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CONSTRUCT ION
OF THE REAL NUMBERS
BY SEQUENCES

INTRODUCT ION

In Edmund Landau's book, Foundations of A sis, we
find a complete and rigorous development of the real number
system from Peano's axioms. One of the major steps in this
development is the defining of the real numbers in terms of
"cuts" of rational numbers. This method of defining real
numbers is paralleled by a method of defining real numbers
in terms of Cauchy sequences of rational numbers. The
usage of Cauchy sequences will be pursued by this paper.

By a Cauchy sequence of rational numbers, we mean a

sequence Ay, <. , A ee. of rationals such that if E is

n.
any fixed positive rational number, then there is an in-
teger p(E) such that for all m,n>p(E)

lAn - Aml < E.

But since we shall use Landau's development of the rational
number system as a foundation, the condition involving the
absolute value becomes,

(1) A, =As or
(2) A, > A, and A, - A<E; or

(3) AL <A and A, = A < E.

For this paper, since the rational numbers which we have are

only the positive rationals, we will attach the additional



condition as a part of being a Cauchy sequence: there
exists a (positive) rational number N such that A >N for
all n=1, 2, .00 =

To complete a rigorous development of the real numbers
by Cauchy sequences, we shall presume that the reader is
familiar with Landau's book, Foupndations of Analysis, for
it is with this basis that we are able to continue. We
shall presume that the (positive) rational number system
has already been developed by a rigorous development from
Peano's axioms. To this end, we shall presume that pages
1-43 of Landau have already been done. Assuming this, we
shall refer to Landau whenever a reference to the rational
number system is needed.

Our Definition and Theorem numbers will correspond
with Landau. That is, our Definition and Theorem numbers
will begin where Landau left off on page 43. Thus pages
1-43 of Landau and this paper will form a complete con-
struction of the real numbers from Peano's axioms.

We shall use Landau's notation whenever possible;
that is, we use small italic letters for integers, capital
italic letters for rational numbers, etc. And whenever a
theorem from Landau is used we shall say, "Landau's Theo-
rem 100", etc.

Also we shall assume that the reader is familiar with

the meaning of a one- to-one correspondence, which plays a



very important part in the completion of this paper.

To aid the reader with the notation used in the text,
we shall give a complete table of notation in the intro-
duction as an easy reference. The notation given in the
table below will be used consistantly throughout the paper;
that is, m and n will always stand for integers, etc.

The symbols listed below are followed by a brief
statement of their meaning and by the number of the page
on which they first appear.

Ay, Ag, Am. An’ N, E; rational number, p. 5

Bn, Cn’ Dn; rational number, p. 6

M; rational number, p. 10
X, Y, Ry rational number, p. 70

& Ano; rational number, p. 73, 74

Anm; rational number, p. 93

Apx(Ez) 1 rational number, p. 9%

m,n, pi(E/2); integer, p. B, 6, 7
x; integer, p. 70
€, n, {, ¥ ; Cauchy sequence of rational numbers, p. 6

{An}-{Bn}v{Cn}-{Dn}: Cauchy sequence of rational numbers,
pe 5, 6

{an}-{Bn}; Cauchy sequence of secs, p. 87

~; tantamount, p. 6



+; not tantamount, p. 6

greater than or tantamount to, p. 22
<: less than or tantamount to, p. 22

ay By ¥» § 3 sec, p. 52

ans By sec, p. 87

agg; limit sec, p. 89

G, = Goi ¢ converges to co, pe 89

R9; constant sequence of rational numbers, p. 47

X%, Y% constant sequences of rational numbers, p. 70
x*, y*; integral secs, p. 70, 71

X*, Y*; rational secs, p. 70

éi*. 7q*; sets of integral secs, p. 71,72

o» T3 cut, p. 80



CHAPTER I
CAUCHY SEQUENCES

1
Definition and Tantamount

We shall be interested in defining the real numbers in
terms of sequences of rational numbers. A sequence of
rational numbers is an ordered set of rational numbers

Ay, Ag, «ee , A «ss arranged in an ordered one-to-one

n!
correspondence with the natural numbers. The termsg of the

sequence are Ay, Ag, s+« « The nth term of the sequence

is An‘ The sequence is frequently indicated by {An].

Definition 28: A sequence of rational numbers

£ = {An} = {Ag. ses o A ...} is called a Cauchy sequence,

n.

if there is a rational number N such that AnZN

(n =1, 2, +v.), and for every rational number E (E arbi-
trarily small), there is an integer p(E) such that for
every pair of integers m,n>p(E) one of the following is
true.

(1) A=A or

m

(2) AL > A and A - A<E; or

(3) A, CA, and A - A <E.
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For the purposes of notation; let us assign the small
Greek letters £, n, {, and 7/ to denote Cauchy sequences.
The terms in the Cauchy sequences %, n, &, and 7,

respectively, will always be denoted as follows:

€= {A) = {A1, eeey AL, oodd,
n={B} = {B1, eev, B, «us},
t=1{C }=1{Cs, veo , C s «ecl,
V=.{D } = {D1, eeo , Dy «uuls

Definition 29: Two Cauchy sequences £ and n are

tantamount ( in symbols, %~n) if for every E, there is a
p(E) such that for all n>p(E) one of the following is
true.

(1) A =B; or

n
(2) A, > B and A - B <E; or
(3) A <B, and B -A<E,
Otherwise, &+n (+ to be read "is not tantamount to").
Theorem 116: &~E.
Proof: Given any E, take p(E)=1l, then for all

n>p(E)
(1) A, = A

Theorem 117: If &~n, then n~E.
Proof: Suppose &~n; given any E, there exists



a p(E) such that for all n>p(E)

(1) An = Bn: or

(2) A, > B, and A - B <E; or

(3) A, <B, ~and B - A <E,

But these cases are equivalent, respectively, to
(1) B, =Aj3 or
(2) B, <A, ~and A -B<E; or

(3) By >A, and B - A <E.

Therefore, n~Et.

Theorem 118: If &~q, n~{, then E&~(.
Proof: By hypothesis; &~n, n~{; given any E
there exists a p3(E/2) such that, for all n>p;(E/2)
(1) A, =B or

(2) A, > B and A - Bn<E/2: or

(3) A <B, and B - A <E/2<E.

And there exists a pg(E/2) such that, for all n>pg(E/2)
(1) B,=C, or
(2) B >C_ and B - C _<E/2<E; or
(3) B, <C, and C, - B <E/2<E.

With the same E, pick p(E) to be the maximum of p;(E/2)
and p2(E/2), then for all n>p(E) we have one of the

following cases:
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Case 1: A, = Bn' Bn = C.. By logical equality,

A, =C_, satisfying Definition 29, (1).

Case 2: An = Bh’ Bn> Cn and Bn— Cn< E, An = Bn

gives An> Cn and A Cn< E, satisfying Definition 29,

(2).
Case 3: An = Bn’ Bn< Cn and Cn- B < E.

An = Bn gives An< Cn and Cn' An< E, satisfying Defini-

tion 29, (3).

Case 4: An> Bn and An- Bn< E, Bn = Cn.

Bn = Cn gives An> Cn and An- Cn< E, satisfying

Definition 29, (2).

Case 5: A <B  and B -A<CE, B =C. B =C
gives An< Cn and C - An< E, satisfying Definition 29,

(3).
Case 6: An> Bn and An- Bn< E/2, Bn> Cn and

By~ Cp< E/2. By Landau's Theorem 86, A> Coe
A, = [ (An- Bn) + (Bn- Cn) ]+ C< (E/2 + E/2) + c, "
E + Cn' Therefore, An> Cn and An- Cn< E, satisfying

Definition 29, (2).
Case 7: A < Bn and Bn- A < E/2, Bn< Cn and

- '
C.=-BK E/2. By Landau's Theorem 86, A<C..
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C =1L (B~A)+(C-B) ]+A<(E/2+E/2)+As=
E + A . Therefore, A < C, and C - A < E, satisfying

Definition 29, (3).
Case 8: An> Bn and An- Bn< E, Bn< Cn and

C,~ B,< E. The proof is by subcases;

1.) Suppose A >C > B . Since A - B <E,
C,> B,; by adding and simplifying; A = (A - B ) +
B<E+C.;
Therefore, An> Cn and A - Cn< E, satisfying Definition

29, (2).

2.) Suppose A, =C > B . Satisfies Definition

29, (1).
3.) Suppose Cn> A2 B,- Since C - B < E,

A > B ; by adding and simplifying; C_ = (C - Bn) +
Bn< E + An;
Therefore, An< Cn and Cn- An< E, satisfying Definition

29, (3).

Case 9: An< Bn and Bn- An< E, Bn> Cn and
Bn- Cn< E. The proof is the same as for Case 8 with the

inequality signs of the subcases reversed.

In every case, {~{; thus the theorem is proved.
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By Theorems 116 through 118, all Cauchy sequences fall
into classes, in such a way that
E~n
if and only if § and 1n Dbeleng to the same class.

Definition 30t A sequence is said to be bounded if
and only if there exist M, N such that N <A <M for

n=l, 2, ... « N 1is called a lower bound and M is
called an upper bound for the sequence.

Theorem 119: Every Cauchy sequence is bounded.
Proof: Let {An} be a Cauchy sequence, then

if we choose E=1, there is a p(l) such that for all

m,n>p(l) one of the following is true.

(1) A=A or
(2) An> A and An- Am< 1; or
(3) A <A and A= A< L.

Then, for all m,n>p(l) one of the following is true.
(1) A=A, Then A <A <A+ 13 or

(2) Ax A and A - A <1l. Then
A= (An- Am) + A <A+ 1; or
(3) A <A, and A - A<1l. Then A <A <A- 1,

Hence all terms for m,n>p(1) have A + 1 as an upper
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bound. N exists as a part of the definition of a Cauchy
Sequence. Since the terms of the sequence are bounded for
all m,n>p(l), and since there are only a finite number of

terms A, with o p(1), the entire sequence has A + 1 as

an upper bound.
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2

Ordering

Definition 31: & is greater than n (in symbols,
£>q) if there exist numbers E and p(E) such that for

all n>p(E), A - B 2 E.

Definition 32: % is less than n (in symbols, &<q)
if there exist numbers E and p(E) such that for all
n>p(E), B.- A, 2 E.

Theorem 120: If & > g, then n < &,
Proof: Suppose &>n; there exist E and
p(E) such that for all n>p(E), A - B > E; which means,

by Definition 32, that n < §.

Theorem 121: If & < n, then 1 > .
Proof: Suppose &<n; there exist E and

p(E) such that for all n>p(E), B~ A, 2 E; which means,

by Definition 31, that n > E.

Theorem 122: For any given £, 1, exactly one of
£>n, &~n, E<n 1is the case.
Proof: I.) &>n, E~n are incompatible by
Definition 29 and Definition 3l.
II.) &<n, &~n are incompatible by
Definition 29 and Definition 32.
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I11I.) If §&>q, &<n, then there exist

E, and py(E;) such that for all n>ps(E;) it is true
that A - B 2 Ej. Also there exist Eg and pa(Eg) such

that for all n>pg(Eg) it is true that B - A 2 Eg. Let

E be the minimum of E, and Eg and let p(E) be the

maximum of p3(Ey) and pa(Eg). |
If n>p(E), then A -B 2E and B - A 2E. Thus

An> Bn and Bn> An; but this contradicts the Tricotomy

Law (Landau's Theorem 81). Therefore we can have at most
one of the three cases.

To show that at least one of &>q, &~q, or &<y
happens, suppose £&%n; we will show that &>n or E<n.
Since &#n, there is an Eo such that for every value of
p(Eg) there is an ng>p(Eg) such that all of the following
are true.

(1) Ano;e Bne
(2) if Ano” By o+ them A - B > E
(3) if AvoS Bn,» then B - A > E.
If Ano> Bno happens an infinite number of times, we will

show that there exist E and p(E) such that for all
n>p(E) it is true that A - B 2 E. Similarly, if

Ano( Bno happens an infinite number of times, we will show

that there exist E and p(E) such that for all n>p(E)
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it is true that Bn— An 2 E. First, if Ano> Bno’ then
since & and 1n are Cauchy sequences, with E = Ego/3
there exists a p;(E) such that for all m, n>p:(E) one

of the following is true.
(1) A=A or
(2) AL>A and A~ A<E; or
(3) A <A, and A -A<E,
But since Ano> Bn° happens an infinite number of times,

there must be a value n3i>pi(E) for which An,> By, With

m = n;y, the Cauchy conditions for &% become

(1) A, = An1= ar
(2) An > An1 and An- An1< E; or
(3) A, < An‘ and An,” A_< E.

Similarly there exists a pz(E) such that for all
m,n>pg(E) one of the following is true.
(1) B =B; or

n
(2) B, > By and B - B < E; or
(3) B <B_ and B - B < E.

But since An°> Bno happens &n infinite number of times,
there must be a value ng>pa(E) for which An;> Bhg+ With
m = ng, the Cauchy conditions for 17 become

(1) B, =B or
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(2) B > Bna and B - Bna< E; or

(3) B < an and an' B < E.

With no the maximum of ny and ng and p(E) the
maximum of p3(E) and ps(E), then for all n>p(E) the
following cases arise.

Case 1: A, * Ano' Bn = Bno° Certainly,

Case 2: An = Ano' Bn> Bno and Bn- Bn°< E. From

the inequalities and the hypothesis: An = An°> Bn> Bno‘

Adding and simplifying;

(Ano- Bno) + Eo/3 > Eo + (Bn- Bno),
(Ano- Bno) > Eo - Eo/3 + (B - Bno) = 2E¢/3 +
(B - Bno)'
Adding B~ and simplifying; An°> 2Eo/3 + B>E+B.,

therefore, An— Bn 2 E.

Case 3: An°= An' Bn< Bno and Bno- Bn< Ex

From the hypothesis and the inecualities:
An = Ano> Bn°> Bn.
Therefore, A - Bn 2 E.

Case 4: An> Ano and An- An°< B, Bn = Bn.' From

the hypothesis and the inecualities; An> An°> Bno- Bn

Therefore, A - B_ 2> E.
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Case 5: An< Ano and Ano- An< E, Bn- Bno‘ From

the hypothesis and the inequalities; Ano> An> Bn = Bno'

Adding;

- 5o + -
(Ano Bno) + 2E./3 > Eq (Ano A_),

n

Adding Bno’ A_  and simplifying,

n

Ano+ AL 2 2Eo/3 + Ano + Bno > E + Ano + Bno,
Cancelling Ano and simplifying;
An > Bno + E = Bn + E,

Therefore, A - B 2 E.
Case 6: An> Ano and An- Ano< E, Bn> Bno and
B~-B <E,
n No
From the hypothesis and the inequalities; An> An°> Bn>Bn°.
Adding;
(A= Bp,) * Eo/3> Eo + (B -B ),
Adding Bno and simplifying;
A> An°> 2Eo/3 + B>E+B,

therefore, A= Bn 2 E.

Case 7: A <A =~ and A -A <E, B <B_

and Bno' Bn< E. From the hypothesis and the inequalities;

An°> An> Bn°> Bn.
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Adding;

(An,~ Bn,) * Eo/3> (A - A)) + Eo,
Adding An. Bnlo and simplifying;

(An0+ Al) > 2Eo/3 + B, * Anp
Cancelling Ano and simplifying;

A, > E+ Bno >E + Bn;
Therefore, An- Bn > E,

Case 8: An > Ano and An- An°< E, Bn< Bno and
Bno- Bn < E. From the hypothesis and the inequalities;
Ap? An°> Bn°> B+ Therefore, A - B 2 E.

Case 9: A< Ano and Ano— A< E, Bn> Bn° and
Bn- Bn°< E, From the hypothesis and the inequalities;
An°> An> Bn> Bno°
Adding; (Ano- Bno) + Eo/3 + Eo/3 > Eo + (B - Bn°)+(Ano-
An). adding An' Bno and simplifying;

(Ano- Bno)+ Bn°+ A+ 2Eo/3 > E,o +(Bn- Bn°)+ Bno +
(Ano" An) + An'
Ano+ A> Eo/3 + B + Ano; Therefore cancelling Ano'

A-B >E,

In every case A - B, 2 E, hence ©>q.

By 2 similar proof, if An°< Bno happens an infinite



18
number of times, then &<n. Hence for all n>p(E) at

least one of &>, I~n, or &<n 1is the case.

Theorem 123: If &nq, &, n~ 7, then O V.
Remark: Thus if a Cauchy sequence of one class is
greater than a Cauchy sequence of another class, then the
same will be true for all pairs of representations of the
two classes.
Proof: Suppose &>, E~{, n~7/ . Since &>y,
there exist E; and p3(Ey) such that for all n>py(Ey),
A= B, 2 Ey. Since ¥~(, there exists a pa(Ey/3) such

that for all n>pe(Ey/3) it is true that
(1) A=C.; or

(2) A> C and A= C < E,/3; or

(3) A< C and C.- A < Eq/3.

And since n~ y/, there exists a pa(E;/3) such that for
all n>pa(Ey/3) it is true that
(1) B = Ds or

(2) B > Dn and B~ D < E/3; or
(3) B < Dn and D - B < E/3.

Let p(E) be the maximum of p3y(E;), pa(Ey/3), and
ps(E1/3) and let E = Ey/3. Then for all n>p(E) one of

the following cases arises.

Case 1: A = Chs By= Dp. Since ©>q, A - B, 2 E,
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thus substituting equals, certainly Cn- Dn 2 B.
Case 2: An = Cn. Bn> Dn and Bn- Dn< E. From
the hypothesis and the inequalities; An' Cn> Bn> Dn;
therefore, Cn- Dn 2 E.

Case 3: An = Cn, Bn< Dn and Dn- Bn< E. From the
hypothesis and the inequalities: An = Cn> Dn> Bn;

Adding and simplifying;
(C - Bn) + Ey/3 2 Ey + (D - Bn),

(C,- B,) 2 Ey- E;/3 + (D - B )= 2E;/3 + (D - B ),
Adding Bn; Cn 2D+ 2E;/3 > E + D »
therefore, Cn- Dn > E.

Case 4: An> Cn and An- Cn< E, Bn = Dn; From
the hypothesis and the inequalities: An> Cn> Bn = Dn‘

Adding,
(A,- B ) + E /3> E; + (An-.Cn).

Adding Bn' C_. and simplifying;

n
(An + cn) > 2E4/3 + A, + B, >E+A +B,
Cancelling A : C,E+B =E+D.,
therefore, C - D < E,
n n
Case 5: An< Cn and Cn' An< E, Bn = Dn' From

the hypothesis and the inequalities: Cn>An> Bn = Dn'
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Certainly Cn— Dn 2 E,

Case 6: An> Cn and Ay Cn< E, Bn> Dn and
Bn- Dn< E. From the hypothesis and the inequalities:
An> Cn> Bn> Dn'
Adding,

(A - B,) + Ey/3>Ey + (A-C),
Adding Bn' Cn and simplifying,

A L +C> 2E,/3 + AL+ B, >E+A +B,
Cancelling An and simplifying;

C>B +E>D +E,
therefore, Cn- Dn > E.

Case 7: An< Cn and Cn- An< E, Bn< Dn and
Dn- Bn< E,
From the hypothesis and the inequalities; Cn> An> Dn> B .

Adding,
(An- Bn) + E;/3>E; + (Dn- Bn) >E + (D - Bn),

Add Bn; An> E + Dn' and from the inequalities,
Cn> An> E + Dn'
Therefore, Cn- Dn< E.
Case 8: An> Cn and An- Cn< E, Bn< Dn and Dn- Bn< Ee

From the hypothesis and the inequalities; An> Cn> Dn> Bn.
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Adding, (A - Bn) + Ey/3 + Ey/3 > Ey + (D - Bn)+(An— cn),

and simplifying;

adding B_, C_

- - + .
(An— Bn)+ B+ C + 2E4/3 > E;+ (Dn Bn)+ B+ (An cnj C,
At Cn< (Eq/3 = E) + D, + A therefore cancelling A_,
C"D >Ec

n n

Case 9: An< Cn and Cn- An< B, Bn> Dn and

Bn- Dn< E.
From the hypothesis and the inequalities: Cn> An> B> Dn'
Certainly C -D_ 2 E.

In every case Cn- Dn 2 E, thus by Definition 31, %>7

and the theorem is proved.

Theorem 124: If § < q, £ ~(, n~7,
then € <7/.

Remark: Thus if a Cauchy sequence of one class
is less than a Cauchy sequence of another class, then the
same will be true for all pairs of representatives of the
two classes.

Proof: By Theorem 121, we have
n> &
since n~72, § ~(
we then have by Theorem 123 that 7/ > (
so that, by Theorem 120, ¢ < 7/,



Defipnitiop 33: ¥ 2 n means § > n or £ ~ .
(> to be read "is greater than or tantamount to".)

Definition 34: ¥ { n means §{ < or & ~n.
(< to be read "is less than or tantamount to".)

Theorem 125: If €2 1n, € ~(, n~7; thenC 27 .
Proof: Theorem 123 if > holds in the

hypothesis; otherwise, we have § ~q~ ¢ ~7/,

Theorem 126: If § < n, £ ~L, n~7; then¥ 7.
Proof: Theorem 124 if < holds in the
hypothesis; otherwise, we have §{ ~nq ~¥{ ~ 7/,

Theorem 127: If § 2 n, then n £ K.
2heorem n
Proof: Theorem 117 for tantamount, Theorem

120 for "greater than".

Theorem 128: If ¢ £ n, then n 2 K.
Proof: Theorem 117 for tantamount, Theorem
121 for "less than".

Theorem 129: If & < g, n < &, then £ < . (Transi-
tivity of Ordering.)
Proof: € < n means there exists an E; and
a pi(Ey) such that for all n>py(E;), B - A 2 Ej. n>¢

means there exists an Eg and a pg(Eg) such that for all

n>pa(Ez), C,~ B, 2 Ea: Let E be the minimum of E; and
Ez, and let p(E) be the maximum of p3(E;) and p2(Es).
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For all n>p(E), we find by adding inequalities:
(B,- A )+(C - B ) 2E+E = 2,

(B~ A)) +A +(C-B )22 +A.

Simplifyings
Cn 2 An 4+ 2E, which gives Cn- An 2 2E > E, thus

£ > §, and the theorem is proved.

Theorem 130: If ¥ {n, n <¥ or §<1q, n ¢
then § < (.

Proof: Follows from Theorem 124 if a tanta-
mount sign holds in the hypothesis; otherwise from
Theorem 129,

Theorem 131: If £ < n, n <% then ¥ £ C.
Proof: Theorem 118 if two tantamount signs
hold in the hypothesis, otherwise Theorem 130 does it.
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3
Addition
Theorem 132: Let & and 1n be Cauchy sequences.

Then the sequence whose nth term is (A + Bn), is itself
a Cauchy sequence; that is, there is an N such that

(A + Bn) 2 N for all n; and given any E, there exists

a p(E) such that for all m,n>p(E) it is true that

(1) (A #B)) = (A *+ B ); or
(2) (A +B ) > (A+B ) and

(A * Bn) -(A+B ) <E; or
(3) (An+ an) <(A+ B ) and

(A+ B ) - (A+B)<E,

Proof: Let £ and n be the given Cauchy
sequences, There exists an N such that (An+ Bn) 2 N
for all n, for since {An] is a Cauchy sequence, there
exists an Ny such that An 2 Ny for all n and cer-
tainly (A + Bn) >Ny =N for all n. Then for every E

there exists a p3(E/2) such that for all m,n>py(E/2) it
is true that

(1) Ay = Ags or
(2) A, > AL and A - A<E/2; or

(3) An < Am and A - An< E/2;
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and there exists a pa(E/2) such that for all m,n>pg(E/2)
it is true that

(1) Bn = Bm: or
(2) B, > By and B - B < E/2; or
(3) B, < By and B - B < E/2.

Let p(E) be the maximum of p;(E/2) and pa(E/2), then
for all m,n>p(E) one of the following cases arises:
Case 13 A=A, B =B . Then (A+B) =
(A,*+ B ), satisfying Definition 28, (1).
Case 2: A = A, Bn >B, and B - B < E/2 < E.
Adding inequalities we find, (A + B ) > (A + B ).
(A+ B) = {[(An+ By) = (A + B )]+[(A+ B )+(B - Bm)]}
= {[(ag* By) - (A B )+(A+ B )] + (B - B )} = (A+ B ) +
(B- By) = (A+B ) <E+ (A+B).
Therefore, (A + B ) - (A + B ) < E, satisfying Definition
28, (2).
Case 3: A, = A Bn < B, and B - B < E/2 < E.
We find, adding inequalities, that (A + B ) < (A + B ).
(At By) = {[(Ay+ B) - (A B )1+[(A+ B_)+(B, - B,)1}
= {[(Am+ B) - (A + Bn) + (A + Bn)] + (B~ Bn)} =
= (At B) + (B -B )= (A+B)<E+ (A+B).

Therefore, (A + B ) - (A + B ) < E, satisfying Definition
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28, (3).

Case 4: A>A and A - AL E/2 < E, B,= B
The proof of Case 4 is exactly the proof of Case 2 with
the A's and B's interchanged.

Case 5: A <A and A - A< E/2 < E, B = B+

The proof of Case 5 is exactly the proof of Case 3 with
the A's and B's interchanged.
Case 6: A > A, and An- A < E/2, Bn> B, and

Bn- B, < E/2. We find, adding inequalities, that

(A + Bn) > (A + Bm).

Adding; (A - A ) +A + (B -B ) +B=(A+B)<E/2+
E/2+ (A+ B ) =E+ (A+B).

Therefore, (An+ Bn) - (Am+ Bm) < E, satisfying Definition

28, (1),
Case 7: A <A  and A - AL E/2, B < B, and

Bm- Bn < E/2. We find, adding inequalities, that
(A+B ) <(A+B).
Adding and simplifying;
(A= A)) +A + (B - B)+B=(A+B)<E/2+E/2H+
(A+B)=EH+ (An+ B.)e
Therefore, (A + B ) - (A + B ) < E, satisfying Definition

28, (3).
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Case 8: A> Ay and A - A < EB/2 < E, Bn< B
and B - B < E/2 < E; from the Tricotomy Law it is true

that

1.) (A+B ) = (A¥+ B )s or
20) (An+ Bn) > (Am"' Bm): or
3.) (A ¢+ Bn) < (A ¢+ Bm).

We must satisfy the inequalities of Definition 28 for sub-
cases 2 and 2 above.

Subczse 1: (An+ Bn) = (A_+ Bm). satisfies Defi-

nition 28, (1).
Subcase 2: (A + B ) > (A + B ), hence adding and

simplifying; (A + B ) < (A + B ) =
={[(A* B) - (A+ B)I+[(A+ B )+(B - B )]} =
={[(An+ B) - (A+ B )+ (A+B)]+ (B- Bn)} B
=(A+B )+ (B-B)=(A+B)<E+ (A+B);
Therefore, (A + B ) - (A + B ) < E, satisfying Definition

28, (2).
Subcase 3: (A + B ) < (A + B ), hence adding and

simplifying; (A + B ) < (A + B ) =
={[(Ag* By) - (A+ B+ [(A+B)+ (A-A)]}=

={[(Ag* By) - (A+B) + (A+B )]+ (A-A)}=
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= (Am+.Bm] + (An- Am) = (An+ Bm) <E + (An+ Bn);

therefore, (Am+Bm)—(An+Bn)<E. satisfying Definition 28,(3).

Case 9: A <A  and A - A< E/2 < E, B > B,

and B - B < E/2 < E; the Tricotomy Law again gives three

subcases for which the proof is analogous to the proof of
Case 8 and its three subcases.

In each case, (A + Bn) is a Cauchy sequence; thus the

theorem is proved.

Definition 3%* The Cauchy sequence constructed in
Theorem 132 is denoted by & + n and is called the sum of
£ and 1, or the Caucﬁy sequence obtained by addition of
E to 1.

Theorem 133: If § ~q, { ~ 7/, then E + { ~q +7 .,
Remark: The class of the sum thus depends only
on the classes to which the "summands" belong.

Proof: Suppose & ~n, { ~7 ; Theorem 132
and Definition 35 show that each of £ 4+ { and n 4+ 7/ |is
a Cauchy sequence. We must show that given any E, there
exists a p(E) such that for all n>p(E) it is true that

(1) (A+C ) =(B+D); or

(2) (A+cC)> (B+ D) and

(An+ Cn) - (Bn+ Dn) < E; or
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(3) (A+C )< (B+ D) and

(Bn+ Dn) - (An+ cn) < E,

Given any E, there exists a p3i(E/2) such that for all
n>py (E/2) it is true that

(1) A =B or

(2) A, > B and A - B < E/2; or

(3) A <B and B - A < E/2;
and there exists a pa(E/2) such that for all n>pa(E/2)
it is true that

(1) ¢ =D or

(2) c >D, and C - D <E/2; or

(3) ¢ <D, and D - C < E/2.
Let p(E) be the maximum of ps(E/2) and pe(E/2), then
for all n>p(E) one of the following cases arises;

Case 1: An= Bn' Cn= Dn'

Case 23 An= Bn’

Case 3:

Case 4: An> Bn and

Case 5: An< Bn and

6: A > B

. ” and

Case

Cn— Dn< E/2.

Cn> Dn

Anz Bn' Cn< Dn

and Cn- Dn< E/2.
and Dn- Cn< E/2.

A- B <E/2, C=D.

B - A< E/2, C.=D..

An- Bn( E/2, Cn> Dn and
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Case 7¢ A < B and B - A< E/2, Cn< D, and

Dn“ 'Cn< E/2o

Case 82 A >B  and A - B < E/2, C,<D_  and

Dn" Cn< 5/2.

Case 9: A <B and B - A < E/2, Cn> Dn and

Cn- Dn< E/2.

By a proof analogous to the proof of Theorem 132, we could
show that one of the three conditions of Definition 29 for
tantamount is satisfied, which would complete the proof;
the details are omitted.

Theorem 134: (Commutative Law of Addition):
(+qa~q¢t i,
Proof: Given any E, take p(E)= 1, then for
all n>p(E) it is true that
(1) A+B=B+A.

Hence, [ 4+ n~q +E .,

Theorem 13%: (Associative Law of Addition):
(E+1n) +¢~%4+ (q+ ).
Proof: Given any E, take p(E)=1, then for
all n>p(E) it is true that
(1) (A+B)+C =A+(B+C).

Hence, (E + q) + L ~ ¥ + (q + ¥).



31

Theorem 136: ¥t + n > .
Proof: Choose E < B (n =1, 2, ... ) and

let p(E)=1, then for all n>p(E) it is true that (A]

+ an) - A 2 E.

Theorem 137: If ¥ > n, then & + L > n + L,
Proof: There exist E and p(E) such that
for all n>p(E) it is true that A - B 2 E. Hence

An 2E+B.
Add Cn obtaining;

(A+C.)2E + (B +C), sothat

(A+C ) -(B+C) 2> E.

Therefore, £ + L > n + €.,

Theorem 138: If § > qn, or £ ~q, or & < then
E+ L >+, or E+L ~nq+ ¥, or E+L <q+C,
respectively.

Proof: The first part is Theorem 137; the
second is contained in Theorem 133; the third follows from
the first since, if & < n, we find successively

n2> g,
nte>E+L,
E+ 0 <+ L,

Theorem 139: If E + L >+ ¥ or £ +¥{ ~q+¢g,
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or £+ ¢ <n+%¥ then &> q, 00 E~nqn, or <1,
respectively.

Proof: Follows from Theorem 138, since the
three cases, in both instances, are mutually exclusive and

exhaust all possibilities.

Theorem 140: If &§ > q, ¥ >7, then ¥ + L >nt7.
Proof: By Theorem 137 we have
E=C >+ and
N+l ~L+ >V +q~n+7/, hence ¥ + L > n+7.

Theorem 141: If & 2>, ¥ >2Z, or £ >, L 27,
then £ + L > n+7,
Proof: Follows from Theorem 133 and 137 if the
tantamount signs hold in the hypothesis; otherwise from
Theorem 140,

Theorem 142: If & 2 n, £ 27/, then £ 4+ L 2 n+ 7,
Proof: Follows from Theorem 133 if two tanta-
mount signs hold in the hypothesis; otherwise from Theorem

141.

Theorem 143: If § > q
then n 4 77 ~ g

has a solution Z/. If 2/y and 73 are solutions, then

2, T

Remark: If § <

there does not exist a solution, by Theorem 136.
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Proof: The second assertion of Theorem 143 is
an immediate consequence of Theorem 139; for if
n+ Vy~n+l
then, by Theorem 139, VY, ~ Vg,

The existence of a 2z (the first assertion of Theorem
143) is proved as follows. Since & > n, there exist E;
and p(Ey) such that, for all n>p(Ey), A - B 2 E;.
Define a sequence ¥ ={D } by

D, = 1 for all n < p(Ey),

Dn AR for all n>p(E;).

We must show that 7/ is a Cauchy sequence; that is, there
is an N such that Dn 2 N for all n and given any E,

there exists a p(E) such that for all m,n>p(E) it is

true that
(1) D= D ; or
(2) D> D and D - D <E; or
(3) b <D, and D - D <E,

To find an N such that Dn 2N for all n, consider
1 and E;. Since A -B 2E; for all n>p(Ey), and

D=1 for all n £ p(E;), we may take N to be the mini-

mum of 1 and E.

Since § and 1n are Cauchy sequences, given any E,

there exists a py(E) such that for all m,n>p,(E) it



is true that

(1) A=A or
(2) A> AL and A~ A< E; or
(3) A< Ay and Age R.X E;

and there existes a pg(E) such that for all m,n>pg(E) it
is true that

(1) an Bm; or
(2) B> B and B,- B,<E; or
(3) B,< By and B,- B, < E.

Pick p(E) to be the maximum of py(E), pa(E), and p(Ey ).
Thus with D = (A - Bn). D = (A - B ), the following cases

arise.

Case 1: A=A , B =B . Since p(E) 2 p(E;),

An- an E, hence An> Bn and therefore, (An— Bn)z(Am-Bm).

satisfying Definition 28, (1).

Before going on to Case 2, let us prove the following
Lemma which will be useful in proving Cases 2 through 9.

Lemma 1t If X >Y, Y >Z, then (X-Y)+(Y-2Z)=(X-2).
Proof: X+Y = Y+(X-Y) + [(Y-Z) + 2] =
= [(X-Z) + 2] + Y =X + Y3
Y + (X=Y) + [(Y=Z) + Z] = [(Xx-Z) + 2] + Y,



Cancelling Y, Z, (X-Y) 4 (Y-Z) = (Xx-2).

Case 2t Anz Am' Bn>Bm and Bn- Bm< E,

A- B, > E.
Since At Bn> Am+ Bm'
Agt By= {[(Ay= B) + BT+ Bup < {[(Ap= By) + B I+ By )=
=A+B,

then [(A-B )+ (B + B )] <[(A-B )+ (B+B)I],
cancelling (B + B ); (A -B ) =(A-B) < (A-B),
By Lemma 1, we find

(A- B )+(B ~-B )=A-B=A-B <(A-B)+E
Therefore, (Am- Bm)>(An- Bn) and (Am- Bm)-(An- Bn) < E,

satisfying Definition 28, (3).
Case 3: A= Ao Bn< B, and B - Bn< E, An-BnZ E.

Since A+ B <A+ B,

(Ag+ B )+{[(A - B )+ B ]+ Bn}<{[(An- B )+ B 1+ Bm}-Am+ B,
then [(A - B )+(B + B )] < [(A-B )+ (B+B)],
Cancelling (B + B ); (A -B ) = (A -B) < (A~ B ).

By Lemma 1, we find
(An- Bm)+(Bm- Bn)= A - Bn<(An- Bm) + E= (Am- Bm) + E.

Therefore, (A - B )>(A - B ) and (A - B ) - (A - B ) <E,



satisfying Definition 28, (2).

Case 43 An> A, and A= A<E, B=B,

A- B 2 E.

The proof of Case 4 is exactly the proof of Case 2 with
the A's and BR's interchanged.
Case E: An< A, and Am- An< E, an Bm'

The proof of Case 5 is exactly the proof of Case 3 with
the A's and B's interchanged.

Case 6: A2 Am and An- Am< E, Bn> Bm and

Bn- B < E, A,- B, 2 E. From the Tricotomy Law it follows

that

(1) (An- Bn) = (A -B ): or

m
(2) (A -B)) > (A-B); eor
(3) (A-B)) <(A-B).

We must show that the inecualities of Definition 28 are

satisfied in the subcases 2 and 3 above.
Subcase 1: (An— Bn) = (Am- Bm). Definition 28,

(1) is satisfied.
Subcase 23 (An- Bn) > (Am- Bm).

By Lemma 1, we find

(An- Am) + (Am- Bm) = (An- Bm) < E 4 (Am- Bm).



4

But from the proof of Case 2, An- Bn< An- B

[ ]

m

Therefore, (A - an) > (A - Bm) and (A_- B )-(A_- Bm) < E,

satisfying Definition 28, (2).
Subcase 3: (An- Bn) < (A - Bm).

By Lemma 1, we find
(A= By) < (A - B)=(A - B )+(B - B ) <E + (A - Bn).

Therefore, (An- Bn)<(Am- Bm) and (Am- Bm) - (An- Bn) < E,

satisfying Definition 28, (3).
Case T: An< Am and Am- An< E, B<B and

B,- B.<E, A-B >E,

Case 8: A > A_ and An- A< E, Bn< B_ and

3

-~
Lo

B,- B.<E, A~ B

v

Case 9: An< Am and Am- An< E, Bn< B and

B,- B<E, A-B

v

W E.

The proofs of Cases 7, 8, and 9 will be omitted since
they are analogous to the procof of Case 6.
This completes the proof that 7/ is a Cauchy sequence.
We must show thet 72/ satisfies the relation g + 7 ~ &,
That is, given any E, therz exists a p(E) such that for
all n>p(E),
(1) B*+D=A; or

(2) B.+D>A  and (Bn+ Dn) - A <E; or
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(3) B+ D<A, and A- (Bn+ Dn) < E,

Given any E, let pl(E)=p(E;) [p(Ey) 4is described at the
beginning of the proof of this theorem], then for all
n>p(E) it is true that

(1) B+ D =B+ (A- Bn) = A,
Thus we have 7/ as a solution of our relation and the

theorem is proved.

Definition 36: The 2/ of Theorem 143 is denoted by

£ - n, or the Cauchy sequence obtained by subtraction of
n from &,

Thus if £ ~n 4+ 7, then Z ~§ = 1,



A

Multiplicatien

Theorem 144t Let & and n bke Cauchy sequences.

Then the sequence whose nth term is Aan. is a Cauchy

sequence; that is, there is an N such that Aan > N

for all n; and given any E, there exists a p(E) such
that for all m,n>p(E) it is true that
(1) AB, =ApB; or

(2) A B > AB, and AB - AB <E; or

(3) A B, < AB and ABn = AB, < E.

Proof: Let ¥ and 1n be the Cauchy se=-

quences. There exists an N such that A B 2N for all

n; for since &, n are Cauchy sequences, it is true that

An 2 Ny, Bn 2 Ng for all n; multiplying inequalities,
Aan 2 NyNg = N for all n. Also & and 1§ have upper
bounds by Theorem 119, hence A < My, B < Mz for all

n, Let M be the maximum of My, Mg, and M;Mg such

that An <M, Bn £M for all n.

Then for every E, there exists a p3(E/2M) such that
for all m,n>py(E/2) it is true that
(1) Ay = A or

(2) An > Ay and An- A< E/24; or
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(3) Al < Am and Ans An< E/2M;

and there exists a pg(E/24) such that for all
m,n>pg(E/2M) it is true that

(1) Bn - Bm: or
(2) B > B, and B - B < E/2M; or
(3) B, < B, and By~ B < E/2M,

Let p(E) be the maximum of py(E/2M) and pa(E/2M),
then for 2ll m,n>p(E) one of the following cases arises;
Case 1: An= A

m? Bn’ Bma Thﬂn Aan — AmBm.

satisfying Definition 28, (1).

Before going on to Case 2, let us prove the following
Lemma which will be useful in proving Cases 2 through 9.
Lemma 2: If Y > Z, then X(Y-Z) = XY - XZ.
Eroof
so that, by Landau's Theorem 104,

s

If Y > Z, then (Y-Z) + Z =Y,

X(Y=Z) + XZ = XY,
X(Y=2) = XY - XZ.

Case 2t A= Aps B>B  and B - B < E/2M.
By multiplying inequalities, Aan > AmBm.
Since A < M for all n, by Lemma 2 we find

An(Bn - Bm) = Aan - A B < ME/2M = E/2 < E.
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Therefore, Aan > A B end Aan - A B < E, satisfying
Definition 28, (2).
Case 3: A=A, B<B and B - B < E/2M.

By multiplying inequalities, Aan < AmBm.
Since A < M for all n, by Lemma 2 we find

A (B -B ) =AB-AB =AB-AB <ME/24 = E/2< E.
Therefore, Aan < AmBm and AmBm - Aan < E, satisfying

Definition 23, (3).

Case 4: Ah> A, and A= Ay < E, Bn = Bm'

The proof is exactly the proof of Case 2 with the A's and
the B's interchanged.
Case 5: A > A and A - A < E/2M, B =B .

The proof is exactly the proof of Case 3 with the A's and
B's interchanged.
Case 6: An> A, and A A < E/24, B > B_ and

By multiplying inequalities, AB >AB..

Since A XM, B, XM for all n, by Lemmas 1 and 2 we
find
A (B - B ) + Bp(A - A ) = (AB, - AB ) + (AB-AB)=

= Aan - AmBm < ME/2M + ME/2M = E,
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Therefore, Aan > A B, and Aan - AmBm < E, satisfying

Definition 28, (2).
Case 7: A <Al and A_ - A < E/2M, B_< B

and B - B < E/2M,. The proof will be omitted since it

is analogous to the proof of Case 6.

Case B: A > A, and A - A < E/2M, B_ < B
and B - B < E/2M. From the Tricotomy Law it is true
that

(1) Aan = AmBm; or

(2) AB >ARBS or

(3) A B, <APB.

We must show that the inequalities of Definition 28 are
satisfied in the subcases 2 and 23 above,

Subcase 12 A B = AB . Definition 28, (1) is

satisfied.
Subcase 2: Aan > AB .
Since Bn LM for all n, we find by Lemma 2 and adding
and simplifying;
AB <AB =B (A -A)+ADB ) <ME/2M)+(A B )<E+(AB ).
Therefore, A B - A B < E, satisfying Definition 28, (2).

Subcase 3: Aan < AmBm'

Since AL LM for all n, we find by Lemma 2 and adding
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and simplifying;
ApBn< A B = A (B - BnJ+(Aan)< M(E/2M)+(An8n)< E +(AB ).
Therefore, A B - A B < E, satisfying Definition 28, (3).
Case 91 A <A and A - Al < E/2M, B < By
and B - B < E/2M. The Tricotomy Law again gives three

subcases for which the proof will be omitted since it is
analogous to the proof of Case 8 and its three subcases.
In every case, & n is a2 Cauchy sequence; thus the

theorem is proved.

Defipition 37: The Cauchy sequence constructed in
Theorem 144 is denoted by & . n ( . to be read "times";
however, the dot is usually omitted) and is called the
product of & and 1n or the Cauchy sequence obtained
from multiplication of & and 1.

Iheorem 148: If ¢ ~q, { ~7/, then E( ~q 7 .
Remark: The class of the product thus depends
only on the classes to which the "factors" belong.
Proof: Suppose & ~ g, £ ~Z 3 Theorem 144
and Definition 37 show that each of ¥ £ and nz is a
Cauchy sequence. We must show that given any E, there
exists a p(E) such that for all m,n>p(E) it is true
that

(1) AB =AB; or



(2) AB >AB  and AB-AB<E; or
(3) AB <AB and AB - ABCE,
Given any E, there exists a p;(E/2M) (M is an
upper bound for %, 9, &, ] such that for all

n>py (E/2M) it is true that
(1) A=B; or

(2) A> B and A - B.< E/2M; or
(3) A< B and B - A < E/2M;

and there exists a pg(E/2M) such that for all
n>pg(E/2M) it is true that

(1) an Dn; or
(2) C.> D, and C - D < E/2M; or
(3) cn< Dn and Dn- cn< E/2M.

Let p(E) be the maximum of py(E/24) and pg(E/2M),
then for 211 n>p(E) one of the following cases arises;

Case 1t A =B, C.=D_.
Case 2: A =B, C>D and C_- D < E/2M.

Case 3t A =B

> By Cn< Dn and Dn- Cn< E/2M,

Case 4: A > B and A - B < E/2M, C= D, .

Case 5: A<B, and B - A< E/2M, C,=D_.

Case 6: An> Bn and An- Bn< E/2M, c.> Dn and



Cn- Dn< E/QM.
Case 7:

D - C < E/2M.
n n

Case 8:
D - C < E/2M.
n n
Case 9:
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A<B and B - A< E/2M, C < Dn and

An> B and A - Bn< E/2M, C < Dn and

A < B and Bn- An< E/2M, Cn> Dn and

By a proof analogous to the proof of Theorem 144, we

could show that one of the three conditions of Definition

29 for tantamount is satisfied, hence the theorem is

proved.

Theorem 146:

Proof:
all n>p(E) it is

(1)

Hence, & n ~ q E.

Theorem 147:

Proof:
all n>p(E) it is

(1)

(Commutative Law of Multiplication):
En~nt.
Given any E, take p(E)=1, then for
true that
- A
Aan Bn n*

(Associative Law of Multiplication):

(¢ nq) €~% (q¢).

Given any E, take p(E)=1, then for
true that

(Aan) cn = An(Bncn)‘
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Hence, (% q) ¢ ~% ( n%).

Theorem 148: (Distributive Law):
E(n+¢) ~En+ XL,
Proof: Given any E, take p(E)=1, then for
all n>p(E) it is true that
(1) A(B +C)=AB +AC.
Hence, E(n+¥)~Eq+TC,

Theorem 149: If € >y, & ~n, or % < g, then
EL>n% or EC~n% or £ Y <nq¥, respectively.
Proof: If & > n, by Theorem 143, with a
suitable 2/, & ~n + 7/, hence
EL~q+V )l ~nl+ ? L)> 7V L

The second part is contained in Theorem 1453 and the

third is a consequence of the first, since if
E<n then 1 > §,

so that by the first part, n ¢ > ¥ g, £ ¥ < L.

Theorem 150: If ¥ {>n & or L ~ng, or
EC<n¥% then £>9q, or §~1q, or § <19,
respectively.

Proof: Follows from Theorem 149, since the
three cases are in both instances mutually exclusive and

exhaust all possibilities.

Theorem 131t If ¥ >q, (> 7, then T L > nq7
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Proof: By Theorem 149: ¥ ¥ > n { and
N~ n> 72 n~q72 so that € ¢ > v .

Theorem 152: If {29, C >, or ¥ >q, ¢ 27,
then £ 0 2 7.
Proof: Follows from Theorem 14% and Theorem
149 if the tantamount sign holds in the hypothesis; other-

wise from Theorem 151,

Theorem 153: If ¥ 2 1q, C 27,
then § L 2 nz.
Proof: Follows from Theorem 145 if two tanta-
mount signs hold in the hypothesis; otherwise from Theorem
152,

Defipition 38: For any given rational number R, a
sequence formed by having each term identically R is
called a constant sequence. It will be denoted by RO,

Theorem 154: Every constant sequence is a Cauchy
sequence.
Proof: Let R® be a given constant sequence.
For a lower bound, Rn' Ry= N for all n; and given any
E, take p(E)=1, then for all n>p(E) it is true that
(1) R =R_.

Therefore, R® 1is a Cauchy sequence.

Theorem 155: ¢ ., 1° ~ &,
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Proof: Given any E, take p(E)=1l, then for
all n>p(E) it is true that

(1) An . 1= An'

Theorem 156: For any given &, the relation ¥ 7/ ~10
has a solution 7 .
Proof: Let £ be the given Cauchy sequence;

that is, Anz H for all n, and given any E; there

exists a p(HHE;) such that for all m,n>p(HHE,) it is

true that
(1) A=A or
(2) A AL and A - A < HHE;; or
(3) A <A and Aj - A < HHE;.

Let us consider as a solution the sequence 72/ defined

by
D = 1 for all n < p(HHE;),

Dn= 1/'An for all n>p(HHE,).

We must show that 7/ is a Cauchy sequence; that is, there

is an N such that D 2 N for all n, and given any E,

there exists a p(E) such that for all m,n>p(E) it is
true that

(1) D =D or

(2) D > Dy and D - D < E;
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(3) D <D, and D -D<E,

By Theorem 119, & is bounded, hence A, £ M for all n,

and we find
1/M=(A_)1/A M < (M)1/A M= 1/A_,

therefore, 1/A 2> 1/M for all n.
Pick p(E)= p(HHE;). Thus with D=1/A, D= 1/A,, the

following cases arise,

Case 1: A=A . Then 1/A = 1/A_, satisfying

Definition 28, (1).
Case 2: An> Am and A - A < HHE. Since by

Lemma 2 A - A = AmAn(l/Am- 1/hn) < HHE,

then since Al 2H, A 2H; AnAmlz H for all n and
1/A A= (HH)1/A A HH < (A A )1/A A HH= 1/HH.

Multiplying by 1/A A < 1/HH, we have 1/A - 1/A < E,

satisfying Definition 28, (3).
Case 3: An< Am and A - An< HHE. Since by

Lemma 2 A - A = AmAn(l/hn- 1/hm) < HHE,
then from above, A A > HH and 1/AA < 1/HH,
hence, multiplying by 1/'AnAm < 1/HH, we have l/hn-l/%m<E,

satisfying Definition 28, (2).
Therefore, 7/ is a Cauchy sequence.

We must show that 72 satisfies ¢ .,z ~ 19, That is,
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given any E, there exists a p(E) such that for all
n>p(E) it is true that

(1) AD=1; or

(2) AD > 1 and AD - 1<E; or
(3) AD <1 and 1 -AD<E,

Given any E, take p(E)= p(HHE;), then for all n>p(E)
it is true that
(1) AD=A/(1/A )= 1.

Therefore, 2/ is a solution and the theorem is proved.

Theorem 157: The relation
nzZ~g
where & and n are given, has a solution. If 74 and
2Za are solutions, then 7/; ~ 725,
Proof: The second assertion of Theorem 157 is
an immediate consequence of Theorem 1%50; for if
n 71 ~ 0,
then, by Theorem 150, 27 ~ Vg.
The existence of a 2/ (the first assertion of Theorem
157) is proved as follows. If ¢ 4is the solution of
i T 19,
whose existence was proved by Theorem 156, then the
sequence

Y =2 ¥



-3
satisfies the relation in Theorem 157; for we have by
Theorem 155,

MY ~glC%) ~(nC) L ~1° () ~ &
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CHAPTER II1

SECS

1
Definition

Definition 39: By a sec (to be read "seek"), we mean
the set of all Cauchy sequences which are tantamount to '
some fixed Cauchy sequence. (Such a set is therefore a
class in the sense of $1 of Landau.)

The small Greek letters a, B, vy, and § will be used

to denote secs.

Definition 40: a = B

(= to be read "equals") if the two sets consist of the same
Cauchy sequences. Otherwise,

a * f
( #+ to be read "is not equal to").

The following three theorems are trivial:

Theorem 158: o = q.
Theorem 159: If o =B, then B = a.

Iheorem 160: If a =, B =1+, then a =y,



53

2

Ordering

Definition 41: a > P
(> to be read "is greater than") if for a Cauchy sequence

E of the set a, and for a Cauchy sequence n of the set
B (hence for any such pair of Cauchy sequences, by
Theorem 123) we have that

£ > 1.

Definition 42: a < B

(< to be read "is less than") if for a Cauchy sequence &
of the set a, and for a Cauchy sequence n of the set B
(hence for any such pair of Cauchy sequences, by Theorem
124) we have that

n> ¥

Theorem 161t For any given a, B, exactly one of
a >B, a=p8, o <P must be the case.

Procf: Theorem 122,

Iheorem 162¢ If a > B, then P < «.
Proof: Theorem 120.

Theorem 163: If o < B, then P > a.
Proof: Theorem 121.

Definition 43: o 2 P means o« > P or o = B.



( > to be read "is greater than or equal to".)

Definition 44:

( € to be read "is less than or equal to".)

then

then

Theorem 164:
Proof:

Theorem 165:

Proof:

Theorem 166:

a > vy
Proof:

Theorem 167:

a < vy.
Proof:

Theorem 168:
Proof:

« £ B means

If a2 B,
Theorem 127,

If a £ B,
Theorem 128,

a <

then

then

B or

B < a.

B2 a.

a = B.

(Transitivity of Ordering): If

a?>B, B2y,

Theorem 129,

If o« £ B,

Theorem 130,

If o £ B,
Theorem 131.

B <,

BLvy

or

then

a < B,

a £ v

BLy



55
3

Addition

Definition 45t By a« + B ( + to be read "plus")

we mean the class which contains a sum (hence, by Theorem
133, every such sum) of a Cauchy sequence from a and a
Cauchy sequence from 8.

This sec is called a sum of o and B, or the sec

obtained from the addition of B to «a.

Theorem 169t (Commutative Law of Addition):
o + B=p + qa.

Prooft Theorem 134,

Theorem 170t (Associative Law of Addition):
(a + B+ y=a + (P + v).
Proof: Theorem 135,

Theorem 171t ¢ + B > «.
Proof: Theorem 136.

Theorem 172: If o > B, then a + y > B + vy.
Proof: Theorem 137.

Theorem 173: If o« > B, or a = Bs or a < B,
then a +y2>pB+y, or a+y=B+y, or a+ vy <p+ Ys

respectively.

Proof: Theorem 138,
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Theorem 174t If a+y > B +y, or a+y= e+ vy,
or « +y <R+, then a>f, or o« =, or aX B
respectively.

Proof: Theorem 139.

Theorem 175¢ If o« >B, ¥y > &, then «

P

Y>p+S .
Proof: Theorem 140,

Theorem 176t If a 2B, v>d , or a>P, Y28,
then a+y 2R + 8§ .

Proof: Theorem 141,

Theorem 177: If <« 2B, r > &, then a+ y 2 P+S.
Proof: Theorem 142,

Theorem 178t If « > B, then B +4& =a has
exactly one solution §.
Remark: If o« < P, there does not exist a
solution, by Theorem 136.

Proof: Theorem 143,

Definition 46t The & of Theorem 178 is denoted by
a - B (- to be read "minus") and is called the difference

¢ minus B, or the sec obtained by subtraction of the sec

g from the sec «a.
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Multiplication

Definition 47t By o . B ( . to be read "times";
however, the dot is usually omitted) we mean the class
which contains 2 product (hence, by Theorem 145, every
such product) of a Cauchy sequence from o by a Cauchy
sequence from B.

This sec is called the product of a« by B, or the

sec obtained from multiplication of the sec a by the sec

Be

Theorem 179: (Commutative Law of Multiplication):
cp=28a,
Proof: Theorem 146,

Theorem 180: (Associative Law of Multiplication)s

(a B) v = alp v).
Proof: Theorem 147.

Theorem 181: (Distributive Law):
a(B+ty)=ap+ay.
Proof: Theorem 148,

Theorem 182: If « >Pp, or a«a=p, or a <B,
then a y > By, or ay=By, or ay <Py,

respectively.

Proof: Theorem 149.
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Theorem 183: If «y >By, or ay=py, or
ay<By, then a«a >B, or a=p8, or a <B,
respectively.

Proof: Theorem 150,

Theorem 184: If a« > B, ¥ > §, then ay>B § .
Proof: Theorem 151.

Theorem 185: If o« 2B, y>g ,o0r a>B, yv235,
then ay>p §.
Proof: Theorem 152,

Theorem 186: If a 2B, y2 §, then ay 2B S .
Proof: Theorem 153.

Theorem 187: The equation B4 = a in which B and
o are given, has exactly one solution (.

Proof: Theorem 157.

3 very sec contains a sequence

Theorem 188: E tai {8}
such that Bn< Bn+1 for n=1, 2, ... and a sequence {Cn}
such that Cn> Cn+1 for n=1l, 2, ... « The sequence

{Bn} is called strictly increasing and {cn} is called

strictly decreasing.
Proof: Given any sec a, let {An} be a

Cauchy sequence contained in a. To find strictly
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increasing and strictly decreasing sequences, let us pro-

ceed in the following manner:

I) Choose E;= N/2 (N is a lower bound for {An})

and find p(E;) so that, for all m,n > p(E;) it is true

that
(1) A= Ay or
(2) AD> Ay and A - A <Ejj or
(3) A <A and A - A< Ey.

Then, for all n>p(E;) one of the following is true
(4) Anz Ap(E1)3 or

(5) An> AP(E1) and An- AP(E1)< Ey; or
(6) A< Ap(Ei) and AP(EI)- A< Ey.

But for all n>p(E;), conditions (4), (5), and (6) imply
(7) Ao(g,)” E1 <A< As(E,) * E1e

The proof for (7) is as follows:
The subtraction Ap(El)' E; 1is possible since Ap(E;)
2 N for all values of p(E,). Hence As(ey)> N/2.
Similarly, Ap(En) 2N>E  for all values of n. The
rest of the proof is by cases;
Case 1: If A= Ap(El)' then certainly

AP(EI)- Ey < An < AP(El) + Eg,
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Case 2: 1f An> Ap(E;) and An- Ap(E1)< Es,
then A (g )- Ey < Ag(g,)< ApS A(Ey)* Ere
Case 3: If An< Ap(Eg) and Ap(Ei)'An< i
then A (p )= By <Ap <Ajp ) <Agg )t Eqe
Set By=A (p )= 2Ei, Cy=A (g )* 2E;; then for all
n>p(Ey), By < A - Ey, A+ Ey <Cy. These are true since

by subtracting E; from condition (7) we obtain
Ao(Eg)~ 2Ea < A,- Ey <Agyp )e and adding E; to condi-

+ N
tion (7) we obtain AP(E1)< An‘l' £y < AP(Ej,) QEn

I1) Set Eg= E;/2 and find p(Eg) so that
p(Eg) > p(Ey) and, for all m,n > p(Ez) one of the

following is true

(1) A= A or
(2) A> Ay and A - A < Eg; or
(3) A <AL and A - An< Ea.

Then for all n>p(Ez) one of the following is true
(4) Ay= AP(Es)= o

(5) A>A

n p(Eg) and Aﬂ- AP(Es)= ox

(6) Ap< Ag(gg) 2and  Aj(p )= A< Es.

But as in part I), for all n>p(Eg), conditions (4), (5),
and (6) imply
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(7) As(Eg)” Es <AL <A, * Ege

Set B2= AP(ES)- 253, Cgﬂ AP(EB) + 2Eg. Then Bj < Ba,

Cy > Cs. These are true since for p(Eg) > p(E;) the

following inequalities are true

By < AP(ES)- Ey = Ap(E;)- 2Eg = Bg,

Cy 2> AP(EB)+ Ey = AP(E3)+ 2Eg = Cg. And for all
n>p(Eg) it is true that Bjg < A - Eg, A+ Eg <Cs. These

are true since for all n>p(Ez) it is true that

Ap(Eg)- Eg < An < Ap(Eg) + Eaz.
By subtracting Eg we obtain AP(E')- 2Eg < An- E.<AP(E’)
and adding Eg we obtain Ap(Eg)< An+ Eg < AP(EQ)* 2Ez.

III) Continuing by induction for the kth terms
suppose we have Ek-l’ p(Ek—l)' By, eee Bk-l' and C4,
ese ck"l’ such that Bl < Bg € see € Bk_lp

Bpo1 CA Bpoge At By “Cpye

We set Ek- Ek_l/Q and find p(Ek) so that
P(Ey) > p(E,_;) and for all m,n > p(E ) one of the
following is true

(1) A= A or

(2) A> Ags and A= A<Es; or
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(3) A <Ay and A - A <E.
Then for all n>p(Ek) one of the following is true

(2) An:: Ap(Ek): or
(5) A> Ap(Ek) and A - Ap(Ek)< E3 or

But as in parts I) and II), for all n 2 p(E), conditions
(4), (5), and (6) imply

(7) Ap(E, )" E, <A, < Ap(Ek) + E.
Set B, = Ap(Ek)- 2Ek. Cy= Ap(Ek)+ 2E . Then B, > B, _,,
Cx > Cp_y+ These are true since for p(E.) > p(E_,)
the following inequalities are true

Beed < Ap(g,) ~ Biel = Ap(g,) = % = By

Cro1 2 Ap(Ek) +E = Ap(Ek) + 2, =C,. And for
all n>p(E,) it is true that B, <A - E, A+ E <C,.

k k

These are true since for all n>p(Ek) it is true that
AP(Ek)- Ek < An < Ap(Ek) + Ek'

By subtracting E, we obtain Ap(Ek)— 2E < M Ek< AP(Ek)
and adding E, we obtain Ap(Ek)< An+ Ek< Ap(Ek)+ 2Ek’

By construction B, < Bk+1 and C, > Ck+1 for all
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k=1, 2, 3, ... « Hence {Bk} is such that
By < Bg < ... <B_ < ... and that {C,} is such that
Cy >Cz > 400 >Cp > 4ve o Thus {B} 1is strictly in-
creasing and [Ck} is strictly decreasing.

We must show that {Bn} and [Cn} are Cauchy se~-

quences and that {An}, {Bn]. and {Cn} are contained

in the same sec.

First, to show that {Bn} and {Cn} are Cauchy se-
quences, we may take B; as a lower bound for {Bn} and
{Cn} since By < B <C_ for all n and prove below

that given any E, there exists a p(E) such that for all
n>p(E) both the following are true

-

(1) B<B and B .- B <E; and

n n+l n+l

and C =-C

n+l n n+l< E.

—
[
N,

cC >C
n
From the construction of {Bn} and {Cn}, the follow-
ing are true for all n: Bn< Bn+1< Cn+1< Cn and

Cn' an 4En. Then, for all n, we arrive at the following

conclusions:

(1) If B<B ,,<C  and C - B =4E , then

B <B

n n+1 and Bn+1"‘ Bn< 4En.

%
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From the inequalities, Bn< Bn+1' Adding and simplifying,

(cn- Bn) +B +B ., <4E + B + Cpo

Cn + Bn'l'l < 4En + Bn + Cn.

Cancelling Cn and simplifying, B ,,- B < 4E .
(2) 1f B<C_ ,4<C  and C - B =4E , then

C>C,q and C -C_ . ,<4E.,

From the inequalities, Cn > C Adding and simplifying,

n+l*

(C,- B)) + B <4E +C ..,
C.- C.4y < 4E.

Given any E, find p(E) so that 4E (g) < E, then for all

n>p(E) both of the following are true

(1) B < B and B, - B < 4E < 4E ()<E; and

n+l

(2) c,>C and C -C_ ,,<4E< 4EP(E)< E.

n+l

Thus we have shown that {Bn] and {Cn} have lower

bounds and that given any E, there exists a p(E) such
that for all n>p(E), conditions (1) and (2) are true,

hence {Bn] and {Cn] are Cauchy sequences.
Next, we must show that {An}, {Bn}, and {Cn} are
tantamount. Let us first show that {Bn} and an] are

tantamount. That is, given any E, there exists a p(E)
such that for all n>p(E) the following is true
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(3) C,>B  and C_ -B < E.

Since Cn > Bn and Cn- Bn= 4E for 2ll n, given any E,
find p(E) so that 4Ep(5)< E, then for all n>p(E) the

following is true
(4) Cc>B, and C - B = 4E < 4E ()< E.

Therefore, {Bn} ~ [cn}.
Next, we will show that {A } ~ {B,}. That is, given

any E, there exists a p(E) such that for all n>p(E)

one of the following is true

(A) A= Bn; or
(B) A > Bn and An- Bn< E; or
(c) An< Bn and Bn- An< E.

Since {An} is a Cauchy sequence, given any E, find
ps (E) so that EoL(E)S E/4. With this E, (g) there
exists a p(Epl(E)) such that for all n>p(Ep1(E)) one

of the follawing is true

(L) A= A or
(2) A A and An- Ap< Ep;(E)’ or
(3) A< AL and Ag- A< Epl(E).

From the construction of [Bn} and [Cn] we know

that for any n we may choose an E_ and find p(E )
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such that for all m>p(En) the following are true
(1) Bn< Ap< Cp and

(2) A= Bn< 3En'

The proof for (2) will be given below.

Since {An] is a Cauchy sequence, given any En'
there exists a p(En) such that for all m>p(En), one of

the following is true

(1) Ay= Ap(En)z or
(2) A Ap(En) and A - Ap(En)< En! or
(3) A< Ap(gn, and Ap(En)- A< E .

Thus the proof is by cases., -

Case 1: A = Ap(En). Ay > Bn' Then

Amﬂ Ap(En) > Ap(En) - 2En = Bn and Am - Bn = 2En < 3En.
Case 2: Am > Ap( En) and Am- Ap( En)< En,
Am > Bn.

Thus the following are true,

Ap(En) + En ) Am > Bn = Ap(En) - 2En-
Hence, (Ap(En)+ En) - B = (Ap(En)+ En)-(Ap(En)— ZEn)-3En.

Adding and simplifying,
(Ap(En)+ E)) = B+ B+ A< 3E+ (Ap{Em)+ E ) + B
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(Ap(En)+ E ) + A, <3E + (Ap(En)+ E )+ B,
Cancelling (Ap(En)+ E ) and simplifying,
Am"' Bn< 3Enu
Case 3: Am< Ap( En) and Am- Ap( En)< Ena Thus

the following are true,
Ap(En) > A > Ap(En) -E >B..
Since Ap(En)' Bn- 2En. by adding and simplifying,
Ap(En)- B, + Ay + B <2E + Ap(En) + B,
then cancelling Ap(En) and simplifying,

A- B <2 < 3E. Thus for all m>p(E),
A~ B, < 3E..
For any n>p;i(E) we may choose an En and pick a
P(En) such that for all m>p(En) it is true that
Ap- B,< 3E . But for all n>py (E) the following
inequalities are true
E, <E

p1(E) < E/4.

Hence, for all n>py(E ) we may choose an E, and pick a

p(E,) such that for all n>py(E), A - B < 3E < 4E; (g)< Ee

Thus with p(E) the maximum of p;(E) and p(Eple))’
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for each n>p(E) choose an m>p(En) and the following

cases arise.

Case 1t Ans A Since A > Bn and A - Bn<35n.
by substituting equals, An> Bn and An-Bn< 3E < 3Ep1(E)<E,

satisfying condition (A).
Case 2: An> Am and An- Am< Epztﬁ)' Since

Am> Bn and Am- Bn< BEn, then An> Am> Bn and
(An- Bn) = (Am- Bn) + (An— Am) < 3E < 3Ep1(E) < E,
satisfying condition (A).

Case 3: An< Am and Am- An< Ep;(E)' Since

Ay Bn and A - B < 3En, then from the Tricotomy Law the

following are true.
Subcase 1: A = B . Condition (A) is satisfied.
Subcase 2: An> Bn. By adding and simplifying,
(Ap- B )+(A - A) + 24 +B < 4.,(E) + 2A, + B,
2Am + An < 4Ep1(E) +2A +B..
Cancelling 2A  and simplifying, A - B, < 4EP1(E)< E,

satisfying condition (A).
Subcase 3: A< B . The proof will be omitted since

it is similar to Subcase 2.
Thus we have shown that given any E, there exists a

p(E) such that for all n>p(E) one of (A), (B), or (C)
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is satisfied. Therefore, {An} ~ [Bn}. By Theorem 118;

if (A} ~{8}, {8} ~{C}, then {A} ~ {cn} and the

theorem is proved.
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S

Rational Secs and Integral Secs

Definition 48: A sec is called a rational sec if it
contains a sequence of the form R®, The rational sec

containing R® will be denoted by R*.

Definition 49: A sec is called an integral sec if it
contains a sequence of the form x°. The integral sec con-

taining x° will be denoted by x*.

Theorem 189: If X% > YO, or X0 ~YO, or X° < YO,
then X* > Y*, or X* = Y*, or X* < Y*, respectively and
conversely.,

Proof: I) 1) If X° > Y%, then by Definition
41, X* > Y*,
2) If X° ~ YO then clearly X* = Y*,
3) If X% < Y% then by Definition 42,
X* < Y*,
II) The converse is obvious, since the
three cases are, in both instances, mutually exclusive and

exhaust all possibilities.

Theorem 190: X* + Y* = (X + Y)*,
X* Y* = (XY)*,
Remark: Thus, the sum and the product of two

rational secs are themselves rational secs.
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Proof: 1) By Theorem 132, X% + Y%=(X+Y)©,

2) By Theorem 144, X°Y° = (xY)°,

Theorem 191: The integral secs satisfy the five
axioms of the natural numbers, provided that the role of
1 is assigned to the sec 1* and that the role of succes-
sor to the sec x* is assigned to the sec (x')*; that
is, (x*)' = (x")*.

Proof: Let 3* be the set of all integral
Secs.
1) Certainly 1* belongs to 3 *.
2) Fer every x* in 3*, the sec (x*)!
is also in }.*.
3) This successor is always different
from the sec 1*, since x' # 1,
xt & 1,
(x*)° 19,
(x')* » 1%,
4) If (x*)'= (y*)', then x* = y*,
(x')*= (x*)' = (y*)' = (y')*
{x")% ~ (¥")?,
x'=y',
X =Y
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8) Let a set M * of integral secs have
the following properties:
I) 1* belongs to 7 *,
I1I) If x* belongs to 7 *, then so
does (x*)'.
Furthermore, denote by Wf the set of all x for
which x* belongs to [*. Then 1 belongs te 7, and for
any x belonging to 7, its successor also belongs to 7.
Therefore, every integer belongs to QQ » 80 that every

integral sec belongs to 7 *.
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CHAFTER III

SECS AND CUTS

In order to establish the existence of the irrational
numbers, let us establish a one-to-one correspondence be-
tween our secs and Landau's cuts. By doing this, we will
prove that our system of secs includes irrational numbers

as well as rational numbers.

Theorem 192: The following rule sets up 2 one-to-one
correspondence between the collection of all secs and the
collection of all cuts as defined by Definition 28 of
Landau.

Rule A: For any sec a, a number Z is in the
cut corresponding to « if and only if for every one of
the sequences in o, there are at most a finite number of
terms of the sequence less than Z.

Before proceeding to the proof of Thecrem 192, let us
show that the follewing rules are equivalent to Rule A;
that is, every number which satisfies Rule B or Rule B!
also satisfies Rule A; if Rule B or Rule B! is not satis-
fied, then Rule A is not satisfied.

Rule B: For any sec a, a number Z is in the
cut corresponding to « if and only if there is a strictly

increasing sequence {A } in a and an integer n, such



that Z SvAno'

Rule B*: For any sec ¢, a number Z 1is in the
cut correspondina to a if and only if for every strictly
increasing sequence {An} in o there is an integer no
such that Z £ Ano'

Lemmg 3t Every number satisfying Rule B satis-
fies Rule A and every number not satisfying Rule B does not
satisfy Rule A,

Proof: Let us do the second part first; that
is, any number which does not satisfy Rule B dces not
satisfy Rule A. Let Y be any number which does not
satisfy Rule B, then Rule A is also not satisfied; for a
strictly increasing sequence {An} in a, whose existence
is guaranteed by Theorem 188, has more than a finite number
of terms less than Y; in fact, every term of {An] is
less than Y.

For the first part of Lemma 3, let Z be a number
which satisfies Rule B; we must show that Z also satis-
fies Rule A, If Z satisfies Rule B, then Z Ano for

some ng, where {An} is a strictly increasing sequence in
a. Let {Bn} be any sequence contained in a. Take
E = l/Q(An°+l- Anola with this E, there exists a p(E)

such that if m>p(E), it is true that
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(1) Am= B, or
(2) Ay> By and A - B <E; or
(2) A< B and B~ Ap< E.

Then for all m>p(E), m > ng, the following inecuality is
true;

Z_(_An‘)(Am"’E(Bmo

Hence we have shown that there are 2t most a finite number
of terms of any sequence of o less than Z. Thus the
Lemma is proved.

The proof of Lemma 3 also proves any number satisfying
Rule B! also satisfies Rule A and any number not satisfying
Rule B! does not satisfy Rule A, Therefore, Rule A and
Rule B! are also equivalent. Also, since Rule B is equiva-
lent to Rule A, Rules B and B! must be equivalent, so that
any number satisfying one also satisfies the other. Hence

we may use either of Rules B or B! interchangeably.

Let us now return to the proof of Theorem 192,

Proof: We must show that a set of rational
numbers satisfying Rule A constitutes a cut; to this end,
we must show that

1) It contains a rational number, but does
not contain all rational numbers;
2) Every rational number of the set is

smaller than every rational number not belonging to the
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set;
3) It does not contain a largest rational

number.

For the proof of 1), the set does contain a number;
for by Lemma 3, we are able to determine a lower number for
the cut, for instance A;, the smallest number in any
strictly increasing sequence contained in o (existence of
strictly increasing sequence in « is by Theorem 188).
And by Lemma 3, this number must also satisfy Rule A, For

an upper number for the cut, consider {Cn} a strictly

decreasing sequence contained in a; then C; 1is an upper
number for the cut since C; 1is greater than an infinite

number of terms of {Cn} and hence does not satisfy Rule

A,

2) Every number not belonging to the set is
larger than every one belonging to the set, for every X,
a lower number, and Y, an upper number, one of the follow-
ing must hold; X 2 Y, or X <Y. If X2Y, and X
satisfies Rule A, then Y must satisfy Rule A, which it
does not. Therefore, X <Y, as was to be proved.

3) To show that our set does not contain a
largest rational number, let X be in the set and consider
a strictly increasing sequence n contained in a. Then,

for some ng, the following inequality is true:
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B, S X < By

But by Landau's Theorem 91 we may find a number Z which

lies between X and Bn0+1. Hence Z > X and Z satis-

fies Rule B, But by Lemma 3, Z must also satisfy Rule A.
Hence we have shown that Rule A gives us a cut correspond-
ing to a given sec.

Obviously any cut corresponding to a given sec is iden-
tical with any other cut corresponding to that same sec,
hence the corresponding cut is unique.

Conversely, to show that there exists a sec correspond-
ing to a given cut, let us find sequences which will be in
the corresponding sec. We observe that two rational num~
bers can always be found, one of which is a lower number
for the cut and the other an upper number for the cut; and
such that their difference is numerically less than a given
arbitrarily small rational number E, (Landau's Theorem
132). Let A be a lower number and D be such that
D < E. Then of the numbers A + D, A+ 2D, ... , A + rD,
eee there must be a last one A + rD which is a lower
number, for A + nD may be made as large as we please by
taking n large enough; the next number A +(r + 1)D is
then an upper number; and these numbers A + rD,

A + (r + 1)D whose difference is D < E, are the two num-
bers required. Moreover, if B is an upper number, the

two numbers may be so determined that both lie between A



78
and B; for we need only take D to be of the form
(1/s)(B-A), where s is an integer so chosen that
(1/s)(B-A)< E.

Given E=1, determine A; a lower number, and Az an
upper number for the given cut, so that Ag-A;< E;; next

take Ag a lower number, and A4 an upper number so that
Ag= Ag< Eg = 1/2; and such that As, A, both lie between

Ay and Ag. Proceeding in this way, we can determine

A2n-1' A2n rational numbers of different classes, so that
Aon = Aopoy < B, = U/,
then either of the sequences {A,, As, ...}. {Ag. A4. ...}

belong to the sec corresponding to the given cut. To prove

this, we must show that {A2n-1}' {A2n} are Cauchy sequen-
ces. To this end, we will show that {A2n}, {Azn_l} have

lower bounds and that given any E there exists a p(E)
such that for all n>p(E) the following are true

(1) A2n+1 > A2n-1 and A2n+1- A2n-1< E; and
(11} Agn > Agnea Wl Age = Aaasg < Bs
For a lower bound, by the construction of {A2n} and
{A2n-1} the term A; of the sequence {A2n—1} is less

than all other terms of both sequences. Given any E, to

find a p(E), find an Eno- 1/no such that E,< E and
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take p(E)= no. Then for all n>ng it is true that

Apnel = Aopne1 < Agp = Agply < 1/n < 1/no < Ej and

But these are just conditions (I), (II); hence {Aan}.
{A2n-l} are Cauchy sequences.
Also given any E, find En1= 1/ny such that En1< E

and find p(E) as above. Then with this p(E) for all
n>p(E) it is true that
Ay

n = Agn.y < E for any choices of Ay, Aon-1

as prescribed. Hence the sequences are tantamount and are
contained in the same sec.

We must show that the sec constructed above will, when
Rule B is applied, correspond to the given cut. Let us
examine X, a lower number, and Y, an upper number for
the cut with regard to Rule B.

If {Azn_l} is a strictly increasing sequence of lower
numbers contained in our sec, we must show that X < Adne-1

for some ng, and that Y does not satisfy Rule B.

1) If X is a lower number, we may find X;,
also a lower number, where X; > X and 1/ng < X3 = X.
Then X + 1/no is a lower number, and for the same no,

A2ng-1 * 1/no is an upper number, since A2no” A2n0_1<1/ho

for all ng (A2n° is an upper number). Hence the
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following inequality is true;

X 4+ 1/ng < A2n0_1 + 1/ng for some ng.
Cancelling 1/ng, X < A2n0-1 for some ng; hence every

X 1is a lower number for the cut corresponding to the sec
constructed from a given cut.

2) If Y is an upper number for the given cut,
then Y > A2n-1 for all n, and Rule B is not satisfied,

hence every upper number for the given cut is an upper num=-
ber for the cut corresponding to the sec constructed from
this given cut.

We have thus shown that given a sec, there is a corres-
ponding cut and conversely. We must now show that the cor-
respondence is one-to-one; that is, given « # B, the
corresponding cuts, &, <, respectively, are such that

6 ¢ g, To this end, if « # B, this means « > B, or
¢ < . Let us examine the case o > B. If a > B, by
Definition 41, every pair of Cauchy sequences, ¥ strictly
increasing in o3 1n, strictly decreasing in B and such
that € > n. If ¥ > n, there exist E and p(E) such
that for all n>p(E), A - B 2 E. Pick an no>p(E), then

A « By Theorem 91 of Landau, we may find a Z such

no” Bne

that An°> Z > Bno' Now Z 4is a lower number for =3

since there is a strictly increasing sequence {An} in «
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and an no such that Z <A . And for all n > no >p(E);
Z > B, , hence {Bn} has an infinite number of terms less

than Z, therefore Z does not satisfy Rule A and is an
upper number for <. Thus there exist lower numbers for
which are upper numbers for <} therefore, €6 > 1t and
6 # t as was to be proved. The case a < 8 1is proved

similarly.

Theorem 193t The ordering of secs and cuts is pre-
served by the one~-to-one correspondence of Rule Aj; that
is, if a > B, or a =8, or a < B, then the correspond-
ing cuts & , v are such that 6 < ¢, or 6 =, or 6 < 7,
respectively, and conversely.

Proof: 1) If a > B, then by the proof in
Theorem 192 that the correspondence of Rule A is one-to-one
we may fihd lower numbers for ¢ which are upper numbers
for <t} therefore & > 7.
2) If a =B, every lower number for
is a lower number for 1 and every lower number for =
is a lower number for ¢ § therefore, ¢ = ¢,
3) If a<pB, then B > a,
hence, by 1) <t > & ,
6 < 7.
Conversely, the three cases are, in both instances,

mutually exclusive and exhaust all possibilities.
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Theorem 194: The operations of addition and multi-
plication are preserved by the one-to-one correspondence of
Rule A3 that is, given a, B and their corresponding cuts
& , ©, respectively; a + B corresponds to & + 7, and
a 8 corresponds to & T«
Proof: Given a, B and their corresponding
cuts 6 , T, we must show that the cut corresponding to
a + B consists of numbers of the form X 4 Y, where X
is a lower number for 6 and Y is a lower number for
Te
1) Let Z be in the cut corresponding to
a 4+ B. Then, Z satisfies Rule B! for all strictly in-
creasing sequences in a + 3. Let us examine the following

sequences; {An}. strictly increasing, in aj {Bn},

strictly increasing, in B, both constructed by Theorem
188. Then {A_ + Bn} is in a + B. Since Z satisfies
Rule B! for the strictly increasing sequence {An + Bn}

of a + B, then for the sequence
A1 + B:. A' + Bl. ese An + Bn, see S.tiSinng
Al + Bi( A’ + Ba( ees € An + Bn< eese there

exists some ng such that

Z S AL+ B

Since Z < Ano + Bno’ certainly one of the following

cases is true;
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In either case we must show that Z = X 4+ Y, where X is
a lower number for ¢ and Y is a lower number for <.

Case 1: An°< Z< Ano + Bno' Certainly Ano is a

lower number for 6 , since Ano £ Ano for all ng, satis-

fying Rule B, And Z - Ano is a lower number for =

since Z - A < B for some ng. Thus, Z = An°+(Z-Ano)

No

where Z satisfies Rule B and 2Z=(X + Y), where X= Ano
and Y=(Z - A_ ).
0
Case 2: Z £ Ano‘ If L 1is a lower number for

©, Z2>L, Z~-L 1is a lower number for < since

Z-LK A,, for some no. Hence Z=(2-L) + L where Z

satisfies Rule B and 2Z=(X + Y), where Y=L and
X=(z - L).

Thus every number Z in the cut corresponding to
a+B is an X + Y, where X is a lower number for

and Y 1is a lower number for ~.

2) If Z is in & + <, then Z=X+Y, where
X 1is a lower number for € and Y is a lower number for
T. We must show that Z 4is in the cut corresponding to

a +B. Let {An} be a strictly increasing sequence in a,
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{B,} a strictly increasing sequence in B, then if X is
a lower number for o~ , there must be some n3; such that
X £ An1 and if Y 1is a lower number for <, there must
be some ng such that Y £ Bn’.

Certainly the sequence {An + Bn} is contained in

a+ B8 and

A1 +Bl <A3+B’<.oo< An"'Bn( see o If we

choose ng to be the maximum of ny and ng, then

Z=X+YX Ans + Bn;' and Z satisfies our Rule

B and is a lower number for the cut corresponding to a+B.
Hence the cut ¢ + ¢ and the cut corresponding to
a + 83 are the same cut, which is what we wished to prove.
Therefore, a + B corresponds to o + <.
The proof that aB corresponds to & xt 1is quite

similar to that given above and will be omitted.

Theorem 198t The one-to-one correspondence of
Theorem 192 preserves the correspondence between the sec 1
and the cut 1 and also preserves the operation of successor
between integral cuts and integral secs.

Proof: For the first part, we must show that
the sec 1 corresponds to the cut 1. Given sec 1, apply
Rule B to determine the corresponding cut. That is, if we
have a strictly increasing sequence contained in 1* and

constructed by Theorem 188, Z is a lower number for the
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cut if there exists an no such that Z < Ano' Thus the

cut determined has as lower numbers all rational numbers
<1, since for all n it is true that Z ¢ An <1l. And
the upper numbers will be all rational numbers 2> 1, since
certainly the strictly increasing sequence is such that

there does not exist an ng such that 1 < Ano‘ And this

cut is clearly the cut 1.

Similarly, given any integral sec a and its corres-
ponding integral cut x, we will show that the cut corres-
ponding to the successor of « is the successor of x.
With o', apply Rule B to determine the following cut;
all rational numbers < x' are lower numbers and all
ratisnz! numbers 2 x' are upper numbers. This cut is
clearly the cut which corresponds to the number x'. But
by Landau's Theorem 156, for a given integral cut x we
may determine its successor, (cut x)', which is the cut x',
hence the cut x' is the successor of cut x. Thus the
theorem is proved.

In order that the one-to-one correspondence between
secs and cuts gives a correspondence between every sec and

every cut, let us make the following definition.

Definition 50: For a given cut which has no smallest
upper number, define the corresponding sec to be an

irrational sec. The irrational secs will be called
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irrational pumbers just as the rational secs have the name

rational

With

cuts and

cuts and

rational

number attached to them,

Definition 51 the following correspondences hold;
1) The integral secs correspond to the integral

vice versa (by Theorem 195);

2) The rational secs correspond to the rational

vice versa (rational secs are defined in terms of
numbers ) ;

3) The irrational secs correspond to the irra-

tional cuts and vice versa (Definition 51).

Thus

numbers,

our system of secs includes not only the rational

but the irrationals as well.
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CHAPTER IV

CONVERGENCE AND LIMITS

From the system of rational numbers we were able to
construct the system of secs which enabled us to extend our
number system to include the irrational numbers as well as
the rationals. Now let us examine the system of secs to
see if it can also be extended by the same procedure. To

do this, let us consider a secquence of secs.

De ition 51l: A sequence of secs [an] ={u1, cees G

«es} 1is called a Cauchy sequence, if there is a rational

sec N such that o 2N, (n=1, 2, ...) and for every

rational sec E (E arbitrarily small), there is an inte-
gral sec p(E) such that for every pair of integers
m,n>p(E) one of the following is true.

(1) Q= Qs or
(2) an> Sm and an= um< E; or
(3) a < ap and g~ a < E.

Definition 52: Two Cauchy sequences of secs, [an} and

{By}, are tantamount (in symbols,{c } ~ {p }) if for

every E, there is a p(E) such that for all n>p(E) one
of the following is true.
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(1) o= B or

n
(2) o> B, and o - B <E; or
(3) o <B, and By~ an< Eo

Otherwise, {an}qb {Bn}.

Theorem 196: {an} oo {an}.

Proof: Given any E, take p(E)=1, then for
all n>p(E)
(1) (1=Gnt

Theorem 197: If [“n}"{ﬁn}' then {5n}~{an}.

Proof: Suppose {an}~{5n}; given any E,

there exists a p(E) such that, for all n>p(E)

(1) ¢ = B3 or
(2) «.> B, and a - B,< E; or
(3) o <B, and By~ ¢,< E.

But these cases are equivalent, respectively, to

(1) B, = aps or
(2) Bn< ©p and e = B, < E; or
(3) Bn> and B~ ¢n< E.

Therefore, [Bn} ~ {an}.

Theorem 198: If f{a }~{p }, {p,}~{v,}, then
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Ian] i {Tn}o
Proof: The proof is analogous to the proof of
Theorem 118.

By Theorems 196 through 198, all Cauchy sequences of

secs fall intec classes, in such a way that
(o} ~ (B}

if and only if [an} and {En} belong to the same class.

Definition 53: A sequence {an}-{ag. og, ...} of

secs will be said to converge to a limit sec ae (in

symbols, a - to) if and only if given any E, there is

a p(E) such that for all n>p(E) it is true that

(1) a = co or
(2) un> Go and ap= 6o < E; or
(3) Gn< Go and g = cn< E.

Theorem 199: Every convergent sequence of secs is a

Cauchy sequence; that is, if ¢ =+ ug, then there exists

an N such that o 2N for all n and given E, there

is a p(E) such that for all m,n>p(E) it is true that

(1) a = a3 or

(2) an> . and ap= am< E: or
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(3) a < oy and o - a < E,
Proof: If ¢, = do, to find an N such that
¢, 2N for all n, proceed as follows; given E=1/2 ag,
there exists a p(E) such that for all n>p(E) one of

the following is true

(1) 0 = Gos Then ap = E < co<a,3 or
(2) o> qo and ¢ = ap < E. Then
ap = E < g < i or
(3) a < ag and go - ¢ < E. Then
ao - E< o < ap. Hence all terms for n>p(E) have
ap - E=1/20p as a lower bound. For a lower bound for
all n, pick N to be the minimum of a3, «es , 45(E)
and 1/2a9. And given any E, there exists a p(E/2) such
that for all n>p(E/2) it is true that
(1) a = ao or
(2) a,> co and a,- oo < E/2 < E; or
(3) a < ao and  @p - o < E/2 < E,

Then, with m,n>p(E/2),

Case 1: a =

uﬂ
n. “m

. Case 2: o=

the following cases arise:

Goy G= oo By logical equality,

satisfying Definition 28, (1).

a0, @p”> 6o and o - ag < E/2 < E.
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G = Go gives a > a and a - un< E, satisfying Defini-

tion 28, (3).

Case 3t a = ap, ¢ < ag and ago = o,< E/2 < E.
G = Go gives an> a_ and Q.= am< E, satisfying Defini-

tion 28, (2).

Case 4: un> ap and a,= %o < E, G = Goe

.= ao gives un> G, @and a- G < E, satisfying Defini-

tion 28, (2).

Case 5: an< ap and ap - an< B, 0= Go.

Gn= Go gives um> an and C® un< E, satisfying

Definition 28, (3).

Case 6@ un> ag and o = Co < B; um> ap and

a .- ao < E. The proof is by subcases;
1) Suppose a > a > ao.
Adding and simplifying

o = (un- Go) + co <E + a

n m’*

therefore, « - a < E, satisfying Definition 28, (2l
2) Suppose &, am> adge Satisfies
Definition 28, (1).

3) Suppose am> un> Gge

Adding and simplifying

u'(um-uo)‘*ﬂ.o(E“'Q

m ne
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therefore, o - ¢ < E, satisfying Definition 28, (31s

m

Case 7: un< cg &and ap - An< E. o, ap
and qg - am< E. The proof is Case 6 with the inequality

signs of the subcases reversed.

Case 8: un> o and @ = ap < E/2. ¢ < do

and ap = @ < E/2. From the inecualities; un> Go > Gy,

therefore an> G

Adding and simplifying; (a -ao)+(co=ay)*a < E/24E/2+ a .

Therefore, an> G and Gn- am< E, satisfying Definition

28' (2).
Case 9: an> ap and ag = @< E/2. «n< do
From the inequalities; um> ag ? oo therefore um> 3

Adding and simplifying; (um-ao)+(ag—un)+un< E/2+E/Q+an.

Therefore, ¢n” G and g un< E, satisfying Definition

28, (3).

Hence in every case the sequence {an} is a Cauchy

sequence and the theorem is true.

Iheorem 200: Every Cauchy sequence of secs has a
limit.
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Before geing on te the proof of Theorem 200, let us
discuss ideas and notation which will be useful in proving
Theorem 200, First of all, since each sec is composed of
all sequences which are tantamount to a given Cauchy se-
quence, we may choose any one of these Cauchy sequences to
represent our given sec. But each of these Cauchy se-
quences may in turn be approxamated by its mth term.

Since this is the case, with a small E, we expect p(E)
to be large and all n>p(E) to give a better and better
approxamation for the sec as p(E) gets large.

Also to be used in Theorem 200 is the following nota-

tion: Anm' A rational number which is the nth term of a

Cauchy seguence contained in the mth sec of a Cauchy se-
quence of secs; that is, the first subscript is the number
of the term of the sequence and the second is the number of

the sec that the sequence is contained in.

Proof: Let [un} be a given Cauchy sequence

of secs., We must show that there is some sec ag such
that given any E, there exists a p(E) such that for all
n>p(E) one of the following is true

(1) = G, or

(2) a > ay and a -8, Ej or
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and a

0" Un< El

Let us examine fun} term by term. That is, since
each term is 2 sec, by Theorem 188 we are able to construct

strictly increasing secuences contained in each sec. Let

us proceed as follows; since {un} is a Cauchy seauence

cf secs, there is a rational sec N such that G 2N for

all n. Hence u > N/2 for all n. But N/2 contains

the constant sequence (N/2)% {N/2, N/2, ...} (here N
is a rational number) and this sequence will be chosen to
represent the sec N/2. As our first representations of

the an's. choose any strictly increasing sequence as

follows:
V,y = {911. Bpyys eee s B gy srs) IR Bes
2V, = {312, Boos eee 4 B os eee} in o0z, and
continuing for each n,
Vp = (Byps Bops eee s By eee} in a.
Since for all n it is true that a > N/2, then with

the 1/n’s as representatives of the un's and with (N/2)°

as the representative of N/2 it is true that 7/ >(n/2)°,
But this means there exist En and p;(En) such that for
all m2 pa(E ), By > N/2.

Let us define as second representatives for the un's the
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following secuences:

Ci’ {Cll’ C2‘|.’ eea g Cn+1.1’ o.o} W}-nere

€11 = Boy(e), 10

c = B

21 © Tpy(Ey 41,10

.

Canl1 * Boyim,jen, 1

Similarly, with C B

- pz(Em)+m:n define the following
sequence for a renresentative of Gt
(n= {Cln! C2ng es e g3 Cm+l.n’ ...} Where

Cln = Bpl(En),n

Cavl,n = Bp;(Em)+m.n'

L]
L]

-

Hence we have the following strictly increasing sequences:

t’,’ {Cll' c21| see C 1°* o-o} in G1s

n
C'g [012. c22, sse an. oo.} in ag, and

continuing for each n,



Cn‘: {Cln' Czn. ees cnn’ .l.} in C‘.no

And since the un's are Cauchy sequences, the fcllow=

ing are true: wi.h Eg=1, there existe a pg(E;) such
that for 2ll m,n> pe(E;) one of the following is true

(1) € ,=C. 3 or

(2) ¢,;>C,; and C 1=Coi<1; or

(3) ¢,,<C,; end C ,-C <1, And
continuing this process for each k, with Ek=-= 1/k there
exists a pa(Ek) such that for all m,n 2 pg(Ek) one of

the following is true

(1) Cnk™ Cmks  ©F

(2) Cok” Cm  @nd  C o= Cp < 1/k; er
(3) Cx<Cpy and C,=-C, < 1k,
Hence as our final representatives of the an‘s we
define the following sequences:
3= {A)1s Apys eee o Ajps ees] where
A117 Cpa(Ey),10

A21% Cpa(Ey)+1,1°

An1= Cpg(Ey)+3,1°



Similarly, with Akk= Cpe(Ek)+J.k define the feollowing

sequence for a representative of :

“k
Ekg {Alkp Azkg see 3 Akk’ t..} where

An = Cpe(E, ),k

A2n = Cpa(E, )41,k

Hence we have the following strictly increasing sequences:

El‘ {All' Azll see g Anl. ..a} 1“ 01,
E” {Al2' A22. sew 9 An2' ..o} in ag, and
continuing for each n,

fhl {Aln. A2n. ses Anng .l.} in Qno

From this set of representatives of the an's choose the

following sequence; Ep= {All’ A22, sun iy Ann' ...}.

We shall show that Y, is a Cauchy sequence and hence

it is contained in some sec wg. Also we shall show that
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co 1is the limit of our given Cauchy sequence of secs.

To show that [Ann} is a Cauchy sequence we must show
that {Ann} has 2 lower bound and that given any E,

there exists a p(E) such that for all m,n>p(E) one of
the following is true
(1) A =A_; or

nn
(2) and A L Amm< E; or

Ann> Amm n

(3) A< A and Apm~ Apn< Ee

First, we have a lower bound by construction since

Ann> N/2 for all n. Next, we must show that given any

E, there exists a p(E) such that for all m,n>p(E) con-
ditions (1), (2), or (3) are true. By the hypothesis,
given any E, there exists a p3(E/3) such that for all
m,nd>p1(E/3) one of the following is true

(1) Up= aps or
(2) an> C and - a, < E/3; or
(3) a < ap and B" an< E/3.

But these three conditions for secs translate into the
following conditions since we may choose any sequence as a
representation for our secs:

(1) § ~ s or

(2) £E> L and E - &< (E/3)% or
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- 0
(3) £ <€ and g =& < (E/3)9,

With a particular m,n the following conditions are a
consequence of the above conditions since we may approxi-
mate a sequence by its kth term. That is, there exists a

pa(E/3) such that for all k>pa(E/3) one of the following

is true
(A) A= Aggs or
Aen” Ap and Arn= ArmS E/3; or
Akn< A, @and Akm' Akn< E/3; or
(B) Akn> Akm and Akn- Akm< E/3; or
(C) Akn< Akm and Akm— Akn< E/3.

But conditions (B) and (C) imply condition (A), so for all
k>pe(E/3) condition (A) is a consecuence of the original
conditions on the given Cauchy sequence of secs.

With our given E, find k so that 1/k< E/3, choose
p(E)=k, then for m,n>p(E) there are 27 cases which arise
in showing that Eo 1is a Cauchy sequence. Following will
be given a proof for one of the cases with the remainder of
the cases omitted since the proofs are similar.

Case 13 A > A and Ann~ Axn 1/k< E/3,

Aen< Aym  2nd Aen~ Axm< E/3,

Ao Apn  2nd Apn= App< 1/k< E/3.
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From the Tricotomy Law it follows that

(1) An Apmi  OF

(2) AL> AL or
(3) Ann< Apme

We must show that the inecualities of the Cauchy condition
are satisfied in subcases 2 and 3 above.

Subcese 1t Aow Boo Definition 28, (1) is

satisfied.

Subcase 2: Ann> Amm'

By adding, simplifying, and Lemma 1,

Ann+ Ammsf(Ann' Akn)+ Akn]+[(Akm' Akn)+ Akn]*(A

)

mm~Akm

<E+ Amm + Amm'

Cancelling Amm and simplifying, Ann' R E, satisfying

Definition 28, (2).

Subcase 3: Ann< Anm® The proof is similar to

that of subcase 2 hence will be omitted.

With the proof of all cases the sequence &¢ is a
Cauchy sequence.

Certainly %o 4is contained in some sec, say ag, for
we may tezke all secuences tantamount to Ep for our sec.
We wish to show that ag 1is a limit to our given Cauchy
sequence of secs. Below we will show that given any E,

there exists a p(E) such that for all m,n>p(E) one of
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the following is true

(A) Apn= Apmi  OF

(B} Amn> Amm and Amn' Amm< E: or

(C) Ap <A, and A -A <E,

From these conditions we may deduce that given any E,
there exists 2 p(E) such that for all n>p(E) one of

the following is true

(1) o= Go} or
(2) « > ao and a - ao < E; or
(3) un< Go and o= an< E.

If one of (1), (2), or (3) happens for all n>p(E), then
our given Cauchy sequence of secs has ap as a limit.

To show that one of (A), (B), or (C) happens, let us
begin as follows; since &¢ is a Cauchy sequence, given
any E, there exists a p;(E/2) such that for all
m,n>ps (E/2) one of the following is true

(1) A

nn~ Aom? ©F
(2) A Agn  2nd Ann~ Aam< E/2; or
(3) A< A and Apm™ Ann< E/2.

And from the proof that %o 1is a Cauchy sequence we have

that (n is such that for all i,i one of the following

is true
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(1) A, =A

in jn; o

(2) Asn” Agn and Ain= Agn< 1/n; or

(3) Aj,< A and Ajn- Ayn< 1/n.

jn
Take pg(E/2) > 2/E, then for each n>pa(E/2), choose
i=n, j=m, then one of the following is true

(1) Apn= Apnd O

(2) A > AL and A - A <1/n<1/ps(E/2)<E/2;
or

(3) A < A and A - Ann<1/h<1/p.(2/2)<a/2.

Take p(E) to be the larger of p3i(E/2) and pa(E/2).
With this p(E), for all m,n>p(E), one of the following
cases arises.

Case 1: Ao n® Ayt Annz Apne Certainly Amm=Amn'

satisfying condition (A).

Case 2: Ann= Amm’ Ann> Amn and Ann-Amn<E/2 <E.

Substituting equals, Amm> Amn and Amm' Amn< E, satis~

fying condition (C).

Case 3: Ann= A Ann< Amn and Amn-Ann<E/2 <E.

Substituting equals, Amn> A, and Amn' Ap< E, satis-

fying condition (B).

Case 4: A > A__ and Ann-Amm<E/2 <E, A_=A_ .

< E,

Substituting equals, Aoo” Dam ond A = A
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satisfying condition (B).
Case 5: A <A o and A - Ann< E/2 < E, Ao Aun®

Substituting equals, A > Amn and A_ = A < E, satisfying

condition (C).

Case 6: A_ > A . and Koom Bl E/2, Ann® Amn and

Aoow A% E/2. From the Tricotomy Law the proof is by

subcases.

Subcase 1: A=A . Condition (A) is
satisfied.

Subcase 2: A > A . Adding and simpli-
fying,

(Ann' Amm)+(Ann' Amn) i 2Amn <E/2 + E/2 + 2Ann’

hence, A

an~ Amm< E» and condition (B) is satisfied.

Subcase 3: The proof will be

Amn< Amm"
omitted since it is similar to Subcase 3.

Case 7: Ann< Ay Ond A~ Ann< E/2, A < Amn and

R R € E/2. The proof will be omitted since it is simi-
lar to Case 6.

Case 8: An” Anm 3nd A = A< E/2, AnS Ap, and
Amn' A< E/2. From the inequalities, Amn> Arm®
Adding and simplifying, (Ann- Amm)+(Amn- Ann)<E/2+E/2 = E,

hence, A > A and Ain- Apn< Es satisfying condition (B).
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Case 9t A <A and A - A < E/2. AL> AL

and A - A < E/2. The proof will be omitted since it is

similar to Case 8.

Hence for all m,n>p(E), one of conditions (A), (B),
or (C) is true and from these conditions we have deduced
that ap is a limit for our given Cauchy sequence of secs.

Thus the theorem is proved.

Theorem 201: Every equivalence class of Cauchy se-
quences of secs contains a constant Cauchy sequence of
secs.,

Proof: Given any equivalence class of Cauchy
sequences of secs, we must show that any sequence of this
class is tantamount to a constant Cauchy sequence of secs.

Let {an} be any element of the equivalence class. By

Theorem 200 we know that there is some sec ag such that

a, < ao; that is, given any E, there exists a ps(E)

such that for all n>py(E) it is true that

(1) 0= do} or
(2) @ > ao and @ - a0 <E; or
(3) a < do and wo - o < E.

Consider a secuence {Bn} in which B = ae for all n.

It is a Cauchy sequence of secs, for given any E, we may

take pa(E)=1 and, for all m,n>pg(E), it is true that
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(4) B.= ao = Bpe
We must show that {un}~{Bn}; that is, given any E, there

exists a p(E) such that for all n>p(E) it is true that

(3) a=pg,s “or
(6) o« > B, and a = P,< E; or
(7) o < B, and Bh~ ¢n< Eo

But conditions (5), (6), and (7) are immediate consequences
of conditions (1)-(4). Thus p(E) may be taken as the
maximum of p3(E) and pa(E).

From the system of rational numbers we constructed the
system of secs which extended the rational number system to
include irrational numbers. In trying to extend our system
of secs by the same procedure (Cauchy sequences of secs),
Theorems 200 and 201 show that the system of secs cannot be
extended in this way. Hence, let us make the following

definition.

Definition 54: The secs will henceforth be called
"positive numbers"; similarly, what we have been calling
"rational numbers" and "integers" will henceforth be called
"positive rational numbers" and "positive integers",

respectively.

These positive numbers will also be called the positive
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real numbers. These real numbers are then equivalence

classes of Cauchy sequences of rational numbers.
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