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Abstract
Sharing of research data has begun to gain traction in many areas of the sciences in the

past few years because of changing expectations from the scientific community, funding

agencies, and academic journals. National Science Foundation (NSF) requirements for a

data management plan (DMP) went into effect in 2011, with the intent of facilitating the dis-

semination and sharing of research results. Many projects that were funded during 2011

and 2012 should now have implemented the elements of the data management plans

required for their grant proposals. In this paper we define ‘data sharing’ and present a proto-

col for assessing whether data have been shared and how effective the sharing was. We

then evaluate the data sharing practices of researchers funded by the NSF at Oregon State

University in two ways: by attempting to discover project-level research data using the asso-

ciated DMP as a starting point, and by examining data sharing associated with journal arti-

cles that acknowledge NSF support. Sharing at both the project level and the journal article

level was not carried out in the majority of cases, and when sharing was accomplished, the

shared data were often of questionable usability due to access, documentation, and format-

ting issues. We close the article by offering recommendations for how data producers, jour-

nal publishers, data repositories, and funding agencies can facilitate the process of sharing

data in a meaningful way.

Introduction

“It is one thing to encourage data deposition and resource sharing through guidelines and pol-
icy statements, and quite another to ensure that it happens in practice.” [1]

In 2011, the National Science Foundation (NSF) reaffirmed a longstanding requirement for the
dissemination and sharing of research results by adding a requirement for the submission of a
data management plan (DMP) with grant proposals [2]. DMPs are intended to explain how
researchers will address the requirement that they will “share with other researchers, at no
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more than incremental cost and within a reasonable time, the primary data, samples, physical
collections and other supporting materials created or gathered in the course of work under
NSF grants. Grantees are expected to encourage and facilitate such sharing” [3]. The expecta-
tion that NSF-funded researchers will share data has been in place since at least 1995, the year
of the oldest NSF Grant Proposal Guide that we could locate in the NSF online archive [4], but
the requirement is likely much older. A memorandum put forth by the White House Office of
Science and Technology Policy (OSTP) in 2013 aimed at ensuring public access to the results
of federally funded research [5], and the subsequent responses from funding agencies, lends
credence to the notion that Federal funding agencies are now beginning to take seriously the
idea that federally funded data are products that should be managed and shared in order to
maximize scientific output from federal investments.

While the NSF does not currently require sharing the dataset that underlies an article at the
time of publication, many scientific journals have begun to require or request data sharing as
part of the publication process [6]. This move has been motivated by recent high profile cases
of scientific misconduct related to falsified/poorly analyzed data [7] and the increasing
acknowledgment among scientific communities that data sharing should be part of the process
of communicating research results [8–11].

A challenge has arisen, though, of defining data sharing in a way that is useful to a broad
spectrum of data producers and consumers. The NSF, for example, has been reluctant to define
not only data sharing or data sharing best practices, but the meaning of data itself, insisting
that these definitions should “be determined by the community of interest through the process
of peer review and program management”, rather than being mandated [12]. This lack of guid-
ance has caused some level of confusion among researchers trying to share data, and among
service providers attempting to offer venues for data sharing. We have begun to see communi-
ties of practice offering guidance on best practices for data sharing from individual research
domains (for examples see references [1,13,14] and DataONE.org) and from broad-level orga-
nizations such as Force11 [15] and Kratz and Strasser [9]. While many of these resources are
helpful for understanding how to effectively share data, we have yet to see a rubric for evaluat-
ing how well a dataset is shared and assessing where improvements should be made to facilitate
more effective sharing.

In this study we set a definition of data sharing and create a rubric for evaluating how well
data have been shared at two significant levels: for research projects as a whole and as a dataset
that underlies a journal article. We focus on research projects because of the NSF and OSTP
focus on project-level requirements for data sharing (as cited above), and on journal articles
because these represent a logical and common venue for data sharing [16]. We use our rubric
to evaluate data sharing from NSF-funded projects that were put into effect after the require-
ments for management and sharing plan was put into place. Likewise, we use our rubric to
evaluate data sharing in journal articles that originate from NSF-funded research projects that
are subject to said policy. We conclude by offering guidance on best practices for facilitating
data sharing to authors, journals, data repositories, and funding agencies.

Methods

Definition of Data Sharing
In this paper, we define criteria for assessing the effectiveness of data sharing under the
assumption that the goal of data sharing is to make the data usable, with minimal effort, to the
new user. We take the position that the bar should be set relatively low for the usability of data
in order to facilitate the downstream goals of sharing such as validation of results, reproducibil-
ity of research, and use of data for novel science.
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The criteria chosen for this research (elaborated below) were developed in consideration of
recommendations from the academic literature (e.g. [9,13,15]), from best practices identified
by organizations focused on data sharing (e.g. [15] and DataONE), and our experiences as data
service providers and data users. Based on these sources, we define data sharing as addressing
four criteria: Discoverability, Accessibility, Transparency, and Actionability (DATA). Specifi-
cally, data should be:

- Discoverable—one should be able to get to the data using direct and persistent links
[13,15]. Pointing in a general way to a repository or database without providing an identi-
fier or specific location does not ensure that the intended dataset will be found. Lack of
specificity in location results in a lower discoverability score.

- Accessible—the data should be shared via an open platform with minimal barriers to
access [9,13,15]. Examples of barriers to access would be having to contact the dataset cre-
ator for permission to use the dataset or having to provide an explanation for how or why
one wants to use the data.

- Transparent—the data should have collocated documentation that describes it suffi-
ciently for an expert to use [9,13,15]. Citing the methods section of an article is not suffi-
cient because articles lack significant details that describe the dataset (definition of
headers, units, processing steps, etc.). Relying on a paper for dataset description is also
strongly discouraged because most papers are not accessible without a subscription to the
parent journal. Likewise, referring to external community standards of practice (SOP) is
not likely to be a robust descriptive mechanism over the long term as SOPs change over
time and their provenance may not be clearly documented.

- Actionable—one should be able to use the data in analytical platforms with minimal
reprocessing or reformatting [13,15]. For example, sharing quantitative data as a figure in
an article or as a table in a PDF requires burdensome reformatting. These data are not
considered actionable.

NSF Funded Project Data and Protocol
We used an advanced search of the NSF Awards Database to identify NSF-funded projects at
Oregon State University (OSU) that started on or after the start date of the DMP requirement
(18 January 2011) through the end of 2013. Projects with a later start date than that are not
likely to be far enough along to have much shared data. We set an end date parameter of 01
July 2015 in order to exclude ongoing projects that would overlap with this research. While we
recognize that projects with a recent end date are not required to have shared any data yet, we
wanted to avoid unnecessarily excluding projects that may have shared data during the course
of the research. This query resulted in 91 projects. Within this set of search results, the OSU
Office of Sponsored Programs was able to provide us with about one-third of the DMPs
(N = 33).

The process of attempting to locate datasets based on a DMP started in the most obvious
way: by looking where the DMP stated that data would be made available. If a dataset was not
found in the location specified in the DMP, we looked in three additional locations (listed
below). Given that it can be years between when a proposal is submitted and when a dataset is
ready to be shared, we anticipated that there would be deviations from DMPs in the actual
venue for data sharing. Our search protocol for discovering datasets associated with these
DMPs therefore included looking in the following places, in order:
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1. Location specified in DMP, if applicable

2. NSF award page (use a simple search; include expired awards)

3. PI website(s), research group or project website

4. DataCite Metadata Search for author name (http://search.datacite.org/ui)

We used the DataCite Metadata Search as a catch-all for cases when more directed searches
did not yield results. Datasets that have been assigned a digital object identifier (DOI) have, in
most cases, been assigned a DOI through the DataCite Registration Agency and are thus
searchable via that interface. At this time, an openly accessible, consolidated registry for locat-
ing datasets across domains and repository type (for example, federal data centers, institutional
repositories and standalone repositories like Dryad or figshare) does not exist. There are repos-
itory registries, such as Re3data.org, that facilitate locating a data repository of interest, but
there isn’t a mechanism to search across the repositories that are listed therein. We did not tar-
get specific databases or repositories unless they were explicitly mentioned in the DMP because
it would be too time-intensive to search every known database by hand.

NSF Funded Journal Articles Data and Protocol
We used the Thomson Reuters Web of Science database to identify journal articles produced
by OSU faculty and funded by the National Science Foundation in the years 2012, 2013, and
2014. We selected this year range to attempt to minimize the number of papers that were affili-
ated with NSF funded projects from before the NSF data management plan mandate went into
effect in 2011. This query to Web of Science resulted in 1013 journal articles for which we
exported all of the data allowed by the database including, but not limited to, authors, title,
journal title, and DOI. From this list of journal articles, we selected a random sample of 120
articles to review.

We reviewed each article to determine whether data were shared with the article using the
following steps:

1. Scan the landing page for the article at the journal website for links or references to shared
or supplementary data

2. Scan the article for information about shared data in the acknowledgments, supplementary
data, appendices, and references

3. Scan the methods section for links or references to the datasets used in the paper (including
links to repositories, accession numbers, references to data sources, etc.)

4. Search the entire document for the word “data” and scrutinize all mentions of the word for
references to shared data

If the paper is related in some way to simulation or modeling, search the entire document
for the words (and variants thereof) “parameter”, “calibration”, and “validation” and scrutinize
all mentions of these words for references to shared data.

Data Sharing Evaluation Protocol
Evaluations for each element of DATA (Discoverable, Accessible, Transparent, and Action-
able) were made for each resource (project or journal article; see below for evaluation proto-
cols) to assess the quality of data sharing for each source. For each DATA element, the
resource was assigned a score of insufficient (0), partial (1), or full (2) compliance with the ele-
ment of data sharing. A final DATA score was assigned by summing the scores from individual
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DATA elements. We assessed the data sharing practices for journal articles and funded projects
based on the criteria in Table 1.

Results

NSF Funded Projects
We reviewed thirty-three NSF data management plans acquired from the OSU Office of Spon-
sored Programs and attempted to locate shared data resulting from the associated projects. Of
these, eight DMPs (24%) were associated with proposals for workshops, equipment, confer-
ences or other activities that were not expected to generate data. That left 25 NSF-funded proj-
ects with DMPs available for which shared data could potentially be found [17].

Of the 25 projects for which we attempted to locate shared datasets and generate a DATA
score, nineteen (76%) had an overall score of 0 (Fig 1). Of the remaining six projects, one each
had a score of 2, 5, 6 or 8, and two had a score of 7 (Table 2).

Table 1. Scoring criteria for the effectiveness of data sharing.

Discoverable

Score Journal Article Scoring Criteria Project Scoring Criteria
0 No link or indication of data source in the data

from the paper OR non-actionable mention of
data location (e.g. broken links, mention of
source without link)

Data cannot be found OR non-actionable
mention of data location (e.g. broken links,
mention of database but data in database
cannot be directly linked to project)

1 A reference to the location or source of the data
but no specific indication of the data used (e.g.
a link to an external database) OR data shared
are not all of the data used in the paper

The data can be found at the researcher's home
page, a research group page or a project web
page OR data shared are not all of the data
used in the project

2 A direct link and/or persistent identifier for the
dataset AND data are complete

The dataset can be found via a search at a
subject repository or regional or national
network, Google, or the DataCite Metadata
Search AND data are complete

Accessible

Score Journal Article & Project Scoring Criteria

0 Data shared through a closed or subscription access platform or accessed by request

1 Data shared through a platform that requires some barrier to access such as a requirement to
obtain permission to use the data OR data is shared through a closed-access source (e.g. journal,
repository)

2 Data shared in an open repository or platform or source (e.g. OA Journal, open repository, etc.)

Transparent

Score Journal Article & Project Scoring Criteria
0 No documentation provided for the data

1 Some documentation provided for the data but lacks clear description of details such as how data
were collected, analyzed or processed; description of units or headers; description of blanks; etc.
Documentation may include a reference to the methods section of the paper

2 Readme file, data dictionary, or other metadata shared with the dataset that provide clear details
about the nature and content of the data

Actionable

Score Journal Article & Project Scoring Criteria
0 Data are not in a format that is usable in an analysis application (e.g. shared in a PDF or as a Fig)

1 Data are in a format usable in an analysis application but are formatted in a way that makes use
difficult (e.g. spreadsheets not in regular row-column form). OR data are shared in a proprietary or
non-open format (e.g.xls,.doc,.mat,.sas,.shx)

2 Data are in an open or non proprietary format (e.g.csv,.xlsx,.txt, etc.) with usable formatting

doi:10.1371/journal.pone.0147942.t001
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Element-wise DATA scores, which range from 0 to 2, were mostly clustered at either 0 or 2
(Fig 2). The exceptions were two projects that scored a 1 for Discoverable, and two other proj-
ects that had an element score of 1 for either Transparent or Actionable (Table 2; Fig 2). Three
projects scored a perfect score (2) across the ‘ATA’ categories of Accessible, Transparent, and
Actionable. Of these three projects, one further scored a 2 for Discoverable (for a perfect
DATA score of 8), while the other two scored a 1 in the Discoverable category. One project
scored a 1 in Actionable for using a deprecated file format (.xls). The project with a DATA
score of 5 was rated a 2 for Discoverable and Accessible, a 1 for Transparent (incomplete

Fig 1. Total DATA scores from 25 NSF-funded projects, as located via data management plans

doi:10.1371/journal.pone.0147942.g001
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metadata), and 0 for Actionable (zipped files failed to open). The remaining non-zero DATA
score was rated as a 2 for Discoverable and 0s for all other categories because the data and doc-
umentation were on “proprietary hold” (embargoed) and could not be accessed.

NSF Funded Journal Articles
We reviewed 123 research papers out of the 1013 retrieved fromWOS, or about 12% of the
articles. Of these, 19 were not analyzed either because our institution does not have subscrip-
tion access to the journal in question (n = 7) or because the content of the article did not
include data (e.g. it was entirely computational, theoretical, or mathematical; n = 12).

DATA scores for the 104 articles that we scored ranged from 0 (the minimum score) to 8
(the maximum score), though the distribution of scores was heavily skewed towards low values
with 55 journal articles scoring zero (Fig 3). Non-zero scores were primarily clustered in the
3–5 range (61% of non-zero scores) while only 20% or non-zero scores were in the 7–8 range.
This peak around DATA scores from 3–5 is largely explained by the distributions of individual
DATA score elements.

Element-wise DATA scores were primarily clustered around zero, as expected given the
overall DATA score distribution, with slightly more than half of Discoverable and Accessible
scores and about 60% of Transparent and Actionable scores ranking zero (Fig 4). Non-zero
Discoverability and Accessibility scores were mirrored, with more Discoverability scores rank-
ing 2 than 1 and more Accessibility scores ranking 1 than 2. Transparency and Actionability
scores were similarly ranked with relatively few 2 scores compared with 1 scores.

Discussion
In part, the differences seen across DATA element scores in journal articles are due to the fact
that when data are not discoverable, the subsequent DATA elements cannot be evaluated,
resulting in low scores for those elements. For example, data may be linked directly from the
journal article, resulting in a high Discoverability score, but the data may reside in a closed-
access repository (low Accessibility), contain little or no metadata or documentation (low or
zero Transparency) and be formatted in such a way that makes use difficult, such as a proprie-
tary data format (low or zero Actionability score).

Similarly, it is helpful to explore, for high DATA scores (6 and 7) that are not perfect (8),
what DATA elements prevented the sharing from scoring higher. Of the nine articles with a
DATA Score of 6 or 7, 6 had insufficient (score of 1) Accessibility scores due to the data being
shared in a closed access venue. Insufficient Transparency for these articles was due to poor
documentation that either was vague or relied on scrutiny of the methods section of the article
to understand the data. Insufficient Discoverability was largely due to links to the data not lead-
ing directly to the dataset, rather the links led to external databases that required further action

Table 2. Non-zero DATA scores from 25 NSF funded projects, with element scores shown.

DATA Score Discoverable Accessible Transparent Actionable

2 2 0 0 0

5 2 2 1 0

6 1 2 2 1

7 1 2 2 2

7 1 2 2 2

8 2 2 2 2

doi:10.1371/journal.pone.0147942.t002
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to find and acquire the dataset. Somewhat surprisingly, none of these high scoring datasets had
Actionability scores less than 2.

Unlike the broad distribution that we observed in the DATA scores associated with journal
articles (Fig 3), which indicates variable levels of data sharing effectiveness, we found that proj-
ect-level datasets were either not shared (DATA = 0; 76% of projects) or were shared fairly
effectively (Fig 1). Project level datasets that garnered DATA scores from 6–8 (N = 4) have
characteristics that qualitatively inform our understanding of factors that are associated with
effective data sharing for project data. In three cases the data were shared at a disciplinary

Fig 2. Element-wise DATA scores from 25 NSF-funded projects, as located via data management plans.

doi:10.1371/journal.pone.0147942.g002
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(N = 2) or general (N = 1) data repository. This finding indicates that existing infrastructure
likely facilitates data sharing, both directly, by providing a platform, and indirectly, by reinforc-
ing a cultural norm around data sharing.

Despite our relatively small sample size, our results clearly demonstrate that the creation of
a data management plan has very little bearing on whether or how datasets are shared. Princi-
ple investigators (PIs) often proposed to share data in several locations, in many cases for rea-
sons that were not driven by the data itself (as an example, a justifiable case would be
depositing different data types into separate, specialized repositories). In one case of sharing

Fig 3. Total DATA scores from 104 NSF-funded projects, as located via journal articles.

doi:10.1371/journal.pone.0147942.g003
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locale not being driven by the data, a PI indicated that they would share the same data both on
a project website and via a domain repository. From a practical standpoint, such an approach
to data sharing creates extra work for the PI, introduces potential issues for version control and
authority, and makes it challenging to properly cite the dataset. Other DMPs proposed to share
data in very limited or suboptimal ways, again for reasons that we couldn't associate with char-
acteristics of the data. In some cases, such as for large datasets that don’t have a well-supported
data center, sharing from peer-to-peer by request can be justified. In the case of the four DMPs
that proposed sharing by request, however, we could not identify such justification. Four

Fig 4. Element-wise DATA scores from 104 NSF-funded projects, as located via journal articles.

doi:10.1371/journal.pone.0147942.g004
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DMPs stated that they would share data via conference presentations. Ten DMPs stated that
data would be shared via a PI or project website, but data were only discovered in these loca-
tions in two cases. Personal and institutional websites are not an ideal option for sharing data
[13], mostly because access to websites and the websites themselves are not persistent. URLs
often change over time, and websites may be deleted upon faculty relocation or for lack of
funding. The ubiquity of this option among our sample of DMPs may indicate a need for more
guidance from funding agencies and data service providers to facilitate the adoption of more
robust options for data sharing.

The NSF does not currently require datasets to be shared with corresponding journal arti-
cles, though there is an impending expectation that the datasets that underlie papers will be
shared after the OSTP mandates are fully realized [18]. That said, in many ways the journal
article is one of the easiest and clearest venues for data sharing in the sciences, and data sharing
for journal articles helps ensure at least a minimal level replicability or validation for projects
(e.g. [19,20]). Journal articles represent a finite and fixed set of data when compared with the
data for a whole project, and there is evidence that many researchers find journals to be pre-
ferred venues for data sharing [16]. In fact, we see much worse levels of sharing at the project
level than at the paper level, perhaps because of the boundaries established by the paper as a
discrete “package” of data to share. It is possible that for a researcher who is new to data sharing
or reluctant to do so, deciding which parts of an entire project dataset should or could be
shared would be a more difficult or intimidating problem than sharing the smaller set of data
that underlies a paper.

Our protocols for finding shared data in articles and for projects may seem overwrought,
but are indicative of a lack of consistency, for both data sharers and data sharing venues
(including journals), about how data should be referred to and cited. When searching journal
articles, data were almost never shared as a citation and were often found in acknowledgments,
mentioned or linked in methods sections (but not formally cited), and occasionally referred to
elsewhere in the document. When data existed in an external repository, authors often pro-
vided a link to the repository itself, rather than to the record for the dataset in the repository,
even when persistent identifiers/links were provided for said datasets. It seems clear that there
is some confusion about how data should be treated when referenced in the academic litera-
ture. This confusion creates a problem for identifying shared data associated with journals, not
to mention problems with formal attribution and data being treated as a first-class scholarly
output [21]. Researchers and publishers can play a role in ensuring proper citation of datasets
by following community developed best practices for data citation, such as the Joint Declara-
tion of Data Citation Principles produced by FORCE11 [22].

There are a handful of shortcomings to our methods that are worth noting. First, the data
that we collect fromWeb of Science for the NSF projects database are not entirely representa-
tive of the body of research conducted at our university or in academia as a whole. While the
content of Web of Science represents a very large body of journals, it is unclear the extent to
which it represents a complete or representative view of the research being conducted at OSU
and thus a complete view of data sharing practices associated with academic journal articles.
We also have some concerns about the extent to which Web of Science has accurately repre-
sented the organizational and funding agency affiliations associated with journal content,
though it is unclear in what direction (more or fewer journal articles) these accuracy concerns
would move the data used in this study. That said, research at OSU is heavily focused in sci-
ence, technology, engineering and math (STEM) fields and the funding agency we are examin-
ing (the National Science Foundation) is likewise STEM focused, so one might expect Web of
Science content to represent a robust, if not a complete, body of research. Our assumptions
about article publication dates (2012–2014) representing output from projects funded after the
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NSF data management plan policy went into effect may be somewhat flawed given the potential
for many-year lags in production of scholarly articles from research funding. Last, our methods
for identifying what data were used in a research article may be subject to our lack of expertise
in the subject areas at hand. For instance, it is possible that the data and/or methods implicitly
describe the data and the venue in which it is shared. However, this type of implicit sharing
and documentation is problematic according to a number of our DATA criteria and, we
believe, subject expertise should, in most cases, not be a requirement for identifying data
sources in a research article.

There are also some potential limitations in our approach to locating datasets using infor-
mation contained in data management plans. The DMP requirement went into effect four and
a half years prior to the start of this research project, but fifteen of the twenty-five projects for
which we had DMPs had project end dates that are less than one year from the time of this
investigation. In spite of this however, seven out of the eight projects that had non-zero DATA
scores had project end dates within the last year. This indicates that, in our dataset, recently
completed projects were not any less likely to have shared data than projects that ended a year
or more ago. Another potential limitation in our approach is the fact that we are not domain
experts in most of the fields represented in our data. Some DMPs pointed in a general way
toward specific repositories or metadata registries, and we may not have had the domain exper-
tise necessary to locate the data in the repository. In cases where a DMP identified a repository
for sharing and we could not locate data there, it’s possible that we were simply unable to locate
the data when someone more familiar with the database could have. Last, it’s not clear from
our small sample of DMPs the extent to which the mechanism that researchers propose to use
for sharing adequately reflects their eventual data-sharing behavior. In two cases we located
data in places that were not indicated in the DMP (versus six cases where the dataset was
where we expected to find it). More research is needed on how well data management plans
actually reflect the data management and sharing behaviors of the researchers who create
them.

When tracking down datasets for projects or for journal articles, it may be difficult for a
non-expert, or even an expert, to identify whether the entire dataset or only a portion of the
dataset has been shared. This is not a new problem, and given the lack of effective data sharing
that we observed, it’s not clear whether sharing mandates, the availability of infrastructure, or
other factors are having any effect on the quality or completeness of shared data. There have
been some discussions in the literature about how to verify the veracity of a dataset (e.g. the Sci-
entifically Unique Identifier), [21] but the details of how to implement these systems are lim-
ited. An important area of investigation for all data sharing communities will be identifying
which factors positively affect data sharing behaviors over time.

Finally, it would be useful, though out of scope for this study, to explore how data sharing
for projects and publications from non-STEM organizations and agencies differs from what we
see as part of this project.

Recommendations
Authors and data producers who are seeking to share data can consider the DATA score as a
starting point for understanding whether their intended methods for data sharing meet basic
standards for data sharing. It is also important for authors to consider other data sharing best
practices available through the academic literature, including papers by White et al. [13], Scho-
field et al. [1], and Kervin et al. [14], and to pay attention to any community standards that are
or have emerged from their communities of practice. We would like to stress that while there
exist important and emerging standards for data sharing (e.g., [15]), these standards can
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present barriers to compliance for researchers. Specifically, the focus of some standards
(including the FAIR Data Guiding Principles) on machine readability, automation, and the use
of appropriate ontologies for interoperability present barriers to researchers in domains where
these modes of sharing are not the norm. That said, our DATA rubric calls for open data shar-
ing, which may create barriers to achieving high DATA scores in cases where data cannot be
shared openly. While sharing data in a manner that achieves a high DATA score almost cer-
tainly does not meet the high standards set elsewhere, we feel that the standard set by DATA is
achievable for the majority of researchers and goes a long way toward providing usable shared
research data. It is important, however, to acknowledge that a perfect DATA score is not always
a useful or achievable goal. There exist well-known use-cases for restricting access to datasets
(e.g. proprietary information, personally identifiable information), and it is important that
users of the DATA rubric apply it in the context of the project in question, where possible.

What follows is a handful of other recommendations for authors and data producers that
emerge from examining data sharing for projects and via journal articles. First, citation of data-
sets should be treated much the same as citation of journal articles, i.e. cite the dataset (includ-
ing a unique identifier, if extant; [23], not the database, and be sure to cite the data in your
references. Add the citations to your datasets in the same places where you would list your pub-
lications, e.g. on your curriculum vita and profile or research group web page, and on your
NSF biosketch. One of the biggest Discoverability problems we saw with data sharing through
journal articles was that citation styles and methods varied widely, making it difficult to find
data that was meant to be shared. Others have covered ground before on how and why to prop-
erly cite data [8,9,23], and we will not cover that ground again here. Second, consider sharing
your data through an open repository or journal. Many of the Accessibility issues we experi-
enced when trying to find data for this project were related to the content being shared through
a closed access journal or repository. There is a large and growing number of open repositories
available for deposit of datasets, ranging from disciplinary to general purpose to institutional
repositories. We recognize, as do many others, that not all data are appropriate for, or can find
a home in, a disciplinary repository and we encourage researchers to consider the variety of
general purpose or institutional repositories available for use (see www.re3data.org for exam-
ples). Last, we recognize that data sharing and meeting even the minimum standards for shar-
ing we have set out here with DATA can be difficult and time consuming, and we encourage
authors to engage with research data service providers either at the local level (often part of
their academic library) or at the national level (e.g. DataONE - www.dataone.org, DataQ—
researchdataq.org, etc.) for assistance and advice.

Our recommendations for publishers are threefold. First, set a policy for data sharing. There
is plenty of guidance in the literature to facilitate the development of strong data sharing poli-
cies (see [6,21]), and it is clear from the work presented by Ferguson [16] and the work in this
paper, that researchers are interested in sharing data alongside their publications. Second,
guidelines for how to identify what data were used in the research (including data citation guid-
ance), and possibly going as far as requiring proper declaration of what data were used in the
research, would lead to a great deal of clarity for those seeking to reproduce the work or to cre-
ate novel science with the data used in the work. Last, when data are shared through a journal
article, even if the data are not shared via the journal (i.e. if they are shared through an external
repository), it is important for the journal to take some responsibility for ensuring the quality
of the shared data. How this process happens, whether by editorial or peer review or some
other process, is up to the publisher, but it is crucial for journals not to wash their hands of
responsibility for the quality of the shared data that support their articles. Data shared inade-
quately as part of a journal article reflects poorly on both the researcher and the journal.
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As with publishers, we recommend that data repositories take some responsibility for ensur-
ing the quality of the data and documentation deposited therein. Specifically, consider the
Transparency and Actionability elements of our DATA definition of data sharing: does the
dataset deposited have sufficient metadata, and are the data in a format that is actionable and
open? While the repository manager(s) cannot always know the domain-specific details for a
dataset, they may be able to require some minimum standards for characteristics of data shared
in their repositories.

Last, our recommendations to funding agencies are aimed at encouraging them to engage
more fully with grantees, journals, repositories, and data services providers to help ensure
robust and practical standards for data sharing. Currently many federal funding agencies, in
responses to the OSTP Memo of 2013 [5], have backed away from setting specific requirements
for data sharing, instead calling on “communities of practice” to set these standards. It is with
noble intent that the agencies have refused to lay down best practices from “on-high”, and to
set multi-year timelines for planning to provide best-practices for data sharing. Unfortunately,
the result that we see in this study, and that others have seen [1,24], is an environment of con-
fusion and low-quality shared data. We believe that it is possible to establish definitions for
minimally useable shared data, as we have done in this paper, without being overly prescriptive
and still allowing for communities of practice to evolve.

Conclusions
It is paramount to keep in mind the purpose of data sharing, which is to make the data func-
tional for reuse, validation, meta-analysis, and replication of research, and that policies put in
place regarding data sharing should keep those goals in mind. We found that the effectiveness
of data sharing by federally funded researchers was poor in the large majority of cases. The con-
tent of data management plans revealed that researchers are largely unaware of how or where
to share their data effectively. In several cases, even when a DMP did describe an appropriate
data sharing strategy, we could not locate the data where it was proposed to have been.
Attempts to locate the datasets associated with published articles indicated that researchers
need more support and instruction in how, where and when to cite their own datasets.
Researchers also need more support in the development of effective descriptive and structural
metadata to support their shared data. We have made simple recommendations to data pro-
ducers, publishers, repositories, and funding agencies that we believe will support more effec-
tive data sharing. Ultimately, as data sharing requirements are quickly becoming more
common across funders, and will eventually be enforced, it is time for funding agencies to
engage meaningfully in setting minimum definitions and expectations for sharing. Identifying
a minimum definition of sharing in a broad but meaningful way would provide much-needed
structure for researchers while still leaving room for domain-specific tuning to meet current
and emerging domain best practices.
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