

AN ABSTRACT OF THE THESIS OF

Amit D Phalgune for the degree of Master of Science in Computer Science presented
on September 12, 2005.

Title: Garbage In, Garbage Out? An Empirical Look at Oracle Mistakes by End-User
Programmers.

Abstract approved: __

Margaret M. Burnett

End-user programmers, because they are human, make mistakes. However,

past research has not considered how visual end-user debugging devices could be

designed to ameliorate the effects of mistakes. This work empirically examines oracle

mistakes – mistakes users make about which values are right and which are wrong – to

reveal differences in how different types of oracle mistakes impact the quality of

visual feedback about bugs. We then consider the implications of these empirical

results for designers of end-user software engineering environments.

©Copyright by Amit D. Phalgune

September 12, 2005

All Rights Reserved

Garbage In, Garbage Out?
An Empirical Look at Oracle Mistakes by End-User Programmers

by
Amit D. Phalgune

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented September 12, 2005
Commencement June 2006

Master of Science thesis of Amit D. Phalgune presented on September 12, 2005

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Amit D. Phalgune, Author

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude towards my advisor Dr.

Margaret Burnett for her constant support, guidance and encouragement throughout

my work. She has been a wonderful guide and a great source of inspiration towards

the work presented in this thesis.

This work has been done in collaboration with Cory Kissinger, Dr. Margaret

Burnett, Laura Beckwith, Dr. Curtis Cook and Joseph Ruthruff. I would like to thank

them from the bottom of my heart. A special thanks to Cory Kissinger for working on

the related work and assisting me with data extraction. I would also like to thank Dr.

Mary Beth Rosson, Dr. Tessa Lau and Dr. Deepak Phalgune for their useful insights

into my work.

I also take this opportunity to thank all the members of the Forms/3 team.

Last but not the least; I must thank my father, Dr. Deepak Phalgune, my mom Mrs.

Usha Phalgune, my sister Anagha and all other family members who have been very

supportive and have encouraged me throughout my career. I must thank my parents

and sister for having the courage and determination of passing through the most

difficult phase of their lives, while I pursued my master’s program.

This work was supported in part by the National Science Foundation under Award

ITR-0325273.

TABLE OF CONTENTS

 Page

1. Introduction.. 1

1.1 Introduction.. 1

1.2 The Problem Addressed by this Thesis.. 3

2. Background and Related Work .. 6

2.1 End-User Debugging.. 6

2.2 WYSIWYT with Visual Fault Localization... 6

2.3 Mistakes in Interactive Testing and Debugging Environments 9

3. Experiment ... 11

3.1 Design .. 12

3.2 What the Original Participants Did.. 13

3.2.1 Tasks ... 13

3.2.2 Fault Localization Algorithm.. 15

3.3 Current Experiment’s Procedures .. 16

3.3.1 Three Generated Versions .. 16

3.3.2 “Smart” Mistakes.. 17

3.4 Dependent Variables and Measures... 18

4. Results .. 19

4.1 RQ1: Prevalence of Oracle Mistakes ... 19

4.1.1 Magnitude of Mistakes ... 19

4.2 RQ2: Impact on Visual Effectiveness.. 21

TABLE OF CONTENTS (Continued)

Page

4.3 RQ3: Relationship to Understanding ... 22

4.4 RQ4: Impact on Debugging ... 23

4.5 RQ5: Impact of Smart Mistakes... 25

5. Implications for Designers of End-User Environments... 28

6. Conclusion ... 32

Bibliography... 34

Appendices... 37

Appendix A: Tutorial Materials... 38

Appendix B: Spreadsheets and Spreadsheet Descriptions..................................... 59

Appendix C: Visual Feedback provided by Test Count .. 68

LIST OF FIGURES
Figure Page

1: Gradebook spreadsheet with an oracle mistake ... 7

2: Oracle mistakes consist of false positives and false negatives. 8

3: The Payroll Spreadsheet... 14

4: The shaded sectors show the smart mistakes. .. 17

5: Number of no-rationale oracle mistakes in the Gradebook spreadsheet.................. 20

6: Number of no-rationale oracle mistakes in the Payroll spreadsheet........................ 20

7: Most participants made between 1 and 10 oracle mistakes. 22

8: Relationship between oracle mistakes and bugs fixed... 24

9: Average visual effectiveness for each participant.. 26

LIST TO TABLES

Table Page

1: Frequency of oracle mistakes for each task. .. 19

2: Mean / median of Version FalseNegativesOnly feedback....................................... 22

3: Regression analyses of number of oracle mistakes vs. bugs fixed. 23

4: Number of smart mistakes made compared to total number of mistakes. 25

5: Mean / median of visual effectiveness with Test Count Local 29

LIST OF APPENDIX FIGURES
Figure Page

10: Visual feedback with Test Count fault localization algorithm. 68

11: Visual feedback with the Test Count Local fault localization algorithm. 68

LIST OF APPENDIX TABLES

Table Page

6: List of bugs in Gradebook spreadsheet .. 62

7: Formula’s of output cells in the Gradebook spreadsheet... 63

8: List of bugs in Payroll spreadsheet .. 66

9: Formula’s of output cells in Payroll spreadsheet ... 67

Garbage In, Garbage Out?
An Empirical Look at Oracle Mistakes by End-User Programmers

1. Introduction

1.1 Introduction

When software is developed by software professionals, these professionals have

formal training in writing software as well as are expected to know formal techniques

for testing and thereby debugging the software programs. Since these software

professionals have formal knowledge in testing and debugging it is much easier for

them to test their programs.

However, with the widespread use of computers in the present age, a lot of

software is being created by people with little or no programming experience, referred

to as end-user programmers. With the use of computers becoming more popular day

by day we find more and more end-user programmers writing their own programs.

One estimate indicates that there are about 55 million end-user programmers as

compared to the 2.75 million professional programmers [Boehm et al. 2000]. Another

estimate, [Scaffidi et al. 2005] indicates that by 2012 there will be 90 million end-user

programmers of which more than 55 million will use spreadsheets or databases. These

estimates clearly indicate that the spreadsheet paradigm is a commonly used paradigm.

For example, we can imagine the payroll staff for a large company (the payroll staff

do not have formal training in writing software and hence are considered end users)

using spreadsheets to calculate the various tax benefits and paychecks for different

 2

employees in the company. Teachers in schools and colleges might want to write

spreadsheets that help them calculate grades of students for a particular class. Creating

a payroll spreadsheet or a grades spreadsheet involves writing formulas. Writing

formulas in Excel is how one programs in the spreadsheet paradigm.

Though the spreadsheet paradigm may seem to be easy, empirical research

suggests that users make an astonishingly large number of faults [Panko 1995, Betts

and Horowitz 2004, Panko 1998]. Some of these faults can have a serious economic

impact [Hilzenrath 2003, Panko 1995, Robertson 2003]. The term fault mentioned

above refers to an incorrect formula in a spreadsheet cell, which causes an incorrect

output to be generated. Similarly another commonly used term in the software

engineering literature is failure, referring to an incorrect output generated in the

presence of certain input values.

The above findings encourage us to think seriously about supporting the software

development process of end users and helping them write reliable software. To this

end, the End Users Shaping Effective Software (EUSES) Consortium has come up

with an approach called “end-user software engineering” [Burnett et al. 2004]. This

holistic approach provides support for end users to make their software dependable

and more reliable. The approach provides various devices that help in improving the

quality of software, such as testing methodologies that help detect failures, assertions,

which continually monitor values and indicate that values are “out of range” and fault

localization devices that help programmers to find causes of failures.

 3

The end-user software engineering environments tend to differ from the traditional

software engineering environments in that they are more interactive in nature, are

usually non-modal, and the feedback provided by these systems is incremental based

on user input [Ruthruff and Burnett 2004]. Further, it is usual for traditional fault

localization techniques to assume that the inputs provided to their algorithms are

indeed correct and produce an incorrect output if the input data provided to these

algorithms is incorrect. Previous studies [Prabhakararao et al. 2003, Ruthruff et al.

2005A] indicate that users often make mistakes when performing testing and

debugging activities (interacting with the system). Thus it may be unreasonable to

have fault localization techniques that are unreliable in the presence of incorrect

information, especially in the end-user programming environments. The work

presented in this thesis concentrates on this critical difference between professional

and end-user software development environments, specifically in the context of fault

localization devices.

1.2 The Problem Addressed by this Thesis

Mistakes occur in every domain of human action, and thus it should be no surprise

that they arise in end-user programming. In the early decades of computing, a common

saying was “garbage in, garbage out.” That is, mistakes in communicating with a

computer were aberrations, and if users provided bad data (garbage in), then they

should expect the software to produce incorrect answers (garbage out).

Of course, with the joint advents of interactive systems and HCI as a subarea of

computer science, it was realized that people do make mistakes in communicating

 4

with computers, and features began to appear to help prevent mistakes (such as menus

instead of typed-in commands) and to allow people to detect and recover from them

(such as immediate feedback and undo facilities).

Still, below this surface level, the philosophy of “garbage in, garbage out”

remains: if the user’s mistake somehow gets in unnoticed, then surely he or she still

should expect “garbage out.” The unfortunate consequence is that it then seems

reasonable for developers to assume that software needs to work correctly only when

no mistaken data is provided to the system.

In the work presented in this thesis, we consider whether the above assumption is a

reasonable assumption in software whose purpose is to help end-user programmers

reason about and debug their programs. In the problem solving domain it is not always

straightforward for users to make correct judgments about how well different parts of

their program are working, and thus some mistakes are inevitable. We consider the

prevalence and effects of these mistakes in order to determine whether end-user

software engineering environments offering testing and debugging support to end-user

programmers must be designed with this inevitability in mind.

The type of testing and debugging mistakes upon which this thesis focuses are

oracle mistakes [Weyuker 1982], a term meaning a falsely positive or falsely negative

judgment as to whether an output computed by the program is correct. The end-user

programming environment prototype in which we consider this type of mistakes is a

spreadsheet environment that includes a visual testing and fault localization device we

have developed known as WYSIWYT (What You See Is What You Test) [Rothermel

 5

et al. 2001, Ruthruff et al. 2004]. In this thesis, we explore how different subsets of

oracle mistakes impact the effectiveness of interactive, visual testing and debugging

support for end-user programmers, and what might be done to ameliorate these

impacts.

 6

2. Background and Related Work

2.1 End-User Debugging

There has been recent research focusing on assisting end-user programmers in

debugging. Virtually all of this work communicates with the user largely in the form

of visual devices. Woodstein [Wagner and Lieberman 2004] is a software agent that

visually assists users in debugging e-commerce applications. Ko and Myers present

the Whyline [Ko and Myers 2004], an “interrogative debugging” device for the event-

based programming environment Alice. There has also been a variety of work

supporting program comprehension and debugging by end users in the spreadsheet

paradigm. For example, Igarashi et al. [Igarashi et al. 1998] present devices to aid

spreadsheet users in dataflow visualization and editing tasks. S2 [Sajanieme 2000]

provides a visual auditing feature in Excel 7.0: similar groups of cells are recognized

and shaded based upon formula similarity, and are then connected with arrows to

show dataflow. This technique builds upon the Arrow Tool, a dataflow visualization

device proposed by Davis [Davis 1996]. Ayalew and Mittermeir [Ayalew and

Mittermeir 2003] present a method of fault tracing based on “interval testing” and

slicing, which is similar to our own work on assertions to help users automatically

guard against faults [Burnett et al. 2003]. There is also recent work to automatically

detect certain kinds of errors, such as errors in spreadsheet units [Abraham and Erwig

2004] and types [Ahmad et al. 2003].

2.2 WYSIWYT with Visual Fault Localization

Members of our research group have been working on a vision of end-user

 7

software engineering [Burnett et al. 2004] that we have prototyped in the spreadsheet

paradigm because it is so widespread. Our vision of end-user software engineering

involves holistic support of the facets of software development in which end users

engage, tied together through incremental visual devices. These visual devices are

necessarily low in cost to maintain the immediate responsiveness expected by

spreadsheet users, and are immediately updated as end users add to, modify, test, and

debug their programs.

WYSIWYT with visual fault localization is part of this vision. An example from

our research prototype, Forms/3 [Burnett et al. 2001], a spreadsheet language that

utilizes “free-floating” cells in addition to traditional spreadsheet grids, is shown in

Figure 1. The underlying assumption behind the WYSIWYT testing methodology is

that, as a user incrementally develops a spreadsheet program, he or she is also testing

incrementally. Because the intended audience is end users, all communication about

Figure 1: Gradebook spreadsheet with an oracle mistake (√, a false positive) on cell
Min_Midterm1_Midterm2. The correct mark (X) would have resulted in a more
accurate prediction of the faulty cell’s (Midterm1_Perc) fault likelihood, resulting in a
darker coloring than the relatively light coloring it has here.

 8

testing is performed through visual devices.

In the course of testing the spreadsheet, the user can communicate a judgment that

a cell’s value is correct with a checkmark (√), or that a cell’s value is incorrect with an

X-mark (X), as shown in Figure 1. Checkmarks contribute to the “testedness” of the

cells according to an adequacy criterion detailed in [Rothermel et al. 2001], and a

cell’s testedness is reflected in border colors along a red-to-blue continuum (light gray

to black in this thesis). X-mark invokes the fault localization device. As Figure 1

shows, the system also provides dataflow arrows on demand. They reflect

dependencies among cells and their color reflects the testedness of specific

relationships among cells and subexpressions.

The system combines the user’s checkmarks and X-marks with the dependencies

in the cells’ formulas to estimate likelihoods of the fault (erroneous formula) being

located in various cells. It colors these cells’ interiors in light-to dark amber (gray) to

reflect these likelihoods [Ruthruff et al. 2003].

Given these communication devices, a false positive is a checkmark on a value that

is incorrect, and a false negative is an X-mark on a value that is correct (Figure 2).

Figure 2: Oracle mistakes consist of false positives and false negatives.

 9

2.3 Mistakes in Interactive Testing and Debugging Environments

Like most environments for end-user programmers, the spreadsheet paradigm is

modeless and interactive: users incrementally experiment with their software and see

how the results work out after each change; an example of this in spreadsheets is the

automatic recalculation feature. This means that testing and debugging support in

these types of environments must accommodate continuous interaction with the end

user.

In Figure 1, suppose there is a fault in cell Midterm1_Perc, causing incorrect

values in several downstream cells. Unfortunately, the user has made an oracle

mistake by checking off (√) Min_Midterm1_Midterm2’s value (a false positive).

Because of this mistake, Midterm1_Perc is only mildly implicated as the culprit by the

visual feedback, as the figure shows.

The research literature provides little guidance regarding how the developers of

visual devices for interactive testing and debugging should handle oracle mistakes and

their impacts on such devices’ accuracy of feedback. In fact, the presence of any

mistakes runs contrary to a common assumption in traditional testing and debugging

research—that all information is accurate and reliable—meaning that much of the

prior software visualization research is inherently unsuited for the interactive

environments that end-user programmers utilize.

There is, however, some information about mistakes in end-user debugging upon

which we can build. In the course of other investigations we have done on end-user

debugging, we have reported the presence of oracle mistakes observed [Ruthruff et al.

 10

2004, Ruthruff et al. 2005A, Ruthruff et al. 2005B], which gives a little preliminary

information about their prevalence. Ko and Myers [Ko and Myers 2003] also shed

some light on the impact of such mistakes. In their work, they used the phrase

“determining a failure” to describe all errors in perceiving and understanding output,

which has a significant overlap with our definition of oracle mistakes. In their

observational study, problems of the “determining failure” type made up 28 of the 29

breakdowns that occurred during debugging, strongly implying that this type of

problem is one of the most important factors when debugging goes astray. Combined,

these works suggest that designers of interactive visual fault localization devices may

not be able to ignore the possibility of oracle mistakes. This paper investigates this

possibility.

 11

3. Experiment

To gain insight into the importance of oracle mistakes on end-user testing and

debugging we consider the following research questions:

RQ1: How often do oracle mistakes occur?

RQ2: Do oracle mistakes impact effectiveness of a fault localization device?

RQ3: Are oracle mistakes tied with end users’ understanding of the

debugging device?

RQ4: Do oracle mistakes impact end users’ ability to debug?

RQ5: Do “smart” oracle mistakes impact effectiveness of the fault

localization device differently?

The first research question, RQ1, provides us insights into whether we, as

researchers, should care about oracle mistakes at all. Do oracle mistakes occur with a

reasonable amount of frequency that we should be concerned about them?

Regarding RQ2 and RQ4, checkmarks and X-marks are the primary vehicle by

which the user can interact with the system. End-user programming environments are

typically interactive in nature and the visual feedback which the system provides the

user with could have serious impact on the actions the user performs. Hence the tie

between effectiveness of the fault localization device and oracle mistakes is an

important consideration. Previous research conveys a trend that the testing and

debugging strategies of end users are largely dependent upon the visual feedback they

receive. For example our previous studies indicate that users move from an ad-hoc

testing and debugging strategy to a more systematic strategy in the presence of visual

 12

feedback [Prabhakararao et al. 2003]. Thus, we consider RQ2 and RQ4 to determine

the extent to which visual feedback impacts the testing and debugging progress an end

user makes.

Another major effect of oracle mistakes could be on the end user’s understanding of

the device they are using (RQ3), which can indirectly affect their progress.

Regarding RQ5, there is a class of oracle mistakes we have termed “smart” mistakes

that might be effective in terms of the fault localization feedback provided to end

users. One would normally assume that mistakes are bad and would usually lead to

bad feedback from the system (garbage in, garbage out). By evaluating the last

research question, we investigate whether these “smart” oracle mistakes could provide

visual feedback that might be helpful to the users.

The subsequent sections describe in detail the design of our experiment to pursue the

research questions mentioned above.

3.1 Design

This investigation consists of both an observational study and a planned

experiment.

A collection of naturally occurring oracle mistakes was available to us in the

electronic transcripts from a previous experiment. We refer to this collection of

transcripts, which contains the oracle mistakes the participants actually made, as

Version Original. For the observational study, we simply analyze effects of an

observed independent variable (number of oracle mistakes) on observed dependent

variables (discussed later).

 13

For the planned experiment, the design was a within-subjects design, in which the

treatment variable being manipulated—i.e., the independent variable—starts with the

same collection of observed oracle mistakes. We then manipulated these observed

oracle mistakes, in ways we describe later in this section, to generate new simulated

versions with which we can compare Version Original.

3.2 What the Original Participants Did

The data for Version Original were obtained from a previous experiment that we

conducted [Beckwith et al. 2005]. Fifty one participants took part in that original

experiment. Each participant was seated one per computer. The participants were

mainly from the school of business at Oregon State University. They were given a

background questionnaire to start with. After completing the background

questionnaire, the 51 participants were given a “hands-on” tutorial to familiarize them

with the Forms/3 environment. The tutorial, which lasted for 35 minutes taught

participants the use of WYSIWYT checkbox for checking off correct values and

associated feedback, but did not include debugging or testing strategy content. We

also did not teach the use of fault localization; rather, participants were introduced to

the mechanics of placing X-marks and given time to explore any aspects of the

feedback that they found interesting.

3.2.1 Tasks

The participants were provided with the two spreadsheets to debug. The use of

two spreadsheets reduced the chances of the results being due to any one spreadsheet’s

particular characteristics. The experiment was counterbalanced with respect to task

 14

order so as to distribute learning effects evenly.

We collected electronic transcripts of every action taken by the participants and

the system’s resulting feedback. We also captured the final state of the spreadsheets

after the experiment was over. At the end of each task the participants were asked to

fill out a post-session questionnaire which measured the participants’ ability to

comprehend various aspects of our system.

The two spreadsheets were Gradebook (Figure 1) and Payroll (Figure 3). To

make the spreadsheets representative of real end-user spreadsheets, Gradebook was

derived from an Excel spreadsheet of an (end-user) instructor, which we ported into an

equivalent Forms/3 spreadsheet. (To accommodate Forms/3 features, a minor change

was made to two minimization operators.) Payroll was a spreadsheet designed by two

Forms/3 researchers using a payroll description from a real company.

These spreadsheets were seeded with five faults created by real end users.

Gradebook was seeded with three of these users’ mechanical faults, one logical fault,

and one omission fault, and Payroll with two mechanical faults, two logical faults, and

Figure 3: The Payroll Spreadsheet

 15

one omission fault. (Under Panko’s classification [Panko 1998] mechanical faults

include simple typographical errors or wrong cell references. Logical faults are

mistakes in reasoning and are more difficult than mechanical faults. An omission fault

is information that has never been entered into a cell formula, and is the most difficult

to detect [Panko 1998].) Payroll was intended to be the more difficult task due to its

larger size, greater length of dataflow chains, intertwined dataflow relationships, and

more difficult faults. (To validate if Payroll was harder than Gradebook, we measured

the participants’ confidence about how many bugs they fixed, through post session

questionnaires. Although we did not find a statistical significance in the confidence

levels, the average confidence level in the Payroll task was lower than the Gradebook

task, with a mean of 2.7 for Payroll and 2.8 for Gradebook.) The participants were

provided, in varying order, with the Gradebook and Payroll spreadsheets along with

their descriptions and were given 22 and 35 minutes respectively to test the

spreadsheet thoroughly and to ensure that it does not contain errors and works

according to the spreadsheet description. They were also instructed to fix any bugs

they find in the spreadsheets. The time limits involved on the spreadsheet tasks helped

us ensure that the participants worked on both spreadsheets.

3.2.2 Fault Localization Algorithm

We have been experimenting with three different fault localization algorithms

[Ruthruff et al. 2005B]. In this experiment, the participants were supported by a fault

localization algorithm known as Test Count [Ruthruff et al. 2003]. Let

NumFailingTests (NFT) be the number of failed tests in which a cell c has contributed

 16

to the output, and NumSuccessfulTests (NST) be the number of successful tests in

which c has contributed. With Test Count, if cell c has no failed tests, the fault

likelihood of c is “None”. Otherwise, the fault likelihood of cell c is computed as:

Fault likelihood(c) = max (1, 2*NFT - NST)

3.3 Current Experiment’s Procedures

Using Version Original as a base, we manipulated the numbers and types of oracle

mistakes to generate three additional versions of the data: Version FalsePositivesOnly,

Version FalseNegativesOnly, and Version Ideal.

3.3.1 Three Generated Versions

In Version FalsePositivesOnly, we removed each false negative mistake (in

which the user placed an X-mark on a value that was in fact correct), replacing it with

a non-mistaken judgment, namely a checkmark. To prevent this “what if” version

from straying too far from what the original participants actually saw, however, we

corrected each false negative mistake one at a time, in isolation from the others.

Specifically, we ran a simulation on the original data to collect the fault localization

feedback after each action, and as soon as a false negative mistake was detected, we

replaced the erroneous X-mark with its correct counterpart (a checkmark), reported the

new fault localization feedback that the system provided, and then restored the original

mistake before proceeding on with the simulation. This procedure prevented a

cascading effect from the accumulation of better feedback effects.

Similarly, in Version FalseNegativesOnly, we removed each false positive

mistake (in which the user checked off a value that was in fact incorrect), replacing it

 17

with a non-mistaken judgment, namely an X-mark, using the same safeguard against

accumulated effects as for Version FalsePositivesOnly.

By designing such a procedure we were able to isolate the difference in the

visual feedback provided by the system when a false positive / negative oracle mistake

was corrected, thus providing a way to determine the visual feedback that participants

would have seen, had they not made such an oracle mistake.

Version Ideal was intended to reflect the best feedback each participant could

have had if he or she had made no mistakes at all. It corrected both types of oracle

mistakes. For this version, there was no reason to guard against cascading effects; it

simply reflected the ideal feedback that could be achieved by making no oracle

mistakes when judging (marking) whatever cells each participant judged.

3.3.2 “Smart” Mistakes

Some users did not confine their use of the checkmarks and X-marks solely to

the way we designers had anticipated. The intent of the marks is to communicate

judgments of the correctness of the values of the cells they marked. However, during

several earlier think-aloud studies we have noticed users placing marks to

communicate judgments of the formulas. For example, even when a value was

Figure 4: The shaded sectors show the smart mistakes.

 18

incorrect, some users checked off the cell because the formula was correct. This is

indeed an oracle mistake, since it is falsely approving a value, but it has a possible

rationale behind it. Thus, we term this type of mistake as a smart mistake. The

remaining mistakes are termed no-rationale mistakes. See Figure 4.

In investigating the impacts of these two, mutually exclusive, subsets of

mistakes, we created a variation of Version Ideal that isolated the smart mistakes

(correcting only the no-rationale mistakes). This version is termed Version Smart.

3.4 Dependent Variables and Measures

For the portion of our investigation conducted via the observational study, the

observed dependent variables were the participants’ actual bugs fixed and their bugs

introduced. We chose to focus on these variables because oracle mistakes seem likely

to affect debugging success.

We also required a measure of the fault localization technique’s effectiveness.

Since an important goal of this experiment was to study the impact of oracle mistakes

on the visual feedback of our fault localization device, as in our previous work

[Ruthruff et al. 2005B], we defined the fault localization technique’s effectiveness as

the technique’s ability to correctly and visually differentiate the correct cells in the

spreadsheet from those that actually contain faults. Let FaultyCells(AvgFL) be the

average fault likelihood of colored faulty cells. Let CorrectCells(AvgFL) be the

average fault likelihood of colored correct cells. The formula to calculate visual

effectiveness (VE) according to this measure is then:

Visual Effectiveness = FaultyCells(AvgFL) – CorrectCells(AvgFL)

 19

4. Results

4.1 RQ1: Prevalence of Oracle Mistakes

As Table 1 illustrates, 17.1% and 22.5% of the judgments made in Gradebook and

Payroll, respectively, were mistaken. This frequency is even worse than that observed

in previous work [Ruthruff et al. 2005A, Ruthruff et al. 2005B], which ranged from

5% to a bit over 20%. In fact, in this study, only two out of the 51 participants

managed to not make oracle mistakes.

4.1.1 Magnitude of Mistakes

To gain further understanding of oracle mistakes that users make, we

investigated the magnitude of oracle mistakes. Magnitude of oracle mistakes was

measured as the percentage difference in the actual value (the value the participant

saw and made an oracle mistake on) against the correct value (the value that would

have been generated by Version Ideal). The bar graphs (Figures 5 and 6) indicate

percentage difference in the values on the X-axis and the corresponding count of

mistakes on the Y-axis.

Discussion: The bar graphs provide us with interesting results. 48 out of 148

(32.65%) no-rationale oracle mistakes in the Gradebook spreadsheet and 25 out of

133 (18.8%) in the Payroll spreadsheet had a percentage difference of 9% or less.

Table 1: Frequency of oracle mistakes for each task (as observed in Version Original).

 Task Number of

marks
(judgments)

Number
of

oracle
mistakes

% Number
of

false
positives

Number
of

false
negatives

Mean
mistakes
per user

Median

Gradebook
(n=51)

899 154 17.1 144 10 3.02 2

Payroll
(n=51)

1,696 381 22.5 354 27 7.27 4

 20

Mistakes with such a small percentage difference (less than 10%) in the actual value

and the correct value can occur easily, probably because of slight miscalculations or

improper approximations. Because these judgments were pretty close to the actual

values in the spreadsheet, they seem likely to be resistant to researchers’ (or users’)

attempts to eradicate them.

Magnitude of Oracle Mistakes

0

10

20

30

40

50

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 >100

Percentage Difference

N
um

be
r

of
 O

ra
cl

e
M

is
ta

ke
s

Figure 5: Number of no-rationale oracle mistakes categorized by percentage difference
in the Gradebook spreadsheet.

Magnitude of Oracle Mistakes

0

10

20

30

40

50

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 >100

Percentage Difference

N
um

be
r o

f O
ra

cl
e

M
is

ta
ke

s

Figure 6: Number of no-rationale oracle mistakes categorized by percentage difference
in the Payroll spreadsheet.

 21

4.2 RQ2: Impact on Visual Effectiveness

To measure the impact of oracle mistakes on the effectiveness of the fault

localization’s feedback, we compared the visual effectiveness of the feedback the user

actually saw to the visual effectiveness they might have seen if each single oracle

mistake had instead been a correct judgment. Since we wanted to stay as close as

possible to what the users really saw, Versions FalsePositivesOnly and

FalseNegativesOnly were the right versions for this question, but Version

FalsePositivesOnly had too few changes for any meaningful statistical analysis.

Thus, we compared Version Original with the version with most of the mistakes

removed (i.e., Version FalseNegativesOnly), using the following (null) hypothesis as a

statistical vehicle:

H2-1: There will be no difference between the visual effectiveness of the feedback

produced in Version Original and that produced in Version FalseNegativesOnly.

For both Gradebook and Payroll (Table 2), there was a significant difference in the

average visual effectiveness scores between the two versions (paired t-test: df = 50,

Gradebook: t=10.57, p<.001; Payroll: t=2.19, p=.03). Thus, we reject H2-1.

Discussion: Obviously, the use of a device, any device, in an incorrect manner will

negatively impact that device’s effectiveness. Still, this result combined with the

findings from RQ1 establishes a critical point: designing an interactive fault

localization device under the assumption that oracle mistakes can be ignored is not

reasonable. The investigation of RQ1 shows that oracle mistakes occurred with great

frequency and the investigation of RQ2 shows they did significant damage.

 22

Table 2: Mean / median of Version FalseNegativesOnly feedback and Version
Original. (Note: The mean/median are average visual effectiveness scores over all
participants)

 Visual Effectiveness
Version FalseNegativesOnly

Visual Effectiveness
Version Original

Gradebook .73 / .71 .01 / .00

Payroll .25 / .12 .01 / .00

4.3 RQ3: Relationship to Understanding

The results thus far clearly show that oracle mistakes are a major problem for end-

user fault localization devices.

But a possible remedy springs to mind: maybe lack of understanding of the fault

localization device is causing the problem. If that is the case, we might work on

increasing users’ understanding of the device to reduce the number of oracle mistakes.

To consider whether this would be a profitable direction, we considered the following

hypothesis:

H3-1: There will be no relationship between users’ oracle mistakes and their

understanding of the debugging device.

Oracle Mistakes

0
1
2
3
4
5
6
7
8
9

0 10 20 30 40

U
nd

er
st

an
di

ng

Figure 7: Most participants made between 1 and 10 oracle mistakes, regardless of their
understanding scores.

 23

Understanding was measured via post-session questionnaire scores, with a

maximum score possible of 10. Regression analysis on the observed data in Version

Original (Figure 7), showed no significant relationship between the users’

understanding of the debugging device and the number of oracle mistakes made

(linear regression: F(1,49) = .104, β=.204, R2= .002, p = .75).

Discussion: The users’ understanding of the device does not seem implicated. The

results show that participants with a better understanding of the device did not make

fewer mistakes.

4.4 RQ4: Impact on Debugging

Section 4.2 considered the system’s ability to produce good feedback in the

presence of oracle mistakes by making comparisons with a generated version of the

data. We now turn to solely observed data to consider the user’s ability to succeed at

debugging in the presence of oracle mistakes.

H4-1: The number of oracle mistakes users made will have no relationship to the

number of bugs they fixed or introduced.

Results of the regression analyses of the participants’ number of oracle mistakes

Table 3: Regression analyses of number of oracle mistakes vs. bugs fixed and bugs
introduced.

Progress Measure F(1,49) Β R2 p-value
Gradebook:

Fixed 4.34 -.179 .081 .043
Introduced 8.02 .195 .141 .007

Payroll:
Fixed < .001 < .001 < .001 .986
Introduced .69 .021 .014 .411

 24

compared to their ability to fix the bugs we seeded, and to avoid introducing new

bugs, is shown in Table 3. The regression coefficient is the slope of the least squares

fitting of number of mistakes against the progress measures.

We found a significant relationship between oracle mistakes and both bugs fixed and

introduced for the Gradebook task (linear regression: data shown in Table 3). While

debugging the Gradebook task, participants made 154 oracle mistakes, introduced 82

bugs and fixed 173 bugs. The Payroll task, however, did not show any significant

relationship between the number of oracle mistakes a user made and the user’s

debugging. While performing the Payroll task, participants made 371 oracle mistakes,

introduced 68 bugs, while fixing 150 bugs. In the Gradebook spreadsheet the number

of oracle mistakes was directly proportional to the number of bugs fixed and inversely

proportional to the number of bugs introduced (See Figure 8). Thus, for the Gradebook

task, we reject H4-1. (Even so, note that the low R2 values do not indicate a good fit

despite the level of significance.)

Discussion: We were surprised that on the Payroll task, the harder of the two,

oracle mistakes had no relationship to a user’s debugging success. However, a closer

Oracle Mistakes

Fi
xe

d

Oracle Mistakes

In
tro

du
ce

d

Figure 8: Relationship between oracle mistakes and bugs fixed, bugs introduced in the
Gradebook spreadsheet.

 25

analysis of the characteristics of the oracle mistakes themselves may explain this,

which we consider next.

4.5 RQ5: Impact of Smart Mistakes

Consider the implications of making a “smart” oracle mistake. For example,

suppose the user placed an X-mark on a cell with a correct value but an incorrect

formula. Most fault likelihood algorithms are based on evidence of “guilt” (judgments

that values are bad), and this is the case with our fault localization algorithm as well.

As a result, this cell will be colored “more faulty” (darker in our prototype) because

the user has just implicated it. Thus, although the user has mistakenly communicated

that the value is wrong; a desirable side effect is that this cell, which is indeed faulty,

has just gotten darker. For this particular cell then, its visualized fault likelihood is

better than if the user had not made the oracle mistake!

However, looking to this cell’s backward slice (the cells contributing to this cell’s

value), there is likely to be a detrimental effect on visual effectiveness, because all of

these cells will be wrongly labeled as contributing to an incorrect value (which they

did not), and as therefore being potentially faulty.

So, these “smart” mistakes are helpful in some respects and harmful in others. To

consider just how helpful or harmful they are, we compared the effects of smart

mistakes to the ideal:

Table 4: Number of smart mistakes made compared to total number of mistakes.

 Number of
smart mistakes

Number of
oracle mistakes

%

Gradebook 10 154 6.5
Payroll 213 381 55.9

 26

-0.5

0
0.5

1
1.5

2

 Participants
A

ve
ra

ge
 V

. E
.

Figure 9: Average visual effectiveness for each participant under Version Smart (light
bars) and Version Ideal (dark bars).

H5-1: There will be no difference in visual effectiveness between Version Smart

and Version Ideal.

As Table 4 shows, there were only a few smart mistakes in the Gradebook task,

but over half of the oracle mistakes in Payroll were smart mistakes. (This is

interesting, and could be tied to the difference in relative difficulty between the two.)

Because Gradebook had so few smart mistakes, the effects of smart mistakes on its

visual effectiveness scores could not be analyzed statistically, but we analyzed Payroll

as follows. The feedback in Version Smart (the version from which the no-rationale

mistakes had been corrected) was compared to that of Version Ideal. The difference in

the average visual effectiveness scores was not significant in magnitude, due in part to

the fact that there were also a number of correct marks present. However, as Figure 9

shows, the average visual effectiveness score for each participant under Version Smart

was higher a startling number of times (11 out of 19 times). Analysis of these counts

showed that Version Smart indeed had significantly better feedback than Version Ideal

(Fishers Exact Test: p = .03).

Discussion: Our results above showed that, for this particular spreadsheet, smart

 27

mistakes were better than perfection! These results may, of course, be due to the

particular relationships present in that spreadsheet. (For example, for a spreadsheet

with longer dataflow chains the detrimental effect on the backward slice could

outweigh the positive effect on the cell that was directly marked.) But despite the fact

that in some cases the global negatives could win out, the fact remains that this type of

mistake was extremely common in Payroll, and has a strongly positive impact on the

cell being marked.

RQ5’s result may explain the differences that were seen between Gradebook and

Payroll in RQ4. Many of the mistakes in Payroll were smart mistakes, and RQ5

implies that these mistakes would not have deleterious effects on debugging.

Finally, recall that the results of RQ2 showed that, overall, oracle mistakes had a

negative impact on visual effectiveness. Since the smart mistakes included in RQ2’s

results were actually helping the visual effectiveness of the feedback, the implication

is that the no-rationale mistakes had a very strong negative effect—strong enough to

significantly negate the positive effects of correct marks and smart mistakes together.

 28

5. Implications for Designers of End-User Environments

Given these results, how should designers of end-user environments proceed? At

least two possible strategies present themselves: (1) find ways to lessen the impact of

no-rationale mistakes, and (2) find ways to strengthen the positive impacts of smart

mistakes.

As it happens, the Test Count fault localization algorithm already tempers the

negative impact of no-rationale mistakes. The way it does so is through a “robustness”

property [Ruthruff et al. 2005B]. Suppose there is a cell c marked with an X-mark.

The robustness property requires that all cells in the backward slice of cell c receive at

least some visual fault coloring, no matter how many positive tests have also been run.

This feature guarantees that any faulty cell contributing to a failure the user observed

will be one of the cells highlighted. Since false positives were by far the most common

type of oracle mistake, without this robustness feature, the detrimental impact of

mistakes would have been even worse than it was in our study.

Another fortunate attribute of Test Count is that it gives double the weight to

negative judgments as it does to positive judgments (refer back to Section 3.2 for the

calculation). This is fortunate because most of the mistakes were false positives, not

false negatives, as has also been true in our previous experiments. Hence, correct

judgments are getting more weight than incorrect ones. This may well account for the

mostly positive (above zero) visual effectiveness scores observed throughout our

results.

The surprising results of RQ5 suggest an opportunity for improved robustness. We

realized that any negative effects of smart mistakes must be solely the global effects,

 29

since locally a smart mistake is actually beneficial. The Test Count algorithm used,

gives equal weight to local and global impacts of the marks made. Thus, we wondered

if reducing the impact a mark can have on cells in its backward slice (or equivalently,

increasing the local impact) would improve visual effectiveness. We decided to

evaluate this idea empirically.

Recall from Section 3.2 that NumFailingTests (NFT) is the number of failed tests in

which a cell c participated, and NumSuccessfulTests (NST) is the number of

successful tests in which c participated. For an increased effect on local impacts (an

algorithm variant we will term “Test Count Local”), we partitioned NFT into NFT_L

(number of failed tests locally) and NFT_G (number of failed tests globally).

Similarly, we partitioned NST into NST_L and NST_G. To double the impact of local

decisions, the fault localization formula for Test Count Local is thus defined as:

Fault likelihood(c) = max (1, (4*NFT_L + 2*NFT_G) -

 (2*NST_L + NFT_G))

We then compared the visual effectiveness of the feedback the participants actually

received (Version Original) to that which they would have received with the Test

Count Local algorithm. A paired t-test (used in the same manner as in RQ2 on visual

Table 5: Mean / median of visual effectiveness with Test Count Local and Test Count
Original

 Visual Effectiveness
Test Count Local

Visual Effectiveness
Test Count Original

Gradebook .94 / 1.00 .36 / .35

Payroll .38 / .39 .09 / .13

 30

effectiveness scores) revealed that Test Count Local produced feedback whose visual

effectiveness was significantly better than the feedback produced by Test Count

Original (paired t-test: Gradebook: df =23, t=4.73, p<.001; Payroll: df=31, t=2.99,

p=.005). See Figure 10 and Table 5. This is especially revealing since Gradebook had

few smart mistakes whereas Payroll had many. Thus, the local emphasis used in Test

Count Local was significantly better overall at ameliorating the effects of oracle

mistakes than Test Count Original.

These results do not appear to be specific to our particular Test Count algorithm. In a

previous investigation of fault localization algorithms [Ruthruff et al. 2005B], one

algorithm, Nearest Consumer, outperformed the other two (one of which was Test

-3

-2

-1

0

1

2

3

A
ve

ra
ge

 V
. E

.

Participants

-3

-2

-1

0

1

2

3

A
ve

ra
ge

 V
. E

.

Participants

Figure 10: Average visual effectiveness for each user with Test Count Local (light bars)
versus Test Count Original (dark bars). Top: Gradebook Bottom: Payroll

 31

Count), both with and without the presence of oracle mistakes. We were unable to

explain this, since Nearest Consumer actually uses less information and is less precise

than Test Count. However, it emphasizes local impacts in a manner similar to Test

Count Local, which now seems likely to have played an important role in that

algorithm’s increased effectiveness and robustness.

 32

6. Conclusion

In this work, we have investigated the impact of different types of oracle mistakes

on the quality of visual feedback that can be achieved by end-user fault localization

devices based on testing. Our investigation uncovered these surprising results:

• Contrary to traditional assumptions, it is not reasonable to ignore oracle

mistakes in designing interactive fault localization devices: oracle mistakes

occur with too great frequency and have too destructive impacts for such an

assumption to be reasonable.

• Finding ways to improve users’ understanding of testing and fault

localization devices is not likely to solve the problem of oracle mistakes.

• There is a subset of oracle mistakes (termed “smart” mistakes) that is

actually helpful—achieving better effects locally than even ideal (oracle

mistake-free) performance.

These findings lead to implications that can be employed by interactive fault

localization algorithms to help ameliorate the effects of oracle mistakes.

• Smart mistakes turned out to be helpful locally. Thus, weighing the local

effects more than the global effects for the marks users place should help

fault localization algorithms continue to give good feedback even in the

presence of smart mistakes.

• The fault localization algorithms should have a robustness feature.

• Previous work as well as this work shows that users make a lot more false

positive oracle mistakes than false negative oracle mistakes. Hence negative

judgments should be trusted more than the positive judgments.

 33

Empirical results in this work as well as previous work [Ruthruff et al. 2005B]

provide evidence that using these features can significantly improve the effectiveness

of interactive fault localization devices for end-user programmers.

 34

Bibliography

[Abraham and Erwig 2004] R. Abraham and M. Erwig, “Header and unit inference for
spreadsheets through spatial analyses”, Proc. IEEE Symp. Visual Languages and
Human-Centric Computing, 2004, 165-172.

[Ahmad et al. 2003] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi, “A

type system for statically detecting spreadsheet errors”, Proc. IEEE Intl. Conf.
Automated Software Engineering, 2003, 174-183.

[Ayalew and Mittermeir 2003] Y. Ayalew and R. Mittermeir, “Spreadsheet

debugging”, Proc. European Spreadsheet Risks Interest Group, 2003.

[Beckwith et al. 2005] L. Beckwith, M. Burnett, S. Wiedenbeck, C. Cook, S. Sorte, M.

Hastings, “Effectiveness of end-user debugging software features: Are there
gender issues?”, Proc. ACM Conf. Human Factors in Computing Systems, 2005,
869-878.

[Betts and Horowitz 2004] M. Betts and A. S. Horowitz, “Oops! Audits find errors in

49 out of 54 spreadsheets”, Computerworld, May 24, 2004, page 47.

[Boehm et al. 2000] B. W. Boehm, C. Abts, A. W. Brown, and S. Chulani. Software

Cost Estimation with COCOMO II. Prentice Hall PTR, Upper Saddle River, 2000.

[Burnett et al. 2001] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reichwein, and

S. Yang, “Forms/3: A first-order visual language to explore the boundaries of the
spreadsheet paradigm”, J. Functional Programming, 11, 2, 2001, 155- 206.

[Burnett et al. 2003] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and

C. Wallace, “End-user software engineering with assertions in the spreadsheet
paradigm”, Proc. Intl. Conf. Software Engineering, 2003, 93-103.

[Burnett et al. 2004] M. Burnett, C. Cook, and G. Rothermel, “End-user software

engineering”, Comm. ACM, 2004, 53-58.

[Davis 1996] J. S. Davis, “Tools for spreadsheet auditing”, Intl. J. Human-Computer

Studies, 45, 1996, 429-442.

[Hilzenrath 2003] D. S. Hilzenrath, “Finding errors a plus, Fannie says; Mortgage

giant tries to soften effect of $1 billion in mistakes”, The Washington Post,
October 31,
2003.

[Igarashi et al. 1998] T. Igarashi, J. D. Mackinlay, B. W. Chang, and P. T. Zellweger,

“Fluid visualization of spreadsheet structures”, Proc. IEEE Symp. Visual
Languages, 1998, 118-125.

 35

[Ko and Myers 2003] A. J. Ko and B. A. Myers, “Development and evaluation of a

model of programming errors”, Proc. IEEE Symp. Human-Centric Computing
Languages and Environments, 2003, 7-14.

[Ko and Myers 2004] A. J. Ko and B. A. Myers, “Designing the Whyline: A

debugging interface for asking questions about program failures”, Proc. ACM
Conf. Human Factors Computing Systems, 2004, 151-158.

[Panko 1995] R. Panko, “Finding spreadsheet errors: Most spreadsheet errors have

design flaws that may lead to long-term miscalculation”, Information Week, May
1995, 100.

[Panko 1998] R. Panko, “What we know about spreadsheet errors”, J. End User

Computing, 1998, 15-21.

[Prabhakararao et al. 2003] S. Prabhakararao, C. Cook, J. Ruthruff, E. Creswick, M.

Main, M. Durham, and M. Burnett, “Strategies and behaviors of end-user
programmers with interactive fault localization”, Proc. IEEE Symp. Human-
Centric Computing Languages and Environments, 2003, 15–22.

[Robertson et al. 2003] G. Robertson, “Officials red-faced by $24m gaffe: Error in

contract bid hits bottom line of TransAlta Corp.”, Ottawa Citizen, June 5, 2003.

[Rothermel et al. 2001] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov,

“A methodology for testing spreadsheets”, ACM Trans. Software Engineering and
Methodology, 10, 1, 2001, 110-147.

[Ruthruff et al. 2003] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S.

Prabhakararao, M. Fisher II, and M. Main, “End-user software visualizations for
fault localization”, Proc. ACM Symp. Software Visualization, 2003, 123-132.

[Ruthruff and Burnett 2004] J. Ruthruff and M. Burnett, “Interactive Fault

Localization Techniques to Empower the Debugging Efforts of End-User
Programmers”, Technical Report, Oregon State University, 04-60-10, July 2004.

[Ruthruff et al. 2004] J. Ruthruff, A. Phalgune, L. Beckwith, M. Burnett, and C. Cook,

“Rewarding ‘good’ behavior: End-user debugging and rewards”, Proc. IEEE
Symp. Visual Languages and Human-Centric Computing, 2004, 107-114.

[Ruthruff et al. 2005A] J. Ruthruff, S. Prabhakararao, J. Reichwein, C. Cook, E.

Creswick, and M. Burnett, “Interactive, visual fault localization support for end-
user programmers”, J. Visual Languages and Computing, 16, 1-2, 2005, 3-40.

[Ruthruff et al. 2005B] J. Ruthruff, M. Burnett, and G. Rothermel, “An empirical

study of fault localization for end-user programmers”, Proc. Intl. Conf. Software

 36

Engineering. 2005, 352-361.

[Sajanieme 2000] J. Sajanieme, “Modeling spreadsheet audit: A rigorous approach to

automatic visualization”, J. Visual Languages and Computing, 11, 1, 2000, 49-82.

[Scaffidi et al. 2005] C. Scaffidi, M. Shaw and B. Myers, “Estimating the numbers of

end users and end user programmers”, Proc. IEEE Symp. Visual Languages and
Human-Centric Computing, Dallas, Texas, USA, 2005 (to appear).

[Wagner and Lieberman 2004] E. J. Wagner and H. Lieberman, “Supporting user

hypotheses in problem diagnosis on the web and elsewhere”, Proc. Intl. Conf.
Intelligent User Interfaces, 2004, 30-37.

[Weyuker 1982] E. Weyuker, “On testing non-testable programs”, The Computer

Journal, 25, 4, 1982, 465-470.

 37

Appendices

 38

Appendix A: Tutorial Materials

Introduction

Hi, my name is Amit Phalgune, and I will be leading you through today’s study.

The other people involved in this study are Dr. Margaret Burnett, Dr. Curtis Cook,
Laura Beckwith, Joey Ruthruff, and the assistants helping me out today.

Just so you know, I’ll be reading through this script so that I am consistent in the
information I provide you and the other people taking part in this study, for scientific
purposes.

The aim of our research is to help people create correct spreadsheets Past studies
indicate that spreadsheets contain several errors like incorrectly entered input values
and formulas. Our research is aimed at helping users find and correct these errors.

For today’s experiment, I’ll lead you through a brief tutorial of Forms/3, and then you
will have a few experimental tasks to work on.

But first, I am required by Oregon State University to read aloud the text of the
“Informed Consent Form” that you currently have in front of you:
(Read form).

Please do NOT discuss this study with anyone. We are doing later sessions and would
prefer the students coming in not to have any advance knowledge.

Questions?

Contact:
 - Dr. Margaret Burnett burnett@cs.orst.edu
 - Dr. Curtis Cook cook@cs.orst.edu

Any other questions may be directed to IRB Coordinator, Sponsored Programs Office,
OSU Research Office, (541) 737-8008

Background Questionnaire (hand it out, have them fill it out)

 39

Tutorial

Before we begin, I’d like to ask if anyone in here is colorblind. We will be working
with something that requires the ability to distinguish between certain colors, and so
we would need to give you a version that does not use color.

In this experiment, you will be working with the spreadsheet language Forms/3. To
get you familiarized with the features of Forms/3, we’re going to start with a short
tutorial in which we’ll work through a couple of sample spreadsheet problems. After
the tutorial, you will be given two different spreadsheets; asked to test the
spreadsheets, and correct any errors you find in them.

As we go through this tutorial, I want you to ACTUALLY PERFORM the steps I’m
describing. For example, at times I will want you to click the left mouse button, at
times I will want you to click the middle mouse button (the scroll button in the middle
of your mouse) and at other times I will want you to click the right mouse button. I
will be very clear regarding what actions I want you to perform. Please pay attention
to your computer screen while you do the steps.
If you have any questions, please don’t hesitate to ask me to explain.
For each spreadsheet that we will be working with, you will have a sheet of paper
describing what the spreadsheet is supposed to do.

(Hand out PurchaseBudget Description)

Let’s read the description of the “PurchaseBudget” spreadsheet now.

(Wait for them to read)

Now open the PurchaseBudget spreadsheet by selecting the bar labeled
PurchaseBudget at the bottom of the screen with your left mouse button.

This is a Forms/3 spreadsheet. There are a few ways that Forms/3 spreadsheets look
different than the spreadsheets you may be familiar with:
Forms/3 spreadsheets don’t have cells in a grid layout. We can put cells anywhere
(select and move a cell around a bit). However, just like with any other spreadsheet,
you can see a value associated with each cell.
We can give the cells useful names like PenTotalCost (point to the cell on the
spreadsheet).
You can also see that some cells have colored borders.

Let’s find out what the red color around the border means. Rest your mouse on top of
the border of the PenTotalCost cell (show wave the mouse around the cell and then
rest mouse on border). Note that a message will pop up and tell us what this color
means. Can anyone tell me what the message says? (PAUSE, look for a hand.) Yes,
it means that the cell has not been tested.

 40

You might be wondering, what does testing have to do with spreadsheets? Well, it is
possible for errors to exist in spreadsheets, but what usually happens is that they tend
to go unnoticed. It is in our best interest to find and weed out the bugs or errors in our
spreadsheets so that we can be confident that they are correct.

So, the red border around the cells is just telling us that the cell has not been tested. It
is up to us to make a decision about the correctness of the cells based on how we know
the spreadsheet should work. In our case, we have the spreadsheet description that
tells us how it should work.

Observe that the Pens and Paper cells do not have any special border color (wave
mouse around cells). Such cells without colored borders are called input cells. Cells
with colored borders are called formula cells.

Let’s test our first cell. To do this, we’ll examine the TotalCost cell. Is the cell’s
value of zero correct? (PAUSE for a second). Well, let’s look at our spreadsheet
description. Look at the Total Cost section of the spreadsheet. It says, “The total cost
is the combined cost of pens and paper.” Well, both PenTotalCost and PaperTotalCost
are zero, so TotalCost appears to have the correct value.

Now drag your mouse over the small box with a question mark in the upper-right-hand
corner of the cell. Can anyone tell me what the popup message says? (PAUSE, wait
for answer.) Yes, it says that if the value of this cell is correct, we can left-click and if
the value of the cell is wrong, we can right-click. It also tells us that these decisions
help test and find errors.

So let’s left-click the question mark in this decision box for TotalCost. Notice what
happened. Three things changed. A checkmark replaced the question mark in the
decision box (wave mouse). The border colors of some cells changed—three cells
have blue borders instead of red, and the percent testedness indicator changed to 28%
(point to it). Forms/3 lets us know what percent of the spreadsheet is tested through
the percent testedness indicator. It is telling us that we have tested 28% of this
spreadsheet.

Now if you accidentally place a checkmark in the decision box, if the value in the cell
was really wrong, or if you haven’t seen the changes that occurred, you can "uncheck"
the decision about TotalCost by left-clicking on that checkmark in TotalCost’s
decision box. (Try it, and Pause) Everything went back to how it was. The cells'
borders turned back to red, the % testedness indicator dropped back to 0% and a
question mark reappeared in the decision box.

Since we’ve already decided the value in the TotalCost cell is correct, we want to
retell Forms/3 that this value is correct for the inputs. So left-click in the decision box
for TotalCost to put our checkmark back in that box.

 41

You may have noticed that the border colors of the PenTotalCost and PaperTotalCost
cells are both blue. Now let’s find out what the blue border indicates by holding the
mouse over the PenTotalCost cell's border in the same way as before. The message
tells us that the cell is fully tested. (PAUSE) Also notice the blank decision box in the
PenTotalCost and PaperTotalCost cells. What does that mean? Position your mouse
on top of the box to find out why it is blank. A message pops up that says we have
already made a decision about this cell. But wait, I don't remember us making any
decisions about PenTotalCost or PaperTotalCost. How did that happen?

Let's find out. Position your mouse to the TotalCost cell and click the middle mouse
button. Notice that colored arrows appear. Click the middle mouse button again on
any one of these arrows—it disappears. (PAUSE) Now, click the middle mouse button
again on TotalCost cell—all the other arrows disappear. Now bring the arrows back
again by re-clicking the middle mouse button on TotalCost.

Move your mouse over to the top blue arrow and hold it there until a message appears.
It explains that the arrow is showing a relationship that exists between TotalCost and
PenTotalCost. The answer for PenTotalCost goes into or contributes to the answer for
TotalCost. (PAUSE)

Oh, ok, so does explain why the arrow is pointed in the direction of TotalCost? Yes it
is, and it also explains why the cell borders of PenTotalCost and PaperTotalCost
turned blue. Again, if you mark one cell as being correct and there were other cells
contributing to it, then those cells will also be marked correct. (PAUSE) We don’t
need those arrows on TotalCost anymore, so let’s hide them by middle-clicking on the
TotalCost cell.

Now, let’s test the BudgetOk cell by making a decision whether or not the value is
correct for the inputs. What does the spreadsheet description say about my budget?
Let me go back and read…oh yeah, “You cannot exceed a budget of $2000”.

This time, let’s use the example correct spreadsheet from our spreadsheet description
to help us out. Let’s set the input cells of this sheet identical to the values of our
example correct spreadsheet in the spreadsheet description. The Pens cell is already
zero. But we need to change the value of the Paper cell to 400 so that it matches the
example spreadsheet in the description. How do I do this? Move your mouse to the
Paper cell and rest the mouse cursor over the little button with an arrow on the bottom-
right-hand side of the cell. It says “Click here to show formula.” Let’s do that by
clicking on this arrow button. A formula box popped up. Change the 0 to a 400, and
click the Apply button. I think I’m done with this formula, so let’s hide it by clicking
on the “Hide” button. Moving on, in this example correct spreadsheet, PensOnHand is
25, and PaperOnHand is 21. (Wave paper around) Oh good, my spreadsheet already
has these values, so I don’t have to change anything.

 42

Now, according to this example correct spreadsheet, BudgetOk should have the value
“Budget Ok”. But it doesn’t; my spreadsheet says “Over Budget”. So the value of my
BudgetOK? cell is wrong. What should I do?

Remember, anytime you have a question about an item of the Forms/3 environment,
you can place your mouse over that item, and wait for the popup message. To remind
us what the question mark means, move your mouse to the BudgetOk decision box.
The popup message tells us that if the cell’s value is wrong to right-click. Well, this
value is wrong, so go ahead and right-click on the question mark in this decision box.

Hey, look at that! Things have changed! Why don’t you take a few seconds to
explore the things that have changed by moving your mouse over the items and
viewing the popup messages.

Now let’s make a decision about TotalCost’s value. For the current set of inputs,
TotalCost should be 1600. But our TotalCost cell says 2800. That means the value
associated with the TotalCost cell is “Wrong”. Let’s right-click in the decision box to
place an X-mark. Take a few seconds to explore anything that might have changed by
moving your mouse over the items and viewing the popup messages.

Finally, I notice that, according to the example spreadsheet in my description,
PaperTotalCost should be 1600. But our value is 2800, and that is wrong. So let’s
place an X-mark on this cell as well.

There is at least one bug in a formula somewhere that is causing these three cells to
have incorrect values. I’m going to start looking for this bug by examining the
PaperTotalCost cell. Let’s open PaperTotalCost’s formula. PaperTotalCost is taking
the value of the Paper cell and multiplying it by 7. Let me go back and read my
spreadsheet description. I’m going to read from the “Costs of Pen and Paper” section.
(read the section) So the cost of paper is four dollars, but this cell is using a cost of
seven. This is wrong. So let’s change the 7 in this formula to a 4, and click the Apply
button to finalize my changes.

Hey wait, my total spreadsheet testedness at the top of my window went down to 0%!
What happened? Well, since we corrected the formula, Forms/3 had to discard some
of our previous testing. After all, those tests were for the old formula. I have a new
formula in this cell, so those tests are no longer valid. But, never fear, I can still retest
these cells.

For example, the value of this PaperTotalCost cell is 1600, which matches the
example spreadsheet in my description. Since this cell is correct, let’s left-click to
place a checkmark in the decision box for PaperTotalCost. Oh good, the percent
testedness of my spreadsheet went up to 7%; I got some of my testedness back.

Let’s work on getting another cell fully tested. Look at the value of the PaperQCheck
cell. Is this value correct? Let’s read the second paragraph at the top of the

 43

spreadsheet description. (read it) With a value of 400 in the Paper cell, and a value of
21 in the PaperOnHand cell, we have 421 sheets of paper, which is enough to fill our
shelves. Since the PaperQCheck cell says “paper quantity ok”, its value is correct. So
let’s click in the decision box of this cell to place a checkmark.

But wait! The border of this cell is only purple. Let’s rest our mouse over this cell
border to see why. The popup message says that this cell is only 50 percent tested.

Let’s middle-click on this cell to bring up the cell’s arrows. Hey, the arrows are both
purple too. Let’s rest our mouse over the top arrow that is coming from the Paper cell.
Ah ha, the relationship between Paper and PaperQCheck is only 50% tested! So there
is some other situation we haven’t tested yet. Let’s change the value of the Paper cell
to see if we can find this other situation. Click on the little button with an arrow on
the bottom-right-hand side of the cell. Let’s try changing the value to 380, and click
the Apply button.

Now look at the decision box of the PaperQCheck cell. It is blank. I don’t remember
what that means, so let’s rest my mouse over the decision box of this PaperQCheck
cell. Oh yeah, it means I’ve already made a decision for a situation like this one.
Okay, let’s try another value for the Paper cell. I’m going to try a really small value.
Move your mouse back to the formula box for the Paper cell, change its value to 10,
and left-click the Apply button. Now push the Hide button on this formula box.

Now look at the PaperQCheck cell. There we go! The decision box for the cell now
has a question mark, meaning that if I make a testing decision on this cell, I will make
some progress. Let’s look at the cell’s value. Well, with 10 in the Paper cell and 21 in
the PaperOnHand cell, I have 31 paper on stock. Is this enough paper? The
spreadsheet description says I need 400 reams of paper, but I only have 31. So this is
not enough paper. And the PaperQCheck cell says “not enough paper”. Well, this is
correct, so let’s left-click on the PaperQCheck cell’s decision box. Alright! The
border changed to blue, and even more, the spreadsheet is now 35% tested.We don’t
need those arrows on PaperQCheck anymore, so let’s hide them by middle-clicking on
the PaperQCheck cell.

Why did it take two checkmarks to fully test the PaperQCheck cell? Let’s open the
cell’s formula to find out (open the formula). See that this formula has an if-then-else
statement. It says that if the sum of Paper and PaperOnHand is less than 400, then
the cell should display “not enough paper”. Else or otherwise, it should display
“paper quantity ok”. In other words, for PaperQCheck, if Paper plus PaperOnHand is
less than 400, then “not enough paper” should appear in the cell, and if Paper plus
PaperOnHand is greater than or equal to 400, “paper quantity ok” should appear in the
cell.Push the Hide button on the formula box of the PaperQCheck cell.

Now let’s look at the PenQCheck cell. This cell is displaying “pen quantity ok”. Is
this correct? Our spreadsheet description says you must keep more than 68 boxes of
pens on hand. But we only have 25 boxes of pens on hand, because the Pens cell is 0

 44

and the PensOnHand cell is 25. So even though we don’t have enough pens, the
PenQCheck cell is displaying “pen quantity ok”. This value is not correct, so let’s
right-click on the question mark in PenQCheck’s decision box.

I’ll give you a couple minutes to try to fix the bug that caused PenQCheck to have this
wrong value. After a couple minutes, we’ll fix the bug together to make sure that
everyone found it.
(wait exactly two minutes)

Okay, let’s start by looking at PenQCheck’s formula. Unless you have changed this
cell’s formula, it says that if the sum of the Pens and PensOnHand cells is greater than
68, then the cell should contain “not enough pens”, and otherwise it should contain
“pen quantity ok”. But let’s go back and look at our spreadsheet description and read
that second paragraph again. It says that we only need to keep 68 or more boxes of
pens in stock. So, based on the description PenQCheck should really print “pen
quantity ok” if Pens plus PensOnHand is greater than 68, and otherwise it should print
“not enough pens”. So let’s change this formula accordingly and push the “Apply”
button when we are done. (wait a second). Note that PenQCheck now displays the
correct value. So let’s go ahead and put a checkmark in this cell by left-clicking on
the question mark.

Look at the bottom of the description. It says, “Test the spreadsheet to see if it works
correctly, and correct any errors you find.” Remember, if you are curious about any
aspect of the system, you can hover your mouse over the item and read the popup.
Also, you might find those checkmarks and X-marks to be useful. Starting now,
you’ll have a few minutes to test and explore the rest of this spreadsheet, and to fix
any bugs you find. Remember, your task is at the bottom of your spreadsheet
description.

 45

Number: __________
Background Questionnaire

1. Gender (circle your selection): Male / Female

2. Age < 20 20 – 30 30 – 40 40 – 50 50 – 60 >60

3. Major or Educational Background: ______________________

4. Year or Degree Completed: Fresh. Soph. Jun. Sen. Post Bac. Grad.

5. Cumulative GPA: ______________________

6. Do you have previous programming experience?

a. High school:

• How many courses? _____

• What programming languages?

b. College:

• How many courses? _____

• What programming languages?

c. Professional and/or recreational

• How many years? _____

• What programming languages?

 46

7. Have you ever created a spreadsheet for (please check all that apply):

 A high school course How many? ____________

 A college course How many? ____________

 Professional use How many years? ____________

 Personal use How many years? ____________

8. Have you participated in any previous Forms/3 experiments? Yes / No

9. Is English your primary language? Yes / No

If not, how long have you been speaking English? ______ years.

 47

Pre-session Questionnaire

The following questions ask you to indicate whether you could use a new spreadsheet
system under a variety of conditions. For each of the conditions please indicate
whether you think you would be able to complete the job using the system.

Given a spreadsheet which performs common tasks (such as calculating course grades
or payroll) I could find and fix errors:

... if there was no one
around to tell me what to
do as I go.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I had never used a
spreadsheet like it before.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I had only the
software manuals for
references.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I had seen someone
else using it before trying
it myself.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I could call someone
for help if I got stuck.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if someone else had
helped me get started.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I had a lot of time to
complete the task.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I had just the built-in
help facility for assistance.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if someone showed me
how to do it first.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I had used similar
spreadsheets before this
one to do this same task.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

 48

Gradebook.frm

Here is a gradebook spreadsheet problem. Let’s read the second paragraph at the top
of the description:

“Your task is to test the updated spreadsheet to see if it works correctly and to correct
any errors you find.”

The frontside of this description describes how the spreadsheet should work.

Also, if you turn to the backside of this sheet (turn over your description), you’ll see
that two correct sample report cards are provided to you. You can use these to help
you in your task.

Remember, your task is to test the spreadsheet, and correct any bugs you find. To help
you do this, use the checkmarks by left-clicking cell decision boxes, and use the X-
marks by right-clicking decision boxes.

Start your task now, and I’ll tell you when time is up.

(Task is 22 minutes)

 49

Number: _________

Post-session Questionnaire (Gradebook)

I. Circle the answer corresponding to how much you agree or disagree with the
following statements.

1. I am confident that I found all the bugs in the Gradebook spreadsheet? (circle
one)

Strongly Disagree Neither Agree Agree Strongly
Disagree Nor Disagree Agree

2. I am confident that I fixed all the bugs in the Gradebook spreadsheet? (circle

one)

Strongly Disagree Neither Agree Agree Strongly
Disagree Nor Disagree Agree

II. How much additional time would you need to complete this task?

 _____ None. It only took me _____ minutes.

 _____ None. I took about the entire time.

 _____ I would need about _____ more minutes.

 _____ I am not sure.

 50

Now that you have worked with the software mark your answers for the following:

I could find and fix errors in a spreadsheet using this software …

... if there was no one
around to tell me what
to do as I go.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I had never used a
spreadsheet like it
before.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I had only the
software manuals for
references.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I had seen
someone else using it
before trying it myself.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I could call
someone for help if I
got stuck.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if someone else had
helped me get started.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I had a lot of time
to complete the task.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I had just the
built-in help facility for
assistance.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if someone showed
me how to do it first.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

... if I had used similar
spreadsheets before
this one to do this same
task.

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

 51

Payroll.frm

Here is a payroll spreadsheet problem. Let’s read the second paragraph at the top of
the description:

“Your task is to test the updated spreadsheet to see if it works correctly and to correct
any errors you find.”

The frontside of this description describes how the spreadsheet should work.

Also, if you turn to the backside of this sheet (turn over your description), you’ll see
that two correct sample payroll stubs are provided to you. You can use these to help
you in your task.

Remember, your task is to test the spreadsheet, and correct any bugs you find. To help
you do this, use the checkmarks by left-clicking cell decision boxes, and use the X-
marks by right-clicking decision boxes.

Start your task now, and I’ll tell you when time is up.

(Task is 35 minutes)

 52

Number: _________
Post-session Questionnaire (Payroll)

I. Circle the answer corresponding to how much you agree or disagree with the
following statements.

3. I am confident that I found all the bugs in the Payroll spreadsheet? (circle one)

Strongly Disagree Neither Agree Agree Strongly
Disagree Nor Disagree Agree

4. I am confident that I fixed all the bugs in the Payroll spreadsheet? (circle one)

Strongly Disagree Neither Agree Agree Strongly
Disagree Nor Disagree Agree

3. How much additional time would you need to complete this task?

 _____ None. It only took me _____ minutes.

 _____ None. I took about the entire time.

 _____ I would need about _____ more minutes.

 _____ I am not sure.

(please turn page over)

 53

4. Mark how you found the following features for finding and fixing errors:

Cell border colors
helped me make
progress

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

Interior Cell
Coloring (yellow
and red) helped me
make progress

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

X-marks helped me
make progress

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

Checkmarks
(√)helped me make
progress

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

Pop up messages
helped me make
progress

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

Arrows helped me
make progress

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

Percent tested
indicator helped
me make progress

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

Bug likelihood bar
helped me make
progress

Strongly
Disagree

Disagree Neither
Agree Nor
Disagree

Agree Strongly
Agree

4b. Rank your preference for the following features (1 – most preferred feature; 2 –
2nd most preferred feature; 3 – 3rd most preferred feature; and so on):

_______ Cell border colors

_______ Interior cell colorings

_______ X-marks

_______ Checkmarks

_______ Pop-up messages

_______ Arrows

_______ Percent testedness indicator

_______ Bug likelihood bar

 54

Q5 to Q10: Refer to the Figure Above and choose your answers from the choices
below.
 One or more Questions can have the same answer.

5. If we place an X- mark in cell D the color of the cell D:

a. Remains the same
b. Gets darker
c. Gets lighter
d. Don’t know

6. If we place an X- mark in cell D the color of the cell C
a. Remains the same
b. Gets darker
c. Gets lighter
d. Don’t know

7. If we place an X- mark in cell D the color of the cell E

a. Remains the same
b. Gets darker
c. Gets lighter
d. Don’t know

 55

Assume for the next three Questions (8-10) that an X- mark has been placed on
the cell D.

8. If we place an X- mark in cell C the color of the cell C

a. Remains the same
b. Gets darker
c. Gets lighter
d. Don’t know

9. If we place an X- mark in cell C the color of the cell B

a. Remains the same
b. Gets darker
c. Gets lighter
d. Don’t know

10. If we place a Checkmark in cell C the color of the cell D

a. Remains the same
b. Gets darker
c. Gets lighter
d. Don’t know

11. What does a blue border of a cell with a yellow-orange interior mean (refer to
above figure)? (Circle 1 option for each part)

a) The value is: (circle
1)

CORRECT WRONG COULD BE
EITHER

b) The cell is: (circle
1)

TESTED UNTESTED COULD BE
EITHER

c) The cell has: (circle
1)

BUG
LIKELIHOOD

NO BUG
LIKELIHOOD

COULD BE
EITHER

d) My answers to a, b,
and c are just guesses.

YES, JUST
GUESSES

NO, NOT GUESSES

e) The combination of
blue border and
yellow-orange interior
colors on this cell:
(circle 1)

MAKES SENSE MAKES NO SENSE NOT SURE

 56

12. What does the X- mark in the decision box mean?

13. In the above figure what does the orange color in the interior of the cell mean?

14. In the above figure what does it mean when the colors in the interior of one cell is
darker the others?

Please provide any other general comments you may have regarding the cell interior
colorings:

 57

15. In the above figure what does the bug likelihood bar mean?

Please provide any other general comments you may have regarding the bug
likelihood bar:

(please turn page over)

 58

Did you place X marks? If yes answer Question 16, otherwise answer Question 17

16. When I placed an X mark…

… the computer made bad
decisions with them.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

… I worried they would
distract me from my original
goal.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

… I was afraid that I would
not use them properly.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

… it seemed like they were
causing problems with the
spreadsheet.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

… I worried that they would
not help achieve my goal(s).

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

… I was afraid I would take
too long to learn them.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

17. I did not place X marks because…

… the computer would make
bad decisions with them.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

… I worried they would
distract me from my original
goal.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

… I was afraid that I would
not use them properly.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

… it seemed like they could
cause problems with the
spreadsheet.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

… I worried that they would
not help achieve my goal(s).

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

… I was afraid I would take
too long to learn them.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

18. If there are still errors in the spreadsheet this is because… (Circle 1 reason you
agree with most)
 a. The computer should have helped me spot the errors
 b. I should have spent more time trying to find the errors
 c. There was not enough time
 d. None of the above

 59

Appendix B: Spreadsheets and Spreadsheet Descriptions
PURCHASE BUDGET

You are in charge of ordering office supplies for the office you work at. You must
order enough pens and paper to have on hand, but you cannot spend more than your
allotted budget for office supplies.

You must keep more than 68 boxes of pens and 400 reams of paper on hand and you
cannot exceed a budget of $2000.

Pen and Paper
The quantity of pens and paper that you are ordering and the quantity you have on
hand.

Costs of Pen and Paper
The cost of pens is $2 per box, and the cost of paper is twice that, $4.

Pen and Paper Check
These cells are used to check to ensure you are ordering enough pens and paper to
restock the shelves.

Total Cost
The total cost is the combined cost of pens and paper. The BudgetOK cell determines
if you went over your allotted budget.

Task: Test the spreadsheet to see if it works correctly and correct any errors you find.

Example data for correct spreadsheet

Pens
Paper

PensOnHand
PaperOnHand

PenTotalCost
PaperTotalCost

PenQCheck
PaperQCheck

TotalCost
BudgetOK?

0
400

25
21

0
1600

not enough pens
paper quantity ok

1600
Budget ok

 60

GRADEBOOK SPREADSHEET PROBLEM
Another teacher has updated a spreadsheet program that computes the course grade of
a student. Two correct sample report cards and information about the class’ grading
policy are provided.
Your task is to test the updated spreadsheet to see if it works correctly and to correct
any errors you find.

Quizzes
There are five quizzes. The lower of the first two quiz scores is dropped. The average
quiz score is then the average of the highest four quiz scores.

Midterm Exams
There are three midterms. The first midterm has 50 possible points; however, it must
be adjusted to a “0-100” percentage scale. The third midterm score is curved; students
receive a two-point bonus if their score is not zero.

The lower of the first two midterm scores is dropped. The average midterm score is
then the average of the third midterm and the higher of the first two midterm scores.

Final Exam
There is one final exam. It has 146 possible points. It must be adjusted to a “0-100”
percentage scale.

Exam Average
The exam average is the average of three scores: the two highest midterm scores and
the final exam score.

Course Average
Quizzes are worth 40% of a student’s grade. Midterms are worth 40% of a student’s
grade. The final exam is worth 20% of a student’s grade.

Course Grade
A student’s course grade is determined by their course average, in accordance with the
following scale:

90 and up : A
80 - 89 : B

70 – 79 : C
60 - 69 : D
Below 60 : F

 61

 Example Correct Gradebook Report Cards

Report Card John Doe

Quiz1 81.25
Quiz2 100
Quiz3 100
Quiz4 96
Quiz5 100
Quiz_Average 99

Midterm1 (Original) 45
Midterm2 96
Midterm3 (Original) 80
Midterm_Average 89

Final 129
Final_Percentage 88.36

Course_Avg 92.87
Course_Grade A

Report Card Mary Smith

Quiz1 0
Quiz2 88.24
Quiz3 85
Quiz4 87
Quiz5 100
Quiz_Average 90.06

Midterm1 (Original) 24
Midterm2 61
Midterm3 (Original) 66
Midterm_Average 64.5

Final 106
Final_Percentage 72.6

Course_Avg 76.34
Course_Grade C

 62

List of bugs in the Gradebook spreadsheet

The Gradebook spreadsheet was seeded with five faults created by real end users.

Table 6: List of bugs in Gradebook spreadsheet: Output cells with their formulas when
the spreadsheet is first loaded. (Note: All the other input cells have a value 0)

Cellname Original Formula Correct Formula
Curved_Midterm3 if Midterm3 > 0 then 2

else 0
if Midterm3 > 0 then
Midterm3+2 else 0

Quiz_Avg ((Quiz1 + Quiz2 + Quiz3 +
Quiz4 + Quiz5) -
Min_Quiz1_Quiz2) / 5

((Quiz1 + Quiz2 + Quiz3 +
Quiz4 + Quiz5) -
Min_Quiz1_Quiz2) / 4

Midterm_Avg Midterm1_Perc +
Midterm2 +
Curved_Midterm3 -
Min_Midterm1_Midterm2
/ 2

(Midterm1_Perc +
Midterm2 +
Curved_Midterm3 -
Min_Midterm1_Midterm2)
/ 2

Exam_Avg (Midterm_Avg +
Final_Percentage) / 3

(Midterm_Avg*2 +
Final_Percentage) / 3

Course_Avg (Quiz_Avg * 0.4) +
(Midterm_Avg * 0.4) +
(Final_Percentage * 0.2) /
10

(Quiz_Avg * 0.4) +
(Midterm_Avg * 0.4) +
(Final_Percentage * 0.2)

 63

Table 7: Formula’s of output cells in the Gradebook spreadsheet (Note: All the other
input cells have a value 0)

Cell Name Original Formula
Min_Quiz1_Quiz2 if (Quiz1 < Quiz2) then Quiz1

else Quiz2
Midterm1_Perc 2 * Midterm1

Min_Midterm1_Midterm2 if (Midterm1_Perc < Midterm2) then
Midterm1_Perc
else Midterm2

Curved_Midterm3 if Midterm3 > 0
then 2
else 0

Final_Percentage Final / 146 * 100
Quiz_Avg ((Quiz1 + Quiz2 + Quiz3 +

Quiz4 + Quiz5) - Min_Quiz1_Quiz2) /
5

Midterm_Avg Midterm1_Perc + Midterm2 +
Curved_Midterm3 -
Min_Midterm1_Midterm2 / 2

Exam_Avg (Midterm_Avg +
Final_Percentage) / 3

Course_Avg (Quiz_Avg * 0.4) +
(Midterm_Avg * 0.4) +
(Final_Percentage * 0.2) / 10

Course_Grade if Course_Avg >= 90 then "A"
else
(if Course_Avg >= 80 then "B"
else
(if Course_Avg >= 70 then "C"
else
(if Course_Avg >= 60 then "D"
else "F")))

 64

PAYROLL SPREADSHEET PROBLEM

• A spreadsheet program that computes the net pay of an employee has been
updated by one of your co-workers.

• Below is a description about how to compute the answers.
• On the backside of this sheet are two correct examples, which you can

compare with the values on screen.
Your task is to test the updated spreadsheet to see if it works correctly and to correct
any errors you find.

FEDERAL INCOME TAX WITHHOLDING

To determine the federal income tax withholding:

1. From the monthly adjusted gross pay subtract the allowance amount (number
of allowances claimed multiplied by $250). Call this amount the adjusted
wage.

2. Calculate the withholding tax on adjusted wage using the formulas below:
a. If Single and adjusted wage is not greater than $119, the withholding

tax is $0; otherwise the withholding amount is 10% of (adjusted wage –
$119).

b. If Married and adjusted wage is not greater than $248, the withholding
tax is $0; otherwise the withholding amount is 10% of (adjusted wage –
$248).

SOCIAL SECURITY AND MEDICARE

Social Security and Medicare is withheld at a combined rate of 7.65% of Gross Pay.
The Social Security portion (6.20%) will be withheld on the first $87,000 of Gross
Pay, but there is no cap on the 1.45% withheld for Medicare.

INSURANCE COSTS

The monthly health insurance premium is $480 for Married and $390 for Single.
Monthly dental insurance premium is $39 for Married and $18 for Single. Life
insurance premium rate is $5 per $10,000 of insurance. The monthly employer
insurance contribution is $520 for Married and $300 for Single.

ADJUSTED GROSS PAY

Pretax deductions (such as child care and employee insurance expense above the
employer’s insurance contribution) are subtracted from Gross Pay to obtain Adjusted
Gross Pay.

 65

 Example Correct Payroll Stubs

John Doe Month Year-To-Date

Marital Status – Single
Allowances 1
Gross Pay 6,000.00 54,000.00
Pre-Tax Child Care 0.00
Life Insurance Policy Amount 10,000
Health Insurance Premium 390.00
Dental Insurance Premium 18.00
Life Insurance Premium 5.00
Employee Insurance Cost 413.00
Employer Insurance Contribution 300.00
Net Insurance Cost 113.00
Adjusted Gross Pay 5,887.00
Federal Income Tax Withheld 551.80
Social Security Tax 372.00
Medicare Tax 87.00
Total Employee Taxes 1,010.80
Net Pay 4,876.20

Mary Smith Month Year-To-Date

Marital Status – Married
Allowances 5
Gross Pay 8,000.00 72,000.00
Pre-Tax Child Care 400.00
Life Insurance Policy Amount 50,000
Health Insurance Premium 480.00
Dental Insurance Premium 39.00
Life Insurance Premium 25.00
Employee Insurance Cost 544.00
Employer Insurance Contribution 520.00
Net Insurance Cost 24.00
Adjusted Gross Pay 7,576.00
Federal Income Tax Withheld 607.80
Social Security Tax 496.00
Medicare Tax 116.00
Total Employee Taxes 1,219.80
Net Pay 6,356.20

 66

List of bugs in the Payroll spreadsheet

The Payroll spreadsheet was seeded with five faults created by real end users.

Table 8: List of bugs in Payroll spreadsheet: Output cells with their formulas when the
spreadsheet is first loaded. (Note: All the other input cells have a value 0)

Cellname Original Formula Correct Formula
SingleWithHold if AdjustedWage < 119 if AdjustedWage < 119

then 0 else
(AdjustedWage -119) *.10

 then 0
else (AdjustedWage -248) *.10

MarriedWithHold if GrossPay < 248
 then 0
else (GrossPay – 248)*.10

if AdjustedWage < 248
then 0 else
(AdjustedWage - 248)*.10

SocSec if GrossOver87K = 0
then (GrossPay * 0.062 * 0.0145)
else (87000 * GrossPay * 0.062 *
0.0145)

if GrossOver87K = 0
then (GrossPay * 0.062)
else (87000 * 0.062)

SocSec if GrossOver87K = 0
then (GrossPay * 0.062 * 0.0145)
else (87000 * GrossPay * 0.062 *
0.0145)

if GrossOver87K = 0
then (GrossPay * 0.062)
else (87000 * 0.062)

AdjustedGrossPay GrossPay - PreTax_Child_Care –
EmployeeInsurCost

GrossPay -
PreTax_Child_Care -
NetInsurCost

 67

Table 9: Formula’s of output cells in Payroll spreadsheet when it is first loaded. (Note:
All the other input cells have a value 0)

Cell Name Original Formula
FedWithHoldAllow Allowances * 250

AdjustedWage AdjustedGrossPay - FedWithHoldAllow
SingleWithHold if AdjustedWage < 119

 then 0
else (AdjustedWage -248) *.10

MarriedWithHold if GrossPay < 248
 then 0
else (GrossPay - 248)*.10

FedWithHold if (MStatus = "Single") then SingleWithHold
else MarriedWithHold

NewYTDGrossPay YTDGrossPay + GrossPay
GrossOver87K if NewYTDGrossPay > 87000

 then NewYTDGrossPay - 87000
else 0

SocSec if GrossOver87K = 0
 then (GrossPay * 0.062 * 0.0145)
else (87000 * GrossPay * 0.062 * 0.0145)

Medicare GrossPay *.0145
LifeInsurPremium LifeInsurAmount *.0005

HealthInsurPremium if MStatus="Married"
 then 480
else 390

DentalInsurPremium if MStatus = "Married"
 then 39
else 18

AdjustedGrossPay GrossPay - PreTax_Child_Care -
EmployeeInsurCost

EmployeeInsurCost HealthInsurPremium + LifeInsurPremium +
DentalInsurPremium

EmployerInsurContrib if MStatus = "Married"
 then 520 else 300

NetInsurCost if EmployeeInsurCost >
EmployerInsurContrib
 then EmployeeInsurCost -
EmployerInsurContrib
else 0

EmployeeTaxes SocSec + Medicare + FedWithHold
NetPay AdjustedGrossPay - EmployeeTaxes

Mstatus (Input cell, the formula is a
constant)

Single

 68

Appendix C: Visual Feedback provided by Test Count and Test Count
Local Fault Localization Algorithms

Figure 10: Visual feedback with Test Count fault localization algorithm.

Figure 11: Visual feedback with the Test Count Local fault localization algorithm.
Observe that, in this example, the faulty cells, Midterm_Avg and Exam_Avg cells, are
colored darker when compared to the feedback in Figure 10 based on the Test Count
algorithm.

	1. Introduction
	
	
	
	
	
	
	
	
	
	
	
	
	2. Background and Related Work
	
	3. Experiment
	4. Results
	
	6. Conclusion
	Appendix A: Tutorial Materials
	Appendix B: Spreadsheets and Spreadsheet Descriptions
	
	
	
	Appendix C: Visual Feedback provided by Test Count and Test Count Local Fault Localization Algorithms

