AN ABSTRACT OF THE THESIS OF

JIMMIE LYNN ELLIOTT for the degree of MASTER OF SCIENCE

in Computer Science presented on June 5, 1975

Title: COMPUTER PERFORMANCE AND EVALUATION UTILIZING

THE RESOURCE PILANNING AND MANAGEMENT SYSTEM
Redacted for privacy

F Sy Nk

Abstract approved:

7 Robert A. Shortv

A review of current computer performance and evaluation tech-
niques revealsalackofanacceptableanalytictool for optimal computer
system performance and evaluation.

A generalized approach to the formulation of a third generation
computer system model is proposed. The approach is used to opti-
mize computer resource utilization-and to obtain an upper bound on
the system throughput level.

The Stimler computer model is represented as a Resource
Planning and Management System (RPMS) network and optimized by
Linear programming algorithms, The results are portrayed by an
adaptation of the Kiviat graph technique. An application of finite state
and context-free grammar theory led to extensions of the current
RPMS theory in the form of postulates dealing with compaction, de-
'composition, and expansion,

Future areas to be exploited include multi-objective goal pro-
gramming, integer programming, stochastic programming, and

functional level analysis.



Computer Performance and Evaluation
Utilizing the Resource Planning
and Management System

by

Jimmie Lynn Elliott

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

June 1976



APPROVED:

Redacted for privacy

Professor and Chairman of Computer Science
in charge of major

Redacted for privacy

Dean of Graduate School

Date thesis is presented May 5, 1975

Typed by Susie Kozlik for Jimmie Lynn Elliott




DEDICATION

Dedicated to my loving wife, Linda Marie,
who always encouraged me to continue

and who already has her Master's.



ACKNOWLEDGEMENTS

I would like to thank the members of my committee:
Dr. R. A, Short, Major Professor
Dr. M. S. Inoue, Minor Professor
Dr. L. C. Hunter, Major Department Representative
Dr. J. F. Engle, Graduate School Representative

With special appreciation to Dr. Short for giving the geometric
shape of a circle new meaning, and to Dr. Inoue for doing the same
for squares and triangles.

Further, to acknowledge the assistance of the Salem, Oregon,
branch office of IBM for supplying the copy of IBM report TR 00, 2043,
the Gibson Mix, which appears in the Appendix.

Last but not least, to acknoWledge the assistance of my typist
Mrs. Susie Kozlik for her outstanding job done under a severe time

constraint.



Chapter

I

II

III

v

VI

VII

TABLE OF CONTENTS

INTRODUCTION

Research Objective
Structure of the Thesis

PRESENT STATUS OF COMPUTER PERFORMANCE
AND EVALUATION TECHNIQUES

General Observations
Formulations and Weighting Schemes
Instructional Mixes

Kernels

Benchmark

Synthetic Models

Kiviat Graphs

Monitors

Mathematical Programming
Simulation

Conclusions

RESOURCE PLANNING AND MANAGEMENT
SYSTEM (RPMS)

Linear Programming

Components of RPMS

Postulates of RPMS

RPMS Conventions

Construction of the RPMS Network
Solution of RPMS Network

Solution Procedure for RPMS Networks

PROPOSED APPROACH

Developing a Universal CPE Model

THE RPMS APPROACH APPLIED TO CPE:
BATCH VS ON-LINE

Discussion of Results

EXTENTIONS OF RPMS THEORY

CONC LUSIONS

General and Summary
Future Areas of Research

12
13
15
15
16
18
20
21
22
23

24
24
28
33
35
36
36
37

42
43

47
53

59

70
70
72



Chapter

BIBLIOGRAPHY

APPENDICES
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

1

Glossary of Terms

Butler's Formula

Ollivier's Formula

Instruction Category Descriptions
Gibson Mix - IBM Report

Kiviat Graphs

Lee's GOAL Programming for CYBER

79
82
84
86
88

93



Table

LIST OF TABLES

CPE Techniques Summary

Scientific and Business Mixes



3.4
3.5
3-6
3-7
3-8

3-9

LIST OF FIGURES

Lucas's Recommended CPE Purposes and

Techniques

Morris's Kiviat Graph Axis Labels
RPMS Nodal Conventions

RPMS Basic Flaw

RPMS Cause and Effect Diagrams

RPMS Terminal Nodes

RPMS Feasibility and Optimality Conditions

RPMS Network of Example - Step 1
Example Step 2

Example Step 3 and 4

Example Final Solution

Stimler's Model

Expanded Stimler Model

RPMS Diagram of Stimler Subsystem
Basic Applied Model

Double LP

Tripple LP

Kiviat Graphs of Batch vs On-Line
Finite State Machine

RPMS Representation of Finite State

Page
11
19
32
33
34
33
38
39

40
41
41
45
45
46
50
51
52
57
59

60



Figure

RPMS S & R Relationships

Concatenated RPMS Finite State Machine
Von Neumann Model

Hellerman Model

Multiple Nodes

Original On-Line Path

Compacted On-Line Path

Time and Cost Comparison of CPE Technique

Page
651

61
62
64
66
68
68

71



- COMPUTER PERFORMANCE AND EVALUATION
UTILIZING THE RESOURCE PLANNING
AND MANAGEMENT SYSTEM

I. INTRODUCTION

Computer performance and evaluation, abbreviated as CPE, is
endowed with potential benefits for the computer community. Theo-
retically, CPE is capable of providing many urgently needed answers
to problems faced today in areas such as procurement, planning,
costing, scheduling, designing, and optimization (Highland, 1974). Of
these areas, procurement and optimization are shared by both com-
puter manufacturers and systems users. Procurement is defined as
the selection and specification of systems components. Optimization
refers to the process of maximizing some system objective(s) through
judicious allocation of resources.

In the procurement area, currently only 20 to 40 percent of all
computer acquisitions are based upon any performance evaluation
(Kanter, 1970). Typically such studies benefit only the users. In the
area of optimization no practical tool has been available.

Procurement and optimization can both be viewed in quantifiable
terms. Two prime terms which are normally calculated are availa-
bility and system capability. Availability refers to how much time a
system is normally available to do productive work. System capability
is an expression of what a system is capable of performing while it is

available (Drummond, 1970, p. 4).



Cost and time are two major factors which require that the
availability and system capability be evaluated for a computer system
(Bell, 1972). In this context, cost is the monetary amount invested
in a system while time is the delay caused by the system in performing
prescribed tasks. Both of these factors are used as the evaluation
criteria.

New systems evolve as the result of recent research and develop-
ment efforts. Research and development is expensive and time con-
suming. The manufacturer needs an objective evaluation tool to
assess both the strength and weakness of prototype systems and to
identify design areas requiring further work. The buyer also needs
an objective evaluation tool to predict the performance of his proposed
system before he can justify the time and cost involved in the conver-
sion,

Once a system has been selected, its design and performance
continue to be challenged. An existing system may perform the
originally prescribed tasks satisfactorily, but changes in the amount
and mix of tasks to be processed by a system occur frequently. The
users are often not aware of the tasks that a computer system is
capable of performing until after the system has been operational for
some time. Also technological advances provide new alternatives for
systems improvements. The recurring questions are (1) whether or

not the existing system capacity is adequate for processing the new



job mix, and (2)» does the change in job-mix and new technology
warrant the investment in time and money requii‘ed to upgrade the
system.

There are several terms used to describe system capability.
Throughput is the most popular of these. Throughput is an expression
of the processing rate of a system (Drummond, 1973, p. 15).

This study proposes an approach which is‘helpful to both the
manufacturers and users in answering the system capability question
in terms of throughput. The approach is based upon the Stimler com-
puter model (Stimler, 1974) represented by the Resource Planning and
Management System (Riggs and Inoue, 1975) networks and optimized by
Linear programming algorithms.

The exafnples used during this study indicate that this ap'proéch
has the potential for becoming a valuable tool in system selection for

procurement and system optimization for operation.

Research Objective

The research objective is to develop an approach to answer the
computer performance and evaluation questions centered around
throughput and capacity. The objective will be considered attained
when answers to the following questions are obtainable from the

application of the proposed approach:



als

* What is the maximum system throughput rate?

* How much system capacity is currently idle in. the existing system?

* What system component is currently restricting the throughput at its
present level?

* What is the job-mix that will maximize the throughput?

* What is the minimum equipment characteristic to obtai.n the desired
throughput?

* What is the marginal value of the system component that is currently

restricting the throughput?

Structure of the Thesis

This introductory chapter discussed the need for a practical
systematic approach to the performance and evaluation of computer
systems.

Chapter II reviews existing computer performance and evalua-
tion techniques.

Chapter III introduces the Resource Planning and Management
System, and applies it to the computer performance and evaluation
technique of linear programming. The results of this analysis are
portrayed by a series of Kiviat graphs.

Chapter IV describes the proposed approach for solving the

capacity problem,



Numerical examples are included in Chapter V.

An application of finite state and context-free grammar theory
led to extensions of the current RPMS theory in the form of postulates
dealing with compaction, decomposition, and expansion is presented
in Chapter VI,

Chapter VII discusses the significance of this study and proposes

future research possibilities.



II. PRESENT STATUS OF COMPUTER PERFORMANCE
AND EVALUATION TECHNIQUES

General Observations

The area of computer performance and evaluation, abbreviated
CPE, is a relatively young discipline within the field of computer
science. The first major text appeared in 1973 (Drummond), and there
is still considerable disagreement as to what CPE purports.

The following definitions are offered to illustrate some current
views:

Evaluation is ascertaining the value of a computer system

and measurement is ascertaining the extent of a computer
system (Drummond, 1973)."

To some, computer performance, evaluation and measure-
ment is a tool, a marriage of abstract thought and logic
combined with the techniques of statistical and quantitative
methods., To others, it is a technique with heavy reliance
on modeling and simulation and simultaneously involves
features of both classical experimentation and formal
analysis (Highland, 1974),

System performance evaluation is used to determine how

well a specific system is meeting or may be expected to

meet specific diversified processing requirements at

specific interfaces (Stimler, 1974).

The following definition summarizes these views and will be used
for this study:

Computer performance and evaluation determines computer

system's capacity by examining the attainment level of

prescribed goals,

Several terms need to be defined before we can proceed further

with the study. The following definitions are taken from IFIPS (1971):



A task is a number of steps which are partially or wholly
ordered from the point of view of their execution.

A program is a complete specification of one or more tasks that
are to be performed on data.

A job is a basic independent unit of work to be carried oﬁt by a
system,

The following definitions are taken from Drummond (1973),
Stimler (1974), and Bell (1972):

Throughput is an expression of the processing rate of a system,
given as some unit per time interval (e.g., jobs/hour).

Relative systems throughput is the relative estimate of the per-

formance of a proposed computing system. RST = Th/Tm where
Tb = throughput rate of a base or standard computing system; Tm =
throughout rate of the proposed or new computing system,

Capacity is the maximum average throughput achieved when the
system is at 100 percent utilization (Stimler, 1974).

Response time is the average time a user must wait to receive

a response from a system once a task has been initiated (Bell, 1972).
A standard set of terms currently does not exist for CPE. The

terms presented are given as the most popular and accepted units of

measure employed in CPE efforts at the time of this writing. At

present, the National Bureau of Standards is working on compiling a



8
composite bibliography of the most commonly used terms with their
definitions.

Conceptually, there are tWo major areas where CPE is critically
important., The first of these is in the original selection of a com-
pletely new system. This new system can be either an initial system
for a new user or the total replacement of an existing system. The
second major application of CPE is in replacement which involves
the selective changing of individual parts of a system. Replacement
is important not only to existing systems, but also is useful in evalu-
ating the alternative selection of parts of a new system.

CPE tends to be practiced by technicians with the results trans-
mitted only to other practitioners. Although CPE efforts are initiated
by managerial level personnel, once the assigned CPE effort has
entered the realm of the practitioners, the results are seldom fed
back to the managerial level in a useful form. This is due to the
volume of data that most CPE techniques generate, Simple answers
with meaningful results are needed.

To practice CPE, one or more of the techniques discussed in
this chapter is employed to attain a specific goal,

For the purpose of this study, we shall accept one or more of

A set of the most commonly used terms and their definitions
are given in the Appendix A,



the following as the primary goal(s) of any CPE effort related to
procurement or optimization.

1. Minimize the total initial system cost while maintaining some
accepted level of system throughput.

2. Maximize utilization of the existing resources in the system.

3. Minimizing the amount of additional resources to be ac-
quired in order to increase the system's capability to meet future job
requirements,

These three goals correspond roughly to the statement of feasi-
bility, optimality, and adaptivity of any system. The term '"resource'
is used to designate a productive component of the computer system
that can be assigned for use in completing a task, and thus embodies
both the concept of system capacity and availability. 1/O channels,
line-printers, and CPU time-slices are examples of hardware re-
sources. Operating systems, compilers,and data files are examples
of software resources. A resource that is utilized economically in-
creases its marginal value by minimizing its idle-time. Thus,
interpreting the CPE goals in terms of resource utilization, we are
justified in considering CPE as a problem in optimal resource alloca-
tion (Hellerman, 1970). If the availability of the resources and the
goals can be expressed in a mathematical form, the CPE problem
may be interpreted as a mathematical programming model that max-

imizes (or minimizes) an objective function or a functional subject to



Table 1,

CPE Techniques Summary,

Symbol Description Total Time Total Cost Applicability Amount of Shortcomings
Required (Hours) Required ($) to Procurement Optimization
(Selection) Properties
(A) Formulation Low Low Poor Poor Parallelism not considered
(B) Instruction Mixes Low Low Poor Poor I/0O not considered
(C) Kernels Medium Medium Fair Poor Identification difficult
(D) Benchmarks Medium Medium to Good Poor An approximation or multi
high programming not considered
(E) Synthetic Models Low Low Fair Poor Data dependent
(K) Kiviat Graphs Low Low Fair Fair Supportive tool only
(G) Monitors Medium Medium to Fair Fair System dependent or requires
high system modification
(H) Mathematical Programming High High Good Good Data difficult to obtain
(I) Simulation High High Good Good High cost and time delay

Poor: Gives little aid
Fair: Some aid but inadequate

Good: Satisfactory

01



Selection
Evaluation

Synthetic
Modules

Projected
Design

Simulation

Primary Use

Secondary Use

Performance
Evaluation

Hardware,
Software
Monitors

11



12
a set of resource constraints., When all relationships are approxi-
mated linearly, the standard linear programming approach becomes
feasible.

Before undertaking the new approach, however, it is imperative
that we examine the existing techniques of computer performance and
evaluation in use today. A cursory review of the ''state of the art"
is presented by giving a short description and a statement of the
relative shortcomings of each major CPE technique. Table'l sum-

marizes the CPE techniques.

Formulations and Weighting Schemes

Among the various CPE formulations, the two most prominent '
studies are those conducted by Knight (Sharp, 1969) and Butler (1970).

These formulations attempted to derive one single term as a
numerical measure for the evaluation or selection process. For
example, Butler calculates a total price to performance ratio that is
the average of the hardware and software price-performance ratios.
Butler's complete formulation is given in Appendix B.

An extension of this approach is the concept of weighting schemes
which assign different weights to individual factors according to appli-
cations. The weights and measures purport to be a refinement upon
the formulation technique. One example of weights and measures is

given by Ollivier (1970). Ollivier calculates a single figure based



13
upon hardware characteristics and manufacturer's past performance.
Ollivier's complete scheme is included in Appendix C.

The major advantage of all these methods is that an evaluation
can be carried out rapidly and at a low total cost. The major dis-
advantages are that the formulas do not accommodate the parallelism

of more advanced computer architecture.

Instructional Mixes

In an attempt to improve the methods of evaluations used for
computers, an extension of formulation, called instruction mixes, was
conceived. Instruction mixes use the weighted sum of execution times
of the individual instructions to arrive at a single numerical value.

Instructional mixes are generally broken down into the two
classes: business and scientific mixes (Sharp, 1969). A business
mix contains a heavier weight of those instructions which are more
frequently used in a business environment. A scientific mix places
the emphasis on the instructions which are more computation oriented.
Table 2 contains an example of both kinds of mixes (Sharp, 1969).
Appendix D contains a detailed description of each instruction cate-
gory in the two mixes.

Arbuckle made an early attempt at deriving a mix (1966) but the

most widely used instruction mix is one attributed to Gibson (1970).



14

A complete copy of Gibson's original paper is included in Appendix E,

Table 2. Scientific and Business Mixes.

Instruction Category Scientific Business

1. Fixed Add/Subtract

and compare 10 25
2. Floating Add/Subtract 10 --
3. Multiply 06 01
4, Divide 02 -=

5. Other manipulation & :
logic instructions 72 74

100 100

(All entries in Table 2 are in percent)

The major advantage of this type of evaluation is that the actual
execution times are readily available.

The disadvantages are as follows:

l. The mixes do not include any category for Input-Output type
of instructions,.

2. A subjective approach is used to weigh each class of
instructions.

3. Medium and large scale computers are now used for both
business and scientific work, thus making the two classifica-

tions of mixes meaningless.



Kernels

The kernel approach to CPE was developed from the observation
that computer systems run the same application repeatedly. The
kernel analysis is performed by running a kernel program and obtain-
ing a figure that reflects the amount of time required. The kernel
program is defined as that portion of a program that takes the greatest
amount of execution time (Drummond, 1973). Typical kernels include
matrix inversion, polynomial evaluation, and square root approxima-
tion (Timmerick, 1973).

A kernel analysis is only appropriate when the system executes
one task repeatedly for a major portion of the total time that the sys-
tem is in use. It further assumes that its kernel is easily identified.

The advantage of kernel analysis over the formulation method
is that it weighs each group of instructions more objectively.

The disadvantage is that an adequate consideration of I/O and

and administrative overhead, such as operating systems, is not in-

cluded.

Benchmark

Benchmark analysis was developed for systems which run one
prime program but where the simple kernel approach is inadequate.

Benchmark has been defined as a sophisticated kernel (Timmerick,



16
1973). Benchmark, typically, is a production program that dominates
the system or data processing needs of an organization.

The main problem associated with benchmarki‘ng is the time
required to run the benchmark. . A typical benchmark test involves 24
operational hours. Additionally, a benéhmark does not evaluate the
composite system that includes non-production jobs. A non-production
job is taken to mean a task that does not reduce the amount of produc-
tion jobs the system must run within a time frame. Further, bench-
marking requires the coding job be done for each individual system to
be evaluated using the same level of programmer expertise.

The major advantage of benchmarking is that it is often the only
practical way to check new systemsthat are to be used for replacement.
Benchmarking shows that a system can run a specific job. This is
accomplished executing the benchmark job and timing the run.

The major limitation is that only an approximation of the true
environment can be obtained. Environment is taken here to mean all
conditions related to the use of the system. A benchmark serves best
as a before-and-after test to monitor performance in conjunction with

system changes (Lucas, 1971).

Synthetic Models

Synthesis is the creation of the whole from its parts. A synthesis

model is created by combining all of the subsystems to make the



17

composite system (Drummond, 1973). Hence, a subsystem is any
part of the system that can be taken as a separate system by itself.

Several definitions are needed to clarify the discussion to follow,
-CPU is a mneumonic used for the central processing unit of a computer
system., _I_LQ includes all functions external to the CPU. Overlap
is said to occur when either two or more I/O devices, or the CPU and
at least one I/O device are operating concurrently.

Throughput can be determined by using a synthetic model which
combines the I/O and the CPU time and considers overlap to yield a
total system time. The synthetic model technique has been successful
because of the availability of data to build the models and the fact that
the interactions between components can be easily understood
(Callengaert, 1967).

The true power and flexibility of this technique is based upon
how the level of overlap is implemented and how detailed the model
is (Drummond, 1973).

The major advantage is that this method is easy to implement
because the data are readily available The disadvantage is that the
accuracy of the result is contingent upon the validity of the source data

in the user environment.



18

Kiviat Graphs

A Kiviat graph is a circular graph with polar coordinates that
was first proposed by Philip J. Kiviat. It was further developed by
the Federal Computer Performance and Evaluation Center (FEDSIM)
into an aid to visually display the interrelationships existing between
various attributes of a computer system.

In the following description of Kiviat graph methodology, the
term tuning is defined as making minor changes to an existing system
to increase system efficiency (Bell, 1972). The term local identifies
the particular computer system that is being evaluated at the time.

(1) Select an even number of performance indicators, half

of which are locally regarded as ''good" when they increase

due to tuning efforts, and half of which are locally regarded

as ''bad" when they increase. (2) Divide a circle into as

many symmetrical segments as there are performance

indicators, beginning with the vertical axis from the circle

center to the outmost point on the circle's arc . (3) Number
the top vertical axis one and number the rest of the axes
sequentially around the circle; (4) Plot the ""good' indi-

cators on the odd numbered axes and the ""bad' indicators

on the even numbered axes (Morris, 1974).

One may question the relevance of an even number of axes As
can be seen on Figure 2-1, the value of a Kiviat graph is derived from
the symmetrical star shape created when points on all the axes are
connected. The even number of axes provides for the star shape that

is the result of alternating '"good' and '"bad" indicators.

Figure 2-1 gives the axis labels used by Morris (1974).



i9

1
Axis Indicator
4X1S ~hcicalor 8 5
1 CPU Busy
3 CPU/Channel Overlap
"GOOD 5 Any Channel
7 Problem State 7 3
2 CPU Only
4 Channel Only
”BADII
6 CPU Wait 6 4
8 Supervisor State 5

Figure 2-1. Morris's Kiviat Graph Axis Labels.

Currently, Kiviat graphs have been used only to depict a stati;
system, A static system is defined as a view of a system for one
instant in time. By contrast, a dynamic system is defined as a system
that exists between two points in time. One proposed approach to the
problem of portraying dynamic systems is to use multiple Kiviat
graphs for the variousinstances of time. This creates what's known as
"stars in a sky'' where the sky is the operational environment of the
system,

The Kiviat graph is a supportive tool. It gives a pictoral repre-
sentation of data obtained from other performance and evaluation
methods. The graph then says what exists at the time the data was
gathered. An example of several different Kiviat graphs is given in

Appendix F.



20

Monitors

Two types of monitors are used in CPE: hardware and software.
Monitoring is defined as a method of collecting data on the performance
of an existing system (Lucas, 1971).

A hardware monitor is constructed of electronic logic, probes,
and a magnetic tape recorder (Stimler, 1974). It often includes a
mini-computer and more recently a micro-computer. Hardware
monitors make basic measurements that tell: (1) how long a resource
has been used during the evaluat‘ion period and (Z) the number of times
an event occurred during the same period (Bell, 1971).

A hardware monitoring involves: (1) an evaluation of a computer
system for data or information to be gathered; (2) determination of
appropriate spots for connecting monitor probes; (3) running of the
monitor for an evaluation period; and (4) post analysis of data gathered
(Ibid).

The major advantage of hardware monitors is that the monitor
can be connected to any vendor's system to obtain the desired data while
producing no load on the existing computer system. The major limita-
tion is that it is often hard to determine the exact spot where the de-
sired data can be gathered. Also, often the modification of the system
that is required is a breach of the contractual agreement with the

vendor (Stimler, 1974).



21

A software monitor is a program which is incorporated in the
operating system (Stimler, 1974). A software monitor periodically
samples the conditions of certain memory locations where the operating
system stores operational conditions of the system.

The main advantage of a software monitor is that it involves
virtually no system modification. The main disadvantage is one of
system dependence; that is, a separate software monitor must be
written for each individual manufacturer's system.

One successful application of a software monitor for the IBM 370
was reported by Betz (1973).

In summary, hardware monitors can be used to tell what hap-
pened while software monitors will give a better indication as to why

it happened (Drummond, 1973).

Mathematical Programming

Some effort has been made to formulate CPE problems by mathe-
matical programming models. The results of previous efforts have
shown that an analyst with enough data about the programs which are
to be run and the hardware characteristics of the system can formu-
late his CPE problem in terms of an integer linear programming
problem (Sharp, 1969).

An integer linear programming problem is a linear programming



22
problem where decision variables are not allowed to assume non-in-
teger values.

Sharp (1969) further points out that the problem of capturing
all the significant interrelationships between the subsystems is far
from a trivial task. The prospects for general use of this method are
further hampered by the limited number of CPE practitioners familiar
with the level of mathematics involved in applying this optimization
technique.

This technique has the advantage of mathematical accuracy
while its major disadvantage is the amount of time and cost involved

in implementation,
Simulation

Simulation has been considered the most powerful and flexible
technique for CPE (Lucas,. 1971), Several commercial simulation
packages are available., One of these is the ''Systems and Computers
Evaluation and Review Technique,' commonly abbreviated SCERT
(Herman, 1967),

Simulation is taken to mean the technique of solving problems
by using a mathematical model to follow the changes over time with
respect to a dynamic system. Simulation is said to be done when all
equations of the model are solved simultaneously with steadily increas-

ing values of time (Gordon, 1969, pg. 17)..



23
« The original General Purpose Systems Simulator (GPSS) language
was used as an aid in studying new computer systems (IBM, 1963).
Major limitations of simulation include the time for setting up
the simulation, running it, and validating the results. Further, the
actual cost and amount of computer time required are other limitations,
Personnel is also a problem since a knowledge of simulation languages
is required. Simulation has been used successfully for the optimiza-
tion of performance of time-sharing systems, (Blatny, 1972), and in

the solution of hardware allocation problems (Hesser, 1973).

Conclusions

In summary, all of the CPE techniques reviewed werefound useful
but nonewas universally practical either asa procurement orasanopti-
mization evaluation tool. This confirmed the generally accepted belief
that no one single CPE tool or technique can satisfy all goals or prob-
lems which are significant in computer performance and evaluation
(Lucas, 1971).

Thus it appears that a combination of various techniques is neces-
sary to accomplish an adequate evaluation. Our proposed study will
use a combination of the synthetic modeling and linear programming
techniques, Resource Planning and Management System methodology,
and Kiviat graphs to accomplish a throughput evaluation of a computer

system.



24
III. RESOURCE PLANNING AND MANAGEMENT |
SYSTEM (RPMS)

The Resource Planning and Management System (RPMS) repre-
sents a mathematical programming problem as a graphical network
model. RPMS was first proposed in 1972 as a concatenation of cause
and effect diagrams to model linear programming problems and their
solutions (Inoue and Riggs, 1972). It has since been extended to cover
dynamic programming, quadratic programming, goal programming,
and other special cases of mathematical programming models. The
most significant improvement is one allowing visual identification of
the Kuhn-Tucker conditions (Inoue, 1974). 2

The following section is limited to a review of the general linear
programming problem. Further, the basic canonical form is modified
so as to reflect a property which will be used in the development of

the RPMS components section.

Linear Programming

Given any linear programming problem, the problem can be
transformed into the following canonical form (Taha, 1971, pg. 25).

Maximize zx =2 c.X. {3-1)

subject to the constraints

2Several of those models are discussed in an introductory OR/MS
text (Riggs and Inoue, 1975) that is currently being prepared for pub-
lication., ‘



25

(3-2)

(3-3)

where

aij’ b., and c. are constants in a linear programming model
J

xj is called a primal variable,

The constants can be separated according to their positive and

negative signs,

a. =a ' -a. (3-4)
1] 1] 1]
+ -
b, =b, -b, (3-5)
J ) J
c. = c_l.- -c, (3-6)
J J J .
1) a:l-, =a, if a, >0 else a?l-, =0 (3-7)
1] 1] 1] 1)
2) a,.=a, if a,,< 0 else a_ =0 (3-8)
ij ij ij ij
+ -
3) (@,.)(a,.)=0. (3-9)
1] 1]
+ +
4) b, =b, if b, >0 else b, =0 (3-10)
1 1 1 1
5) b, =b, if b,< 0 elseb’ =0 (3-11)
1 1 L 1
N ‘
6) (b,l)- (bi) =0 (3-12)
+ :
7) ¢.=c, if ¢,>0 (3-13)
1 1 1

+
else ci =0 (3-14)



26

8) ¢, =c¢, if ¢, <0 ' (3-15)
i i i

else c; =0 (3-16)

9) (c})-(c7) =0 (3-17)

The canonical form can now be written as

n

+ -
Maximize z_ = [c. -c.]x. (3-18)
S | ] J J
J.....
Subject to the constraints
o+ + -
zla, . =a . ]x<[b -b.] 1<i<m (3-19)
. ij ij- 33— i i
j=1
x, >0 1<j<n (3-3)

An expansion of the above primal model gives a primal objective

function:
no n ‘
Maximize Z =X ¢,x, - = C.X, (3-20)
X j=1 1] j=1 1]
subject to m resource constraints:
n + oo )
Z a,.x +b._>_Ea,..x.+b,1 1<i<m (3-21)
j=1 ] ! j=1 ]
and non-negativity restrictions:
+ - + - + -
x.>0;a,,>0;a,.>0;,b,<0;b,>0;,¢c.,>0;c. >0 1<i<m
j— ij = ij — i=— i= i— i~ - =



27
The RPMS portrays each of the m resource constraints as a
cause-and-effect diagram illustrating that the sum of the endogenous
(aij_ Xj) and exogenous (b:-) supply of the resource cannot be less than
the sum of the endogenous (ai;xj) and exogenous (b_i) demand satisfied
by the resource,
Each primal linear programming model (eqn 3-1, 3-2, 3-3) has

associated with it a dual model that can be expressed as:

m
Minimize Z = X by, - (3-23)
y ., i'i
i=1
subject to
n
Z a,.y,>c, 1<j<n (3-24)
: 13717 ] - T
j=1
and
y.>0 1<i<m (3-25)

An expansion similar to the primal model transforms the above

model (eqn 3-23, 3-24, 3-25) into:

m m
Minimize Z = £ b, y. - = b.y, (3-26)
y . i 71 i71
i=1 i=1
subject to n '"process' constraints:
m m +
T a,y.+c.> = a,y, +c, 1<j<n (3-27)
=1 MY I T HOE ] T

and

y.>0 1<i<m (3-25)



28

The n constraints (equation 3-27) are called "process'' constraints

m
since they convert endogenous ( = a,-*.- y.) and exogenous {c.) resource
i=1 Y !
m +
flows into output resource flows ( = ai.— Y, + Cj ). As Y. represents
i=1

the imputed value of the resource i, and Cj and Cj- represent the per
unit benefit and cost of the transformation, each process constraint
guarantees that the total value of the input resources and cost of
transformation is at least as great as the total value of the output

resources and the benefits accrued from this transformation process.

Components of RPMS

In its original form, only three nodal symbols were used with
RPMS: circles, squares, and triangles.

A circle node is used to represent a resource, where resource
is taken to mean anything that can place a limitation on the attainment
of a desired result. As mentioned in Chapter I, the amount of a re-
source is a function of both its availability and its capacity. A circle
node i represents a constraint of the primal model of a linear pro-

oo +

gramming problem: Z a,. x, +b. >
j=1 ij 7j i=

+
a,.x +b

._ . The circle is
ij j i

M

j=1

subdivided into four parts. The top quarter, Y. represents the
'""Shadow price' or value of the Lagrangian multiplier associated with
the resource constraint computed by a linear programming simplex

algorithm. The residue value, X of the resource is given in the



29
bottom quarter. This corresponds to the "slack'" or '"surplus'' vari-
able value required to translate an inequality constraint into an equa-

tion,

The other two quarter sections of the circle are optionally used to

tally the input flows,

t M B
LY
W
_|_.
o

and the output flows,
n

a,. X, +b.1
i=1 7 )

through the node [Figure 3-1(a)] .

A square node is used to represent a process, where process
is taken to mean the transformation of available resources to create
new resources for further uses. The square represents a primal
decision variable in a linear programming problem and a process
constraint upon the resource transformation.

Like the circle, the square is divided into four parts. The top
quarter, xj, representing the amount of transvformation that is to
occur. The bottom quarter, yj, is reserved for the ""opportunity
cost' or expected loss value of a variable not becoming basic in the

final solution to the linear programming problem.



30

" .| +
yi:Zai.yi+c,— Zai,yl-c.
i=1 " b=l M )

The Yj variable can also be interpreted as the Lagrange multiplier
associated with the non-negativity constraint imposed upon the primal
variable Xj . The users of RPMS may optionally use the other two

quarter sections of the square to tally the input flows,

m

b a.?L y. +c. ,

i=1 0]
and the output flows,

r; a.. y. - c+

i=1 0]

The relationship between a constraint Y, and a primal variable
Xj is established by using a directed edge to represent 2. The circle
representing a constraint, Y. and a square representing a variable,
x., the interrelation is shown by connecting circles and squares
via solid lines with arrowheads. These solid arrows represent the
aij coefficients of the linear programming problem. These endogenous
flows show the interrelation between the resources and processes of
the linear programming problem.

The circles, squares, and solid arrows combined together are
called the internal system.

The triangle is used to represent a terminal node. In linear

programming, this corresponds to an objective function. Since each



31
linear programming model can be represented by a primal and dual
model, two terminal nodes are given for each representation of a
linear programming problem using RPMS. These termi\nal nodes are
called "Source'" and "'Sink'' depending upon the arrow directions, or
"primal' and '"dual'" depending upon whether dashed arrows connect
the node to squares or circles.

A maximizing primal objective function is shown by connecting
a '""primal sink' triangle to all process nodes (squares) via dashed
arrows. The value of the objective function is entered inside the
"sink" trianglé.

The corresponding dual objective function is one of minimiza-
tion. This is represented by connecting a resource (circle) to the
'"dual source' node terminal and entering the value of the objective
function in the source triangle. A minimizing primal problem will
have a primal source node and a maximizing dual sink node.

Both triangles are connected to the internal system via dashed
arrows. A dashed arrow represents either an endogenous or an
exogenous flow with respect to the internal system as designated.

The internal system, combined with dashed arrows and tri-
angles, makes up an RPMS network.

This interconnection of circles, squares, triangles, and arrows

is portrayed in Figure 3-2.



32

° +0
Za.x +tb > Z a,. ¥ +'I:>1
j:lflJ J 1 j=1 J ]
(2) Resource Node
+ -
a.. a..
11 1]j
\ X, /
m m
-~ - +
z a+y +c. > a., vy, tc

(b) Process Node

]~
~
N~
n no
Zx max Maximize Z = Z ¢c. X. - Z C, X,
LS I B B ]
J= )=
//
+
C-
}

+

b,
- 7 '
\S —

— - . . .
™ b, Minimize Z
1

i
™
[on

s
]
™

o
<

circle = i square = j
(c) Maximizing and Minimizing

Figure 3-1, RPMS Nodal Conventions.



33

X
bi a,. j C.
@ 1 H ij | J max
C> ¢
Z
y

Min Z =b,y Max Z_ = c.x,
y idi x )]

b, >a, x, a,.y,>c

1= 13 ) 1= )

b, =a,.x +x a, . =c, t

1 1) 1) Vi ) yJ

Figure 3-2, RPMS Basic Flow.

Postulates of RPMS

Two characteristics of an RPMS network have been formulated
as postulates (Inoue, 1974).

The first postulate addresses the idea of balance around a node
within an RPMS network. The second postulate addresses the idea of
objective function optimality. These postulates correspond to the
revised canonical forms given by equations 3-20, 3-21, 3-26, and 3-27,

First Postulate of RPMS: The total inflow at a process or a resource

node cannot be smaller than the sum of the outflows from the same

node,



34
Total Input > Total Output

Total Input = Total Output + Residue

C2 =
aqn az23
Y2
4 = + C_ +
31,122,353+ C, or aj,y) Ta,3y3+C, 4y,
brz - /.2
X4 - X,
212 az3
- +b. +X
a), Xy 22,3 X 4D, or a), X) Za,; X;+b, +X,

Figure 3-3, RPMS Cause and Effect Diagrams.

Second Postulate of RPMS: The productivity of an RPMS network is to

be optimized, either by maximizing the net effective endogenous output
while holding the exogenous input constant, or by minimizing the
exogenous input while maintaining the endogenous output at a given

level.



35

by 7 N

/s AN
“ b2 Cp O

—_— — —— XZ o e max
~ b ,

~N

Nt C;/
N
N /

Max Z =C.X. +C.X. +C.X
X 171

2 2 373

i =b X +b. X
Min Z_=bX, +b,X, +b.X

3

Figure 3-4, RPMS Terminal Nodes.

RPMS Conventions

In addition to the two postulates of RPMS, several conventions
exist for the construction of RPMS networks (Riggs and Inoue, 1975).

The main conventions are presented here as a convenience to the

reader. These conventions are used throughout this study.

1) A circle never connects to a circle and a square never con-
nects to a square directly,

2) All squares are explicitly or implicitly connected to one
terminal, and all circles are explictly or implicitly connected
to the other terminal,

3) The dimension of the solid arrow coefficient is always
(Resource Unit/Process Unit).

4) Each circle adheres to the logic rules for "inclusive or, "

5) Each square adheres to the logic rules for "logical product. "



36

Construction of the RPMS Network

The actual construction of an RPMS network is relatively simple
once the linear programming problem has been formulated. The con-
struction consists of the following steps.

1) Draw a square for each variable in the objective function.

2) Identify the optimization type required in the objective
function (maximize or minimize) and add the appropriate
terminal nodes to the existing diagram (use Postulate Two).

3) Draw a circle for each constraint.

4) Complete the network using the equations and Postulate One.

The RPMS network is now ready to accept additional information

after the linear programming problem has been solved.

Solution of RPMS Network

Though the solution of a linear programming problem is typically
handled by a computer program, for linear programming problems,
represented by simple RPMS networks, it is often more expedient
to solve the linear programming problem without the aid of a computer.
The following procedure, coupled with a hand calculator, has been used
successfully for solving some problems. For problems which have a
high level of interaction or take over one hour of manual computation,

most users prefer to solve the LP problems by use of a computer.



37

Solution Procedure for RPMS Networks

1. Draw the RPMS network using the known values given in the
problem statement.

2. Make a forward pass through the RPMS model. Calculate
the rnaxi\rnurn value of the residue for each resource. That is, calcu-
late X,1 if all XJ.'s are zero.

3. The resources with the smallest value for X,1 is then ex-
hausted. This is done according to the ratio Xi/Aij for each resource.
This is like the pivot point calculation of the classical linear program-
ming simplex algorithm.

4, The optimized output worth of the model is then calculated.
This value of the sink terminal is then used as the same corresponding
value of the source node. With this value known for the input of the
model, the remaining coefficients in the model can be calculated using
the first postulate. This is the calculation of the shadow prices.

5. Analysis. With the picture of the RPMS complete, the
analysis can now take place to indicate where further improvements
can be made for the benefit of the total system.

The following figure 3-5 shows conditions which can exist in
RPMS networks. This information is used in determining if the cur-
rent solution is the best that can be achieved, and, if not, where the

improvement can be made.



38

The ideas in this figure were obtained from the paper on Visual

Identification of Kuhn-Tucker conditions (Inoue, 1974).

Condition Descriptions RPMS Node

A Non-Optimal One or more O
negative Yj <z_<_0 w
values

B Non-Feasible One or more
negative Xj ® X
values

C Feasible and Optimal No negative 5 A
values for QL“
X.orY,. B ‘

1 J

D Degeneracy

An alternative

solution exists VO‘ Y
for the same O

objective function

value

@)

Figure 3-5. RPMS Feasibility and Optimality Conditions.

The following simple example is used to clarify the RPMS

concepts presented in this Chapter.

Example One: Maximize Zx = 4X_  +3X

1 2

Subject to 5X. + 3X_ <18

1 2

X, + X, < 20

Step 1: The RPMS network is shown in Figure 3-6,



39

Xy
\4
AN
Yy
X,
3/
Y,

Figure 3-6. RPMS Network of Example, Step 1.

Step 2: Make a forward pass through the netwprk with Xj‘s =0
for each process j. Calculate the value of the residue, ‘Xi’ for each
resource i. Apply the complementary slackness theorem of Linear
Programming (Taha, 1971) which states that Xy, = 0 for any process

or resource node. In our example, Y3 = 0 since x, =18 andy, =0

3
since X, = 20. Then the process residues Y1 and y, can be computed

by taking the difference between the inflows and outflows.

y1=0x5+0x1—4=-4

i
w
1

1
w

y2:0x3+0x1

1
N
4]
[
o
»
o

Z 0x4+0x3=

X y

This step is shown in Figure 3-7.



40

Figure 3-7. Example Step 2.

Step 3: Determine the ''pivot point'' as in a standard linear pro-
gramming algorithm. In Figure 3-7, the solution is feasible but non-
optimal (condition A in Figure 3-5). The most negative entry occurred
at v, = -4, and our first attempt will try to make ¥, = 0 but rendering

xl_>0.

The resource 3 with current residue value x3 = 18 will be ex-

hausted first as x1 is increased., The most we can increase Xl without

creating an infeasible solution [ condition (B) of Figure 3-5] is 18,5 =
3.6.
Step 4: Using the new solution X, = 3.6 and X, = 0, the new

residues and shadow prices are computed. The result is shown in

Figure 3-8.



41

3.6
-
~
~
0
Y1
X2
0 3 //
>
-. 60
X416.4 y2

Figure 3-8. Example Step 3 and 4.

Step 5: Inspection of Figure 3-8 shows the solution to be feasible

is nega-

but non-optimal [ condition (A) of Figure 3-5] since yj of Xz

tive. The objective function value is now increased to Zy': 18 x .80 +
20x0=14.4=3.6x4+0x3-= Z_. Step 3 of the next cycle brings
XZ into solution using both the top and the bottom resources. The

result of this operation is shown in Figure 3-9. This solution is both

feasible and optimal [condition (C) of Figure 3-5] .

X1
0
4
»y
~
1.0 ~
@ 2
6.0 3
-
L~
0
y2

Figure 3-9. Example Final Solution.

This example used the solution procedure for RPMS networks
described earlier in this chapter and showed it to be valid for the

solution of this simple mathematical programming problem.



42

IV. PROPOSED APPROACH

The formulation of any mathematical programming problem is
difficult, mainly because the constraint and objective equations are
so elusive (Aoki, 1971), Stated in RPMS terms this is a problem of
resource identification, process identification, and identification of
the interconnections between the resources and processes. For CPE,
some examples of resources are disk, magnetic tapes, and central
processing units, Examples of processes are I/O flows, memory
management, program compilation,and execution. Interconnections
represent the rates at which resources are produced and consumed by
processes.

One approach to CPE uses seven major steps (Bell, 1972).
These steps are as follows:
1) Understand the system; 2) Analyze the operations; 3) Formulate
the performance improvement hypothesis; 4) Analyze the probable
cost-effectiveness of modifications; 5) Test the hypothesis; 6) Imple-
ment the appropriate combinations of modifications; 7) Test the effec-
tiveness of the implemented modifications, then go back to step three
to repeat the cycle until sufficient improvements have been made.

Our study will use Bell's approach, but with modifications to

have the procedure read as follows:



43

1) Understand the computer system subsystems of hardware and
software. 2) Analyze the operations part of the system described in
part one, and construct an RPMS model. 3) State the hypothesis as
that of improving or maintaining the throughput; optimize the model
using the linear programming procedure. 4) Identify the resource
which is currently constraining the throughput rate. 5) Tune the
system. This means to modify the constraining resource of part 4
while monitoring the throughput rate. 6) Rerun the llinear program-
ming problem of the newly tuned system. 7) Analyze the results of
the modification made in step 5. Draw Ki_viat Graph of resulting sys-
tem. Go back to step 3 and repeat until sufficient improvement is

made,

Developing a Universal CPE Model

When we cannot grasp a system as a whole, we try to

find divisions such that we can understand each part

separately, and also understand (in the framework) how

they interact (Minsky, 1967).

A model is normally defined as a copy of a true situation in as
accurate a form as possible (Gordon, 1969)., But, all models have
inherent problems in that a boundary between the model and its environ-
ment must be established somewhere. Thus, if the model results are
found to be inadequate the general tendency is just to expand the

boundaries of the existing model. This method works until the upper

bound of the modeling device is reached.



44

But, even with expansion, the model can usually use further
improvement after the upper bound has been reached.

One then normally chooses to break the system into its subjects
and analyze these subparts until full understanding is obtained. Usually,
some form of a decomposition algorithm is employed. But the prob-
lem of understanding the composite model remains. The problem just
moves from that of the system to the understanding of the intercon-
nection of model components.

One useful tool which allows an easy application of decomposition
to CPE models is RPMS. The major advantage is that mathematical
programming techniques are as applicable to decomposed parts of\
RPMS as they are to the composite model.

To formulate a universal model for all computer systems, a
general conceptual framework needs to exist that can be adapted for
each specific system,

One model which accurately depicts current mid 1970's type
computer systems contains three subsystems (Stimler, 1974). The
subsystems are called the 1) Processor 2) Communications and 3)
Terminal. Stimler's model is shown in Figure 4-1.

The functions of each of the component parts is as follows:

Processor: The computational portion of the system. It

accomplishes the transformation process from
one resource to another resource.



45

Terminal Communications Processor

—_—
é___

Figure 4-1, Stimler's Model.

Communications: An interface., It matches resources to
processes. It can be considered to be
transparent.

Terminal: The pool of resources the system has available
(Stimler, 1969, p. 6).

-An expansion of the basic Stimler Model yields two terminals,

two communicators, and one processor. This is shown in Figure 4-2.

T >|c P c T >

Figure 4-2. Expanded Stimler Model.

RPMS components are directly analogous to these subsystems.
The Processor is the square, while the terminal is a circle, and the
communications corresponds to the flows.

Accepting these analogies between RPMS components and the

Stimler subsystems, Figure 4-2 becomes Figure 4-3.



46

___9<::>_£L_;.P c ><EZ> S

Figure 4-3. RPMS Diagram of Stimler Subsystem.

Stimler's model viewed in RPMS terms will be used in the next
section to portray a computer system which will be evaluated by using
linear programming and the procedure outlined in the previous section.

The modified Bell's procedure previously stated in this chapter
will be followed to obtain analytical results. The resourcies, pro-
cesses and their interrelations are formulated as a linear RPMS
model and solved as a standard linear programming problem,

The numerical examples in this study were all solved using two
methods. The first method followed the RPMS procedure outlined in
Chapter III, and the second utilized the *REX linear programming
package '"a revised product-form, composite, bounded variable,
multipracing, simplex, linear programming algorithm' (Scheurman,

1970),



47
V. THE RPMS APPROACH APPLIED TO CPE:
BATCH VS ON-LINE

A numerical example that uses the proposed RPMS approach to
evaluate an existing system to determine which resources are being
utilized and to what extent the improved throughput contributes to
the system's overall profit,

A small system has been set up which gives the user the option
of running batch or on-line jobs. A batch job utilizes a card reader
input and line printer output. The on-line jobs run with teletype input
and can have either teletype output or line printer output. The objec-
tive is to maximize the profit of the computer center throughput.

The card reader operates at 1200 cards per minute. The tele-
types operate at 120 lines per minute. The line printer operates at
600 lines per minute.

Each batch job has an average of 500 cards of input and 500
lines of output, running in a total CPU usage time of one second, ata
profit of $50 per job.

Each on-line job has an average of 600 lines of input and 600
lines of output, running in a total CPU usage time of two seconds, at
a profit of $120 per job. Let us now assume that a CPE study is to
be made for a time quantum of ten minutes.

Thus, the total time allowed for all processing,. including CPU,

is ten minutes per resource. The system allows spooling of all input



48

and output devices, and an assumption is made that one card is equal

to one line of print and vice versa.

This problem, stated as a mathematical programming problem

is as follows:

Maximize Z = 50 BUT + 120 LUT subject to the following con-

straints
@ SYST
@CR
@LP

@ CPU
@TTY
@ BNQ
@ PLNQ
@ LNQ
@ BUQ
@ LPLQ

@ 1.UQ

CTR < 600

500 BIN - 20 CTR < 0

500 BUT + 600 PRLT - 10 CTR <0

1 BPR+2 LPR - CTR< 0

600 TTYUT + 600 TTYIN - 2 CTR<O0
BPR - BIN <0

LIN - TTYIN <0

LPR - LIN < 0

BUT

BPR <0

LUT

PRLT <0

LUT - LPR< 0

Where, all units are jobs/10 minutes except as noted.

BIN is the process of reading cards from the card reader into

a batch queue. BIN is Batch INput.

BNQ is the resource built by BIN, BNQ is the Batch INput

Queue.



49

BPR is the process of doing the actual batch computation.
BPR is Batch PRocessing.

BUQ is the resource built by BPR. BUQ is the Batch oUtput
Queue.

BUT is the process of outputing batch jobs. BUT is the Batch
outpUT.

CPU is the Central Processing Unit resource.

CR is the Card Reader resource measured in cards.

CTR is the process of operating the computer center.
CTR 1is the CenTeR.

LIN is the process of accepting on-line input.
LIN is on-Line INput

INQ is the on-line input queue. LNQ is on-Line iNput Queue.
LP is the line printer Resource. LP is Line Printer measured
in lines.

LPLQ is the on-line resource of pre-output queue.
IPLQ is the Line Printer on-Line Queue.

LPR is the processing of on-line jobs. LPR is on-Line PRo-
cessing.

LUQ is the resource of on-line output queue. LUQ is the
on-Line oUtput Queue.

LUT is the process of producing on-line output.
LUT 1is on-Line oUTput.

PINQ is the resource of jobs ready for on-line input.
PINQ is Pre-on-Line-iNput-Queue.



500 .| 11 1

BIN BNQ

0
Q
CR
20
0
LP
10
$720 600 se sec
0 ' 1
SYST CT
0
2
CPU

TTY TTYIN PLNQ

@@1 ‘241 _1%

LIN LNQ

%1 V¥
(8 0
BPR BUQ BUT
511 ‘{"" 1 \E
0 0N |0
TFR U0 TOT

Figure 5-1. Basic Applied Model.

0s



BPR BUQ
$1320
> '
O 0 0
SYST CcT PRLT
2
0
0
TTYUT
600
600 2 i GO\ 1 1 GO\ 1 2
£% 1%
TTY TTYIN PINQ LIN INQ L¥R
Figure 5-2. Double LP.

\ $s50
\
A
\
\
\
\ $1370
/
/
/
/$120
/
/

1S



$1440

O[>—600 @1

SYST

600

1)\ 500 1 ‘§£>_ 1 1
0 0 0D 0
CR BIN BNQ BPR BUQ
0
0 1
1
cT PRLT
2
CPU
0
1
TTYUT LPLO
2R\ 1 211 <I» 2/]1 ) ¢
NI ON NS NS
TTYIN PINQ LIN LNQ LPR LUQ
Figure 5-3. Tripple LP.

\
\ 859
\
\
\
\
\
$1440
;j:: [::1
/
/
/
//$120
/
/
/

[A°]



53

PRLT is the process of allocating the line printer to the for
on-line use. PRLT is PRinter for on-Line outpuT.

SYST is the resource of time. SYST is SYStem Time.

TTY is the resource of teletypes. TTY is TeleTYpes measured

in lines.

TTYIN is the process of allocating teletypes for on-line input.

TTYIN is TeleTYpe INput.

TTYUT is the process of allocating teletypes for on-line output.

TTYUT is TeleTYpe outpUT.

These mneumonics are used on the RPMS network portrayal of
the problem and in defining *REX variables. The RPMS network of
the problem is shown on Figure 5-1.

The effect of doubling the line printer capacity is shown on
Figure 5-2. | |

The effect of trippling the line printer capacity is shown on

Figure 5-3.

Discussion of Results

In the solution of the basis problem, several observations can
be made from the RPMS network of Figure 5-1.

< Each second of system time, SYST, is values at $1. 20,

SL

SL

* Only a total of 28 seconds are consummed for all jobs run

(600-572 at CPU)



abe
R

"
3*

¥*

¥*

54
A total of 24 batch jobs were processed, BPR, but only 9. 6
jobs were actually output on the line printer, BUT, while a
queue of 14, 4 batch jobs remain to be output, BUQ.
All on-line jobs used teletype input, TTYIN, and line printer

output, PRLT,

< A total of two on-line jobs were completely run and output,

(LIN=LPR=LUT=2), and no on-line jobs were on any queues
(Residue part of PLNQ, LNQ, LUQ=0).

The current constraining factor for doing more batch jobs is
the line printer. LP shadow price value is $. 10,

Either the Line Printer, LP, or the Teletypes, TTY, capacity
can be increased and a resultant increase of the total profit
will increase by $.10 per line output.

Since these two resources will both contribute the same amount
to the total profit, a degenerate condition (condition D, Figure
3-5) exists. Between the two resources, it will be best to in-
crease the resource that contributes the most in terms of
flexibility to the system. Thus, since the line printer is a
shared resource (that is, it feeds both BUT and PRIT), it is
found to be more advantageous to double the line printer

capacity,

Figure 5-2 gives information about the system when the line

printer capacity is doubled (aij from CTR to LP = 20).



55

* When doubling the line printer capacity, the CPU utilization
(CPU), Batch Jobs Processed (BPR), and on-line jobs com-
pleted (LUT), remained constant.

* The total batch jobs completed (BUT) has increased to 21.6,
while the batch output queue (BUQ) has decreased to 2. 4.

* The system time (SYST) is now falued at $2. 20 per second.

* The two constraining resources are the line printer (LP) and
the Teletype (TTY). By applying again the same logic that
was used on Figure 5-1 to Figure 5-2, it was decided to

tripple the line printer capacity from its original capacity.

Figure 5',3 gives information about the system when the line

printer capacity is trippled (aij from CTR to LP = 30).

* By tripling the line printer capacity, the CPU utilization (CPU),

Batch jobs Processed (BPR), and on line jobs completed (LUT)

remained constant.

%

<« The amount of batch jobs completed (BUT) increased to 24,
and thus reduced all batch queues, BNQ and BUQ residue values

to zero,

S

< Fach system second (SYST) is now valued at $2. 40.

* If further improvement is to be made in the system to increase
the amount of throughput, then two resources, the card reader
(CR) and the teletype (TTY) are candidates. Since the tele-

type is valued at $.20 per line produced and the card reader



56
is valued at $.10 per card produced, then tﬁe teletype is thve
best candidate for the next capital investment.

In summary, it took trippling the line printer capacity, that is
changing aij from CTR to LP from its original value of 10 to 30, to
double the profit of the system and set the batch output queue (BUQ) to
zero. Figure 5-4 shows the Kiviat graphs of the results just des-
cribed on the RPMS networks,

Since this study uses an increase in throughput as being the
hypothesis that is to be improved, then the amount of batch output
(BUT), on-line output (LUT), and the operational level of the center
(CTR) are considered as the good attributes for the Kiviat graph.

Since partially completed jobs constitute no revenue for a sys-
tem, the batch output queue (BUQ), the line printer queue (LPLQ),
and system residue (SYST) were chosen as the bad attributes. The
system would have attained a star shape [ Figure 5-4(c)] had the op-
timal LP capacity of 22 been chosen. The Kiviat graphs in Figure 5-4
show that some improvements were made in the system by changing
the line printer capacity.

The hardware and software were combined in this RPMS model
and this is in keeping with the current trend of integrating the two
components (Falk, 1975, pg. 46). The model also assumed the oper-

ations time by the operator to be zero. This is in keeping with the



IIGOOdH llBadll

Axis : Axis
1 = Batch Output (X BUT) - 2 = Batch Output Queue (X BUQ)
3 = On-Line Output (X LUT) - 4 = Line Printer On-Line Queue (X LPLQ)
5 = Operate Center (X CTR) - 6 = System Time (X SYST)
21.6 24 24
916 14. 4

2 2 600 2

600 2 600 600

8
(A) LP =10 (B) LP =20 (C) LP =22 (D) LP = 30

Figure 5-4. Kiviat Graphs of Batch vs On-Line.

LS



58
idea of minimizing the amount of operator intervention in current
computer systems (Stimler, 1969).

With these assumptions made, then the throughput of the system

is just the sum of X BUT and X LUT..

Throughput = = X, where I is a cut set of the process nodes
. of the network as defining the system
iel
throughput.

Though this is a crude upper bound, it gives an indication of the
maximum throughput under idealized conditions for the system repre-

sented by the RPMS network under study.



59

VI. EXTENTIONS OF RPMS THEORY

The following extensions of existing RPMS theory are offered
to support the observation that many of the concepts embodied in the
RPMS methodology already existed in other branches of the field of
computer science. By making further use of theories in these fields,
the RPMS theory can be extended. It is hoped that these extensions
will aid in popularizing the use of the RPMS as a tool for computer
performance and evaluation efforts. |

The following analogy from finite state machine theory is offered
to show that the RPMS is compatible with the basic theories from this
discipline.

Each com;puter system can be viewed as just a black box, M,

with an input stimulus, S, and an output response, R (Minsky, 1967,

pg. 13).

Figure 6-1. Finite State Machine.

This system can be described more formally as follows (Ibid., pg.
16 and 17):

M= (K,%,6,S,F)



60

where K = The states of the machine
Z = The input alphabet of the machine
0 = The transitions from one state to another state
S = The start state of the machine
F = The final states of the machine

R(ttl) = F (Q(t), S(t))
where Qe K
Se =
F is a function
Q(t+l) = G (Q(t), S(t))
Qe K
Se =
G is a function
Even this simple model of Figure 6-1 yields more information
than is obvious. S and R can be considered as resources while M is
a transformation process. In RPMS terms, assuming S and R to be
resources, and M to be a process, will produce Figure 6-2 which is

directly analogious to Figure 6-1. The basic problem then within any

OO

Figure 6-2. RPMS Representation of Finite State Machine.



61
systems model is the establishment of the boundaries. From an
RPMS point of view, the boundaries are more easily formulated if the
model starts with a resource and ends with a resource. But all re-
sources come from somewhere and are going somewhere. Since a
transformation process is required to change one resource into another
resource, a resource must come from a transformation and feed into
another transformation. With this in mind, then, each finite state
machine is viewed as an RPMS of Figure 6-2. It will have its R value
matched to the S value of the next machine and its S value correspond-
ing to the R value of the machine in front of it. This is shown as

Figure 6-3.

D—F

Figure 6-3. RPMS S & R Relationships.

By combining all overlapping S and R resources a cancatenated

machine (Figure 6-4) will be produced. If we assume the first M to be

- Po* B P

Figure 6-4., Cancatenated RPMS Finite State Machine.




62

a computer system, it can be broken down into subsystems. As seen
previously, one classification of subsystems uses the three terms
"Terminal," "Communications,' and "Processing.' These three
terms have been shown to be more applicable to modern computer
systems than the more widely used Von Neumann or Hellerman models
(Stimler, 1974).

The Von Neumann model is also known as the four-block, five-
block, or classic model. A diagram of the model is shown in Figure

6-5 (Enslow, 1974, pg. 8).

Data & Instructions

— — — — Control Signals
Memory < — o
Unit |
l
|
I
|
— Input Arithmetic- | Output —
Unit Logic Unit
Unit I < >
< |
) | | "
| ! | |
| ) | :
I
I Control - _‘ |
Unit I
L > e — — — — — 1

Figure 6-5. Von Neumann Model.



63

The blocks of the Von Neumann model have the following meanings:

Input/Output is used to transform information from human-

consumable form into machine-consumable form and vice-versa.

Arithmetic-Logic performs the arithmetic and logical functions

asked for by the control unit.

Control interprets the instructions to be executed and controls

there execution.

Memory holds the program and data for the program which is

currently being executed.

The major weakness of this system organizational scheme is
that all I/O operations are routed through the Arithmetic and Logic
unit. This reduces the total number of hardware elements required,
but all computation must halt while input/output operations are in
progress (Ibid., pg. 7). The Hellerman model is described as by the
following and can be graphically shown by Figure 6-6 (Hellerman,
1973, pg. 9-12).

Storage block provides a means for étoring a large volume

of information from/to storage from/to a single point

(register).

Data Flow comprises the switching networks that route in-

formation from one part of the computer to another. No

unit is permanently connected to any other unit.

Transformation provides the arithmetic and logic circuits
used in the data manipulation process.




Input/Output

Storage

Transformation

Figure 6-6. Hellerman Model.

64

Control <]

Data Flow




O~
Ut

Control provides the timing sequences that perform the
instruction to be executed. Control exist at many levels
in a computer.

Input/Output converts information from human-generated
to machine-readable from and vice versa.

Hellerman further points out that the distinction between the Storage
and Input/Output function is imprecise. The best distinction being
whether or not the output is directly machine-readable.

While this model allows for simultaneous operation of 1/O and
CPU, it does not provide for the parallism of current computers.

1

Three divisions of the system which run in parallel are '"opera-

tions, ' '"software, " and "hardware' under a common clock. These
three subsystems cannot have time and cost attributes assigned until
the structure of the system is known. In keeping with the current
trend towards ""hard isof1:wa,re” or "soft hardWare" (Falk, 1975, pg.
46) these two areas tend to merge into ""firmware.' The '"operations"
subsystem still exist, but for most modern systems, one goal is to
minimize the amount of system dependence upon operators. Thus,
the operations subsyétem can be said to tend towards zero in looking
at the total amount of system time that it consumes.

Let us investigate the processes and resources more closely.
Each resource comes from a process and goes to a process, while

each process comes from a resource and goes to a resource. There-

fore, each of these types of nodes will have at least one line in and



66
one line out, but it can have multiple lines. These multiple type nodes

are shown in Figure 6-7.

PO Qo Ro 3 SO

Figure 6-7. Multiple Nodes.

If we consider then the composite system broken into three
subsystems we can have multiple resources and multiple processes
with multiple lines. This then realizes the composite computer sys-
tem in a cascade because any one of the resources can connect to any
process in any subsystem and vice versa.

The advantage of this technique is that only the subsystems and
interconnections of interest can and will be developed as required
with respect to the other subsystems.

This finite state approach to RPMS could have been taken to

develop the existing RPMS methodology. Given that the RPMS



67
representation of a computer system can be obtained, it is useful to
manipulate the RPMS network.

Due to the size limitations of most mathematical programming
packages, it is useful to remove any constraint or variable from the
problem which is not a part of the solution. In RPMS terms, this says
the removal of a pair of nodes is possible. The following postulate
on compaction sums the ideas up in more formal terms.

Postulate of Compaction: Given a single strand of an RPMS network

sequence, with resource nodes, i=l, ..., n and process nbde, j=1,
., m, and no other path connected to intermediate nodes, the entire
strand can be compressed into a node or a node pair.

This postulaté of Compaction was first developed by Chen (1974)
as two separate theorems (Ibid., pg. 135, 136). It is presented here
as being potentially useful in CPE efforts.

The postulate says that all resource are pushed toward the
source node while all processes are pushed toward the sink node.

The example in Chapter V will now be used to illustrate the
procedures.

From the basic model, Figure 6-1, the nodes of PLNQ, LIN,
and LNQ can be combined into a new node called NINQ, for new INput
Queue. The original path involves the nodes: shown in Figure 6-8.

The compacted path is shown in Figure 6-9.



68

600 1(2;)1; 1@91 [

TTY TTYIN PLNQ LIN LNQ LPR

Figure 6-8. Original On-Line Path.

(=2 )

TTY TTYIN NINQ LPR

Figure 6-9. Compacted On-Line Path.

When compaction of the RPMS network is not possible, then
other methods must be found to allow solving the RPMS network.
Calling upon ''the block and cut point theorem' from Graph Theory,
and expressing it in RPMS terms yields the following postulate.

Postulate on Decomposition: Any RPMS network, which can be broken

into multiple networks by cutting at a single node, portrays a mathe-
matical programming problem solvable in sections.
This postulate was originally developed by Inoue and Riggs

(1972a).



69
At times, the existing RPMS network needs to be expanded to
include new information and potentially improve upon the answer ob-
tainable from the application of mathematical programming solution
techniques. The following postulate describes this expansion process.

Postulate on Expansion: Any RPMS network node can be expanded by

replacing that node with a triplet of nodes. This can be expressed in
terms of a context-free grammar as follows:

G = (Vn, Vt, P, S) where

Vn=Set composed of P, R, and S

Vt=Set composed of p and r

S=Start symbol

P=Productions as given below,

S::=rPr l PRp

P::=PRP‘ P aij is assumed equal to one.

R::=RPR| r

This postulate will increase the total number of nodes in the

network, but since it is'a serial expansion, will not change the com-

posite network structure.



70

VII, CONCLUSIONS

General and Summary

The proposed approach has been found successful in obtaining
an upper-bound on the amount of system throughput of a given computer
system for which a RPMS model has been built and solved. Though
the bound may be crude, its refinement is proportional to the amount
of detail in the model.

Compared with other techniques its major advantage is that the
method identifies the optimal allocation of resources in an existing
feasible system being subjected to CPE. This is because the model
is interpreted as a mathematical programming problem and solved to
provide an optimal solution. An adaptivity analysis is possible by
considering all information given as a result of*the modification of the
existing system. In addition, the technique allows for an estimate
of throughput from just the vendor supplied system component char-
acteristics.

The major difficulties are in the level of accuracy of the upper-
bound. Further, solution of CPE problems using mathematical
programming techniques has not met with a great deal of acceptance
due to the level of mathematical maturity required and the absence of

inexpensive mathematical programming packages.



Cost —>

71

ngh Hs Is K
Medium _| C,K,* D,G,K
A,B,EK
Low :
Low Medium High
Time ——
A = Formulation
B = Instruction Mixes
C = Kernels
D = Benchmarks
E = Synthetic Models
K = Kiviat Graphs
G = Monitors
H = Mathematical Programming
I = Simulation
* = New Approach
Figure 7-1. Time and Cost Comparison of CPE Techniques.



72
The method proposed combines the properties of mathematical
programming, synthetic modeling, and Kiviat graphs. The new
approach can be added to Table 1 with the following entries:
Total Total Selection  Optimization

Time Cost
Required Required

New Approach Medium Medium Good Good

All of the techniques in Table 1, along with the New Approach are
shown in Figure 7-1. The new approach is considered to be 2 com-
bination of the best of each of the techniques it draws upon. It is
hoped that this approach will put CPE within the range ofk all com-

puter system users.

Future Areas of Research

This study has concentrated on developing a versatile tool for
analytical work dealing specifically with the computer performance and
evaluation field. Though the proposed approach, as applied here,
gives useful results, much is left to be done. Some of the major
areas are indicated below,

1) Goal Programming: Often a CPE evaluation effort involves

satisfying conflicting objectives. For example, it may be desired to
increase throughp‘ut while minimizing capital expenditures. One
modification of linear programming that holds promise for solving

problems of this type is goal programming (Lee, 1972).



73

Developed by A, Charnes and W, W, Copper, Goal programming
was further refined into a distinct mathematical programming tech-
nique by Ijiri (1965).

The major advantage of goal programming is that it provides a
potential solution to problems involving conflicting objectives. Linear
programming suffers from a unidimensionality of the objective func-
tion, while goal programming allows for multiple objectives.

I.ee (1972) points out that since goal programming is relatively
new, its true potential is yet to be determined. It appears that the
overall potential applicability of goal programming may be at least as
wide and far reaching as linear programming, since LP may be
considered a subset of goal programming. .

Lee's goal programming package was modified to run on the CDC
3300 at Oregon State. But, due to existing system limitations, only
small problems involving up to ten resources and ten processes could
be handled. ILee's goal programming package was subsequently
modified to run on the CEC Cyber 73 under KRONOS 2.1. The pro-
gram will currently compile for 100 processes, 250 resources and
10 priority levels.

3) Stochastic Programming: Stochastic programming deals with

situations where parameters of a problem are random rather than
deterministic quantities (Taha, 1971, pg. 649). This form of pro-

gramming can be used to address real-life problems which are



74

non-deterministic. Computer Performance and Evaluation efforts
involving the optimization of on-line computer systems could poten-
tially benefit from stochastic programming applications for various
areas where only the statistical distribution of the level of resource
request is known. An example of this is a problem in the memory
allocation area,

4) Functional Levels: If RPMS is to be accepted as a universal

tool for CPE efforts, then a central common ground among all evalua-
tion methods needs to be found. One proposed approach to the analy-
sis of computer systems as a part of computer networks involves a
hierarchical approach call 'Functional Analysis' (Booth, 1973). The
functional analysis method takes the approach that a system can be
decomposed into its sub-systems. RPMS has been shown to allow for
decomposition, adaptation of RPMS to functional analysis could give
new insight into CPE. The use of RPMS might allow further develop-
ment of more levels within the existing functional analysis level
étructure (Becker, 1973).

Though the Resource Planning and Management System is not a
panacea for all things, this study has shown it to be useful in gaining
more insight into the solution of computer performance and evaluation

problems.



75

BIBLIOGRAPHY

Aoki, Masanao. 1971. Introduction to optimization techniques:
fundamental applications of non-linear programming. New
York, Macmillan., 335 p.

Arbuckle, R. A, 1966, Computers and automation, "Computer
analysis and throughput.! Jan., 1966. p. 12-25, 19,

Becker, Hal B. 1973, Functional analysis of information networks.
New York, Wiley. 281 p.

Bell, T. E. 1971. '"Computer performance analysis: measurement
objectives and tools.' A report repared for National Aeronautics
and Space Administration and United States Air Force Project
Rand. Rand Number R-584-NASA/PR. February, 1971, 32 p.

Bell, T. E., B. W. Boehm, and R. A, Watson. 1972. '"Computer
performance analysis: framework and iti initial phases for a
performance improvement effort.'" A report prepared for United
States Air Force Project Rand. Rand Number R-549-1-FPR.
November, 1972, 55 p.

Betz, Robert E. 1973, "Use of SMF data for performance analysis
and resource accounting on IBM large scale computers. "
Proceedings of 8th Meeting of Computer Performance and Evalu-
ation Users Group (CPEUG) NBS Special Publication 40. p.
23-32.

Blatny, J., S. R. Clark, and T. A. Rourke. 1972. CACM. Vol. 15,
No, 6. June, 1972, '"On the optimization of performance of
time-sharing systems by simulation.' p. 411-420.

Booth, Grayce M. 1973, Functional analysis of information process-
ing. New York, Wiley. 269 p.

Butler, James L. 1970. Instrumentation Technology. '"Comparative
criteria for minicomputers.' Oct., 1970. Vol. 17, No. 10,
p. 67-82.

Calingaert, Peter. 1967. CACM. Vol. 10, No. 1, Jan. 1967,
"Systems performance evaluation: survey and appraisal.' p.
12-18.



76

Chen, Kuei-Lin, 1974, The application of decomposition and con-
densation algorithms to the logical design of resource planning
and management (RPM) networks. Masters thesis, Oregon
State University. 205 p.

Cohen, Leo J. 1973. "Dollar effectiveness evaluation of computer
systems.!" Proceedings of Eighth Meeting of Computer Per-
formance and Evaluation Users Group. NBS Special Publication
401. p. 85-97.

Drummond, M, E. Jr. 1973. Evaluation and measurement techniques
for digital computer systems. New York, Prentice Hall. 338 p.

Enslow, Philip H. Jr. 1974. Multiprocesscrs and parallel process-
ing. New York, Wiley. 340 p.

Falk, Howard. 1975. IEEE spectrum. Vol. 12, No. 4, April, 1975.
"Technological forecase-computers IL."' p. 46-51.

Gibson, J. C. 1970. IBM Technical Report TROO, 2403. June, 1970,
"The Gibson Mix.'" 4 p.

Gordon, Geoffrey. 1969. System simulation. Englewood Cliffs, N.J.,
Prentice-Hall. 303 p.

Gould, I. H. (edr.). 1971. IFIP guide to concepts and terms in data
processing. Holland, North Holland Publishing Co. 161 p.

Hellerman, H. and H. R. Smith, Jr. 1970. Computing éurvey‘s. Vol.
2, No. 2, June, 1970. "Throughput analysis of some idealized
input, output, and computer overlap configurations.' p. 111-118,

Herman, Donald J. 1967. Datamation. Feb., 1967. "SCERT: A
computer evaluation tool." Vol. 13, No. 2. p. 26-28.

Hesser, W. Andrew. 1973. '"The use of simulation in the solution
of hardware allocation problems.' Proceedings of Eighth
Meeting of Computer Performance and Evaluation Users Group.
NBS Special Publication 401, p. 73-79.

Highland, Harold Joseph. 1974, '"Preface.'" Proceedings of Eighth
Meeting of Computer Performance and Evaluation Users Group.
NBS Special Publication 401, p. v and vi.



77

Hellerman, Herbert. 1973. Digital computer 5ystem principles.
New York, McGraw Hill. 466 p.

Ijiri, Y. 1965. Management goals and accounting for control.
Chicago, Rand-McNally. 191 p.

Inoue, Michael S. and James L. Riggs. 1972a. ''Resource planning
and management network.' Proceedings of International
Symposium on Systems Engineering and Analysis, Vol. 2.

p. 187-192. October 23-27 Lafayette Indiana Purdue University,
John E. Goldberg et al., eds.

1972b. "RPM network.' Session TPSi3.4 ORSA-
TIMS-AIIE Systems Engineering Joint National Conference,
Atlantic City, November 9, 1972,

Inoue, Michael S, 1974, '"Visual identification of Kuhn-Tucker
conditions on RPM networks.' Paper presented at 2nd Annual
Systems Engineering Conference, Minneapolis, Minn,
November, 1974,

Kanter, Jerome. 1970, Management guide to computer system
selection and use. Prentice Hall, Englewood Cliffs, N. J.
257 p.

Knight, Kenneth. 1966. Datamation. September, 1966. ''Changes
in computer performance.' Vol. 12, No. 9. p. 40-54.

1968. Datamation. January, 1968. '"Evolving
computer performance: 1962-1967.'" Vol, 14, No. 1. p. 31-35.

Lee, Sang M. 1972. Goal programming for decision analysis.
Philadelphia, Auerback. 387 p.

Lucas, Henry C. Jr. 1971. Computing surveys. Vol, 3, No. 3,
September, 1971. '"Performance evaluation and monitoring."
p. 79-91.

Minsky, Marvin L. 1967. Computation:finite and infinite machines.
- Prentice-Hall, Englewood Cliffs, N, J. 317 p.

Morris, Michael F. 1974. ''Kiviat Graphs-conventions and figures
of merit." Proceedings of 10th Annual Meeting of Computer
Performance and Evaluation Users Group, Columbus, Ohio.
October, 1974, (In press) ‘



78

Ollivier, Robin T. 1970. Datamation. January, 1970. '"A technique
for selecting small computers.' Vol. 16, No. 1, p. 141-145,

Riggs, James L. and Michael S. Inoue. 1975. Introduction to
operations research and management science - a general sys-
tems approach. McGraw Hill, New York. 536 p. (Inpress)

Scheurman, H., Lynn. 1970, *REX (Version l) linear programming
system. Corvallis, Oregon, Oregon State University Computer
Center. 89 p.

Sharpe, William R. 1969, The economics of computers. Columbia
University Press, New York. 571 p.

Stimler, Saul. 1969. Real-time data processing systems --a
methodology for design and cost/performance analysis.
McGraw-Hill, New York. 259 p.

Stimler, Saul. 1974. Data processing systems: their performance,
evaluation, measurement, and improvement., Motivational
Learning Programs Inc., Trenton, N. J. 183 p.

Taha, H. A. 1971. Operations research: an introduction.
Macmillian, New York. 703 p.

Timmereck, E. M. 1973, Computing surveys. Vol. 5, No. 4,
December, 1973. '"Computer selection methodology.' p. 199-
222,



APPENDICES



79

APPENDIX A

GLOSSARY OF TERMS

BATCH PROCESSING: The processing of a program or set of pro-
grams, called a batch, under the control of an operating system and
without intermediate interaction with the user. Each programmer
request, in advance, specific services of the operating system, and
then transfers control to the system, which supervises and processes
each batch program in a sequence.

BYTE: A small sequence of adjacent binary digits, or bits, which can
be treated as a unit (usually either six or eight). k

CAPACITY: The maximum achieveable average throughput rate
regardless of the timeliness of the outputs. It is expressed in'units of
work (for example, jobs or transactions) successfully completed per
hour, minute, or second. Capacity is intended to indicate a theoreti-
cal upper processing power limit. It can be valuable for performance
evaluation and improvement but usually for performance evaluation
and improvement but usually would not be expected to be achievable

in practice. The same hardware and software would have different
numerical values for capacity when representative work loads with
different characteristics were processed.

CHANNEL: A path along which signals can be sent. In reference to
computer systems, this usually refers to a medium that transfers a
series of digits or characters between two terminals, or between main
memory and peripheral I/O devices, with minimum involvement of

the CPU.

CHANNEL CONTENTION: Competition between high-speed I/O
devices for one or more channels.

COMPUTER-BOUND: Describes a program for which the time re-
quired to perform computation dominates the total time required for
program execution. (Also called CPU-bound)

CPU: Central Processing Unit.



80

CPU UTILIZATION: The ratio of time that the CPU is actively working
to the total time that the CPU is available to work. Hardware and
software monitors measure CPU utilization by (1) determining the
number of cycles that perform work and the total cycles completed
over a given time period and (2) computing the ratio. CPU utilization
can be calculated from computer accounting data by dividing the total
CPU time accounted for over a time interval by the net amount of
time that the central processor was operating. (Net time equals the
length of the time interval less the amount of time that no work was
performed because of hardware or software failure, scheduled main-
tenance, or insufficient submitted work.)

I/O: An abbreviation for input/output, the transfer of information
between a computing device and a peripheral.

I/O Bound: Describes a program, a set of programs, or an entire
work-load in which the time required to perform I/O operations domin-
ates the total time required to execute the program.

JOB: One or more programs (often called job steps, activities, or
tasks) submitted for processing by a computer system. (2) The unit of
work for batch processing systems. (3) A basic independent unit of
work to be carried out by a system.

PRODUCTION JOB: A computer run of a checked-out program, often
done on a periodic or continuing basis at a computer installation for the
purpose of producing specified output.

PROGRAM: A complete specification of one or more task that are to
be performed on data.

REILATIVE THROUGHPUT RATE: The dimensionless ratio of the
average throughput rate for one set of conditions divided by the aver-
age throughput rate for a second set of conditions. The different con-
ditions usually are the processing of the same representative work
load in two different systems. For relative throughput rate to be
meaningful, it is essential that the same representative work load be
processed by each of the systems being compared.

RESPONSE TIME: The average time that a terminal user must wait
to receive a response from a time-sharing system. (Note that the
definition of a '"response'' is critical to the magnitude and relevancy
of the measure.)




81

SPOOLING: Queueing input or output on disk or tape. This is done
in multiprogramming computer systems so that a program can read
input data at a disk or tape speed instead of card-reader speed and
can write data at disk or tape speed instead of printer speed. The
main reason for spooling is to allow many programs (at one time) to
read input data or write output data even though the system may only
have one card reader and one or two printers.

TASK: A number of steps which are partially or wholly ordered from
the point of view of their execution.

THROUGHPUT: A performance measure for a computer system to
indicate how much work is being processed over a given time period
(e.g., jobs processed per hour). (2) Total data processing work
successfully completed during an evaluation period.

THROUGHPUT RATE: The data processing work successfully com-
pleted per unit of time.

TIME-SHARING: A technique of system operation in which each of
several programs receives a short quantum of the CPU's time. (They
share the processor.) Time-sharing systems often include facilities
to move programs, or parts of programs, between memory and other
storage devices (e.g., disk or drum)

TRANSACTION: The unit of work for a real time systems.

TUNING: Making relatively minor modifications to a computer sys-
tem's hardware, software, operational procedures, or any other facet
of the operation of a computer installation for the purpose of increas-
ing efficiency of operation.



82

APPENDIX B

BUTLER'S FORMULA

b Ph + P8
2
= i (] H
Ph = Basic system cost ($) ¢ 0.1M 1- W
+ 209 (A 4L 41 ) + 100N + 50R
T h "h Ih
P = Basic system cost ($)

8 500(D+B+L) + 1,000A + 2,000C + 508

Core memory storage capacity of a basic machine, total bits
Number of bits in the address field of single word instructions
Word length, bits
Number of general purpose registers
Core-memory read-write cycle time
Number of '"extras'' in the basic cost of the machine, including:
. Real-time clock
. Power failure protection
. Automatic restart after power failure
.Memory parity checking
. Memory protect
A number proportional to the arithmetic capability of the com-
puter--with a range of 0 to 100:
0 No arithmetic capability
25 Hardware add and complement
50 Hardware add and subtract; software multiply and divide
(fixed point, slow)
75 Hardware add and subtract; hardware multiply and divide
(fixed point, fast)
90 Hardware add and subtract; hardware multiple and divide
(fixed point); software floating point arithmetic
100 Hardware fixed point and floating point arithmetic
Lh = A number proportional to the logic capability of the computer--
range of 0 to 100:
0 No logic capability
25 '""And' and "or' hardware
50 "And,' "or," and "exclusive or'

ZHwEE

>
=
i



t"‘

wQ»

83

75 All of the above, also word test and conditional branch
instructions
90 All of the above, also bit test and bit manipulation
instructions
100 All of abobe, also arithmetic rational test instructions
A number proportional to the I/O capability of the computer--
range of 0 to 100:

0 No I/O
25 Programmed I/O through internal registers only
75 Same as above, also multiple I/O processors
Off-line diagnostic routines supplied:

NO =0 YES =1
Debugging routines supplied:

NO =0 YES =1
Loader routines supplied:

NO =0 YES =1

Number of assembler
Number of compilers
Power of on-line operating system (range of 0 to 100)



84

APPENDIX C

OLLIVIER'S FORMULA

Weighting Schemes (Manufacturer Criteria)

Factor

Weight

Scoring Bases

Delivery time

Past performance

Maintenance

Location

Alternative sites

Number installed

Documentation & training

7

4,3: Less than 45 days ARO;
2,1: 45-75 days ARO; 0:
Ofer 75 days ARO

4-2: Many reports of on-time

delivery and good service; 1-0:
Known for late delivery, poor

service

4-2: 24-hour turnaround on
cpu, on-call maintenance; 2-0:
No experience, remote or
difficult corporate interface

4: Southern California
2: Within 500 miles
0: Distant

4: Same computer installed
at JPL; 3-1: Locally available;
0: No alternative site

4: Over 100; 3-1: 10-100
installed; 0: Less than 10 in
field

4: Excellent hardware and
software manuals, or training
provided; 3-1: Adequate inter-
face and programming manuals;
0: Little or no documentation




85

Weighting Schemes (Computer Criteria) cont.

Factor

Weight

Scoring Bases

Word size
Cycle time
Instruction set

Arithmetic

Addressing

Programmable registers

Interrupts

Input/Output

Physical size

Console

10

16 bits or more; 2: 12 bits;

8 bits or less

1 psec; 3-1: 1-2 psec

2 psec

=k O BN O

,3: Extensive; 2: Adequate;
-0: Primitive

4: Hardware multiply/divide;
double precision and floating
point options; good precision
3-1: Adequate capability;
hardware mul/div or fast
subroutines

0: Very little arithmetic
capability

4-0: Score one for each of the
following: indirect, relative,
indexed, direct to greater than
4096, or by addressing

4: Many; 3-1: More than one;
0: one

4: 3 or more priority, no
identification necessary;
Adequate for 3 devices

0: None quoted

3-1:

4: 2 or more automatic channels
at rates to 1.3 megabits/sec;
3-1: At least one 1.0 megabits/
sec with good accumulator 1/0;
0: Marginal I/O capability

4-0: Subtract one point for each
5 inches over 11 inches

4-0: Sense switches, displays,
debugging aids




86

APPENDIX D

INSTRUCTION CATEGORY DESCRIPTIONS

Weights for a Scientific Mix and a Commercial Mix

Scientific Commercial
Instruction Category* Weight Weight
1. Fixed add (subtract) and compare
instructions 0.10 0.25
2. Floating add (subtract) instructions .10 0
3. Multiply instructions .06 .01
4. Divide instructions .02 0
5. Other manipulation and logic
instructions .12 .74
1,00 1.00

Source: Kenneth E. Knight, '""A Study of Technological Innovation--
The Evolution of Digital Computers.' doctoral dissertation,
Carnegie Institute of Technology, November, 1963, pp. IV-5,
Iv-6, IV-7.

*Category descriptions:

1. "These instructions are the fixed additions, subtractions and
compare operations performed. We may obtain the fixed add
time for each system from the computing literature.

2. '"The floating point add time is given in the computing litera-
ture for machines with built-in floating-point arithmetic.
For other machines the figure can be approximated by
multiplying the fixed-point add time by 10... (the mean value
for six computing systems considered). "

3. ""We have included only one multiply category since the
operating times for these two operations on systems capable
of both floating and fixed-point arithmetic are approximately
equal. The multiplication time is a characteristic available
in the computing literature.'

4. "The fixed- and floating -point operations were combined. ..
the divide time represents a characteristic of each system
published in the computing literature. "



87

"This category combines a large number of branch, shift,
logic and load-register instructions...For computers with
parallel arithmetic, the time...is the shortest of...add time
or...2(times) the memory access time for one word...For
computers with serial arithmetic, the...time equals the
shortest of (1) add time or (2) (the time required to access an
instruction, slightly modified)."



88

APPENDIX E

June 18, 1970 TR 00. 2043

The Gibson Mix
by

Jack C, Gibson
ABSTRACT

The Gibson Mix is a set of weights developed by the author to evaluate the speed of a central
processor. Developed in 1959 for use with the IBM 704 vocabulary, the method became widely known
and used throughout the industry at a time when there was a dearth of such tools. Because of a
renewed current interest in what was considered to be an obsolete tool, the Gibson Mix is published
here for the first time. The author's critique of usefulness of the mix as a computer performance

evaluation tool is included.

Computer Evaluation
07 Computers

IBM

International Business Machines Corporation
Systems Development Division, Poughkeepsie, New York



89

INTRODUCTION

In spite of no published material on the method and no intent to extend to external use the
Gibson Mix developed at IBM, the method became widely known and used throughout the computer
world during the early 1960's. The tool was used to plan and design new computers, to estimate the
worth of a computer to a user, and to plan data processing systems.

Today, for no specific reasons that can be determined, there is a strong and widespread
resurgence of interest in what was considered to be an obsolete tool. Granted the name with its
suggestion of a well-known recipe makes for easy recall, there must be more basic reasons for the
renewed interest. For that reason -- belated but for what value it has now for the student and .

scientist - - here is the first published recipe for: the Gibson Mix.

WHAT IS IT?

The Gibson Mix is a set of weights developed for 13 different classes of instructions, by which
to evaluate the speed of a central processing unit in performing scientific-type problems. It was
developed by the author in 1959. At that time, the computer world was basing its estimates of CPU
speed on storage cycle time, add time, or from an average of add and multiply times. The Gibson
Mix with its weighted average of 13 different instruction times promised a more precise evaluation of
CPU speed.

The mix was based primarily on the operation codes in the IBM 704 data processing system
vocabulary. These codes fell neatly into 12 classes by function. Execution times for the codes within
each class tended to vary little from one another. A 13th class was artificially devised to treat the
indexing of an address as if it were a separate instruction. A percentage by which to weight the
established instruction times of a computer then was derived for each instruction class. Here, then,

is the Gibson Mix recipe:



10,

11,

12,

13,

The Gibson Mix
Loads and Store
Fixed Point Add and Subtract
Compares
Branches
Floating Add and Subtract
Floating Multiply
Floating Divide
Fixed Point Multiply
Fixed Point Divide
Shifting
Logical, And, Or, etc.
Instructions Not Using Registers

Indexing

APPLYING THE MIX

To apply the mix to evaluating the CPU speed of a computer.

90

31.2
6.1
3.8

16.6

3.8
1.5
0.6
0.2

4.4

Computer X say, it is necessary

only to obtain the average time for X to execute instructions in each of the 13 classes and to take a

weighted average of these times using the indicated weights. The implication is that the result of

using the mix is closely dependent on the estimated instruction time for each class.

ESTIMATING CLASS AVERAGES

Ground rules must first be established by which the averages are to be estimated. The ground

rules should take into consideration typical field sizes, frequency of zero as a factor, distribution of

zero digits in a multiplier, average number of positions of pre-shift in floating point add, the number

of times a conditional branch is taken, rather than bypassed, etc.



91

It must also be decided in which class each instruction belongs, and how frequently the slowest
instruction in the class is used compared to the fastest. It should be noted that Class 11, Logical,
includes all bit-manipulating and address-computing operation codes; Class 12{ Instructions Not
Using Registers, includes a miscellany such as Start, Stop, I/O instructions (instruction interpret
only), and unconditional branch.

The mix was expected to be applied to single-address machines only, as the choice of classes
reflects, To apply the mix to other machines, say a three-address machine performing A+B=C in one
instruction, the instruction must be analyzed to determine what part of the time should be apportioned

to Class 1, Load and Store, and what part to the appropriate Add Class.
SOURCE OF THE WEIGHTS

Each weight is the relative frequency of execution of all operation codes in a class, during
actual processing. Seven jobs were run on the IBM 704, and 5.7 million instruction executions were
traced. For each execution, a record was written on magnetic tape, Later, these records were
counted by instruction type ‘to determine how often each type was used. All jobs were scientific.in
nature, including several utilizing matrix algebra.

To spread the application base somewhat and to reduce the influence of the IBM 704 architecture
on the weights, similar traces of ten small IBM 650 data processing system jobs (3.0 million execur
tions) were also distributed by instruction type. Each weight in the Gibson Mix is the average obtained
by weighting the IBM 704 count by 88.6%, and the IBM 650 count by 11. 4%, Although the 650 jobs

were of a commercial type, the Gibson Mix is predominantly scientific.
INTERPRETING THE RESULTS

It is important to keep in mind that the Gibson Mix is a tool to predict the speed of a CPU on
jobs such as those traced on the IBM 704 and 650. On such jobs, it is representative; on other jobs,

there is no certainty the mix will be representative. Other constraints on the results include the



92

insensitivity of the mix to: variations in programming; operating system overhead; compiler execu-
tion time; and I/O system effects, for example the interference between CPU and 1/O for primary
storage cycles.

When the mix is applied to Computer X, the result obtained is a weighted average instruction
time. Should the n;ix be used to estimate the run time of a benchmark program? Probably not,
because the mix is too imprecise. Should the average microseconds per instruction be converted to
millions of instructions per second (MIPS)? Perhaps for comparative purposes. First, however, a
computer with which one is familiar, call it Computer B, should be evaluated as a basis for com-
parison. By comparing the average instruction time for Computer X with that of Computer B, or by
comparing their MIPS rates, Computer X speed can be declared to be a certain percentage of
Computer B speed. This is a conservative way to use the mix but it does help in mitigating some of

its imprecision.
CRITIQUE

With due attention given to the representativeness and precision discussed, the Gibson Mix has
been a relatively easy tool to apply -- particularly when a dearth of such tools existed, The mix
still could be used today to compare relative hardware speed potentials. Nonetheless, the mix is
obsolete. The same job is being done better today using such techniques as simulation, trace times
and measurement monitoring.

A mix generated today could be constructed on a wider job base and on hundreds of millions
of instruction executions. Validation could be a controlled scientific experiment. Instruction pairs,
triplets, etc. could be traced. ‘Mixes based on source language statements could be developed, as
well as compiler mixes. I/O and operation system effects could be isolated.

Undoubtedly, there is much in the field of developing mixes to interest the computer scientist
and student. Indeed, it is perhaps from the university that the recent interest in the Gibson Mix has

surged,



93

APPENDIX F.

KIVIAT GRAPHS

A = General Case
B = Best Case Star
C = Worst Case Star
D = "Good" Star

E = "Bad" Star




94

R N N T i 8 T U SRS SO PR VORI AU il JUSNIDE RO DU IS PSR IS

APPENDIX G. Lee's GOAL Programmmg for CYBER

________ “PROGREW JLEGOAL ~ 73774  0OPT=1 ‘ FIN 4. 3+74353

PROGRAN JLEGOAL (INPUT,OUTPUT,TAPESO=INPUT, TAPE6120UTPUT)

LY VOT T TroeTY b Al dd & b bl a4 b ddh o 4 b B4 b d d dd o d bk

T THIS IS A GORL T PROGRAMNING PAGKAGE MOUIFIED FOR 777

c THE COC CYBER AT OREGON STATE UNIVERSITY

C
c DATE MODIFIED...MAY 20,1975

1 b b Bl ddddddddddddddddddddddddddhdddddddddtiddihdddd

10

NOTE e e o THE FOLLONING —ARRAYS SHOULD BE SET
TO THE VALUES GIVEN FOR A FULL RUN WITH THE ORIGINAL

RVLX (10,250}

L
c
O CIMITATIONS OF LEES GOAL PROGRAMMING "PACKAGE GUALPL.
c
17

15

VACX 1952500
C 100,250}

c

C

c VALY (100,10}
e

R a et asd TR 2 T R L e S S d i A gl Ll il o

D 1100,2501%

COMMON C (1004 250)

25

COMMON D 10052507
COMMON RVLX(10,2501

CUONMON VALX{17,250)

COMMON VALY(100,10)
T OIMENSTON - Xt250)

DIMENSION Y(i10@)

30

DIMENSIONIYTIOD)
DIMENSION AMT (100)

OIMENSION 00D (100)

DIMENSION DUD (250)
TOIMENSTON KEPTt100Y

DIMENSION PRDT (100}

35

DINENSION RHSTIO0)
DIMENSION ZVAL (10)
T— 1.5« F«WA,Y‘,tsiﬁFte,.z,,,_ﬁﬁ e e e i A A R AR e e s e e RS AR e
12 FORMAT(10F12.3)
4 I3 FORMATCSFOL0Y
313 FORMAT(I3,10X,F20.5)

46

CALLSTART 1Ny HQL"’RU"KHDIQRPDK'KEV"'C)Yl i
DO 21 J= 11"
DO 20 I ioN

no 25 K—i.L

45

| —

55

UU CD l L,"
VALV(I'K) VALX(KyI?
ITAB=0

R aas s n s s gt st S e e e E e S S e S ETRES S S St B S L S S s ST

c BRING IN NEW VARIABLES
e GRLCTLATENE T CONTRIEBUTION-OF EACH VARTABLE tRVLX XTI Yy
C'.i.....'l..'l.l".¥.66'¥6.6..6'.6...".'.'66’6.%
L1=0
IF(K3~1) 800, 40y 40

PRV S P W .
WU UU OU KR=J19RNv

DO 60 J=1,M




SumMP=0.

95

" PROGRAM JLEGOAL 73774 OPT=1 TR @ e 3474353

60

50

TO S0 I3 W
P‘VALY(I,K)‘C(I'J)

S UNP=SUMP¥P s o S

GONTINUE

CRVLX UKy S F=SURPSVALR CRK g ) R —

60

CONTINUE

1 PRl ek b il i el i g g gl g g L2 a2 bk o i &k L b 4k b A i i ke dhdhd

c

BRING IN X(KZ)

92

“IMAX=0.
DO 90 J=1.,M

TTFIK3-LY 92,70,70

K&a=K3+1

80

91"
70
80

DO 91 K=Kt

IF(RVLX(K,J)) 90 91991

“CONTINUE . _— SR
IF(RVLX(K3,J) - ZMAX’ 90 90 80
ZMAX=RVLXEKS 9y IV -
K2=4

IV

g

CONRTINUE
IF(K3-1&ZHAX)95-1211,95
TFCZMAXY 79057905100

c““i‘"‘i“‘““"&“l“““"l‘;""!""“"l

s
c

“WHTICH VARTABLE IS REMOVED FROM THE BASIS
CALCULATE LIMITING AMT FOR EACH BASIS VARIABLE

85

L’v"’v'v'v!v'v."’vOQ”"!QO'0"*.'!"’0'0’6“"'

100
110

129

4B

DO 150 I=1,4N

CIFIPROTCIN) 11041204220

WRITE (61,13) PROTAI)

~G0 1O 830

IFICII,K2)) 130,130,140

90

g5

100

185

1900

140

150

AMTLT Y=t

GC T0 150

ANTAII=PROTEIIZCUIK2)

CONTINUE

c";!l"&i'*‘&“&#"¥&¥¥#l‘!‘¥¥¥4’4&&'%;#‘4“4*!&46

c

SELECT SMALLEST POSITIVE LIMITING AMT

160
17¢

IF(ANT(I)) 170,2109210
I=T1¢1
IF(I-N) 168,160,180

“HRITE 1651413) AMTAN)

G0 70 830

ZMIN=AMT ¢1}

K1=1I

I=I+1-

IF(I-N) 230, 2307300
TFCAMTCT ) 2209 20485240 :
IF(ZMIN-AMT(I)) 2204220,210

110

310

PP TTTETETTE ST R RIR WS 5 L S N S L o

REMOVE Y (K1)

KLY =X K2 )

DO 310 K=1,L
AL YKL 9 K VAL X EKy K2)
CCNTINUE

ﬁ-nnnnxxn-l-lxxgg;gn-n-nnlx----:-x----nxnn-n.xlg-lc
©

c

CALCULATE NEW RIGHT-HAND SIDES



96

T PROGRAN JLEGOAL 73774 OPYEL v FIN 4.3¢74353

115

DO 400 I=1,N

PRUTUIT=PROTVUIT=ZNIN*CTL,,K2Y
400 CONTINUE

c"l"#""l””"ll"..'l.""ll'#‘l"l.'l"l

pdi

T CALCUOLATE NEW SUBSTITUTTON RATES

Cl"'il"'llll'lll'l"'.."lll"l'l.lll'l"ll""

125

T THIS IS THE ORIGINAL COUE FROM LEE
Cc THESE MODIFICATIONS ARE FOR TEST PURPOSES

~

C TO TRY AND CUT OUT THE D ARRAY "ANO SAVE 25K

c"""'l"ll"'ll'l.’l'l’ll""'l"lll"'l"llll'

NO SO0 J=1y™
DC S00 I=1,N

130

DI I = LTI T =0 TRIZITY T TLVIGZRLIZUTRI 9y R N7
500 CONTINUE
L - 2

D(K1y ) =C(K1yJ)/CIKL,K2)

SL0CONTINUE
DC 520 J=1,M

135

U520 1=1+N
GCiI,J3=0(I,N
TFABSUC TSIy Y e LES DL 0000 Ct Ty Y20
520 CONTINUE

'“c‘*"'l'0"¥*#"f¥'1‘*""'##""##‘{"ﬁ#'ﬁ’V‘GF“

ITER=ITER+1

14U

145

150

155

CO PRSP EERREE P RT SRS SERI R PR RE IRV ETEVIVVTTITTETEL

c WRITE ALL TABLES OR JUST OPTIMAL TABLE

IFUITER=1)2005200,1210"
200 WRITE (61,1220}

1220 FORMAT(77y% THE INITIAL ZJ=CJI MATRIX#,77Y

D0 1230 KK=1,L

MX=LFL=KK
IF {TEST. EQ.G 0) GO TO 1229
MX=L=KK . S,
IF (MX.NE.O) GO TO 1229

o MRITE (614512310 o

1231 FCRMATI(z ARTIFICAL#)

GO0 T0"1230
1229 WRITE (651,5007) MX
1230 ~WRITE (51912) (RVLXTKKy JUY 9 I=13 M)
IF(ITAB) 40,40,600
1210 TFCITABY 40,40 y68L3 — —
1211 IF(ITAB) 790,790,6813

160

165

B8 LI WRITE-tH 1y 5003)

DO 6814 K=1,L

MM L=k I

WRITE (61'5007) MM
- S WRITE €(61412) ARVLX UKy I ¥y U=1yM)
6814 CONTINUE

TF (ZMAXY lsu,lngouu
cll“l"l'lll.lll"l¥4l¥lll'l"‘l&llll.ll'l""..'ﬂ

- ARITE-EACH TABLE

600 WRITE (61,6001) ITER
6001 FORMATCLHL 10X 1IHITERATIONS = 513977 )
WRITE (61,5001)

PP PPN S S W e
UUTTLY L =4eWN

IVtD=y{D



175

180

LR e

190
195
200

205

21¢

220

225

e 1!

235

PROGRAM JLEGOAL 73774 OPT=Y . ..

WRITE (614313) IY(I},PROT(I)

97

TLFTN #.347L353

olU

620

CONTINUE

WRITE (61.50020
00 €20 T=1 4N
WRITE (561,5006)1

CHRITE (6514512 (CUI,JY,I=1,M)

CONTINJE

C
790

GU VU RU

c.l'llll’llllllllll'lll"ll’l”"ll'lllll"'ll.lllc

MOVE TO NEXT LOWER PRIORITY LEVEL "
Li=L141
GO 1O 32

c."‘l"lll"l"’llll""”""llll."ll¥l"lll”lc

800
1015

1014

GO0 FORMATES S X 2T HE  STMPLEX -~ SOLUTIONZ; 25X 2PAGE OS2 77) ==

5001

WRITE FINAL RESULTS

WRITE (61,1015)

FORMATTLIHLY

WRITE (h1,10164)ITER

FORMATILOX s 2ITERATIONS e deseeisaoseal + 159
WRITE (61,5000}

WRITE (61,5001)

FORMATC/ 742 THE RIGHT HAND SIDE®+/7)
DC 810 I=1,N

IrtD =Yt o

WRITE (61,313) IV(I).PRDT(I)

01U

5002

5006

CCNTINGE

WRITE (61,5002)

FORMAT(/ /42 THE SUBSTITUTION RATES%477)
D0 812 I=14N

WRITE-(B145006)T

FORVAT(1Xy 3HROW,I5)

812

5003

5008

5007

5009
814

WRITE 16517121 CCtTy )y d=1 M)

CCNYINUE

~WRITE- ‘51'5063) N o e s

FCRMAT(/7/5# THE ZJ-CJ MATRIX#./I)

00814 K=1yl

MM=_L#1-~K

IR ITESTVEQTO Y G0 TO5008

MM=L=-K

IF (MMJNEJO) GO TO 5308
WRITE (61,1231)

6O 10 5009

WRITE (61,5007) MM
FORMATH1 X SHPRIORITY 4 ISY -
WRITE (61,12) (RVLX(Ksd)y J=1,M)

c.ll"ll'll’lllllllllll'lllll".lll¥ll”’llll"lllc

C

EVALUATE OBJECTIVE FUNCTION

Cl"l'l""’ll'lllllllll"‘l

=30 R28 K=t gt

820

ZVALIK) =0,

DO 820 I=1N
ZVAL(K)’ZVAL(K)*PPDY(I)'VALY(I K3
CONTINUE

NQITf (61 500%)

ne 821 K= 1’L

KK=t K

89"

821
830

LT TTEST«EWeT TIGO TO 89

KK=KK+1

WRITE (61,15) KK,yZVALK)

CCNTINUE

CALL FINISHIRHS13yPROTsLyKPCKy Y3 NoKEPT,TEST)
CCONTINUE

STOP
END




10

is

26

25

30

35

40

45

50

55

98

SUBROUTINE START — — 7377% ~OPTE1 ~— — — U EYN 403474353

C'lll'l"l.."'ll¥'l'¥ll¥'¥¥'¥'.¥¥"¥‘¥l¥¥l"¥¥ll"ll

c
c
c
c
Cg G100 250 Y
c
c
c
C
C

v

g ‘ AND NOW FOR THE‘SUBROUTINES

c””#iilll'lllil'll"'l.illl"’."'i"illl"""ii'i

c THE “START SUBROUTINE IS DESIGNED TO TAKE  INFORMATION "IN A" SPED

c IFIED FORMAT AND TRANSFORM IT INTO A SERIES OF USABLE MATRICIES
ch}“ ic.o...-...c}i‘.cc.cc...cc...ccc.cc.c..o.........cc.c.cc..n.cc.c.d%mm

SIBROUTINE START{NROWS, NVARyNPRT,RHS,RHS1,KPCKsKEPT,TEST)
REAL KEPT ' . oy A m RN ALY
INTEGER POS
INTEGER NEG
INTEGER DATEA
T NTEGER OB - ST
INTEGER PROB
CINTEGER L
INTEGER RGHT
INTEGER B
INTEGER E

TRTEGER G
c"l'."¥.!..'l"".""'

C THESE ADDED INTEGER

c VALUES ARE FOR 0S3

C¥l¥¥¥¥l"l'¥‘¥‘¥’¥"l¥*l“

INTEGER ANAME

e PN PEGER T EQURL G S - S 55

L r TR P T P Py T R S A R L R R L R I E R R LS R E s
NOTEe o« THE "FOLLOWING ‘ARRAYS SHOULD "BE RESET TO THE
INDICATED VALUES TO MAKE THIS PROGRAM COMPATABLE
WITH THE ORIGINAL LIMITATIONS OF LEES GOALP1L
N¥=250 AND NR=100

VALX (10,250)
CRYLX (185258)
VALY (100,10)

SESS SR SRS AR NS SRR S SRS SRS S FFF SIS L S E SR S X SV FATFF ¥R E¥ S

COMMOM RVLX{(10,250)
CCMMON VAL X{185250)
COMMON VALY(100,10)
DININSTON EQUALS1100Y
DIMENSION RHS (100)
DIMENSTON KEPT(100Y
DIMENSION RHS1(100)
DATA - {POS=4LHPOS )
DATA (NEG=4LHMEG }
DATA (DATEA=LHDATA)
DATA (0BJ=4HOBY )
NATA (B=1HB)
“DATA tE=1HEY
DATA {G=1HG)
DATA L =tHL)
DATA (RGHT=4LHRGHT)

e N A= DEN.
NY=oU

NR=130




60

‘65

70

75

80

B5

90

95

100

105

118

SUBROUTINE START  73/74  0OPT=%

C!!!‘!.i.l'!!'i’!i""!!"!"l""i""'.'i‘.','!'

99

FTN 4,3+74353

g
c READ THE PROBLEM CARD
e L T T L L e e P T R )
1 FORMAT(AGL, 313)
TEST=0.0

READ (60.1) ANAME, NROHS:NVAR;NPRT

LISPE=NPRTH#1

IFINVAR.LE.D) GO TO 1020
TIF(NPRTOLELD) GO TO 1020
IF(NROWS.LE.O0) GO TO 1020
IFUANAME.NE,PROBY GO TO 901

C'."!l‘.l.'..‘."’l."C'l.ll"!'l’i.'."‘..!.'.”

ERS FOR EACH ROW

Cc-

c READ THE SIGN CARD.

c IT WILL CONTAIN ONE OF THE FOLLOWINGT

c FOR EQUALS E

c FOR LESS THAN OR EQUAL TO L

C FOR GREATHER THAN OP EQUAL TO G

c TFORTBOTH DEVIATIONS B8

CrE TS F TR SRS SN SR ES F SRS F R SRR S S S UX KR S SRR U S S FT N1 ¥

READ (60,11 (EQUALS(IY, I=1,NROKWS)
11 FORMATU(80A1)

C!"#""F"l"i!l‘*"#'ﬂﬂ!'#'i'.!“!G"*"'l"'#"

c
€ L OUNT THE ~NUMBER “OF “POS TTTVE SLACK VARTAR
Cr P E NP RN ER RS SRR S PN SRR SR SR P E TR S E AR S EUF FF R FE R SRRy
NART=( ) )
NFLOS=0

D0 12 T=1yNROWS
IFIEQUALS(I)«EQ.BINFLOS=NFLDS+1

T

12 TRFLEQUALSTIVCEQVGY NFLDS=NFLOSHL™

Cl"“"......l!il!"#""'."."U’.!"'.“"”¥!¥

c

C TEST FOR SIZE

c’l""!#'!!"."!.‘".’..l."l'4""‘.‘!'!."'{4'

NSIZE=NFLDOS+NROWS*NVAR

T ENRON S s BTN RN GO T Qg o L

IFINSTZESGTeNV) GO TO 911
R L LT R Ty N Y e
C

c . e
C CLEAR ALL MATRICIES

IF (NPRT,GT.NROWS) GG TC 11C5
“NUM = NROWS
GC TO 1106
1105 NUM = NPRT
1106 KOUD = NPRT + 1
. SO ES9 KXy NS T ZE
1059 VALX{KDUD,KX)¥=0.0
00 16 J=1yNSIZE
DO 16 T = 1, NUM
KEPT(T) =0 :
IF(L.GY.KBUDY GO TO 17
R § o, e eSS e s

RVLX{K,J)=0.0

;C’.§“".#"""*""“""'r'*’.',‘.¢""¥',"‘*‘WWHw_wwwwwd~M;



100

SUBROUTINE START — 73776 OPTsi U EIN 4.3+76353
115 VALX{Ky J1=0.0
T 7 TP ER Y CUTar=1,0

VALY(IsK)=0.0

T ITRTONES Y STy =000
16 CONTINUE

120 ~ KPCr=g
K=KDUD
c
c T ADJUST THE SLACK VARTABLES AND OBJECTIVE FUNCTION TO MEET THE
125 c REQUIREMENTS OF THE SIGN

C*¥*¥¥¥e¥xs SEEERES CS R E R R FERFSECSSE SR RS S S ES FREEEFERF

00 13 I=1,NROWS

TFIEQUALSTIV.EQZEY GO TO 1%
IFLEQUALSII).EQ.G) GO TO 15
130 CIFEQUALSEDIGEQ.LY GO TO 13
IF(EQUALS(I).EQ B)GO TO 18
: GO T 918
1646 J=1
VAUX Ky IY=1e0
135 NART=NART#+1
COoTEST=e.0
GO TO 13
15 KPCK=KPCK¥1
J=NROWS + KPCK
2 e T T
KEPT(I) = J
J=1 —
VALX{Ky J)=1.
NART=NART#L
145 TEST=1.0
18 KPCK=KPCK+1
J=KPOCKENROWS
Ctl,y¥=-1.10
150 : KEPT(IY)=J
13 CCNTINUE
c
[ READ THE OBJECTIVE FUNCTION -
155 . Cll""""""' IR YRS LSRR IR RS IR ER R Y R L 2
READ- (6021 ANAME -
I=0
““Wfpfwe‘iﬁs‘fﬂﬁd””“6’0’”’?6““928”"” A O O A N S 5 AR NN RS TN A A 1 S L S 8
20 READ (609210 ANAME, Ty M, TEMP
160 : e e TR OANAMECEQ- DATEAY-GO-TO 30
IFtM,LE.B) GO TO 1022
K=LISP=M
21 FORPAT(AL,2I5,F16,0)
’ 1IFlJeLE« Uy GU TUIUCL
165 I F{KeGT o NPRT) GO TO 1024
R IFCANAME cEQ-NEGY 60 -TO 26
IF(ANAME, EQ-POS) GO T0 25
60027
26 J=I
B (4 S IFtEQUAL SET e EQ e G e ORVEQUAL ST EQVEY 6O T010 55
VALXIKy J)=TEMP




101

 SUBROUTINE STARY 73774 0PT=1 o FIN %.3+74L353

Go 1™ 20

25 J=REPTTIY
IF (KEPT({I).EQ.0) GO TO 1026
@5 R AKs JYETENP
GO Y0 28
27  ITF(TEMP)Y 926,205,926
ct""!t.t.!‘ll'l“lll.t!‘!“..l'll‘.‘.‘ LI I X R SR

C
130 c READ THE DATA MATRIX 1IN
e s vt & 4 2 4 S Y S R L R g L et At S i i
30 READ (609210 ANAMEZI,J+TEMP
ST IR CANAMECEQGRGHTY GO TO 40 T
IF(I.LE.0) GO TO 1090

185 TPt EQL 0y GO TO0—1090
J=KPCKENROWS+ J
Ty ST B WP
GO T0 30
- CQ‘I"’¥'1¢*"‘¥‘¥ SEREP SR NESEEC I RGP AT PP PSR EENERE
190 c v
o C FERADTHE RIGHT HANDSIDE *

¢ READ (Sﬂthi(RHS(I) I i, NRONS)
44 FORMAT(BFL0. 0
00 48 I=14NROWS

195 ) T TE RS TIY SL T 008 G0 TO 941
48 CONTINUE
i L L R e s A it h ke L L g s
c .
e HRTTE THE ABOVE RESULTS o s

280 c“.“..t‘."‘ (A2 I SIS S 2 R SIS AL RS 2 R Ll d

TURRITE (6145015) o
5015 FORMAT(55X,£#THE RIGHT HAND SIDE-INPUT#.SSX.!PAGE 1%

TC 41T T=LyNROWS
IF(RHS(I’)Qbi.QZ.k3
205 g2 ARSI T et
43 RHS1{I) =RHSI(I)
T HRITE (B L 11 L Ty RESH(TY
1111 FORMATUL10X,I3,2X4F1545 )

1 CONTINUE
218 WRITE (61,620)
) S g20 FCRMAT(LHL)
WRITE (561,5016)
5016 FORMAT(SSX32THE SUBSTITUTION RATES=INPUTZy18Xy2PAGE 02%)
NO 1112 I=1,NROWS

s 4 RRITE 1615251971

2519 FORMAT(LX, ¥ROWZ,1I5)
LI WRITE (61511 I (C (T IV U=1yNSTZE)
1113 FORMATC(10F12.3)
o WRITE (614620)
20 NRITE (51¢5017)
pC 1114 K'ivNPRT
M=L ISPk -
WRITE (61,2150) M
2% 2150 FORMAT (2 PRIORITYZ,IS) o
1114 WRITE (61, 1113)(VALX(K.J).J-ioNSIZE)

WRITE ‘DIQDCU'

WRITE (61,5018)




102

SUBROUTINE STARY 73774 0PT=1 TTTTTTRIN L 3474353

5018 FORMAT{(55X,2SUMMARY OF INPUT INFORMATION 7#,19X,2PAGE2+2 042)

230 NVAR=NSTZE
WRITE (51,2017) NRONS.NVAR,NPRT.NART

2017 FORMATULOX yZNUMBER OF ROWS e eveave o 23 I5 37y 10X sENUNBER OF "VARIABLES

Faveo? 915'/'10X.#NUH8ER OF PRIORITIES..o$'I5'/'10X'¢AUDED PRIOR
‘ ’ N T ITIES danveveE g ISy
235 IF(NART,GT, 0} NPRT=NPRT+1

RETURN
910 HWRITE (61,914)
14 OFORNATCZPROSRAM CONTAINS AN ERROREITHER "IN THE NUMBER OF ROWS PUN
1CHEC OR IN THE SIGN CARD.THE VALUE IS SOHETHING OTHER THAN (E[otGl
240 2y CRILTEY
GG T0 999

1090 WRITE (6131091

1091 FORMAT(z IMPROPER DATA COLUMN OR ROW OEFINITIONZ)
60 To 999 M e e e o o

245 920 WRITE (61,921)
921 FCRMATU{20BJECTIVE CARD WITH VALUEZ,F1643,2WAS FCUND2,"

1#BUT DEVIATION WAS OMITTED. EXAMINE INPUT DATA)Z2)
G0~T0"999

1020 WRITE (61, 1021)

250 1021 FORMAT(Z " NUMBER OF "ROWS,; VARIABLES, CR PRIORITIES CANNOT B8E EQUA
1L TO ZERO UNDER ANY CIRCUHSTANCES*)
G0 10999 T

1022 WRITF (61,1023)
e ©U1023 FORMATEZ " COLUMN VALUE OR PRIORITY VALUE IS EQUAL TC OR LESS THAN
55 1ZERO %)
60 10999
911 WRITE (61,912)
912 FORMAT(# NUMBER OF VARIABLES EXCEEDS CURRENT NV  VALUE.#
1#MODIFY SOURCE CODE DECK FOR GOAL PROGRAMMING?)

B e e 10999

1026 WRITE (51,1027) EQUALS(I),ANAME I M,TEMP
1027 FORMAT (£ ATTEMPT TS -MADE TO MINIMIZE NON EXISTANT POSITIVE  DEVIA
1TICNZy/+# THE SIGN IS #.Ai.l'f THE OBJECTIVE FUNCTICN DATA CARD IS
2 v/ v IXe AL 2153yF2046)
265 GO TO 999
e D P RTTE 615 10 26y S -
1025 FCRMAT{z OBJECTIVE FUNCTION PRIORITY EXGEEDS STATED NUMBER OF PRI
1ORITIES?)
GO T0 999
270 901 WRITE (614902) :
302 FORMAT(% PROBLEH GARD MISSING OR MISPUNCHED?#)
e p .,w, ﬂ» TO %gq.
926 WRITE (61,927)
: 927 FORMAT (2 OBJECTIVE FUNCTION AND DEVIATION ARE DEFINED BUT2
275 1# SIGN OF OEVIATION IS OMITTED?’
G0 T0 999
941 WRITE (61,942) RHS(I)

G2 - FORMAT €2 NEGATIVE VALY ES ARE-NOT AL CHED - ON THE RIGHT HANO-SIBE

1 CORRECT PROBLEM BY MULTIPLYING ENTIRE CONSTRAIM THROUGH BY MINU
280 ) 2SONEe# 9 /92 THE RIGHT HAND VALUE IS#yEXyF20+6) :
GC TO 999 /
1855 - WRITE- {61+ 105 €)Y EQUALSTIVy ANAME yTo My TEMP :
1056 FCRMAT(# ATTEMPT IS MADE TO MINIMIZE A NON EXISTANT NEGATIVE DEVIA
e R L ONE § - THE - SEON- TS 2 A Ty Ay 2 FHE-OBIECFIVE -FUNCTION-BATA - CARD T~
285 2S29/91X s A4y 2T15,F16.5)

SUBROUTINE START 73774 oprsy - e URIN 403474353

999 CCNTINUE
RETURN ™
END




103

SUBROUTINE FINISH =~ 73774 ~OPT=1 7 oo R TN o 3476353

10

15

20

25

30

35

3]

45

1)

55

Cossn

Ceevn

XYY IS SR ST SRS S RSN RIS R AL RS R Ll b ad

TCTTTTTARNU NOW FORTTHE FFINTISHE SUBROUTINEE

2T 23T R S I R R ST S S S S R L S S R 2 RS 22X 2 Rl

CHPP RSB EIN SR EF SRS AR FEREB S E TR ET R SRS SEFCESPEEERE

c NCTE.«+SEE COMMENT AT BEGINNING OF THE PROGRAM.
c " YHE ARRAY LTSTED BELOW SHOULD BE AS INOICATED.
c VALY (100,10)

T s 2 S A A s Al idd b s d ik bddddd it issdbidddddddbdhdblddidd

“TYIMENSTION KEPTTI00Y

SUBROUT INE FINISHIRHS1.RHS,NPRT, KPCK.Y'NROHS,KEPT,TEST)
REAU NEGSLK™

CCMMON VALY(100,10)
OINENSTION ZVAL (10}
DIMENSION RHS (160}

DIMENSION Y(100),RHS1(100)

c055l~0""§.l"“ll-l-l"*l'l'l#‘l'#’ﬂ.53*""""“

c
C
c
c
c
c
c
c
c

21

1

IR CISMY 991079

9
11

19

oy
13

14

19

43
Crees
-t

Ceens
44

45

RHS1 IS THE RESERVED VECTOR OF RHS VALUES FROM THE BEGINNING.

THE ENDING RHS VALUES ARE SUBTRACTED FROM THE BEGINNING ONES
AND THE RESULT IS PLACED INTO THE APPROPRIATE SLACK COLUMN.

“"THE "REMATNDER “OF “THE VALUES ARE PRINTED ON"PAGETWU OF TTHE RE=""

SULTS.

SUACK "ANALYSIS ™

[y Y Yy Y R R e R S RS L I L 2 s il d

TRRITE (B 1y 21Y .

FCQHAT(iHiinGXy#PAGE 0627/ 450X +#SLACK ANALYSIS?)

FORMAT (27777 . [ :

WRITE (6141)

WRITE (61,8

FORMATI(10X, #ROH#'BX.#AVAILABLE#.12Xq#POS'SLK#‘12X$NEG°SLK$)
WRITE ‘51‘1’W,
DO 19 I=1,NROWS
NEGSLK=0.0
POSSLK=0.0

00 11 J=1,NROHS
M=Y {J)

IF(M=KEPTI(T)) 11,12,11
CCNTINUE - :

GC T0 13

NEGSLK=RHS1J)

GO TN 13

POSSLK=RHS LIy - e e o i
WRIYE (61;1%)I,RHSi(I),POSSLK,NEGSLK

FCRMATUL1GX I3y 3F20%%)

CONTINUE

FORMAT(L10X,I1343X,F15.5)

(YR Iy Y YR Ry R S RS R S A S TSl RS R

AP AREBEE MU - 5 et o

Iy Yy Y Y R R N R RN R S I e R L h i

WRITE (61.44)

FORMAT(1H1,120X+#PAGE ﬂ?#l/,SOX,#VARIABLE ANALYSIS#)
WRITE (61445)

FORMAY(////.7X,#VAPIABLE AMOUNTZ2,77)

o0 gt =y NROWS

NGHCK=Y [ I} =KPCK~NRONWS



SUBROUTINE FYINISH 73774 0OPT=1

104

TFTN TG 3E74353

50 FORHAT(II;SSX,#ANALYSIS OF THE OBJECTIVE#,Z3X,#PAGE 8#,////,50X #P

53
77

FORMATULIHE y 52X 5123y 5XyF205y e

CONTINUE

IFINCHCK) k1,061,062
G2 WRITE (BI 43TYNCHCK,, RASTIY
60 41 CONTINUE
T RHRITE 6 1572)
72 FORMAT{LH1?
: WRITE (61,500
55 IRIORITYE T OXy ZUNDER=ACHIEVEMENTZ 7
DO 52 K=1,NPRTY
CINALEKY =040
D0 51 I=1,NROUWS
S ZVACTRKY SZVAL TRY #VALY(TIL,KY*RHAS(YY
70 LISP=NPRT#1
R KKSLTSP=X
IF(TEST EQ 0.0) GO TO 52
IF(K( GT.0) GO TO 92
75 CKK=NPRT=K R
IFIKK«GT0) GO TO 52
T A R ITE T E Ty TS - ZYAL CKY
78 FORHAY(I.%SX,tARTIFICIAL:,SX F20. 5)
SR €1¢ e |1 I o A
80 52 WRITE (651,53) KK,ZVALIK)

RETURN
END




