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Abstract

The N-Queens problem is commonly used to teach the programming technique of backtrack search.

The N-Queens problem may also be used to illustrate the important concept of isomorphism. Here

we show how the N-Queens problem can be used as a vehicle to teach the concepts of isomorphism,

transformation groups or generators, and equivalence classes. We indicate how these ideas can be used

in a programming exercise. We include a bibliography of 29 papers.

1 Introduction

The 8-Queens problem [Wir71] or the more general N-Queens problem is often used to explicate backtracking
in computing courses. A recent paper by Gray [Gra93] presents a detailed analysis of the N-Queens problem,
and how fully analyzing the problem can lead to better solutions. In this note, we want to point out that
N-Queens can also be used as a vehicle for teaching the ideas of isomorphism and transformation groups.
We have successfully presented the following material in our junior level algorithms course, as well as in
�rst-year graduate courses.

In the next section we brie
y describe the N-Queens problem. In section 3 we describe isomorphism.
Section 4 examines the N-Queens problem in the context of isomorphism. Section 5 examine methods of
generating nonisomorphic solutions to the N-Queens problem. We append a bibliography of literature on
the N-Queens problem as well.
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Figure 1: Two solutions to the 8-Queens Problem.

2 The N-Queens Problem

The objective in the N-Queens problem is to place N queens on an N�N chessboard such that no two queens
can attack one another under the normal rules of chess. A queen may attack any other piece lying along the
row, column, or diagonal containing the queen. The N-Queens problem is often stated as: Can N queens be
placed on an N�N chessboard so that no queen can attack another queen? In this form the answer is easy:
if N 62 f2; 3g say Yes. Further, it is easy to �nd a non-attacking placement for the queens. Several papers
in the bibliography detail approaches to �nding non-attacking placements.

Two solutions to the 8-Queens problem are shown in Figure 1. Since any solution to N-Queens must have
exactly one queen per row (and column) of the chessboard, a solution such as Figure 1(a) can be expressed
as the vector (6,4,7,1,8,2,5,3), i.e. the row which the queen in each column occupies. Similarly, solution 1(b)
can be notated as (1,5,8,6,3,7,2,4).

The construction of an enumerating backtracking program seems to be necessary to �nd all the non-
attacking placements. Even �nding the number of such placements seems to be di�cult. What does \all"
mean in the queens problem statement? For example, when N = 4, there seems to be two solutions, (2,4,1,3)
and (3,1,4,2), but these solutions are merely mirror images of one another, so there is in some sense only one
solution.

The point here is that the N-Queens problem gives us a chance to discuss isomorphic and nonisomorphic
solutions. Further, by a small addition to the standard N-Queens program, we can produce a program which
outputs only the nonisomorphic solutions. In addition, this exercise will also introduce students to a use of
transformation groups.
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Figure 2: Two Isomorphic Graphs.

3 Isomorphism

Two objects are isomorphic when they have equal forms, that is, in some sense the objects are identical. The
sense is, of course, important. For example, a metal paper clip and a plastic paper clip are isomorphic when
I want to clip papers together, but they are not isomorphic when I want to play with my magnetic paper clip
holder. In more complicated cases, the objects are made up of parts and the sense of sameness includes some
of the interrelationships between the parts. For example, I might consider bees and mosquitos as isomorphic
in producing red welts on humans, but when I consider the body parts, the bee and the mosquito are not
isomorphic because their business ends are di�erent.

For mathematics students, the idea of isomorphism is usually introduced in algebra. For example, the �eld
of real numbers is isomorphic to the �eld of complex numbers with zero imaginary part, or two semigroups (S,
+) and (G, �) are isomorphic when there is an invertible function h : S ! G so that h(s1+s2) = h(s1)�h(s2)
for all s1 and s2. Computer science students are usually introduced to isomorphism in the context of graphs.
Two graphs G1 and G2 are isomorphic if there is an invertable function h which maps each vertex of G1 to
a vertex of G2 so that adjacent vertices of G1 map to adjacent vertices of G2 and vice versa, as in Figure 2.

4 Isomorphism and the N-Queens Problem

For solutions to the N-Queens we want the renaming to preserve the relationships between the queens. What
transformations should be allowed? Clearly mirror image, mentioned above, should be included, but it seems
that several mirror images are possible. The obvious ones place a mirror parallel to one side of the board, but
what about re
ecting across one of the diagonals of the board? Other allowed transformations should include
rotations by multiples of 90o (�=2 radians). Obviously one could combine rotations and mirror images to get
other transformations. This combining is function composition since each transformation takes a solution as
input and gives a solution as output. Function composition is associative. Associativity means that if T1,
T2, and T3 are three transformations and T1 � T2 is the composite transformation obtained by applying T2
and then T1, then the following equation holds: (T1 � T2) � T3 = T1 � (T2 � T3).

Further, the composition of any allowed transformations always gives an allowed transformation, so the
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Figure 3: Generating Isomorphic Solutions to 8-Queens.

set of transformations is closed under composition. There is a special transformation, `do nothing to the
board', which is the identity transformation. Finally, each transformation can be undone, that is, each
transformation has an inverse. Each mirror image is its own inverse. For any rotation by a multiple of
90o, applying the rotation 3 times will give the inverse of the rotation. So for any sequence of rotations
and mirror images, there is an inverse which can be formed by taking the inverses of the transformations in
reverse order.

A set with an operation that is associative, closed, and has an identity and inverses is, of course, a group1.
In fact, the allowed transformations for the N-Queens is the group of transformations which transform a
square into itself. Consider a board with corners labelled A, B, C, and D in clockwise order. When a
transformation is applied, the corner labelled A can be mapped to any of 4 positions, and the next corner
clockwise after A must be either B or D. So there are 4 � 2 = 8 di�erent transformations.

The set of transformations for N-Queens is a dihedral group. A dihedral group �n is de�ned as the group
of symmetries of a regular polygon Pn of n sides. Elements of �n can be obtained by the operations of
rotation R through 360�=n, and the operation re
ection M about some side:

I () R () R2 () R3 � � � Rn

m m m m m
M () RM () R2M () R3M � � � RnM

For N-Queens the appropriate group is �4. Using the operations of re
ection (M), and 90� rotation (R),
one solution can be transformed into seven other solutions. The solution to 8-Queens from Figure 1(b) is
transformed as follows:

1You mean that abstract algebra has some use?
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1 5 8 6 3 7 2 4
R
() 3 6 4 2 8 5 7 1

R
() 5 7 2 6 3 1 4 8

R
() 8 2 4 1 7 5 3 6

M m M m

8 4 1 3 6 2 7 5
R
() 6 3 5 7 1 4 2 8

R
() 4 2 7 3 6 8 5 1

R
() 1 7 5 8 2 4 6 3

Figure 3 shows the boards corresponding to the vectors above.

5 Generating Nonisomorphic N-Queens Solutions

An interesting problem is �nding the number of nonisomorphic solutions for each value of N, as well as
a method of quickly generating these nonisomorphic solutions. It might seem easy to �nd the number of
nonisomorphic solutions to N-Queens by �nding the total number of solutions and dividing by 8. Unfor-
tunately this doesn't work because there are solutions which can be mapped to themselves by some of the
transformations. For example, the solution (6,4,7,1,8,2,5,3) to 8-Queens (Figure 1(a)), is transformed to
itself after two rotations:

6 4 7 1 8 2 5 3
R
() 5 3 1 7 2 8 6 4

R
() 6 4 7 1 8 2 5 3

R
() 5 3 1 7 2 8 6 4

M m M m

3 5 2 8 1 7 4 6
R
() 4 6 8 2 7 1 3 5

R
() 3 5 2 8 1 7 4 6

R
() 4 6 8 2 7 1 3 5

Below is a table showing the total number of solutions to N-Queens, as well as the number of nonisomor-
phic solutions to the N-Queens problem for various values of N:
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N total number number of

of solutions: nonisomorphic solutions:

0 0 0
1 1 1
2 0 0
3 0 0
4 2 1
5 10 2
6 4 1
7 40 6
8 92 12
9 352 46
10 724 92
11 2680 341
12 14200 1787
13 73712 9233
14 365596 45752
15 2279184 285053

While we want to be able to count the number of nonisomorphic solutions, we also want to �nd one solution
for each isomorphism class. Two solutions are in the same isomorphism class exactly when some allowed
transformation transforms one solution to the other. It is probably worth mentioning at this point that
being isomorphic is an equivalence relation, and reminding students that an equivalence relation is re
exive,
symmetric, and transitive. As an easy exercise you can ask the students to �nd which group property implies
re
exive, which group property implies symmetric, and which group property implies transitive.

Since there are only 8 transformations to consider, a simple way to �nd nonisomorphic solutions is to
maintain a set of the nonisomorphic solutions found so far, generate all solutions, and then determine if
applying any of the 8 transformations gives a solution already in the set. If each of the 8 transformations
gives a solution not in the set, then the new solution should be added to the set of nonisomorphic solutions.

Unfortunately this method has the drawback that there may be a very large (more than exponential)
number of nonisomorphic solutions in the set. So comparing a new solution with the nonisomorphic solutions
can take a very long time. Luckily, there is a shortcut. In the backtracking algorithm, the �rst queen is
placed in the �rst allowed square in the �rst column, then the second queen is placed in the �rst allowed
position in the second column, and so forth. This means that the solutions will be generated in order if we
consider each solution of N-Queens as a base N+1 number. Hence a solution is isomorphic to a previously
found solution if and only if one of the 8 transformations produces a solution which is less than the present
solution.

The less than relation may be stated as:

Let S1 = (a1; a2; :::; an) and S2 = (b1; b2; :::; bn),
which are two solutions to the n-Queens, so that each ai; bi 2 f1; 2; :::; ng.

Then S1 < S2 i� (a1a2:::an) < (b1b2:::bn), where:
(a1a2:::an) < (b1b2:::bn) i� a1 < b1 in the usual ordering 1 < 2 < ::: < n
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or, a1 = b1 and (a2:::an) < (b2:::bn)
. . .

to bottom out the recursion, we have (an) < (bn) i� an < bn in the usual ordering.

So given a solution S, one should add S to the set of nonisomorphic solutions when for each of the seven
non-identity transformations T1; T2; :::; T7,

S � Ti(S), for i = 1; 2; :::; 7.

For example, when the solution (1,5,8,6,3,7,2,4) for the 8-Queens is generated (Figure 1(b)), each of
the transformations applied to (1,5,8,6,3,7,2,4) yields (3,6,4,2,8,5,7,1), (5,7,2,6,3,1,4,8), (8,2,4,1,7,5,3,6),
(8,4,1,3,6,2,7,5), (6,3,5,7,1,4,2,8), (4,2,7,3,6,8,5,1), and (1,7,5,8,2,4,6,3). Since each of these transformed
solutions is greater than or equal to (1,5,8,6,3,7,2,4), the solution (1,5,8,6,3,7,2,4) should be added to the
nonisomorphic solutions to the 8-Queens. On the other hand, when (6,4,7,1,8,2,5,3) is generated (Figure
1(a)), a rotation R applied to (6,4,7,1,8,2,5,3) yields (5,3,1,7,2,8,6,4) which is less than (6,4,7,1,8,2,5,3), and
so (6,4,7,1,8,2,5,3) should not be added to the set of nonisomorphic solutions.

The 8 transformations can be expressed as a sequence of the simple mirror image and rotate by 90o

transformations. These simple transformations are called generators because every element in the group can
be generated by using these simple transformations. In programming the isomorphism test, one could write
separate code for each of the transformations, but one could instead write code for the generators and use the
code several times. If S is a solution and M stands for mirror image, R for rotate by 90o, then the 8 solutions
isomorphic to S are S, R(S), RR(S), RRR(S), MRRR(S), RMRRR(S), RRMRRR(S), RRRMRRR(S). So by
initializing the variable transformedwith the original solution vector original, and iteratively applying the
appropriate transformation (either Rotate or Mirror_image), a program can easily generate the 7 solutions
which have to be tested against the original solution. The following C code will determine if a solution is
isomorphic to any previous solution generated by the backtracking algorithm:

/*

check_if_isomorph: If the solution is an isomorph to a previously

generated solution, return TRUE. Return FALSE if solution is new.

*/

BOOLEAN check_if_isomorph(int original[MAX])

{

int i;

int transformed[MAX];

BOOLEAN iso_flag;

for (i = 0; i < size; i++) /* make a copy of the solution vector */

transformed[i] = original[i];

for (i = 0; i < 7; i++) /* generate the 7 transformations */

{

if (i != 3)

7



Rotate(transformed);

else

Mirror_image(transformed);

iso_flag = compare_vector(original, transformed);

if (! iso_flag) return (TRUE);

}

return (FALSE);

}

The generators R and M are not the only possible generators. Let F be the transformation which 
ips
the square across its counter-diagonal. Then F and M are a set of generators for �4, and FMFMFMF is a
sequence of these generators which will generate the whole transformation group. Showing that the previous
statement is true would be a reasonable exercise to see if your students have followed the development. You
also might want them to decide which set of generators is easier to program.

In several texts, the fact that the queen in the �rst column never has to be placed in the second half
of the column if one is only interested in nonisomorphic solutions is mentioned, for example Horowitz and
Sahni, p. 363 [HoS78]:

\Observe that for �nding inequivalent solutions the algorithm need only setX(I) = 2; 3; :::; dn=2e."

Unfortunately this has been widely misinterpreted by students to mean that this restriction alone is su�cient
to generate only nonisomorphic solutions. We hope that the above description has been su�cient to help
you explain the actual situation to your students.

6 Conclusion

The major point of this note is that N-Queens is a good example which is typical of combinatorial enumeration
problems. The typical features are:

� solutions are generated by backtracking algorithms

� ordering on solutions is imposed by the generating algorithm

� desire for nonisomorphic solutions

� group of transformations indicating which solutions are isomorphic

� group expressible by simple generators

� \on-the-
y" nonisomorphism test by applying a sequence of generators to a solution and checking that
all the transformed solutions are � the solution in question.

Another problem with similar characteristics is the Knight's Tour Problem (where the transformation
group consists of rotation, re
ection, and `take a path backwards') [CuD78].
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A Source Code

/*

Queen Solution Program

Originally written by:

John S. Gray 1993

(9/93 SIGCSE Bulletin)

Modified by Rajeev Pandey 01/94 to compute nonisomorphic solutions.

*/

/*************************************************************************/

typedef enum {FALSE, TRUE} BOOLEAN;

#define MAX 15 /* largest board size */

/* GLOBALS */

int a[MAX], /* vector holding solution */

size = 0, /* board size selected by user */

dim = 0, /* array size selected by user */

type = 0, /* display type */

iso = 0, /* isomorphic solutions only? */

numb = 0; /* total number of solutions */

/*************************************************************************/

void main ( )

{

void find_sol (int, int);

printf ("\n N-Queens demonstration \n");

do /* obtain board size */

{

printf ("\n\n\nEnter size of the board 1-%d > ", MAX);

scanf ("%d", &size);

}

while (size < 0 || size > MAX);

dim = size - 1;

do /* obtain isomorphic or not */

{

printf ("Enter solution type (1 = all solutions,\

2 = only nonisomorphic solutions) > ");

scanf ("%d", &iso);

}
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while (iso < 0 || iso > 2);

do /* obtain output format */

{

printf ("Enter output display type (1 = diagrammatic,\

2 = numeric) > ");

scanf ("%d", &type);

}

while (type < 0 || type > 2);

printf ("\n\n");

if (iso == 1)

printf (" For a board of size %d, solutions are: \n", size);

else

printf (" For a board of size %d, nonisomorphic solutions are: \n", size);

find_sol(0,0); /* initial call */

if (! numb)

printf ("\n\n ZERO!");

printf ("\n\n\n");

}

/*************************************************************************/

/*

Function find_sol: Passed row and column position.

Generates locations for "size" number of

queen. Uses recursion to backtrack.

Non recursive version--a few more lines of code, but less system

intensive.

*/

void find_sol (int row, int col)

{

void print_it ();

BOOLEAN no_conflict(int, int);

do

{

if (no_conflict(row,col))

{ /* Check for conflicts, if none */

a[col] = row; /* save the location in vector */

if (col == size - 1) /* if full solution, display it */

12



print_it();

else

{ /* otherwise, reset the row and */

row = 0; ++col; /* check the next column */

continue;

}

}

if (row < size - 1) /* if more rows are available */

++row; /* try next row, same column */

else /* otherwise, backtrack until a */

{

while (col && a[col-1]+1 > size-1)

--col; /* column is found with a row */

row = a[--col]+1; /* value that can be incremented */

} /* to the next row */

}

while (row < size); /* loop until beyond last row in */

} /* the first column */

/*************************************************************************/

/*

Function no_conflict: Passed row and column position. Returns

TRUE if no conflict with previous

locations else returns FALSE.

*/

BOOLEAN no_conflict (int row, int col)

{

register i;

int d; /* temporary diagonal offset value */

BOOLEAN ok = TRUE; /* assume no conflict at the start */

/*

Step backward and check for conflicts with

previous selections.

*/

for (i = col-1; i>=0 && ok; --i)

{

d = col - i;

if (a[i] == row || /* check for conflict in: same row, */

a[i]-d == row || /* same major diagonal */

a[i]+d == row) /* same minor diagonal. */

ok = FALSE;
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}

return (ok);

}

/*************************************************************************/

/*

Function print_it: Displays output in user selected format.

*/

void print_it () {

register r, c;

int i;

int tmp[MAX];

static char line[] = "+---+---+---+---+---+---+---+---+";

line [size*4+1] = '\0'; /* cut string to size */

/*

check to make sure solution is not isomorphic to some previously generated

solution

*/

if (iso == 2)

if (check_if_isomorph(a))

return;

printf ("\n%06d : ", ++numb);

switch (type)

{

case 1:

printf ("\n\n%s\n", line);

for (r = 0; r < size; ++r)

{

for (c=0; c < size; ++c)

printf ("| %c ", a[r] == c ? 'Q' : (r+c) % 2 ? '#':' ');

printf ("|\n%s\n", line);

}

break;

case 2:

default:

for (c=0; c < size; ++c)

printf ("%3d", a[c] +1);

}

}
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/*************************************************************************/

void mirror_image (int vector[MAX])

{

int i;

for (i=0; i < size; i++)

{

vector[i] = dim - vector[i];

}

return;

}

/*************************************************************************/

void rotate (int vector[MAX])

{

int i;

int tmp_vector[MAX];

for (i=0; i < size; i++)

{

tmp_vector[vector[i]] = i;

}

for (i=0; i < size; i++)

{

vector[i] = tmp_vector[dim - i];

}

return;

}

/*************************************************************************/

/* compare_vector returns true if vector v1 <= vector v2, else returns FALSE*/

BOOLEAN compare_vector(int v1[MAX], int v2[MAX])

{

int pos;

BOOLEAN tmp;

for (pos=0; pos < size; ++pos)

{

if (v1[pos] > v2[pos])

{

15



return (FALSE);

}

if (v1[pos] < v2[pos])

{

return (TRUE);

}

}

for (pos=0; pos < size; ++pos)

{

if (v1[pos] != v2[pos])

{

return (FALSE);

}

}

return (TRUE);

}

/*************************************************************************/

/*

If the solution is an isomorph to a previously generated solution,

return TRUE, else return FALSE if solution is new.

*/

BOOLEAN check_if_isomorph(int original[MAX])

{

int i;

int transformed[MAX];

BOOLEAN iso_flag;

for (i = 0; i < size; i++) /* make a copy of the solution vector */

transformed[i] = original[i];

for (i = 0; i < 7; i++) /* generate the 7 transformations */

{

if (i != 3)

rotate(transformed);

else

mirror_image(transformed);

iso_flag = compare_vector(original, transformed);

if (! iso_flag) return (TRUE);

}

return (FALSE);

}

/*************************************************************************/
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