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Abstract: In the 1990s, Bartlett and Youd introduced empirical equations for predicting 6 

horizontal displacement from liquefaction-induced lateral spreading; these equations have 7 

become popular in engineering practice.  The equations were developed by multilinear 8 

regression (MLR) of lateral spreading case history data compiled by these researchers.  In 2002, 9 

these equations were revised and updated to include additional case history data.    The 10 

regressions indicated that the amount of horizontal displacement is statistically related to the 11 

topography, earthquake magnitude, and distance from the seismic energy source; and, the 12 

thickness, fines content, and mean grain size of the saturated, granular sediments with corrected 13 

Standard Penetration Test blow count values less than 15.  This paper proposes to modify the 14 

MLR empirical equations by replacing the fines content and mean grain size factors with soil 15 

description factors.  Such modification allows investigators performing preliminary evaluations 16 

to make lateral spread displacement estimates using existing geotechnical data with sparse 17 

laboratory measurements.  The paper also proposes a methodology to estimate the required 18 

geotechnical inputs in the proposed modified MLR equations using cone penetration test data. 19 

CE Database subject headings: Soil liquefaction; Lateral displacement; Earthquakes; Empirical 20 

equations; Penetration tests; Cone penetration tests 21 

                                                 
1
 Assistant Professor, School of Civil & Construction Engr., Oregon State Univ., 220 Owen Hall, Corvallis, OR  

97331; e-mail: dan.gillins@oregonstate.edu 
2
 Associate Professor, Dept. of Civil & Environ. Engr., Univ. of Utah, 110 Central Campus Dr., Salt Lake City, UT  

84112;  e-mail: bartlett@civil.utah.edu 

*Manuscript
Click here to download Manuscript: Modified_MLR_Model_RevisionIII_9-30_NF.doc 

http://www.editorialmanager.com/jrngteng/download.aspx?id=261553&guid=a432701a-47a4-49f1-b23c-44636008b3c6&scheme=1


Introduction 22 

Lateral spread is a pervasive type of liquefaction-induced ground failure generated by 23 

moderate to large-sized earthquakes (NRC 1985).  During lateral spread, blocks of mostly intact, 24 

surficial soil atop a liquefied layer displace down slope on topography as gentle as 0.5% slope, or 25 

towards a free-face, such as a river channel or bluff.  This type of ground failure can involve 26 

large areas and produce horizontal displacements up to several meters, resulting in considerable 27 

damage to bridges, buildings, pipelines, roadways, and other constructed works.  During some 28 

earthquakes, such as the 1964 Alaska earthquake, ground failures from lateral spreading 29 

accounted for the majority of the earthquake damage (Bartlett and Youd 1992).  When studying 30 

areas prone to liquefaction, it is important to evaluate the lateral spread hazard.   31 

Lateral spread is a complex, dynamic, natural phenomenon, requiring investigators to: (1) 32 

assess topographic conditions, (2) account for variations in the underlying soil profile and its 33 

properties, (3) evaluate liquefaction susceptibility, and (4) estimate the potential ground 34 

displacement for a highly nonlinear, dynamic process.  Due to these and other complexities, 35 

many researchers have developed empirical or semiempirical equations to estimate horizontal 36 

displacements from lateral spreads (e.g., Hamada et al. 1986, Youd and Perkins 1987, Rauch and 37 

Martin 2000, Bardet et al. 2002, Baska 2002, Youd et al. 2002, Zhang et al. 2004, Faris et al. 38 

2006, Olson and Johnson 2008).  For the most part, these researchers derived their equations 39 

from statistical regression techniques of compiled case histories of liquefaction-induced lateral 40 

spread. 41 

Bartlett and Youd (1992; 1995) introduced such empirical equations for predicting the 42 

amount of horizontal displacement from liquefaction-induced lateral spreading; these equations 43 

have become popular in engineering practice.  The equations were developed by multilinear 44 



regression (MLR) of a large lateral spread case history database compiled by these researchers.  45 

Later, Youd et al. (2002) corrected some errors in the MLR case history database, added case 46 

history data from three additional earthquakes, and presented revised MLR equations.  The 47 

regressions indicated that the amount of horizontal displacement from lateral spreading is 48 

statistically correlated with the ground slope or proximity to and depth of a nearby free-face, 49 

moment magnitude of the earthquake, and distance from the seismic energy source; and, the 50 

thickness, fines content, and mean grain size of the saturated, granular sediments with Standard 51 

Penetration Test (SPT) N1,60 values less than 15 (Bartlett and Youd, 1992). 52 

In general, investigators of a site will determine the geotechnical factors for the Youd et 53 

al. (2002) MLR empirical equations by performing SPT(s) and soil gradation tests in the 54 

laboratory.  However, some investigators engaged in performing large-scale (e.g., regional 55 

hazard mapping) or preliminary studies may wish to use existing geotechnical borehole data to 56 

estimate lateral spread displacements.  This situation is addressed by this paper and the MLR 57 

models proposed herein. 58 

  Often during routine drilling and sampling investigations not directed specifically at 59 

liquefaction assessment, practitioners will commonly report the soil description, layer thickness 60 

and corresponding SPT blow count (N) values.  However, laboratory-determined mean grain size 61 

and fines content data are rarely measured or reported.  For example, while assessing the lateral 62 

spread hazard for a large study area in Weber County, Utah, we gathered 251 soil/SPT borehole 63 

logs from local municipalities, county offices, private engineering firms, and state governments 64 

(Bartlett and Gillins, 2013).  Unfortunately, none of these borehole logs and their associated 65 

geotechnical reports listed values of mean grain size; and, few of these logs listed fines content 66 

information for the potentially liquefiable layer(s). 67 



To address this issue regarding lack of data in the existing borehole logs, Bardet et al. 68 

(2002) suggested removing the fines content and mean grain size variables from the MLR 69 

equations.  Although removal of these variables simplifies the data requirements in the MLR 70 

equations, such removal introduces more uncertainty in the lateral spread displacement 71 

estimates.  Olsen et al. (2007) suggested estimating missing measurements of mean grain size 72 

and fines content by using average values from other borehole studies with similar soil type and 73 

geology.  However, such averaging removes variability and adds uncertainty that is difficult to 74 

quantify to the displacement estimates. 75 

 To resolve this missing data issue, this paper proposes to modify the Youd et al. (2002) 76 

MLR equations by replacing the fines content and mean grain size factors with soil description 77 

factors.  The proposed modification is not meant to replace or improve upon the Youd et al. 78 

(2002) MLR equations.  Rather, this modification is intended to provide a method for estimating 79 

lateral spread displacement from existing borehole data that lack or have sparse laboratory 80 

measurements.  Displacement estimates from the proposed MLR equations will aid investigators 81 

in deciding if new drilling and sampling is warranted in order to further reduce the uncertainties 82 

in the subsurface, and improve the precision of the lateral spread displacement estimates.  This 83 

paper will show that the modified MLR empirical equations: (1) are reasonably reliable, as 84 

judged by a comparison of the statistical performance of the proposed model with the MLR 85 

model of Youd et al. (2002), (2) have better statistical performance than MLR equations that 86 

simply remove the fines content and mean grain size variables from the MLR model; and (3) 87 

have geotechnical inputs that may be reasonably estimated from Cone Penetration Test (CPT) 88 

results.    89 

 90 



The Youd et al. (2002) MLR Model 91 

Eqn. (1) lists the general form of the Youd et al. (2002) MLR model. 92 

 93 
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 95 

where DH is the estimated horizontal displacement (m) from lateral spreading; M is the moment 96 

magnitude of the earthquake (Mw); R is the nearest horizontal or mapped distance from the site to 97 

the seismic energy source (km); and, R* is a nonlinear magnitude-distance function calculated by 98 

eqn. (2).  99 

 100 

 0.89 5.64* 10 MR R      (2) 101 

 102 

W is the ratio of the height of the free face to the horizontal distance between the base of the free 103 

face and the point of interest (%); S is the ground slope (%); T15 is the cumulative thickness (m) 104 

of saturated, cohesionless deposits in the soil profile with corrected Standard Penetration Test 105 

(SPT) blows counts, N1,60 ≤ 15; F15 is the average fines content (percentage of sediment passing a 106 

No. 200 sieve) of the materials comprising T15 (%); D5015 is the average mean grain size of the 107 

materials comprising T15 (mm); and, α is a dummy variable defining the controlling topographic 108 

conditions at the point of interest.  For sloping-ground conditions, α is set to zero, W is set to 1, 109 

and site-specific estimates of S (%) are entered.  For free-face conditions, α and S are set to 1, 110 

and site-specific values of W (%) are entered. Youd et al. (2002) computed the following partial 111 

regression coefficients for eqn. (1): bo = -16.213, boff = -0.500, b1 = 1.532, b2 = -1.406, b3 = -0.012, 112 

b4 = 0.592, b5 = 0.338, b6 = 0.540, b7 = 3.413, and b8 = -0.795.   113 



The linear relationship between the dependent variable and independent variables in eqn. 114 

(1) can be evaluated by a statistical hypothesis test named Analysis of Variance (ANOVA).  115 

Statistical hypothesis testing involves assuming a null hypothesis, and testing it for statistical 116 

significance.  Statisticians decide to reject the null hypothesis when the probability (i.e., P-value) 117 

of exceeding the result of the hypothesis test is less than a predetermined threshold or 118 

significance level.  Commonly, statisticians set 5% as a level of significance for deciding if the 119 

null hypothesis should be rejected.  ANOVA for linear regression tests the null hypothesis that 120 

the variance of the data explained by the model is equal to the variance of the data not explained 121 

by the model.  The ratio of these respective variances, or F-statistic, follows a Fisher distribution.  122 

Table 1 summarizes the ANOVA results for the Youd et al. (2002) MLR model.  As can be seen, 123 

the F-statistic is equal to 267.9, indicating that the variance of the data explained by the model is 124 

much greater than the variance of the data not explained by the model; and, the probability of 125 

exceeding this F-statistic is essentially zero (i.e., P-value ≈ 0).  Since the P-value is less than 126 

0.05, we reject the null hypothesis at the 5% significance level, and conclude that a linear 127 

relationship exists between the dependent variable and the independent variables in the Youd et 128 

al. (2002) MLR model.  The coefficient of determination for this model, R
2
, is 83.6%; the 129 

adjusted R
2
 is 83.3%; and, the standard deviation of the predicted variable, σlogDH, is 0.1970. 130 

 131 

Modifications to the Youd et al. (2002) Model 132 

As discussed in the introduction of this paper, to address the common issue of lack of 133 

available F15 and D5015 data from record SPT boreholes, Bardet et al. (2002) have suggested 134 

MLR empirical models that do not include these variables.  After removal of the F15 and D5015 135 

variables from eqn. (1), the reduced empirical model has the general form shown in eqn. (3). 136 



 137 
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 140 

Upon regression of the case history database compiled by Youd et al. (2002), eqn. (3) has 141 

the following partial regression coefficients: bo = -9.087, boff = -0.353, b1 = 1.428, b2 = -0.902, b3 = 142 

-0.020, b4 = 0.401, b5 = 0.293, and b6 = 0.560.  Table 2 summarizes the ANOVA results for eqn. 143 

(3).  Although the P-value for this statistical hypothesis test remains much less than the 5% 144 

significance level, R
2
 for the reduced model has decreased to 66.6%; indicating only 66.6% of 145 

the variability in the dependent variable, Log DH, is explained by the independent variables.  146 

Also, the F-statistic decreased to 135.7, adjusted R
2
 decreased to 66.1%, the variance of the 147 

regression equation as indicated by the mean squared error (i.e., MSE) has more than doubled 148 

that of the Youd et al. (2002) MLR model, and the standard deviation of the predicted variable, 149 

σlogDH, has increased to 0.2802.   150 

Figure 1a depicts predicted values of DH from eqn. (3) versus measured values of DH 151 

from the case history database of Youd et al. (2002).  The solid line on the plot (that is at 45 152 

degrees from the origin) represents a perfect prediction line or a mean-estimate line.  Points 153 

plotting near this line represent displacements that are closely predicted by the model.  The 154 

dashed lines, plotted at 2:1 and 1:2 slopes, represent a 100% over-prediction boundary and a 155 

50% under-prediction boundary, respectively.  Points plotting above or below these bounds 156 

represent displacements that are being either over or under-predicted by a factor of 2 or greater.  157 

Figure 1a shows that 18.6% (90 out of 484) of the displacements predicted by eqn. (3) fall 158 

outside these bounds—of which many fall well outside the bounds.  Other points in Figure 1a, as 159 

grouped and symbolized by earthquake, also trend in one direction, either consistently above or 160 



below the 1:1 line.  For instance, eqn. (3) heavily over-predicts all of the displacements recorded 161 

for the 1964 Alaska earthquake.  Instead of following the 1:1 line, these points plot along a line 162 

approximately 80 degrees left of the horizontal axis.     163 

Because of the overall lack of fit of eqn. (3), it is desirable to seek other variables to 164 

replace F15 and D5015 in the empirical model.  We found that recorded SPT borehole logs often 165 

include a description of the soil along with the corresponding SPT N values.  Such soil 166 

descriptions are also found in the borehole logs in the MLR case history database, and we 167 

wanted to test if these descriptions might be used to improve the performance of eqn. (3).  For an 168 

example of how we started our analysis, Figure 2 shows a plot of borehole data at a site in 169 

Alaska from the MLR case history database compiled by Bartlett and Youd (1992).  This figure 170 

shows SPT N1,60 values and corresponding soil descriptions at a site with groundwater located 171 

near the surface.  The five shaded layers indicate zones that are cohesionless, saturated, and have 172 

values of N1,60 ≤ 15.  The sum of the thickness of these 5 layers, T15, is equal to 20.6 meters.  T15 173 

layers like those shown in Figure 2 can be found for every T15 value in the Youd et al. (2002) 174 

lateral spread database.    175 

We assigned a soil index, SI, to each T15 layer according to the most general description 176 

of the soil from the boring log.  Prior to doing so, we checked the MLR database for consistency 177 

between the soil description and the recorded values of fines content and mean grain size to 178 

ensure no significant errors in the description existed.  Only 2.5% of all T15 layers in the MLR 179 

database were described incorrectly, according to corresponding measurements of mean grain 180 

size and fines content; we corrected the soil descriptions for these layers.  Primarily, these few 181 

description errors were between silty sands (SM) and sandy silts (ML) where the amount of sand 182 

and silt were similar.  Table 3 groups the soil descriptions by assigned values of SI, and lists for 183 



each group the corresponding number (n) of SPT boreholes in the 2002 MLR case history 184 

database, the mean and standard deviation of the mean grain size ( 50D  and σD50, respectively), 185 

and the mean and standard deviation of the fines content ( FC and σFC, respectively).  In order to 186 

complete the definition of SI for each soil type, we assigned nonliquefiable material (i.e., highly 187 

cohesive soils) a value of SI = 6.  Table 4 summarizes the number of ground displacement 188 

vectors per earthquake in the 2002 MLR case history database, and lists the number of SPT 189 

boreholes that identified T15 layers with values of SI = 1, 2, 3, 4, or 5.  Only 5 SPT boreholes (4 190 

from case history studies of the 1983 Borah Peak, Idaho, earthquake; 1 from the 1995 Kobe, 191 

Japan, earthquake) identified T15 layers with a value of SI = 1 (silty gravel, fine gravel).  192 

However, numerous SPT boreholes from case history studies of at least a few earthquakes found 193 

T15 layers ranging from silts to very coarse sands with gravel.  As shown in Table 4, at least 34 194 

SPT boreholes from at least 4 different earthquakes in the western United States or Japan 195 

identified T15 layers with values of SI = 2, 3, 4, or 5. 196 

By including soil description variables in the MLR empirical model in lieu of the F15 and 197 

D5015 variables, the modified model has the general form shown in eqn. (4). 198 

 199 
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 201 

where xi is the thickness of the layers in the site profile that comprise T15 with SI = i divided by 202 

the total cumulative thickness of T15, represented as a decimal.  For example, the borehole 203 

plotted in Figure 2 has x1 = 1.96 / 20.6 = 0.10; x2 = 6.02 / 20.6 = 0.29; x3 = 0.25; x4 = 0.33; and, 204 

x5 = 0.03.  Of course, the sum of all values of x in the borehole equals 1. 205 



Following the same technique as Bartlett and Youd (1992), we used an inverse-weighted 206 

averaging scheme to assign computed values of x to every displacement vector.  This averaging 207 

scheme assigns the largest weight to the borehole located closest to the displacement location, 208 

and decreasingly smaller weights to boreholes located at greater distances.   209 

It is important to note that during least squares regression, R
2
 will generally increase as 210 

the number of independent variables increases, even if an additional independent variable is 211 

hardly correlated with the predicted variable.  Due to potential inflation of R
2
, when comparing 212 

models with different amounts of independent variables, it is better to compare F-statistics or 213 

adjusted R
2
 values. To avoid adding extra or unnecessary variables to the empirical model, we 214 

began with eqn. (3) and added each new soil description (i.e., xi) variable from eqn. (4) one step 215 

at a time, performed the regression, and computed adjusted R
2
.  We added each of the xi 216 

variables in varying combinations, and found after every regression step that adjusted R
2
 217 

increased and never decreased.  Since adjusted R
2
 never decreased, we conclude that each of the 218 

xi variables are correlated with the predicted variable, and none are extra or inflate R
2
.  219 

Eqn. (4) has the following partial regression coefficients based on regression of the case 220 

history database of Youd et al. (2002): bo = -8.208, boff = -0.344, b1 = 1.318, b2 = -1.073,               221 

b3 = -0.016, b4 = 0.445, b5 = 0.337, b6 = 0.592, a1 = -0.683, a2 = -0.200, a3 = 0.252, a4 = -0.040, and 222 

a5 = -0.535.  Table 5 summarizes the ANOVA results for eqn. (4).  As can be seen, the F-statistic 223 

increased to 148.0, and the P-value for this statistical hypothesis test remains much less than the 224 

5%.  This indicates that eqn. (4) is statistically significant for predicting the dependent variable, 225 

Log DH.  Moreover, the R
2
 for this model is 79.0%, adjusted R

2
 is 78.5%, and the standard 226 

deviation of the predicted variable, σlogDH, is 0.2232.  These values are similar to those found for 227 

the Youd et al. (2002) MLR model (eqn. (1)).  For comparison, R
2
 is only 4.6% less, and σlogDH is 228 



only 0.0262 more than the value found for eqn. (1).  In addition, Figure 1b shows predicted 229 

values of DH from eqn. (4) versus measured values of DH from the case history database.  230 

Comparing this plot with Figure 1a, more points fall between the bounds of the 1:2 and 2:1 231 

sloped lines (88.4% of the points compared to 81.4% in Figure 1a). These comparisons 232 

demonstrate that replacing the F15 and D5015 variables with soil description variables in the MLR 233 

empirical model is an improvement over simply removing the F15 and D5015 variables from the 234 

MLR model. 235 

The values of the partial regression coefficients for the soil description variables indicate 236 

their relative influence on displacement.  For example, the maximum of these coefficients is a3, 237 

indicating that fine to medium-grained sands with low fines content are associated with larger 238 

lateral spread displacement than other soil types.  Coarse grained material, especially gravels 239 

with sufficient fines content to impede drainage, have smaller coefficient values.  Very fine-240 

grained, granular materials, such as sandy silts, have a negative partial regression coefficient, 241 

which means they produce smaller displacements on average when compared with the mean 242 

estimate from the regression model. 243 

To further show how soil type and thickness affect the amount of lateral spread 244 

displacement, the variable T15 can be adjusted to an equivalent “clean sand” value, T15,cs.  We 245 

define T15,cs  as a T15 value for fine to medium-grained clean sand only, which occurs when x3 = 246 

1 and all other x’s = 0.  This new variable is calculated by using the final 6 terms in eqn. (4), as 247 

listed in eqn. (5).  248 

 249 
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                  251 



where [a] is a vector for a1 through a5, and [x] is a vector for x1 through x5.  Inserting T15 = 252 

T15,cs, x1 = x2 = x4 = x5 = 0, and x3 = 1, into the right-hand side of eqn. (5) results in eqn. (6). 253 

                                         254 
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 256 

We solve for T15,cs, as shown in eqn. (7).  257 

 258 
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  260 

Values of T15,cs for a given borehole provide a single geotechnical variable that can be substituted 261 

into eqn. (4) for T15 (with x3 = 1 and all other x ’s = 0).  Most of the ax terms in eqn. (4) are 262 

thereby removed, because their values of x = 0.  Using a single regression variable also shows 263 

how soil type and thickness jointly affect lateral spread displacement.  For example, Figure 3 264 

shows values of T15,cs plotted versus T15 for various soil types.  Holding all other independent 265 

variables in eqn. (4) constant (i.e., M, R, W, S), Figure 3 demonstrates that 1 meter of saturated, 266 

clean, fine to medium-grained sand with N1,60 ≤ 15 has the same displacement potential as over 267 

15 meters of saturated soil that is either gravel or silt with N1,60 ≤ 15. 268 

 269 

Discussion of the Modified MLR Model  270 

 The modified MLR equation (eqn. (4)) provides a method to estimate DH from 271 

liquefaction-induced lateral spread using existing borehole data that, as is often the case, lack 272 

laboratory-determined measurements of D5015 and F15.  Predictions from eqn. (4) are more 273 



reliable than predictions obtained from eqn. (3) that omits these soil factors.  We believe that 274 

investigators performing preliminary lateral spread evaluations from existing geotechnical data 275 

may find the modified MLR model useful for estimating horizontal displacement. In addition, 276 

preliminary estimates from eqn. (4) may aid investigators in deciding if new drilling, sampling, 277 

and testing information is needed based on the level of the predicted displacement and the level 278 

of uncertainty in their evaluations.  If additional investigations are planned, we recommend that 279 

investigators obtain the data required for use in more detailed models, such as that proposed by 280 

Youd et al. (2002).   281 

Both the Youd et al. (2002) MLR equation (eqn. (1)) and eqn. (4) predict lateral spread 282 

displacement using M, R, S, W, and T15.  However, predictions from eqn. (4) may have somewhat 283 

more uncertainty than those from eqn. (1) because eqn. (4) uses soil description variables (i.e., x1 284 

– x5) in lieu of laboratory-determined input factors (i.e., D5015, F15).  Inherent in the use of eqn. 285 

(4) is the assumption that the soil description for the T15 layer(s) is reasonably known, and no 286 

substantial uncertainty exists about this input factor.  However, if uncertainty does exist, the 287 

following section gives further guidance regarding the application of eqn. (4). 288 

 289 

Application of the Modified MLR Model 290 

Because the modified MLR model (eqn. (4)) and the Youd et al. (2002) MLR model 291 

(eqn. (1)) were derived from the same case history database, much of the following guidance for 292 

applying eqn. (4) is similar to that published in Bartlett and Youd (1992; 1995) and Youd et al. 293 

(2002). We offer additional guidance and recommendations herein; however, we strongly 294 

encourage readers to refer to Youd et al. (2002) for more details. 295 



1. Similar to eqn. (1), predictions from eqn. (4) have more uncertainty when using input 296 

factors that are outside the range of the MLR database used to derive the partial regression 297 

coefficients.  In short, eqn. (4) predicts DH values generally within a factor of two for 6 ≤ M 298 

≤ 8 earthquakes at liquefiable sites underlain by continuous layers of sandy and silty 299 

sediments having topographical and soil conditions within the following ranges: 1 ≤ W ≤ 300 

20%, 0.1 ≤ S ≤ 6%, 1 ≤ T15 ≤ 15 m, 0.1 < T15,cs ≤ 10 m.  301 

2. Before applying eqn. (4), one should first decide if liquefaction is likely at the site for the 302 

design earthquake, and that the liquefiable layer(s) is relatively thick (i.e., T15 > 1 m) and 303 

shallow.  From the MLR case history database, the depth to the top of the liquefiable layer 304 

was usually found in the upper 10 m of the soil profile and almost always found within the 305 

upper 15 m of the soil profile. 306 

3. Numerous methods are readily available for determining liquefaction susceptibility (e.g., 307 

Cetin et al. 2004), and these methods are not further discussed in this paper. We leave it up 308 

to the practitioner, or regulatory agency, to decide what threshold level (i.e., factory of 309 

safety) to use to define if the soil is potentially liquefiable.  If the site is deemed non-310 

liquefiable, then significant ground displacement is not expected. If the site is considered 311 

liquefiable, then the practitioner should compute T15 according to the method described by 312 

Bartlett and Youd (1992). We emphasize that the calculation of the T15 variable is not a 313 

function of the factor of safety against triggering liquefaction, instead it is simply the 314 

cumulative thickness of saturated, cohesionless sediments having values of N1,60 ≤ 15.  315 

Hence, T15 can be calculated independently of the factor of safety calculation for cases 316 

where liquefaction is expected at the candidate site. 317 



4. It is also important to note that Bartlett and Youd (1992; 1995) found that sediments with 318 

values of N1,60 > 15 are generally resistant to lateral spreading for M < 8 earthquakes.  The 319 

few exceptions in the case history database are related to the very large and long duration 320 

(M = 9.2) 1964 Alaska earthquake, where sediments with values of N1,60 up to 20 displaced 321 

a maximum of 1 m.  Because of the limited data for M > 8 earthquakes in the MLR case 322 

history database, eqn. (4) may not predict reliable displacements for such events. 323 

5. When applying eqn. (4), one must select either free-face or ground-slope conditions in the 324 

model.  If there is some question regarding the controlling topographical condition, then a 325 

conservative approach is to estimate DH using both cases.  Then we recommend the use of 326 

the case that produces the largest estimate of DH.   For sites with values of W > 5%, free-327 

face conditions generally control; whereas, for sites with W < 1%, ground-slope conditions 328 

generally control.  Because the MLR case history database is mostly comprised of sites 329 

where W ≤ 20%, eqn. (4) may be overly conservative when predicting displacements that 330 

are very close to a free-face (i.e., W > 20%) where slumping or flow failure may occur.  331 

Similarly, eqn. (4) may underpredict displacements at steep sites (i.e., S > 6%) where 332 

liquefaction may produce much larger ground displacement due to the presence of the 333 

steepened slope (e.g., flow failure). 334 

6. As listed in Table 4, the majority of the T15 layers in the MLR case history database are 335 

described as sandy silts, silty sands, and fine-grained to very coarse-grained sands. Only 5 336 

boreholes identified T15 layers generally described as silty gravel (i.e., SI = 1).  More case 337 

history data are needed to fully verify eqn. (4) for gravelly sites with SI = 1. 338 

7. Like eqn. (1), eqn. (4) is appropriate for estimating horizontal displacement at stiff soil sites 339 

in the Western U.S. and Japan where attenuation of strong ground motion with distance 340 



from the seismic source is fairly high.  Youd et al. (2002) presented a method to adjust R to 341 

account for differing crustal attenuation relationships in other seismic regions (e.g., Eastern 342 

U.S.) or for sites underlain by soft soils. 343 

8. Eqn. (4) includes soil description factors which are reasonably reliable. However, soil 344 

descriptions from existing borehole logs may have additional uncertainty, if field 345 

investigations have not been performed by qualified and trained personnel.  As discussed 346 

earlier, we verified that the soil descriptions in the MLR database correspond to recorded 347 

values of fines content and mean grain size; hence, additional uncertainty due to incorrect 348 

visual soil descriptions is not included in the standard deviation of the predicted variable, 349 

σlogDH, of eqn. (4). To address this issue, we recommend the following approach. (I)  For 350 

new investigations/evaluations and if laboratory testing is possible, we recommend the use 351 

of the Youd et al. (2002) MLR model because it requires laboratory determined 352 

measurements of D5015 and F15. (We do not intend that our model supplants nor updates 353 

the work of Youd et al., (2002).) (II) For new investigations/evaluations and if laboratory 354 

testing is not always desired, a prudent approach is to test the skill of the field investigator 355 

by occasionally performing random laboratory measurements and comparing them with the 356 

investigator’s soil descriptions.  Random errors in the investigator’s descriptions could then 357 

be modeled by simulation.  (III) For evaluations requiring the use of existing borehole data, 358 

the practitioner should decide whether or not the soil descriptions on the soil logs are 359 

sufficiently reliable.  This evaluation should be made based on the source of the data and 360 

the qualifications and care of the field personnel. We believe that trained personnel can 361 

make reasonably reliable field descriptions of soil type, if trained in the procedures of 362 

ASTM D2488-9a (ASTM 2009). (IV) If the soil description(s) of the T15 layer(s) is still 363 



deemed to be uncertain, then either a conservative estimate of the soil description can be 364 

made, or eqn. (3) can be applied which does not require soil description inputs (and has a 365 

higher value of σlogDH).  For example, if questions arise about whether or not the critical 366 

layer is a silty sand or a sandy silt, then the evaluator might use the silty sand description 367 

because this would produce a more conservative (i.e., higher) estimate of horizontal 368 

displacement. If a layer is described as “sandy silt with seams of sand”, we recommend the 369 

assignment of an SI value equal to 4, not 5.  Similarly, if a layer is described as “fine-370 

grained sand with some silt”, one might assign the layer a value of SI equal to 3, not 4.  An 371 

even more conservative approach is to assign SI = 3 to all sandy layers, and SI = 4 to silty 372 

sandy layers.   373 

9. As shown in Figure 1b, estimates of lateral spread displacement from eqn. (4) are generally 374 

accurate within plus or minus a factor of 2.  If a conservative estimate is desired, then we 375 

recommend that the evaluator multiply DH obtained from eqn. (4) by a factor of 2 for an 376 

estimate that is not likely to be greatly exceeded. 377 

10. Significant or large estimates of lateral spread displacement obtained from eqn. (4) should 378 

be further validated by performing additional subsurface investigations, geotechnical in-379 

situ tests, laboratory testing, and displacement analyses.  During such investigations, 380 

investigators should collect the necessary data for use in more comprehensive analyses and 381 

modeling.  382 

  383 

Evaluations Using CPT Data 384 

The Cone Penetration Test (CPT) has become very popular for site investigations because 385 

it is generally faster, more repeatable, and more economical than traditional site investigation 386 



methods, such as drilling and sampling (Robertson 2009).  While assessing lateral spreading 387 

hazards for the aforementioned study in Weber County, Utah, we obtained data from 157 CPT 388 

soundings recorded in the offices of numerous municipalities, private engineering firms, and 389 

state governments (Bartlett and Gillins, 2013).  Because of the abundance of CPT data, we 390 

desired to use it to estimate the geotechnical inputs in the MLR model; thereby enabling 391 

development of distributions of T15,cs for various mapped geologic units, and application of the 392 

MLR equations to estimate lateral spread displacements at the CPT sounding sites.   393 

 Data from the CPT cannot be used to reliably estimate the mean grain size and fines 394 

content variables, as needed in the Youd et al. (2002) MLR model.  However, the CPT does 395 

provide near continuous data with depth that can be used to identify soil stratigraphy and soil 396 

type, as required in the modified MLR model (eqn. (4)).  In the following sections, a simple 397 

procedure is presented to classify the soil for use in eqn. (4) and to convert CPT penetration data 398 

to equivalent SPT N values. We show that such conversions are reasonable using a dataset of 399 

paired SPT-CPT borehole/soundings obtained from Holocene and late Pleistocene granular 400 

deposits in northern Utah (i.e., Weber County).  However, the analyses presented in this section 401 

are specific to our study area and must be validated for use at other locales. Relationships 402 

between soil type and SPT and CPT data can be affected by many factors (e.g., geologic 403 

depositional environment, parent mineralogy, and age and cementation of the sediments).  404 

Nonetheless, we believe that practitioners may readily follow the process presented herein to 405 

develop or validate their own correlations (or correlations developed by others) for possible 406 

application, as deemed appropriate.  407 



Estimating soil description variables from CPT Data 408 

Numerous researchers have developed charts that relate CPT data, such as tip resistance 409 

and friction ratio, to soil type or soil behavior type (e.g., Schmertmann 1978, Douglas and Olsen 410 

1981, Olsen and Malone 1988, Robertson et al. 1986, Robertson 1990, Jefferies and Davies 411 

1991).  Robertson (1990) introduced one of the most widely used CPT-based charts to define soil 412 

behavior type.  This chart links normalized CPT tip resistance, Qtn, and normalized friction ratio, 413 

Fr, to the in situ mechanical soil behavior, named the “normalized soil behavior type” (SBTn).  414 

Often, soil classification, such as the USCS which is based on grain-size distribution and 415 

plasticity of disturbed samples, relates well with CPT-based SBTn (e.g., Molle 2005). 416 

 Jefferies and Davies (1993) introduced an index to define the soil behavior type, named 417 

the Soil Behavior Type Index, Ic.  This index is simply the radius of concentric circles which plot 418 

on Jefferies and Davies (1991) SBTn chart.  Robertson and Wride (1998) modified the definition 419 

of Ic such that certain values of Ic will approximate the boundaries of SBTn zones 2-7 on the 420 

Robertson (1990) Qt - Fr SBTn chart (see base layer of Figure 4).  Zhang et al. (2002) most 421 

recently updated the definition of Ic, which is shown in eqn. (8).   422 

 423 
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     425 

 Jefferies and Davies (1993) suggested that Ic could be used to develop empirical 426 

correlations of CPT-based data that vary with soil type.  With this in mind, we compiled 427 

available “pairs” of side-by-side SPT borings and CPT soundings from the study area in Weber 428 

County, Utah, into a database.  From this, there are 205 samples that were classified according to 429 

the USCS from laboratory measurements.  Based on these evaluations, we assigned the samples 430 



values of SI, as defined in Table 3.  In addition, at the depth intervals where these samples were 431 

taken, we found the median values of Qtn, Fr, and Ic from the adjacent CPT soundings.  Figure 4 432 

plots these CPT data, symbolized by SI, on the Robertson (1990) Qt - Fr SBTn chart.  (We note 433 

that the Weber County database lacks samples with SI = 2, but the method presented below could 434 

be extended to include this soil type, if the database were expanded.)  435 

Figure 5 shows histograms of Ic, grouped by SI, from the Weber County database.  A 436 

normal probability density function is fitted to each dataset.  Table 6 lists the mean and standard 437 

deviation ( cI and sIc, respectively) of Ic for each SI along with results of a Lilliefors’ goodness-438 

of-fit test for normality.  A Lilliefors’ test is a special type of the Kolmogorov-Smirnov (K-S) 439 

statistical test used to test the null hypothesis that data come from a normally distributed 440 

population where the mean and standard deviation parameters are estimated rather than fully 441 

known (such as due to a small sample size).  Because the computed P-values are greater than the 442 

5% significance level, the null hypothesis that the data are normally distributed cannot be 443 

rejected. 444 

With some confidence that the groups are normally distributed, we next verified that Ic 445 

statistically discriminates between each group of SI.  A one-way ANOVA test rejects the global 446 

null hypothesis that the means, cI , are the same across the groups of SI at the 5% significance 447 

level.  We then used multiple comparison procedures to determine if the means differ between 448 

groups.  Figure 6 graphically displays the results of the comparison using the Tukey—Kramer 449 

single-step method at the 5% significance level.  Because none of the horizontal lines of each 450 

group overlap, the means of each group are statistically different.  We conclude that in terms of 451 

the means of each group of SI, Ic appears to be a reasonable discriminator of soil type. 452 



Due to small sample sizes and similar variances of Ic for SI =1 and SI =3, we performed a 453 

two-sample F-test of the hypothesis that these two groups come from normal distributions with 454 

the same variance.  The test finds that the F-statistic = 1.208, and the P-value = 0.841; therefore, 455 

the null hypothesis cannot be rejected at the 5% significance level.  The pooled variance of Ic for 456 

SI =1 and SI =3 is 0.036; and, the pooled standard deviation, sIc, is 0.190. 457 

If it is assumed that each of the soil types have the same probability of being encountered 458 

randomly in situ, then eqn. (9) is true for determining the probability of a particular soil index, 459 

P(SI = i), given a value of Ic. 460 

 461 
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 463 

where N is the normal probability density function of Ic, with mean = cI and variance = s
2

Ic, for 464 

the particular SI = i.  Zhang and Tumay (1999) developed this equation rigorously for the soil 465 

classification index, U, rather than for Ic. 466 

Figure 7 displays the recommended normal probability density functions of Ic for each SI 467 

based on the data from Weber County, Utah.  Figure 8 depicts the graphical solution of eqn. (9)468 

for each SI using the normal probability density functions in Figure 7.  469 

Eqn. (9) (or Figure 8) provides a method to estimate the probability of each SI for a 470 

specific Ic value from the associated conditional probability density functions.  For example, if a 471 

layer of soil has a value of Ic = 2.0, then P1 = 0.01, P3 = 0.42, P4 = 0.47, P5 = 0.10, and P6 = 0.00, 472 

where Pi is the conditional probability that SI = i.  If that same soil was considered susceptible to 473 

both liquefaction and lateral spreading, then the values of P1, P3, P4, and P5, could be inserted 474 



into eqn. (4) as variables x1, x3, x4, and x5, respectively, for that layer.  Once again, soils with SI = 475 

6 were not considered to be susceptible to liquefaction.  476 

 477 

Estimating T15 with CPT Data 478 

Numerous researchers have found correlations between SPT N values and CPT cone tip 479 

resistance, qt  (e.g., Robertson et al. 1983, Robertson and Campanella 1986, Kulhawy and Mayne 480 

1990, Jefferies and Davies 1993).  In the aforementioned SPT-CPT “pairs” database for Weber 481 

County, Utah, there are 327 samples with SPT N values corrected to an energy ratio of 60%, N60.  482 

Across the 0.3 meters of depth where these blow counts were measured, we found the median 483 

values of qt, and Ic from the adjacent CPT soundings.  These points are plotted in Figure 9.  484 

Values of qt are made dimensionless by dividing by the atmospheric pressure, Pa.  As can be 485 

seen, there is a negative correlation between the Log [(qt / Pa) / N60)] versus Ic.   486 

Robertson and Wride (1998) suggested that the approximate boundary between 487 

cohesionless and cohesive behavior for a soil is around Ic = 2.60.  After performing an initial 488 

linear regression, we noted 5 data points that have values of Ic > 2.60, and that deviated from the 489 

regressed line more than three standard deviations.  These 5 data points are circled in Figure 9, 490 

and are considered outliers.   491 

After removal of the 5 outliers, linear regression of the remaining 322 data points gives 492 

the relationship shown in eqn. (10). 493 

 494 
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 496 



This regression model has a value of R
2
 equal to 65.9%, and a standard deviation of the 497 

predicted variable equal to 0.139.   498 

Because of the noted outliers in the cohesive area of Figure 9, this relationship is more 499 

tenuous and not recommended when Ic > 2.60.  However, when studying liquefaction and lateral 500 

spread, we are concerned with saturated, cohesionless sediments.  The relationship presented in 501 

eqn. (10) appears more reliable in the cohesionless area of Figure 9. 502 

After finding N60 from eqn. (10) and correcting it for overburden stress to N1,60, layers in 503 

the upper 15 meters of the CPT logs that are saturated, cohesionless, and  have values  of N1,60 ≤ 504 

15 are identified.  T15 is found by summing the thickness of these layers.   505 

Eqn. (9) is used to compute the conditional probabilities of SI (P1, P3, P4, and P5) from 506 

values of Ic for each of these layers.   The averages of these conditional probabilities can then be 507 

inserted into eqn. (4) as the variables x1, x3, x4, and x5 (per eqn. (11)). 508 

 509 
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 511 

where tj is the thickness of the j-th layer that comprises T15 at the CPT sounding (m) and Pi is the 512 

conditional probability that SI = i for the j-th layer. 513 

 514 

Conclusions 515 

1. The Youd et al. (2002) MLR empirical model for predicting horizontal displacement from 516 

liquefaction-induced lateral spread requires specific inputs from laboratory testing, namely 517 

mean grain size, D5015, and average fines content, F15.  Some investigators who are 518 



performing large-scale (e.g., regional hazard mapping) or preliminary lateral spread studies 519 

may wish to estimate inputs in this empirical model using existing or record geotechnical 520 

borehole data.  Unfortunately, many practitioners performing routine drilling and sampling 521 

commonly report the soil description and thickness (and SPT blow count (N) values) of 522 

individual layers with depth, but rarely report  mean grain size and fines content data with 523 

depth.  To overcome this lack of available data, this paper proposes to replace the D5015 524 

and F15 variables in the MLR model with soil description variables.  Remarkably, the 525 

resulting modified MLR model (eqn. (4)) has a coefficient of determination, R
2
, equal to 526 

79.0%, only 4.6% less than R
2
 for the Youd et al. (2002) empirical model (eqn. (1)).   527 

2. The proposed model does not replace that of Youd et al. (2002).  Rather, the proposed 528 

model provides a method for estimating lateral spread displacement from existing borehole 529 

data that lacks measurements of mean grain size and fines content, but has reliable 530 

descriptions of soil type for the layers comprising T15.  Once these estimates have been 531 

made, investigators should then decide if new drilling and sampling is warranted in order to 532 

further reduce the uncertainties in the subsurface, and improve the estimates of lateral 533 

spread displacement.   534 

3. Fine to medium-grained sands with low fines content are associated with larger lateral 535 

spread displacement than coarse grained sands, silty sands, sandy silts, or fine gravels.  536 

This can be seen from the partial regression coefficients of the soil description variables of 537 

eqn. (4). 538 

4. Data from the CPT cannot be reliably used to estimate mean grain size and fines content, as 539 

needed in the Youd et al. (2002) MLR model, but such data can be used to identify soil 540 

stratigraphy and soil type, as needed in the proposed modified MLR model (eqn. (4)).  This 541 



paper presented a procedure to adapt CPT data for use in eqn. (4). We show that such 542 

conversions are reasonable using a dataset of paired SPT-CPT borehole/soundings obtained 543 

from Holocene and late Pleistocene granular deposits in northern Utah (i.e., Weber 544 

County).  However, the analyses presented herein were specific to our study area and must 545 

be validated for use at other locales.  Nonetheless, we believe that practitioners may readily 546 

follow the process to develop or validate their own correlations (or correlations developed 547 

by others) for possible application, as deemed appropriate.   548 

5. The modified MLR model (eqn. (4)) may be particularly useful for investigators engaged in 549 

large-scale lateral spreading hazard studies using existing or available geotechnical 550 

borehole data which lack measurements of D5015 and F15.  Bartlett and Gillins (2013) 551 

shows how this model can be applied to create regional hazard maps depicting the 552 

probability of lateral spread displacements exceeding threshold distances.  553 

6. Future work should compile newer case histories of lateral spreading in order to expand the 554 

MLR database and further test the performance of the empirical models and the proposed 555 

procedure for adapting CPT data.  Many newer case histories have higher quality 556 

laboratory and field data than the case histories listed in Table 4.  Updates of the 557 

regressions to include newer case history data may also expand the recommended range of 558 

the input variables in the empirical models to other soil conditions (e.g., gravelly soils, 559 

different geographic locations), and seismic loading conditions (e.g., earthquakes greater 560 

than magnitude 8).  561 
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Table 1. ANOVA results of eqn. (1) 

Source of 

Variation 

Sum of 

Squares 

Deg. of 

Freedom 

Mean 

Squares 

Regression 93.53 9 10.3923 

Error 18.39 474 0.0388 

Total 111.92 483  

F-statistic = 267.9; P-value = 0.000; 2 83.3%R    

 

 

Table 2. ANOVA results of eqn. (3) 

Source of 

Variation 

Sum of 

Squares 

Deg. of 

Freedom 

Mean 

Squares 

Regression 74.56 7 10.6520 

Error 37.35 476 0.0785 

Total 111.92 483 
 

F-statistic = 135.7; P-value = 0.000; 2 66.1%R   

 

 

 

Table 3. Descriptions and distributions of T15 layers in Youd et al. (2002) database 

Typical Soil Descriptions in Database SI n 50D  

(mm) 

σD50 

(mm) 
FC  

(%) 

σFC 

(%) 

General 

USCS 

Symbol 

Silty gravel with sand, silty gravel, fine gravel 1 5 6.45 4.28 19.9 5.6 GM 

Very coarse sand, sand and gravel, gravelly 

sand 

2 8 2.11 0.77 6.8 6.3 GM-SP 

Coarse sand, sand with some gravel 2 33 0.63 0.18 7.3 4.5 SP 

Sand, medium to fine sand, sand with some 

silt 

3 80 0.34 0.02 4.8 2.4 SP-SM 

Fine sand, sand with silt 4 50 0.17 0.04 14.6 11.0 SM 

Very fine sand, silty sand, dirty sand, 

silty/clayey sand 

4 41 0.10 0.03 37.0 11.3 SM-ML 

Sandy silt, silt with sand 5 34 0.07 0.08 61.2 9.4 ML 

Nonliquefiable material (not part of T15) 6 -- -- -- -- -- CL 

 



Table 4.  Earthquakes and displacement vectors in the Youd et al. (2002) case history database 

Earthquake Name 

Number of 

displacement 

vectors 

Number of SPT boreholes that identified 

T15 layers with values of SI = 1,2,3,4, or 5 

SI = 1 SI = 2 SI = 3 SI = 4 SI = 5 

1906 San Francisco, California 2 - - 2 4 - 

1964 Alaska 7 - 10 1 7 3 

1964 Niigata, Japan 299 - 24 61 47 11 

1971 San Fernando, California 23 - - - 15 5 

1979 Imperial Valley, California 31 - - - 8 6 

1983 Borah Peak, Idaho 4 4 - - - - 

1983 Nihonkai-Chubu, Japan 72 - - 16 - - 

1987 Superstition Hills, California 6 - - - 9 9 

1989 Loma Prieta, California 2 - 2 - - - 

1995 Hyogo-Ken Nanbu (Kobe), Japan 19 1 5 - 1 - 

Total = 465 5 41 80 91 34 

 

 

Table 5. ANOVA results of eqn. (4) 

Source of 

Variation 

Sum of 

Squares 

Deg. of 

Freedom 

Mean 

Squares 

Regression 88.46 12 7.3717 

Error 23.46 471 0.0498 

Total 111.92 483 
 

F-statistic = 148.0; P-value = 0.000; 2 78.5%R   

 

 

 

Table 6. Lilliefors’ goodness-of-fitness test results 

for normality 

SI n 
cI  sIc 

P-

value 

k 

Stat. 

critical 

value 

1 17 1.42 0.195 0.084 0.197 0.208 

3 8 1.76 0.178 0.056 0.283 0.286 

4 46 2.09 0.357 0.546 0.085 0.129 

5 19 2.53 0.279 0.422 0.141 0.199 

6 115 3.05 0.219 0.143 0.075 0.084 

 

 

 



 

 

 
Figure 1. Predicted lateral spreading displacement using (a) eqn. (3), or (b) eqn. (4), versus 
measured lateral spreading displacement from the case history database of Youd et al., 2002 
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Figure 2. Boring log at Railroad Bridge Milepost 
147.4, Matanuska River, Alaska.  The five shaded 
layers comprise T15 at this site 
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Figure 3. T15 vs. T15,cs according to soil index 
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Figure 4. Data from Weber County, Utah, plotted 
on Robertson (1990) Qt - Fr SBTn chart with 
contours of Ic 
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Figure 5. Histograms of Ic and fitted normal probability density functions for (a) SI = 1, (b) SI = 3, 
(c) SI = 4, (d) SI = 5, (e) SI = 6; data from Weber County, Utah 
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Figure 6. Multiple comparisons of the means of Ic, 
grouped by SI; data from Weber County, Utah 
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Figure 7. Recommended normal probability density 
functions for Ic, grouped by SI; Weber County, Utah 
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Figure 8. CPT point estimation chart for SI given Ic; 
Weber County, Utah 
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Figure 9. Relationship between CPT-data and SPT 
N60; Weber County, Utah.  Circled data points 
considered outliers (not used in the regression). 
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