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Traditional application of Voronoi diagrams for space partitioning creates Voronoi 

regions, with areas determined by the generators’ relative locations and weights. 

Especially in the area of information space (re)construction, however, there is a need 
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formulated and a raster-based optimization method for finding the associated weight 
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well as using empirical data.  
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Chapter 1: Introduction 

Because of the large and complex volumes of information in today’s world, 

visualization and categorization are two rapidly growing research areas. As the 

Internet grows, the amount of information available grows too, requiring new methods 

for data analysis and visualization. Information visualization comprises the display of 

large amounts of information in a visual format. A good visualization helps the human 

mind to process large quantities of information; i.e., understand it, and its internal 

relationships. Some of these visualizations involve region or space partitionings 

according to some predefined values. Even though numerous visualizations methods 

that include partitioning have been developed, most of them have shortcomings such 

as limited applications or lack of certain characteristics. This can be particularly 

observed in the area of inversed solutions; i.e., finding a set of values that result in 

regions with predefined areas. 

Voronoi diagrams are widely used for space partitioning. Our main goal is to present a 

new mapping approach by using a new type of Voronoi Diagram: the so-called 

Adaptive Multiplicatively Weighted Voronoi Diagram. This diagram is an inverse 

version of Multiplicatively Weighted Voronoi Diagram. 

In this thesis we start by reviewing several existing methods that divide information 

spaces into regions the size of which is proportional to some known value: ET-Map, 

rectangular space partitioning and the InfoSky power diagram. We demonstrate that 
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although all of them have some attractive characteristics, they have some conceptual 

problems as well. 

Next, we offer an alternative solution based on an adaptive version of the 

Multiplicatively Weighted Voronoi Diagram. We give an overview of both the basic 

and advanced versions of the adaptive algorithm; the advanced version involving 

speed and precision improvements. The worst-case complexity of the algorithm is 

discussed followed by several performance measurements. 

Finally, we run various test cases, which demonstrate the algorithm’s performance 

under various scenarios and its ability to solve the problem successfully. 
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Chapter 2: Background 

Today’s volumes of information that we have access to may become so large and 

complex, humans may lose track of it all, e.g. a bookcase with books in random order, 

or a retail store with many products in stock. Categorization of information is 

necessary in these situations; libraries group books using the Dewey decimal system, 

and stores place similar products together on the same shelf giving them a common 

group name; e.g. vegetables, hardware, kitchen supplies, etc. The Internet faces similar 

challenges with regards to information presentation. With the growing amount of 

information available on the Internet [5, 8, 9], new methods for collecting, processing, 

categorizing data and delineating of information space are needed [1, 8, 9, 17, 19, 22, 

23]. Information visualization is a method of presenting large sets of data or 

information in non-traditional, interactive graphical forms. Visualizations can show 

the structure of information, allow one to navigate through it, and help evaluate the 

content. Information interpretation is often challenging because of multidimensionality 

of the information. Even though information visualization usually involves two or 

three-dimensional graphics, it can represent information about additional dimensions. 

For instance, consider displaying a temperature distribution in a volume. This is four-

dimensional data (x-location, y-location, z-location and temperature), which can be 

displayed on a three-dimensional graphic using color to represent temperature. Here, 

the temperature information (physical attribute) is converted into a visual attribute – 

color.  
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2.1 Information Space Tessellations 

Numerous visualization methods involve partitioning; i.e., the allocation of each point 

in a space to an information item in that space. These methods are often referred to as 

‘information space tessellations.’ Maps of information space are sometimes called 

spatializations; spatial representations of a phenomen the spatial characteristics of 

which cannot be directly observed [11]. The cartographer must decide on the 

fundamental attributes of the space: its dimensionality, metric, item position, etc. 

Figure 1 shows an implementation of tree maps [13, 20] by Chen et al. [6]. The map 

shows a two-dimensional categorization of approximately 110,000 web links into 

rectilinear regions. Each region represents links that are similar to each other in terms 

of content; an artificial intelligence algorithm determines the similarity between the 

links. The number of links corresponding to a region determines its area. The space is 

hierarchical; each of the regions can again be subdivided into a map that shows 

category details. 
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Figure 1: ET-Map by Chen et al. [6]. 

Figure 2 shows a rectilinear partitioning that is made available for commercial 

licensing by SmartMoney.com [24]. It shows the stock market for about 500 

companies over a 26-week period. Each rectangle’s area reflects a company’s current 

market capitalization. Price change is indicated by the rectangle’s color, which varies 

from dark blue to bright yellow. Yellow denotes a stock price increase, blue represents 

a decrease, black represents no change, and gray indicates the unavailability of data (in 

the case of the gray scale printed copy of this document, yellow regions are bright, 

blue regions are dark). When the mouse cursor is placed over one of the rectangles, a 

popup window shows the latest price and price change over the specified period of 
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time. The advantage of this map is the fast visual analysis of the market it provides. 

One can quickly look at the map and see that particular types of stocks have been 

going down, while others have gone up. 

 
Figure 2: Rectangular space partitioning of the US stock market by SmartMoney.com 
[24]. 

Figure 3 shows yet another example of rectangular space partitioning made by 

WebMap Technologies [29]. The idea of a WebMap is very similar to 

SmartMoney.com’s rectangular partitioning. Again, the size of a rectangular region is 

proportional to its magnitude.  
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All three cases (Figure 1–3) are based on the spatial metaphor: items that are closely 

related to each other in an information system are placed close to each other on the 

resulting spatialization. 

 
Figure 3: Rectangular information space partitioning by WebMap Technologies Inc. 

2.2 InfoSky Power Diagram 

Andrews et al. [1] present a tessellation method for newspaper articles into a two-

dimensional Euclidean space. Each region represents clusters of news articles and the 

size of each region is approximately proportional to the number of articles it contains. 

The tessellation process is performed using a variation of a Voronoi diagram known as 

a Power Voronoi Diagram (PVD) [16]. The result is the information space 

visualization shown in Figure 4. 
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Figure 4: InfoSky information space visualization by Andrews et al. [1]. 

Andrews et al. specify the following constraints for a finite Euclidean orthogonal 

information space AD with dimensionality D containing N points, and generators gi 

with weights wi into N regions of ri, each with area ai: 

• Constraint (1): inclusiveness I: gi ∈ ri 

• Constraint (2): ri is convex 

• Constraint (3): proportionality: ai ∝ wi 

• Constraint (4): inclusiveness II: ai > threshold 

Constraint (1) states that each generator gi is located inside of a region ri. Constraint 

(2) states that the regions are convex polygons. Constraint (3) states that the region 

area ai must be proportional to its weight wi. Constraint (4) says that the regions 

should be larger than some user-defined minimum threshold. 
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Let us define gi with i∈[1, ..., N] as so-called generators, points in space for which we 

must compute PVD regions. The Power Voronoi Diagram region ri for a 

corresponding generator gi in a set of N generators is then defined as: 

 ri = {x  |   ||x−xi||
2 − wi ≤ ||x−xj||

2 − wj, i≠j } (2.1) 

where x, xi and xj are location vectors with i and j ∈ [1, ..., N]. There exist other types 

of Voronoi diagrams that have different properties than PVDs. The two most popular 

types of Voronoi diagrams are the Standard Voronoi Diagram and the Multiplicatively 

Weighted Voronoi Diagram. 

2.3 Standard Voronoi Diagram 

The Standard Voronoi Diagram (SVD) is also known as the unweighted, ordinary or 

classic Voronoi diagram. A Voronoi region ri for a corresponding generator gi in a set 

of N generators is defined as: 

 ri = {x  |   ||x−xi|| ≤ ||x−xj||, i≠j} (2.2) 

where x, xi and xj are location vectors with i and j ∈ [1, ..., N]. In other words, region ri 

is the set of all points x which are closer to generator gi than to any other generator gj. 

The set of all regions ri makes a Voronoi diagram. Figure 5 shows an example of a 

two-dimensional standard Voronoi diagram with ten randomly positioned generators. 

The lines of equilibrium (borders) separating the regions are straight lines that 

orthogonally and equally bisect the imaginary lines connecting neighboring 
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generators. These imaginary lines together form the so-called ‘Delaunay 

triangulation.’ The Standard Voronoi Diagram and Delaunay triangulation are inverses 

of each other; if one of them is known, the other one can be computed. 

The Voronoi diagram can also be interpreted in a dynamic way. The dynamic 

interpretation of an SVD is defined as all generators simultaneously extending their 

reach in every direction at identical speeds. By their nature, Voronoi diagrams have an 

infinite extension. While there are ‘internal’ regions whose growth is limited by 

surrounding regions, the peripheral regions themselves can grow infinitely into one or 

more directions. Figure 5 has three ‘internal’ regions and seven ‘peripheral’ regions. 

Two common methods are used to limit the extent of peripheral regions: disposable 

generators and ‘spatial extent.’ Disposable generators are placed around existing 

peripheral generators so that they create new peripheral regions; only internal regions 

are considered in this case. The ‘spatial extent’ method does not modify the set of 

generators itself, but rather clips the viewing plane of our concern. Figure 4 and 5 are 

the examples of a Voronoi diagram in a viewing plane. 



Page 11 

 
Figure 5: Standard Voronoi Diagram. 

The concept of a Standard Voronoi Diagram has been discovered in the natural world 

many times in different sciences. In biology, space boundaries occupied by trees in a 

forest form in patterns much like an SVD [14]. The same happens in metallurgy with 

the crystallization of metal films, known as “grain growth” [30]. Even the social 

sciences show instances of SVDs, such as in psychology, dealing with concepts of 

personal space [25]. 

The Standard Voronoi Diagram can be solved analytically. However, other kinds of 

Voronoi diagrams are solved using iterative methods. One example of an iterative 

Voronoi diagram is a Centroidal Voronoi Diagram (CVD), which is an SVD, but one 

which involves moving the generators between solution steps. A single iteration loop 

consists of two steps: a) solving the SVD, and b) moving generators to the center of 
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mass of their region. Figure 6 shows two-dimensional Centroidal Voronoi diagrams 

for a constant probability density function in [−1, 1]2 for x- and y- positions of the 

generators. The top row shows diagrams with 64 generators; the bottom row shows 

diagrams with 256 generators. CVDs have been used in various applications, such as 

the ‘relaxation’ of images to create stipple drawings [7], uniform distribution of plants 

and others. 

 
Figure 6: Centroidal Voronoi Tessellations by Du et al. [10]. Left column: Monte 
Carlo simulation; right column: Centroidal Voronoi diagrams. Top row: 64 
generators; bottom row: 256 generators. 
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2.4 Multiplicatively Weighted Voronoi Diagram 

A Multiplicatively Weighted Voronoi Diagram (MWVD) advances the idea of a 

Standard Voronoi Diagram by associating a weigh w with each region. An MWVD is 

defined as: 

 ri = {x  |   
j

j

i

i

w

xx

w

xx |||||||| −
≤

−
, i≠j} (2.3) 

where x, xi and xj are location vectors with i and j ∈ [1, ..., N]. wi and wj are the 

weights (magnitudes) [15, 16] of corresponding regions. 

An SVD is equal to an MWVD with the weights of all regions equal. The dynamic 

interpretation of a MWVD is that all generators start simultaneously to grow, but they 

grow at different rates represented by their weights. If wi ≠ wj the borders of the 

Voronoi regions of an MWVD are not straight lines. In fact, they are arcs of so-called 

Apollonius circles [16].  Figure 7 shows an MWVD using the same generators’ 

locations used in Figure 5 but with randomly selected weights. 
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Figure 7: Multiplicatively Weighted Voronoi Diagram. 

Regions can be disjointed in an MWVD (not the case on Figure 7). If the spatial extent 

is unbounded, the region with the highest weight ‘surrounds’ all the other regions and 

is infinitely large. If two or more have the same highest weight then most or all of 

them may have an infinite size, depending on their relative location to each other.  

Figure 8 shows a top-view picture of homemade bread. Dough pieces of slightly 

different sizes have been placed on the glass tray before cooking. While baking, the 

pastries grow uniformly in each direction and their speed of growth is proportional to 

their initial mass. After forming borders with their neighbors, the dough pieces start to 

grow up out of the pan. Therefore, Figure 8 shows a good example of an MWVD. 
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Figure 8: Multiplicatively Weighted Voronoi Diagram in real life. 

Figure 9 shows a map of the USA divided into urban spheres of influence [12]. Major 

cities are used as region generators and their populations are used as magnitudes 

(weights) to computer their service areas. 
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Figure 9: The US map divided into urban spheres of influences by Huff [12]. 

The previously presented Standard, Centroidal and MW Voronoi diagrams are two-

dimensional, but conceptually the extension to multidimensional diagrams is 

straightforward. Peter Gustav Lejeune Dirichlet presented the first formal 

presentations of standard Voronoi diagrams in 1850 for two- and three-dimensional 

cases and called them domaine de Dirichlet or Dirichlet domains. However, Georgy 

Fedoseevich Voronoi was the first who examined a general D-dimensional space in 

1907-09 [26, 27, 28]. 

2.5 Comparing Information Space Tessellations 

Constraint (4) forces each region to be larger than some minimum threshold. We 

suggest replacing this with constraint (4′): 
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• Constraint (4′): inclusiveness II: Σai = AD, 

which states that the entire space must be partitioned, not just portions of it. Without 

constraint (4′), one can always meet the requirements from constraints (1) through (3) 

by choosing an arbitrarily small threshold. 

The method described by Andrews et al. may require moving generators. This is due 

to a property of PVDs, in which a very large weight difference between two generators 

which are close to one another, can cause the generator with the smaller weight to get 

located on the wrong side of the bisector and hence outside its own area. To avoid this 

behavior, Andrews et al.’s algorithm moves the generators until they are inside of their 

region. However, moving generators is unacceptable in many applications, e.g. Huff’s 

[12] studies urban spheres of influences of major US cities (Figure 9). Of course, 

moving cities on the US map is unacceptable, as it invalidates the original data. Here 

we can say that our generators’ positions are a constraint, while region boundaries are 

the dependable variable. To reflect that property, we suggest adding the constraint: 

• Constraint (5): ∆gi = 0 

which states that the location of a generator cannot change.  

As reflected in a PVD, constraint (3) states that the area of a region must be 

proportional to its weight. Rectangular space partitionings exhibit a strong relationship 

between region area and magnitude. As a result, we suggest adding a new constraint 

(6), which is based on constraint (3): 
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• Constraint (6): proportionality II: ai = Ai 

where Ai is a desired area proportion of a total diagram area A. Constraint (6) suggests 

that the size of the regions must be equal to their predefined area proportions. 

It is now possible to compare ET-Map, rectangular space partitionings, SVD, MWVD, 

CVD, PVD and InfoSky space partitioning relative to constraints (1) through (6) as 

shown in Table 1. 

Table 1: Comparing partitioning methods relative to constraints (1) through (6). 
Constraint Partitioning method 

(1) (2) (3) (4) (4′) (5) (6) 
ET-Map ü  ü  ü   ü    
Rectangular space partitioning ü  ü  ü   ü   ü  
SVD ü  ü    ü  ü   
MWVD ü   ü   ü  ü   
CVD ü  ü    ü    
PVD  ü  ü   ü  ü   
InfoSky spatialization ü  ü  ü  ü   ü   
 

We are not aware of an existing approach that would simultaneously satisfy 

constraints (1), (5) and (6). That is, we know of no method that would take generator 

locations as constant input data and create a space partitioning with region sizes equal 

to a predetermined magnitude. The rectangular space partitionings meet constraint (6). 

However, they put the generators at any location, depending on the algorithm. 

Therefore, we cannot apply constraint (5) to these types of tessellations. It is our 

strong belief that if region locations were used as an input to the algorithm, it would 

not simultaneously satisfy constraints (1), (5), and (6).  
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As an alternative, we offer a new approach to partitioning problems described by 

constraints (1) and (3) through (6). However, we omit the convexity constraint (2) for 

the reason that we are not aware of convincing arguments that a spatialization must 

consist of convex regions. Limiting regions to convex polygons appears to be over 

restrictive. For instance, an MWVD can have convex region(s) in a special case 

described by [16] as “an MW-Voronoi region ri is convex if and only if the weights of 

adjacent MW-Voronoi regions are not smaller than wi.” As a result, all N regions can 

be convex if and only if their weights are equal. That is, wi = wj for all i and j, which is 

the case of a Standard Voronoi Diagram. Therefore, we reject constraint (2). Like 

Andrews et al., we propose a Voronoi diagram solution. However, unlike Andrews et 

al. we propose an adaptive version of a Multiplicatively Weighted Voronoi Diagram, 

because it meets constraints (1) through (6), ignoring (2). 
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Chapter 3: Adaptive Multiplicatively Weighted Voronoi Diagram 

3.1 Basic Idea 

To solve a Voronoi diagram with predetermined area relationships, we propose an 

iterative method that creates an Adaptive Multiplicatively Weighted Voronoi 

Diagram, or AMWVD. In this method, a traditional MWVD is solved repeatedly. The 

weights are updated in each iteration based on the weights and the error of the 

preceding iteration. In other words, weights are iteratively adapted based on how well 

the proportionality requirement is met. This is presented by the initial weight 

assignment 

 w0,j = Aj, (3.1) 

and weight update 

 wi+1,j = wi,j + ∆wj, i ≥ 0, 1 ≤ j ≤ N (3.2) 

where wi,j is the weight of generator gj at iteration i, wi+1,j is the weight of generator gj 

at iteration i+1, w0,j is the initial weight of generator gj and N is the number of 

generators. 

We define ai,j as the area allocated to generator gj after iteration i. We define Aj as the 

target area of generator gj. Both Aj and ai,j are normalized such that  
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 0 ≤  Aj  ≤ 1, and �
=

=
N

j
jA

1

1 (3.3) 

and 

 0 ≤  ai,j  ≤ 1 , and �
=

=
N

j
jia

1
, 1 (3.4) 

for all i. 

The constraints 0 ≤  Aj  ≤ 1 and 0 ≤  ai,j  ≤ 1 are true if and only if we bound a Voronoi 

diagram’s extent. As mentioned earlier, a general Voronoi diagram does not define 

any kind of boundaries, and it can grow infinitely in all directions. In the case of 

unbounded MWVD, a generator with the highest weight produces a region that 

eventually surrounds all other regions. The area of this surrounding region will be 

infinite. Using the ‘spatial extent’ (i.e., bounded) method ensures a finite size of a 

Voronoi diagram and its regions. In fact, a borderless AMWVD is not solvable 

because a region with an infinite area makes area calculations and proportions 

impossible. 

∆wj is positive if the allocated area ai,j for generator gj is less than the goal area Aj; ∆wj 

is negative if too much area is allocated. Since the notion of an AMWVD is to 

continuously adjust weights to minimize the difference Aj – ai,j, we suggest making 

∆wj proportional to three quantities:  

1. wi,j,  
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2. Aj – ai,j, and  

3. a positive, nonzero adjustment parameter k. 

The resulting weight adjustment is given by 

 ∆wj = wi,j k(Aj – ai,j). (3.5) 

Substituting (3.5) into (3.2), we have: 

 wi+1,j = wi,j + wi,j k(Aj – ai,j) (3.6) 

           = wi,j (1 + k(Aj – ai,j)). (3.7) 

Eq. (3.7) is applied iteratively for every generator gj until one of two stopping criteria 

is satisfied: 1) the process has reached a maximum number of iterations, I, or 2) a 

‘goodness-of-fit’ measure M (described later) achieves some user-defined threshold. 

To summarize, a user defines normalized goal areas Aj; Eq. (3.1) is always used to set 

initial weights. The weight wi,j is solved by Eq. (3.7). To prevent the process from 

becoming unstable, weight(s) cannot be less than or equal to zero. In the case when a 

single weight becomes negative, say wi,4, then the region ri,4 would occupy the entire 

image since in Eq. (2.3) the term ||x−xi||/wi,4 is negative. Therefore, ||x−xi||/wi,4 becomes 

the smallest distance available at any point on the Voronoi diagram. In the case when 

the weight w4 is zero, ||x − xi||/wi,4 = ∞. Infinite distance leads to a conclusion that this 

particular region will never be assigned any space on the diagram, which defeats the 
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purpose of the AMWVD approach. We can also see from Eq. (3.7) that once w4 = 0, it 

will never change its value. 

3.2 ‘Goodness-of-fit’ Measure M 

We need a value of accuracy or test statistic that indicates how well constraint (6) is 

met at any iteration. Instead of using a predefined number of iterations, one might 

choose to stop iterating when this ‘goodness-of-fit’ measure reaches a certain value. 

The ‘goodness-of-fit’ measure we use in our tests is the average weighted error value: 
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which weights the absolute error |aj − Aj| by the inverse goal area. The weighting 

factor scales each region’s error so that it is relative to the goal area, thus avoiding 

situations where small regions are underrepresented due to their small area size.  

One might use different error measures, such as maximum 

error
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E maxmax . In this case, at each iteration we can say that a region rj 

has an error of at most Emax. Another possible error measure is the average squared 

weighted error  
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This method may have certain advantages. Esquared, as shown in Eq. (3.9), may be 

especially useful in applications where regions with largest area difference aj − Aj 

should have a higher impact on the final solution. These errors should be reduced first, 

so their contribution to an average value is relatively higher than regions with a 

smaller difference aj − Aj. Using a minimum error Emin as a ‘goodness-of-fit’ should be 

avoided, because it does not represent or put a high bound (bounding from top) on all 

other regions with higher errors. 

3.3 Adjustment Factor k 

When measuring error, two extremes that can occur in a Multiplicatively Weighted 

Voronoi Diagram: 

1. A region has a high weight and should occupy most of the image, but it 

actually occupies very little (Aj ≈ 1, ai,j ≈ 0), and  

2. A region has a low weight and should occupy very little space, but it in fact 

covers much of the image (Aj ≈ 0, ai,j ≈ 1).  

Thus, the difference Aj − ai,j lies somewhere between −1 and 1: 

 −1 < Aj – ai,j < 1. (3.10) 
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Multiplying by k and adding 1 gives us 

 1 – k < 1 + k(Aj – ai,j) < 1 + k. (3.11) 

Accordingly, choosing k=1 is a safe default, as it will not result in negative weights. If 

we assign k=1 then 

 wi+1,j = wi,j (1 + Aj – ai,j). (3.12) 

However, since k can be arbitrarily chosen, it may be assigned a value larger than 1. In 

this case, the difference Aj – ai,j may be minimized in fewer iterations and the 

algorithm converges more quickly. As noted in Section 3.1, an MWVD cannot have 

negative weights. Therefore, one has to be careful when assigning large values to k. A 

consequence of Eq. (3.7) is that, in the event ai,j much larger than Aj and k > 1, the 

expression 1 + k(Aj – ai,j) may become negative, in which case wj becomes negative 

and our algorithm fails to minimize the difference Aj – ai,j. As shown in Figure 10, we 

have also found that using a smaller value for k can prevent the algorithm from 

oscillating its error function. The oscillations happen when the weight adjustments are 

too large with the current value of k and require smaller adjustments of weights, or 

when the discrete nature of the pixel grid prevents fine-scale adjustments (described 

later).  

Figure 10 shows three AMWVD tests that were identical to each other except for the 

value of k. Figure 10 displays the y-axes in logarithmic scale to magnify small error 

values. Figure 10(a) shows a test result where k = 2 with oscillation appearing after 



Page 26 

approximately 50 iterations with Emean�0.1. Figure 10(b) shows no oscillations at k = 

1. Figure 10(c) shows the results of a test with k = 0.5; it takes twice as many 

iterations for 10(c) to achieve the results of Figure 10(b). We observe that after 500 

iterations Emean stays slightly below 0.0001. Even though all figures 10(a), 10(b) and 

10(c) visually appear to have oscillations, their cause is different. Figure 10(a) 

oscillations is caused by rapid weight adjustments, while Figure 10(b) and 10(c) 

oscillations are caused by a pixel size. In fact, it is nearly impossible to achieve Emean 

= 0 due to our rasterized approach to solve the AMWVD. The reason is that as space 

is digitized in a raster world. Even very small weight changes may result in a slight 

over or under-allocation of space to the corresponding Voronoi region. 
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Figure 10: Error trajectories Emean for AMWVD with three different values of k: (a) 
k=2.0, (b) k =1.0, and (c) k=0.5. 
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3.4 Raster Approach 

Several approaches to compute Voronoi diagrams exist: topological overlay, growth 

simulation, vertex calculation, and a digitized raster approach (as is the method we 

present) to name a few. Lan Mu [15] describes in detail the first three methods for 

finding vector solutions for an MWVD. However, an AMWVD places calculating 

region areas at a higher priority than finding a diagram’s topology. As such, a raster-

based approach more readily lends itself to easy and efficient computation of region 

areas than a vector-based approach. Indeed, the greatest advantage of a raster-based 

approach is its simplicity of area computations, where a vector or topological solution 

for a diagram’s borders or a region’s borders may not be known or available. If 

desired, one of the techniques described in [15] may be used to create a vector-based 

AMWVD. The raster approach is based on creating a rectangular grid of pixels, which 

we call an ‘image.’ A pixel is an atomic element of a grid. It is important to consider 

the resolution of a grid (or pixel size), because the AMWVD solutions are directly 

affected by it. This is described in detail in Section 3.5. 

The pixels are indexed by an ordered pair (x,y) indicating the column and row of the 

pixel, respectively. Using zero-based indexing, if an image has W columns and H rows 

of pixels, the top left element is pixel (0,0) and the bottom-right is pixel (W−1, H−1) 

as shown in Figure 11.  
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Figure 11: Sample pixel grid of size 3×4. 

According to Shirley [21], in many applications, the rows are indexed from bottom-to-

top. For our experiments, the top-to-bottom approach was found to be simpler for 

image output and pixel indexing. In our experiment, area is measured in pixels. Thus, 

a region that occupies P pixels has an area of P. As shown in Figure 11, pixel centers 

are located at the intersection of x and y integer coordinates, and the generators are 

always placed at these centers. We use two methods for placing generators: manually 

entered pixel coordinates and randomly generated positions. Since we are using a pixel 

grid rather than a continuous space approach, round-off errors are common when 

converting from the continuous domain to rasterized image. Figure 12 shows two 

different SVDs consisting of two generators and one bisector between them. Figure 

12(a) shows an SVD in a continuous space, while Figure 12(b) shows the same 

diagram in a raster (discrete) form. One can observe that the border between two 

regions in 12(b) becomes a jagged line instead of a straight one due to the finite pixel 
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size. Figure 12(c) shows a special case of SVDs when converting to raster form has no 

changes on the border between regions, as shown in Figure 12(d). 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
Figure 12: Converting SVDs from continuous to raster space. (a) SVD in continuous 
space; (b) rasterized VD with jagged border; (c) another SVD in a continuous space; 
(d) rasterized VD with a straight-line border. 

For our purposes, we assume that regions occupy at least one pixel. This assumption 

follows from the simple fact that when considering the pixel where the generator is 

located, the distance between the pixel center and the region generator is zero. Since 

zero is the smallest distance permitted, this pixel is guaranteed to belong to the region. 
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3.5 Choosing Image Resolution 

Choosing the proper image resolution is crucial when using a raster-based approach to 

compute VDs, as it directly affects an algorithm’s performance and the resulting 

AMWVD image output. Consider the AMWVD shown in Figure 13, where two 

diagrams are created with different resolutions and are compared to an ideal 

continuous solution. 

 

(a) 

 

(b) 

 

(c) 
Figure 13: MWVD with various resolutions. (a) continuous grid; (b) low resolution; 
(c) high resolution. 

Due to the discrete quantization inherent in the raster-based approach, the algorithm 

will eventually reach a point at which relative errors cannot be further reduced by 

additional iterations. For example, assume that a VD region is created with a goal 

region size of 120.17 units of area and an actual area of 120 pixels. In this case, the 

relative percentage error δ is: 

 %14.0%100
17.120

17.120120
=×

−
=δ . 
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By limiting the smallest unit of area to be a pixel, this is the smallest error achievable 

on this scale. However, round-off errors can be greatly reduced by increasing image 

resolution. Take the previous example and increase the image resolution by doubling 

the resolution along the x- and y-axis. Now, four pixels occupy what was considered 

one unit of area, and each new pixel occupies 0.25 units of area. Now we can get 

closer to the value 120.17 by assigning to a region an area of 120.25. The relative 

percentage error δ reduces and becomes:  

 %07.0%100
17.120

17.12025.120 =×−=δ . 

However, choosing a higher resolution has two drawbacks that must be considered 

before running a solution: reduced performance and increased memory consumption. 

For example, the above doubling of resolution would require four times as much 

memory to store an image and four times as much computation time to solve when 

using a brute force approach. Of course, more sophisticated techniques can be 

implemented to reduce memory consumption, but often at the cost of using more CPU 

cycles. 

3.6 Basic Algorithm Pseudo Code 

To simplify the algorithm’s pseudo code, we break out portions of pseudo code into 

separate algorithms, and refer to them as independent procedures with input/output 
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parameters. An MWVD is easily computed in a single pass that visits every pixel only 

once, as given in Algorithm 1.  

Algorithm 1: Procedure MWVD(G, N, W, H, P). 
Input: 
   G = {x1, ..., xN, y1, ..., yN, w1, ..., wN}     {Set of generators.} 
   N    {Number of generators.} 
   W    {Horizontal image resolution.} 
   H    {Vertical image resolution.} 
   P    {Empty image of size W×H.} 
 
Data Structures and variables: 
   dist(x1,y1,x2,y2) {Function: returns Euclidean distance between (x1,y1) and (x2,y2).} 
   dmin    {Lowest weighted distance.} 
   rmin    {Region number (initialized to 0).} 
   a = (a1, ..., aN)  {Set of region areas (initialized to 0).} 
 
Output: 
   P    {MWVD on image of size W×H.} 
   a = (a1, ..., aN)  {Set of calculated region areas.} 
 
Algorithm: 
1  for each i ∈ [0, ..., H-1] 
2      for each j ∈ [0, ..., W-1] 
3          d � dist(j, i, x1, y1) / w1  {Find distance between } 
4          r � 1      { (x,y) and g1.} 
5          for each n ∈ [2, ..., N] 
6              d � dist(j, i, xi, yi)/wi  {Calculate current distance.} 
7              if d < dmin then    {If new distance is less:} 
8                  dmin � d    {Remember the new } 
9                  rmin � n    { distance and region.} 
10         P(x,y) � rmin     {Assign pixel to region.} 
11         armin � armin + 1    {Increment region area.} 

 

The MWVD algorithm computes, for each pixel (lines 1 and 2), the region with the 

minimum weighted distance (lines 3–9) to that region’s generator. The pixel is then 

labeled with the minimum region label (line 10) and the region area is updated (line 

11).  
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Pseudo code for calculating the basic AMWVD is shown in Algorithm 2. Line 4 

provides the algorithm with the areas of each region. These areas are used to update 

the generators’ weights in line 7, which are based on Eq. (3.7). Line 5 is optional and 

may be used for progress reporting or early termination from the algorithm if Emean 

becomes less than some user-defined threshold. 

Algorithm 2: Basic AMWVD. 
Input: 
   G = {x1, ..., xN, y1, ..., yN, w1, ..., wN} {Set of generators’ data.} 
   A = {A1, ..., AN} {Set of desired area relationships.} 
   N    {Number of generators.} 
   I    {Number of iterations.} 
   W    {Horizontal image resolution.} 
   H    {Vertical image resolution.} 
   P    {Empty image of size W×H.} 
   k    {Weight adjustment factor k.} 
Data Structures and variables: 
   Error(A, a, N)  {Function: returns averaged error Emean across N regions.} 
   r    {Region number (initialized to 0).} 
   a = (a1, ..., aN)  {Set of region areas.} 
Output: 
   P    {AMWVD on image of size W×H.} 
Algorithm: 
1  for each u ∈ [1, ..., N] 
2      wu = Au     {Initialize the weights.} 
3  while i < I 
4      (P, a) � MWVD(G, N, W, H, P)  {Solve MWVD with current data.} 
5      Emean � Error(A, a, N)    {Optional ‘goodness-of-fit’ reporting.} 
6      for each n ∈ [1, ..., N] 
7          wn � wn(1 + k(An – an) )  {Update generator’s weight.} 
8      i � i + 1 

3.7 Adaptive Weight Factor k 

We calculate measure M at every iteration. As shown previously in Figure 10, the 

solution may oscillate and thus fail to improve from the previous iteration. Usually, 

improvement does not occur after oscillation begins at a specific value of k. We 
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therefore suggest replacing the constant value k with a more adaptive form. If at any 

given iteration M does not decrease compared to the previous iteration, the value of k 

is reduced by a factor of 0 < kmult < 1. 

In practice, 0.95 < kmult < 0.98, so that k does not approach zero too quickly. Figure 14 

compares two tests that use the same input data (10 generators, 500×500 pixel grid, k 

= 2). Figure 14(a) uses a constant k=2 while Figure 14(b) reduces k by a factor kmult = 

0.95 after every iteration that Emean no longer decreases. As can be seen in Figure 

14(a), Emean fails to improve after about 100 iterations with a constant k, whereas with 

a variable k, Emean decreases as far as it is possible with the given image resolution 

(Figure 14(b)). 
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Figure 14: Effect of k on AMWVD solution. (a) k is a constant and equal to 2; (b) k is 
a variable. 

3.8 Adaptive Pixel Sub-division 

As noted earlier, convergence of Emean in a raster-based approach has a theoretical 

limit directly related to image resolution. An approach to reduce Emean closer to zero is 

to introduce a location-specific pixel sub-division algorithm that divides all pixels on 

the border of two regions into S-by-S square pixel grids, where S is the number of 

rows and columns of the new pixel grid. For instance, a section of an AMWVD with 

2-by-2 sub-pixel refinement is shown in Figure 15. Since the sub-pixel area is 
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2

1

S
A pixelsub =−  (3.13) 

pixels, sub-pixel refinement will reduce the error due to discrete rasterization by a 

factor of S2. 

 
(a) 

 
(b) 

 
(c) 

Figure 15: Effect of using sub-pixel refinement. (a) Continuous solution. (b) Pixel grid 
with original resolution. (c) Pixel grid with 2-by-2 borderline pixel refinements. 

Algorithm 3 gives the pseudo code for sub-pixel refinement. Every pixel in an image 

is visited exactly once. Line 3 checks if the pixel (j, i) has been refined at this iteration, 

and is on a border; i.e., if one of its eight neighbor pixels belongs to another region. 

Lines 6 and 7 iterate through all sub-pixels inside of the current pixel, while line 8 

assigns each sub-pixel to a closest region generator. Finally, the area of that region is 

incremented by the sub-pixel area in line 9. 
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Algorithm 3: Sub-pixel refinement 
Input: 
   G = {x1, ..., xN, y1, ..., yN, w1, ..., wN} {Set of generators’ data.} 
   N    {Number of generators.} 
   S    {Number of split levels S.} 
   W    {Horizontal image resolution.} 
   H    {Vertical image resolution.} 
   P    {AMWVD image of size W×H. Each pixel stores region number.} 
   a = (a1, ..., aN)  {Set of region areas.} 
Data Structures and variables: 
   sub  {Area of a sub-pixel (initialized to 1/S2).} 
   border(x,y)  {Boolean function: true if (x, y) neighbors with another region.} 
   refined(x,y)  {Boolean function: true if (x, y) has been refined, false otherwise.} 
   region(x,y)  {Function: returns generator # with shortest weighted distance to (x, y).} 
Output: 
   a = (a1, ..., aN)  {Updated set of region areas.} 
Algorithm: 
1  for each i ∈ [0, ..., H-1] 
2      for each j ∈ [0, ..., W-1] 
3          if border(j,i) and not refined(j,i) then 
4              refined(j,i) � true 
5              aP(j,i) � aP(j,i) – 1  {Decrement area of the region.} 
6              for each u where -S+1 ≤ u < S with step 2 
7                  for each v where -S+1 ≤ v < S with step 2 
8                      r � region( j + v/(2*S), i + u/(2*S) ) 
9                      ar � ar + sub  {Increment area of sub-pixel’s region.} 
 

Adaptive boundary refinement introduces a potential gain in computational efficiency 

since it implies that the resolution of the non-boundary pixels can lowered. In general, 

solving a problem of N generators on an W×H grid with a boundary resolution 

increase factor of S gives the same resolution as solving for those generators on SW × 

SH grid, but with far fewer computations. The precise computational gain depends on 

the length of all region boundaries. 



Page 39 

3.9 Update-on-Improvement-Only Scheme 

As can be seen in Figures 10 and 14, the error Emean can increase, decrease, or stay the 

same from one iteration to the next. Situations where Emean increases are unfavorable. 

Ideally, weights should change only when the overall ‘goodness-of-fit’ delineates. 

Thus, we introduce Eold and Enew, where Eold is the previous error value of Emean at 

iteration i and Enew is the error Emean in the current iteration i+1. In this way, we can 

check if Enew decreases relative to Eold and adjust the algorithm slightly to prevent the 

error Emean from ever increasing. Prior to each new iteration, we save the current error 

in Eold and the set of region weights and areas in wold, and aold, respectively. We then 

compute the new weights, areas and error, wnew, anew, and Enew and compare the new 

error to the previous error. If Enew < Eold, (indicating that the new weights have 

produced a ‘better’ AMWVD) then we save the new values assigning them to Eold, 

wold, aold and continue on. If, however, Enew ≥ Eold, then the new weights have not 

resulted in an improvement and we restore the old weights, adjust the weight 

adjustment factor k, and try again. To accomplish this, the following steps are added to 

the AMWVD algorithm as shown in Algorithm 2: 

• Compute the initial input weights and assign them to wold, 

• Solve the MWVD, 

• Calculate the area of each region and put it into a set aold, and 

• Calculate the error Emean and put it into a set Eold. 
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The algorithm’s iterative loop will contain these steps: 

• Create a new set of weights wnew according to Eq. (3.7), 

• Solve the MWVD with weights wnew, 

• Calculate areas of the regions and put them into the set anew, and 

• Calculate error Emean and put it into the set Enew, 

• If Enew < Eold, save the current state: Eold = Enew, wold = wnew, and aold = anew; 

otherwise, restore the previous state (Enew = Eold, wnew = wold, and anew = aold), 

reduce parameter k = kmult * k, and continue to next iteration. 

3.10 Final Algorithm 

Combining the original AMWVD algorithm (Algorithm 2) with sub-pixel refinement, 

an adaptive weight adjustment factor k, and the update-on-improvement method, we 

obtain the final algorithm as given in Algorithm 4. Since the sub-pixel method is not 

used in every test, it is isolated with an if statement (line 4). If it is known that sub-

pixels will always be calculated, it may be more efficient to combine the MWVD and 

sub-pixel procedures together. 
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Algorithm 4: Final version of the AMWVD algorithm. 
Input: 
   G = {x1, ..., xN, y1, ..., yN, w1, ..., wN} {Set of generators’ data.} 
   A = {A1, ..., AN} {Set of desired area relationships.} 
   N    {Number of generators.} 
   I    {Number of iterations.} 
   W    {Horizontal image resolution.} 
   H    {Vertical image resolution.} 
   P    {Empty image of size W×H.} 
   S    {Number of split levels S.} 
   k    {Weight adjustment factor k.} 
   kmult   {Multiplier for factor k.} 
Data Structures and variables: 
   Error(A, a, N)  {Function: returns averaged error Emean across N regions.} 
   Eold    {Old value of Emean (initialized to 0).} 
   Enew    {New value of Emean (initialized to 0).} 
   r    {Region number (initialized to 0).} 
   a = (a1, ..., aN)  {Set of region areas.} 
Output: 
   P    {AMWVD on image of size W×H.} 
Algorithm: 
1  for each u ∈ [1, ..., N] 
2      wu = Au     {Initialize the weights.} 
3  (P, a) � MWVD(G, N, W, H, P)   {Solve MWVD with initial data.} 
4  if S>1 then     {Check if sub-pixels must be used.} 
5      a � SubPixel(G, W, H, P, a, S)  {Refine area values.} 
6  end if 
7  Eold � Error(A, a, N)     {Save the current state.} 
8  wold � {w1, ..., wN}    {Save the current state.} 
9  aold � a      {Save the current state.} 
10 while i < I 
11     for each n ∈ [1, ..., N] 
12         wi � wi(1 + k(Ai - ai) )   {Update generator’s weight.} 
13     (P, a) � MWVD(G, N, W, H, P)  {Solve MWVD with current data.} 
14     if S>1 then 
15         a � SubPixel(G, W, H, P, a, S) {Refine area values.} 
16     Enew � Error(A, a, N)    {Optional ‘goodness-of-fit’ reporting.} 
17     if Enew < Eold then    {Save the current state.} 
18         wold � {w1, ..., wN}           
19         aold � a 
20         Eold � Enew 
21     else      {Revert to previous state.} 
22         {w1, ..., wN} � wold 
23         a � aold 
24         k � k * kmult 
25     i � i + 1 
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3.11 Algorithm Analysis and Efficiency 

The AMWVD algorithm is a modified simple fixed-point iteration optimization [4]. 

The classic simple fixed-point iteration finds the root of the function f(x) = 0 by 

rearranging terms such that 

 )(xgx = . (3.14) 

Eq. (3.14) can, in turn, be converted into an iterative formula, 

 )(1 ii xgx =+ , (3.15) 

to predict a new value of x as a function of an previous value of x. 

 In the case of an AMWVD, we are looking for the root of Aj – f(wj) (i.e., where f(wj) = 

Aj), whose closed-form analytical solution or representation is not known, but can be 

computed numerically. Function f(wj) takes region weight wj as an input and returns 

region area aj. Due to complexity of simultaneously considering the interaction of all 

the regions and their borders in the AMWVD diagram, we simplify the problem by 

considering only the relationship between a single weight and its associated area for a 

particular region and treat each region independent of the other regions in iteration i. 

Following the development of Eq. (3.15), we obtain 

 wi+1,j = g(wi,j). (3.16) 

Substituting Eq (3.7) for g(wi,j), we have 

 wi+1,j = g(wi,j) = wi,j (1 + k(Aj – ai,j)) (3.17) 
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where ai,j is the result of our AMWVD function f(x) mentioned earlier. Finally, 

replacing ai,j with f(x) gives us 

 wi+1,j = wi,j (1 + k(Aj – f(wi,j))). (3.18) 

which has the same form as Eq. (3.16) in terms of variable dependency and 

corresponds to the basic AMWVD algorithm in Algorithm 2. 

3.11.1 Complexity Analysis 

The AMWVD algorithm worst-case (‘big-oh’) complexity analysis is considered from 

several perspectives: running time, memory consumption, and actual measured 

running time in seconds. The complexity of the MWVD algorithm (Algorithm 1) is 

shown by the following expression: 

 O(N W H).  (3.19) 

Complexity of the sub-pixel algorithm shown in Algorithm 3 is  

 O(N W H S2) (3.20) 

where each pixel is divided into S-by-S sub-pixels. However, it is possible to divide a 

square pixel into rectangular sub-pixels (i.e. 1x4, 2x3, 7x4, etc.). In the case of 

dividing a square pixel into Shorizontal columns and Svertical rows of sub-pixels, the 

complexity of procedure sub-pixel becomes  

 O(N W H Shorizontal Svertical). (3.21) 
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The big-oh estimate for a basic AMWVD algorithm is: 

 O(I * O(MWVD procedure) ). (3.22) 

Substituting Equation (3.19) into (3.22), we obtain the following complexity for the 

basic AMWVD algorithm without sub-pixel refinements: 

 O(I N W H). (3.23) 

Running time of the final AMWVD algorithm with sub-pixel accuracy: 

 O(I * O(MWVD procedure) + O(Sub-pixel procedure) ), (3.24) 

which becomes 

 O(I N W H + I N W H S2) ). (3.25) 

Eq. (3.25) becomes Eq. (3.26) after smaller terms elimination: 

 O(I N W H S2). (3.26) 

If sub-pixel refinement is not used in Algorithm 4 (lines 14 and 15), running time for 

the final AMWVD algorithm remains equal to (3.23). 

3.11.2 Memory Consumption 

Let us now look at the algorithm’s memory consumption. At run time, we store the 

following information in memory: 

1. Generators: x-position, y-position, and weight w. This is O(N). 
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2. Image. Every pixel in the image stores the number of the generator the pixel 

belongs to. The size of the image is O(W H). 

All other variables and data structures are either constant in memory size or bounded 

by O(N). Thus, the total memory consumption is O(N + W H). Since we assumed that 

every region must occupy at least one pixel, there are at most W×H regions. The final 

memory consumption becomes: 

 O(W H). (3.27) 

3.11.3 Measured Running Time 

We performed a series of tests with the goal to measure the AMWVD algorithm’s 

performance. Our test machine was a 1.81 GHz AMD Athlon64 3000 with 512 MB of 

400 MHz DDR RAM.  

Table 2 shows running times for several tests that involved varying the number of 

regions N, the number of iterations I, and image resolution W×H. We used the same 

generators weights w1...wN for all tests and generator x- and y-positions have been 

created only once using a random number generator in a range [0,1), after which, the 

generators’ positions were scaled accordingly to match the image resolution of the 

test. Table 3 shows running times for the same tests as shown in Table 2, with the only 

difference being the use of different image resolutions and 4-by-4 sub-pixel 

refinements. Since an image with a resolution of 500×500 pixels is equivalent, in 

terms of measurement error due to rasterization, to a resolution of 125×125 pixels with 
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4-by-4 sub-pixel refinements, the corresponding results in each table can be compared, 

since relative pixel area coverage (in terms of total image percentage) has been 

preserved. For instance, pixel (100,48) at resolution 500×500 is equivalent to pixel 

(25,12) at resolution 125×125. Table 4 shows time advantage of using sub-pixel 

refinement method. The value of each cell is obtained by dividing the values of 

corresponding cells in Table 2 and Table 3. It can be concluded that a test with sub-

pixel refinements, 50 regions, and 100 iterations at 1000×1000 resolution runs about 

5.1 times faster than a similar test without sub-pixel refinements. 

Table 2: Running time for different test cases in seconds. 
Resolution (W×H) Number of Regions 

(N) 
Iterations (I) 

500×500 1000×1000 
100 10 38 10 
500 46 185 
100 39 157 50 
500 195 781 

 

Table 3: Running times with 4-by-4 sub-pixel refinement in seconds. 
Resolution (W×H) Number of Regions 

(N) 
Iterations (I) 

125×125 250×250 
100 2 5 10 
500 9 24 
100 13 31 50 
500 66 162 

 

Table 4: Time advantage of using sub-pixel refinement method. 
Resolution (W×H) Number of Regions 

(N) 
Iterations (I) 

500×500 1000×1000 
100 5.0 7.6 10 
500 5.1 7.7 
100 3.0 5.1 50 
500 3.0 4.8 
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The results show that although the worst case of the AMWVD algorithm is O(I N W H 

S2) with sub-pixel refinements and O(I N W H) without, the actual running times of 

tests listed in Table 3 are 3 to 7 times shorter of those listed in Table 2. We estimated 

that in the case of sub-pixel refinements the worst case occurs when all pixels must be 

sub-divided, which is very unlikely in an average test. As a result, sub-pixel 

refinement allows the AMWVD to be effectively computed using lower image 

resolution while only having to process a small number of pixels located on the 

borders with other Voronoi regions. Of course, the actual gains depend entirely on the 

complexity of the solution. 
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Chapter 4: Results 

In this chapter, we present the results of several tests that show the ability of the 

algorithm to create an AMWVD using the final version of the algorithm described in 

section 3.10. The results include three pathological tests and two space partitioning 

tests involving empirical data. 

4.1 Pathological Cases 

Figures 16 and 17 show results for the SVD (a), the MWVD (b), and the AMWVD (c) 

solutions. Figure 18 shows only the AMWVD solution. 

• Figure 16 represents the problem of nine uniformly placed generators, each 

with a randomly selected weight 1 ≤ wj ≤ 9. 

• Figure 17 shows the degenerate case of ten in-line generators spaced at equal 

intervals with weights increasing linearly from 1 on the left to 10 on the right. 

• Figure 18 shows an AMWVD for 100 randomly placed generators. The 

weights are randomly selected integers between 1 and 100. 

To assess weight-area proportionality, we rely on the previously defined ‘goodness-of-

fit’ measure Emean (3.8). For the two types of multiplicatively weighted Voronoi 

diagrams in Figures 16 and 17, we show the following ‘goodness-of-fit’ measures: 

• Minimum error Emin, 
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• Mean error Emean, 

• Maximum error Emax, and 

• Correlation r between accomplished area ai,j and desired area Aj. 

It is important to note that resolution (1,000×1,000), number of regions, number of 

iterations (1,000), and initial value of k were the same in the first two tests. The only 

differences are generator locations and weights.  
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Figure 16: AMWVD solution for nine uniformly placed generators. Integer weights 
randomly selected between 1 and 9. (a) SVD; (b) MWVD; (c) AMWVD.  
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Figure 17: AMWVD solution for ten in-line generators with weights linearly 
increasing from 1 to 10. (a) SVD; (b) MWVD); (c) AMWVD. 
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Figure 18: AMWVD solution for 100 randomly distributed generators. Integer weights 
selected randomly from 1 to 100. Very small regions display as points. 
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In the first two pathologies, the MWVD clearly outperforms the SVD. However, the 

Adaptive Multiplicatively Weighted Voronoi Diagram clearly outperforms its non-

adaptive form. Weighting by distance generates better results than not weighting at all, 

but adaptively weighting works much better still. The observations show the MWVD 

assigns too little area to generators with low weights and too much area to those with 

high weights. The adaptive version solves this problem by iteratively adjusting the 

weight set in a direction that results in the required area-weight proportionality. 

Figures 19, 20, and 21 show the trajectories of the various ‘goodness-of-fit’ measures 

for each of the three pathological cases using the final AMWVD algorithm shown in 

Algorithm 4. All values were increased by 10−7 in order to plot zero values on a 

logarithmic scale and log10(0) is undefined. We show solutions for figure 16 and 17 

using three spatial resolutions: 1000×1000, 2000×2000 and 4000×4000. The solution 

for Figure 18 is shown only in 4000×4000. Whereas the 1000×1000 grid was used as 

the base resolution for all three cases, the higher 2000×2000 and 4000×4000 

resolutions were implemented using the boundary resolution refinement technique 

discussed above. k adjustments were implemented as described in Section 3.7. 

Although all three trajectories indicate conversion toward ideal proportionality, the 

convergence rate is neither guaranteed nor unproblematic. For instance, solution for 

the first two cases (Figure 16 and 17) with a k of 1, using the final algorithm shown in 

Algorithm 4, works differently. The uniform pattern case starts to converge 

immediately allowing k to stay high for about 200 iterations before having to be 

reduced, while the linear pattern requires reducing k first to about 0.1 before the 
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algorithm starts converging. One can also notice that the number of iterations required 

for the uniform pattern to converge is between 150 and 200 (depending on resolution), 

whereas, the in-line pattern takes 800 to 1200 iterations. 

The test with in-line generators shown in Figure 20 has exposed another case in which 

the convergence rate is unpredictable. Even though the errors Emin, Emean, and Emax are 

less than 0.01, they are still approximately one magnitude worse than the 

corresponding error values in the uniformly distributed generators test (Figure 19). We 

hypothesize that in-line generators, with weights as in Figure 17, create N full circles 

that are stacked inside of each other. As a result, the total boundary length of each 

region becomes very long. Most of the changes made to the region’s weight affect the 

region more than in any other test.  

 
Figure 19: Mean error and k trajectories for the uniform pattern. (Figure 16(c); every 
tenth iteration plotted). 
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Figure 20: Mean error and k trajectories for the linear pattern. (Figure 17(c); every 
tenth iteration plotted). 

 

 
Figure 21: Mean error and k trajectories for an AMWVD of 100 randomly distributed 
generators. (Figure18). 

It was described in section 3.3 that it is practically impossible to reach complete 

conversion when using a raster-based spatial model. This can be seen at the tail end of 

Figures 19, 20 and 21. At this point in the convergence process, even a single pixel 
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allocation change will change the error. As a result, even when k is reduced, the error 

no longer reduces. 

Figure 21 shows the worst convergence results with Emean � 0.2 for 100 randomly 

placed generators (Figure 18). This test exposes the influence of two major factors: a) 

image resolution relative to the smallest region, and b) relative weights between two 

regions. In particular, one can notice that Figure 18 shows quite a few regions as dots, 

because corresponding generator weights are small compared to other regions. As a 

result, these regions are assigned only a small number of pixels. Again, each pixel here 

makes a big difference in error for that particular region, and, therefore, negatively 

affects the average value of Emean in overall solution across all regions. 

Finally, Figures 16 also reveals a fundamental weakness of multiplicatively weighted 

Voronoi diagrams which is reminiscent of the dislocation problem associated with 

Andrews et al.'s [1] use of power diagrams, namely that a region can become 

discontinuous. For instance, the region with a weight of 9 in Figure 16 is split into 

three separate areas by other generators, each with their own region. Strictly speaking, 

this does not violate constraint (1) (the generator must be located in its region) yet it 

might be considered an undesirable effect in certain applications. However, according 

to a usability test conducted by Reitsma and Trubin [18], no evidence was found that 

“the estimation of discontinuous areas was more difficult, or more erroneous than that 

of continuous regions.” 
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4.2 Comparing ET-Map with AMWVD 

In this test, we compare the results of ET-Map shown in Figure 22 and an AMWVD 

that uses ET-Map data as input. The reason for this test is to compare the AMWVD 

algorithm with an existing space partitioning method that also tries to establish area-

magnitude relationship using empirical data (as compared to the pathological tests 

shown in Section 4.1). The color of the regions on the ET-Map serves no other goal 

than to visually separate them. Chen et al.’s ET-Map space partitioning has a 

resolution of 20×10. As a result, the pixels are not square on the map and have 1:2 

width-to-height ratios. Table 4 shows the ET-Map’s data as reengineered from Chen et 

al.’s publication [6]. Generator centers have been defined as the closest pixel to a ‘+’ 

character on the map. The number of links of each ET-Map’s region has been used as 

target area and initial weight for an AMWVD. It appears that an ET-Map can 

occasionally produce discontinuous regions. For instance, FAQ, Songs, Story, and 

Artist categories are split into two regions each. In these cases, each region divided 

into two sub-regions has been treated as one region; the area of a region has been 

defined as a combined sum of the two sub-regions, and the generator’s location is set 

to the larger of the two regions.  
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Figure 22: ET-Map. 

The X and Y columns in Table 4 show the coordinates of the regions on a 20×10 

resolution, while the X′ and Y′ columns show coordinates of the regions scaled to fit 

an alternative 1200×1200 resolution. 
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Table 5: ET-Map data. 
Name Number of links Area X Y X′′′′ Y′′′′ 
American 1883 8 7 5 460 619 
Archive 645 5 4 5 285 698 
Artist 981 2 17 4 1047 532 
Bass 915 3 10 5 650 690 
Beer 984 4 9 1 542 175 
Bill 2763 3 16 3 1006 453 
Bulletin Board 2326 17 6 8 410 976 
CA 926 1 12 4 729 555 
CD 1261 6 2 8 175 1046 
Comics 1254 4 10 4 631 501 
Concert 1884 1 19 5 1144 674 
Cup 1100 1 0 4 37 532 
Data 650 1 11 6 690 769 
Dead 773 1 3 6 215 769 
Digest 14697 8 13 4 816 531 
Discography 686 1 8 0 491 80 
FAQ 857 5 5 0 313 17 
Film 1736 11 1 6 88 810 
Friends 2164 1 17 5 1047 650 
Game 848 1 7 0 432 16 
Guitar 1282 1 14 0 847 16 
Live 4380 12 11 8 661 1006 
Love 2350 7 13 1 783 209 
Lyrics 1546 3 10 0 610 17 
Magazine 1885 9 2 4 149 424 
Movie 1477 6 4 2 254 254 
Movie Database 246 4 6 3 408 413 
Music 11092 28 16 7 988 947 
Paul 5939 3 15 5 947 611 
People 6649 11 16 1 970 207 
Picture 2181 6 19 3 1135 413 
Radio 2468 8 1 1 87 159 
Songs 1433 2 12 0 750 56 
Star Trek 346 2 18 0 1106 115 
Star Wars 1282 2 19 0 1144 16 
Story 642 4 9 2 591 334 
Thread 432 1 9 5 571 651 
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Table 5 (Continued). 
Tour 1660 3 3 1 234 135 
TV 828 1 4 0 275 56 
Volume 1790 1 12 6 729 729 
Virtual 1105 1 6 0 393 56 
Year’s Oscar 548 1 0 9 37 1125 
 

Figure 23 shows the resulting AMWVD for the ET-Map data. The image has been 

rescaled from 20×10 pixels to 20×20 pixels. The results are better than that of an ET-

Map in terms of area–number of links relationships, but the error values Emean and Emax 

remain too high and the correlation coefficient r is too low. For this experiment, the 

AMWVD algorithm performs poorly, because the image has a very low resolution. 

The weights of the regions have to increase by a significant amount in order to grab a 

neighboring pixel. In order to eliminate the effect presented by low image resolution 

we reran the AMWVD test using a 1200×1200 resolution. The resulting diagram is 

shown in Figure 24.  
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Figure 23: AMWVD for ET-Map data using 20×10 pixel grid. 
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Figure 24: AMWVD for ET-Map data using 1200×1200 pixel grid. 

Table 5 compares the results of the ET-map tessellation, the AMWVD with 20×10 

resolution and the AMWVD with 1200×1200 resolution using four different error 

measures. It can be observed that both AMWVD diagrams create better area 

proportionality with the number of links in a category than the original ET-Map. 
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Table 6: Comparing ET-Map results and AMWVD. 
Error measures ET-Map 

20×10 grid 
AMWVD 
20×10 grid 

AMWVD 
1200×1200 grid 

Emin 0.028 0.001 < 0.001 
Emean 0.825 0.510 0.002 
Emax 6.218 1.112 0.034 
Correlation r 0.603 0.931 0.999 

4.3 Partitioning of an Information Space with an AMWVD 

This is yet another example where AMWVD is believed to bring the advantages of 

introducing area-magnitude relationships to the diagram. Out of many existing 

methods for finding the proper positional information of the generators, we use the 

approach proposed by Buttenfield and Reitsma [3]. Our input data come from the 

Building as a Learning Tool (BLT) Web-based information system implemented at the 

University of Colorado [2]. This is a real-time building control information system 

used in undergraduate engineering teaching and learning. The system monitors and 

stores information from over 300 sensors embedded in the building’s structural and 

control systems. Students access the data when studying building control theory, heat 

transfer, material sciences, and a variety of other engineering disciplines. Figure 25 

shows a sample of data delivered to a user’s web browser, as measured by an array of 

thermistors embedded in one of the building’s walls. 
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Figure 25: BLT data display for the last 24 hours. 

The method described in [3] is based on two assumptions: 

• If two pages are associated with one another frequently, as in the case of 

hyperlinking, they are placed in close proximity in the information space. 

• Only the statistically significant usage patterns are used for information space 

reconstruction. 

The actual method used is that of loglinear modeling, followed by multidimensional 

scaling. 

Adopting this method, a year's worth of BLT usage data yields a four-dimensional, 

orthogonal information space. Into this space, ten groups of BLT Web pages are fitted 

as points. The space dimensions are interpreted as follows: 
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• Dimension 1: Relative Task Priority. This dimension represents the priority of 

web page groups. High priority tasks in the BLT Website are the formulation 

of precise data requests, access of technical sensor information and access of 

information taken from the various building systems and subsystems in which 

sensors are embedded. 

• Dimension 2: Active vs. Passive. The second dimension separates active pages 

from passive pages. Passive pages do not allow for user interaction; they only 

contain explanatory information. On the other hand, active pages require 

explicit user input. 

• Dimension 3: Granularity of Information. Information granularity represents 

the depth or level of detail offered by pages. General overview pages offer 

very little detail and do not include detailed user tasks. The detailed end of the 

dimension, however, contains groups of pages, which incorporate specific, 

narrative, and technically detailed information. 

• Dimension 4: Data vs. Meta Data. The fourth dimension scales the nature of 

the data in terms of data collected by the sensors versus data about the BLT 

system. Web pages describing the BLT system are located at one end of the 

dimension, while groups representing measured data are clustered at the other 

end. 

For testing the performance of the AMWVD method outlined above, only the first two 

dimensions of the BLT information space are used, since at this point we are interested 
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only in two-dimensional AMWVD solutions. As for the magnitude criterion for 

allocating space to the Voronoi regions, we chose the overall likelihood that users 

request the web pages. This likelihood is computed as part of the procedure proposed 

by Buttenfield and Reitsma [3]. The resultant partitioning then constitutes a sort of 

gravitational field map with each Web page group as the center of its basin of 

attraction. The higher the likelihood of visits from the Web, the larger its region. 

Figure 26 shows the partitioning of the BLT information space using the SVD (a), the 

MWVD (b), and the AMWVD (c). As can be seen from the error measure values, the 

proportionality constraint is well matched in the adaptive version. Conversion occurs 

at about 900 iterations. However, the weight and location distributions are such that 

two of the ten regions, List Sensor and Locations, become discontinuous. 
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Figure 26: AMWVD solution for BLT web page data. (a) SVD; (b) MWVD; and (c) 
AMWVD. 
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Chapter 5: Conclusion and Discussion 

We presented the Adaptive Multiplicative Weighted Voronoi Diagram (AMWVD) as 

a method for partitioning an information space. The objective of the method is to 

simultaneously preserve both the location of the generators in the information space, 

and the proportionality between their magnitudes and areas. The basic algorithm of an 

AMWVD with key components was described, after which we introduced three 

methods to improve convergence: a variable weight adjustment factor k, updating of 

weights on improvement only, and sub-pixel resolution refinements. Time 

measurements show that tests with sub-pixel refinements produce better area-

magnitude relationships than those without while consuming less time. 

We conducted a series of tests to assess the algorithm’s ability to produce an 

AMWVD diagram with pre-defined area relationships. These tests included three 

pathological (degenerated) cases and two empirical information space-partitioning 

applications. All of the tests showed successful convergence. However, it was noticed 

that because of our raster space model, specific problems may require increased spatial 

resolution. 

The version of the AMWVD algorithm described in Chapter 3 uses Euclidean distance 

metric (L2 metric) with further weighting. Experimenting with other metrics, such as 

L1 may reveal new applications for an AMWVD. In our tests, we used the same factor 

k for all generators. However, one region might converge faster with a high value of k, 

while another region might converge faster with a small value of k. 
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The sub-pixel refinement method included only one level of pixel refinements. 

However, it is possible to reduce round-off errors even further with a recursive version 

of the sub-pixel algorithm, where pixels and sub-pixels at the border can be refined to 

arbitrarily deep levels. This would also mean that we could start a solution at rather 

low levels of spatial resolution. After all, we would recursively increase the resolution 

only in those places where it would be necessary. This, again, would contribute to the 

efficiency of the computations. 

Finally, we could consider developing vector solutions similar to the ones proposed by 

Lan Mu [15]. In a vector space model spatial resolution does not apply. Hence, the 

entire operation of sub-pixel refinements would no longer be required. In fact, only 

one step of our algorithm needs to be changed in order to adopt vector-based VD 

calculations. 
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