of regularity of the func-

tions g(a), 11-(a), (a), r (a) considered as functions of a (provided

such a strip exists). To determine the regions of regularity of these

functions one assumes the behavior of the functions f(X), h(x), g(x),

I (x) for large x. For example, let f(X) eikX for large X.

k =
k1

+ ik , where k >0.

Then oo

r(a)=s f(X) e dX .

We note that f (a) will be regular in the lower half plane. Im a < k2.

Similarly if -ikx
e as x -00,

-iax
h(a) -= .5 h(x) e dx,

-00

then h(a) is regular in the upper half plane Im a > -

These half planes have a common strip I Im al < k2.

lithe functions f (a), g(a) are also regular in this strip, the

equation (IV) then has a strip of validity and can be rewritten as

(V) +
(a) = f (a) f (a) g (a).

The subscripts +, -, denote regularity in the upper and lower half

planes respectively.
(a)

I (a) is now expressed in the form (a)
. Then (IV)



h (x) =

(a)eiaX da, X > 0

X < 0

(a) e iax da, x< 0

x>0

becomes

(VI). C1+(a) i+(a) g( ) 1+(a) (a) (a).

P(a) g(a) i+(a) is now expressed in the form P+(a) + P (a).

Using this we get

(VII) ci+ (a) I (a) - P (a) = P (a) + f (a) I (a.) F (a).

The left hand side of (VII) is a function regular in an upper half

plane whereas the right hand side is regular in a lower half plane.

These half planes overlap. By analytic continuation they define a

function F (a) regular in the entire a-plane. The growths of

(a), 1 (a), Pi. (a), P (a), (a), h+ (a) are studied in the

proper half planes. As it turns out, the analytic function F(a)

is a constant in the problem under investigation.

Thus -11+(0. ) and (a) are known in terms of the already

determined functions. Then
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In the problem of plane wave diffraction by two parallel

half planes one gets a single integral equation of the type III pro-

vided that the direction of propogation is perpendicular to the edges

of the half planes and parallel to the planes. For the cylindrical

source placed symmetrically with respect to the two half planes,

one again gets a single integral equation. However, when the line

source is not symmetric with respect to the two half planes (the line

source is still parallel to the edges of the hayplanes) we get two

integral equations of the type III. These involve four unknown

functions whose behavior at large distances is assumed to be known.

The technique used on (III) has to be applied to both the integral

equations separately. Chapter 2 is devoted to the problem of the

two parallel planes with a line source between them. In Chapter 3

we investigate the diffraction of a line source excitation by two

parallel half planes. Chapter 4 contains the proofs of asymptotic

estimates used. Finally in Chapter 5 we obtain the results of two

parallel planes problem from the results of Chapter 3.



2. FIELD OF A LINE SOURCE PLACED BETWEEN TWO INFINITE,
PARALLEL PLANES

This chapter is primarily devoted to the derivation of the in-

duced current distributions in the two conducting planes at large

distances from the source. This forms a basis of the,assumptions

made about the induced currents in the next chapter. If the source

of incident field is oriented in such a way that E = E = H = 0, thex y z

secondary currents in the two conducting planes flow parallel to the

z-axis. These secondary currents act as sources of new radiation

and re-radiate the energy incident upon the two planes to create a

secondary field. Thus the secondary field can be constructed in

terms of the distributions of the induced currents in the two planes.

Consider a cylindrical source (of unit strength) which is paral-

lel to the z-axis, passes through the point Q(x', y') and is radiating

on two infinite parallel and perfectly conducting planes of zero

thickness,

y= b - c0 < x< 00
(Figure 1)

y = -b - oo < x < 00



y=b

>X

y=-b

Figure 1

We may assume, without any loss of generality, that = 0. We

further assume that y' = 0. There are two distinct cases for the

possible values of y'.

Iy' I > b.

I y' I b.

In (i) the source lies on the same side of both the planes and the one

nearer to the source acts like a shield. This reduces to the problem

of a line source radiating on an infinite conducting plane. It has al-

ready been worked out by Amos (1). In (ii) the source lies between

the two planes. The assumption y' = 0 is justified due to the fact

that the main purpose of this chapter is to obtain an estimate the

strength of the induced currents for x >>1. The source is symmet-

rically located with respect to the planes and hence the strengths of

the induced currents at the same distance in the x-direction are

equal. Let 1(X) be the strength of the induced currents at a dis-

tance X in the x-direction. The total field U(x,y) at the point

P(x, y) can be written as

8



where

and

U(x,y) = U. + Us,

Us( )02I(X) Ho2)ik x- + (y-b)2

- oo

Clearly U(x,y) = U(x, -y).

k \ix2 + y2

' (2.1) U(x,y) = 4- (2) (k ,./x2 + y2 )

00+ I (X ) [ H(2) (k
4

-00

V(x-X
+ (y+b)2) dX

\i(x-X )2 +

+ H ( ) ( (x-X )2 + (y+b )2 ) dX.

Inserting the boundary condition U(x, ±15) = 0 in (2.1), we get

oo

[H(2.2) (2)
I(X.)

o
(k N(x-X)2 + (2b)2)+ H(2) (klx-X I ) dX

= - H(2) (k + b

-00 < x < 00.

Integral equation (2.2) can be solved easily by the Fourier trans-

form methods. Multiplying both sides of (2.2) by exp(-iax) and

integrating with respect to x from - 00 to 00 we have (24a, pp. 77,

80)

9



(2. 3) [ 1 + exp )Jr (a)
1-7-7k -a

-2 exp (-ib 1177 2-a
_a2

provided that the exchange of the order of integration is permitted.

oo

(a) = SI(X) exp (-iaX ) dX

-00

From (2.3)

(2.4) ) =

The arguments of (k+a) and (k- a) in the a-plane are subject to

the following restrictions.

arg (k-a) < 0

(2. 5)
11 < arg (k+a) < Tr

We further assume that bk Tr/2 - p., >

Taking the inversion of I (a), we get

I (X) =

exp -ib 42.77)
1 + exp ( -2ib17-7:2

1

2Tr

b2

SI (a) exp (iaX ) dX

-00
2 (n+ 1)

b
exp1

n=0 (n+ 1)2 2

k2

10

Thus eikX as X co.

1 sech (b



3. DIFFRACTION BY TWO PARALLEL HALF PLANES

In its formulation, the problem is similar to that of Chapter 2.

However, in the present case, the cylindrical source is not located

symmetrically with respect to the two half planes. This leads to

different strenghts of induced currents 10(X), Ii(X ) in these two

conducting half planes. Furthermore, in Chapter 2, 1(X) was

determined for all X with U(x, ±b) known for all x. In the present

case, I0
(X ) =

I1
(X ) = 0 for X < 0 and U (x, b) = U(x, -b) = 0

for x > 0. The problem is to determine0(X ), I (X ) for X > 0
1

and U (x, b ), U (x, -b) for x < 0.

Consider a cylindrical source (of unit strength), which is parallel

to the z-axis and passes through Q(x' , y'), radiating on two parallel

half planes of perfectly conducting material and zero thickness.

= 0 < x < 00

(Figure 2)

y=-b

Figure 2



(3.1)

oo

(3.2) Us
= I (X ) H (k V (x-X)2 + (y-b)2 ) dX(2)

4 0 0
0

00

(X ) H (k(2) V(x- 2
+ (y+b)2 ) dX

14 c 0
0

(3. 3) U(x,y) = -1:1- H(o2) (k 1/(x-xl )2+ (y-yI )2- )

SlIn(X) H(2) (k
4 0

.\/(x-X)2 + (y-b)2 )
0 "'

+
I1(X) Ho(2) V(x-\ )2 + (y+b )2 ) dX

Inserting the boundary conditions U (x, ±b) = 0 for x > 0 in (3. 3),

we have

(3.4)

H(2) (k 14x-x' )2 + (y-y' )2 )
4 0

000[I

(X ) H(2) (klx-X I)
0 0

+ I (X) H(2) (k V(x-X )2 + (2b)2 )] dX
1 0

i (2)
Ho (k V(x-x' + (10-y'

2

0 < x < 00

00

(3.5) J-zis [I (X) H(2)(kV(x-X)2 + (2b)2)+II(X)1-10(2)(klx-Xl).1dX
0 0

0

= 0

+ H(2) (k (x-x' )2 + (b+y' )2 ) = 0
4 0

0 < x < 00.

Furthermore, we note that the left hand side of (3.4) should give the

12
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total field U(x,b) for x < 0 and the left hand side of (3.5) the total

field U(x, -b) for x < 0 .

Equations (3.4) and (3.5) can, therefore, be written in the form

oo

(3.6) [I0(X)1-10(2)(klx-X1)+ Ii(X)H0(2)(kV(x-X)2 + (2b)2 ) dX

0 x > 0

+ H(2) (k Abx-x' )2 + - y ' )
0

I0
(X)H(2)(kV(x-X) + (2b)2)+

I1
(X)F1(2)(klx-Xl)] dX

0 0

0 x>0
+H(2) (k V(x-x' )2+ (b+y' )2 )

0 4 U(x, -b) x< 0

Adding and subtracting (3.7) from (3. 6), we have

oo
(2)(3.8) p0

(X)[H(2)(klx-Xi )+Ho (k y1/ (x-X)2 + (2b)2 dX
0

0

(2) ,/
+ H (k y(x-x' )2 + (b-y' )2)

0

() 2+ H2 (k V (x-x' ) + (b+y' )2 )
0

x> 0

U(x,b)+U(x, -b)] x< 0

4 U(x,b) x< 0

(3.7)
$01



oo

(3. 9) p(X) [H(a)(k.lx-XI) - H2)
vo1 0

(x-X )2+ (2b )2. ddX( /

0

+ F1(2) ( k )/(x-x' )2 (13-31-1 )2 )
0

V(x-x' 2
+ oa+yi )2 )

14

oo

(3.10) c f(X)/(x-X) dX = g(x) + h(x)

oo

f0 (X)

f1
(X)

by the following relations

X <0

(X) X > 0

X <0

-oo < x < oo

0 x> 0

U(x,b)-U(x, -b)] x < 0

where
p()) = I0 (X) +I1(X)

p1(X) = 10(X) -
I1

(X )

The equations (3.8) and 3. 9) can be expressed as integral equations

of the Wiener-Hopf type
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/ (x-X) = H(2)(k lx-Xj) + H(2)(k1/(x-X)2 + (2b)2 ) -co < x < oo
0 0 0

x-X) = 11(2)(k jx-X I ) - H(2)(k Afix-X 2 + (20- ) -co < x <00
0 0

.2
go (x) = -[ Ho(2)(k Ai(x-x') (b-y' ) )

g1 (x) = - [H0(2)(k Ai(x-x' )2 +

h (x) =
1

Thus obtaining

+ H(2) (k V(x-x' )2 + (b+yt)2 )] _co < x
0

x > 0

h0
(x) =

U(x, b) + U(x, -b)] x < 0

0 x >0

[U(x,b)-U(x, -b)] x < 0

CO

Multiplying both sides of (3.11) and (3.12) by exp(-iax) and integrating

from -00 to CO we get (24a, pp. 77,80)

oo

(3.11) f (X)/
0

(x-X) dX
0

g (x) +
h0

(x) -00 < x < oo
*-0o

oo

(3.12) f (X)
1

(x-X).dX =
1 1(x)

+ h (x) -00 < x < 00

-oo

- H (2)
0

) -co < x < oo2(k V (x-xt )
2+ (b+ y))



(3.13)
0

(a) [ 1 + exp(-2ib 1/7(2--7)]f 22-a

= _
2 exp (-lax' ) [ex )

V.k2_a2

-2 exp(-iax' )[

VkZ - a2

+ exp( b+y' IVk -a

exp( -ilb-y1

ho (a)

12 2

-exp( -ilb+y'
I
V2-a2]

cll.
(a)

where
oo

(a) = p (X) exp(-iaX) dX
0

0
1

and

171.0
(a) =

4 0
[U(x, b) (x, -b)] exp(-iax) dx

1 -oo

At this point certain assumptions about the forms of 130 (X), pi (X),

U(x,b) and U(x, -b) are necessary before we can proceed further.

First, we require that 10 (X), (X) be absolutely integrable over

any finite length. Furthermore, we assume that the behavior for

large distances from the source be like that of I (X) in Chapter 2. i. e.

16

(3.14)
2 i"1(a)

1-exp (

k2-a2



Thus

(3.15)

I (X)
0
1

positive imaginary part.

Also

(0.)1 .) IP (

0

171 (a.) =
0

17

Cl exp (ikX ) as X 00 and that k has a small

C2 exp (-ikx) as x--00

)1 dX. +C
oo

+ exp (-ilb+y1
I
-42-a2 )]

exp(-iaX. + ikX.) dX,

We notice that0(a) represents an analytic function which is regular

in the lower half plane Im a < Tm k. We also note that f0(a) is

bounded in the proper half plane Im a 4 lm k- E, Im k >E > 0.

Similarly f1(a) represents an analytic function, regular and bounded

in Im a 4 Im k - E

A similar analysis for h0 (a),
1-1

1. (a) shows that these represent

analytic functions, regular and bounded in the upper half plane

Im a - Im k +E . Let us re-write (3.13) and (3.14) as

i exp(-iax' ) [ exp (-ilb-y-'
I

Aik.2-aa )

2 Vk2-a2

[1 + exp(-2ib VkZa21) (a)

2 lik2-a2



(3.16) fl1 ( =
i exp(-iaxl) [

exP( )

2 Aik2-a2

where
ill (a) = 1710 (a)0

- ,) hi (a)

0(a), i (a), g-0 (a) and g-1(a) in the integral forms represent
1

functions regular in the strip ihn aj < Im k. However, the closed

forms give analytic continuations into the whole a-plane when it is

cut from k to 00 and -k to -00 along lines parallel to the real

axis. (Figure 3).

C+

- exp ( lb+y' I Vic

Figure 3

-0,2 )1

-exp (-2ib k -a2 (a)

T+i6

T 6

18



That branch of k - is considered in which

arg (k-a) <0

-Tr arg (k+a) < Tr

Using thia information, we find that (3.15) and (3.16) are valid only

in the strip IIm al < Im k which is the overlapping region of regu-

larity of fo (a) and 1-10 (a).

as

1 1

We decompose L(a) =

L_ (a)L (a) -
L+(a)

where L. (a) and L+ (a) are regular in the lower and upper, over-

lapping half planes. If we apply Cauchy's theorem to log L(a) on a

rectangular contour of Figure 3 and take the limit as T 00, we

obtain
1 C log L(t) dt 1 C log L(t)

log L(a) = at
2Tri ic t-a

2Tri
t-aC_

since the contributions due to the vertical sides of the rectangular

contour vanish as T--.00

(3.17) log L_ (a) - log L+(a) =

19

1 C log L(t) dt 1

2Tri ic t-a 2Tri

The signs - or + attached to the functions will denote its half plane
of regularity as defined here.

[ - exp ( -2ib1/1k2-a2 )1

2k2 0.2



(3. 18) log L+(a) = -

where that branch of the logrithm function is taken on which log 1 = 0.

In fact both log L+ (a) and log It (a) are given by the same integral

when O. Moreover,

1 rog L(t)
(-a) = exp - lim t+a

T-i6

put -t =

(3. 20)

(-a) =

1(-a)
L_ (0.)

= lim

1
= lirn -

T00

1 limexp

= exp

Since log L(-z) = log L(z).

log L(t) dt
t-a

T-i6
1 C log L(t)

2Tri j t- a

-T-i6

1 log L(t) dt
(3.19) log L (a) = -

2-rri t-a

T+i6

dt

T Log L(t) dt
t-a

T+i6

S log L(-z)
-z+a,

T+i6

1

2Tri
lim
T".00

z
S log L(z) dz

-a
-T+i6

20



To evaluate L+(a) in a closed form, we replace C+ by the contour

shown in Figure 4. The contour must be in the lower half plane

since a in the function L+(a) lies in the upper half plane.

t=-T

C21
C3

Figure 4

Applying Cauchy's theorem we have

1 C log

JC+

Jog L+(a) =
Tr2i

1 C
(3.21) do. log L (a) = log

C+

1 -exp ( -2ib

2 Ilk& t2

dt
t-a

I/1-exp (-2ib v k2 -
,/ 2 22 vk -t

21

1 1 -exp ( -2ib Vk2-t2 dt
(3.22) d

do.
log L (a) = - .

+ 2Tri,
log

2 -42-t2 (t-a)2
Ci+C2tC3+C.2



We evaluate the contributions to the right hand side of (3.22) by

s
C1' C21' C3, C22eparately.

On C the argument of Vk -t Trchanges from - to -
3ir
2

from

the upper to the lower side of the cut.

1
- slog

1

2Tri

rTi/t2-1(2
dt

Tri 2
(t+a)

(VT2-k2 -1 T+ cosh
Tri T+a

dt

(t+a)

[
1 -exp ( -2ib Vka-t2 )

i
2 1./k2-t2

-T
1. S log i

2Tri
-k

-2b Vt2-k2

(t-a)2
at

-T11. 1-exp( 2b Vt2-k dtS log
2Tri

-k 2i Vt2-k2 (t-a)2

1 -exp ( -2b t2

-2i Vt2-k2

dt

(t-a)2

put t = k cosh u

dt

2

2(t-a)

dt

)(t+a)

2-k2

dt

(t-a)2

22

1 c log

-k

1 -exp ( -2b v t-k )

2Tr i
_ (1-exp( +2b t -k

-T ../ 2 2



so

cosh-1 T

tanh =T-k
2 T+k

As T-1-00 tanh at the upper limit. At the lower limit

tanh 0 = 0 and taking arctan on the principal branch we get,
1

CT
dt

(t+a) Vt2-1(2

du
a +k cosh u

Sc'

in

Tr
-

2

k 2 _az

cosh-1
Tri

The integrand behaves asympotically as

log [ exp (2bt)] 2bt 2b I tj »1.
t

t2 t2

1+

1

(k2-t2)2 < - IF

tan-1 k-a
k+a

23

cosh-1 T

1

2a tan-1 k-a 2

k+aVk2-a2

tan-1

cosh u

k-a tank
2

0

k+a

=

1
(3.23)

co
2Tri

On C21' - IT < arg t <

3Tr < arg
2

2

Vfk2-a2

At the upper limit,



On C22,

log

(3. 24) . . lim
T'00

The integrand behaves as

(3.25) .

00

2-42-t2

Te-in/2 -Tr/2
2b b b

dt - Triyt 2

Te-ill
-Tr

2Tri jc
21

1

1 C
2Tri

1 - exp ( - 2ib 1/k2 - t2 )j1

log t

t2

Tr

=0

T-- 00, the contribution due to this part vanishes.

in the limit as 00

in this quadrant. As

24

The contirubtion from G3 is due to the phase difference of the

logrithm term in the integrand on the two sides of C3. The zeros

of the function [1-exp ( -2ib -42-t2 )] are located on the negative
[ n2 ,n2 2 ] i

imaginary axis. The points t = -i - k are
b2

branch points of the logrithm function in the integrand. The term

in the integrand, for Jim t I < T,

1 log

C21

1

^

exp (2ib. Aik2-t2 ) dt-t
2Tri (t-a)2

2A/k2-t2

Tr arg t < 0

1

2 2 2
- IT < arg (k -t-) <



(3.26)

(3.27)

1 log
2Tri 2 Tri

1 C

C3 C3 n=1

n=1

n=1

where N is the largest integer such that NiT < T

Using (3.23), (3.24), (3.25), and 3.26) we have

at

25

(t-a)2

-iT
1 dt

1

7_
n=1

1

-iT

-i (n2Tr2 kZ

1
2

(t- a)2
n2Tr2

-k

a-t

b2 b2

1 1

I1 a+i
n2,fr2 2

-k
2

1 1 1

2 Tri a +iT

a+i
( n2Tr2 2)-k

b2

1

log L+(a) -
2 in

2a(k-atari.11+ k+a
A/k2..a2

b -1T
+ lirn + --cosh

7Ti
00 22n Tr(

b2

has the same phase

log

as

N
(n2Tr2 -k2

1

2

t + i
b2

1

-k2
b2

22 1-2



da
b blog L+(a) = - -

+ lim
00

-2ba

n=1

2 2Trivk -a

00

Trin

tan- 1

b
:Trin

tArj27;

a+i

k-a
k+a

1

a+i

n2Tr2

b2
-k

122

Tri
log ZT

b:y b to 2TT

111. Tri g2 bk
_

' 22 )n Tr -k2
1

b

^

log N
711

cosh-1 x log Zx 00

NTr for T>>1

(3. 27) can be written as
1

6

But 1 log N +j ,

n=



log L+ (a) =

(3. 29)

Tr

L (a) K exp

integration of (3. 28) yields
1

2ib-42 a2 -1 k-a 2 iba ha
tan (k+a,

) -
IT

ha 21T lbw.log ( --)bk 4- TrTri

co

+

n=

-1

1
+ const.

1

27
1

d -2ba -1 , k -a ,2 b bY b ,
(3. 28) log L (a) =

k2-a2

tan (k+a ) -- ----7 + - L 0 g t- /
da + 2 7T-i Tri bk

liTri

22 -1 k- a a,
tan (

iba bVk-a k+a Tr 2

ba 27r , bNa
log

Tri
( bk ) - Tri

I

b2k2

1

+ log [(
n2.72

)

co

1 -1

X
1I I bZicZ iba ibaexp(--).

nTr
1 nTr2 nTr

n=1



(3.31) = (IV)

* See Appendix

1/k2-a2

1 exp(-2ib Vk2-a2 )
2

(1V)

n=1

1

exp [ 2ib
Tr

1tan-1 I )
k+a 2
k- a

1

+ tan k+a
-1 k-a \ )

exp(ibIA/72-7 ) exp(-ib l/k2-a.2

2ib a2

exp [ -ib 1/1(2-a2

222
ab -

22
n TT

28

(3.

Using (3.

30) L

L(a) =

20)

(a) =

L_ (a)

1 K' exp

ba iba

2ib

1

2- k+atan1 )
k - a

)

+

n2- 2-a

ib-y

L (-a)

iba log

Tr

2 2

27--TT
Tr G bk Tr

lb a

a

iba
)

= L

n=1

(a)

b 2k 2)[(

L (-a)

n7 exP (--

L (a)

Thus 00



(K1) = -b

K' = Nr-To

1
(3. 33) L (a) =

+
Nr-b

1

2ib -1 k+a,
it

tan
(--k-a

)

NT -b

bra iba 2Tr
(1--y+log )

2 7 bk

[sin(blik2-aZ )

b Vk2-a2

+ Zib 1/k2-a2
Tr

+i
n=

1

2
b

_ sin (b a2 )

co

tan-1

n=1

(tan-1

1

-1 k+a
tan (17T-t )

22
n Tr -k2

b2

[ baexp -
2

1

iba 2Tr .2ib V 2
k a2 tan-1 1(ic.a

(1-\1+ log E7k- ) Tr

a

n211-2 k2
b2

1

b 2k
2 -2

2 2
n Tr

29

ba
Tr

1

7
I

27
+log TT)[2 it

iba iba
nTr

exp - nit

(3,.,32) L_ ) = -b exp



As I a H 00 in the proper half plane

(3. 34)

Im a -5 +E .

Im a -5 + E

Let P(a) = [ 1 + exp (-2ib 1/k2-a2 )]

We decompose P( a) in the form P(a) =

P (a) are regular in lower and upper half planes with a common

strip.

The analysis for this decomposition is essentially the same as

in the case of function L(a). We will, therefore, give only a sketch

of this analysis.

1 logP(t) 1 C logP(t)
dt

log P(a) = . at -t-a t-a
2Tri

= log P(a) - log P+(a)

(3.35) log P+(a)

(3.36) log P_ (a) =

Furthermore

(3. 37)

1 C log P(t)
t-a

dt
2Tri jc

1 C log P(t)
2Tri jc t-a

1P (-a) =
P_ (a)

dt

30

where P (a),



(3.38) da log P (a) =

-T1.110.g

1

Z Tri

log P(t) dt.
(t-a)2

Replacing C+ by the contour of Figure 4, we get

31

1+exp(2b Ait2-k2 ) dt

1+exp(-2b Vt2-k2 ) (t-o.)2

dt

1. 1+exp(-2ib Vk -t ) dt
(3.39) log P (a) =- S log

do, 2Tri
Ci+C2t C3+52

Trfrom

2

to 3Tr

2(t-a)

fromOn C1, the argument of v k2 -t2 changes -
2

the upper side to the lower side of the cut.

-T / 2 2_
-k1 r 1 1+exp(2b Vt ) 1 dt

= l-
2Tri

-
2Tri

S' og
) 2

[
1 -k

(t-a)2

-T - F2-7
1 1+exp (-21311t -k

glo 1.
22 Tri (t-a)2

-k

1 T (2b Ag--71<2 )

2-Tri (t-a)2

Tri )k (t+a)2

T -,/ 2 2vt -k dt



(3. 40)
T--00

1

2Tri Sc'
-1 Tcosh IT-

711

1

2a -1 k-a
- 1 + tan (

111-(1-0.2
k+a

Tr
On. C21, - in < arg t < -

3Tr 2 2< arg ( A/k ) < -Tr
2

The integrand is

(3.41) .

T

(3.42) -
1

2Tri

22

The contribution due to 03 is again due to the phase difference

on the two sides of C3. The zeros of the function

[ 1 +exp (-2ib k2_ t2 )] are located at

log [exp(2bt)] 2bt= 2b
2t2

as Too00
1

Jc21

-
2Tri 2

in
On C , - 2 < arg t < 0

22

7-2
- Tr < arg (1/k -t ) <

log (1)The integrand
t2

The contribution for this segment of the contour vanishes as

=0 as T 00 .

32



1 2 2

L(n+-2)

Tr

t =
b2

For lim t < T, the logrithm term in the integrand has the same

phase as N 122
l t+i Cn+ 71. -k2log [

b2
n=0

where N is the largest integer such that

1
_ s

2Trit
_ s log

2Tri
C3 n=0

-k2

1

ai+ T
n=0

1

2

cosh-1T
Tri.

, n = 0, 1 , 2 . .

t

1

b2
-k2

2
((n+--2-)

2a+i -k
b2

33

dt2
(t-a)

3 n=0

all the

1

1(3. 43)
2Trli

Adding up

a+iT
a+i [(n+--)2Tr /b2 -k2 ]

2

contributions, we have
1

= - b b
+

2a -1tan k-a(- )k+a
2

log P+(a)da
- [1 2 a2

1 1
+

00
1

T°

a+iT
[[ ni

1227) Tr((n+
a+i

b2



1(N+)Tr
2 as 00

tan
a

-1 (k-a)
-7L +1°g P (a)

-2ba
= k+a

Tri a2

b

ir(n+-1 )
2

+ (1 -
(n+

-iab b2k2
1 1 2 2(n+ )Tr Tr
2 2

N

+ lim r b 1 by
1T-1 / L iTr(n+1) (n+-1)z Tr2 7

2 2
n=0 a+i(

1 Tri

-kz)
b2

ZT
- Tri log 4N +

by b Tr- --+ log ( )inTri Zbk

-szic-1 log P+ (a) = -
b
2

-
Tri

+
2a -1tan k-a

k+a

1

)

\,/k -a Z

34

We note the following asymptotic relations

1 log 4N + y , 0 0

n=0
n+

cosh lOg Zx , x 0O



1But P (a) = P (-a)

ibaexp ( -

(n+-2)Tr

exp
lb a

1
(n+-)Tr

2

1

2ib 1 2 2 -1 k+a ba iba

(3.

1

2

oo

iba

n=0

iba ba

35

1

iba

21b / 2 2 -1 k- atan ( )k+a

by a +

log P+ (a) = - vk -a.
Tr

ba Tr

-Tr

,--

1 -

_(

2

22bk2 )
. ) -log (iTi2bk

iba

log
In

-1

.1 22
(n+:-.-) in

2

const.

1

ha

(n+-1
2 -

44) P (a) = C exp

n=0

2ib

(n+-1)Tr

-1 ,k - a,
t"---/k+aT r

v K -a tan
2 TT

(3.45) P(a.) = C '

b a
+ log

exp
TT

Tr

v k

iby

a tan (17) -.:71

b2k2

IT

1

2 lb aa)

n=0

2bk) + Tr 1 2(n+-) in
2

1(n+-)
2

ha Tr .i.by
II-

-

b2k 2

1

)2
a )

n=0
+i log- (

2bk Tr

(n+-) in
2



(3. 45a)

* -See Appendix

1 + exp(-2ib i/k2-a2 )
= (C' )2

2

a +

iba
1(n+)Tr
2

ba TTlog ( )
7i 2bk

exp

n=0

(2ib .../ 2 2exp Vk -a (-Tr/2)
7

(C' =1

C' =1
1

2ib 2 2 -1 k+a, 2 ba iba
(3.46) P (a) = exp v k a tan (k- a)Tr 2

n=0

iba ib a
exp

(n+ 1)7 (n+ 1)7
2 2

1

2ib Vk22 tan-1 k-a 7 ba iba
(3. 47) P (a) = (--k+a) -

Tr Tr

n=0

(

[ 222b (k -a )
1-

(n+ )272
2

oo 1

b2k2

TrJ1(n+)2

2

iby ba

1

In

[(1
a +

Tr In
log 2bk

b2k2 ) 2

) Tr
2

122
(n+

P (a) 36

P(a)= P- (a)
= P (a) P (-a)

00



(3.49)

(3.50)

Nik+a Ho(a) P (a) =

+ exp(-ilb+y' I \/k2-a ) ] P(a) + i -F2J-1) i" (a)
4-1--(7a 0

(a) L+ (a) =
iexp(-iax )

ci

2 vk2 -a2

[ I 1A/77t2.- )

[ exP(-ilb-yl I -420,-2)

-exp (-i Ib+y' I \I k2-a2 ) ] . L+ (a) + (a) (a).

Let

(3.51) A(a) = exp b-y' IA/k2-a2)i exp(-iax' )

2 Vk2-a2

+ exp (-ilb+y' Ik2a2 )] P+(a)

We decompose A(a) as the difference of two analytic functions

A (a), A (a) which are regular in half planes with a strip in common.

(3.52) A(a) = A (a) - A (a)

37

I p+(a)1 = 0(1) Im a E

(3.48)

IP (a)I = 0(1) Im a< 6 E

in their respective half planes.

Equations (3.15) and (3.16) can now be rewritten as

ie-i"'
24k-a



Applying Cauchy's theorem to the contour of Figure 3 we have

A(a) = 1C A(t) dt.
2-fri j t-a.

The integrand tends to zero on the vertical segments of the

contour and thus the contribution due to these segments tends to

zero as T -- 00

1 C A(t) 1 C A(t) dt.
(3. 53) A(a) a dtZiii) t- 2Tri ) t-a

(3. 54)

T+i8
A (a) = lim A(t) dt

21.7i

t-a.
.

T--""
-T+i5

-1

(3. 55) IA (a) = 0(16+Imal ) as I al in the upper half

plane Im a -5 + E .

-1

(3. 56) IA (a) = 0(15-Imal 2 as I a I 00 in the lower half

plane Im a 4 5 - E

1 CT-i8A(t) dt2 Tri j t-a
-T-i6

38

A (a ) = lim
00



Let

(3. 57) B (a) = exp (-lax° )

2 k2-a2

-exp(-ilb+y4 I Vk2-a2 ) - L (a)

We decompose B (a) as the difference of two analytic functions

B (a), B (a) such that B (a) = B (a) B (a). In a manner simi-

lar to that of A(a)

1 C B(t)B (a) = lim - dtt-a
00 2Tri

(3. 58)

1 C B(t)B (a) = lim - dt.
00

2Tri t- a

-1

= 0(16 +Ima 2) , I ad 00, Im a -6 + E

(3. 59)

,-2-B (a) = 0(16-Imal )

,/ 2rexp(-ilb-y1 Ivk -a )

Equations (3. 49) and (3. 50) take the form

P_(a) -
(3. 60) t.j k+a H0(a)P(a)+ A (a) = A (a) + f0 (a)

+ Nik-a

(3.61) fl1 (a) L+(a) + B (a) = B (a) + L (a) f1 (a)
-

I00, Im a 5-E

39



Thus

(3. 62)

(3. 63)

P (a)
i (a) - +A (a) = 0

0 k-a

IN/ a. H0 (a) P +(a) + A (a) = 0

i qk-a A (a)

A (a)

P (a)

f0 (a) -
NiTc+a P (a)

Similarly (3. 61) defines an analytic function G(a) in the entire

40

The left hand of (3. 60) is regular in an upper half plane and the

right hand side in a lower half plane. The two half planes have a

common strip. By analytic continuation they define an analytic

function F(a) in the entire a-plane.
-1

Furthermore I F (a) I = 0 (Ial ) as Ia i 00 in the region

Im a - E and
1

IF(a)I °(Ial
2) as IaH 00 for Im a >-8+ E

According to an extension of Liouville's theorem if F (a) is

analytic for all finite a and F1 (a)= 0(lalm) as I a I - 00 then

F1 (a)is a polynomial of degree m. Hence the function F(a)

defined by (3. 60) is a polynomial of degree . It follows that

F(a) is a constant. Moreover as IaH00 along the negative

imaginary axis we note that F(a)--,- 0. This implies that F(a) 0.



a-plane and G(a) 0. It leads to

B (a)
(3. 64) 1(a)

= L (a)

(a)
(3.65) Fi (a) = -

1 L(a)

oo

(a) = p (X) exp (-iaX) dX
0 0
1 -co 1

co

0(a)+T1 (a) = [P0(X) + PDX)] exp(-iaX) dX
-co

oo

10 (X) exp(-iaX) dX

-oo

Similarly

f0 (a) - 1(a) =

Thus

co

(X) exp (-iaX) (IX

-oo

where f (a), I:1(a) are given by (3. 62) and (3. 64) respectively.

41

oo

(3. 66) Io(X)
=

1 C

[r0(a) fl (a)] exp (iaX) da

X >0

oo
1(3.67) 11(X) = TTT [To(a) - (a)] exp (iaX) da

-oo X >0



f10 (a) = fi (a) =
4 0

1 1

oo

(3. 69) U(x, -b) =4 [ñ (a) - i (a)]4Tr 0
-00

oo

[U(x,b)± U(x, -b)] exp(-iax) dx

oo

(3. 68) U(x, b) = [ 0(a) + (a)] exp(iax) da
411" 1

-oo x < 0

exp (iax) dx

x < 0

42

where 1110(a),1 (a) are given by (3. 63) and (3.65) respectively.

We have, therefore, evaluated all the unknown functions in the

form of integrals (3. 66) to (3. 69).



L (a) = exp [urn
00

Let k = k1 + ikz

{-L+(a) = exp -

4. ASYMPTOTIC ESTIMATES

In this chapter we justify the assumptions of Chapter 3 re-

garding the asymptotic behavior of various functions. In particular

we establish the validity of (3. 34), (3. 48), (3. 55), (3. 56) and

(3. 59).

1

2Tri

- co

T-i6
1 log

-T-i6

ski
log

-kl

1 -exp.(- 2-lb "\ik

_FT-Zs
2 k -t

1- exp (-21131/k 2 t2 )

-42-t2

/ 22

dt
t-a

43

Here we have put 6 = 0. This is justified since contour C+ can

be replaced by the contour through the origin

dt
t-a

1

^

1 - exp (-2ib V k-t ) dt
log

-k

oo
1

t-a

dt

2 1/k2-t2

i-exp(-2ib )slog
kl

t-ct
2 lik2-t2



-oo

log

-kl

ki
(4. 2) $ log

-kl

1

2Tri

L +(a) = ex(p-

2Tri

since arg( Aik2-t2

(4.1) L (a) = exp - S

. 1-expk-2ib )

i

co
1 Slog

2Tr

kl

1 c 1
2Tri j

-kl

log

2 -42-t2

co

Tri
loga

kl - 2

1 - exp (-2ib Vk2tZ )

2-42-t2

1-exp(-2ib Aik2-t2 )

2 Ik2- 2

1- A1.-2ib ik2-t2 )

2 Nik2-t2

log

[ exp(-2b Vt2

dt
t-a.

2 Aik2-t2

dt
-t-o.

1-exp(-2ib Vk2-t2

2-42t2

since the integrand remains bounded for -k < t < k
1 1

dt
t+a

dt
t- a

Tr
- as t varies from k1 to 00 .

dt 1= 0(t-a a

1 exp(-2ib

dt

t2-a.2)

dt
t-a

44

1 11-exp(- 2b/t2-k2 )

t- a )t+o.
-2i2 2-k

-k2 ) -1



Also k2-t2 0. An additive constant does not make any difference

as long as it is bounded.

(4. 3)

1

log [t

oo

In S log (7-1)

kl

-exp(-2b 1/k2)) -/ dt

2 lit-k2 2-a2

dt22t -a

log [t

1 dtThen ,S.100 log t7.-) 2 2
t a

co dt
+ c log (-1 )

:=t 2 2 (3(1 1-77)

k t -a ci
1

1Since the logrithm term tends to log (-2-) as t

exp(-21D t2kZ) -1

ZA/t2-k2

put t = -jay

a

exp(-2b V,/t2 -k2 )-1

t -k2

dt

t2-a

00

1 1

( - QV 2
1 +v

dt

t2-a2

CO

oo oo
i 1 dv 1 dv

= - S ilog ( z-i-(-3, ) +(7, --- c log (- -; ),

1+v2

a
1+v--2

kkl 1--.-- -.7--la 1 a

dv

45

1 dtlog (-)t t-a2

dt 1
= 0(737

I

)

l
t2-a2



But

(4. 6)

- =-
1 a

2L (a) (-ia)

1

Slog (v) dv + 0(1)

kl
ia

kl kllog (-a ia ia

(4.5)
dt 1 1

c log ( ) 2a log (- ) + 0 (a )
t2- a2

1 a

1 1exp 0 (-(71L ) - log

1

-

) + 0(1)

110

Hence

1 irr

0(1-)a

46

kl

Combining the results

L (a) exp

of

0 ( 1).a

(4.

+ (

1), (4.

a

2), (4. 3), (4.4) and

irr 1

(4.5) we get

1T1
log ( - )Tc-it. la

co

a
1 dv log ( - 1

)
a ia Tr

2log (------). )

1+v2
ki
ia

and

dv = - a

c 1

jk log ( 1,-)

1

dv
co

dv
log (v)a

k 1+v2
1

1+v2
log+ c (v)

*- 1 1+v2

a
ewal.



According to (3. 20)

L (a) =
1

L (-a)

(4.7) L (a) (ia) 2

Equations (4. 6) and (4.7) justify the assumptions made re-

garding the behavior of the functions L (a) and L (a) in (3.34).

We again let 0.

P (a) = exp

oo
1

- 27i S log

kl

-kl

Tri
S log

k1

T-i6

i
1 S ilog 1+exp(-2b Vk2-t2 )

2Tri 2

k

-T-i6

1+exp(-2b Vt2-k2 )

2

1k1 [ 1+exp(-2ib
_/ 2 2

log2Tri 2

1(-27--t2

-t-a

dt

dt
t-a

1+exp(-2b 4t2-k2 ) dt
2 22t -a

47

exp t-a
-kl

But ki-,/
(4. 8)

1 1+exp(-2ib Vk2 -t2 ) dt 0 (1
2Tri S log 2 t-a a

-k1

lim
T.

c log
oo

1+exp(-2ib11
2 t-a)

) dtP (a) = exp.(.
2Tri



and

(4.9)

1A+(a)=
2Tri

,/
a °() 1+exp(-2b Vt2 -k2

lOg

k1

analysis similar to that for (4.3)

Hence

(4.10) 1P+ (a)1 exp (-1a ) + 0 (1 )} = 0(1)

in the proper half plane.

Similarly

(4.11) 1P (a)1 = 0(1)

2 1where B1
472

1A(x-i6 )12 dx.

arg ( 'qkz-t2 =
Tr

- t = x-i5

A(t) contains the terms exp (-1 lb-

co -i5 oo
A(t) dt = 1 S A(x-i5) dx- .t-a 2Tri x-i5 -a

dt = 0(1) by22t -a

22-t ) and

2

48

-00 -i5 -00

oo co

(4.12) 1A+(a)2 1
1 S 1A(x-i5 )12 dx

dx

by Cauchy-Schwarz inequality

oo

(4.13) 1A+(a)12 < B2
1

.0

dx-0°2



exp (-ilb+yi V
,/k2 -t2 ) which decay exponentially as I 00 .

(4. 14)

Hence

A(t)I2 dt converges and is bounded

2
B < CO

1

TTB2
1(a)2 = 0 (lb + Im al-1)15+Imal

B2

dx

(x-u)2+(5+v)

Tr Tr .

, ,

2 77-vi + Im al

2 dx

I x+i6- a I

where a u + iv
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_1

(4.15) WI= 0(15 +Im al Z as I 00 in the upper half

plane Im a ?. -5+E

1 G° )
(4. 16) A (a) = - S-Ew

+i6
A (t) 1 C A(x+i6dt = - dx

Til t-a 2Tri x+16-a
-co +15 -co

By Cauchy-Schwarz inequality we have

oo oo
1 2 dx(4.17) IA (012

*

IA(x+i5)I dx
4Tr -00 ..-oo I x+i5 - a I2

CO

Hence
`)- 00



similar to that for B1.
1

lx+i6-al-co

00

=

-00

-oo

Tr

W-7-v1 I 6 -Im al

2
2

TrB -1
Hence 1A... (a) 1 1 6-Im al

(r0 15 -Im al )

1

(4. 18) IA = 0(16-Im
2) as Ial' 00 in the lower half

plane Im a 5 - E

The analysis for the asymptotic behavior of the functions

B
+

(a), B (a) is similar to that of A (a) and A (a). By a simi-

lar reasoning we get
1

(4.19) 1B+(a)I = 0(1 + anal 2) Im a.?. -6 + c

1--
(4. 20) 1B (a)1 = 0(16-Imal 2) Ial. oo , Im a 6 - c

in their proper half planes.

dX

(x-u)2 + (6-v)2
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oo

2 1where
B2

= $ A (x+i6 )1 2 dx < 00 due to reasons
4Tr

where a = u+iv



(5.1) U(x, y) = H(2) (k Vx2-Ey2)
4 0

100

H0(2) (k 1/(x_x )2+ (y_b )2

+ H (2) (k V(x -X )2 + (y+b )2 )] dX
0

The secondary currents have the same strength due to symmetry.

Boundary conditions U(x, ±b) = 0 for x > -x' give

(5. 2) 0 = i H(2) (lc )/x2+b2 ) S I(X) [ H(2)(k x-X )
0 4 0

-x'

+ H2 Af(x-X. )2 + (213)2 )] dX
0

Also the right hand side of (5. 2) should represent the total

field for x < -x'
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5. TWO INFINITE, PARALLEL PLANES

As a special case we consider a line source of unit strength

located at Q (0, 0) and oriented parallel to the z-axis, radiating

on two conducting planes of zero thickness.

xI < x < 00 b

x' < x < 00 y=-13

Then the total field U(x, y) at P(x, y) is given by



This gives

oo

(5.3) c I(X) [H0(2)(klx-X. ) + H0(2)(k 1J(x-X)2 + (2b)2 )] dX

-x

Multiplying both sides by exp (-iax) and integrating with respect

to x from - 00 to 00

00

T (a) = I(X) exp (-iaX.) dX

-x'

h (a) U(x, b) exp(-iax) dx

As x' 00 , h (a) 0
In the limiting case as x' 00

oo

I (a) I(X) exp(-iaX.) dX

-CO

Hence in this case (5. 4) takes the form

(5.5) 1(a) [ 1+exp(-2ib -Vk2-a2 )] exp (-ib 4k 2- a2 ) =0
Aik2-aa Aik2-aa

which is the same as (2. 3).

-1/
[1+exp(-2ibThr27:::.2 )] 2 exp(-ib Vk2 -a2 ) 4 -

-i h(a)
Aik2 - a2 1V-7772:.
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(5.4) 2 T (a)

where
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APPENDIX



result

Let

1

-1 k-a 2 -1 k+atan + tan ( )k-ã

Z =
1

1

k-a
k+a

First of all we note that in the common strip of validity of

L (a) and L (a), (this strip reduces to the real axis when Imk

is arbitrarily small), arg (k-a) and arg (k+a) differ by Tr

arg (k-a) = -Tr

arg (k+a) = 0

1

arg (k-a)
Tr

k+a

1

k+a Tr

arg

Define

then

35)

r = hk- a
Vk+a,'

z1
= -ir

z =
2

APPENDIX

In the derivation of (3. 31) and (3. 45a) we used the following

Z2

<1

1

k+a 2
k-a

Tr
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Restricting the argument to the principal branch we have (18, p. 34-



1 1+iztan z = Log ( )
2i 1 -iz

tan z-1

1 l+r
1. log l+r

1-TLog 1-r ) = 21 1 ( )

1

Log (1--r )tan-:1 -IT Log ( r -1
)z = =

2 2i 1 r+1
r

1 1-r
Log (-1 ) + Log ( )1

1 . (-1-r )=
[-1TT + log

2i l+r "

where the logrithm function is taken on the principal branch such

that

-Tr arg (Log z) < it

Thus 1-1 1 l+rtan
z1

+ tan z2 = log ( )-r

1-ri_[-lir + log (Ti -2-

when r > 1

l+rtan' z 1. Log (-- )1-r1 21

1

2i

=[Log(-1) + Log (1 r+1
r-1 fl

1 r+1
= Li Tr + log (

-1 d
2i

1

1 1
1- r 1 Logtan

z2 L
= -------)i- Log ( 1 ) = .uog k

21 r+1
r

1 r - 1= E log (r--+T)
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Again we have
-1tan z1

z1
+ tan z2
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L (a)
Furthermore r 0 since the result L (a) = = L (a)L (-a)

L+(a)

is valid only in the common strip of regularity of both L (a) and

L+(a). The points a = k which could make r=0 are outside

this strip.

The result remains valid in the limiting cases r 0 and

r 1 .




