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The Natural Earth Projection

The Natural Earth projection was 
developed by Tom Patterson in 2007 out 
of  dissatisfaction with existing projections 

for displaying physical data on small-scale world 
maps (Jenny et al. 2008). Flex Projector, a 
freeware application for the interactive design 
and evaluation of  map projections, was the 
means for creating the Natural Earth projection. 
The graphical user interface in Flex Projector 
allows cartographers to adjust the length, shape, 
and spacing of  parallels and meridians of  new 
projections in a graphical design process (Jenny 
and Patterson 2007).
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a pseudocylindrical projection, and is neither conformal nor equal-area. In the original definition, 
piece-wise cubic spline interpolation is used to project intermediate values that do not align with the 
five-degree grid. This paper introduces alternative polynomial equations that closely approximate 
the original projection. The polynomial equations are considerably simpler to compute and program, 
and require fewer parameters, which should facilitate the implementation of  the Natural Earth 
projection in geospatial software. The polynomial expression also improves the smoothness of  the 
rounded corners where the meridians meet the horizontal pole lines, a distinguishing trait of  the 
Natural Earth projection that suggests to readers that the Earth is spherical in shape. Details on the 
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The Natural Earth projection is an amalgam of  
the Kavraiskiy VII and Robinson projections, 
with additional enhancements (Figure 1). 
These two projections most closely fulfilled the 
requirement for representing small-scale physical 
data on world maps, but each had at least one 
undesirable characteristic (Jenny et al. 2008). 
The Kavraiskiy VII projection exaggerates the 
size of  high latitude areas, resulting in oversized 
representation of  polar regions. The Robinson 
projection, on the other hand, has a height-to-
width ratio close to 0.5, resulting in a slightly too 
wide graticule with outward bulging sides and 
too much shape distortion near the map edges.
Creating the Natural Earth projection required 
three major adjustments: Firstly, starting from 
the Robinson projection, its vertical extension 
was slightly increased to give it more height. 
Secondly, using the Kavraiskiy VII as a template, 
the parallels were slightly increased in length. 
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And thirdly, the length of  the pole lines was 
decreased by a small amount to give the corners 
at pole lines a rounded appearance. Designing 
the Natural Earth projection in this way required 
trial-and-error experimentation and visual 
assessment of  the appearance of  continents in 
an iterative process (Jenny et al. 2008). The result 
of  this procedure, the Natural Earth projection, 
is a true pseudocylindrical projection, i.e., a 
projection with regularly distributed meridians 
and straight parallels (Snyder 1993:189). As 
a compromise projection, the Natural Earth 
projection is neither conformal nor equal area, 
but its distortion characteristics are comparable 
to other well known projections (Jenny et al. 
2008). All three projections exaggerate the size 
of  high latitude areas (Figure 1). Appendix A 
provides further details about the distortion 
characteristics of  the Natural Earth projection.
The shape of  the graticule of  any projection 
designed with Flex Projector is defined by 
tabular sets of  parameters. For the Natural 
Earth projection, two parameter sets are used for 
specifying (1) the relative length of  the parallels, 
and (2) the relative distance of  parallels from 
the equator. Equation 1 defines the original 
Natural Earth projection, transforming spherical 
coordinates into Cartesian X/Y coordinates, and 
Table 1 provides the parameter values (Jenny et 
al. 2008; 2010):

X = R ∙ s ∙ lᵩ ∙ λ 	 lᵩ ∈ [0, 1],	 (Eq. 1)
Y = R ∙ s ∙ dᵩ ∙ k ∙ π	 dᵩ ∈ [-1, 1],

where:
X and Y are projected coordinates;
R is the radius of  the generating globe;
s = 0.8707 is an internal scale factor;
lᵩ is the relative length of  the parallel at latitude 
φ, with φ ∈ [-π/2, π/2], lᵩ = 1 for the equator 
and the slope of  lᵩ is 63.883° at the poles;

dᵩ is the relative distance of  the parallel at latitude 
φ from the equator, with φ ∈ [-π/2, π/2] and 
with dᵩ = ±1 for the pole lines, and dᵩ = 0 for 
the equator;

λ is the longitude with λ ∈ [-π, π]; and 
k = 0.52 is the height-to-width ratio of  the 

projection.

Arthur H. Robinson proposed the structure of  
Equation 1 and the associated graphical approach 
to the design of  small-scale map projections 
when he developed his eponymous projection 

(Robinson 1974). In making the Natural Earth 
projection, Jenny et al. (2010) provide numerical 
values for the tabular parameters that define lᵩ 
and dᵩ in Equation 1 for every five degrees. For 
intermediate spherical coordinates that do not 
align with the five-degree grid, values for lᵩ and 
dᵩ need to be interpolated. The Flex Projector 
application uses a piece-wise cubic spline 
interpolation, with each piece of  the spline 
curve covering five degrees. While this type of  
interpolation is rapid to evaluate, it is relatively 
intricate to program and requires a large number 
of  parameters—factors that are likely to impede 
the widespread implementation of  the Natural 
Earth projection in geospatial software. Seeking 
greater efficiency, the remainder of  this paper 
discusses a compact analytical expression that 
approximates Equation 1 with two simple poly-
nomial expressions.

Analytical Expressions for the
Robinson Projection

Robinson and Patterson used an identical 
approach for the design of  their pseudocylindrical 
projections. Both defined their projection by 

Latitude 
[degrees]

Relative length of 
parallels

Relative distance of 
parallels from equator

0 1 0

5 0.988 0.062

10 0.9953 0.124

15 0.9894 0.186

20 0.9811 0.248

25 0.9703 0.310

30 0.9570 0.372

35 0.9409 0.434

40 0.9222 0.4958

45 0.9006 0.5571

50 0.8763 0.6176

55 0.8492 0.6769

60 0.8196 0.7346

65 0.7874 0.7903

70 0.7525 0.8435

75 0.7160 0.8936

80 0.6754 0.9394

85 0.6270 0.9761

90 0.5630 1

Table 1. Parameters for the Natural Earth projection: Rela-
tive lengths of parallels and relative distance from the 
equator for every 5 degrees (after Jenny et al. 2008).
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adjusting the appearance of  the projected five-
degree graticule in an iterative process—Robinson 
sketching the graticule with pen and paper, and 
Patterson fine-tuning it in Flex Projector. In the 
past, various authors have tackled the problem 
of  finding an analytical expression for the 
Robinson projection. Since the two projections 
are closely related, this section reviews existing 
mathematical models of  Robinson’s projection. 
Polynomial approximation is recommended, 
which is applied to the Natural Earth projection 
in the next section.

Two general approaches exist for mathemati-
cally modeling graphically defined projections: 
(1) interpolation and (2) approximation. The 
Robinson projection has had both approaches 
applied.

Interpolating methods use a function that 
passes exactly through the reference points. 
Ipbüker (2004; 2005) presents a method based 
on multiquadric interpolation for the forward 
and the inverse projection. Others have used 
interpolating methods for finding continuous 
expressions of  lᵩ and dᵩ in Equation 1. For 
example, Snyder (1990) applies the central-
difference formula by Stirling; Ratner (1991), 
Bretterbauer (1994), and Evenden (2008) use 
cubic spline interpolation (which is also used in 
Flex Projector); and Richardson (1989) reports 
that Robinson applied the Aitken interpolation 
scheme. A disadvantage of  the mentioned 
interpolating methods is the large number of  
parameters required (more than 40 for the 
Robinson projection), and their relatively difficult 
implementation. For these reasons they are not 
explored further here.

Approximating curves with parametric 
expressions that do not exactly replicate the 
original projection are an acceptable alternative, 

if  deviations to the approximated values are 
small. Canters and Decleir (1989) present two 
polynomial equations for approximating the 
Robinson projection (Equation 2). For the X 
coordinates they use even powers up to the order 
four, and for the Y coordinates odd powers up 
to the order five. Each expression contains three 
coefficients, and the constants k, s and π of  
Equation 1 are integrated with lᵩ and dᵩ. Their 
solution contains only six parameters, and is fast 
and simple to compute.

X = R ∙ λ ∙ (A0 + A2 ∙ φ2 + A4 ∙ φ4)	 (Eq. 2)
Y = R ∙ (A1 ∙ φ + A3 ∙ φ3 + A5 ∙ φ5)
where:

X and Y are projected coordinates;
φ and λ are the latitude and longitude; 
R is the radius of  the generating globe;
A0 = 0.8507; 
A1 = 0.9642; 
A2 = -0.1450; 
A3 = -0.0013; 
A4 = -0.0104; and
A5 = -0.0129.

A similar approach is proposed by Beineke 
(1991; 1995). For lᵩ he suggests a polynomial 
with even degrees up to the sixth order, and for 
dᵩ he proposes an exponential approximation 
with a real number exponent (Beineke 1991). 
This approach uses a total of  eight parameters 
to approximate Robinson’s projection. However, 
evaluating an exponential function with a real 
number exponent is slow. A test with the Java 
programming language, for example, shows 
that Beineke’s exponential approximation is 
more than ten times slower to evaluate than 
a polynomial, such as the one by Canters and 
Decleir.

The approximating curves by Canters and 
Decleir, as well as Beineke, use a smaller number 
of  parameters, and are considerably simpler 

RobinsonKavraiskiy VII Natural Earth

Figure 1: The polynomial Natural Earth projection 
compared to the Kavraiskiy VII and Robinson projections 
(after Jenny et al. 2008).



D
el

iv
er

ed
 b

y 
P

ub
lis

hi
ng

 T
ec

hn
ol

og
y 

to
: O

re
go

n 
S

ta
te

 U
ni

ve
rs

ity
 IP

: 1
28

.1
93

.1
62

.7
2 

on
: T

hu
, 0

1 
N

ov
 2

01
2 

16
:5

0:
57

C
op

yr
ig

ht
 (

c)
 C

ar
to

gr
ap

hy
 a

nd
 G

eo
gr

ap
hi

c 
In

fo
rm

at
io

n 
S

oc
ie

ty
. A

ll 
rig

ht
s 

re
se

rv
ed

.

Vol. 38, No. 4                                                                                                                                                          366

to program than the interpolating methods. 
Polynomial equations are best in terms of  
computation speed and code simplicity, but 
higher-order terms might be necessary to 
minimize deviations from the original curve. 
Polynomial approximations, however, sometimes 
suffer from undulations if  the maximum degree is 
too high, which must be avoided for a graticule to 
appear smooth. Another potential drawback of  
polynomial equations is the difficulty of  finding 
inverse equations that transform from projected 
X/Y coordinates to spherical coordinates. Indeed, 
an analytical inverse does not generally exist for 
higher-order polynomial equations. To solve for 
spherical coordinates, numerical approximation 
methods are necessary, such as the bisection or 
the Newton-Raphson root finding algorithm.

A Polynomial Approximation for the 
Natural Earth Projection

In a trial-and-error process, a polynomial 
approximation with a minimum number of  
terms was determined for the original Natural 
Earth projection. Polynomials of  varying degrees 
and different number of  terms were selected and 
their coefficients computed using the method 
of  least squares with constraints. Two criteria 
were used to evaluate variants developed with 
this iterative trial-and-error procedure: First, the 
number of  polynomial terms and the number 
of  multiplications required to evaluate the 
equation need to be minimized. This criterion 
is important for simplifying the programming of  
the equations. It is also relevant for accelerating 
computations, for example, for web mapping 
applications that project maps on the fly using 
JavaScript or other interpreted programming 
languages that are comparatively slow. The 
second criterion aims at minimizing the absolute 
differences between the original projection and 
the approximated projection. Differences should 
be minimal throughout the entire projection.

When designing the original Natural Earth 
projection, special focus was given to the 
smoothness of  the rounded corners where the 
bounding meridians meet the horizontal pole 
lines. It was found that the graphical tools and 
the cubic spline interpolation in Flex Projector 
do not provide sufficient control for defining 
rounded corners with adequate smoothness. The 

development of  a polynomial approximation 
provided the possibility to further improve this 
distinguishing characteristic of  the Natural 
Earth projection. The new polynomial form of  
the projection therefore deliberately deviates 
from the original projection by adding curvature 
to the corners. The changes to the smoothness 
of  the corners were entirely esthetic and done 
to satisfy the authors’ sensibilities. They result 
in a subjective improvement that cannot be 
evaluated with objective criteria. Nor were they 
applied for improving the projection’s distortion 
characteristics.

The polynomial expression for the Natural 
Earth projection is given in Equations 3 and 4. 
The polynomials are of  higher degrees than those 
by Canters and Decleir (1989) for the Robinson 
projection. Higher degrees are required for the 
Natural Earth projection to smoothly model the 
curved corners connecting the meridian lines to 
the horizontal pole line.

X = R ∙ λ ∙ (A1 + A2 ∙ φ2 + A3 ∙ φ4 + A4 ∙ φ10 +
        + A5 ∙ φ12)                                                    (Eq. 3) 
Y = R ∙ (B1 ∙ φ + B2 ∙ φ3 + B3 ∙ φ7 + B4 ∙ φ9 +
        + B5 ∙ φ11)                                                     (Eq. 4)

where:
X and Y are the projected coordinates;
φ and λ are the latitude and longitude in 

radians;
R is the radius of  the generating globe, and
A1 to A5 and B1 to B5 are coefficients given in 

Table 2.

Equation 3 replaces both lᵩ and the factor s in 
Equation 1 with a polynomial expression (with 
A1 = s). The polynomials in Equation 4 include 
the constant factors s, k, π, and dᵩ for reducing 
the number of  required multiplications and 
accelerating calculations.

For developing Equations 3 and 4, the 
following considerations were taken into 
account: (1) The Natural Earth projection is 
symmetrical about the x and y-axis; (2) it has 
straight but not equally spaced parallels; and (3) 
the parallels are equally divided by meridians. 
Due to these characteristics, Equation 3 contains 
only even powers of  φ that are multiplied by λ, 
and Equation 4 only consists of  odd power terms 
of  φ (Canters, 2002, p. 133 ff.). For the purpose 
of  accelerating computations, the number of  
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polynomial terms  has been reduced. Equation 3 
has no terms with degree 6 and 8, and Equation 
4 has no term with degree 5.

When estimating the polynomial coefficients 
with the method of  least squares, two additional 
constraints were added to bring the polynomial 
graticule to the exact same size as the original 
graticule. In Equation 3, the first coefficient A1 
was forced to equal the value of  the internal 
scale factor s (Equation 1). This is to ensure that 
the length of  the equator remains the same. In 
Equation 4, the distance of  the pole line from 
the equator was forced to the original value by 
introducing a second constraint. 

Two additional measures were required to 
increase the smoothness of  the rounded corners 
between the meridians and the pole lines. For 
Equation 4, an additional constraint was added 
to the method of  least squares, fixing the slope 
of  the polynomial to 7 degrees at the poles. The 
second measure for improving the smoothness 
of  the corners involved slightly reducing the 
length of  the pole line before computing the 
polynomial coefficients (Figure 2). The result is 
a new polynomial Natural Earth projection that 
deliberately deviates from the original projection 
near the poles. Appendix B provides details on 
the application of  the method of  least squares, 
including the technique for integrating the 
additional constraints, which should allow the 
reader to apply this technique to other similar 
projections.

Inverting the Polynomial
Natural Earth Projection

The inverse of  a map projection transforms 
Cartesian coordinates into spherical coordinates. 
To determine the inverse of  the polynomial 
Natural Earth projection, Equations 3 and 4 

must be inverted. The system defined by these 
two polynomials has two known variables 
(the Cartesian coordinates X and Y) and two 
unknowns (the spherical coordinates φ and λ). 
The system is solved by first finding the latitude 
φ  in Equation 4, and then solving Equation 3 for 
the unknown longitude λ.

An analytical expression of  the inverse of  
the polynomial Equation 4 does not exist, but 
a large number of  methods are available for 
polynomial system solving (Elkadi and Mourrain 
2005). The Newton-Raphson algorithm is a 
numerical method for finding successively better 
approximations to the roots or zeros of  a real-
valued function, and is commonly used for the 
numerical solving of  nonlinear equations. The 
Newton-Raphson root finding algorithm was 
chosen for inverting the Natural Earth projection, 
because it converges rapidly, is easy to compute, 
and requires only one initial guess. Equation 5 
shows the general form of  the Newton-Raphson 
algorithm. 

xn+1 = xn – F ’(xn)-1 ∙ F(xn)       F(xn) = 0	   (Eq. 5)

where:
F(xn) and F ’(xn) are a given function and its 

derivative;
 xn and xn+1 are the previous and the next 

Coefficients for 
Equation 3

Coefficients for 
Equation 4

A1 0.870700 B1 1.007226

A2 -0.131979 B2 0.015085

A3 -0.013791 B3 -0.044475

A4 0.003971 B4 0.028874

A5 -0.001529 B5 -0.005916

Table 2. Coefficients for the polynomial expression of the 
Natural Earth projection.

A

B

C

A

B

Figure 2: The original (A) and polynomial (B) Natural Earth 
projection are overlaid in (C). Arrows indicate changes in 
smoothness at the end of the pole line, which is shortened 
in (B).
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solution of  the given function; and
 n and (n+1) the steps of  the iterative process.

The function F(xn) is formed by converting 
Equation 4 to Equation 6:

F(xn) = B1 ∙ φ + B2 ∙ φ3 + B3 ∙ φ7 + B4 ∙ φ9 +	
+ B5 ∙ φ11 – Y ∙ R-1 = 0	                (Eq. 6)

The iterative approximation is repeated until a 
sufficiently accurate solution is reached. Con-
vergence to the solution is quadratic for Equa-
tion 6, since the derivative F’ (xn) is positive for 
all  φ ∈ [-π/2, π/2], and F(xn) has therefore no 
local minimum or maximum in the valid range 
of  φ. The closest local extremum is at φ = ±1.59, 
which is outside the valid range of  φ. The quo-
tient Y ∙ R-1 can be used as an initial guess for the 
Newton-Raphson algorithm, as it is in the range 
of  the latitude φ, and does not have any local 
extremum in this range (Equation 7). 

Y ∙ R-1 ∈ [-s ∙ k ∙ π, s ∙ k ∙ π] ∈ [-π/2, π/2]   (Eq. 7)

Applying the inverse projection of  the polynomial 
Natural Earth projection consists of  the following 
steps:

(1) The initial guess for the unknown latitude: 
     φ0 = Y ∙ R-1;
(2) With the Newton-Raphson approximation 

method an improved latitude φ is calculated: 
φn+1 = φn – F ’(φn)-1 ∙ F(φn), where F(φn) is 
the function from Equation 6, F’(φn) its 
derivative, and n = 0, 1, 2, … , m. At step m 
the iteration stops if  | φm+1 – φm| < ε, where 
ε is a sufficiently small positive quantity, 
typically close to the maximum precision of  
floating point arithmetic;

(3) The final latitude: φ = φm+1; and
(4) The final longitude: λ = X ∙ R-1 ∙ (A1 +
     + A2 ∙ φ2 + A3 ∙ φ4 + A4 ∙ φ10 + A5 ∙ φ12)-1

The Newton-Raphson method is only 
applied to compute the latitude φ in step (2); 
the longitude λ can be computed in step 4 by 
inverting Equation 3. The Newton-Raphson 
method converges quickly with Equation 6. On 
average, less than four iterations are needed 
when transforming a regularly spaced graticule 
with 15 degrees resolution covering the whole 

sphere (with ε = 10-11).
An alternative general method for inverting 

arbitrary map projections without explicit 
inverse expressions was described by Ipbüker 
and Bildirici (2002). They utilize the two forward 
expressions to calculate the geographical 
coordinates φ and λ using Jacobian matrices. For 
the Natural Earth projection, this method based 
on Jacobian matrices results in the same values as 
the Newton-Raphson approach presented here. 
For both methods, an equal number of  iterations 
is required (with an identical ε). However, the 
Newton-Raphson method is faster, as it involves 
fewer calculations, and is algorithmically simpler.

Conclusion

The Natural Earth projection expressed by the 
polynomial Equations 3 and 4 slightly deviates 
from Patterson’s original projection by adding 
additional curvature to meridians where they 
meet the horizontal pole line. The curved 
corners are smoother than in the original design, 
which improves the visual appearance of  the 
graticule. This enhancement was developed in 
collaboration with Tom Patterson, the author 
of  the original Natural Earth projection. The 
polynomials are easy to code and fast to compute 
as only seven multiplications are required for 
each polynomial if  factorized appropriately. 
The Newton-Raphson method for inverting the 
projection converges quickly, with only a few 
iterations required. The scale distortion index, 
the areal distortion index, as well as the mean 
angular deformation index (Canters and Decleir, 
1989) of  the polynomial approximation of  the 
Natural Earth projection are identical to those 
of  the original projection. The areal distortion 
and maximum angular distortion are similar 
to those of  other pseudocylindrical projections 
(Appendix A). For these reasons, the authors 
recommend using the polynomial equation of  
the Natural Earth projection.

This article presents the development of  
polynomial expressions for the Natural Earth 
projection, which is one specific projection 
designed with the graphical approach offered 
by Flex Projector. Details on the least squares 
adjustment with constraints for obtaining the 
polynomial formulas are provided (Appendix B) 
to allow others to apply this technique to similar 
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projections defined by tabular parameters. It 
remains to be explored how the polynomial 
approximation method can be generalized for 
any projection designed with Flex Projector.
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Appendix A:
Distortion Characteristics of the

Natural Earth Projection

As a compromise projection, the Natural Earth 
projection is neither conformal nor equal area, 
but its distortion characteristics are comparable 
to other well known projections. Its distortion 
values fall somewhere between those of the 
Kavraiskiy VII and Robinson projections, which 
were used in the design procedure.

Figure 3 shows Tissot’s indicatrices for every 
30 degrees. With increasing distance from the 
equator the area of indicatrices increases, indi-
cating that the size of high latitude areas is exag-
gerated. Figure 3 omits indicatrices along pole 
lines, since they are of infinite size. The axes of 
the indicatrices do not coincide with the direc-
tions of parallels and meridians, except at the 
equator and the central meridian. Jenny et al. 
(2008) present isocols of areal distortion for 
the Natural Earth projection. Areal distortion 
increases with latitude and does not change with 
longitude (Table 3). All isocols of areal distor-
tion are therefore parallel to the equator. Areal 
distortion is computed with σ = aj · bj  with aj 
and bj the scale factors along the principal direc-
tions at position j on the sphere.

Angular distortion is moderate near the equator 
and increases towards the edges of the graticule 
(Table 4). Jenny et al. (2008) provide isocols of 
maximum angular distortion. The values of max-
imum angular distortion ωj are constant along 
the equator. Equation 8 computes ωj:

ωj = 2 arcsin  aj - bj                                 (Eq. 8)                         aj + bj

where:
aj and bj are the scale factors along the principle 
directions at position j on the sphere.

Figure 3. Tissot’s indicatrices for the polynomial Natural 
Earth projection.

Latitude φ [̊] Area Scale

85 3.28

60 1.31

30 0.98

0 0.88

Table 3. Areal distortion increases with latitude.

φ
  λ

0 30 60 90 120 150 180

0 8.3 8.3 8.3 8.3 8.3 8.3 8.3

30 3.0 5.4 9.3 13.6 17.9 22.1 26.3

60 25.0 26.2 29.5 34.1 39.6 45.4 51.3

85 115.37 115.44 115.67 116.05 116.56 117.20 117.96

Table 4. Maximum angular distortion for every 30 degrees of 
increasing latitude and longitude. All values are in degrees.
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Appendix B:
Least Squares Adjustment for Curve Fitting with Additional Constraints

This appendix presents the approximation method using least squares adjustment (LSA) with addi-
tional constraints. The presented approach is a modified LSA of  indirect observations with functionally 
dependent parameters (Mikhail and Ackerman 1976). It is hoped that the details provided here will 
allow others to find similar polynomial expressions for other projections.

The original Natural Earth projection is defined by 37 control points distributed over the complete 
range of  possible latitude values with φ ∈ [-π/2, π/2] and a control point every 5 degrees. For both 
equations, polynomial expressions with five terms were chosen. The functional model of  the LSA is 
given in Equation 9, which is derived from Equations 1, 3, and 4:

A1 + A2 ∙ φi
2 + A3 ∙ φi

4 + A4 ∙ φi
10 + A5 ∙ φi

12 = s ∙ lᵩ i     (i, j = 1,… 37)

B1 ∙ φj + B2 ∙ φj
3 + B3 ∙ φj

7 + B4 ∙ φj
9 + B5 ∙ φj

11 = s ∙ k ∙ dᵩj ∙ π		                                    (Eq. 9)

The coefficients of  the two polynomial expressions in Equation 9 are unknown parameters, and 
the polynomial powers of  latitude are known coefficients for the LSA. Equation 9 can be expressed in 
matrix form (Equation 10), with n denoting the number of  rows in the coefficients matrix A, and u the 
number of  parameters (n = 37, u = 5). The first row of  matrix A is [1, φ1

2, φ1
4, φ1

10, φ1
12] for the first poly-

nomial, and [φ1, φ1
3, φ1

7, φ1
9, φ1

11] for the second polynomial. Vector x contains the parameters, i.e. the 
unknown polynomial coefficients. In this particular case, no parameters are included in matrix A, which 
results in a linear system that can be solved using the well known method of  least squares in Equation 
11. The vector v represents the minimized residuals after adjustment, for evaluating the standard devia-
tion of  the model, and the differences between the original and the approximated graticule. The vector 
l includes lᵩ and dᵩ, multiplied with the constant factors s, k and π as in Equation 9. Since this is a linear 
model, no initial guess is required for the parameters.

An×u ∙ xu×1 = ln×1                                                                                                                          (Eq. 10)

l + v = A∙x          vT ∙ v         min         x = (AT∙A)-1 ∙ AT ∙ l         v = A∙x – l                             (Eq. 11)

To initiate the constraints, an additional linear matrix equation is added to this model. For the Natu-
ral Earth projection three constraints were imposed: (1) the length of  the parallel lᵩ at 0 degrees must 
be 1; (2) the relative distance between the equator and the parallel dᵩ at 90 degrees must be 1; and (3) 
the slope of  the polynomial in Equation 4 is fixed to 7 degrees at the pole line. All three constraints are 
expressed with parameters, which is possible because the expressions in Equation 9 are linear. 

For computing the polynomial coefficients of  the relative length lᵩ 37 control points are used cover-
ing the whole range of  possible latitude values between -π/2 and +π/2 with a distance of  5 degrees 
between each pair of  control points. The symmetrical arrangement of  the control points around the 
equator guarantees a continuously differentiable function.

The first constraint (1) for the length lᵩ can be derived from Equation 9:

φ = 0          lᵩ = 1          A1 = s	                                                                                                  (Eq. 12)

The constraints (2) and (3) are applied to the relative distance dᵩ. The fixed distance of  the parallel at 
90 degrees is expressed in a similar way as the constraint (1) in Equation 12. For the slope — constraint 
(3)—a derivative of  Equation 9 is used to express it. Both conditions are described in Equation 13.

φ = π/2         dᵩ = 1        B1 ∙ π/2 + B2 ∙ π3/8 + B3 ∙ π7/128 + B4 ∙ π9/512 + B5 ∙ π11/2048 = s ∙ k ∙ π

φ =  π/2          B1 + 3 ∙ B2 ∙ π2/4 + 7 ∙ B3 ∙ π6/64 + 9 ∙ B4 ∙ π8/256 + 11 ∙ B5 ∙ π10/1024 = tan (7°)          (Eq. 13)
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The additional constraints can be written in matrix form (Equation 14), where the vector x is the 

same as in Equations 10 and 11.  p is the number of  additional constraints, which must be less than the 
number of  unknowns (p < u), as the model would otherwise become under-determined. The first con-
straint for the lengths is represented in the matrix C and vector g by Equation 15. Equation 16 shows 
the two matrixes for the distance constraints.

Cp×u ∙ xu×1 = gp×1                                                                                                                         (Eq. 14)

C = [1	 0	 0	 0	 0], g = [ s ]                                                                  (Eq. 15)

C =	     π/2         π3/8          π7/128         π9/512         π11/2048                                                 (Eq. 16)

	      1          3∙π2/4       7∙π6/64      9∙π8/256     11∙π10/1024		

g =	      s ∙ k ∙ π		
	       tan (7°)		

Equation 14 expresses the relationship between the functionally dependent parameters that must be 
included in the LSA (Equation 11). This step is presented in Equation 17, where the two systems in 
10 and 14 are solved together. The first row in Equation 17 is a normal LSA of  indirect observations. 
The results are parameters not including the constraints. In the second row of  Equation 17, the correc-
tions dx for the parameters are calculated. On the third row, the vector x is computed containing the 
coefficients of  the polynomial approximation. And finally, the vector of  residuals v is computed. The 
polynomial in x fulfills all additional constraints expressed in Equation 14, and minimizes the deviations 
from the curve defined by the 37 control points. 

l + v = A ∙ x               N = AT ∙ A               x0 = N-1 ∙ AT ∙ l                                                      (Eq. 17)

C ∙ x = g                    M = C ∙ N-1 ∙ CT	       dx = N-1 ∙ CT ∙ M-1 ∙ (g - C ∙ x0)

x = x0 + dx	             v = A ∙ x – l

As Equation 9 is linear, no iterations are needed to solve the functional model, and no initial guesses 
are required for the unknown parameters. All constraints can be expressed with functionally dependent 
parameters. The three constraints for the Natural Earth projection are linear, but non-linear constraints 
could also be used. In this case, matrix C would contain partial derivatives of  the constraints equations 
with respect to all parameters in vector x, calculated from parameter values in vector x0. However, non-
linear constraints can only partially be fulfilled.
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