EFFECT OF DEFECTS ON STRENGTH OF AIRCRAFT TYPE SANDWICH PANELS

No. 1809-A

November 1951

INFORMATION REVIEWED AND REAFFIRMED
1958

EFFECT OF DEFECTS ON STRENGIH OF
AIRCRAFTT TYPE SANDWICH PANELS 1 , ?

By
A. A. MOHAUPT, Technologist
and
B. G. HEEBINK, Engineer

Forest Products Laboratory, $\frac{3}{}$ Forest Service
U. S. Department of Agriculture

Summary

This study was conducted to determine the effect of several specific types of defects on the strength of properties of a limited number of typical aircraft sandwich constructions.

Poor bonds in sandwich constructions of aluminum facings on balsa core and of glass-cloth facings on balsa core reduced the flatwise tensile strength considerably more than they reduced the bending and edgewise compressive strengths. Unbonded areas from 1 to 3 inches in diameter caused substantial reductions in the edgewise compressive strength of specimens 6 inches wide.

Wrinkles in the glass-cloth facings of specimens having balsa or glasscloth honeycomb cores reduced the bending, edgewise compressive, and longitudinal tensile values by amounts in proportion to the depth of the wrinkles. No appreciable effect was produced on the bending and longitudinal tensile strengths by increasing the number of plies in the facings of similar specimens gradually or abruptly from 5 to 10. Butt joints in glass-cloth facings resulted in no effect on the edgewise compressive strength, but reductions were evident on the bending and longitudinal
IThis progress report is one of a series prepared and distributed by the
Forest Products Laboratory under U. S. Navy, Bureau of Aeronautics No. NBA-PO-NAer O1019, and U. S. Air Force No. USAF (33-038) 51-4062E. Results here reported are preliminary and may be revised as additional data become available.
2This report covers the second part of a continuing study, the first part of which was presented in Forest Products Laboratory Report No. 1809 of the same title.
3Maintained at Madison, Wis., in cooperation with the University of Wisconsin.
Rept. No. 1809-A
tensile strengths. A fold in the glass-cloth facing caused considerable reductions in bending, edgewise compression, and longitudinal tension.

Introduction

The purpose of this study was to make a more thorough investigation of the effect of defects on the strength properties of typical sandwich panels of the aircraft type. A preliminary study was previously initiated by the ANC-23 Subcommittee on Sandwich Construction at the Forest Products Laboratory, and the results were published in Forest Products Laboratory Report No. 1809, dated September 1949. The effect of the defects studied in Report No. 1809 was based mainly on the results of edgewise compression tests. That study was expanded, therefore, to include the effects of specific defects on the longitudinal tensile and bending strengths as well as on the edgewise compressive strength.

Defects and Panel Constructions

Six types of defects were investigated and were incorporated in both facings of the sandwich constructions. The defects are listed below.

1. Poor bonds.--Sandwich panels incorporating this defect were made by producing bonds of low strength between the facings and the core. The amount of work done on this phase was limited because of the inability to obtain consistent reduced flatwise tensile strengths between different test panels or even within the same panel.
2. Unbonded areas. --Unbonded areas between the facings and core, 1, 2, and 3 inches in diameter, were included in the center of 6-by 12-inch sandwich panels for edgewise-compression tests.
3. Wrinkles in facing.--The term "wrinkles" applies to grooves or narrow depressions produced in the glass-cloth facings during fabrication. The size of wrinkle was determined by measuring the depth of the grooves compared with the surrounding surface, and the depths tested were approximately $0.005,0.010,0.020$, and 0.030 inch.
4. Variation in facing thickness.--Test specimens including this defect were made with abrupt and gradual changes in thickness. Only one method of variation was incorporated in a test specimen, and the details of construction are shown in figure 1 .
5. Butt joints in glass-cloth facings.--A butt joint consisted of two pieces of glass cloth placed so that the edges met but did not overlap. Each ply of the glass-cloth facings contained a butt joint. The joint in one ply was 1 inch from the joints of the adjacent plies, and the
joints of every other ply were directly over one another, as shown in figure 1.
6. Folds in glass-cloth facings.--Folds were formed in facings by doubling back the entire facing as a unit. The width of the folds was made as small as possible and ranged from $1 / 8$ to $1 / 4$ inch.

Sandwich Constructions

Three sandwich constructions were used for testing the defects and are given below.

1. Ten-ply glass-cloth facings (112 cloth, finish 114) laminated with the liquid component of adhesive 34^{4} were bonded to an end-grain balsa core 0.500 inch thick. The density of the balsa was within the range of 7 to 9 pounds per cubic foot.
2. Aluminum facings (24ST) 0.020 inch thick were bonded to an end-grain balsa core $0_{4} 500$ inch thick with primary adhesive 254 and secondary adhesive 29. 4 The density of the balsa core was within the range of 7 to 9 pounds per cubic foot.
3. Ten-ply glass-cloth facings (112 cloth, finish 114) laminated with polyester resin 2^{4} were bonded to glass-cloth honeycomb core 474 that was 0.500 inch thick. The core had hexagonal cells $1 / 4$ inch in diameter and fell within the range of 7.5 to 8.5 pounds per cubic foot.

The first sandwich construction was used for all defects, the second for defects 1 and 2, and the third for defects 3 through 6. Control panels were made of all constructions.

Test Methods

Four tests were used to evaluate the effect of the defects in sandwich construction, flatwise and longitudinal tension, edgewise compression, and static bending. Details regarding the test methods are given in Forest Products Laboratory Report No. 1556, "Methods for Conducting Mechanical Tests of Sandwich Construction at Normal Temperatures" (revised February 1950), except for variations mentioned below.

Twenty flatwise tension specimens were made on sandwich panels containing poor bonds to determine the relative quality of the bond as compared to the control sandwich panels.
thee Appendix I.

Rept. No. 1809-A

Longitudinal-tension tests were used for defects 3 to 6, inclusive. The length of the tensile specimen used in these tests was 16 inches, and the thickness was determined by the construction of the facings, which was 10 plies of 112 glass cloth, or approximately 0.030 inch. The full width sections at the ends were $1-1 / 2$ inches wide and $2-7 / 8$ inches long, and the minimum width section at the middle was 0.8 inch wide and $2-1 / 2$ inches long. The maximum and minimum width sections were connected by circular arcs of 20 -inch radius tangent to the minimum section. This type of specimen was selected because it has a long, tapered section that results in a uniform stress distribution at the test section.

The specimens were cut and shaped as a sandwich panel, and then the facings were cut from the core by a band saw. A small amount of core material was left on the facings to make sure no injury was caused to the facings. Ten longitudinal tensile specimens were made for each condition. The specimens were tested in a mechanical testing machine equipped with Templin tension grips, and the load was applied at a head speed of approximately 0.05 inch per minute.

Two sizes of edgewise-compression specimens were tested; one was 2 inches by 3 inches, and the other was 6 inches by 12 inches with the direction of loading, with each, parallel to the longer dimension. For the 2- by 3-inch specimens, the ends were supported with clamps, but the ends of the 6-by l2-inch specimens were supported with slotted round bars and the sides (parallel to direction of load) with angle iron. Details of the test set-up are shown in figures 2 and 3. The 2- by 3-inch specimen was used for defects $1,3,5$, and 6 , and the 6 - by 12 -inch specimen for defect 2. Ten specimens were tested for each condition.

The static bending specimen was about $1 / 2$ inch thick, 1 inch wide, and 16 inches long. The distance between supports was 15 inches, and the load was applied by two loading blocks positioned $1-1 / 2$ inches on each side of the center of the specimen, which made a total of three inches between the load points. The load was applied at a head speed of approximately 0.07 inch per minute. Five bending tests were made from the control and defective panels except the panel with defect 2.

The type of tests used to evaluate the defects varied depending upon the characteristics of the defect. The general cutting diagram followed to obtain reasonable distribution of test specimens is shown in figure 4. Usually bending and longitudinal tensile tests were cut from 18- by 18inch panels, and edgewise compressive and flatwise tensile tests from l2-by l2-inch panels. Calculations for all specimens with glass-cloth facings were based on a facing thickness of 0.030 inch.

Rept. No. 1809-A

The number and size of the test panels varied with the defect, depending on the types of tests that were used for evaluation. Fabrication procedures for the three constructions and the methods used to incorporate the defects in the test panels are described below.

Controls

The facings of the first sandwich construction (glass-cloth facings on balsa core) were 10 plies of 112 glass cloth impregnated with the liquid component of adhesive 34. The liquid adhesive was used as received or thinned slightly with ethyl alcohol. After the individual sheets were impregnated, they were hung up to dry overnight so that the volatile solvents could escape. The resulting resin content was from 45 to 50 percent based on the total weight of the glass cloth and resin. The balsa core was sprayed with thinned liquid of adhesive 34 and then dusted with the thermoplastic powder (the other component of adhesive 34). The facings were cross-laminated at an angle of approximately 90°, assembled with the prepared core on an aluminum mold, and cured in an autoclave at a temperature of $260^{\circ} \mathrm{F}$. and a pressure of 70 pounds per square inch for one, hour.

The aluminum facings of the aluminum-on-balsa construction were cleaned in a sulphuric acid-sodium dichromate bath, dried, and sprayed with six coats of a priming cement, adhesive 25. After air drying overnight, they were cured in an oven at $325^{\circ} \mathrm{F}$. for 30 minutes. The primed surfaces of the facings were then sanded and spread with 10 grams per square foot of phenolic adhesive 29A. The aluminum facings and balsa core then were assembled on a flat aluminum mold and cured in an autoclave at a temperature of $230^{\circ} \mathrm{F}$. and a pressure of 75 pounds per square inch for 1 hour.

The third sandwich construction consisted of glass-cloth facings on glasscloth honeycomb core. The facings were made by impregnating sheets of 112 glass cloth to approximately 50 percent with polyester resin 2 and wet-laminating them into facings on a thin aluminum caul covered with cellophane. Ten plies of glass cloth, cross-laminated at an angle of approximately 90°, constituted a facing. The 0.500 -inch-thick core material was roller-coated with the same resin to a spread of 10 grams per square foot of surface. The facings and core were then assembled and bag-molded in an autoclave at a temperature of $250^{\circ} \mathrm{F}$. and a pressure of 15 pounds per square inch for one hour.

Defect 1 - Poor Bonds

Glass-cloth facings impregnated with the liquid component of adhesive 34 were poorly bonded to a balsa core by a two-step process, of which the
first step consisted of prefabricating nine-ply facings. After the nineply facings were cured, one side of each facing was sanded and bonded to the balsa core with a single ply of impregnated cloth. The single ply was impregnated to 43 percent for one panel and 65 percent for another. Use of only one ply of impregnated glass cloth to bond the precured facings to the balsa core reduced the amount of adhesive available and thereby reduced the strength between the facings and core. Other fabricating conditions were the same as used for the control panels.

Poor bonds in the sandwich construction of aluminum facings on balsa core were made by reducing the spread of the secondary adhesive. Glue spreads of 5 and 1 grams per square foot of adhesive 29A were used on the primed aluminum facings to obtain 2 degrees of reduced strength.

Defect 2 - Unbonded Areas

The procedure for producing unbonded areas varied with the sandwich construction used. With the glass-cloth facings laminated to the balsa core with the liquid portion of adhesive 34, the area on the core to be unbonded was covered with tape before the core was sized with the adhesive. When the sandwich panel was ready for assembling, the tape was removed and two pieces of cellophane, cut to the size of the defect, were inserted. between the core and each facing. Regardless of the precautions taken, there always appeared to be a certain degree of bond between the surfaces, probably because of the heat and pressure applied. Therefore, after the test panels were fabricated, the unbonded areas were heated by placing a flatiron over them until the facing showed a slight rise. On cooling, the facing would contract to its original position, and defective area was then inspected by tapping. If the unbonded area was not easily detectable by this method, the process was repeated.

With the combination of aluminum facings on balsa core, tape was applied to the area of the facing that was to be unbonded. After spreading the facings with adhesive 29A, the tape was removed, which left a clean surface at the center the size of the defect. The panels were assembled, cured at $230^{\circ} \mathrm{F}$. , and cooled under pressure. If the unbonded areas were not detectable by tapping, localized heat was applied and then inspected again as mentioned above.

Defect 3 - Wrinkles

The two sandwich constructions employed for this portion of the work had glass-cloth facings. The wrinkles were formed in the facings by the use of copper wires stretched across the molds and cauls under the cellophane. By varying the size of wire, the size of the wrinkle was controlled to depths of approximately $0.005,0.010,0.020$, and 0.030 inch.

Defect 4 - Variation in Facing Thickness

The abrupt and gradual methods of varying the facing thickness with glass cloth are shown in figure l. The five short plies of cloth were placed nearest the core, and the plies that extended the full length of the panel formed the outer portion of the facing. Because of the variation in facing thickness, it was necessary to use bag-molding methods so that uniform pressure was applied to all parts of the panel.

Defect 5 - Butt Joints in Glass-Cloth Facings
The same fabrication procedures were applied to making these test panels as were used for the controls of the two glass-cloth-faced sandwich constructions, except that a butt joint was incorporated in each ply. Butt joints of adjacent plies were spaced 1 inch apart and directly over one another on alternate plies, as shown in figure 1.

Defect 6 - Folds in Glass-Cloth Facings

Both sandwich constructions with glass-cloth facings were used for this part. The entire facing was bent back on itself for about $1 / 8$ to $1 / 4$ inch, forming a figure S. By holding the folds down, the facings were assembled with the core and prepared for curing as discussed under "controls."

Results and Discussion

There are many factors that may affect the strength properties of sandwich construction in addition to the defects incorporated, such as uniformity of core thickness, resin content of facings, fabricating equipment, and curing conditions. Care was exercised to minimize the effect of these variables as much as possible, but their effect cannot be eliminated entirely.

Poor Bonds

The results of tests conducted on sandwich panels with poor bonds are summarized in table 1. Although the flatwise tensile strength of the sandwich combinations (glass cloth plus adhesive 34 on balsa) was reduced more than 50 percent (from 1,005 to 484 pounds per square inch), the bending and edgewise compressive strengths were only reduced about 10 percent. As the bond strength between the facings and core decreased, the percentage of core failure of the flatwise tension tests was reduced. Although the bending moment at failure of the poorest bond indicated only a slight reduction from that of the controls, it should be noted that
Rept. No. 1809-A
the type of failure changed from a compression failure in the facing to horizontal shear failure at the bond between the facing and core. This was not true for the edgewise compression tests, where the type of failure remained constant.

The results obtained from tests on the aluminum-on-balsa sandwich combination were somewhat similar to those discussed for the construction above. The average tensile strength of the poorest bonds was considerably weaker (110 pounds per square inch), and again a progressive reduction in core failure was obtained. The bending moment was not materially reduced by a tensile reduction from 901 to 721 pounds per square inch, but a reduction in tensile strength of approximately 90 percent (to 110 pounds per square inch) resulted in a decrease of 40 percent in the bending moment. The latter was also accompanied by a change in the type of failure, as was noted in the sandwich construction of glass cloth -- adhesive 34 on balsa. The edgewise compressive strength was not materially affected by the poor bonds between the core and facings.

The work done on this defect was limited because of the difficulty of fabricating test panels with uniformiy poor bonds. Experimental panels were made to determine the spread of adhesive to be used, but considerable variation was obtained between the experimental and actual test panels. There was also considerable variation within the test panel itself, as seen by the maximum and minimum values of tensile strength.

Unbonded Areas

The results of the edgewise compression tests made on sandwich panels with unbonded areas are summarized in table 2. As the size of the unbonded area increased, the edgewise compressive strength decreased. With the sandwich construction of glass cloth -- adhesive 34 on balsa, the compressive strength decreased proportionately as the diameter of the unbonded area of the compression specimen increased (fig. 5). If the line is extended until it crosses the horizontal axis (or zero strength), the indicated diameter of the unbonded area is close to 6 inches (or the width of the specimen).

With the other sandwich construction (aluminum facings on balsa core) the compressive strength decreased as the unbonded area increased, but not in a straight-line relation as with the glass-cloth-faced sandwich construction.

Wrinkles in Facing

The effect of wrinkles in glass-cloth facings on the strength properties of sandwich construction is summarized in table 3. Wrinkles caused considerable reduction in all the strength properties tested. In general, as the depth of the wrinkle increased, the strength properties tested decreased. When the depth of wrinkles incorporated in the facings was
Rept. No. 1809-A
practically equal to the facing thickness, reductions of 65 percent resulted in bending, 62 percent in edgewise compression, and 46 to 62 percent in longitudinal tension. Wrinkles of 0.005 -inch depth caused reductions that were significant, and the failures usually occurred at the wrinkle.

Variation in Facing Thickness

Increasing the thickness of glass-cloth facings of sandwich construction gradually or abruptly had no marked effect on the bending strength, as shown in table 4. Comparisons were made between specimens having these variations and controls with facings of five plies of 112 glass cloth. The type of bending failure obtained in the specimens with facing variations was also quite similar to those obtained with the control specimens.

Gradual increases in facing thickness produced small increases in the longitudinal tensile strength. Abrupt increases in facing thickness with the sandwich construction of glass cloth -- adhesive 34 on balsa produced a decrease in longitudinal tensile strength from 38,060 to 31,100 pounds per square inch, but on the other sandwich construction of glass cloth-resin 2 on glass-cloth honeycomb core abrupt increases in facing thickness resulted in an increase from 33,320 to 37,900 pounds per square inch. In the construction mentioned first, the failures occurred where the thickness of the facings changed. It is probable that the abrupt change in facing thickness may cause a concentration of stresses near the change point and cause lower strength values.

Butt Joints in Glass-Cloth Facings

- The results pertaining to butt joints in the individual plies of glasscloth facings of sandwich construction are given in table, 5. Two constructions were used, and the results indicated similar trends. No significant effect on the edgewise compressive strength resulted from staggered butt joints in the plies of the facings, but the longitudinal tensile strength was reduced from 17 to 33 percent. A 20 percent reduction in the bending strength was found with the sandwich construction of glass cloth -- adhesive 34 on balsa, but no effect was indicated with the construction of glass cloth -- resin 2 on glass-cloth honeycomb core.

Folds in Glass-Cloth Facings

A summary of results on sandwich panels containing folds in the glass-cloth facings is given in table 5. All the strength properties tested were lowered by this defect. The reductions in bending strength varied from 35 to 65 percent, in edgewise compressive strength from 14 to 42 percent, and in longitudinal tensile strength from 62 to 85 percent. All the small
Rept. No. 1809-A
reductions apply to the sandwich construction of glass cloth -- adhesive 34 on balsa core. It is probable that the reductions for this construction were smaller because the greater fabricating pressure made the folds less serious in their effect.

Conclusions

The following conclusions apply to the results of tests reported, based on the limited number of specimens. The sandwich constructions were typical of those being used in the aircraft industry, but do not include all combinations or techniques used.

Flatwise tensile strength was reduced by poor bonds more than were the bending and edgewise compressive strengths. Poor bonds of uniform quality were found very difficult to fabricate.

Substantial reductions in the edgewise compressive strength of 6- by l2-inch sandwich test panels resulted when centrally located unbonded areas from 1 to 3 inches in diameter were incorporated between the facings and core.

As the depth of the wrinkles in the glass-cloth facings increased, the strength of the sandwich construction in bending, edgewise compression, and longitudinal tension decreased.

No appreciable effect was produced on the bending and longitudinal tensile strengths when the number of plies of glass cloth in the facings of the sandwich construction were increased gradually or abruptly.

No effect on the edgewise compressive strength resulted from butt joints in the glass-cloth facings, but bending and longitudinal tensile strengths were reduced.

All the strength properties tested, bending, edgewise compression, and longitudinal tension, were substantially lowered by a fold in the glasscloth facings of the sandwich construction.

Appendix I

List and General Description of Adhesives and Resins

Adhesive 34 - A high-temperature-setting, two-component resin with a thermosetting liquid and thermoplastic powder.

Adhesive 25 - A high-temperature-setting mixture of thermosetting resin and synthetic rubber.

Adhesive 29 - An intermediate-temperature-setting, acid-catalyzed phenol resin.

Resin 2 - A laminating resin of the polyester (styrene-alkyd) type.
Core 47 - A glass-fabric polyester honeycomb core with 1/4-inch hexagonal cells and a density of approximately 8.4 pounds per cubic foot.
Table 1.--Effect of panc honda on the atrenath properties of ondwich conatruction with $1 / 2-1 n o h$ belan cores

 Empes of fallure for bencing tests are (a) oflae fand bond.
 STypes of fallure
failure at bond.
4 Average of 20 specimens.
-Average of 20 specimens.
Z M 88058 F

Table 2.--Effect of unbonded areas on the strength properties of sandwich constructions with $1 / 2$-inch balsa cores

Rept. No. 1809-A

Table 4.--Effect of variation in facing thickness on the strength properties of sandwich construction

${ }^{\text {l }}$ See appendix for description of adhesive and resin. SFecing varied from 5 to 10 plies of 112 glass cloth, finish 114 , abruptly or gradually over 2-inch span.
ZBending failures are (b) facing wrinkle, failure at bond, and (c) failure of facing in compression.
4Longitudnal tension failures are (a) in defect of necked-down portion, (b) outside of defect in necked-
down portion, and (c) in or near grips.
Rept. No. lBog-A Rept. No. 1809-A
Table 5.--Effect of butt jolnts or folds in the facing on the atrength promerties of gandmioh conetruation

gradual change in facing thickness

abrupt change in facing thickness

$z u$ eross 5

Figure l.--Diagrammatic sketches of ietails of sandwich construction with defect 4, variation in facing thicknens, and defect 5, butt joints in glass-cloth facings.

Figure 2. -- Complete arrangement for testing 6-by 12 -inch edgwise compression specimens.

ZM 85967 F

Figure 3.--The 6- by 12 -inch edgewise compression test with supports along the length removed to show dial gages and strain gages.

ZM 85968 F

EDGEWISE
COMPRESSION

LONGITUDINAL TENSION
BENDING
LONGITUDINAL TENSION
BENDING
LONGITUOINAL TENSION
BENDING

Figure 4. --General eutting diagram ueed to obtain diptribution of specimens from test panels.

Figure 5. - Reiationskip between the size of unbonded areas and ultimate facing stresges in sandwich panels tested in edgewise compreasion.

