
AN ABSTRACT OF THE THESIS OF

JIMMIE LYNN ELLIOTT for the degree of MASTER OF SCIENCE

in Computer Science presented on June 5, 1975

Title: COMPUTER PERFORMANCE AND EVALUATION UTILIZING

THE RESOURCE PLANNING AND MANAGEMENT SYSTEM

Abstract approved:
Redacted for privacy

Robert A. Short

A review of current computer performance and evaluation tech-

niques reveals a lack of an acceptable analytic tool for optimal computer

system performance and evaluation.

A generalized approach to the formulation of a third generation

computer system model is proposed. The approach is used to opti-

mize computer resource utilization and to obtain an upper bound on

the system throughput level.

The Stimler computer model is represented as a Resource

Planning and Management System (RPMS) network and optimized by

Linear programming algorithms. The results are portrayed by an

adaptation of the Kiviat graph technique. An application of finite state

and context-free grammar theory led to extensions of the current

RPMS theory in the form of postulates dealing with compaction, de-

composition, and expansion.

Future areas to be exploited include multi-objective goal pro-

gramming, integer programming, stochastic programming, and

functional level analysis.

Computer Performance and Evaluation
Utilizing the Resource Planning

and Management System

by

Jimmie Lynn Elliott

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

June 1976

APPROVED:

Redacted for privacy

Professor and Chairman of Computer Science
in charge of major

Redacted for privacy

Dean of Graduate School

Date thesis is presented May 5, 1975

Typed by Susie Kozlik for Jimmie Lynn Elliott

DEDICATION

Dedicated to my loving wife, Linda Marie,

who always encouraged me to continue

and who already has her Master's.

ACKNOWLEDGEMENTS

I would like to thank the members of my committee:

Dr. R. A. Short, Major Professor

Dr. M. S. Inoue, Minor Professor

Dr. L. C. Hunter, Major Department Representative

Dr. J. F. Engle, Graduate School Representative

With special appreciation to Dr. Short for giving the geometric

shape of a circle new meaning, and to Dr. Inoue for doing the same

for squares and triangles.

Further, to acknowledge the assistance of the Salem, Oregon,

branch office of IBM for supplying the copy of IBM report TR 00.2043,

the Gibson Mix, which appears in the Appendix.

Last but not least, to acknowledge the assistance of my typist

Mrs. Susie Kozlik for her outstanding job done under a severe time

constraint.

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION
Research Objective
Structure of the Thesis

1

3

4

II PRESENT STATUS OF COMPUTER PERFORMANCE
AND EVALUATION TECHNIQUES 6

General Observations 6

Formulations and Weighting Schemes 12
Instructional Mixes 13
Kernels 15
Benchmark 15
Synthetic Models 16
Kiviat Graphs 18

Monitors 20
Mathematical Programming 21
Simulation 22
Conclusions 23

III RESOURCE PLANNING AND MANAGEMENT
SYSTEM (RPMS) 24

Linear Programming 24
Components of RPMS 28
Postulates of RPMS 33
RPMS Conventions 35
Construction of the RPMS Network 36
Solution of RPMS Network 36
Solution Procedure for RPMS Networks 37

IV PROPOSED APPROACH 42
Developing a Universal CPE Model 43

V THE RPMS APPROACH APPLIED TO CPE:
BATCH VS ON-LINE 47

Discussion of Results 53

VI EXTENTIONS OF RPMS THEORY 59

VII CONCLUSIONS 70
General and Summary 70
Future Areas of Research 72

Chapter Page

BIBLIOGRAPHY 75

APPENDICES
Appendix A -
Appendix B -
Appendix C -
Appendix D -
Appendix E -
Appendix F -
Appendix G

Glossary of Terms
Butler's Formula
011ivier's Formula
Instruction Category Descriptions
Gibson Mix - IBM Report
Kiviat Graphs
Lee's GOAL Programming for CYBER

79
82
84
86
88

93

LIST OF TABLES

Table

1 CPE Techniques Summary

2 Scientific and Business Mixes

Page

10

14

LIST OF FIGURES

Figure

Lucas's Recommended CPE Purposes and

Page

1-1
Techniques 11

2-1 Morris's Kiviat Graph Axis Labels 19

3-1 RPMS Nodal Conventions 32

3-2 RPMS Basic Flaw 33

3-3 RPMS Cause and Effect Diagrams 34

3-4 RPMS Terminal Nodes 34

3-5 RPMS Feasibility and Optimality Conditions 38

3-6 RPMS Network of Example Step 1 39

3-7 Example Step 2 40

3-8 Example Step 3 and 4 41

3 -9 Example Final Solution 41

4-1 Stimler's Model 45

4-2 Expanded Stimler Model 45

4-3 RPMS Diagram of Stimler Subsystem 46

5-1 Basic Applied Model 50

5-2 Double LP 51

5-3 Tripple LP 52

5-4 Kiviat Graphs of Batch vs On-Line 57

6-1 Finite State Machine 59

6-2 RPMS Representation of Finite State 60

Figure Page

6-3 RPMS S & R Relationships 61

6-4 Concatenated RPMS Finite State Machine 61

6-5 Von Neumann Model 62

6-6 Hellerman Model 64

6-7 Multiple Nodes 66

6-8 Original On-Line Path 68

6-9 Compacted On-Line Path 68

7-1 Time and Cost Comparison of CPE Technique 71

COMPUTER PERFORMANCE AND EVALUATION
UTILIZING THE RESOURCE PLANNING

AND MANAGEMENT SYSTEM

I. INTRODUCTION

Computer performance and evaluation, abbreviated as CPE, is

endowed with potential benefits for the computer community. Theo-

retically, CPE is capable of providing many urgently needed answers

to problems faced today in areas such as procurement, planning,

costing, scheduling, designing, and optimization (Highland, 1974). Of

these areas, procurement and optimization are shared by both com-

puter manufacturers and systems users. Procurement is defined as

the selection and specification of systerxis components. Optimization

refers to the process of maximizing some system objective(s) through

judicious allocation of resources.

In the procurement area, currently only 20 to 40 percent of all

computer acquisitions are based upon any performance evaluation

(Kanter, 1970). Typically such studies benefit only the users. In the

area of optimization no practical tool has been available.

Procurement and optimization can both be viewed in quantifiable

terms. Two prime terms which are normally calculated are availa-

bility and system capability. Availability refers to how much time a

system is normally available to do productive work. System capability

is an expression of what a system is capable of performing while it is

available (Drummond, 1970, p. 4).

2

Cost and time are two major factors which require that the

availability and system capability be evaluated for a computer system

(Bell, 1972). In this context, cost is the monetary amount invested

in a system while time is the delay caused by the system in performing

prescribed tasks. Both of these factors are used as the evaluation

criteria.

New systems evolve as the result of recent research and develop-

ment efforts. Research and development is expensive and time con-

suming. The manufacturer needs an objective evaluation tool to

assess both the strength and weakness of prototype systems and to

identify design areas requiring further work. The buyer also needs

an objective evaluation tool to predict the performance of his proposed

system before he can justify the time and cost involved in the conver-

sion.

Once a system has been selected, its design and performance

continue to be challenged. An existing system may perform the

originally prescribed tasks satisfactorily, but changes in the amount

and mix of tasks to be processed by a system occur frequently. The

users are often not aware of the tasks that a computer system is

capable of performing until after the system has been operational for

some time. Also technological advances provide new alternatives for

systems improvements. The recurring questions are (1) whether or

not the existing system capacity is adequate for processing the new

job mix, and (2) does the change in job-mix and new technology

warrant the investment in time and money required to upgrade the

system.

There are several terms used to describe system capability.

Throughput is the most popular of these. Throughput is an expression

of the processing rate of a system (Drummond, 1973, p. 15).

This study proposes an approach which is helpful to both the

manufacturers and users in answering the system capability question

in terms of throughput. The approach is based upon the Stimler com-

puter model (Stimler, 1974) represented by the Resource Planning and

Management System (Riggs and Inoue, 1975) networks and optimized by

Linear programming algorithms.

The examples used during this study indicate that this approach

has the potential for becoming a valuable tool in system selection for

procurement and system optimization for operation.

Research Objective

The research objective is to develop an approach to answer the

computer performance and evaluation questions centered around

throughput and capacity. The objective will be considered attained

when answers to the following questions are obtainable from the

application of the proposed approach:

4

* What is the maximum system throughput rate?

* How much system capacity is currently idle in the existing system?

* What system component is currently restricting the throughput at its

present level?

* What is the job-mix that will maximize the throughput?

* What is the minimum equipment characteristic to obtain the desired

throughput?

* What is the marginal value of the system component that is currently

restricting the throughput?

Structure of the Thesis

This introductory chapter discussed the need for a practical

systematic approach to the performance and evaluation of computer

systems.

Chapter II reviews existing computer performance and evalua-

tion techniques.

Chapter III introduces the Resource Planning and Management

System, and applies it to the computer performance and evaluation

technique of linear programming. The results of this analysis are

portrayed by a series of Kiviat graphs.

Chapter IV describes the proposed approach for solving the

capacity problem.

5

Numerical examples are included in Chapter V.

An application of finite state and context-free grammar theory

led to extensions of the current RPMS theory in the form of postulates

dealing with compaction, decomposition, and expansion is presented

in Chapter VI.

Chapter VII discusses the significance of this study and proposes

future research- possibilities.

II. PRESENT STATUS OF COMPUTER PERFORMANCE
AND EVALUATION TECHNIQUES

General Observations

The area of computer performance and evaluation, abbreviated

CPE, is a relatively young discipline within the field of computer

science. The first major text appeared in 1973 (Drummond), and there

is still considerable disagreement as to what CPE purports.

The following definitions are offered to illustrate some current

views:

Evaluation is ascertaining the value of a computer system
and measurement is ascertaining the extent of a computer
system (Drummond, 1973).

To some, computer performance, evaluation and measure-
ment is a tool, a marriage of abstract thought and logic
combined with the techniques of statistical and quantitative
methods. To others, it is a technique with heavy reliance
on modeling and simulation and simultaneously involves
features of both classical experimentation and formal
analysis (Highland, 1974).

System performance evaluation is used to determine how
well a specific system is meeting or may be expected to
meet specific diversified processing requirements at
specific interfaces (Stimler, 1974).

The following definition summarizes these views and will be used

for this study:

Computer performance and evaluation determines computer
system's capacity by examining the attainment level of
prescribed goals.

Several terms need to be defined before we can proceed further

with the study. The following definitions are taken from IFIPS (1971):

7

A task is a number of steps which are partially or wholly

ordered from the point of view of their execution.

A program is a complete specification of one or more tasks that

are to be performed on data.

A job is a basic independent unit of work to be carried out by a

system.

The following definitions are taken from Drummond (1973),

Stimler (1974), and Bell (1972):

Throughput is an expression of the processing rate of a system,

given as some unit per time interval (e. g. , jobs/hour).

Relative systems throughput is the relative estimate of the per-

formance of a proposed computing system. RST = Tb/Tm where

Tb = throughput rate of a base or standard computing system; Tm

throughout rate of the proposed or new computing system.

Capacity is the maximum average throughput achieved when the

system is at 100 percent utilization (Stimler, 1974).

Response time is the average time a user must wait to receive

a response from a system once a task has been initiated (Bell, 1972).

A standard set of terms currently does not exist for CPE. The

terms presented are given as the most popular and accepted units of

measure employed in CPE efforts at the time of this writing. At

present, the National Bureau of Standards is working on compiling a

composite bibliography of the most commonly used terms with their

definitions. 1

Conceptually, there are two major areas where CPE is critically

important. The first of these is in the original selection of a com-

pletely new system. This new system can be either an initial system

for a new user or the total replacement of an existing system. The

second major application of CPE is in replacement which involves

the selective changing of individual parts of a system. Replacement

is important not only to existing systems, but also is useful in evalu-

ating the alternative selection of parts of a new system.

CPE tends to be practiced by technicians with the results trans-

mitted only to other practitioners. Although CPE efforts are initiated

by managerial level personnel, once the assigned CPE effort has

entered the realm of the practitioners, the results are seldom fed

back to the managerial level in a useful form. This is due to the

volume of data that most CPE techniques generate. Simple answers

with meaningful results are needed.

To practice CPE, one or more of the techniques discussed in

this chapter is employed to attain a specific goal.

For the purpose of this study, we shall accept one or more of

1A set of the most commonly used terms and their definitions
are given in the Appendix A.

the following as the primary goal(s) of any CPE effort related to

procurement or optimization.

1. Minimize the total initial system cost while maintaining some

accepted level of system throughput.

2. Maximize utilization of the existing resources in the system.

3. Minimizing the amount of additional resources to be ac-

quired in order to increase the system's capability to meet future job

requirements.

These three goals correspond roughly to the statement of feasi-

bility, optimality, and adaptivity of any system. The term "resource"

is used to designate a productive component of the computer system

that can be assigned for use in completing a task, and thus embodies

both the concept of system capacity and availability. I/O channels,

line-printers, and CPU time-slices are examples of hardware re-

sources. Operating systems, compilers, and data files are examples

of software resources. A resource that is utilized economically in-

creases its marginal value by minimizing its idle-time. Thus,

interpreting the CPE goals in terms of resource utilization, we are

justified in considering CPE as a problem in optimal resource alloca-

tion (Hellerman, 1970). If the availability of the resources and the

goals can be expressed in a mathematical form, the CPE problem

may be interpreted as a mathematical programming model that max-

imizes (or minimizes) an objective function or a functional subject to

Table 1. CPE Techniques Summary.

Symbol Description Total Time
Required (Hours)

Total Cost
Required ($)

Applicability
to Procurement
(Selection)

Amount of
Optimization
Properties

Shortcomings

(A) Formulation Low Low Poor Poor Parallelism not considered

(B) Instruction Mixes Low Low Poor Poor I/O not considered

(C) Kernels Medium Medium Fair Poor Identification difficult

(D) Benchmarks Medium Medium to
high

Good Poor An approximation or multi
programming not considered

(E) Synthetic Models Low Low Fair Poor Data dependent

(K) Kiviat Graphs Low Low Fair Fair Supportive tool only

(G) Monitors Medium Medium to
high

Fair Fair System dependent or requires
system modification

(H) Mathematical Programming High High Good Good Data difficult to obtain

(I) Simulation High High Good Good High cost and time delay

Poor: Gives little aid
Fair : Some aid but inadequate
Good: Satisfactory

1-+

Selection
Evaluation

Synthetic
Modules

Primary Use

Secondary Use

Performance
Evaluation

Hardware,
Software
Monitors

11

12

a set of resource constraints. When all relationships are approxi-

mated linearly, the standard linear programming approach becomes

feasible.

Before undertaking the new approach, however, it is imperative

that we examine the existing techniques of computer performance and

evaluation in use today. A cursory review of the "state of the art"

is presented by giving a short description and a statement of the

relative shortcomings of each major CPE technique. Table 1 sum-

marizes the CPE techniques.

Formulations and Weighting Schemes

Among the various CPE formulations, the two most prominent

studies are those conducted by Knight (Sharp, 1969) and Butler (1970).

These formulations attempted to derive one single term as a

numerical measure for the evaluation or selection process. For

example, Butler calculates a total price to performance ratio that is

the average of the hardware and software price-performance ratios.

Butler's complete formulation is given in Appendix B.

An extension of this approach is the concept of weighting schemes

which assign different weights to individual factors according to appli-

cations. The weights and measures purport to be a refinement upon

the formulation technique. One example of weights and measures is

given by 011ivier (1970). 011ivier calculates a single figure based

13

upon hardware characteristics and manufacturer's past performance.

011ivier's complete scheme is included in Appendix C.

The major advantage of all these methods is that an evaluation

can be carried out rapidly and at a low total cost. The major dis-

advantages are that the formulas do not accommodate the parallelism

of more advanced computer architecture.

Instructional Mixes

In an attempt to improve the methods of evaluations used for

computers, an extension of formulation, called instruction mixes, was

conceived. Instruction mixes use the weighted sum of execution times

of the individual instructions to arrive at a single numerical value.

Instructional mixes are generally broken down into the two

classes: business and scientific mixes (Sharp, 1969). A business

mix contains a heavier weight of those instructions which are more

frequently used in a business environment. A scientific mix places

the emphasis on the instructions which are more computation oriented.

Table 2 contains an example of both kinds of mixes (Sharp, 1969).

Appendix D contains a detailed description of each instruction cate-

gory in the two mixes.

Arbuckle made an early attempt at deriving a mix (1966) but the

most widely used instruction mix is one attributed to Gibson (1970).

14

A complete copy of Gibson's original paper is included in Appendix E.

Table 2. Scientific and Business Mixes.

Instruction Category Scientific Business

1. Fixed Add/Subtract
and compare 10 25

2. Floating Add/Subtract 10

3. Multiply 06 01

4. Divide 02

5. Other manipulation &
logic instructions 72 74

100 100

(All entries in Table 2 are in percent)

The major advantage of this type of evaluation is that the actual

execution times are readily available.

The disadvantages are as follows:

1. The mixes do not include any category for Input-Output type

of instructions.

2. A subjective approach is used to weigh each class of

instructions.

3. Medium and large scale computers are now used for both

business and scientific work, thus making the two classifica-

tions of mixes meaningless.

15

Kernels

The kernel approach to CPE was developed from the observation

that computer systems run the same application repeatedly. The

kernel analysis is performed by running a kernel program and obtain-

ing a figure that reflects the amount of time required. The kernel

program is defined as that portion of a program that takes the greatest

amount of execution time (Drummond, 1973). Typical kernels include

matrix inversion, polynomial evaluation, and square root approxima-

tion (Timmerick, 1973).

A kernel analysis is only appropriate when the system executes

one task repeatedly for a major portion of the total time that the sys-

tem is in use. It further assumes that its kernel is easily identified.

The advantage of kernel analysis over the formulation method

is that it weighs each group of instructions more objectively.

The disadvantage is that an adequate consideration of I/O and

and administrative overhead, such as operating systems, is not in-

cluded.

Benchmark

Benchmark analysis was developed for systems which run one

prime program but where the simple kernel approach is inadequate.

Benchmark has been defined as a sophisticated kernel (Timmerick,

16

1973). Benchmark, typically, is a production program that dominates

the system or data processing needs of an organization.

The main problem associated with benchmarking is the time

required to run the benchmark. A typical benchmark test involves 24

operational hours. Additionally, a benchmark does not evaluate the

composite system that includes non-production jobs. A non-production

job is taken to mean a task that does not reduce the amount of produc-

tion jobs the system must run within a time frame. Further, bench-

marking requires the coding job be done for each individual system to

be evaluated using the same level of programmer expertise.

The major advantage of benchmarking is that it is often the only

practical way to check new systems that are to be used for replacement.

Benchmarking shows that a system can run a specific job. This is

accomplished executing the benchmark job and timing the run.

The major limitation is that only an approximation of the true

environment can be obtained. Environment is taken here to mean all

conditions related to the use of the system. A benchmark serves best

as a before-and-after test to monitor performance in conjunction with

system changes (Lucas, 1971).

Synthetic Models

Synthesis is the creation of the whole from its parts. A synthesis

model is created by combining all of the subsystems to make the

17

composite system (Drummond, 1973). Hence, a subsystem is any

part of the system that can be taken as a separate system by itself.

Several definitions are needed to clarify the discussion to follow.

-CPU is a mneumonic used for the central processing unit of a computer

system. I/0 includes all functions external to the CPU. Overlap

is said to occur when either two or more I/O devices, or the CPU and

at least one I/O device are operating concurrently.

Throughput can be determined by using a synthetic model which

combines the I/O and the CPU time and considers overlap to yield a

total system time. The synthetic model technique has been successful

because of the availability of data to build the models and the fact that

the interactions between components can be easily understood

(Callengaert, 1967).

The true power and flexibility of this technique is based upon

how the level of overlap is implemented and how detailed the model

is (Drummond, 1973).

The major advantage is that this method is easy to implement

because the data are readily available. The disadvantage is that the

accuracy of the result is contingent upon the validity of the source data

in the user environment.

18

Kiviat Graphs

A Kiviat graph is a circular graph with polar coordinates that

was first proposed by Philip J. Kiviat. It was further developed by

the Federal Computer Performance and Evaluation Center (FEDSIM)

into an aid to visually display the interrelationships existing between

various attributes of a computer system.

In the following description of Kiviat graph methodology, the

term tuning is defined as making minor changes to an existing system

to increase system efficiency (Bell, 1972). The term local identifies

the particular computer system that is being evaluated at the time.

(1) Select an even number of performance indicators, half
of which are locally regarded as "good" when they increase
due to tuning efforts, and half of which are locally regarded
as "bad" when they increase. (2) Divide a circle into as
many symmetrical segments as there are performance
indicators, beginning with the vertical axis from the circle
center to the outmost point on the circle's arc (3) Number
the top vertical axis one and number the rest of the axes
sequentially around the circle; (4) Plot the "good" indi-
cators on the odd numbered axes and the "bad" indicators
on the even numbered axes (Morris, 1974).

One may question the relevance of an even number of axes. As

can be seen on Figure 2-1, the value of a Kiviat graph is derived from

the symmetrical star shape created when points on all the axes are

connected. The even number of axes provides for the star shape that

is the result of alternating "good" and "bad" indicators.

Figure 2-1 gives the axis labels used by Morris (1974).

Axis Indicator
1 CPU Busy
3 CPU/Channel Overlap

"GOOD" 5 Any Channel
7 Problem State

"BAD"

2 CPU Only
4 Channel Only
6 CPU Wait
8 Supervisor State

Figure 2-1. Morris's Kiviat Graph Axis Labels.

19

Currently, Kiviat graphs have been used only to depict a static

system. A static system is defined as a view of a system for one

instant in time. By contrast, a dynamic system is defined as a system

that exists between two points in time. One proposed approach to the

problem of portraying dynamic systems is to use multiple Kiviat

graphs for the various instances of time. This creates what's known as

"stars in a sky" where the sky is the operational environment of the

system.

The Kiviat graph is a supportive tool. It gives a pictoral repre-

sentation of data obtained from other performance and evaluation

methods. The graph then says what exists at the time the data was

gathered. An example of several different Kiviat graphs is given in

Appendix F.

20

Monitors

Two types of monitors are used in CPE: hardware and software.

Monitoring is defined as a method of collecting data on the performance

of an existing system (Lucas, 1971).

A hardware monitor is constructed of electronic logic, probes,

and a magnetic tape recorder (Stimler, 1974). It often includes a

mini-computer and more recently a micro-computer. Hardware

monitors make basic measurements that tell: (1) how long a resource

has been used during the evaluation period and (2) the number of times

an event occurred during the same period (Bell, 1971).

A hardware monitoring involves: (1) an evaluation of a computer

system for data or information to be gathered; (2) determination of

appropriate spots for connecting monitor probes; (3) running of the

monitor for an evaluation period; and (4) post analysis of data gathered

(lbid).

The major advantage of hardware monitors is that the monitor

can be connected to any vendor's system to obtain the desired data while

producing no load on the existing computer system. The major limita-

tion is that it is often hard to determine the exact spot where the de-

sired data can be gathered. Also, often the modification of the system

that is required is a breach of the contractual agreement with the

vendor (Stimler, 1974).

21

A software monitor is a program which is incorporated in the

operating system (Stimler, 1974). A software monitor periodically

samples the conditions of certain memory locations where the operating

system stores operational conditions of the system.

The main advantage of a software monitor is that it involves

virtually no system modification. The main disadvantage is one of

system dependence; that is, a separate software monitor must be

written for each individual manufacturer's system.

One successful application of a software monitor for the IBM 370

was reported by Betz (1973).

In summary, hardware monitors can, be used to tell what hap-

pened while software monitors will give a better indication as to why

it happened (Drummond, 1973).

Mathematical Programming

Some effort has been made to formulate CPE problems by mathe-

matical programming models. The results of previous efforts have

shown that an analyst with enough data about the programs which are

to be run and the hardware characteristics of the system can formu

late his CPE problem in terms of an integer linear programming

problem (Sharp, 1969).

An integer linear programming problem is a linear programming

22

problem where decision variables are not allowed to assume non-in-

teger values.

Sharp (1969) further points out that the problem of capturing

all the significant interrelationships between the subsystems is far

from a trivial task. The prospects for general use of this method are

further hampered by the limited number of CPE practitioners familiar

with the level of mathematics involved in applying this optimization

technique.

This technique has the advantage of mathematical accuracy

while its major disadvantage is the amount of time and cost involved

in implementation.

Simulation

Simulation has been considered the most powerful and flexible

technique for CPE (Lucas, 1971). Several commercial simulation

packages are available. One of these is the "Systems and Computers

Evaluation and Review Technique," commonly abbreviated SCERT

(Herman, 1967).

Simulation is taken to mean the technique of solving problems

by using a mathematical model to follow the changes over time with

respect to a dynamic system. Simulation is said to be done when all

equations of the model are solved simultaneously with steadily increas-

ing values of time (Gordon, 1969, pg. 17).

23

The original General Purpose Systems Simulator (GPSS) language

was used as an aid in studying new computer systems (IBM, 1963).

Major limitations of simulation include the time for setting up

the simulation, running it, and validating the results. Further, the

actual cost and amount of computer time required are other limitations.

Personnel is also a problem since a knowledge of simulation languages

is required. Simulation has been used successfully for the optimiza-

tion of performance of time-sharing systems, (Blatny, 1972), and in

the solution of hardware allocation problems (Hesser, 1973).

Conclus ions

In summary, all of the CPE techniques reviewed werefounduseful

but none was universally practical either as a procurement or as an opti-

mization evaluation tool. This confirmed the generally accepted belief

that no one single CPE tool or technique can satisfy all goals or prob-

lems which are significant in computer performance and evaluation

(Lucas, 1971).

Thus it appears that a combination of various techniques is neces-

sary to accomplish an adequate evaluation. Our proposed study F ill

use a combination of the synthetic modeling and linear programming

techniques, Resource Planning and Management System methodology,

and Kiviat graphs to accomplish a throughput evaluation of a computer

system.

24

III. RESOURCE PLANNING AND MANAGEMENT
SYSTEM (RPMS)

The Resource Planning and Management System (RPMS) repre--

sents a mathematical programming problem as a graphical network

model. RPMS was first proposed in 1972 as a concatenation of cause

and effect diagrams to model linear programming problems and their

solutions (Inoue and Riggs, 1972). It has since been extended to cover

dynamic programming, quadratic programming, goal programming,

and other special cases of mathematical programming models. The

most significant improvement is one allowing visual identification of

the Kuhn-Tucker conditions (Inoue, 1974).2

The following section is limited to a review of the general linear

programming problem. Further, the basic canonical form is modified

so as to reflect a property which will be used in the development of

the RPMS components section.

Linear Programming

Given any linear programming problem, the problem can be

transformed into the following canonical form (Taha, 1971, pg. 25).

Maximize z = E c.x. (3-l)x j

subject to the constraints

2Several of those models are discussed in an introductory ORMS
text (Riggs and Inoue, 1975) that is currently being prepared for pub-
lication.

where

n

a, .x. < b. 1 < i < m
j = 1 13 3 I

x. > 0 1< j < n (3-3)
J

25

(3-2)

a.., b.j , and c. are constants in a linear programming model

x. is called a primal variable.

The constants can be separated according to their positive and

negative signs,

a.. = a.. a..
13 13 13

= b. -

-
C = C . C .

3 J J

1) a.. = a.. if a > 0 else a.. = 0
13 13 ij

2) a., = a,. if a.. < 0 else a..
1313 13

+ -
3) (a..) (a ..) =

13 13

(3-4)

(3-5)

(3-6)

(3-7)

(3-8)

(3 9)

4) b b if b > .0 else b = (3 -10)
1 1

5) bl if b. < 0 else b7 = 0
1 1

6) (b.) (b.) = 0

7) c . = c, if c >
1 '1

else c. =

(3-11)

(3-12)

(3-13)

(3-14)

8) c . = c. if c, < 0
1 1 1

9) (c.) (

else c = 0
1

0

The canonical form can now be written as

n
Maximize z = E [c. c.] x.

x 3 3 j

Subject to the constraints

n
[b+ 1<i<m

j=l 13 13 3

x. > 0

26

(3-15)

(3-16)

(3-17)

3-18)

(3-19)

1 < j < n (3-3)

An expansion of the above primal model gives a primal objective

function:
n n

Maximize Z = E c.x E
x 3 j

j=1

subject to m resource constraints:

E a..x + b. > E a..x. + b
=l j 13 3 i

and non-negativity restrictions:

c .- x.
3

(3-20)

1 < i < m (3-21)

x. >0; a. > 0; a > 0; b. < 0; b > 0; c. > 0; c > 0 1 < < m
J i 1 1 1 1

1 < j < n
3-22)

27

The RPMS portrays each of the m resource constraints as a

cause-and-effect diagram illustrating that the sum of the endogenous

(a. , x.) and exogenous (b.) supply of the resource cannot be less than
J

the sum of the endogenous (a, x.) and exogenous (bi) demand satisfied
J

by the resource.

Each primal linear programming model (eqn 3-1, 3-2, 3-3) has

associated with it a dual model that can be expressed as:

subject to

and

m
Minimize Z = biyi

i=1
(3-23)

n
a..y. > c. 1 < j < n (3 -24)

ij 3

y.>0 1 <i<m (3-25)

An expansion similar to the primal model transforms the above

model (eqn 3-23, 3-24, 3-25) into:

Minimize Z = b. y. - b.y.
Y 1=1

1 1
i=1

subject to n "process" constraints:

and

mEa.y.+c>Ia
j - ij

yi > 0

1+c. < j < n

1 < i < m

(3-26)

(3-27)

3-25)

28

The n constraints (equation 3-27) are called "process" constraints
m

+since they convert endogenous (E a. y.) and exogenous (c-.) resource

m
flows into output resource flows (E a. y. + c.). As y. represents

ij j
i=71

the imputed value of the resource i, and c. and c represent the per

unit benefit and cost of the transformation, each process constraint

guarantees that the total value of the input resources and cost of

transformation is at least as great as the total value of the output

resources and the benefits accrued from this transformation process.

Components of RPMS

In its original form, only three nodal symbols were used with

RPMS: circles, squares, and triangles.

A circle node is used to represent a resource, where resource

is taken to mean anything that can place a limitation on the attainment

of a desired result. As mentioned in Chapter I, the amount of a re-

source is a function of both its availability and its capacity. A circle

node i represents a constraint of the primal model of a linear pro-

gramming problem: E a. x. + b. > E a. x. + . The circle is
ij j 1

subdivided into four parts. The top quarter, yi, represents the

"Shadow price" or value of the Lagrangian multiplier associated with

the resource constraint computed by a linear programming simplex

algorithm. The residue value, x. of the resource is given in the

29

bottom quarter. This corresponds to the "slack" or "surplus" vari-

able value required to translate an inequality constraint into an equa-

tion.

E a. x. + b+. a. x. b.
1 13 j 1irI

The other two quarter sections of the circle are optionally used to

tally the input flows,

and the output flows,

n
E a. x. + b.

i =l
ij 3

n
E a.. x. + b.

13 3 1

through the node [Figure 3- l(a)Ii .

A square node is used to represent a process, where process

is taken to mean the transformation of available resources to create

new resources for further uses. The square represents a primal

decision variable in a linear programming problem and a process

constraint upon the resource transformation.

Like the circle, the square is divided into four parts. The top

quarter, x., representing the amount of transformation that is to

occur. The bottom quarter, ., is reserved for the "opportunity
yJ

cost" or expected loss value of a variable not becoming basic in the

final solution to the linear programming problem.

30

-y. = E a,. y. + C. - E a. - C.
J

i=1

The y. variable can also be interpreted as the Lagrange multiplier

associated with the non-negativity constraint imposed upon the primal

variable x. . The users of RPMS may optionally use the other two

quarter sections of the square to tally the input flows,

and the output flows,

m
E a..

1
y. + c. ,

13
i=1

Ea.. y. c. .
13 1

The relationship b etw een a constraint y, and a primal variable

x. is established by using a directed edge to represent a... The circle

representing a constraint, and a square representing a variable,

x., the interrelation is shown by connecting circles and squares

via solid lines with arrowheads. These solid arrows represent the

a.. coefficients of the linear programming problem. These endogenousiJ

flows show the interrelation between the resources and processes of

the linear programming problem.

The circles, squares, and solid arrows combined together are

called the internal system.

The triangle is used to represent a terminal node. In linear

programming, this corresponds to an objective function. Since each

31

linear programming model can be represented by a primal and dual

model, two terminal nodes are given for each representation of a

linear programming problem using RPMS. These terminal nodes are

called "Source" and "Sink" depending upon the arrow directions, or

"primal" and "dual" depending upon whether dashed arrows connect

the node to squares or circles.

A maximizing primal objective function is shown by connecting

a "primal sink" triangle to all process nodes (squares) via dashed

arrows. The value of the objective function is entered inside the

"sink" triangle.

The corresponding dual objective function is one of minimiza-

tion. This is represented by connecting a resource (circle) to the

"dual source" node terminal and entering the value of the objective

function in the source triangle. A minimizing primal problem will

have a primal source node and a maximizing dual sink node.

Both triangles are connected to the internal system via dashed

arrows. A dashed arrow represents either an endogenous or an

exogenous flow with respect to the internal system as designated.

The internal system, combined with dashed arrows and tri-

angles, makes up an RPMS network.

This interconnection of circles, squares, triangles, and arrows

is portrayed in Figure 3-2.

32

a. x. + b.+ > a. x. + b.
13

(a) Resource Node

c.
---....

3

m m
+E a.. y. + c. > E a.

y.
+ c.

i=1
13 1 3

i.=1
ij 3

(b) Process Node

b.
1

Maximize Z = Ec. x. Ec.x,x jj=1 j=1 3

m
+

m
Minimize Z = E b. y. E b. y.

y
1.

1 1
1

1 1
=1 =1

circle = i square = j
(c) Maximizing and Minimizing

Figure 3-1, RPMS Nodal Conventions.

33

Min Z
y = b. y.

b. > a.. x.1 13 j

a..

Max Z = c.x.
x 33

aij > C.1
bi

ij
.= a x. + x aij y. = c. + y3 .

3

Figure 3-2. RPMS Basic Flow.

Postulates of RPMS

Two characteristics of an RPMS network have been formulated

as postulates (Inoue, 1974).

The first postulate addresses the idea of balance around a node

within an RPMS network. The second postulate addresses the idea of

objective function optimality. These postulates correspond to the

revised canonical forms given by equations 3-20, 3-21, 3-26, and 3-27.

First Postulate of RPMS: The total inflow at a process or a resource

node cannot be smaller than the sum of the outflows from the same

node.

34

Total Input > Total Output

Total Input = Total Output + Residue

a12 y1> a23 y3 + C2 or a12
y1

= a23 y3 + C2

a
1

X
1

>a
23

X
3

+b
2

or a
12

= a
23

X3 + b
2

+ X2

Figure 3-3. RPMS Cause and Effect Diagrams.

Second Postulate of RPMS: The productivity of an RPMS network is to

be optimized, either by maximizing the net effective endogenous output

while holding the exogenous input constant, or by minimizing the

exogenous input while maintaining the endogenous output at a given

level.

35

X2

IX3

Min Zy = b
1
X1 + b

2
X2 + b X3 MaxZx 1

=C X
1 2

+C
2

+C 3X3

Figure 3-4. RPMS Terminal Nodes.

RPMS Conventions

\
C2

C3 /

In addition to the two postulates of RPMS, several conventions

exist for the construction of RPMS networks (Riggs and Inoue, 1975).

The main conventions are presented here as a convenience to the

reader. These conventions are used throughout this study.

1) A circle never connects to a circle and a square never con-

nects to a square directly.

2) All squares are explicitly or implicitly connected to one

terminal, and all circles are explictly or implicitly connected

to the other terminal.

3) The dimension of the solid arrow coefficient is always

(Resource Unit/Process Unit).

4) Each circle adheres to the logic rules for "inclusive or."

5) Each square adheres to the logic rules for "logical product."

36

Construction of the RPMS Network

The actual construction of an RPMS network is relatively simple

once the linear programming problem has been formulated. The con-

struction consists of the following steps.

1) Draw a square for each variable in the objective function.

2) Identify the optimization type required in the objective

function (maximize or minimize) and add the appropriate

terminal nodes to the existing diagram (use Postulate Two

3) Draw a circle for each constraint.

4) Complete the network using the equations and Postulate One.

The RPMS network is now ready to accept additional information

after the linear programming problem has been solved.

Solution of RPMS Network

Though the solution of a linear programming problem is typically

handled by a computer program, for linear programming problems,

represented by simple RPMS networks, it is often more expedient

to solve the linear programming problem without the aid of a computer.

The following procedure, coupled with a hand calculator, has been used

successfully for solving some problems. For problems which have a

high level of interaction or take over one hour of manual computation,

most users prefer to solve the LP problems by use of a computer.

37

Solution Procedure for RPMS Networks

1. Draw the RPMS network using the known values given in the

problem statement.

2. Make a forward pass through the RPMS model. Calculate

the maximum value of the residue for each resource. That is, calcu-

late X. if all X.'s are zero.
1

3. The resources with the smallest value for X, is then ex-

hausted. This is done according to the ratio X, /A,. for each resource.
1 13

This is like the pivot point calculation of the classical linear program-

ming simplex algorithm.

4. The optimized output worth of the model is then calculated.

This value of the sink terminal is then used as the same corresponding

value of the source node. With this value known for the input of the

model, the remaining coefficients in the model can be calculated using

the first postulate. This is the calculation of the shadow prices.

5. Analysis. With the picture of the RPMS complete, the

analysis can now take place to indicate where further improvements

can be made for the benefit of the total system.

The following figure 3-5 shows conditions which can exist in

RPMS networks. This information is used in determining if the cur-

rent solution is the best that can be achieved, and, if not, where the

improvement can be made.

38

The ideas in this figure were obtained from the paper on Visual

Identification of Kuhn-Tucker conditions (Inoue, 1974).

Condition

A Non-Optimal

B Non-Feasible

C Feasible and Optimal

D Degeneracy

Descriptions

One or more
negative Yj
values

One or more
negative Xi
values

No negative
values for
X. or Y.

RPMS Node

An alternative
solution exists
for the same
objective function
value

111

Figure 3-5. RPMS Feasibility and Optimality Conditions.

The following simple example is used to clarify the RPMS

concepts presented in this Chapter.

Example One: Maximize Zx = 4X
1

+ 3X
2

Subject to 5X1 + 3X2 < 18

X
1

+ X
2

< 20

Step 1: The RPMS network is shown in Figure 3-6.

18

39

Figure 3-6. RPMS Network of Example, Step 1.

Step 2: Make a forward pass through the network with X,' s = 0

for each process j. Calculate the value of the residue, X., for each

resource i. Apply the complementary slackness theorem of Linear

Programming (Taha, 1971) which states that xiyi = 0 for any process

or resource node. In our example, y3 = 0 since x3 = 18 and y4 = 0

since x4 = 20. Then the process residues y1 and y2 can be computed

by taking the difference between the inflows and outflows.

y
1

= 0 x 5 + 0 x 1 - 4 = -4

= 0 x 3 + 0 x 1- 3= -3

Zx=0 x4+0 x3 =Z =18 x0

This step is shown in Figure 3-7.

18

40

20 \

Figure 3-7. Example Step 2.

Step 3: Determine the "pivot point" as in a standard linear pro-

gramming algorithm. In Figure 3-7, the solution is feasible but non-

optimal (condition A in Figure 3-5). The most negative entry occurred

at y1 = -4, and our first attempt will try to make yl = 0 but rendering

x
1

>0.

The resource 3 with current residue value x3 -= 18 will be ex-

hausted first as x
1 1

is increased. The most we can increase x. without

creating an infeasible solution [condition (B) of Figure 3-5] is 18/5

3.6.

Step 4: Using the new solution x1 = 3.6 and x2 = 0, the new

residues and shadow prices are computed. The result is shown in

Figure 3-8.

41

Y3

x4 16. 4
Y2

Figure 3-8. Example Step 3 and 4.

Step 5: Inspection of Figure 3-8 shows the solution to be feasible

but non-optimal [condition (A) of Figure 3-5] since y. of X2 is nega-

tive. The objective function value is now increased to Z = 18 x .80 +

20 x 0 = 14.4 = 3.6 x 4 + 0 x 3 = Z. Step 3 of the next cycle brings

X2 into solution using both the top and the bottom resources. The

result of this operation is shown in Figure 3-9. This solution is both

feasible and optimal [condition (C) of Figure 3-5] .

Y3

)(4 Y2

Figure 3-9. Example Final Solution.

This example used the solution procedure for RPMS networks

described earlier in this chapter and showed it to be valid for the

solution of this simple mathematical programming problem.

42

IV. PROPOSED APPROACH

The formulation of any mathematical programming problem is

difficult, mainly because the constraint and objective equations are

so elusive (Aoki, 1971). Stated in RPMS terms this is a problem of

resource identification, process identification, and identification of

the interconnections between the resources and processes. For CPE,

some examples of resources are disk, magnetic tapes, and central

processing units. Examples of processes are I/O flows, memory

management, program compilation, and execution. Interconnections

represent the rates at which resources are produced and consumed by

processes.

One approach to CPE uses seven major steps (Bell, 1972).

These steps are as follows:

1) Understand the system; 2) Analyze the operations; 3) Formulate

the performance improvement hypothesis; 4) Analyze the probable

cost-effectiveness of modifications; 5) Test the hypothesis; 6) Imple-

ment the appropriate combinations of modifications; 7) Test the effec-

tiveness of the implemented modifications, then go back to step three

to repeat the cycle until sufficient improvements have been made.

Our study will use Bell's approach, but with modifications to

have the procedure read as follows:

43

1) Understand the computer system subsystems of hardware and

software. 2) Analyze the operations part of the system described in

part one, and construct an RPMS model. 3) State the hypothesis as

that of improving or maintaining the throughput; optimize the model

using the linear programming procedure. 4) Identify the resource

which is currently constraining the throughput rate. 5) Tune the

system. This means to modify the constraining resource of part 4

while monitoring the throughput rate. 6) Rerun the linear program-

ming problem of the newly tuned system. 7) Analyze the results of

the modification made in step 5. Draw Kiviat Graph of resulting sys-

tem. Go back to step 3 and repeat until sufficient improvement is

made.

Developing a Universal CPE Model

When we cannot grasp a system as a whole, we try to
find divisions such that we can understand each part
separately, and also understand (in the framework) how
they interact (Minsky, 1967).

A model is normally defined as a copy of a true situation in as

accurate a form as possible (Gordon, 1969). But, all models have

inherent problems in that a boundary between the model and its environ-

ment must be established somewhere. Thus, if the model results are

found to be inadequate the general tendency is just to expand the

boundaries of the existing model. This method works until the upper

bound of the modeling device is reached.

44

But, even with expansion, the model can usually use further

improvement after the upper bound has been reached.

One then normally chooses to break the system into its subjects

and analyze these subparts until full understanding is obtained. Usually,

some form of a decomposition algorithm is employed. But the prob-

lem of understanding the composite model remains. The problem just

moves from that of the system to the understanding of the intercon-

nection of model components.

One useful tool which allows an easy application of decomposition

to CPE models is RPMS. The major advantage is that mathematical

programming techniques are as applicable to decomposed parts of

RPMS as they are to the composite model.

To formulate a universal model for all computer systems, a

general conceptual framework needs to exist that can be adapted for

each specific system.

One model which accurately depicts current mid 1970's type

computer systems contains three subsystems (Stimler, 1974). The

subsystems are called the 1) Processor 2) Communications and 3)

Terminal. Stimler's model is shown in Figure 4-1.

The functions of each of the component parts is as follows:

Processor: The computational portion of the system. It
accomplishes the transformation process from
one resource to another resource.

45

Terminal Communications

Figure 4-1. Stimler's Model.

ProCessor

Communications: An interface. It matches resources to
processes. It can be considered to be
transparent.

Terminal: The pool of resources the system has available
(Stimler, 1969, p. 6).

An expansion of the basic Stimler Model yields two terminals,

two communicators, and one processor. This is shown in Figure 4-2.

P

Figure 4-2. Expanded Stimler Model.

T

RPMS components are directly analogous to these subsystems.

The Processor is the square, while the terminal is a circle, and the

communications corresponds to the flows.

Accepting these analogies between RPMS components and the

Stimler subsystems, Figure 4-2 becomes Figure 4-3.

46

Figure 4-3. RPMS Diagram of Stimler Subsystem.

Stimler's model viewed in RPMS terms will be used in the next

section to portray a computer system which will be evaluated by using

linear programming and the procedure outlined in the previous section.

The modified Bell's procedure previously stated in this chapter

will be followed to obtain analytical results. The resources, pro-

cesses and their interrelations are formulated as a linear RPMS

model and solved as a standard linear programming problem.

The numerical examples in this study were all solved using two

methods. The first method followed the RPMS procedure outlined in

Chapter III, and the second utilized the *REX linear programming

package "a revised product-form, composite, bounded variable,

multipracing, simplex, linear programming algorithm" (Scheurman,

1970).

47

V. THE RPMS APPROACH APPLIED TO CPE:
BATCH VS ON-LINE

A numerical example that uses the proposed RPMS approach to

evaluate an existing system to determine which resources are being

utilized and to what extent the improved throughput contributes to

the system's overall profit.

A small system has been set up which gives the user the option

of running batch or on-line jobs. A batch job utilizes a card reader

input and line printer output. The on-line jobs run with teletype input

and can have either teletype output or line printer output. The objec-

tive is to maximize the profit of the computer center throughput.

The card reader operates at 1200 cards per minute. The tele-

types operate at 120 lines per minute. The line printer operates at

600 lines per minute.

Each batch job has an average of 500 cards of input and 500

lines of output, running in a total CPU usage time of one second, at a

profit of $50 per job.

Each on-line job has an average of 600 lines of input and 600

lines of output, running in a total CPU usage time of two seconds, at

a profit of $120 per job. Let us now assume that a CPE study is to

be made for a time quantum of ten minutes.

Thus, the total time allowed for all processing, including CPU,

is ten minutes per resource. The system allows spooling of all input

48

and output devices, and an assumption is made that one card is equal

to one line of print and vice versa.

This problem, stated as a mathematical programming problem

is as follows:

Maximize Z = 50 BUT + 120 LUT subject to the following con-

straints

@ SYST C TR < 600

@ C R 500 BIN - 20 CTR< 0

@ LP 500 BUT ± 600 PRLT - 10 CTR < 0

@ CPU 1 BPR + 2 LPR - CTR < 0

@ TTY 600 TTYUT + 600 TTYIN - 2 CTR< 0

@ BNQ BPR BIN < 0

@ PLNQ LIN TTYIN < 0

@ LNQ LPR LIN < 0

@ BUQ BUT - BPR < 0

@ LPLQ LUT - PRLT < 0

@ LUQ LUT LPR< 0

Where, all units are jobs/10 minutes except as noted.

BIN is the process of reading cards from the card reader into

a batch queue. BIN is Batch INput.

BNQ is the resource built by BIN. BNQ is the Batch INput

Queue.

49

BPR is the process of doing the actual batch computation.
BPR is Batch PRocessing.

BUQ is the resource built by BPR. BUQ is the Batch oUtput

Queue.

BUT is the process of outputing batch jobs. BUT is the Batch

outplJT.

CPU is the Central Processing Unit resource.

CR is the Card Reader resource measured in cards.

CTR is the process of operating the computer center.
CTR is the CenTeR.

LIN is the process of accepting on-line input.
LIN is on-Line INput

LNQ is the on-line input queue. LNQ is on-Line iNput Queue.

LP is the line printer Resource. LP is Line Printer measured

in lines.

LPLQ is the on-line resource of pre-output queue.
LPLQ is the Line Printer on-Line Queue.

LPR is the processing of on-line jobs. LPR is on-Line PRo-

cessing.

LUQ is the resource of on-line output queue. LUQ is the

on-Line oUtput Queue.

LUT is the process of producing on-line output.
LUT is on-Line oUTput.

PLNQ is the resource of jobs ready for on-line input.
PLNQ is Pre-on-Line-iNput-Queue.

$720 600 se

11.01

sec

SYST CT

600

01

20

10

CR

LP

CPU

500
N

BIN BNQ

24

BPR BUQ

PRLT

TTYUT

10 600 F1
1 0 1

I t
TTY TTYIN

O
LPLQ

0
BUT

Al 1 0 1

IX
PLNQ LIN LNQ LPR IQ

Figure 5-1, Basic Applied Model.

$50

/ $120

TTY TTYIN PLNQ LIN LNQ LPR
Figure 5 -2. Double LP.

LUQ LUT

\ $50

1.$120

BUT \

TTY TTYIN PLN9 LIN LNQ LPR LUQ LUT

Figure 5 3 . Tripple LP.

$50

$120

53

PRLT is the process of allocating the line printer to the for
on-line use. PRLT is PRinter for on-Line outpuT.

SYST is the resource of time. SYST is SYStem Time.

TTY is the resource of teletypes. TTY is TeleTYpes measured

in lines.

TTYIN is the process of allocating teletypes for on-line input.

TTYIN is TeleTYpe INput.

TTYUT is the process of allocating teletypes for on-line output.

TTYUT is TeleTYpe outpUT.

These mneumonics are used on the RPMS network portrayal of

the problem and in defining *REX variables. The RPMS network of

the problem is shown on Figure 5-1.

The effect of doubling the line printer capacity is shown on

Figure 5-2.

The effect of trippling the line printer capacity is shown on

Figure 5-3.

Discussion of Results

In the solution of the basis problem, several observations can

be made from the RPMS network of Figure 5-1.

* Each second of system time, SYST, is values at $1.20.

* Only a total of 28 seconds are consummed for all jobs run

(600-572 at CPU)

54

* A total of 24 batch jobs were processed, BPR, but only 9.6

jobs were actually output on the line printer, BUT, while a

queue of 14.4 batch jobs remain to be output, BUQ.

* All on-line jobs used teletype input, TTYIN, and line printer

output, PRLT.

* A total of two on-line jobs were completely run and output,

(LIN=LPR=LUT=2), and no on-line jobs were on any queues

(Residue part of PLNQ, LNQ, LUQ=0).

* The current constraining factor for doing more batch jobs is

the line printer. LP shadow price value is $. 10.

* Either the Line Printer, LP, or the Teletypes, TTY, capacity

can be increased and a resultant increase of the total profit

will increase by $. 10 per line output.

Since these two resources will both contribute the same amount

to the total profit, a degenerate condition (condition D, Figure

3-5) exists. Between the two resources, it will be best to in-

crease the resource that contributes the most in terms of

flexibility to the system. Thus, since the line printer is a

shared resource (that is, it feeds both BUT and PRLT), it is

found to be more advantageous to double the line printer

capacity.

Figure 5-2 gives information about the system when the line

printer capacity is doubled (a.. from CTR to LP = 20).

55

* When doubling the line printer capacity, the CPU utilization

(CPU), Batch Jobs Processed (BPR), and on-line jobs com-

pleted (LUT), remained constant.

* The total batch jobs completed (BUT) has increased to 21.6,

while the batch output queue (BUQ) has decreased to 2.4.

* The system time (SYST) is now falued at $2. 20 per second.

* The two constraining resources are the line printer (LP) and

the Teletype (TTY). By applying again the same logic that

was used on Figure 5-1 to Figure 5-2, it was decided to

tripple the line printer capacity from its original capacity.

Figure 5-3 gives information about the system when the line

printer capacity is trippled (a.. from CTR to LP = 30).

By tripling the line printer capacity, the CPU utilization (CPU),

Batch jobs Processed (BPR), and on line jobs completed (LUT)

remained constant.

* The amount of batch jobs completed (BUT) increased to 24,

and thus reduced all batch queues, BNQ and BUQ residue values

to zero.

Each system second (SYST) is now valued at $2. 40.

* If further improvement is to be made in the system to increase

the amount of throughput, then two resources, the card reader

(CR) and the teletype (TTY) are candidates. Since the tele-

type is valued at $. 20 per line produced and the card reader

56

is valued at $. 10 per card produced, then the teletype is the

best candidate for the next capital investment.

In summary, it took trippling the line printer capacity, that is

changing a. from CTR to LP from its original value of 10 to 30, to

double the profit of the system and set the batch output queue (BUQ) to

zero. Figure 5-4 shows the Kiviat graphs of the results just des-

cribed on the RPMS networks.

Since this study uses an increase in throughput as being the

hypothesis that is to be improved, then the amount of batch output

(BUT), on-line output (LUT), and the operational level of the center

(CTR) are considered as the good attributes for the Kiviat graph.

Since partially completed jobs constitute no revenue for a sys-

tem, the batch output queue (BUQ), the line printer queue (LPLQ),

and system residue (SYST) were chosen as the bad attributes. The

system would have attained a star shape [Figure 5-4(c)] had the op-

timal LP capacity of 22 been chosen. The Kiviat graphs in Figure 5-4

show that some improvements were made in the system by changing

the line printer capacity.

The hardware and software were combined in this RPMS model

and this is in keeping with the current trend of integrating the two

components (Falk, 1975, pg. 46). The model also assumed the oper-

ations time by the operator to be zero. This is in keeping with the

"Good" "Bad"

Axis Axis

1 = Batch Output (X BUT) 2 = Batch Output Queue (X BUQ)

3 = On-Line Output (X LUT) 4 = Line Printer On-Line Queue (X LPLQ)

5 = Operate Center (X C TR) 6 = System Time (X SYST)

21. 6

600 600 600

24

(A) LP = 10 (B) LP = 20 (C) LP = 22

Figure 5-4. Kiviat Graphs of Batch vs On-Line.

24

8

(D) LP = 30

58

idea of minimizing the amount of operator interVention in current

computer systems (Stimler, 1969).

With these assumptions made, then the throughput of the system

is just the sum of X BUT and X LUT.,

Throughput 7-- E Xi

lE I

where I is a cut set of the process nodes
of the network as defining the system
throughput.

Though this is a crude upper bound, it gives an indication of the

maximum throughput under idealized conditions for the system repre-

sented by the RPMS network under study.

59

VI. EXTENTIONS OF RPMS THEORY

The following extensions of existing RPMS theory are offered

to support the observation that many of the concepts embodied in the

RPMS methodology already existed in other branches of the field of

computer science. By making further use of theories in these fields,

the RPMS theory can be extended. It is hoped that these extensions

will aid in popularizing the use of the RPMS as a tool for computer

performance and evaluation efforts.

The following analogy from finite state machine theory is offered

to show that the RPMS is compatible with the basic theories from this

discipline.

Each computer system can be viewed as just a black box, M,

with an input stimulus, S, and an output response, R (Minsky, 1967,

pg. 13).

S >R

Figure 6-1. Finite State Machine.

This system can be described more formally as follows (Ibid., pg.

16 and 17):

M = (K, a, S, F)

60

where K = The states of the machine

E = The input alphabet of the machine

6 = The transitions from one state to another state

S = The start state of the machine

F = The final states of the machine

R(t+1) = F (Q(t), S(t))

where Q E K

S E E

F is a function

Q(t+1) = G (Q(t), S(t))

Q e K

S E E

G is a function

Even this simple model of Figure 6-1 yields more information

than is obvious. S and R can be considered as resources while M is

a transformation process. In RPMS terms, assuming S and R to be

resources, and M to be a process, will produce Figure 6-2 which is

directly analogious to Figure 6-1. The basic problem then within any

Figure 6-2. RPMS Representation of Finite State Machine.

61

systems model is the establishment of the boundaries. From an

RPMS point of view, the boundaries are more easily formulated if the

model starts with a resource and ends with a resource. But all re-

sources come from somewhere and are going somewhere. Since a

transformation process is required to change one resource into another

resource, a resource must come from a transformation and feed into

another transformation. With this in mind, then, each finite state

machine is viewed as an RPMS of Figure 6-.2. It will have its R value

matched to the S value of the next machine and its S value correspond-

ing to the R value of the machine in front of it. This is shown as

Figure 6-3.

Figure 6-3. RPMS S & R Relationships.

By combining all overlapping S and R resources a cancatenated

machine (Figure 6-4) will be produced. If we assume the first .M to be

Po P11

Figure 6-4. Cancatenated RPMS Finite State Machine.

62

a computer system, it can be broken down into subsystems. As seen

previously, one classification of subsystems uses the three terms

"Terminal," "Communications," and "Processing." These three

terms have been shown to be more applicable to modern computer

systems than the more widely used Von Neumann or Hellerman models

(Stimler, 1974).

The Von Neumann model is also known as the four-block, five-

block, or classic model. A diagram of the model is shown in Figure

6-5 (Ens low, 1974, pg. 8).

Data & Instructions

Control Signals

Figure 6-5. Von Neumann Model.

63

The blocks of the Von Neumann model have the following meanings:

Input/Output is used to transform information from human-

consumable form into machine-consumable form and vice-versa.

Arithmetic-Logic performs the arithmetic and logical functions

asked for by the control unit.

Control interprets the instructions to be executed and controls

there execution.

Memory holds the program and data for the program which is

currently being executed.

The major weakness of this system organizational scheme is

that all I/O operations are routed through the Arithmetic and Logic

unit. This reduces the total number of hardware elements required,

but all computation must halt while input/output operations are in

progress (Ibid. , pg. 7). The Hellerman model is described as by the

following and can be graphically shown by Figure 6-6 (He Herman,

1973, pg. 9-12).

Storage block provides a means for storing a large volume
of information from/to storage from/to a single point
(register).

Data Flow comprises the switching networks that route in-
formation from one part of the computer to another. No
unit is permanently connected to any other unit.

Transformation provides the arithmetic and logic circuits
used in the data manipulation process.

Input/Output

64

Storage

Transformation

Figure 6-6. Hellerman Model.

65

Control provides the timing sequences that perform the
instruction to be executed. Control exist at many levels
in a computer.

Input/Output converts information from human-generated
to machine-readable from and vice versa.

Hellerman further points out that the distinction between the Storage

and Input/Output function is imprecise. The best distinction being

whether or not the output is directly machine-readable.

While this model allows for simultaneous operation of I/O and

CPU, it does not provide for the parallism of current computers.

Three divisions of the system which run in parallel are "opera-

tions," "software," a d "hardware" under a common clock. These

three subsystems cannot have time and cost attributes assigned until

the structure of the system is known. In keeping with the current

trend towards "hard software" or "soft hardware" (Falk, 1975, pg.

46) these two areas tend to merge into "firmware." The "operations"

subsystem still exist, but for most modern systems, one goal is to

minimize the amount of system dependence upon operators. Thus,

the operations subsystem can be said to tend towards zero in looking

at the total amount of system time that it consumes.

Let us investigate the processes and resources more closely.

Each resource comes from a process and goes to a process, while

each process comes from a resource and goes to a resource. There-

fore, each of these types of nodes will have at least one line in and

66

one line out, but it can have multiple lines. These multiple type nodes

are shown in Figure 6-7.

Figure 6-7. Multiple Nodes.

If we consider then the composite system broken into three

subsystems we can have multiple resources and multiple processes

with multiple lines. This then realizes the composite computer sys-

tem in a cascade because any one of the resources can connect to any

process in any subsystem and vice versa.

The advantage of this technique is that only the subsystems and

interconnections of interest can and will be developed as required

with respect to the other subsystems.

This finite state approach to RPMS could have been taken to

develop the existing RPMS methodology. Given that the RPMS

67

representation of a computer system can be obtained, it is useful to

manipulate the RPMS network.

Due to the size limitations of most mathematical programming

packages, it is useful to remove any constraint or variable from the

problem which is not a part of the solution. In RPMS terms, this says

the removal of a pair of nodes is possible. The following postulate

on compaction sums the ideas up in more formal terms.

Postulate of Compaction: Given a single strand of an RPMS network

sequence, with resource nodes, i=1, , n and process node, j=1,

, m, and no other path connected to intermediate nodes, the entire

strand can be compressed into a node or a node pair.

This postulate of Compaction was first developed by Chen (1974)

as two separate theorems (Ibid. , pg. 135, 136). It is presented here

as being potentially useful in CPE efforts.

The postulate says that all resource are pushed toward the

source node while all processes are pushed toward the sink node.

The example in Chapter V will now be used to illustrate the

procedures.

From the basic model, Figure 6-1, the nodes of PLNQ, LIN,

and LNQ can be combined into a new node called NINQ, for new INput

Queue. The original path involves the nodes: shown in Figure 6-8.

The compacted path is shown in Figure 6-9.

68

TTY

600

TTYIN PLNQ LIN LNQ

Figure 6-8. Original On-Line Path.

TTY TTYIN

)0

LPR

NINQ LPR

Figure 6-9. Compacted On-Line Path.

When compaction of the RPMS network is not possible, then

other methods must be found to allow solving the RPMS network.

Calling upon "the block and cut point theorem" from Graph Theory,

and expressing it in RPMS terms yields the following postulate.

Postulate on Decomposition: Any RPMS network, which can be broken

into multiple networks by cutting at a single node, portrays a mathe-

matical programming problem solvable in sections.

This postulate was originally developed by Inoue and Riggs

(197Za).

69

At times, the existing RPMS network needs to be expanded to

include new information and potentially improve upon the answer ob-

tainable from the application of mathematical programming solution

techniques. The following postulate describes this expansion process.

Postulate on Expansion: Any RPMS network node can be expanded by

replacing that node with a triplet of nodes. This can be expressed in

terms of a context-free grammar as follows:

G = (Vn, Vt, P, S) where

Vn=Set composed of P, R, and S

Vt=Set composed of p and r

S=Start symbol

P=Productions as given below,

S::=rPr I pRp

P::=PRP I p a.j is assumed equal to one.

R::=RPR I r

This postulate will increase the total number of nodes in the

network, but since it is a serial expansion, will not change the com-

posite network structure.

70

VII. CONCLUSIONS

General and Summary

The proposed approach has been found successful in obtaining

an upper-bound on the amount of system throughput of a given computer

system for which a RPMS model has been built and solved. Though

the bound may be crude, its refinement is proportional to the amount

of detail in the model.

Compared with other techniques its major advantage is that the

method identifies the optimal allocation of resources in an existing

feasible system being subjected to CPE. This is because the model

is interpreted as a mathematical programming problem and solved to

provide an optimal solution. An adaptivity analysis is possible by

considering all information given as a result ofthe modification of the

existing system. In addition, the technique allows for an estimate

of throughput from just the vendor supplied system component char-

acteristics.

The major difficulties are in the level of accuracy of the upper-

bound. Further, solution of CPE problems using mathematical

programming techniques has not met with a great deal of acceptance

due to the level of mathematical maturity required and the absence of

inexpensive mathematical programming packages.

0

High

Medium

Low

71

Low

A = Formulation
B = Instruction Mixes

C = Kernels

D = Benchmarks

E = Synthetic Models

K = Kiviat Graphs

G = Monitors

H = Mathematical Programming
I = Simulation
* = New Approach

Medium
Time -}

Figure 7 -1. Time and Cost Comparison of CPE Techniques.

High

72

The method proposed combines the properties of mathematical

programming, synthetic modeling, and Kiviat graphs. The new

approach can be added to Table 1 with the following entries:

Total Total Selection Optimization
Time Cost
Required Required

New Approach Medium Medium Good Good

All of the techniques in Table 1, along with the New Approach are

shown in Figure 7-1. The new approach is considered to be a com-

bination of the best of each of the techniques it draws upon. It is

hoped that this approach will put CPE within the range of all com-

puter system users.

Future Areas of Research

This study has concentrated on developing a versatile tool for

analytical work dealing specifically with the computer performance and

evaluation field. Though the proposed approach, as applied here,

gives useful results, much is left to be done. Some of the major

areas are indicated below.

1) Goal Programming: Often a CPE evaluation effort involves

satisfying conflicting objectives. For example, it may be desired to

increase throughput while minimizing capital expenditures. One

modification of linear programming that holds promise for solving

problems of this type is goal programming (Lee, 1972).

73

Developed by A. Charnes and W. W. Copper, Goal programming

was further refined into a distinct mathematical programming tech-

nique by Ijiri (1965).

The major advantage of goal programming is that it provides a

potential solution to problems involving conflicting objectives. Linear

programming suffers from a unidimensionality of the objective func-

tion, while goal programming allows for multiple objectives.

Lee (1972) points out that since goal programming is relatively

new, its true potential is yet to be determined. It appears that the

overall potential applicability of goal programming may be at least as

wide and far reaching as linear programming, since LP may be

considered a subset of goal programming.

Lee's goal programming package was modified to run on the CDC

3300 at Oregon State. But, due to existing system limitations, only

small problems involving up to ten resources and ten processes could

be handled. Lee's goal programming package was subsequently

modified to run on the CEC Cyber 73 under KRONOS 2.1. The pro-

gram will currently compile for 100 processes, 250 resources and

10 priority levels.

3) Stochastic Programming: Stochastic programming deals with

situations where parameters of a problem are random rather than

deterministic quantities (Taha, 1971, pg. 649). This form of pro-

gramming can be used to address real-life problems which are

74

non-deterministic. Computer Performance and Evaluation efforts

involving the optimization of on-line computer systems could poten-

tially benefit from stochastic programming applications for various

areas where only the statistical distribution of the level of resource

request is known. An example of this is a problem in the memory

allocation area.

4) Functional Levels: If RPMS is to be accepted as a universal

tool for CPE efforts, then a central common ground among all evalua-

tion methods needs to be found. One proposed approach to the analy-

sis of computer systems as a part of computer networks involves a

hierarchical approach call 'Functional Analysis' (Booth, 1973). The

functional analysis method takes the approach that a system can be

decomposed into its sub-systems. RPMS has been shown to allow for

decomposition, adaptation of RPMS to functional analysis could give

new insight into CPE. The use of RPMS might allow further develop-

ment of more levels within the existing functional analysis level

structure (Becker, 1973).

Though the Resource Planning and Management System is not a

panacea for all things, this study has shown it to be useful in gaining

more insight into the solution of computer performance and evaluation

problems.

75

BIBLIOGRAPHY

Aoki, Masanao. 1971. Introduction to optimization techniques:
fundamental applications of non-linear programming. New
York, Macmillan. 335 p.

Arbuckle, R. A. 1966. Computers and automation, "Computer
analysis and throughput." Jan. , 1966. p. 12-25, 19.

Becker, Hal B. 1973. Functional analysis of information networks.
New York, Wiley. 281 p..

Bell, T. E. 1971. "Computer performance analysis: measurement
objectives and tools." A report repared for National Aeronautics
and Space Administration and United States Air Force Project
Rand. Rand Number R-584-NASA/PR. February, 1971. 32 p.

Bell, T. E. , B. W. Boehm, and. R. A. Watson. 1972. "Computer
performance analysis: framework and iti initial phases for a
performance improvement effort." A report prepared for United
States. Air Force Project Rand. Rand Number R-549-1-PR.
November, 1972. 55 p.

Betz, Robert E. 1973. "Use of SMF data for performance analysis
and resource accounting on IBM large scale computers."
Proceedings of 8th Meeting of Computer Performance and Evalu-
ation Users Group (CPEUG) NBS Special Publication 40. p.
23-32.

Blatny, J. , S. R. Clark, and T. A. Rourke. 1972. CACM. Vol. 15,
No. 6. June, 1972. "On the optimization of performance of
time-sharing systems by simulation." p. 411-420.

Booth, Grayce M. 1973. Functional analysis of information process-
ing. New York, Wiley. 269 p.

Butler, James L. 1970. Instrumentation Technology. "Comparative
criteria for minicomputers." Oct. , 1970. Vol. 17, No. 10,
p. 67-82.

Calingaert, Peter. 1967. CACM. Vol. 10, No. 1, Jan. 1967.
"Systems performance evaluation: survey and appraisal." p.
12-18.

76

Chen, Kuei-Lin. 1974. The application of decomposition and con-
densation algorithms to the logical design of resource planning
and management (RPM) networks. Masters thesis, Oregon
State University. 205 p.

Cohen, Leo J. 1973. "Dollar effectiveness evaluation of computer
systems." Proceedings of Eighth Meeting of Computer Per-
formance and Evaluation Users Group. NBS Special Publication
401. p. 85-97.

Drummond, M. E. Jr. 1973. Evaluation and measurement techniques
for digital computer systems. New York, Prentice Hall. 338 p.

Ens low, Philip H. Jr. 1974. Multiprocessors and parallel process-
ing. New York, Wiley. 340 p.

Falk, Howard. 1975. IEEE spectrum. Vol. 12, No. 4, April, 1975.
"Technological forecase-computers II." p. 46-51.

Gibson, J. C. 1970. IBM Technical Report TROO. 2403. June, 1970.
"The Gibson Mix." 4 p.

Gordon, Geoffrey. 1969. System simulation. Englewood Cliffs, N.J.,
Prentice-Hall. 303 p.

Gould, I. H. (edr.). 1971. IFIP guide to concepts and terms in data
processing. Holland, North Holland Publishing Co. 161 p.

Hellerman, H. and H. R. Smith, Jr. 1970. Computing surveys. Vol.
2, No. 2, June, 1970. "Throughput analysis of some idealized
input, output, and computer overlap configurations." p. 111-118.

Herman, Donald J. 1967. Datamation. Feb. , 1967. "SCERT: A
computer evaluation tool." Vol. 13, No. 2. p. 26-28.

Hesser, W. Andrew. 1973. "The use of simulation in the solution
of hardware allocation problems." Proceedings of Eighth
Meeting of Computer Performance and Evaluation Users Group.
NBS Special Publication 401. p. 73-79.

Highland, Harold Joseph. 1974. "Preface." Proceedings of Eighth
Meeting of Computer Performance and Evaluation Users Group.
NBS Special Publication 401. p. v and vi.

77

He Herman, Herbert. 1973. Digital computer system principles.
New York, McGraw Hill. 466 p.

Ijiri, Y. 1965. Management goals and accounting for control.
Chicago, Rand-McNally. 191 p.

Inoue, Michael S. and James L. Riggs. 1972a. "Resource planning
and management network." Proceedings of International
Symposium on Systems Engineering and Analysis, Vol. 2.
p. 187-192. October 23-27 Lafayette Indiana Purdue University,
John E. Goldberg et al. , eds.

1972b. "RPM network." Session TPSi3.4 ORSA
TIMS-AIIE Systems Engineering Joint National Conference,
Atlantic City, November 9, 1972.

Inoue, Michael S. 1974. "Visual identification of Kuhn-Tucker
conditions on RPM networks." Paper presented at 2nd Annual
Systems Engineering Conference, Minneapolis, Minn.
November, 1974.

Kanter, Jerome. 1970. Management guide to computer system
selection and use. Prentice Hall, Englewood Cliffs, N. J.
257 p.

Knight, Kenneth. 1966. Datamation. September, 1966. "Changes
in computer performance." Vol. 12, No. 9. p. 40-54.

1968. Datamation. January, 1968. "Evolving
computer performance: 1962-1967." Vol. 14, No. 1. p. 31-35.

Lee, Sang M. 1972. Goal programming for decision analysis.
Philadelphia, Auerback. 387 p.

Lucas, Henry C. Jr. 1971. Computing surveys. Vol. 3, No. 3,
September, 1971. "Performance evaluation and monitoring."
p. 79-91.

Minsky, Marvin L. 1967. Computation:finite and infinite machines.
Prentice-Hall, Englewood Cliffs, N. J. 317 p.

Morris, Michael F. 1974. "Kiviat Graphs-conventions and figures
of merit." Proceedings of 10th Annual Meeting of Computer
Performance and Evaluation Users Group, Columbus, Ohio.
October, 1974. (In press)

78

011ivier, Robin T. 1970. Datamation. January, 1970. "A technique
for selecting small computers." Vol. 16, No. 1. p. 141-145.

Riggs, James L. and Michael S. Inoue. 1975. Introduction to
operations research and management science a general sys-
tems approach. McGraw Hill, New York. 536 p. (In press)

Scheurman, H. Lynn. 1970. *REX (Version 1) linear programming
system. Corvallis, Oregon, Oregon State University Computer
Center. 89 p.

Sharpe, William R. 1969. The economics of computers. Columbia
University Press, New York. 571 p.

Stimler, Saul. 1969. Real-time data processing systems - a
methodology for design and cost/performance analysis.
McGraw-Hill, New York. 259 p.

Stimler, Saul. 1974. Data processing systems: their performance,
evaluation, measurement, and improvement. Motivational
Learning Programs Inc. , Trenton, N. 3. 183 p.

Taha, H. A. 1971. Operations research: an introduction.
Macmillian, New York. 703 p.

Timmereck, E. M. 1973. Computing surveys. Vol. 5, No. 4,
December, 1973. "Computer selection methodology." p. 199-
222.

APPENDICES

79

APPENDIX A

GLOSSARY OF TERMS

BATCH PROCESSING: The processing of a program or set of pro-
grams, called a batch, under the control of an operating system and
without intermediate interaction with the user. Each programmer
request, in advance, specific services of the operating system, and
then transfers control to the system, which supervises and processes
each batch program in a sequence.

BYTE: A small sequence of adjacent binary digits, or bits, which can
be treated as a unit (usually either six or eight).

CAPACITY: The maximum achieveable average throughput rate
regardless of the timeliness of the outputs. It is expressed in units of
work (for example, jobs or transactions) successfully completed per
hour, minute, or second. Capacity is intended to indicate a theoreti
cal upper processing power limit. It can be valuable for performance
evaluation and improvement but usually for performance evaluation
and improvement but usually would not be expected to be achievable
in practice. The same hardware and software would have different
numerical values for capacity when representative work loads with
different characteristics were processed.

CHANNEL: A path along which signals can be sent. In reference to
computer systems, this usually refers to a medium that transfers a
series of digits or characters between two terminals, or between main
memory and peripheral I/O devices, with minimum involvement of
the CPU.

CHANNEL CONTENTION: Competition between high-speed I/O
devices for one or more channels.

COMPUTER-BOUND: Describes a program for which the time re-
quired to perform computation dominates the total time required for
program execution. (Also called CPU-bound)

CPU: Central Processing Unit.

80

CPU UTILIZATION: The ratio of time that the CPU is actively working
to the total time that the CPU is available to work. Hardware and
software monitors measure CPU utilization by (1) determining the
number of cycles that perform work and the total cycles completed
over a given time period and (2) computing the ratio. CPU utilization
can be calculated from computer accounting data by dividing the total
CPU time accounted for over a time interval by the net amount of
time that the central processor was operating. (Net time equals the
length of the time interval less the amount of time that no work was
performed because of hardware or software failure, scheduled main-
tenance, or insufficient submitted work.)

I/O: An abbreviation for input/output, the transfer of information
between a computing device and a peripheral.

I/O Bound: Describes a program, a set of programs, or an entire
work-load in which the time required to perform I/O operations domin-
ates the total time required to execute the program.

JOB: One or more programs (often called job steps, activities, or
tasks) submitted for processing by a computer system. (2) The unit of
work for batch processing systems. (3) A basic independent unit of
work to be carried out by a system.

PRODUCTION JOB: A computer run of a checked-out program, often
done on a periodic or continuing basis at a computer installation for the
purpose of producing specified output.

PROGRAM: A complete specification of one or more task that are to
be performed on data.

RELATIVE THROUGHPUT RATE: The dimensionless ratio of the
average throughput rate for one set of conditions divided by the aver-
age throughput rate for a second set of conditions. The different con-
ditions usually are the processing of the same representative work
load in two different systems. For relative throughput rate to be
meaningful, it is essential that the same representative work load be
processed by each of the systems being compared.

RESPONSE TIME: The average time that a terminal user must wait
to receive a response from a time-sharing system. (Note that the
definition of a "response" is critical to the magnitude and relevancy
of the measure.)

81

SPOOLING: Queueing input or output on disk or tape. This is done
in multiprogramming computer systems so that a program can read
input data at a disk or tape speed instead of card-reader speed and
can write data at disk or tape speed instead of printer speed. The
main reason for spooling is to allow many programs (at one time) to
read input data or write output data even though the system may only
have one card reader and one or two printers.

TASK: A number of steps which are partially or wholly ordered from
the point of view of their execution.

THROUGHPUT: A performance measure for a computer system to
indicate how much work is being processed over a given time period
(e.g. , jobs processed per hour). (2) Total data processing work
successfully completed during an evaluation period.

THROUGHPUT RATE: The data processing work successfully com-
pleted per unit of time.

TIME-SHARING: A technique of system operation in which each of
several programs receives a short quantum of the CPU's time. (They
share the processor.) Time-sharing systems often include facilities
to move programs, or parts of programs, between memory and other
storage devices (e. g., disk or drum)

TRANSACTION: The unit of work for a real time systems.

TUNING: Making- relatively minor modifications to a computer sys-
tem's hardware, software, operational procedures, or any other facet
of the operation of a computer installation for the purpose of increas-
ing efficiency of operation.

82

APPENDIX B

BUTLER'S FORMULA

h
+ P8

P
2

W-FPh = Basic system cost ($) 0. 1M
2W

20+ 7r- (Ah+Lh+rh) + 100N + 50R

Basic system cost ($)P
8 500 (D+B+L) + 1,000A + 2,000C + 50S

M = Core memory storage capacity of a basic machine, total bits
F = Number of bits in the address field of single word instructions
W = Word length, bits
R = Number of general purpose registers
T = Core-memory read-write cycle time
N = Number of "extras" in the basic cost of the machine, including:

. Real-time clock

. Power failure protection

. Automatic restart after power failure

. Memory parity checking

. Memory protect
A

h
= A number proportional to the arithmetic capability of the com-

puter- -with a range of 0 to 100:
0 No arithmetic capability

25 Hardware add and complement
50 Hardware add and subtract; software multiply and divide

(fixed point, slow)
75 Hardware add and subtract; hardware multiply and divide

(fixed point, fast)
90 Hardware add and subtract; hardware multiple and divide

(fixed point); software floating point arithmetic
100 Hardware fixed point and floating point arithmetic

Lh = A number proportional to the logic capability of the computer-
range of 0 to 100:

0 No logic capability
25 "And" and "or" hardware
50 "And," "or," and "exclusive or"

83

75 All of the above, also word test and conditional branch
instructions

90 All of the above, also bit test and bit manipulation
instructions

100 All of abobe, also arithmetic rational test instructions
= A number proportional to the I/O capability of the computer--

range of 0 to 100:

0 No I/O
25 Programmed I/O through internal registers only
75 Same as above, also multiple I/O processors

D = Off-line diagnostic routines supplied:
NO = 0 YES= 1

B = Debugging routines supplied:
NO = 0 YES --,- 1

L = Loader routines supplied:
NO = 0 YES= 1

A = Number of assembler
C = Number of compilers

Power of on-line operating system (range of 0 to 100)

84

APPENDIX C

OLLIVIER'S FORMULA

Weighting Schemes (Manufacturer Criteria)

Factor
Delivery time

Past performance

Maintenance

Location

Alternative sites

Number installed

Documentation & training

Weight Scoring Bases
7 4,3: Less than 45 days ARO;

2,1: 45-75 days ARO; 0:
Ofer 75 days ARO

4 4-2: Many reports of on-time
delivery and good service; 1-0:
Known for late delivery, poor
service

3

2

4-2: 24-hour turnaround on
cpu, on-call maintenance; 2-0:
No experience, remote or
difficult corporate interface
4: Southern California
2: Within 500 miles
0: Distant

4: Same computer installed
at JPL; 3-1: Locally available;
0: No alternative site
4: Over 100; 3-1: 10-100
installed; 0: Less than 10 in
field

4: Excellent hardware and
software manuals, or training
provided; 3-1: Adequate inter-
face and programming manuals;
0: Little or no documentation

85

Weighting Schemes Computer Criteria) cont.
Factor Weight

Word size 10

Cycle time 6

Instruction set 5

Arithmetic 2

Addressing 4

Programmable registers 6

Interrupts 7

Input/Output 8

Physical size 1

C onsole 3

Scoring Bases

4: 16 bits or more; 2: 12 bits;
0: 8 bits or less
4: 1 p.sec; 3-1: 1-2 p.sec
0: 2 p.sec

4, 3: Extensive; 2: Adequate;
1-0: Primitive
4: Hardware multiply/divide;
double precision and floating
point options; good precision
3-1: Adequate capability;
hardware mul/div or fast
subroutines
0: Very little arithmetic
capability

4-0: Score one for each of the
following: indirect, relative,
indexed, direct to greater than
4096, or by addressing
4: Many; 3-1: More than one;
0: one

4: 3 or more priority, no
identification necessary; 3-1:
Adequate for 3 devices
0: None quoted
4: 2 or more automatic channels
at rates to 1.3 megabits/sec;
3-1: At least one 1.0 megabits/
sec with good accumulator 1/0;
0: Marginal I/O capability
4-0: Subtract one point for each
5 inches over 11 inches
4-0: Sense switches, displays,
debugging aids

86

APPENDIX D

INSTRUCTION CATEGORY DESCRIPTIONS

Weights for a Scientific Mix and a Commercial Mix

Instruction Category*
Scientific

Weight
Commercial

Weight

1. Fixed add (subtract) and compare
instructions 0.10 0.25

2. Floating add (subtract) instructions .10 0

3. Multiply instructions . 06 . 01
4. Divide instructions .02 0

5. Other manipulation and logic
instructions .72 74

1.00 1.00

Source: Kenneth E. Knight, "A Study of Technological Innovation-
The Evolution of Digital Computers." doctoral dissertation,
Carnegie Institute of Technology, November, 1963, pp. IV-5,
IV-6, IV-7.

*Category descriptions:
1. "These instructions are the fixed additions, subtractions and

compare operations performed. We may obtain the fixed add
time for each system from the computing literature.

2. "The floating point add time is given in the computing litera-
ture for machines with built-in floating-point arithmetic.
For other machines the figure can be approximated by
multiplying the fixed-point add time by 10... (the mean value
for six computing systems considered)."

3. "We have included only one multiply category since the
operating times for these two operations on systems capable
of both floating and fixed-point arithmetic are approximately
equal. The multiplication time is a characteristic available
in the computing literature."

4. "The fixed- and floating-point operations were combined...
the divide time represents a characteristic of each system
published in the computing literature."

87

5. "This category combines a large number of branch, shift,
logic and load-register instructions... For computers with
parallel arithmetic, the time... is the shortest of... add time
or... 2(times) the memory access time for one word.. For
computers with serial arithmetic, the... time equals the
shortest of (1) add time or (2) (the time required to access an
instruction, slightly modified)."

88

APPENDIX E

June 18, 1970 TR 00. 2043

The Gibson Mix

by

Jack C. Gibson

ABSTRACT

The Gibson Mix is a set of weights developed by the author to evaluate the speed of a central
processor. Developed in 1959 for use with the IBM 704 vocabulary, the method became widely known
and used throughout the industry at a time when there was a dearth of such tools. Because of a

renewed current interest in what was considered to be an obsolete tool, the Gibson Mix is published
here for the first time. The author's critique of usefulness of the mix as a computer performance
evaluation tool is included.

Computer Evaluation
07 Computers

IBM
International Business Machines Corporation

Systems Development Division, Poughkeepsie, New York

89

INTRODUCTION

In spite of no published material on the method and no intent to extend to external use the

Gibson Mix developed at IBM, the method became widely known and used throughout the computer

world during the early 1960's. The tool was used to plan and design new computers, to estimate the

worth of a computer to a user, and to plan data processing systems.

Today, for no specific reasons that can be determined, there is a strong and widespread

resurgence of interest in what was considered to be an obsolete tool. Granted the name with its

suggestion of a well-known recipe makes for easy recall, there must be more basic reasons for the

renewed interest. For that reason -- belated but for what value it has now for the student and

scientist -- here is the first published recipe for: the Gibson Mix.

WHAT IS IT?

The Gibson Mix is a set of weights developed for 13 different classes of instructions, by which

to evaluate the speed of a central processing unit in performing scientific-type problems. It was

developed by the author in 1959. At that time, the computer world was basing its estimates of CPU

speed on storage cycle time, add time, or from an average of add and multiply times. The Gibson

Mix with its weighted average of 13 different instruction times promised a more precise evaluation of

CPU speed.

The mix was based primarily on the operation codes in the IBM 704 data processing system

vocabulary. These codes fell neatly into 12 classes by function. Execution times for the codes within

each class tended to vary little from one another. A 13th class was artificially devised to treat the

indexing of an address as if it were a separate instruction. A percentage by which to weight the

established instruction times of a computer then was derived for each instruction class. Here, then,

is the Gibson Mix recipe:

90

The Gibson Mix

1. Loads and Store 31.2

2. Fixed Point Add and Subtract 6.1

3. Compares 3.8

4. Branches 16.6

S. Floating Add and Subtract 6.9

6. Floating Multiply 3.8

7. Floating Divide 1.5

8. Fixed Point Multiply 0.6

9. Fixed Point Divide 0.2

10. Shifting 4.4

11. Logical, And, Or, etc. 1.6

12. Instructions Not Using Registers 5.3

13. Indexing 18.0

100.0

APPLYING THE MIX

To apply the mix to evaluating the CPU speed of a computer. Computer X say, it is necessary

only to obtain the average time for X to execute instructions in each of the 13 classes and to take a

weighted average of these times using the indicated weights. The implication is that the result of

using the mix is closely dependent on the estimated instruction time for each class.

ESTIMATING CLASS AVERAGES

Ground rules must first be established by which the averages are to be estimated. The ground

rules should take into consideration typical field sizes, frequency of zero as a factor, distribution of

zero digits in a multiplier, average number of positions of pre-shift in floating point add, the number

of times a conditional branch is taken, rather than bypassed, etc.

91

It must also be decided in which class each instruction belongs, and how frequently the slowest

instruction in the class is used compared to the fastest. It should be noted that Class 11, Logical,

includes all bit-manipulating and address-computing operation codes; Class 12, Instructions Not

Using Registers, includes a miscellany such as Start, Stop, I/O instructions (instruction interpret

only), and unconditional branch.

The mix was expected to be applied to single-address machines only, as the choice of classes

reflects. To apply the mix to other machines, say a three-address machine performing A +B=C in one

instruction, the instruction must be analyzed to determine what part of the time should be apportioned

to Class 1, Load and Store, and what part to the appropriate Add Class.

SOURCE OF THE WEIGHTS

Each weight is the relative frequency of execution of all operation codes in a class, during

actual processing. Seven jobs were run on the IBM 704, and 5. 7 million instruction executions were

traced. For each execution, a record was written on magnetic tape. Later, these records were

counted by instruction type to determine how often each type was used. All jobs were scientific in

nature, including several utilizing matrix algebra.

To spread the application base somewhat and to reduce the influence of the IBM 704 architecture

on the weights, similar traces of ten small IBM 650 data processing system jobs (3. 0 million execu,

tions) were also distributed by instruction type. Each weight in the Gibson Mix is the average obtained

by weighting the IBM 704 count by 88.6%, and the IBM 650 count by 11.4 %. Although the 650 jobs

were of a commercial type, the Gibson Mix is predominantly scientific.

INTERPRETING THE RESULTS

It is important to keep in mind that the Gibson Mix, is a tool to predict the speed of a CPU on

jobs such as those traced on the IBM 704 and 650. On such jobs, it is representative; on other jobs,

there is no certainty the mix will be representative. Other constraints on the results include the

92

insensitivity of the mix to: variations in programming; operating system overhead; compiler execu-

tion time; and I/O system effects, for example the interference between CPU and I/O for primary

storage cycles.

When the mix is applied to Computer X, the result obtained is a weighted average instruction

time. Should the mix be used to estimate the run time of a benchmark program? Probably not,

because the mix is too imprecise. Should the average microseconds per instruction be converted to

millions of instructions per second (MIPS)? Perhaps for comparative purposes. First, however, a

computer with which one is familiar, call it Computer B, should be evaluated as a basis for com-

parison. By comparing the average instruction time for Computer X with that of Computer B, or by

comparing their MIPS rates, Computer X speed can be declared to be a certain percentage of

Computer B speed. This is a conservative way to use the mix but it does help in mitigating some of

its imprecision.

CRITIQUE

With due attention given to the representativeness and precision discussed, the Gibson Mix has

been a relatively easy tool to apply -- particularly when a dearth of such tools existed. The mix

still could be used today to compare relative hardware speed potentials. Nonetheless, the mix is

obsolete. The same job is being done better today using such techniques as simulation, trace times

and measurement monitoring.

A mix generated today could be constructed on a wider job base and on hundreds of millions

of instruction executions. Validation could be a controlled scientific experiment. Instruction pairs,

triplets, etc. could be traced. Mixes based on source language statements could be developed, as

well as compiler mixes. I/O and operation system effects could be isolated.

Undoubtedly, there is much in the field of developing mixes to interest the computer scientist

and student. Indeed, it is perhaps from the university that the recent interest in the Gibson Mix has

surged.

APPENDIX F

KIVIAT GRAPHS

1

E

A = General Case
B = Best Case Star
C = Worst Case Star
D = "Good" Star
E = "Bad" Star

9 3

94

APPENDIX G. Lee's GOAL Programming for CYBER
-PROMO, JLEGOAL 73/74 -Witt -4.34-74-351

1 PROGRAM JLEGOAL(IMPUTOUTPUT,TAPE602INPUT,TAPE61=OUTPUT)

Ct -TS- IIHIISA-G011-PRIGRAIIING-PACCAVE-1100f/Ett FOR

5 C THE CDC CYBER AT OREGON STATE UNIVERSITY

C DATE MODIFIED. ...MAY 20,1975

C
10 NOTE.. T-ME- F-OttOWING--- ARRAYS- SWAIM 1TE SET

C TO THE VALUES GIVEN FOR A FULL RUN WITH THE ORIGINAL

C
VIM/TAT I-ONS ---0ELEES PROSRANNING -PACKA-GE GOALPI
RVLX (10,250)

X tru-9 c-'51Th
15 C C (100,250)

T11109 2501
_

C VALY (100910)
CIV.111. IP*11kilkilk.#11.11,4-4-11,111--*-****111kli /1M ** VIR 4k, iv** #

COMMON C(100,250)
20 VOrmfOrir- IMMO 2901

COMMON RVLX(10,2501
COMMON WALK(VI 2591-
COMMON VALY(100,10)
t/I-MENSTOW X1-25-0-)

25 DIMENSION Y(10 0)
UITTEIM1719-- r T-1 141),
DIMENSION ANT (/00)
fl/NENSTO-N 00-13 t /001
DIMENSION DUD (2501

30 / MENSI Ott XE-PT GO)
DIMENSION PROT (1.00)

I I

DIMENSION ZVAL (10)
1.5 TORNAT113,F12-

35 12 FORMAT(10F12. 3)
13 FORNATt ST9. 0

313 FCRMAT(I310X,F20.5)

40
DO 21 J=1,M

21 X1J)=J
DO 20 I=1,N

24) YII)=1
DO 25 K=1,1.

L-J.,r
45 VALY(I,K)=VALX(K9I1

25 CONTINUE
IT AB= 0

C **1114,*****it ***** **4 ****** it** *41*** .*** *4, * 4

5-0
C

c-
c

ElgitiG IN NEW VARIABLES
0 ' Vitt-

ITER=-0

L1=0
32 Xl=t-t1

55 IF(K3-1) 800. 40, 40

DO 60 J=1.0

95

PROGRAM AEGOAL 73174 OPT=I fl-N 4.3+74353

SUMP=0.
- 1

50 P=VALY(IIK)*C(I,J)
SUMP=SUMPVP

50 CONTINUE
RVIX(K,S)=SUMAVALX4K,J1

60 CONTINUE

C BRING IN X(K2)
2MAX21.
00 90 J=1.04
IF(K3-L) 92.7070-

70 92 K4=K3+1

IF(RVLXLK,J)) 90,91,91
91 -CONTINUE
70 IF(RVLX(K3,J)-ZMAX) 90,90,80

75 80 ZMAX=RVtX4K34JT
K2=J

IF(K3-11.2MAX)95,1211,95
-95 Ift2MANY 790,i790o00

80
C. WHICH VARIABLE IS REMOVED FROM THE BASIS
C CALCULATE LIMITING ANT FOR EACH BASIS VARIABLE

IF1F1FV1F1F-Bri,11F1F1F

100 DO 150 I=19N
85 IFIPROT(1))-1109-1204t20

110 WRITE (51,13) PROM)
GO TO 831

120 IFIC(I,K2)/ 130,130,140
1-30-1AltI)=.17.

90 GC TO 150
140 -AMI(I)=PRD1(1)1CIIfK2i
150 CONTINUE

C

C ,11.4411-11 IF AB* ****** 4-4F-41B4B1, 11.1B-IF* -*BF* ABBF-7,8 *AB* 441,41B *BF 4.44 BF*C

SELECT SMALLEST POSITIVE LIMITING AMT
15

161) IF(AMT(I)) 170,210,210
170 1=I+1

160,160,180
180 WRITE 161,13) AMT(N)

100 GO TO 830
211-1MIM=AMTA14-

K1=I
22e I=I+1-

IF(I-N) 230,230,300
105 230 If(A4T411) 2201246.240

240 IF(ZMINAMT(I)) 220,220,210
- -e11-34-1B-V-VABIF-11-1114.4.4-11.44.441,4-4-11.4-411-44-4,11-11.4.4-11-44-4-11-41/41-4F4-44BLIFAILIF

41,111-1141LIT

REMOVE YIK1)
-300 Y(K1)=X(K2)

110 DO 310 K=1,L
VALYTK14K)=VALKTK9X2V

310 CONTINUE
C111-4.11.11,411.11.4.111.1111.114611441146144-41.111.1W.AVIB.114441-11711-14141B*4-4t,

C CALCULATE NEW RIGHT-HAND SIDES

96

----PRUGRAN JLEGOAL 71/74 FTW 4;3474151-

115 DO 400 I=1.N
FRUIILl-PRUFIII-ENTTMUI,K2T

400 CONTINUE

1211 tALCULIT.E- NEW -strestrttrrraft-R-Ares-
c

II II

C THESE MODIFICATION'S ARE FOR TEST PURPOSES
TO- TRY AND CUT" our -TWAT ARRAY' AND- SAVE 251(

125
DO SOO J=Iot
DC 500 I=10

500 CONTINUE
130 DO 510 J=ivn

O(K1.3)=C(K1,3)/CIK1,K21
510 CONTINUE

DC 520 J=11M

135 CII.J)=D (I,J)
If TABStt ITIFJ) itE.O.-000-01)C119J)=0

520 CONTINUE

ITER=ITER+1

C

Vr*WWWWWWWW*V****
WRITE ALL TABLES OR JUST OPTIMAL TABLE
IFIITER"li ZOO .200.12I0

200 WRITE (61,1220)
1220 FORHATIff THE INITIAL 2J..-CJ HATRIX*.t/T

145 00 1230 KK=1,L
411,4:41:4X1C-
IF (TEST.EQ.0.0) GO TO 1229
MX=t-KK
IF IMX.NE.0) GO TO 1229

150 WRITE (61,1231)
1231 FCRMAT(t ARTIFICAL*)

1229 WRITE (61,5007) MX
1230 WRITE 16/.12) (RVLYIKK.JJI.jj=i4M)

155 IF(ITAB) 40,40,600
1210 IF(ITAB) 40.40.6-813
1211 IF(ITAB) 790,790,6813
1'811- -watTs-rtt-olvim-----

00 6814 K=1,L
160 MM=t41*(

WRITE (61.5007) MM
WRITE 161.12) (RVLX(K,J), J14)

6814 CONTINUE
11-12WAlt-7/40-0-

165 C ** * *
WRITE EACH TABLE

600 WRITE (61,6001) ITER
6001 FORMATt/H1,18X,13MITERATIONS = .131//1

WRITE (61,5001)
170 tt--18/11-1=t itt--

IY(D=V(I)

C

PROGRAM JIEGOAL 31111 OPT:=1

WRITE (61,313) IYII) 'PROT (I)
'b10-CONTINUE

WRITE (6100021
175 00 620 I =I ,N

WRITE (619500 6) I
WRITE (61,12) (C(19J19J=1 041

620 CONTINUE

180
C MOVE TO NEXT LOWER PRIORITY" LEVEL

790 L1 =1-1t1
GO TO 32

C

185 C WRITE 1- i NAL-RE-SUL S
800 WRITE (61,10151

1015 FORMAT(1H1)
WRITE (619 1014) ITER

1014 FORMAT(1.0)(9*ITERAT/ONS.
190 WRITE (61,5000)

5000' "FeRHATT5'5X."*T1IE- SIMPLEX SOL T /13Mt. z5x 9/PAGE *fit/
WRITE (61,5001)

5001 FORMAT(ft.* THE RIGHT HAND SIDE*Ifi)
DC 810 I=19N

195 T)

WRITE (61,313) IT(I) 9PROT(I)
Bttr-CCNTT'NJ

WRITE (61,5002)
5 002 FO'RMAT(//.$ THE SUBSTITUTION RATES(,/ /)

200 00 817 I=19N
WRITE (619500 6)1

5006 FORPAT(1X13HROWII5)
MITE t 51"."121 t P:tiitt

812 CONTINUE
205 WRITE (61,5003)

5003 FORMAT(/ /,t THE ZJ-CJ MATRIX*9/41)
DO 814 K=1.L
MM=L+1-K
TF TTEST . 0".1/1 GO TO 51008

21C HM=L-K
IF (MM.NE.-0/ GO TO 5808
WRITE (61,1231)
GO TO 5009

5008 WRITE (619 500 7) NH
215 5 00.7 f Mita t X-9-1/41aRIIIRIT 915

5009 WRITE (61,12) (RVIX(K,J), j=itM)
814 CONTINUE

C

C

97

,FTN_ 4.3t7(9353

220
DO 820-K=19L
ZVAL(K)=0.
DO 820 I=1911
ZVAL(K)=ZV AL (K),PRDT(I)*VALY (IOC)

225 820 CONTINUE
WRITE (61,5004)

5004 FORMAT * EVALUATION- OF HE -0 J-EC T V f NC T I ON*
00 821 K=19L

C
C EVALUATE OBJECTIVE FUNCTION
C

C

KK=L-K
-Tr (TE_ T .'Ett .1 .OTOD TO B9
KK=KK+/

89 WRITE (51915) KK9ZVAL(K)
821 CCITINUE

CALL FINISH(RHS19PRO IKPCK9T.N.KEPT 'TEST)
235 830 CONTINUE

ENO

SUBROUTINE START 73/74 OPT=1

C ***

C AND NOW FOR THE SUBROUTINES
C

FIN 4.3+74353

98

5

C THE START SUBROUTINE IS DESIGNED TO TAKE- INFORMATION IN A SPED
C IFIED FORMAT AND TRANSFORM IT INTO A SERIES OF USABLE MATRICIES

** ************************ ***********

SUBROUTINE START(NROWS, NVAR ,NPRT,RHS,RHSI,KPCK,KEPT,TEST)
REAt KEPT
INTEGER POS
INTEGER NEG
INTEGER OATEA
INTESER-OBJ

15 INTEGER PROS
INTEGER L
INTEGER RGHT
INTEGER 8
INTEGER E

2G IN-TEGER

C THESE ADDED INTEGER
C VALUES ARE FOR 0S3
C 421F4FIF. *IF***

25 INTEGER ANAME
INTESER-EOUAt-S-

C
C NOTE...THE FOLLOWING ARRAYS SHOULD BE RESET TO THE
C INDICATED VALUES TO MAKE THIS PROGRAM COMPATABLE

30 C WITH THE ORIGINAL LIMITATIONS OF LEES GOALP1
C NV=250 AND NR=100
C C-11.014-2501-
C VALX (10,250)
C RVLX (10*251)-

35 C VALY (100,10)
C

*****4*** *4,4* ***** *
COMMON-C.11404-250f
COMMON RVLX(109250)

40 COMMON VAL/t10+250)
COMMON VALY(104910)
DIMENSION EQUALS(100)
DIMENSION RHSt100)
DIMENSION-MEPTIABIt

45 DIMENSION RHSI(100)
DATA (POS =4HPOS 1

DATA tNEG=4HNEG)

DATA (DATEA=4HDATA)
DATA tOBJ=4H08J 1

50 DATA-(PROB=4HPROSI-
DATA t0=1H3)
DATA tE=1HE/
DATA (G=1HG)
DATA (L=IML)

55 DATA tRGHT=4HRGHT)
NV=251
NR=130

99

SUBROUTINE START T 3 / 7 4 OPT=1 FTN 4.3+74353

C"

60 C READ THE PROBLEM CARO

FORMAT(A4.3I3)
TEST=0.0
READ (60,1) ANAME,NROWS,NVAR,NPRT

65 L ISP=NPRI+1
IF (NVAR.LE.0) GO TO 1020
IF(WV...U.0) GO TO 1020
IF(NROWS.LE.0) GO TO 1020
IF(ANAME.NE.P ROBS GO TO 901

70 c**** a ******* *******

C READ THE SIGN CARD.
C IT WILL CONTAIN ONE OF THE FOLLOWING= ERS FOR EACH ROW
C FOR EQUALS

75 C FOR LESS THAN OR EQUAL TO
C FOR GREATMER THAN OR EQUAL TO G
C FOR lort4 -11SITTATIONS'
C * * * * * * * **

READ (60.11) (EQUALSW.I=1,NROWS)
80 11 FORMAT(80A1)

C
C COUNT THE NUMBER OF PPOS TT TAE SLACK VARI A BLESc********* ********** *** ********** ***** ************

85 NART=0
NFLDS=0
DO 12 I=1,NROWS
IF (EQUALS(EQ 0) NELDS=NFLOS+1.

12 IF (EQUALS(It. Ea .-Gl'NFLIS=NFLCS+I
90 c******* ******** *********

C
C TEST FOR SIZE

NSI7E=sIFLOS+NROWS4NV AR
95 I FINROW S N71 GO TO- Sit

IF(NSIZE.GT.NV) GO TO 911
C * * * * * ** * ******************

100

C

C
C CLEAR ALL MATRICIES

****4****,

C*4-** 4,41,01,41,,WW#A1,4-M4-44#4,4F-MMAF****4" 41**

IF (NPRT.GT.NROWS) GO TO 1105
NUM = NROWS
GC TO 1106

105 1105 NUM = NPRT
1106 KCUD = NPRT + 1

DC 1059 KY=1.14SI ZE
1059 VALX(KOUD.KX)=0.0

00 16 J=I.NSIZE
110 DO 16 I = 1, NUM

KEPT(I) =0
IF (I. GT.KOUD) GO TO 17

RVLX(K,J)=0.0

SUAROUTINE -START 73/74 OPT=1

115 VALX(K,J)=0.0

VALY(I.K)=0.0
ift-I.NE.J)

16 CONTINUE
120 -K-PCN=0

K=KOUD

C

C ADJUST TME"SLAC-X-V*RIA8tES AND-OBJECTME-fUNCTION TO MEET THE
125 C REQUIREMENTS OF THE SIGN

Cs* Wit .4141F-IF TS* 11-If*AF it********-41F1F7F 11-4F *AV** *IF **IF 111, AVIFIFIF

DO 13 I=1,NROWS
If WL TTT7EEV GO 10 "T4
IF(EQUALS(I).EQ.G) GO TO 15

130 if(EQUAIS(1).E04t)-GO TO 13
IF(EQUALS(I).EQ.8)G0 TO 18
GO TO-SIO

14 J=I

FTN 4.3+74353

100

135 NART=NART.1
TEST=1.0
GO TO 13

15 KPCK=KPCX11-4'
J=NROWS+KPCK

140 ti I 7117=4, til!
KEPT(I)=J
J=I
VALX(K.J)=1.
9ART=NART+1

145 TEST=1.0
GQ-10 tl

18 KPCK=KPCK+1
J=NRCK+NROWS-
C(I.J)=-1.0

150 KEPT(/)=J
13 CCNTINUE

-C-4-4-114-41-111-.11-4*-11-11-4-11-11.4-11.4.4-4FAVIF-**-4-441F4F-4411-*4.--11-W.4-1-11-1F4,1F-4-1F

C
C

155
READ THE afiJEcTrvE FUNCTION

READ 460.211ANAME
I=0
IF Attetiff-.14E4-014-1 GO TO 920-

20 READ (60.21)ANAME.I.M,TEMP
160 IF(ANA4E.EQ.DATEA) GO TO 30

IF(N.LE.0) GO TO 1022
K=-LISP-4

21 FORrAT(A4.2I5.F16.0)
mmtr.al GO riatinz

165 IFIN.GT.NPRT) GO TO 1024
IF(A4A1E.EQ.NIEG)-GO TO 26
IF(ANAME.EQ.POS) GO TO 25
-GO TO 27

26 J=I
178 IFffefttS-4-Iti-7.--&-.0t-.EattAt-SfIt-i-104-E-1--GO-10-1-055-

VALX(K.J)=TEMP

101

SUBROUTINE START 71/74 OPT FTN 4.3+74353

GO TO 20
25 J/WEPTITT

IF (KEPT(I).EQ.0) GO TO 1026
-175 V1LXIK,J4=TEMP-

GO TO 20
27 IFITEMPT-926,20,926

C

180 C READ THE DATA MATRIX IN
CAP.441**9-4111WW.V#WW,tWO#41111**-9.11%******411***OVV*11,40,1

30 READ (60.21)ANAME.I.J.TEMP
IFI-ANAPIE.EQ.RS+ITI CO TO 40
IF(I.LE.0) GO TO 1090
IFIJ.Eq.01 GO TO 1190
J=KPOK+NROWS+J
C(10)=TERP
GO TO 30

190

-195

40 READ (60144) (RHS (I) II=1NROWS)
4-4 FORMATI8F11. 1 r

00 48 11,NROWSs
195 IF tRHSTI) LT 0.0) SO TO 941

48 CONTINUE

C

C -WRITE THE ABOVE 'RESULTS
200

WRITE (6115015)
5015 FORMAT (55X g *THE RIGHT HAND SIDE...INPUT*, 33X , /PAGE 011)

IF (RHS(I))941,42,43
205 42 RW511)=.00001

43 RHS1(I) =RHS(I)
WRITE 161,111.11.I,RWS (1)

1111 FORMAT(10X,I3,2X,F15.5)

CONTINUE
2/0 WRITE (61,620)

620 F CRRAT 1141)
WRITE (61,5016)

5016 FORMAT(55/91THE SUBSTITUTION RATES INPUT/91.8)(9*PAGE 021)
00 1112 I=1,NROWS

215 WPTTE-1-131",-251-51.--1"
2519 FORMAT (/ X, *Row*, '5)
1112 WRITE (619111 3) (CU, J1,-J=1,NSIZE)
1113 FORMAT (10E12. 3)

WRITE (61,620)
ao WRITE 161, 50/7)

5017- FORMA-Tt55111-1-T-RE -013-JECTIVE -FUNOT 1191.1w1NPU Tt .11X 4/PAGE 0311
DC 1114 K=1,NPRT
M=1-ISPK
WRITE (61, 2150) M

225 2150 FORMAT (1 PRIORITY/$15)
1114 WRITE (61,1113) (VALX (K,J),J=1,NSIZE)

-Wit/TE-1-6ti-6-20)
WRITE (61,5018)

SUBROUTINE START 73/74 OPT=1 -FIN 4.3+74353

5018 FORMAT(55Vp*SUMMARY OF INPUT INFORMATION *,19X.*PAGE*1* 04*)
-230 NvARNSIZ

102

WRITE 161,2017) NROWS,NVAR,NPRT,NART
201T FoR1IATt1eromumm-/mlkows.........1,Isii,1ox,m1IsER OF VARIABLES

.... ,I5./.10X.*NUMBER OF PR/OR/TIESI..V.I5./.10X4ADDED PRIOR

235 IF(NART.GT.0) NPRT=NPRT+1
RETURN

910 WRITE (61,914)
9I4OFORMATIVPROGRAN CONTAINS-AN-ERROR-E/THER-IN-THE NUMBER OF ROWS PUN

1CHEC OR IN THE SIGN CARD.THE VALUE IS SOMETHING OTHER THAN (EI.IGI
240 2.0R11111

GO TO 999

1091 FORMAT(IMPROPER DATA COLUMN OR ROW DEFINITION*)
GO TO 999

245 920 WRITE (61,921)
921 FtRIVATtlOBJECT /VE CARO WITH VALUE1.F1S.3.**AS FCUNO*,

l*BUT DEVIATION WAS OMITTED. EXAMINE INPUT OATA)*)
-G-0-1D-110 9-

1020 WRITE (61,1021)
250 1021 FORMAT NUMBER OF ROWS, VARIABLES.- CR PRIORITIES CANNOT BE ED UA

I- TO ZERO UNDER ANY CIRCUMSTANCES*)
GO TO 999

1022 WRITE (61,1023)
1023-FZRNATIV---CDT:Ut1N-VAL-UE-DR PRioRTrt VAU)t IS EOUAL IC OR LESS THAN

255 1ZERO *1
CO TO 999

911 WRITE (61.912)
912 FORMAT (4 NUMBER OF VARIABLES EXCEEDS CURRENT NV 'VALUE.*

l*MODIFY SOURCE CODE DECK FOR GOAL PROGRAMMING*)
250 CC 0000

1026 WRITE (61,1027) EQUALS(I) ANAME.I.M.TEMP
1027 FORMAT(* ATTEMPT-IS-MADE- TO MINIMIZE NON EXISTANT POSITIVE DEVIA

1TION*,/g* THE SIGN IS *.A1 ./.* THE OBJECTIVE FUNCTION DATA CARD IS
/f1Y4 A4, 2.154f20i64

265 GO TO 999
1024-NR TIE (61,102)
1025 F CRMAT(* OBJECTIVE FUNCTION PRIORITY EXCEEDS STATED NUMBER OF PRI

10RITIES*)
GO TO 999

270 901 WRITE (61.912)
902 FORMAT(* PROBLEM CARD MISSING OR MISPLNCHED*)

GO TO 9141
926 WRITE (61.927)

927 FORMAT(* OBJECTIVE FUNCTION AND DEVIATION ARE DEFINED -Burt
275 1* SIGN OF DEVIATION IS OMITTED*)

GO TO 999
941 WRITE (61,942) RHS (I)
942-EDRHATIF* --NEGATIVE -VALUES- ARE T MOL OW ED ON I ME- RIGHT HAND SIDE.

1 CORRECT PROBLEM BY MULTIPLYING ENTIRE CONSTRAINT THROUGH BY NI NU
260 25 ONE**. /.* THE RIGHT HAND VALUE 1St. 2X .F21.61

GC TO 999
1055 WRITE (61, 105) EQUALS(I). ANAME tit M.IEMP
1056 FORMAT(* ATTEMPT IS MADE TO MINIMIZE A NON EXISTANT NEGATIVE DEVIA

±TION*V/ -*TAIT/ .4--THE-OBIECTIVE --FUNCTION DATA C ARD-
265 2S*,/,1X,A4,215,F16.5)

SUBROUTINE START 3/74 OPT=i FIN 4.3+74353

999 CONTINUE

END

5

10

15

20

103

SUBROUTINE FINISH 73174 OPT=1

C

C
C*
C

C
C

AND Iv0M f-Utt nit rFINTWil -s-uvEMPITINE*

FTN 4.3+74353

Cy

C
C

C
C

C

C

***** ** ****** *********************************

NCTE...SEE COMMENT AT BEGINNING OF THE PROGRAM.
THE ARRAY LISTED BELOW SHOULD BE AS INDICATED.
VAL.((100,10)

SUBROUTINE FIN/SH(RHS1,RNSINPRT,KPCK,Y,NROWSOCEPT*TEST)
RTAt NESSIA
CCMMON VALY(100,10)
DIMENSION ZVA1111)
DIMENSION RHS(100)
TMtNSION-KEPTTIBBT

_

DIMENSION Y(100),RHS1(100)

RHSI IS THE RESERVED VECTOR OF RHS VALUES FROM THE BEGINNING.
THE ENDING RHS VALUES ARE SUBTRACTED FROM THE BEGINNING ONES
ANO THE RESULT IS PLACED INTO THE APPROPRIATE SLACK COLUMN.
THE-REMAINZER-OF-THE-VAtilES- ARE-PRTHItZ-CM-PAGE-TVG-OF-THE"RE,--
SULTS.

C
C SLACK ANALYSIS

25
HRTTE-TB-14'211-

21 FORMATI1M1,120Xt*PAGE 06*//950X,*S1ACK ANALTSIS$,
1 FORMAT (////)

WRITE 161,11
30 WRITE 161981

8 FORMAT(1OXISROW*,6X,SAVAILABLE*,12X,*POS-SLKt,12X*NEG-SLK$)

00 19 I=1,NROWS
NEGELK=0.0

35 POSSLK=0.0
00 11 J=1,NROWS
M =Y (U)

9 IF(N- KEPT(I)) 11,12,11
40 11 CCNTINJE

GC TO 13
10 NEGSLK=RHSC11

GO TO 13
12 POS!LX=RHSIJI-----

45 13 WRITE (61114)I,RWS1(I),ROSS1K,NEGSLK
14 ECRMAT(10X,I3t3F20:5)
19 CONTINUE
43 EORMAT(10X,I3v3Y,f15.5)

C **

SO" C VARIBLE -AMOUNT'S
c***** ********* ** ***** * ***** ****** ******* * ****** **

WRITE 161,441
44 FORMAT(1111,120X,*RAGE 07$//$50Xt*VARIABLE ANALYSIS*)

WRITE (61,45)
55 45 FORMATI////v7X,*VAR/ABLE AMOUNT=,//1

fit 41-1=1-.NR01VS
NCHCK=Y(I)-KPCK-NROWS

*

60

smour E FIN/SH 73/74 OPT=1

IF(NCHCK) 4/.41.942

104

PTN 4.3+74353-

41 CONTINUE
WRITE T61.1-724

72 FORMATI1H11
WRITE (61450)

50 FORNAT(//,55KANALYSIS OF THE O8JECTIVE*123X.*PAGE 8*.////.50X.*P
-65 TRITIRTITIII1Xi*UNDENACKIEVEMENTX,/)

DO 52 K=1.NPRT
zwitio=0411
00 51 I=1,NROWS

51 IYAL(X)=7VALTX) -+VAL1M-KI*RHSII1
70 1ISP=NPRT4.1

1(KLISRik ---

IF(TEST.EQ.0.0) GO TO 52
K-1(=NPRT..K

IF(KK.GT.0) GO TO 52
75 KK=NPRIX

IF(KK.GT.0) GO TO 52
WA/TE (13/T71)t-rtArtrt-'

78 FORMAT(/.45X.YARTIFICIAL*.5X.F20.5)
GO TO TT

80 52 WRITE (61,53) KK,ZVALIK)
53 F. OIRNATT/140 9 SZ X 9 /29 SX 9f2 S

77 CONTINUE

END

