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Correction for “Backbones of evolutionary history test biodiversity
theory for microbes,” by James P. O’Dwyer, Steven W. Kembel,
and Thomas J. Sharpton, which appeared in issue 27, July 7, 2015,
of Proc Natl Acad Sci USA (112:8356-8361; first published June 23,
2015; 10.1073/pnas.1419341112).

The authors note that, due to a printer’s error, Eq. 1 on page
8357 appeared incorrectly. The corrected equation appears below.
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Identifying the ecological and evolutionary mechanisms that de-
termine biological diversity is a central question in ecology. In
microbial ecology, phylogenetic diversity is an increasingly common
and relevant means of quantifying community diversity, particularly
given the challenges in defining unambiguous species units from
environmental sequence data. We explore patterns of phylogenetic
diversity across multiple bacterial communities drawn from different
habitats and compare these data to evolutionary trees generated
using theoretical models of biodiversity. We have two central
findings. First, although on finer scales the empirical trees are highly
idiosyncratic, on coarse scales the backbone of these trees is simple
and robust, consistent across habitats, and displays bursts of di-
versification dotted throughout. Second, we find that these data
demonstrate a clear departure from the predictions of standard
neutral theories of biodiversity and that an alternative family of
generalized models provides a qualitatively better description.
Together, these results lay the groundwork for a theoretical
framework to connect ecological mechanisms to observed phylo-
genetic patterns in microbial communities.

microbial biodiversity | macroecology | phylogeny | coalescent theory

M icroorganisms play fundamental roles in the functioning of
a diverse range of ecosystems, including marine and ter-
restrial environments as well as the human body (1), and in re-
cent years we have had an unprecedented opportunity to measure
microbial biodiversity across this range of habitats. The exploration of
patterns of biodiversity has a long history in ecology, with these
patterns being used to make practical predictions, such as species
extinction following habitat loss (2), and also as a guide to developing
ecological theory and test mechanistic hypotheses (3). However,
despite the documented importance of microbial communities to
human and environmental health, we currently lack the depth of
ecological theory suited for microbial communities that we have for
other ecological systems (4). Closing the loop between patterns and
theories of microbial biodiversity is therefore a priority.

There have been two obstacles to developing a general frame-
work linking microbial theory and data. First, ecologically mean-
ingful species units vary for microbes and depend critically on
history and environment (5). As a result, microbial biodiversity is
increasingly measured using the breadth of evolutionary history
spanned by a community of organisms (6). Phylogenetic measures
of diversity are less well explored and less firmly connected with
ecological theory than are species-based measures of diversity, and
testing theories of microbial biodiversity has often still relied on
the species concept (4, 7, 8), with disentangling of different
mechanisms contingent on the precise species definition (5).
Where phylogenetic theory has been developed (9), it has so far
been difficult to draw unambiguous conclusions (10). A second
problem has been that we draw heavily from our experience in
the ecology of macroscopic organisms. We import theoretical
frameworks that have been useful for macroscopic organisms,
but microbial communities have different fundamental tem-
poral and spatial scales and may involve new ecological and
evolutionary mechanisms (11).
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These difficulties point to a need for new microbial theory to be
tested using phylogenetic measures of biodiversity. Here, we ad-
dress this need by documenting two empirical patterns of micro-
bial biodiversity across multiple communities and habitat types
and using these as a first test for biodiversity models. The first
pattern has practical applications for “upscaling” phylogenetic
diversity beyond those scales we can currently sample (12), and in
both cases we identify unexpected power law scaling across our
communities. These echo a long history of hints of power law
biodiversity scaling observed by previous studies (13, 14).

We subsequently test whether the patterns we observe can
be explained by the neutral theory of biodiversity (15). Neutral
theory has provided the basic null models in fields stretching
from population genetics (16) and ecology (17) to cultural evo-
lution and the social sciences (18). In common is the key as-
sumption that selective differences are irrelevant for predicting
large-scale patterns. Applying this assumption, neutral biodiversity
theory has made successful predictions for species-level patterns
such as species—area relationships (19) and species abundance
distributions (20) and has been applied to patterns of species di-
versity in microbial communities (7). Here, we find that neutral
models fail to explain observed patterns in microbial phylogenetic
diversity, whereas another family of models, A-coalescents (21,
22), provides a qualitatively better description of both the scaling
and topology of empirical trees. Our results suggest that standard
neutral models may not provide the most useful null models for
microbial communities.

Significance

Linking mechanism and data to explain patterns of biodiversity
is a central goal in ecology. Microbial communities provide new
challenges in addressing this goal, among them the potential
for novel ecological mechanisms at work and also the difficulty
in applying an unambiguous species concept. Patterns of evo-
lutionary history, or phylogenetic diversity, provide an alter-
native framework, circumventing the need to define microbial
species. We document multiple patterns of phylogenetic di-
versity, finding striking and unexpected similarities in these
patterns across habitats, and we find that these patterns are
inconsistent with neutral biodiversity theory, which has been
successful in describing patterns of species diversity for mac-
roscopic organisms. Our results suggest that a new, alternative
family of models provides a better description for microbes.
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Documenting Patterns of Phylogenetic Diversity

The phylogenetic diversity (PD) of a group of organisms is defined
as the total branch length spanning the evolutionary tree relating
these organisms. PD provides a natural alternative to taxonomic
diversity (6), given that it does not rely on the ability to identify
distinct microbial species and may also be correlated with func-
tional or trait diversity. We begin by documenting two kinds of
phylogenetic pattern, and we later go on to test models of bio-
diversity against these patterns. We first quantify the increase in
phylogenetic diversity with number of individual sequences sam-
pled from microbial communities. Across multiple habitats, we
show that PD increases approximately as a power law function of
sample size. Second, we explore heterogeneity in diversification
rates across the same trees. To do this, we introduce a phe-
nomenological method based on “coarse graining”—this term
indicates that we will view phylogenetic trees at multiple resolu-
tions, and this coarse-graining procedure will show that our em-
pirical trees contain bursts of diversification throughout.

Empirical Trees Have Consistent Scaling Behavior Across Habitats.
The relationship between the number of individuals sampled
from a community and their expected phylogenetic diversity
is important to understanding how much diversity may be lost
from a community as organisms are removed (2, 23) and also in
predicting the diversity at scales much larger than those we can
sample (12). We expect phylogenetic diversity to increase with
the number of individuals or sequences sampled from a commu-
nity, but the rate at which it does so and whether this rate is similar
across communities are unknowns. In Fig. 1 we analyze microbial
communities sampled from the human gut and skin microbiomes
(24), phyllosphere communities sampled on Barro Colorado Island
(25), and marine environments at various latitudes drawn from the
International Census of Marine Microbes (26). We choose these
habitats to provide a broad range of community similarities, so that
we can compare communities from two human-associated habitats,
nonhuman host-associated communities and a set of non-host-
associated communities. These extend earlier results in ref. 27, and
further details of the samples we used can be found in SI Appendix,
sections 4 and B, along with expanded plots with detailed legends.
Our central conclusion is that phylogenetic diversity increases ap-
proximately as a power law with sample size across all habitats.
On the other hand, it is clear that for small samples sizes PD
increases more steeply with sample size, making it difficult to
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Fig. 1. Empirical scaling of phylogenetic diversity (PD) with sample size. PD
increases with sample size approximately as a power law, for samples taken
from the human gut and skin microbiomes, from phyllosphere communities in
tropical forests and from marine environments at various latitudes and depths.
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Fig. 2. The edge-length abundance distribution (EAD) is defined by focusing
on all clades with a given, fixed number of descendant tips, k. For example, all
tips belong to a clade with k=1, and a subset of tips may also belong to clades
with k=2, 3, etc. For this simulated tree, there are clades with 1, 2, 3, and
5 descendant tips. For each fixed value of k, S(k) is then the sum of the edge
lengths between the node defining each clade and its immediate ancestor (27).
We show these lengths in various colors for different clade sizes, k, with the
sum for each clade size appearing in the second row of the table in the same
color—one could therefore also think of this as an edge-length clade-size dis-
tribution. Finally, we note that the EAD is equivalent to the site frequency
spectrum in the well-known infinite-sites population genetics model.

interpret a power law fit. To better understand this scaling be-
havior, we now show how PD sampled from a community de-
pends on an analog of the species abundance distribution termed
the edge-length abundance distribution (EAD) (27), also known
as a site frequency spectrum in population genetics models. We
denote this distribution by a function S(k), where k represents
the number of tips downstream of a given tree node. In effect, k
is the “abundance” of a clade defined by this node, described in
Fig. 2. The expected phylogenetic diversity under random, bi-
nomial sampling is then given by a sum over clade sizes, k,

k
PD(n)= 3 S(k) (1 - (2%”) ) [
k

where total community size is NV, and we have modeled a constant
sampling effort, n/N. This means that every tip has an equal
probability of being sampled, and the expected sample size is 7.
An example of an alternative sampling scheme would be hyper-
geometric sampling, where exactly n tips are chosen, which pro-
duces distributions similar to binomial sampling, or clustered,
negative binomial sampling (27). We note that this sampling
framework is formally identical to sampling species diversity from
a community with well-defined species units (28). In this case the
species abundance distribution plays the same role as the EAD in
Eq. 1, and the left-hand side becomes the expected species di-
versity of a sample. This underlines the phylogenetic analogy be-
tween EAD and the traditional species abundance distribution.
Finally, we note that a power law behavior for the EAD,
S(k) ~k2, then leads to an initial linear, sampling phase for
sample PD for small samples (where “small” is defined in ST Ap-
pendix, section C) followed by a power law phase for larger sample
sizes: PD(n) ~n*"!. In Fig. 3, we plot the EAD for each of the
trees in Fig. 1 and find the EAD is approximately a power law. We
fit the power law exponent using maximum likelihood, splitting
each branch length into discrete segments, with grain size chosen to
match the smallest branch length between any two nodes in the
tree. Using these count data, we applied the maximum-likelihood
method described in ref. 29, with results by habitat summarized in
SI Appendix, Fig. S3. The exponent of the power law fit lies be-
tween a=1.3 and a=1.7, and in subsequent sections we interpret
this range of values by comparison with theoretical models. Our
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Fig. 3. Empirical edge-length abundance distributions follow an approx-

imately power law distribution. The four panels show the EAD from a set
of sample trees, inferred using FastTree, taken from each of four habitats:
gut, skin, phyllosphere, and marine. Within each habitat multiple EADs are
plotted, corresponding to different sample communities. For clarity, we have
plotted the cumulative EAD, which is defined as the total branch length with
greater than or equal to a given number of tips downstream. This cumula-
tive plot can be related to the familiar idea of a rank-abundance distribu-
tion, but with x and y axes reversed.

central empirical observation is thus that these EADs display a
similar functional form across all habitats, although we also note
variation between these communities, suggesting that with more or
larger samples this scaling may become informative in dis-
tinguishing between communities. In SI Appendix, sections A
and D, we also show that our results are robust to methodology,
comparing trees inferred using a rapid tree inference algorithm
(FastTree) to the range of exponents arising from a maximum-
likelihood tree inference algorithm (RAXML), in addition to using
various systematic variations in alignment method. We find the
same or very similar scaling in all cases, providing evidence that
this scaling does not arise due to the bias of one particular align-
ment or tree-building algorithm.

Empirical Trees Have a Simple Skeleton with Extremely Heterogeneous
Branching. We have identified a consistent scaling pattern for the
EAD across multiple habitats. We now show that whereas empir-
ical trees may be highly idiosyncratic in terms of their branching at
fine phylogenetic resolutions, on coarser scales these trees have a
surprisingly simple backbone structure. Our tree-inference methods
are designed to resolve the nodes in our trees as finely as possible,
so that two lineages always coalesce at each node. However, on
coarser timescales fast bursts of branching look much like mul-
tiple lineages coalescing. We now coarse grain empirical trees by
removing internal edges with length less than a fixed cutoff scale
and progressively increase this cutoff, in effect making the order
of branching in fast bursts indistinguishable. In Fig. 4 we show a
conceptual picture of the procedure, showing that rapid bursts of
branching quickly coarse grain to polytomies.

In Fig. 5 we show the effect of coarse graining one of our
phyllosphere trees. We note three important features. First, there
is an immediate drop in the number of internal nodes as the cutoff
increases beyond the smallest branch-length segment in the tree.

8358 | www.pnas.org/cgi/doi/10.1073/pnas.1419341112

These smaller branch lengths are then separated from the struc-
ture of the tree on larger scales—a “skeleton” underlying the orig-
inal tree. Moreover, as we remove shorter branch lengths by coarse
graining we do not greatly impact branch-length weighted pat-
terns like the EAD, and we also avoid trying to split what are
presumably the most intractable polytomies to resolve, given the
limits of our sequence data (30).

Previous studies have inferred evolutionary process using the
distribution of internal branch lengths in a phylogeny (31). Where we
now go beyond this is in identifying the structure of the coarse-
grained trees defined at multiple scales. For example, following this
initial collapse of nodes, the resulting distribution of polytomy sizes
in the skeleton tree follows approximately a power law, a result
that we would not expect a priori. Finally, these branching events
are distributed deep into the tree, and not just near the tips.
Taken together, this demonstrates that there is a structure of bursts
of branching events in this tree, with sizes distributed self-similarly
and locations distributed evenly throughout. In ST Appendix, section E
we show the results of coarse graining all of our trees and we find
that this resulting long-tailed distribution of polytomy sizes is typical.

Modeling Patterns of Phylogenetic Diversity

We have identified consistent scaling behaviors for phylogenetic
diversity across multiple microbial communities. Just as traditional
measures of diversity like the species abundance distribution have
provided useful ways to analyze theories of species biodiversity
(20, 32), these aggregated phylogenetic patterns provide a first test
for any theory of microbial phylogenetic diversity to explain. We
now explore the hypothesis that these patterns could be generated
by neutral biodiversity theory. We choose to test neutral theory,
both because it has provided one of the most widely applied null
models in the ecology of macroscopic organisms and therefore
provides the potential for comparison between macrobial and mi-
crobial communities and because of the relative simplicity of the
patterns we have uncovered. If there is a simple process under-
lying the simple large-scale structures we have identified, it is
reasonable to think that this might be driven by the most basic
model of biodiversity.

Neutral Models Diverge from Observed Scaling of Phylogenetic
Diversity. Neutral models have been extensively used in commu-
nity ecology for macroscopic organisms (15, 17, 20), as well as in
the analysis of microbial communities (7, 8, 33). They have also
been found in other contexts to be inconsistent with patterns
on long timescales, like species ages (34, 35), and tested against
a handful of summary statistics for phylogenetic trees of macro-
scopic organisms (36). We now test neutral predictions using the
phylogenetic structure of microbial communities.

The neutral assumption is that there is no selective advantage
of any individual organism over any other, and this means that
we can directly translate neutral biodiversity theory into predic-
tions for phylogenetic tree structure without using species. Neutral
models typically consider total community size to be constant in
time (15), and individuals divide, die, and compete symmetrically.
The phylogeny of a selectively neutral group of organisms sampled
from a community of fixed, large total size is then generated by the
Kingman coalescent (37). We also consider a second variant, more
commonly used in models of macroevolution, where a community
is undergoing unregulated, exponential expansion—the Yule
model (38). Here, we adapt the Yule model as a neutral model of
an exponentially growing local community of microbes. Although
this kind of exponential growth cannot continue indefinitely, the
Yule model provides a second theoretical baseline alongside the
case of constant community size.

We first focus on the scaling of the edge-length abundance
distribution. The Kingman coalescent generates an approximately
logarithmic increase of phylogenetic diversity with the number of
tips, n, sampled from a tree with N total tips, whereas the Yule

O'Dwyer et al.
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Fig. 4. Coarse-graining phylogenies. We coarse grain a phylogenetic tree by
eliminating internal branches shorter than a given cutoff. This example takes
a simulated tree and applies three different cutoffs: zero, 0.1, and 0.3.

model generates a linear increase of PD with number of tips.
These two models then have corresponding behavior for the edge-
length abundance distribution (39):

1

Sking (k) ~ %

1 [2]
Sye )~ =1y

In conclusion, neither a neutral community of constant size nor
an exponentially growing community is consistent with the power
law scaling of PD with sample size or the corresponding EAD we
see for empirical microbial communities.

Neutral Models Diverge from Observed Heterogeneity in Diversification
Rates. The Kingman and Yule trees fall either side of the observed
EAD scaling we find for empirical communities. We now compare
observed phylogenetic patterns to two alternative models of phy-
logenetic structure. The first is a neutral model with this more
slowly changing community size, so that community size increases
over time as N(t) ~#* (defined in more detail in SI Appendix,
section F). The slower increase in community size is more plau-
sible than an exponential expansion.

The second model is the A -coalescent, developed in mathe-
matical biology (21, 22). This generalizes the Kingman coalescent
(37), with the novel feature that more than two lineages can
coalesce at each tree node. It has the defining rules that (i) the
distribution of the size of these multiple coalescent events is dis-
tributed as a power law and (ii) these events occur throughout
the tree (S Appendix, section F). These trees have the probability
of j lineages coalescing at a node proportional to A(j) ~j~+1),

Number of Nodes vs Cutoff
Phyllosphere

Nodes vs Burst size
Phyllosphere

for a free parameter y. We also note that our definition of the
EAD is equivalent to the site frequency spectrum in the infinite
sites model, and so we can leverage mathematical proofs re-
lating the A -coalescent tree site frequency spectra to these bursts
of branching (22). By choosing a power law increase in community
size over time for the neutral model and choosing an appropriate
parameter y for the A -coalescent, in both cases we can match the
edge-length abundance distribution for an empirical tree:

Sneut (k) ~ k_l_ﬁ

Sa (k) ~kr3, 3]
In summary, both of these models are capable of producing
the fitted scaling of a given empirical EAD by fine-tuning a
single parameter.

We now explore whether the distribution of bursts of branching
can distinguish between these two models. We choose model trees
to have the same number of tips as the empirical tree, and we
coarse grain them until they have the same number of internal
nodes; this coarse graining introduces polytomies to the neutral tree
and adds additional polytomies to the A -coalescent. In Fig. 6, we
compare the predictions of these two models to empirical tree
structure. By construction, both models generate a similar EAD to
that of the empirical tree. However, the neutral model does not have
the same distribution of large bursts of branching found in the em-
pirical tree, nor do bursts of branching extend deeply into the tree—
they tend to be near the tips. These discrepancies are reflected across
our empirical phylogenies, where we see that in all cases there are
multiple peaks in the distribution of branch lengths (SI Appendix,
Figs. S4-S7) and qualitatively fat-tailed distributions of burst sizes in
between these peaks. These features do not hold for trees gen-
erated by a neutral model (SI Appendix, Fig. S9), suggesting that
neutrality, even when combined with the hypothesis of changing
community size through time, is inconsistent with the phyloge-
netic structure of empirical communities.

Discussion

Evolutionary history provides a natural description for microbial
diversity. The relationship between the number of individuals sam-
pled from a community and the expected phylogenetic diversity of
this sample plays a crucial and practical role both in understanding
how much diversity may be lost from a community as the number of
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Fig. 5. Coarse graining an empirical phyllosphere phylogeny, sampled from leaves of angiosperm species Inga acuminata on Barro Colorado Island (25). Left
shows the distribution of branch-length sizes in this tree, in the gray bars—each segment of branch length corresponds to the distance between two nodes in
the tree. There are peaks in this distribution, indicating evidence of some processes acting on larger scales and, in the case of the peak of small branch lengths,
potentially indicating a difficulty in resolving polytomies initially. We find that these peaks are typical across habitats (S/ Appendix, section E), and this is also
reflected in the solid green line (Left), which shows the total number of nodes as we change coarse-graining scale: Every time branch lengths shorter than a
chosen scale are removed, bursts of branching collapse into “polytomies,” nodes with more than two branches coalescing into them, thus reducing the total
number of nodes in the tree. This first plot (Left) then also tells us that the choice of coarse-graining scale is not arbitrary—there are regions between the
peaks where the tree structure is unchanging, and this feature remains, independent of the number of bins we choose (S/ Appendix, section E). We next
choose a specific cutoff scale, after coarse graining over the first peak of short branch lengths. For this coarse-grained tree, Center shows the cumulative
distribution of the number of internal nodes as a function of polytomy size. We find that this distribution is distributed approximately as a power law for our
coarse-grained phyllosphere tree. Although it is inevitable that coarse graining will generate polytomies, the form of this distribution is nontrivial. Finally,
Right shows the fraction of nodes with multiple branches (i.e., with polytomy size > 3) as a function of the total number of tips downstream of the node, with
averages calculated for logarithmically spaced bins; for this phyllosphere community, bursts of branching are distributed deep into the tree.
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Fig. 6. Neutral models diverge from observed phylogenetic structure, whereas
A -coalescents perform qualitatively better. Upper Left shows example trees
representing each of two one-parameter models: in pink, a neutral model,
generated by a standard coalescent tree with rate of coalescence varying
homogeneously over time; and in purple, a A -coalescent tree, characterized
by multiple coalescent events throughout the tree. Upper Right shows the
edge-length abundance distribution for 50 instantiations of these two models,
which have by construction the same scaling behavior as the phyllosphere tree
(green). In contrast, Lower Left and Lower Right show that the neutral model
fails to capture the fat-tailed distribution of multiple coalescent events of the
coarse-grained phyllosphere tree and that these bursts of multiple branching
extend much deeper into the phyllosphere tree than in the neutral model.

organisms is reduced (23) and in predicting the diversity at scales
much larger than those we can sample (12). For samples taken
from the human microbiome, from phyllosphere communities in
tropical forests and from various marine environments, we have
shown that this phylogenetic scaling is well described by sampling
a power law edge-length abundance distribution, a phylogenetic
analog of the well-known species abundance distribution.

Second, we introduced an approach to analyze the heterogeneity
of branching events in community phylogenies and found that
empirical trees have a broad distribution of bursts of branching.
Our approach coarse grains over smaller branch lengths, which do
not contribute substantially to branch-length weighted patterns of
phylogenetic diversity, resulting in the generation of polytomies of
varying sizes, and our approach therefore avoids trying to resolve
these polytomies. The resulting bursts of branching are reminiscent
of adaptive radiations (40-42) and may also be relevant to our
understanding of power law scaling in extinction events (43, 44).
These patterns also address the long-standing debate over whether
evolution proceeds gradually or is punctuated by sudden changes
(45). For our communities, with the caveat that we do not know
their full evolutionary and ecological history, their phylogenetic
trees provide quantitative evidence for a specific kind of punctu-
ated equilibrium, characterized by power law burst sizes.

We explored whether existing biodiversity models can play a role
in understanding the scaling and topological structures of empirical
trees. Given the consistency of our coarse-grained tree structures,
we hypothesized that selectively neutral models may provide an
adequate description of this structure. In contrast, we found that
real communities diverge from the predictions of neutral models.
Neutral theory has predicted unrealistically large species ages (34,
35, 46), but quantitative long-term dynamics are hard to identify
for many organisms, and it has been challenging to rule out neutral
models using traditional snapshots of diversity like the species
abundance distribution. Our results provide evidence that phylo-
genetic structure in microbial communities is at odds with neu-
tral predictions.
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We also found that A -coalescent trees qualitatively reproduce the
combination of phylogenetic scaling and bursts of branching that we
see in empirical trees. What is the interpretation of these models,
and what kinds of ecological and evolutionary processes might
coarse grain onto these abstract tree structures? The definition of
the A -coalescent does not distinguish between different lineages,
and so one could interpret these models as a kind of generalization
of neutral theory. Indeed, these tree structures have previously been
used to describe populations with skewed offspring distribu-
tions, where at the finest scales there really can be a distribution
of polytomy sizes (47), but all individuals are otherwise symmetric.
That is not the case here—at the finest temporal scales cell division
is binary, and so the appearance of polytomies on coarse-grained
scales suggests that heterogeneities between lineages persist over
longer timescales. These heterogeneities could conceivably arise
from fluctuations in demographic rates due to environmental sto-
chasticity. Environmental fluctuations can produce a fat-tailed dis-
tribution of descendants, and if these fluctuations are symmetric
across species, then such a model might be interpreted as a gen-
eralized, “richer” version of neutrality (48).

Recent work on fitness landscapes in population genetics pro-
vides an important clue to an alternative. One of the most suc-
cessful characterizations of a fitness landscape is to assume a
distribution of mutational effects. In this theoretical approach,
mutations cause organisms to climb up or down a ladder of fit-
nesses (49-51), and the resulting models can result in many co-
occurring types (52). It has recently been shown that this “clonal
interference” regime generates bursts of branching on coarse-
grained scales (53), with fitter lineages expanding quickly toward
fixation before being overtaken by yet fitter lineages. Despite this
similarity, the exponents generated in these models are more
extreme than those in our bacterial phylogenies. Perhaps un-
surprisingly, a ladder of fitnesses does not adequately capture the
complex structure we expect in ecological communities, but it does
demonstrate that selective differences can generate a power law
distribution of polytomy sizes.

In combination with our work, this shows that standard neutral
models and simple fitness landscapes provide two baselines for
phylogenetic diversity—one generates too little heterogeneity
and one too much. In between these extremes are the kinds of
scaling generated by the A -coalescent, where the scaling be-
havior is consistent with empirical trees, but we lack a de-
finitive connection between tree structure and mechanistic
hypotheses. This suggests that the path forward will need to
integrate many different perspectives, bringing together the
impact on phylogenetic patterns of environmental stochas-
ticity (54-56), alongside classic macroevolutionary models
describing radiations and extinctions, with models of the fre-
quency-dependent ecological interactions and niche struc-
tures governing communities (57-62). Finally, if the observed
bursts of branching do derive from the exploitation of new
niches, it will also be fruitful to make direct connections with
the potential mechanisms behind this exploitation. Ecological
opportunities will open up after extinctions (63), but will also be
driven by major events in the evolution of microbial traits, which
in turn could be correlated with mechanisms such as gene
transfer (64). Overall, the distribution of branch lengths in em-
pirical trees, in combination with coarse-grained tree structure
across these different scales, will provide a powerful filter for
potential hypotheses.

In addition to theory development, our results also call for
further empirical exploration of different communities and with
larger sample sizes. We are able to identify these phenomena
only over the range of scales allowed by our samples, and future
studies will be needed to identify the true extent to which this
scaling holds. It would also be fruitful to investigate further
whether the origin of these patterns is compatible with a generalized
notion of neutrality or whether the bursts we see are driven by
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www.pnas.org/cgi/doi/10.1073/pnas.1419341112

deterministic differences. One approach would be to identify
whether the same nodes and taxa are consistently involved in
bursts of diversification across different samples. Another im-
portant empirical direction will be to extend this work across a
broader range of taxa. For example, power law scaling of
phylogenetic diversity with sample size for angiosperm com-
munities (65) and nonneutrality in tropical forest phylogenies
(66) suggest that the patterns we see here may not be restricted
to microbes. Identifying the precise similarities and differences
across taxonomic groups will undoubtedly lead to a range of
insights and may also require more sophisticated analytical ap-
proaches given the relatively small size of many species-level
phylogenies. In general, we look forward to the development
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of a methodology that will incorporate and extend the pat-
terns we have considered here, providing insight into the rules
governing ecological and evolutionary processes in a range of
communities.
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