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1 INTRODUCTION

In my mind the most interesting direction in the ocean is the vertical. In particular the

gradients of velocity, temperature, salinity, light are oriented nearly vertically Schmidtko et al.

(2013). Taken to an extreme this suggest viewing a stratified ocean as layers (Pedlosky, 1998). All

layers are not cerated equal, the topmost is privileged by emitting and absorbing radiation, and

exchanging momentum, heat and fresh water with the atmosphere (Julian et al., 1970; Koshyk

and Hamilton, 2001). This dissertation focuses on these strong gradients and how properties and

organisms transit between layers, and the fluid motions that facilitate or impede that transport.

1.1 THE MIXED LAYER

The ocean mixed layer is the first stop for all of the surface fluxes. The thickness of the top

layer varies globally and seasonally. There are various definitions for the ocean mixed layer using

criterion based of density, temperature, and the their gradients which are all qualitatively similar

statements of uniformity (Brainerd and Gregg, 1995; Birol et al., 2000). One convenient definition

used by Schmidtko et al. (2013) incorporated data from the International Argo Program to create

a global climatology of mixed layer depth (figure 1.1). The global picture of mixed layer depth

shows variation from a few meters to hundreds of meters with a significant seasonal component.

The large patterns of mixed layer depth are influenced both by local vertical transport of heat and

salt as well as large scale motions where fluid is transported laterally, typically along isopycnals,

reaching the mixed layer elsewhere. The interplay between the large scale motion and local vertical

transports is the larger context in which many physical oceanographic questions reside. My interest

is in the smaller scale motions and how they change the vertical, or diapycnal, transport.

1.2 FORCING

My preference for small scale phenomena is at odds with the length scales of oceanic forcing

which skew toward large time and length scales. Atmospheric forcing is strongest at length scales >

1/10th the circumference of the earth (Julian et al., 1970; Koshyk and Hamilton, 2001) and periods

from a day to a year (Vinnichenko, 1970). Strong rains in the the Inter-Tropical Convergence Zone



2

Figure 1.1: Mixed Layer Depth in January, April, July, and October (Schmidtko et al., 2013)
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(ITCZ; You, 1995; Cronin and McPhaden, 2002), and the dry conditions at the Horse latitudes

(30◦ − 38◦ N/S) impose similar large length scales to the fresh water flux.

In addition to the atmosphere the ocean are also driven by the tides (Wunsch, 1998; Wunsch

and Ferrari, 2004). The gravitational pull penetrates the full depth of the ocean affecting all the

layers. By their astronomical nature tides have narrow spectral peaks at periods of a solar or lunar

day (∼ 24hrs) and the associated harmonics with wavelengths the size of the ocean basins or large

fractions thereof (Egbert et al., 1994).

The large scales of the principal atmospheric and astronomical forcing suggest the world ocean

could be well described in terms of processes at the same time and length scales. This hope is

further bolstered by the energy content of oceanic motions (Ferrari and Wunsch, 2008) and the

near two dimensional nature of the ocean basins and that in two dimensional domains energy

is preferentially transfered to larger scale (Fjørtoft, 1953; Batchelor, 1969; Pedlosky, 1987; Scott

and Wang, 2005). In finite aspect ratio domains energy moves to both larger and smaller scales

(Ferrari and Wunsch, 2008; Boffetta and Ecke, 2011) requiring understanding three dimensional

dynamics. It is the transfer of energy to the smaller scales that will be the focus of the bulk of

this dissertation.

Interaction with the ocean bottom is a good example of the three dimensional nature of ocean

flows. Viscous drag removes momentum and has a small contribution to the oceanic heat budget.

In particular regions of steep topography or geothermal vents cause the bottom’s influence felt

throughout the water column. Some of the energy deposited by the tides near high relief topography

radiates as internal waves which dissipate in the interior of the ocean or break upon encountering

more high relief topography. These flow interactions are localized, most of the world ocean floor

is flat with little heat and momentum exchange. Furthermore the total heat flux at the bottom is

negligible, compared with other sources of energy (Wunsch, 1998; Wunsch and Ferrari, 2004).

1.3 STRATIFICATION

The flow-topography interactions communicate with the interior through disturbances in the

overlying stratification. Schmidtko et al. (2013) provide a useful reanalysis of the Argo data set

for exploration of distributions of heat and salt throughout the world ocean. From the profiles of
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temperature and salinity a global distribution of buoyancy frequency

N2 = − g

ρ0

∂ρ

∂z

∣∣∣∣
P

(1.1)

quantifying the stability of the density ρ distribution (1.1) as a function of gravity g, and a

representative density ρ0 can be calculated. Much work has gone into quantifying the energy

transfer from large scale motions into internal waves (e.g. Van Meurs, 1998; Alford, 2003). I will

avoid the complication of topography in the particular questions I will explore but mention it here

for completeness.

Away from boundaries shear is the only source of kinetic energy for smaller scale motions.

Stratified shear instability has been examined in idealized from by many others (Miles, 1961;

Howard, 1961; Hazel, 1972; Patnaik et al., 1976; Smyth and Peltier, 1993; Staquet, 1995; Jacobitz

and Sarkar, 1999; Drazin, 2002) in closed domains (Özgökmen et al., 2009; Ilıcak, 2014), using

unstable stratification (Asai, 1970; Clever and Busse, 1992; Cox, 1996; Domaradzki and Metcalfe,

1988), changing the initial perturbations (Jacobitz and Sarkar, 1998; Hwang et al., 2006; Brucker

and Sarkar, 2007), and varying the background shear (Inoue and Smyth, 2009). Of particular

interest to me is the view in terms of wave-wave interactions (Lvov and Yokoyama, 2009; Carpenter

et al., 2013), and how that touches secondary instabilities (Smyth, 2003) and the transition to

turbulence.

In reference to shear instability it is useful to examine where density is changing fastest (i.e

N2 is at a maximum, figure 1.2). This pycnocline depth is shown in figure 1.3. Although the

distribution of pycnocline depths (figure 1.3) is similar to the mixed layer depth of Schmidtko

et al. (2013) (figure 1.1) it shows some small differences. The low values of the maximum N2

(figure 1.2) highlights regions of deep convection in the Northern and Southern polar regions

during their respective winters.

Sources of stratification leave an impression in the individual contributions of temperature (1.2)
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Figure 1.2: Maximum stratification in January, April, July, and October
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Figure 1.3: Depth of maximum stratification in January, April, July, and October
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and salinity (1.3)

N2
T = +gα

∂T

∂z

∣∣∣∣
P

(1.2)

N2
S = −gβ ∂S

∂z

∣∣∣∣
P

(1.3)

to stratification, where α and β are the respective coefficients of expansion for temperature T and

salinity S. The distribution of temperature stratification (figure 1.4) being strong year round in the

tropics, and more seasonal toward the poles agrees with the solar forcing. The salt stratification

distribution (figure1.5) is less straight forward, the strongest features (in the Arctic Ocean) are

beyond the scope of the discussion. Of particular importance here is the saline stratification in the

eastern Indian Ocean which is relevant to the results in chapter 4 as the added stability from the

halocline impacts vertical transports of heat.

1.4 TURBULENCE TRANSITION

To understand the transition from two dimensional flow to turbulent three dimensional flow it

is useful to focus on the relevant instability mechanisms. The averaged influence of waves and wind

create an additional instability in the motions of the mixed layer. The influence of convection and

Langmuir circulations are tied to the surface. Interaction of the wave shear with fluctuations of

cross wind velocity give rise to Langmuir circulations, helical flow structures parallel to the wind.

The stratified water column below the mixed layer is well described by the interaction of shear

and stratification. In the stratified region below the mixed layer the only source of instability is

vertical shear. The strength and nature of the underlying stratification has a strong influence on

which mechanism dominates the turbulent kinetic energy tke budget. Close to the surface shear

instability, convection, and Langmuir circulations all connect the surface fluxes with the stratified

fluid at the base of the ocean mixed layer.

1.4.1 Turbulence and Motile Organisms

The transit of small organism through the water column is modulated by the turbulent mixing

in and below the ocean mixed layer. How organisms interact with turbulence effects how their

traversal of the water column affects their distribution. Small organisms which are able to orient
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Figure 1.4: Maximum stratification in January, April, July, and October
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Figure 1.5: Maximum stratification in January, April, July, and October
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Phenomena Period Wavelength
Sound waves 10−6–100sec 10−3–103m
Surface waves 100–101sec 10−2–102m
Internal waves 102–103sec 10−3–103m
Convection 102–103sec 10−3–102m
Viscous damping 101–1012sec 10−3–103m
Inertial motions 104–10sec 10–107m

Table 1.1: Typical time constants of oceanic oscillations

themselves in still water may have their swimming speed or ability to orient overwhelmed by

turbulent motions. The loss of orientation creates a convergence in the net velocity of the organisms

despite the underlying flow remains divergence-less.

The interaction of turbulence with vertically swimming organisms in the oceans constrain their

abilities to take advantage of strong vertical gradients. By moving a few tens of meters vertically

the environment changes drastically, the light dims, the composition of dissolved gases shifts, the

current changes in magnitude and direction, temperature and salinity radically change (figures

1.4 and 1.5). This proximity of different habitats is taken advantage of by organisms too small

to navigate the vast distances across ocean basins, the largest example of this is the diel vertical

migration observed throughout the world ocean (Miller and Wheeler, 2012).

1.5 SCALE SEPARATION

The governing equations of fluid motions are an approximation given a set of axiomatic assump-

tions (Müller, 2006). This is true for layer models of the ocean, or the Boussinesq approximation.

In the ocean mixed layer there are a broad array of relevant time and length scales, from breaking

surface waves with periods of seconds to inertial with periods of order a day. Some mechanisms

reach a quasi equilibrium during an organisms diel vertical migration, overnight convection, or the

initial response of the surface to a storm front, long before mechanisms which rely on planetary

rotation can influence dynamics. Separation allows the separate analyses of sound, surface waves,

convection, Langmuir cells, shear instabilities, inertial waves, tides , etc when they are grouped

into sets with shared length and time scales.

Taking advantage of this separation I choose to focus on turbulence mechanisms that are
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independent of the influence of rotation. Similarly I seek to parameterize sound and surface wave

influences in favor of internal gravity waves which dominate the stratification below the mixed

layer. The rapid motions of the surface are well described by wave averaged quantities such as

the Stokes drift. Sound waves are parameterized by the imposition of incompressibility ∇iui = 0.

Disregard of tides and planetary rotation limits predictions periods of order a day. Use of wave

averaged quantities for sound and surface waves disallow any dynamics at timescales shorter than

that of a few seconds (table 1.1). Wave averaging distills relevant wave dynamics, and is used in

the deep ocean Leibovich (1983) as well as in the near-shore Battjes (1988).

Eliminating the fastest and slowest time scales from consideration is not sufficient to model

the range of fluid motions accurately at even this intermediate scale. Acoustic waves are much

faster than oceanic currents (Mach number � 1) and the interaction between sound waves and

fluid motion is well described by incompressibility. Surface waves are also typically faster than

ocean currents (Froude number . 1) but unlike sound the scale separation is not as extreme. Any

averaging which removes surface waves will average fluid motions at the same time and length

scales. I use two techniques to accommodate the incomplete separation of surface waves and

internal motions of the fluid. Large Eddy Simulation (LES) explicitly averages over the smallest

scales of turbulence allowing for wave averaged quantities, like Stokes drift, to be introduced

consistently into the equations of motion therefore mixed layer dynamics are modeled using LES

(Skyllingstad et al., 1999). Wind and waves stir the ocean near the surface but their influence

rapidly decreases away from the surface and at sufficient depth their influence may also be safely

ignored. By restricting the region of interest below wave motion the smaller scales typical of

turbulent dissipation can be directly modeled.

For simulations away from the wave driven surface two and three dimensional Direct Numerical

Simulations of stratified fluid (Winters et al., 2004) are used driven by vertical gradients in buoy-

ancy, and vertical momentum fluxes. Embedded in the DNS is an individual based (Lagrangian)

models of gyrotactic behavior (Hopkins and Fauci, 2002; Durham et al., 2009) which is immune

to numerical diffusion and includes non-single valued fields (i.e. swimming orientation) without

any additional approximation. The Lagrangian models inefficiently reproduces concentration dis-

tributions and a parallel continuous (Eulerian) concentration model is also used to better describe
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concentration gradients.

This dissertation covers sheared stratified turbulence and how it modifies vertical fluxes of

biophysical quantities. Small gyrotactic organisms transiting a growing shear instability is modeled

in chapter 2. Chapter 3 proposes a limiting condition on the formation of density overturns by the

shear instability modeled as part of chapter 2 instabilities. Ocean dynamics involve shear instability

as well as buoyant and surface wave effects are modeled in chapter 4 where the turbulent kinetic

energy budget in a LES is driven using observations of a westerly wind burst in the Indian Ocean.

Some general conclusions about vertical fluxes and turbulence are presented in chapter 5
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To explore new mechanisms for planktonic thin layer formation, particle and continuum models

of gyrotactically swimming phytoplankton are embedded in simulations of a dynamically unstable

stratified shear layer. Two trapping mechanisms are observed in the developing Kelvin-Helmholtz

(K-H) billow train. Within the K-H billows, a particle can remain preferentially in downwelling

regions, canceling its upward swimming motion. In the braids that separate the billows, intense

shear defeats the gyrotactic stabilization mechanism and causes cells to tumble. Particle and con-

tinuum models are compared statistically to reveal both consistencies and weaknesses in each. A

scaling based on Reynolds number and swimming speed is used to predict the maximum concen-

tration generated by an instability event. Although K-H billows are short lived in comparison with

planktonic thin layers observed in the coastal oceans, the resulting trapping causes rapid aggrega-

tion. We conclude that trapping in a growing K-H instability could contribute to the development

of the observed cell concentrations.

2.1 INTRODUCTION

Shear flows can disorient motile phytoplankton, in some conditions causing them to aggregate

(Durham et al., 2009). Dense biological layers of thickness ∼ 1 m have been observed in fjords

(Dekshenieks et al., 2001) as in more open coastal areas (Cheriton et al., 2007; Churnside and

Donaghay, 2009; Benoit-Bird et al., 2009; Steinbuck et al., 2009; Sullivan et al., 2010a). Spatial

and temporal distribution patterns of phytoplankton determine which grazing behaviors will be

successful at higher trophic levels. They also affect the planning and interpretation of biological

sampling efforts, which include implicit assumptions about the distribution. Distributions are con-

trolled by the surrounding flow and by swimming behavior: speed and orientation. One mechanism

of orientation is gyrotaxis, wherein a gravitational torque acts as a restoring force and flow vorticity

acts to twist the organisms away from a vertical orientation (Kessler, 1986; Durham et al., 2009,

2011). Development of stratified shear flow is often understood through the evolution of unstable

Kelvin-Helmholtz (K-H) modes (Miles, 1961; Hazel, 1972; Corcos and Sherman, 1984; Klaassen

and Peltier, 1985, 1991; Caulfield and Peltier, 1994, 2000; Smyth and Moum, 2001; Smyth et al.,

2011). In this study we focus on the interaction of a motile gyrotactically orienting organism with

a growing Kelvin-Helmholtz billow train.
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The ability of micro-organisms to propel themselves through the fluid can create complex pat-

terns and interactions between the underlying flow field and the concentration. For phytoplankton,

the magnitude of the swimming velocity Vs is much smaller than the flow velocity, so that the rel-

ative motility Vb = Vs/U is much less than one, where U is a characteristic fluid velocity. The

low relative motility does not preclude vertical migration in the water column, as oceanic flows

are dominated by horizontal motions. Nonzero Vs distinguishes the types of aggregation possible

(Childress et al., 1975; Kessler, 1986; Pedley et al., 1988; Torney and Neufeld, 2007) from the

analogous trapping of sinking inert particles (Stommel, 1949; Fung, 2000). For a uniform concen-

tration and orientation in non-divergent flow, there can be no accumulation or rarefaction. Only

if orientation is allowed to vary can aggregations emerge from a uniform background.

The aggregation of small organisms into coherent structures has been observed at many scales.

In the coastal ocean large layer structures have been observed. There is not yet a consensus

definition of biological thin layers, though there are commonalities among the differing definitions.

In an overview of the Layer Organization in the Coastal Ocean (L.O.C.O.) project Sullivan et al.

(2010b) summarize the diverse definitions into three qualitative rules:

“(1) The layer structure must persist over time and space; (2) the layer vertical thickness

must be below some maximum, and there must be an objective, clearly defined method

for calculating the vertical thickness; and (3) the layer maxima must meet a minimum

signal strength (e.g., 2 or 3 times greater than background values).”

Here, we investigate the possibility that Kelvin-Helmholtz instability could lead to a layer which

satisfies these criteria.

Under controlled conditions at laboratory scales the aggregation mechanisms of particular

species have been studied (e.g., Kessler, 1986; Durham et al., 2009). Initial studies focused on

cases with no background flow (Kessler, 1986; Childress et al., 1975; Pedley et al., 1988). More

recently, Durham et al. (2009) showed how an imposed shear can cause the aggregation of the

model gyrotactic organism C. nivalis into laminar structures in a tank. These experiments suggest

a possible mechanism for the formation of concentrated layers of motile species as they traverse a

flow field.

The flow geometry we examine is that of a shear layer including the influence of stratification.



16

This system is an idealized representation of the shear at the base of the surface mixed layer (e.g.,

Woods, 1968; Spigel et al., 1986; Dale et al., 2008). In strong shear there is a dynamic Kelvin-

Helmholtz instability, which causes the shear layer to coalesce into a series of Kelvin-Helmholtz

billows connected by thin regions of intense shear. Fine scale observations of displacements consis-

tent with Kelvin-Helmholtz billows have been observed in the seasonal thermocline (Woods, 1968)

tidal flows (Geyer and Smith, 1987; Seim and Gregg, 1994), internal solitary waves (Moum et al.,

2003), and in the deep ocean(van Haren and Gostiaux, 2010). Little is known of the horizontal

scales of these events. Moum et al. (2011) observed K-H billow trains with ∼ 10 billows in the

along stream direction and Thorpe (2002) has observed a knotting in the cross stream direction

which occurs at ∼ 4 times the down stream spacing before more complex flow patterns emerge.

Additional regions where the Richardson number is at or below 1/4, and where K-H billows can

therefore grow (Miles, 1961; Howard, 1961), have been observed associated with biological layers

(Dekshenieks et al., 2001) and and elsewhere in the coastal ocean (e.g Suanda, 2009). Turbulence

statistics in mixing patches observed in the thermocline compare favorably with those drawn from

direct numerical simulations (DNS) of Kelvin-Helmholtz billows (Smyth et al., 2001).

The coupling of shear flows and plankton population dynamics to form laminar structures have

most often been modeled assuming only advective and diffusive forcings (Franks, 1995; Stacey et al.,

2007; Birch et al., 2008). These mechanisms rely on shear to steer a plankton aggregation into a

planar shape. Durham et al. (2009) model gyrotactic stability as a critical point in a continuum

model where the transition to gyrotactic instability is discontinuous and the orientation is replaced

with a null vector if the ratio of viscous to gravitational torques exceeded the stability criterion in

the steady shear flow. Others (Pedley and Kessler, 1990; Lewis, 2003; Thorn and Bearon, 2010)

use a probability distribution of orientation. Hopkins and Fauci (2002) use the full torque balance

including inertial terms and solve the second order differential equation for orientation in their

particle model. The torque balance without the inertial term is used by the particle model of

Durham et al. (2009).

In the present study we use a two dimensional direct numerical simulation of stratified flow

to examine the distribution of simple gyrotactic organisms in the presence of an unstable shear

layer. The two-dimensional model is restricted to the early stages of the K-H instability, shortly
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after the appearance of overturns a Rayleigh-Bernard convective instability in the billows causes

the flow to become fully three-dimensional (Klaassen and Peltier, 1985, 1991; Smyth and Moum,

2001). Organisms are modeled both as individual particles and as a continuous concentration field

to study the trapping and aggregation of gyrotactic organisms in the developing shear instability.

The detailed description of the relevant dynamics for small gyrotactic particles in stratified

shear flow are elaborated in section 2.2 and we describe the numerical methods to simulate these

phenomenon. Results are given in section 2.3 and our interpretation is given in section 2.4. Ap-

pendices give further information on numerical methods and physical assumptions made in the

design of the models.

2.2 METHODS

Here we describe our model for the flow physics as well as individual and continuum models

for the biology.

2.2.1 Flow model

The fluid is modeled using the Boussinesq approximation. For notational simplicity buoyancy

b = − (g/ρ0) (ρ− ρ0) and reduced pressure p = P/ρ0 are used instead of density ρ and pressure P .

The constants ρ0 and g represent mean density and gravitational acceleration respectively. This

reduces the Boussinesq equations to

∂ui
∂t

= −uj∇jui −∇ip+ bδ3i + ν∇2ui (2.1)

∂b

∂t
= −uj∇jb+ κ∇2b (2.2)

∇2p = − (∇iuj) (∇jui) +
∂b

∂x3
(2.3)

where (2.3) follows from (2.1) and the continuity condition ∇juj = 0. The simulation domain

is horizontally periodic and free slip in the vertical. Details of the numerical methods and code

validation are given in A.1.

The initial state of the fluid is a two layer shear flow with no vertical velocity. At the boundary

there is no horizontal stress, no vertical flow, and the buoyancy is held fixed. The initial profiles
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of velocity and density are given by

u = ∆U tanh z/h (2.4)

b = ∆b tanh z/h+ bnoise (2.5)

where h represents the half-thickness of the shear layer and ∆U and ∆b are half of the velocity and

buoyancy difference across the layer (Hazel, 1972; Klaassen and Peltier, 1991; Smyth and Peltier,

1993). This choice of scaling gives a simple form for the initial Reynolds number Re = ∆Uh/ν and

Richardson number Ri = ∆bh/∆U2 which govern the stability of the flow (Miles, 1961; Howard,

1961; Tennekes and Lumley, 1972).

The initial density profile (2.5) includes a random noise field whose amplitude is chosen so that

no overturns (Thorpe, 1977) are created by the perturbation. This is accomplished by defining

bnoise = r ×∆z
∂b

∂z
, (2.6)

which is the product of a uniform random variable r ∈ (−0.5, 0.5) and a first order estimate of

the difference in buoyancy b between adjacent levels. The uniform random variable r ensures that

potential energy is placed into all available horizontal wave numbers equally.

2.2.2 Biological modeling

The organisms in this study are assumed to be neutrally buoyant and smaller than the Kol-

mogorov scale. This allows for a simplification of the governing equations. Particles smaller than

flow features act as thought they have no inertia and follow the flow trajectories (Crowe et al.,

1996). Similarly the moment of inertia may be neglected for particles much smaller than the

smallest vortices in the fluid, and we may assume the vorticity is uniform in the vicinity of the

particle. This line of reasoning follows Kessler (1986) where the two principal torques are (1)

the viscous torque ~τν of the fluid motion, opposing the relative rotation of the particle, and (2)

the gravitational torque ~τg which acts to restore the orientation of the particle (Figure 2.1). The

action of ~τg is called gyrotactic reorientation. The equation of motion for the angular motion of



19

τν τg
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Figure 2.1: Forces acting on a gyrotactic organism
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the particle has the form

I~α = 4πρνr3
(
~S − 2~Ω

)
︸ ︷︷ ︸

~τν

+

~τg︷ ︸︸ ︷
4π

3
r3ρ

(
~l × ~g

)
(2.7)

where ~α is the angular acceleration, ~S = ~∇×~u is the vorticity, and ~Ω is the angular velocity of the

particle, (Kessler, 1986; Hopkins and Fauci, 2002). If we assume a small particle we may ignore

the inertial term, and find an equation for the angular velocity directly (Kessler, 1986; Pedley and

Kessler, 1987, 1990, 1992; Jones et al., 1994; Lewis, 2003; Durham et al., 2009)

~Ω =
1

2
~S − 1

2B
l̂ × k̂ (2.8)

where B = 3ν/lg is identified as the gyrotactic reorientation time. In A.3 we constrain the size

range in which (2.8) may be used instead of (2.7). The balance of gravitational and viscous torques

can be used to define another non-dimensional number the gyrotactic stability BS = B‖~S‖. A

body is gyrotactically unstable when the product BS > 1.

To model particle orientation, we use (2.8). A full discussion of the validity of this simpler model

for oceanic parameter ranges over the higher order models is given in A.3. We further simplify

our equations by treating gyrotactic organisms as spherical objects whose moment of inertia may

be ignored following Kessler (1986). The details of the spherical assumption and its validity in

unstable sheared flow is shown in A.2. Modeling the dynamics of small organisms can be done as

an ensemble of individuals or in terms of concentrations. As the number of individuals in a model

increases, the collective statistics will converge to the concentration model if the two models are

consistent. Individual models can yield information about trajectories and trapping mechanisms

while the concentration model is more suited to showing distribution patterns. Because of these

disparate strengths and weaknesses both types of models are developed for gyrotactic organisms

in a shear flow.
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2.2.2.1 Particle Model

The particle tracking model uses bilinear interpolation (Press et al., 1992) of the velocity ~u

and vorticity ~S to propagate the position ~x and orientation ~p of each organism. The position is

advected by fluid flow and by the organism’s motility, while the orientation is dictated by the

balance of viscous and gravitational torques in (2.8). These give rise to

d~x

dt
= ~u+ Vs~p (2.9)

d~p

dt
=

(
1

2
~S − gl

6ν
~p× x̂3

)
× ~p (2.10)

where the term in parentheses is the rate of rotation of the particle (Durham et al., 2009). Since

~p represents an orientation and (2.10) preserves magnitude, ‖~p‖ ≡ 1.

2.2.2.2 Continuum model

The concentration of the organisms is governed by advection by the fluid, their own motility

and diffusion. This is expressed through a flux conservation equation

∂c

∂t
+∇i (uic+ Vspic) = ∇i (D∇ic) . (2.11)

The left hand side of (2.11) is the sum of local aggregation, fluid advection, and biological advection

rates. This sum is equal to the divergence of a diffusive flux on the right hand side of (2.11). The

particle model has no analog for this diffusive flux; it is added to maintain numerical stability in

regions of steep concentration gradients.

To distinguish between the effects of a mean shear on the motile species and the dynamically

unstable flow condition modeled later it is useful to begin by considering static shear flow (2.4) with

gyrotactically stable orientation (BS < 1) and no diffusion, viscosity or stream-wise variability.

This reduces (2.11) to a one dimensional conservation equation

∂c

∂t
= −Vs

∂

∂z
pzc. (2.12)

If we further assume the organisms cross the shear layer slowly compared to the shear timescale,
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Equilibrium Profiles
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Figure 2.2: Steady state profiles of normalized concentration, and orientation. The gyrotactic
stability parameter is BSmax = 0.865 and the background concentration is c0 = 1

equivalently Vb � 1, then ~p may be assumed to be the equilibrium value of (2.10)

~p = x̂ BSmaxsech2 z
h

+ẑ BSmax

√
(BSmax)

−2 −
(
sech2 z

h

)2
(2.13)

where B is the reorientation time and Smax = U/h is the maximum shear. Seeking a steady state

solution of (2.12) assuming a background concentration c0 yields

c =
c0√

1−
(
BSmaxsech2 z

h

)2 . (2.14)

The vertical profiles of concentration and swimming orientation are illustrated in Figure 2.2.

The solution (2.13) and (2.14) relies on steady flow and gyrotactic stability BSmax < 1. Though
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these assumptions are not valid for the time varying flow considered later, the solution is infor-

mative. It shows the nature of the transition from stable to unstable orientation and highlights

BSmax as a critical non-dimensional quantity. Diffusive and advective effects will shift the orien-

tation away from the equilibrium value with the local vorticity. The transition will likely occur at

BSmax > 1 when these effects are included but this simple model suggests a smooth increase in

the peak concentration with increasing shear in the stable regime.

We now relax the assumptions of steady flow and gyrotactic stability. To allow tumbling

organisms and dynamic flow we model the mean swimming orientation over a grid box pi and

assume the swimming speed may be taken to be constant Vs and the concentration flux Vscpi

obeys the continuous analog of (2.10)

∂

∂t
(Vscpi) +∇j

(
ujVspic+ V 2

s pjpic
)

= VscεijkΩjpk +D∇2 (Vspic) (2.15)

where Ωj is the rate of rotation given by (2.8) and the diffusivity D is assumed constant. By

tracking both concentration and orientation we can follow the system through the transition to

gyrotactic instability where BS > 1. Equations (2.11), and (2.15) can be solved for the Eulerian

time evolution for the concentration and orientation fields

∂c

∂t
= − (uj + Vspj)∇jc

−Vsc∇jpj +D∇2c (2.16)

∂pi
∂t

= εijkΩjpk − (uj + Vspj)∇jpi

+D∇2pi + 2D
c (∇jc) (∇jpi) . (2.17)

Together (2.16) and (2.17) form a continuum model of grytotactic organisms. These equations are

highly non-linear, in particular the final term in (2.17) is proportional to 1/c. We are seeking to

model large variations in the concentration and cannot a priori dismiss these interactions. Despite

the complex nature of the diffusive terms there is a Laplacian term for both the concentration

and orientation that suggests the use of Fourier decomposition for an exact solution similar to
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equations (A.6) and (A.7). If pi is to serve as a unit vector representing orientation we must

preserve its unit length. Equation (2.17) does not conserve magnitude exactly. The unitary nature

of the orientation is preserved in a separate normalizing step

pi =
p∗i√
p∗jp
∗
j

(2.18)

where p∗i is the result of stepping (2.17) forward in time.

The boundary conditions of the flow suggest boundary conditions for the concentration and

orientation. Far from the shear layer the orientation is vertical pi = δi3 and the concentration is

a background value c0. The background value is arbitrary and we may normalize by c0. These

far field conditions argue for constant boundary conditions in the vertical and corresponds to an

expansion into a sine series in the vertical with the boundary values of c and pi subtracted. The

variables which enter into the Fourier transform are a reduced concentration c′ = (c/c0) − 1 and

orientation p′i = pi − δi3.

e−Dk
2t ∂

∂t

(
eDk

2tF(c′)
)

= −F
((
uj + Vs

(
p′j + δj3

))
∇jc′

)
−F

(
Vs(1 + c′)∇jp′j

)
(2.19)

e−Dk
2t ∂

∂t

(
eDk

2tF(p′i)
)

= −F
((
uj + Vs

(
p′j + δj3

))
∇jp′i

)
+F

(
2D

(∇jc′)(∇jp′i)
c′+1

)
+F (εijkΩj(p

′
k + δk3)) (2.20)

We assume at vertical boundaries the organisms maintain their initial concentration and orienta-

tion. A uniform initial state is used for concentration and orientation with the assumption that a

near steady state will develop in the biology before the flow instability has grown significantly.



25

Ri0 Re0 Vs/∆U0 Lx/h0 Lz/h0 Nx×Nz
a 0.10 500 0.015 27.9 20.925 1024×768
b 0.13 500 0.015 27.9 20.925 1024×768
c 0.13 750 0.015 27.9 20.925 1536×1152
d 0.15 750 0.015 13.95 20.925 768×1152
e 0.15 750 0.010 13.95 13.95 512×512
f 0.17 1500 0.006 13.95 13.95 1024×1024
g 0.17 1500 0.006 13.95 13.95 1152×1152
h 0.17 1250 0.006 13.95 13.95 960×960
i 0.15 1250 0.015 13.95 13.95 1280×1280
j 0.17 1250 0.015 13.95 13.95 1280×1280
k 0.17 1500 0.015 13.95 13.95 1536×1536

Table 2.1: Initial simulation parameters. Richardson number Ri0, Reynolds number Re0, relative
motility Vs/∆U0, domain width relative to layer thickness Lx/h0, domain height relative to layer
thickness Lz/h0, horizontal resolution Nx, and vertical resolution Nz.
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2.2.3 Simulation parameters

Simulations were made at various points in the multi-dimensional phase space (Table 2.1, Figure

2.3). The Reynolds number was chosen for computational tractability. A Prandtl number of 1

was used instead of the oceanic value ∼ 7 for all runs to allow for faster computation. For the

K-H instability to create overturns the Richardson number must be below 1/4. Low Reynolds

numbers further depress the threshold as the increased viscosity damps the growing instability. To

mimic oceanic flows, Richardson numbers are chosen to be as close to the stability limit 1/4 as

numerically feasible.

The diffusivity for the biological quantities was taken to be the same as the thermal diffusivity

of each run. To keep the dimensionality of parameter space manageable gyrotactic reorientation

time is chosen to be B = h0/∆U0 so that BS ≤ 1 everywhere in the initial flow. The parameters

of each run are summarized in Table 2.1 and Figure 2.3. For the organisms to be considered

plankton Vb � 1. The range of relative motility is further constrained from above by resolution

requirements Vb < h0/Re∆x and from below by the requirement that the biology reach a steady

state before billow formation Vb > 1/200. The domain size is chosen to match the wavelength of

fastest growing mode in a Kelvin-Helmholtz instability found by Hazel (1972) Lx/h ≈ 13.95 with

the weak Richardson number dependence ignored following Smyth (2003). Simulations are halted

after overturns occur as the flow can no longer be modeled two dimensional flow.

2.3 RESULTS

Our main focus will be on case k (Table 2.1) for both biological models as it is closest to an

oceanic parameter regime. Concentration and individual organism tracks are used to show the

interaction of the flow and the gyrotactic organisms.

2.3.1 Particle tracking results

The evolved state of an initially uniform random seeding of particles in the domain reflects the

shape of the shear instability (Figure 2.4). The enhanced shear in the braids can exceed the limit of

gyrotactic stability, causing organisms to tumble. This is most clearly evident in the dotted curve

in Figure 2.5, which shows the evolution of a sample particle’s orientation. After t∆U/h ∼ 220, the
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Figure 2.4: Particle positions and orientations at the time of fastest aggregation from run k. The
region shown includes only the central half of the vertical domain.

particle rotates rapidly. The inverted organisms appear first in the braid region. The individual

particle track in Figure 2.5 and the inverted organisms (dark red and blue) in Figure 2.4 illustrate

the necessary conditions for entrapment as the organism travels through the growing instability.

In Kelvin-Helmholtz billow trains, high vorticity fluid is moved from the braids to the billows.

A particle which enters the braid region begins to rotate, and thereafter more closely follows the

trajectory of a fluid parcel. The particle in Figure 2.5 is essentially a tracer after scaled time 220,

when it travels along the braid instead of across it (solid curve in Figure 2.5b). By this mechanism,

organisms are steered away from the braids and into the rotating billows.

Within the billow, vorticity is lower than in the braids and the particle may maintain a stable

orientation as exemplified by the gray dotted curve in Figure 2.6b. A stable orientation in the billow

may not be sufficient for the particle to cross the shear layer, however. The vertical velocities in

the circulating billow can exceed the swimming velocity Vs, in which case the trapping mechanism

of Stommel (1949) can come into play (Figure 2.6). The cell follows a quasi-elliptical trajectory

that is offset horizontally from the center of the billow, such that it spends an increased fraction

of its cycle in regions of downward flow. This asymmetry cancels the upward swimming motion,

with the result that the cell remains trapped in the billow.
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Figure 2.5: (a) Trajectory of a gyrotactically trapped organism in run k superimposed on the
buoyancy field from t = 180h/∆U . (b) Vertical position Z/h (solid) and orientation (dotted)
versus time for the same trajectory. The region shown includes only the central half of the vertical
domain.
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Figure 2.6: (a) Trajectory of a vortex trapped organism in run k superimposed on the buoyancy
field from t = 180h/∆U . (b) Vertical position Z/h (solid) and orientation (dotted) versus time for
the same trajectory. The region shown includes only the central half of the vertical domain.
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2.3.2 Continuum model results

As the instability grows, local concentration maxima are generated around the edge of the

recirculating billow region and the strained braid region. The concentration field has much smaller

scales than the underlying fluid flow since the biological advection admits divergent motion, unlike

the physical flow field. Figure 2.7a shows a snapshot of the concentration after the instability has

caused unstable stratification in the billows. At this time the maximum value of concentration is

2.7c0.

The concentration maximum in the braid region is a direct analogue of the quasi steady state

(2.14) in the initial shear layer. When the concentration of shear in the braid causes gyrotactic

instability BS > 1, the mean orientation field oscillates, causing small scale convergences and

divergences in the biological flux. During the initial growth of the Kelvin-Helmholtz instability,

the vorticity field has a clearly defined maximum in the braid regions, and the resulting rotation

appears in Figure 2.7b as expanding rings of rapidly changing orientation.

In contrast, the maximum concentration in the billow is not dependent on the value of BS

exceeding a threshold. Trapping inside the billows depends on the circulation velocity exceeding

Vs. Vorticity in the billows is sufficiently uniform that the orientation of organisms trapped inside

remains close to the equilibrium value given by (2.8). This situation is analogous to the trapping

mechanism described by Stommel (1949).

2.3.3 Pathways to trapping

The organism distribution adjusts first to the initial flow, and then to the developing instability.

The orientation in the shear layer rapidly adjusts, causing a convergence of biological flux below the

center of the shear layer and a divergence above. The initial uniform distribution of organisms first

equilibrates to the mean flow (2.4), which for gyrotactically stable condition (BS ≤ 1) resembles

Figure 2.2 with a transient rarefaction that is advected upward with velocity Vs. The area of

increasing concentration remains at a constant depth while the area of rarefaction moves upward

and is broader (Figure 2.8). As the area of decreased concentration moves away from the shear layer

the vertical profile of concentration becomes similar to the steady state solution (2.14). Figure 2.8

shows a fit to the approximation. The area of rarefaction above the shear layer is due to the initial
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Figure 2.7: Concentration(a) and Orientation(b) fields from run k at the time of fastest aggregation.
Dark blue outlines the region in which cells are rotating due to gyrotactic instability. The region
shown includes only the central half of the vertical domain.
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state, fit with the steady state solution (2.14). Fit is only for the profile below the center of the shear
layer z = 0. Fit parameters are gyrotactic instability BS = .7085(5), layer width h = 0.920(4)/h0,
and a vertical offset z0 = 0.1(5)/h0. The region shown includes only the central half of the vertical
domain.
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concentration and orientation differing from the equilibrium distributions of the initial flow. In

real flows the shear would be developed over time instead of being imposed instantly, this spin-up

would diminish the rarefaction as the flux imbalance at the top and bottom of the shear layer

would be smaller during the acceleration phase.

Subsequently trapping can occur via either of two distinct mechanisms. As the billows overturn

there is an increase in the vorticity in the braid region (Corcos and Sherman, 1976; Smyth, 2003).

When the vorticity at the braid is sufficient to cause gyrotactic instability (BS > 1), the organisms

tumble and are advected toward the billows by the strained velocity field. Once the billows overturn

they form vortices which trap organisms by virtue of their vertical velocity as described in section

2.3.2.

2.3.4 Model comparison

Figures 2.4 and 2.7 show the concentration and orientation computed at the same time via two

different biological models (see section 2.2.2.1, and 2.2.2.2). Qualitatively, the results of the two

models agree quite strongly. Both exhibit an initial equilibration to the laminar shear layer similar

to the steady state approximation. As the instability grows there is a further concentration of

organisms. The geometry of the Kelvin-Helmholtz billow train is highlighted in both the particle

and continuum models with the thinnest regions coinciding with the braids and a region of vortex

trapping slightly offset from the billows.

For a quantitative comparison of the two biological models, a vertical concentration profile is

constructed using binned averages (Figure 2.9). The particle counts are discrete events and Poisson

statistics (Bevington and Robinson, 1969) are used to estimate the uncertainty of the amount in

each bin. In contrast, the continuum model is averaged to the same resolution with uncertainty

given by standard deviation of the mean. Both show a 30% increase in the horizontally averaged

concentration at the center of the shear layer (Figure 2.9). The two low-concentration bands, as

well as the higher mean concentration at the center of the shear layer are easily seen in the average,

and support the interaction of gyrotaxis with a growing Kelvin-Helmholtz instability as a plausible

mechanism of concentrated layer formation.

The continuum model includes an artificial diffusion term that is not present in the particle

model. The regions of (statistically) significant discrepancies coincide with the regions where there
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vertical domain.



35

are large gradients in the mean concentration ∂c̄/∂z and result from this diffusive term.

2.3.5 Dependence of aggregation rate on initial conditions

The figure of merit we chose to follow the evolution of the biological concentration is the

maximum concentration cmax over x and z at a given time. The aggregation rate dcmax/dτ , where

time has been scaled by the shear τ = t∆U0/h0, has a local maximum near the first overturn of

the growing Kelvin-Helmholtz billow. The aggregation of the gyrotactic organisms is driven by a

convergence in the biological flux field.

dcmax

dτ
∼ h0∇icVbpi (2.21)

This convergence occurs in the smallest biological features where up-gradient flux due to motility

is countered by diffusive fluxes. The resultant convergence may be scaled as

dcmax

dτ
∼ V 2

b Re. (2.22)

By translating the graphs of aggregation rate by the time of maximum aggregation and scaling by

V 2
b Re, the various curves can be made to collapse (Figure 2.10). This composite curve shows that

the total change in concentration over the Kelvin-Helmholtz event is a factor of order 10× V 2
b Re.

For oceanic values Vb ∼ 10−3 and Re ∼ 106 the predicted layers show concentration increasing by

a factor of 10. This concentration factor easily satisfies criterion 3 of Sullivan et al. (2010b).

2.4 DISCUSSION

In this series of simulations we have shown that a pre-turbulent Kelvin-Helmholtz instability

enhances the ability of a shear layer to retain gyrotactic organisms. A continuum model is intro-

duced which can smoothly evolve the orientation through gyrotactic instability with the addition

of a diffusivity to ensure numerical stability. Comparison with a diffusionless particle model shows

that the evolution of the concentration in the continuum model is not significantly altered by

diffusivity (Figure 2.9).

As the Kelvin-Helmholtz instability develops, the models reveal two distinct trapping mecha-
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nisms that act in different regions of the shear layer.

1. Shear in the braids causes the organisms to become gyrotactically unstable (Durham et al.,

2009), thus creating thin layers of highly elevated concentration.

2. Large vertical velocities within the billows detain the upward progress of organisms via the

suspension mechanism of Stommel (1949)

A scaling relationship (2.22) is derived such that the aggregation rate, scaled by the maximum

shear, is proportional to the Reynolds number Re and the square of the relative motility Vb. The

net increase in concentration is estimated as 10ReV 2
b . This is motivated by an approximation of

(2.21) as Vbh0‖~∇c‖ where the gradient ~∇c is set by the balance between diffusive ∆U0Vbc and

advective D~∇c fluxes. The concentration c is assumed to be of order 1.

This model assumes the organisms are smaller than the Kolmogorov scale η. The size of

organisms for which the model assumptions hold is � 1 mm (A.3). Near the surface of the ocean,

observed dissipation rates ε . 10−4W/kg (e.g., Soloviev and Lukas, 2003) imply η & 1mm. The

findings are more generally applicable as a result of the weak influence of an organism’s ellipticity

on its orientation in a growing Kelvin-Helmholtz instability (A.2).

We close by summarizing some quantitative aspects of our results in the context of the Sullivan

et al. (2010b) criteria for thin layer identification cited in the Introduction to this paper.

1. The phase of the K-H life cycle in which braids grow, and hence concentration in braids

increases rapidly, extends over a time ∼ 10h/∆U . For example, if h = 0.1 m and ∆U =

0.01 m/s, the braid growth phase lasts for only a few minutes. Trapping within the billows

persists over a similarly short time. These are, of course, examples of brief intervals in a much

longer mixing event throughout which thin layers might be created, reinforced, or dispersed.

2. Vertical layer thickness starts off at h0. The shear layer ultimately thickens, and equilibrates

at a thickness 0.32h0/Ri0 when the turbulence extinction criterion Ri = 0.32 is reached

(Thorpe, 1973; Smyth et al., 2001). If Ri starts off at 0.16, for example, and the initial layer

thickness is 0.1 m, the thickness will double to 0.2 m. In the braids, however, this thickness

decreases to h0/
√
RePr, or about 1 mm.



38

3. The maximum local concentration increase at the time of fastest aggregation is a factor of 2.7

(Figure 2.7) Horizontally averaged concentration increases by a factor of 1.5 at the time of

most rapid aggregation (Figure 2.9), and increases to 2 in the second half of the aggregation

phase (0 < t < 10h/∆U in Figure 2.10). Therefore locally and in the horizontal mean the

criterion suggested by Sullivan et al. (2010b) is marginally satisfied. When extrapolated to

oceanic parameter regimes the concentration increase is O(10).

The aggregation events modeled here are only brief episodes in a considerably longer process

that will be amenable to direct simulation in the near future. The net effect of many episodes of

billow and braid growth can not be simply extrapolated from these simulations as the decay of the

K-H instability is inherently three-dimensional. To compare these results with observed aggrega-

tions, the spin-up of the shear layer and the anisotropic mixing during the decay of the instability

must be addressed. In particular, the turbulent mixing following the initial K-H instability could

cause sufficient vertical dispersion that the aggregation criterion of Sullivan et al. (2010b) are not

met.
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3 KELVIN-HELMHOLTZ OVERTURN BOUNDARY IN VISCOUS FLOWS

Here I explore the conditions where instability grows despite the stabilizing influence of vis-

cosity and diffusion. I propose a criterion for mixing which requires instabilities attain sufficient

magnitude that they can engender smaller instabilities. I use diffusion of the mean flow, assuming

uniform diffusivity, to constrain the growth time. Results from linear stability analysis give the

rate at which an initial perturbation will grow. Typical sizes for initial perturbations are based on

the Kolmogorov and Ozmidov length scales.

3.1 INTRODUCTION

Vertical mixing in the world ocean modifies the flux and distribution of small organisms (chapter

2), closes large scale circulation (Munk and Wunsch, 1998; Talley, 2003; Ferrari and Wunsch, 2008)

and determines how fresh water inputs are incorporated (Geyer et al., 2010). Near the surface waves

and diurnal cycles of heating and cooling maintain a mixed layer but their penetration depth is

limited. Away from extended cooling near the poles convection is halted each day with the return

of strong solar heating. wave influence is limited by their wavelength. In contrast with the daily

cycling of heat flux momentum fluxes in the ocean can persist for days at the ocean surface.

Away from the equator varying winds couple with near inertial waves transferring energy and

momentum into the stratified interior (Van Meurs, 1998; Alford, 2003). The difficulty of surface

buoyancy forcing reaching the interior is exemplified by the extreme, nearly singular, conditions

found where this is not the case (e.g. in polynyas Smith et al., 1990; Mundy and Barber, 2001;

Moore et al., 2002).

In free stratified shear layers there is a well studied family of linear instabilities which grow

exponentially (Miles, 1961; Howard, 1961). When the stratification is sufficiently weak relative to

the shear the flow is unstable to perturbations in a range of wave numbers (Hazel, 1972). As time

progresses the exponential growth quickly causes the fastest growing wave number to dominate

the flow. The growing perturbation kinetic energy becomes comparable to the initial state, at

least for a given range of depths. If it grows large enough the perturbation itself gives rise to

secondary instabilities (Caulfield and Peltier, 2000; Smyth, 2003). The details of this transition
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are in and of themselves interesting involving both a self interaction causing successive doubling

of wave number as well as the creation of an orthogonal convective instability. A discrete energy

cascade is a possible explanation for the intricate flow geometries observed in geophysical shear

flows before they become fully turbulent (Geyer et al., 2010). Whatever the details may be, the

rapid increase in wave number associated with secondary instabilities relies on the growth of the

initial instability beyond the limits of the linear theory from which it is derived.

When analyzing observed profiles it is useful to distinguish between flows which will and will

not undergo mixing. One necessary condition for mixing is the growth of shear instability, this is

the foundation of the concept of marginal instability which draws conclusions from the observed

distribution of Richardson number (Thorpe and Liu, 2009; Smyth and Moum, 2013). Similar ideas

are used to estimate turbulent mixing by comparison with a critical Richardson number(Large

et al., 1994). Here we seek to find a stronger limit for the onset of mixing that will include the

effect of changing shear layer thickness. To that end I will examine a free shear layer far from

vertical boundaries.

3.2 IDEALIZED SHEAR LAYER

A stratified shear layer is idealized as jumps in velocity and density centered at a common

depth and undergoing diffusion. The source of the density change may be temperature, salinity, or

any other quantity which satisfies a diffusion equation. In the interest of generality all influenced

on density ρ will be treated generically as buoyancy

b = −g ρ− ρ0

ρ0
(3.1)

where ρ0 is a representative density and with a constant diffusivity κ. Before discussing two

dimensional dynamic instability it is useful to examine the evolution of the one dimensional profiles

of velocity and buoyancy assuming constant, though not necessarily equal, diffusion coefficients for

momentum ν and buoyancy κ. In this idealized shear layer all the changes in velocity and density

are concentrated in well defined region. The initial vertical extent of this region defines a vertical

length scale h0. The difference in velocity and buoyancy each have scales ∆U and ∆B respectively.
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The five parameters are sufficient to determine the form of the profiles of velocity and buoyancy

u(z, t) = ∆Uerf

√
π

2

z

hu(t)
(3.2)

hu(t) = h0

√
1 +

πν

h2
t (3.3)

b(z, t) = ∆Berf

√
π

2

z

hb(t)
(3.4)

hb(t) = h0

√
1 +

πκ

h2
t (3.5)

for the mean flow. In an attempt to reduce the parameter space I reduce the problem in terms of

non-dimensional parameters (Tennekes and Lumley, 1972), in this case using Prandtl number Pr =

ν/κ, initial Reynolds number Re0 = ∆Uh0/ν, and initial Richardson number Ri0 = ∆Bh0/ (∆U)
2
.

To take full advantage of the non-dimensional quantities it is useful to define non-dimensional time

t′ = t∆U/h and distance z′ = z/h. In terms of these dimensionless quantities equations 3.2-3.5

become

u′(z′, t′) = erf

√
π

2

z′

h′u(t′)
(3.6)

h′u(t′) =

√
1 +

π

Re0
t′ (3.7)

b′(z′, t′) = Ri0erf

√
π

2

z′

h′b(t
′)

(3.8)

h′b(t
′) =

√
1 +

π

Re0Pr
t′ (3.9)

and the profiles are shown in figure 3.1.

By construction the non-dimensional profiles span velocity and buoyancy differences of 2 and

2Ri0. Shear and stratification are simple functions ∂zu
′ = h′u

−1
, and ∂zb

′ = Ri0/h
′
b. The Richard-

son number

Ri(t′; Ri0,Re0,Pr) = Ri0
1 + π

Re0
t′√

1 + π
Re0Pr t

′
(3.10)

grows over time and depends on all three non-dimensional parameters Pr, Re0, and Ri0. This

is partially because for Pr 6= 1 the length scales of the two profiles diverge. Of note is that Ri

increases in the long time limit even when density diffuses rapidly Pr� 1.
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Figure 3.1: Background flow profiles
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3.3 THE INSTABILITY

With the background flow well described in dimensionless units it can be easily linked to linear

instability theory. The growth of instabilities imposes a strong upper bound on Ri ≤ Ric =

1/4. This critical Richardson number Ric combined with (3.10) implies a finite time available

for the growth of shear instability. Hazel (1972) calculated growth rates of modes for a range

of Richardson numbers which can be used to estimate the total amplification possible in a shear

layer. In the vicinity of the critical Richardson number the growth rate is well approximated

by σ ≈ k (Ric − Ri0), k = 0.7588∆U/h (Hazel, 1972). The linear perturbations initially grow

exponentially ∝ eσ
′t′ , where σ′ = hσ/∆U .

3.3.1 Overturns

Overturns and mixing necessarily exist beyond the limits of linear instability theory. The

predictions of exponential growth require deviations to be small relative to the background flow.

In the linearized theory all measures of the perturbation magnitude (e.g. velocity, buoyancy, kinetic

energy) are linked, this allows for many equivalent formulations of the perturbation parameter.

For ease in visualization I choose to use isopycnal displacement ‖∆z′‖ to quantify the size of the

perturbation. Using the metric linear perturbation theory is valid for instabilities whose isopycnal

displacements are smaller (usually much smaller) than the width of the shear layer. This criterion

also provides a convenient division between small growing instabilities ‖∆z′‖ < 1 and large non-

linear instabilities ‖∆z′‖ > 1. Using the growth rate from Hazel (1972), an initial perturbation

∆z′0 and a final perturbation ‖∆z′‖ = 1 gives a growth time

T ≥ − ln ‖∆z′0‖
k (Ric − Ri0)

(3.11)

where I will focus on the equality with the goal of finding sufficient (but not necessary) conditions

for an overturn.

3.3.2 Initial Perturbations

An important aspect of linear instabilities is that they act to selectively amplify preexisting

motions of the fluid. To use (3.11) an additional set of assumptions must be used to posit what
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deviations from the mean state ‖∆z′0‖ are initially present in the shear layer. Combining (3.10)

and (3.11) with the requirement that Ric ≥ Ri(T ′) gives

Ric ≥ Ri0
1− π

Re0

ln ‖∆z′0‖
k(Ric−Ri0)√

1− π
Re0Pr

ln ‖∆z′0‖
k(Ric−Ri0)

(3.12)

as a criterion for the development of overturns dependent on the three non-dimensional parameters

and the initial size of the perturbation.

For stratified fluid motion here are two natural scales that are relevant, the Ozmidov `′O =

Ri
−3/4
0 and the Kolmogorov `′K = Re

−3/4
0 . The Ozmidov scale is less attractive, it represents the

largest vertical motions in stratified flow and perturbations at that scale are essentially non-linear

already. The Kolmogorov scale, especially in the large Re0 limit, satisfies the smallness condition

required by the perturbation theory as this scale is intended to represent the size of motions which

are strongly damped by viscosity. For completeness I will compute some quantities with a hybrid

perturbation size

∆z0(a) = `′K
a
`′O

1−a
= Re0

− 3
4aRi0

− 3
4 (1−a) (3.13)

where a is a free parameter allowing smooth variation from `′O when a = 0 to `′K for a = 1. With

a set of initial displacements the division suggested by (3.12) is plotted in figure 3.2.

3.3.3 Limiting Cases

Using ∆z′0 = Re−
3
4 (i.e. Kolmogorov scale), equation (3.12) has natural variables 4kRic

3π
Re0

ln Re0

and Ric
Ric−Ri0

. Even in those variables the form of (3.12) is misleadingly complex, as in most

geophysical flows Re0 � 1. Expanding about small quantities Ric−Ri0
Ric

and Re−1
0 yields a significant

simplification

4kRic
3π

Re0

ln Re0
≈



Pr− 1
2

Pr

(
Ric

Ric−Ri0

)2

Pr > 1
2(

Ric
Ric−Ri0

) 3
2

Pr = 1
2

Pr
1−2Pr

(
Ric

Ric−Ri0

)
Pr < 1

2

(3.14)

The discontinuity at Pr arises from the binomial expansion of the square root in the denominator.

For slowly diffusing buoyancy sources, such as salt (and to a lesser extent heat) in oceanic flows,



45

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0.1  0.15  0.2  0.25

R
e

0

Ri0

∆z0=(Re0
a
Ri0

1-a
)
-3/4

a=0.00
a=0.20
a=0.40
a=0.60
a=0.80
a=1.00

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

R
e

0

Ric/(Ric-Ri0)

Figure 3.2: K-H billows cannot form to the right of each curve. All figures show results for Pr = 1
for comparison. The limiting curve is drawn in grey.
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Pr� 1 a further simplification

4kRic
3π

Re0

ln Re0
≈
(

Ric
Ric − Ri0

)2

(3.15)

which is plotted in grey in figure 3.2. Similarly for rapidly diffusing buoyancy sources Pr� 1 (heat

in liquid mercury) the simplification allows for Ri0 to be solved for

Ri0 ≈ Ric − Pr
3π

4k

ln Re0

Re0
(3.16)

or in extreme limit of low Prandtl number or high Reynolds number Ri0 ≈ Ric.

3.4 CONCLUSIONS

The stronger constraint on mixing in unstable shear layers will help distinguish instability from

turbulence. In particular an explicit criterion (3.14) is proposed. This stronger requirement for

mixing is of use for the planning of modeling studies which are limited to intermediate Reynolds

number to assure the development of a mixing event for given initial conditions (for example in

chapter 2). A possible extension would parameterize preexisting turbulence by replacing molecular

diffusivity ν and κ with effective turbulent diffusivity. The choice of turbulence parameterization

is not straight forward but could be linked to observations of the internal wave field. For example

estimating an effective Reynolds number by equating the effective Kolmogorv scale `k with the

amplitude of internal wave displacements a wavelengths near the fastest growing mode λ ≈ 14h

(Hazel, 1972).
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A Large Eddy Simulation (LES), driven by surface fluxes observed from R/V Revelle during

boreal fall, 2011 in the Indian Ocean at 0◦N, 80.5◦E, was performed to identify the dominant

processes governing subsurface turbulence and to quantify the resulting vertical property fluxes.

In the simulation, wind accelerated the mixed layer, and shear mixed the momentum downward,

deepening the mixed layer base. Turbulent kinetic energy gains due to shear production and

Langmuir circulations are opposed by stirring the density field (buoyancy production) and frictional

losses (dissipation). Strongest stirring of buoyancy follows precipitation events and penetrates to

the base of the mixed layer.

We focus on the wind burst from November 24, 2011 where strong wind and wave forcing were

observed. The LES model uses the Craik-Leibovich equations, adding Langmuir turbulence to the

physics. The turbulent kinetic energy budget shows that waves influence only the uppermost few

meters of the ocean. Below the wave-energized region, shear instability responds to the integrated

momentum flux into the mixed layer, lagging the initial onset of the storm. Shear below the mixed

layer persists after the storm has weakened and decelerates the surface jet slowly (compared with

the acceleration at the peak of the storm). Slow loss of momentum from the mixed layer extends

the effect of the surface wind burst by energizing the fluid at the base of the mixed layer, thereby

prolonging heat uptake due to the storm. Ocean turbulence and air-sea fluxes contribute to the

cooling of the mixed layer approximately in the ratio 1:3, consistent with observations.

4.1 INTRODUCTION

The intra-seasonal variability of SST, winds, and outgoing radiation in the equatorial eastern

Indian Ocean is dominated by the 30-90 day period of the Madden Julian Oscillation (MJO; Hendon

and Glick, 1997; Wheeler and Hendon, 2004; de Szoeke et al., 2015). The active phase of the MJO

features an area of increased westerly wind anomalies (Madden and Julian, 1971, 1972) near the

surface and strong precipitation at the equator propagating eastward at ∼ 5m/s (Zhang, 2005).

These westerly wind anomalies, or wind bursts, last only 1-3 days (Zhang, 2013). Despite their

short duration these wind bursts can account for the majority of the climatological momentum flux

into the ocean. The mean wind forcing is weak . 0.05Pa (Wyrtki, 1973; Schott and McCreary Jr.,

2001) and highly variable. During a westerly wind burst, surface stress is typically ∼ 0.5Pa and
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can reach values > 0.8Pa, in 1min averages. In addition to dominating the momentum exchange,

the active phase of the MJO changes the nature of the air-sea heat and freshwater exchanges due

to increased latent heat flux and precipitation at the surface(de Szoeke et al., 2015).

The intense surface fluxes associated with a westerly wind burst change the physics of heat,

salt, and momentum transport within and below the ocean mixed layer. In the absence MJO

suppressed phase, heat exchanges are dominated by a diurnal cycle of strong daytime solar heating

∼ 400W/m2 and weak . 100W/m2 cooling with weak precipitation and winds (Moum et al.,

2014; de Szoeke et al., 2015). In addition to direct heat, salt, and momentum fluxes, mixed layer

transports are partially mediated by surface waves. Typical waves in the equatorial Indian Ocean

are too shallow, 1−2m high with periods > 10sec (Young, 1999; Chen et al., 2002; Sterl and Caires,

2005), to drive significant motion in the mixed layer. During a westerly wind burst, in addition

to strong momentum flux, there is strong precipitation, net surface cooling of 300W/m2, and

wave heights increasing to & 1.5m with periods as short as 3sec (Moum et al., 2014). The strong

fluxes freshen, cool, and accelerate the surface water, while steep waves, shear, and buoyancy fluxes

energize mixing mechanisms (figure 4.1) and exchange salt, heat and momentum with deeper water

previously inaccessible to air-sea interaction. Observations during a westerly wind burst show the

potential influence of a barrier layer on the exchange of heat across the mixed layer base (Chi

et al., 2014; Moum et al., 2014).

There is some modulation of MJO properties associated with changes in sea surface temperature

(SST), but a clear causal relationship has yet to be demonstrated (Lau and Waliser, 2012). Some

theories of the MJO attempt include theses surface fluxes (Emanuel, 1987; Neelin et al., 1987) or

parameterize them as damping term (Chang, 1977). Previous studies of the surface mixed layer

heat budget during DYNAMO show a strong turbulent heat flux at the mixed layer base associated

with westerly wind bursts (Chi et al., 2014).

In this study, our main goals are (1) to identify the most important subsurface mixing mech-

anisms and (2) to assess the relative importance of subsurface and atmospheric processes in de-

termining the surface cooling that damps the storm. To this end, we explore atmosphere-ocean

feedbacks and subsurface mixing processes in the MJO active phase using a Large Eddy Simulation

(LES).
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After initial applications to the atmospheric boundary layer (Deardorff, 1972), LES was adapted

for the ocean in the 1990s (Skyllingstad and Denbo, 1995) and has been used in numerous studies

since. (Skyllingstad et al., 1999, ; hereafter S99) explored the limits of the technique by comparing

LES-derived turbulence statistics with microstructure measurements in the context of a westerly

wind burst. Several modeling studies using idealized (McWilliams et al., 1997; Wang and Müller,

2002; Harcourt and D’Asaro, 2008; Grant and Belcher, 2009; Noh et al., 2011) and empirical

(Kukulka et al., 2009, 2010) forcing have contributed to the general understanding of of upper ocean

physics. LES of shallow mixed layers driven by strong wind forcing show that turbulence near the

surface is driven mainly by shear associated with the Stokes drift of the surface waves (Langmuir

turbulence; McWilliams et al., 1997). Langmuir circulation transports momentum and buoyancy

more quickly than a simple shear driven mixed layer (Kukulka et al., 2009, 2010), rapidly mixing

away shear near the surface (Noh et al., 2011). Away from the surface, Langmuir turbulence relies

on the inertia of vertical motions of Langmuir cells (Grant and Belcher, 2009) because the driving

Stokes shear decays rapidly with depth, unlike turbulence driven by convective or shear instability

which need not depend on depth (Thorpe, 2004). The influence of the Langmuir turbulence is

present in much of the mixed layer with the effect strongest in shallow mixed layers with weak

underlying stratification (Noh et al., 2011). Langmuir turbulence may deposit momentum at the

mixed layer base, setting the stage for enhanced shear production (Kukulka et al., 2010)

Observational estimates of surface heat flux, precipitation, and wind stress can be used to drive

ocean LES of a dynamically evolving mixed layer and inform the analysis of the subsurface mixing

mechanisms of a specific event. S99 did this for a westerly wind burst observed in the western

Pacific using measurements from the Coupled Ocean-Atmosphere Response Experiment (COARE).

Here we use the same approach to examine mixing during the DYNAMO westerly wind burst

that occurred on November 24, 2011. From the model results we identify the primary mechanisms

responsible for turbulence and quantify the time and depth dependence of the resulting fluxes driven

by meteorological and oceanographic observations taken during the Dynamics of the Madden-Julian

Oscillation (DYNAMO) field campaign (Yoneyama et al., 2013; Moum et al., 2014; de Szoeke et al.,

2015), as well as concurrent measurements from the nearby RAMA mooring (the Research Moored

Array for African-Asian-Australian Monsoon Analysis and prediction; McPhaden et al., 2009) to
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estimate the ocean state and surface fluxes before and during a westerly wind burst.

We will first discuss how the boundary and initial conditions were extracted from the ob-

servational record (section 4.2) and estimate the relative influence of convection and Langmuir

turbulence on the mixed layer before summarizing the numerical model (section 4.3). The simu-

lation is used to partition turbulent energy production among Stokes, shear, and buoyancy driven

production (section 4.44.4.2). Special attention is given to shear instability below the mixed layer

(section 4.44.4.3). Vertical transports of momentum, heat, and salt are compared to the surface

forcing (section 4.44.4.4). Results are compared with the COARE wind burst (section 4.5) and

conclusions are summarized in section 4.6.

4.2 INITIAL OCEAN STATE AND AIR-SEA FLUXES DURING THE WIND BURST

Vertical profiles of horizontal velocity are obtained from the acoustic Doppler current profiler

at the nearby equatorial RAMA mooring (McPhaden et al., 2009) at 80.5 E. Uniform currents

are assumed above 12m due to the unreliability of near surface data. The Chameleon vertical

microstructure profiler provides initial mean profiles of salinity and temperature (Moum et al.,

1995, 2014; Pujiana et al., 2015). The observed flow field had a strong tidal signature that is not

included in the model. To remove the resulting bias, isopycnal averages of velocity, temperature,

salinity and depth are computed over the five days preceding the wind burst. The profiles are re-

interpolated onto a regular depth grid for use as initial velocity, temperature and salinity profiles

. Potential density is calculated using the Gibbs sea water package version 3.02 (McDougall

and Barker, 2011) and referenced to surface pressure. Depth conservative temperature TC , and

absolute salinity SA, as functions of density at surface pressure ρ(TC , SA, P = Patm) are calculated

by interpolating in density using the four nearest points with a cubic polynomial.

After the MJO suppressed phase that preceded the wind burst, the upper ocean was stable and

the currents were weak. The initial profiles represent the average of the five days preceding the wind

burst as described above (figure 4.2). At 20m there is a pycnocline, due mostly to a stable salinity

gradient of gβ∂zS ∼ 4× 10−4s−2 embedded in weaker gα∂zT ∼ 10−4s−2 temperature gradient. In

this stable halocline there is a maximum in the meridional shear. This pycnocline is the upper edge

of a current extending from 20-50m carrying salty water into the southern hemisphere (figure 4.2).
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Below the strong halocline, the salinity continues to increase but temperature is the dominant

source of density stratification. Salinity reaches a maximum at 50m below which temperature

gradient increases to gα∂zT ∼ 4 × 10−4s−2. The near-surface current was dominated by its

eastward component and exhibited very little shear except at z = 20m (figure 4.2b, solid line).

Momentum fluxes are taken from one minute average wind speed observations measured aboard

R/V Revelle. Surface heat and salt fluxes include contributions from the observed net precipitation

and evaporation P−E, and the surface heat flux J0 calculated using the observed winds, humidity,

radiative fluxes, and air-sea temperature differential. Observations are converted to surface fluxes

using COARE 3.5 rev. 3 (de Szoeke et al., 2015). The processed fluxes are then low pass filtered

at one hour.

In situ air sea fluxes (de Szoeke et al., 2015) and subsurface profiles are available from the

DYNAMO project from September 2011 through January 2012 while R/V Revelle was on station

at 0 N, 80.5 E. The strongest measured heat flux at the base of the ocean mixed layer of the

DYNAMO record are associated with the wind burst at the end of November 2011 (Chi et al., 2014).

We choose to model the November 24, 2011 westerly wind burst because it exemplifies critical

atmosphere-ocean feedbacks and was brief enough to be accessible to high resolution modeling.

The model is initialized on year-day 328 (November 24) at 00:00 UTC, shortly before local sun-

rise. The previous suppressed phase of the MJO was characterized by weak winds (τ . 0.1 N/m2)

and strong daytime heating (∼ −400 W/m2). On November 24 the zonal wind stress increased

rapidly to τ ∼ 0.5 N/m2 (figure 4.3a) with peaks as high as 0.83 N/m2 in 1 minute averages.

This wind event was accompanied by significant precipitation (15mm/hr) and surface cooling

(+400W/m2) (figure 4.3b). The surface buoyancy flux (figure 4.4b) was dominated by its thermal

component (∼ 10−7m2/s3) except during rain squalls (∼ 10−6m2/s3) when the saline component

was as great or greater.

During the wind burst, the spectral distribution and vertical attenuation of the short wave

radiative heat flux J were measured (Ohlmann, 2011) and found to be nearly constant. These

were consistent with the Paulson and Simpson (1977) formula

J(z, t) = J(0, t)
(
A1e−z/λ1 + (1−A1) e−z/λ2

)
(4.1)
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Figure 4.2: Upper ocean conditions prior to the wind burst. (a) Temperature (solid, lower axis)
and salinity (dashed, upper axis) scaled to represent equal buoyancy increments, and (b) zonal
(solid) and meridional (dashed) velocities
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Figure 4.3: Surface fluxes used as upper boundary condition for LES: (a) zonal (solid) and merid-
ional (dashed) momentum, (b) total surface heat flux (solid line, left axis) and fresh water flux
(dashed line right axis)
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Figure 4.4: (a) Stokes drift us (solid, left axis) and Stokes e-folding length L (dashed, right axis).
(b) Buoyancy fluxes due to surface heat (solid) and salt (dashed). (c) Hoenikker number (solid)
and turbulent Langmuir number (dashed).
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with coefficient A1 = 0.69 with penetration depths λ1 = 1.1m and λ2 = 23m.

Surface wave effects are parameterized as a function of ~Uwind, the surface wind at 19.5m, by

assuming an equilibrium sea state (Pierson and Moskowitz, 1964; Li and Garrett, 1993; Harcourt

and D’Asaro, 2008). In this approximation, the Stokes drift velocity ~us and the e-folding depth

are given by:

~us = 0.0145 ~Uwindez/L (4.2)

L = 0.12 |~Uwind|2/g. (4.3)

During the wind burst, the surface Stokes drift remained near 0.2ms−1 (figure 4.4a) while its

vertical e-folding scale was 2-4 m). Both the turbulent Langmuir number Lat =
(
u2
Sρ0/τ

)1/4
and

the Hoenikker number Ho = 4B0ρ0L/usτ (where B0 is the net surface buoyancy flux) were less

than unity during the storm, indicating quantitatively that Langmuir turbulence is likely to have

been a factor (Li and Garrett, 1995; McWilliams et al., 1997).

4.3 THE LES MODEL

The capabilities and limitations of upper ocean LES were established by S99, who simulated

the ocean response to a westerly wind burst observed in the equatorial Pacific (Smyth et al.,

1996a,b) and carried out statistical comparisons between the modeled turbulence and concurrent

microstructure observations. Statistically, the turbulent kinetic energy dissipation rate, ε, was

found to agree very well with the microstructure measurements under two conditions. First, a

spin-up period of a few hours is required to produce realistic dissipation rates. Second, ε can be

underestimated in strongly stratified layers where the model grid fails to resolve the Ozmidov scale.

The resolution requirement for accurate turbulent fluxes is much less stringent since flux-carrying

motions are resolved explicitly.

Our ocean LES model is essentially the same as that used by (S99)1. The model equations

include the surface waves by the inclusion of Stokes drift usj , Coriolis effect, and buoyancy b = −g ρ
′

ρ0

due to variations in potential density ρ′ = ρ(T, S, Patm)− ρ0 from temperature T , salinity S, and

1 To estimate the e-folding depth of the Stokes drift, S99 used visual observations of the dominant swell instead
of (3). Had (3) been used, the e-folding scale would have been smaller and the Langmuir turbulence would have
been stronger and concentrated even more tightly at the surface. That would not have affected the conclusions.
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atmospheric pressure Patm using the equation of state from UNESCO (1981). The model does not

include mixing due to surface wave breaking. The governing equations for velocity ~u, temperature

T , and salinity S are

∂ui
∂t

= εijk
(
uj + usj

)
(εklm∇lum + 2Ωk)

−∇i
(
p+ 1

2

(
uj + usj

)2)
+ bδi3

+α∇12ui +∇j (νt (∇iuj +∇jui)) (4.4)

∇juj = 0 (4.5)

∂T

∂t
= −

(
uj + usj

)
∇jT +∇jPr−1νt∇jT − 1

ρcp
∂zJ (4.6)

∂S

∂t
= −

(
uj + usj

)
∇jS +∇jSc−1νt∇jS (4.7)

where εijk is the alternating tensor (not to be confused with the turbulent dissipation rate defined

below), δij is the identity tensor, p = P
ρ0

is normalized pressure, Ω is planetary rotation, and νt is

the eddy viscosity from the sub-grid scale model of the respective field. Profiles of the Stokes drift

~us and radiative heat flux J are obtained from observations using (4.1–4.3).

The eddy viscosity νt is estimated using an anisotropic Smagorinsky closure (Ducros et al., 1996;

Wilcox, 2006) detailed in the appendix. An additional hyper-viscosity term α∇12ui is included for

numerical stability to remove variance at the grid-scale which is not absorbed by the Smagorinsky

eddy viscosity. Both the turbulent Prandtl number Pr and Schmidt number Sc are assumed to be

0.6 . The LES is conducted in a 256m×256m×60m horizontally periodic domain with 0.5m cubic

cells. Equations (4.4-4.7) are advanced in time as in S99.

4.4 SIMULATION RESULTS

4.4.1 Spatial Organization of Turbulence

In our LES, subsurface turbulence develops immediately after the sharp increase in wind stress

(figure 4.5). A few hours into the wind burst, the vertical velocity field shows considerable com-

plexity, but at least two distinct, coherent flow geometries are evident (figure 4.5b). Near the

surface, we see periodic bands of upwelling and downwelling. These are coherent over 50 − 150m
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and are spaced at 5 − 10m intervals. A range of orientations is visible, but the longest bands

are oriented ∼ 20◦ from the zonal, as expected for Langmuir cells (Leibovich, 1983; McWilliams

et al., 1997; Thorpe, 2004). At the base of the surface mixed layer (∼ 30m depth) are upwelling

and downwelling bands oriented at ∼ 70◦ north of zonal with wavelength 128m (half the domain

extent). In this section we will diagnose the driving mechanisms of the modeled turbulence and

quantify the resulting vertical fluxes. In the process, we will explain the patterns seen in figure

4.5.

4.4.2 Turbulent Kinetic Energy

As we are interested in turbulent mixing processes, the simplest metric is the mean turbulent

kinetic energy tke (figure 4.5a). To derive the governing equation for 〈tke〉x,y =
〈

1
2u
′
iu
′
i

〉
x,y

, we

decompose velocity ui, pressure p, buoyancy b, and diffusivity νt into a horizontal mean 〈?〉x,y ≡

1
LxLy

Lx∫
0

Ly∫
0

? dxdy and a perturbation ?′ = ?− 〈?〉x,y. The momentum equation (4.4) is multiplied

by u′i and averaged over x and y, resulting in

∂ 〈tke〉x,y
∂t

=

generation/dissipation︷ ︸︸ ︷
−
〈
w′u′j

〉
x,y

∂zu
s
j

−
〈
w′u′j

〉
x,y

∂z 〈uj〉x,y
〈w′b′〉x,y − 〈ε〉x,y

transport︷ ︸︸ ︷
−∂z 〈w′tke+ w′p′ + sgs〉x,y

hyperviscosity︷ ︸︸ ︷
+α

〈
ui∇12ui

〉
x,y

(4.8)

where

ε = + 〈νt〉x,y
〈

(∇ju′i)
(
∇iu′j

)
+ (∇ju′i)

2
〉
x,y

+
〈
ν′t

[
(∇ju′i)

(
∇iu′j

)
+ (∇ju′i)

2
]〉

x,y

+ 〈ν′t∇iw′ + ν′t∂zu
′
i〉x,y ∂z 〈ui〉x,y (4.9)



60

Figure 4.5: a) Surface stress |τ | and volume averaged turbulent kinetic energy tke. b) Snapshot of
the vertical velocity w(x, y, z) at day 328.67 shown by the dotted line on (a). The block of values
0m < y ≤ 256m are rendered transparent for clarity. The upper surface shown is z = −2m.
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is the viscous dissipation rate and

sgs = + 〈νt〉x,y ∂z
[
〈tke〉x,y + 〈w′w′〉x,y

]
−〈ν′t (∂ztke+∇iu′iw′)〉x,y

−
[
〈ν′tu′i〉x,y ∂z 〈ui〉x,y

]
(4.10)

is the sub-grid-scale flux.

We distinguish between four generation/dissipation mechanisms and three transport mecha-

nisms of turbulent kinetic energy. Surface waves interact with turbulent eddies through the shear

of the Stokes drift. We refer to this process as Stokes production StP = ∂zu
s 〈u′w′〉x,y. Where

Stokes production dominates, the turbulence is referred to as Langmuir turbulence (McWilliams

et al., 1997). Similarly, the mean shear can exchange energy with turbulent eddies through the

mechanism of shear production SP = ∂zū 〈u′w′〉x,y. The conversion of potential energy to turbu-

lent kinetic energy is quantified in the buoyancy production term BP = 〈b′w′〉x,y. Eddy viscosity

dissipates turbulent kinetic energy at the rate ε. The model distinguishes between resolved ad-

vection of turbulent kinetic energy 〈w′tke〉x,y, pressure work 〈w′p′〉x,y, and transport at sub-grid

scales 〈sgs〉x,y.

The sources and sinks are isolated by taking the vertical mean 〈?〉z = 1
Lz

0∫
−Lz

? dz of equation

4.8

d 〈tke〉x,y,z
dt

=

Stokes︷ ︸︸ ︷
−

〈
〈u′iw′〉x,y

∂ 〈usi 〉x,y
∂z

〉
z

Shear︷ ︸︸ ︷
−
〈
〈u′iw′〉x,y

∂ 〈ui〉x,y
∂z

〉
z

Buoyancy︷ ︸︸ ︷
+ 〈b′w′〉x,y,z

Dissipation︷ ︸︸ ︷
−〈ε〉x,y,z

hyperviscosity︷ ︸︸ ︷
+α

〈
ui∇12ui

〉
x,y,z

. (4.11)

In this vertically-averaged form, tke is generated by Stokes and shear production in roughly equal
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proportion (figure 4.6b, red and dark blue curves), with the former dominating early in the wind

burst and the latter dominating later. The vertically-averaged buoyancy production (figure 4.6b,

light blue curve) was negative, fluctuating between 10% and 20% of the shear production. This

is consistent with typical oceanic values of the flux Richardson number (Osborn, 1980). The hy-

perviscosity term is small, indicating that the Smagorinsky sub-grid model is effectively absorbing

the downscale energy cascade.

As the simulation progresses, turbulence spreads downward; by the end of the 30 hour sim-

ulation turbulence has spread throughout the upper 40m. The evolution of tke features several

maxima (figure 4.5a) originating at the surface and extending as deep as ∼ 30m (figure 4.6a).

These coincide with extrema in all of the vertically integrated production terms (figure 4.6b).

Close examination of figure 4.5a shows that these peaks correspond to wind maxima. The wind

stress changes by ∼ 25% from hour to hour (figure 4.3a, 4.5a) and these variations influence tke

production through multiple routes. In the Li-Garrett parameterization (4.2,4.3), both the speed

and the penetration depth of the Stokes drift increase with the wind and therefore so does the

Stokes production term (figure 4.6b, dark blue and 4.7a). Wind also directly drives the mean shear

and hence the shear production (figure 4.6b, red and 4.7b). The final tke maximum (day 329, hour

6) corresponded to a shift in the wind direction, with the result that the Stokes production acted

to reduce tke, in competition with the positive shear production.

Langmuir turbulence is confined the upper 5m throughout the simulation (figure 4.7a). The

fact that Langmuir turbulence appears so rapidly is due in part to the assumption that the waves

are always in equilibrium with the wind (4.2, 4.3 ; Li and Garrett, 1993). In a more realistic

model, the wave field, and the attendant Langmuir turbulence, might require more time to become

established after the onset of strong winds. Some of this intense tke was advected downward and

deposited at 3−12m depth (figure 4.8a). The reversal of StP near the end of the simulation (figure

4.6b) is also evident here.

The increased surface stress accelerated the near-surface current, so that the shear at its base

(figure 4.9a) descended rapidly to about 20m depth, generating a layer of positive SP over the

same layer (figure 4.7b). The strongest shear coincided with a sharp pycnocline (maximum of

N2, figure 4.9b), which was due to a warm fresh surface layer (figure 4.2a and accompanying
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Figure 4.6: Turbulent kinetic energy and depth averaged sources and sinks. (a) Depth time profiles
of turbulent kinetic energy. The asterisk indicates a particular rain event described in the text. (b)
Souces of turbulent kinetic energy: Stokes drift 〈StP〉 (blue solid), shear production 〈SP〉 (red),
buoyancy production 〈w′b′〉 (cyan), dissipation 〈ε〉 (yellow), hyper-viscosity

〈
α∇12

〉
(blue dashed).
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Figure 4.7: Sources and sinks of turbulent kinetic energy as functions of depth and time: (a) Stokes
production 〈StP〉 with the upper 65th percentile outlined in black for later reference (see also figure
4.10), (b) shear production 〈SP〉, (c) buoyancy production 〈w′b′〉, and (d) dissipation 〈ε〉.
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Figure 4.8: Turbulent kinetic energy and fluxes as functions of depth and time: (a) turbulent
kinetic energy 〈tke〉, advection 〈w′tke〉, (b) pressure work 〈p′w′〉, and (c) transport by the sub
grid-scale model.
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discussion). Turbulence mixed the stable stratification, doing work against gravity and generating

negative BP in the same layer (figure 4.7c). Dissipation ε is of comparable magnitude to generation

throughout the simulation (figure 4.7d), and suggests turbulence rapidly adjusts to the relatively

slowly changing driving fluxes and mean flow.

Turbulent kinetic energy is transported vertically via resolved advection, pressure work and

sub-grid scale processes. Resolved advection of kinetic energy (〈w′tke〉 figure 4.8a) serves to move

tke downward from the strong production region at the surface and away from regions of shear

production late in the simulation. The pressure work (〈w′p′〉 figure 4.8b) is limited to the region

of strong Stokes drift influence. It has variable direction. It is consistently upward below regions

of strong Stokes production and becomes positive late in the simulation as the Stokes production

changes sign. The sub-grid scale diffusive flux is small and generally diffuses tke downward (sgs

figure 4.8c).

4.4.3 Marginal shear instability below the mixed layer

Below the Stokes penetration depth, turbulence is governed largely by a competition between

shear and buoyancy. These influences are quantified here using the squared shear:

S2 =

(
∂

∂z
〈u〉x,y

)2

+

(
∂

∂z
〈v〉x,y

)2

(4.12)

and the squared buoyancy frequency

N2 = − g

ρ0

∂

∂z
〈ρ〉x,y . (4.13)

The ability of turbulence to overcome gravity is consistent with the fact that the gradient Richard-

son number, Ri = N2/S2, was small in this layer. The transfer of kinetic energy from the mean

shear to small eddies require that Ri be smaller than a critical value which is approximately 1/4

(Miles, 1961; Howard, 1961; Thorpe and Liu, 2009). That condition is satisfied in a layer sur-

rounding 20m depth (figure 4.9c). At day 328.67, the time of the snapshot shown in figure 4.5,

the shear magnitude S was maximum at 28m depth. At this depth, the direction of the shear

vector was ∼ 20◦. The large upwelling and downwelling bands evident in figure 4.5 are oriented
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Figure 4.9: Isopycnals (∆ρ = 100g/kg) overlaid on (a) stratification N2 and (b) shear squared di-
vided by four S2/4. (c) Mean Richardson number profiles, blue colors show unstable stratification,
red colors are stable stratification with regions of dynamic instability outlined by the black and
white contour.
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perpendicular to the shear direction, just as one would expect for shear instability (Smyth et al.,

2013). The mechanics of shear and buoyancy production are discussed further in section 4.44.4.3.

Marginal instability is a diagnostic property of sheared, stratified turbulence, and is readily

identified by the statistics of the gradient Richardson number. Specifically, Ri fluctuates about a

critical value (often approximated as 1/4) due to competing effects of forcing and dissipation (e.g.

Smyth and Moum, 2013). Based on Ri, the evolving upper ocean can be segregated into three

distinct regimes (figure 4.9c).

1. During the strong solar heating and weak winds prior to the onset of the westerly wind burst

the full water column is stable (Ri > 1/4, dark red regions of figure 4.9c).

2. At night, between precipitation events, the model develops convectively unstable stratifica-

tion in the upper 5m (Ri < 0, blue regions on figure 4.9c)

3. As the surface current accelerates, the shear descends and accumulates at the base of the

mixed layer. The increasing shear at the base of the mixed layer is evident by the region

of dynamical instability (Ri . 1/4, yellow and orange regions of 4.9c) that thickens and

descends following the onset of the wind burst .

Region (3) coincides with the largest values of the shear production term in the tke equation (figure

4.7b, and 4.10b). The proximity of the mean Ri to 1/4 in that region indicates marginal instability.

We next examine the statistics of Ri conditioned on the shear production rate. Figure 4.10

shows the fraction of time-depth regions defined by specified ranges of SP and Ri. SP bins are

chosen so that each bin contains 2.5% of the time-depth points, while Ri bins are logarithmically

spaced. The fraction of time-depth points in each SP/Ri bin is shown in figure 4.10b. The region

of significant SP is conveniently defined to include the uppermost 35% of values, whose time-depth

boundary is contoured in figure 4.7b. Ri abundance shows a marked shift in this region (figure

4.10). The cumulative fraction of the upper 35% of SP values (figure 4.10a, solid line) shows the Ri

clustered near a central value slightly in excess of 1/4. In regions of weak SP, the Ri distribution

(figure 4.10a, dashed line) is broader and centered near unity, suggesting that shear instability is

rare.
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Figure 4.10: Distributions of Richardson number Ri: (a) fraction of time-depth points above (solid)
and below (dashed) the 65th percentile of shear production as a function of Ri, (b) fraction of time
depth points as a function of Ri and shear production percentile
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These characteristics of the Ri distribution correspond well with observations of marginal insta-

bility associated with deep cycle turbulence in the equatorial Pacific, another example of forced-

dissipative turbulence driven by the dynamic instability of sheared, stratified flow (Smyth and

Moum, 2013).

4.4.4 Turbulent Fluxes

We focus on vertical fluxes across three particular surfaces. The first is the air-sea interface,

z = 0, where fluxes were inferred from the DYNAMO observations. The other two are alternative

definitions of the lower boundary of what we casually call the “mixed layer” in our model. Both

are defined using the density difference ∆ρ between the depth of interest and the surface. The

first choice is ∆ρ = 0.01kg m−3 (Moum et al., 2014). Above this depth, vertical fluid motion is

essentially unhindered by buoyancy, so that the layer’s temperature is nearly the SST. For clarity,

we will refer to this layer as the surface layer (SL); it is equivalent the “diurnal mixed layer”

employed, for example, by Smyth et al. (1996a,b, 2013). We will also consider the choice ∆ρ =

0.1kg/m3. This depth is relatively stable, and is in particular resistant to rapid shoaling during

rain events. It has been used recently to explore the subsurface heat budget during DYNAMO

(Chi et al., 2014). We refer to the corresponding layer ∆ρ < 0.1kg/m3 as the “mixed layer” (ML).

Prior to the wind burst, the turbulent heat flux is negative as sun-warmed surface water is

mixed downward (figure 4.11). With the onset of strong winds, the heat flux adjacent to the

surface changes from negative to positive, indicating a downward flux of surface water cooled,

mainly, by the latent heat release due to wind-enhanced evaporation. After wind onset, a region

of strong downward heat flux forms at the surface and descends rapidly to ∼ 15m depth, then

gradually to ∼ 35m. This coincides with the ML base and also with region 3, identified in the

previous subsection, in which shear instability is active. The resulting turbulence transports cool

water from the thermocline upward, exchanging it with water warmed at the surface prior to the

wind burst. At the base of the SL, the modeled turbulent flux is approximately 1/3–1/2 of the

surface flux (figure 4.11b, solid curves). This ratio is consistent with the observational estimate by

Moum et al. (2014). At the base of the ML, the modeled heat flux is usually slightly larger, with

values fluctuating in the range −300 ± 100W/m2. For comparison, in the observational analyses

of Chi et al. (2014), a smoothed estimate of this flux (based on a budget residual) decreased from
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zero to around −300W/m2 over several days after the beginning of the storm (figure 4.12).

Like the heat flux, the salt flux shows a maximum near the ML base (see below). The flux is

positive (i.e. upward), since salty deep water is mixed with fresh surface water. Near surface flux

events correspond to rain. The SL and ML bases bracket the salt flux maximum, so that values

across those surfaces are nearly equal. On average the salt flux in that layer is slightly higher than

the surface value, suggesting that some salt is being mixed up from below, most likely from the

barrier layer around 20m depth (figure 4.2a, dashed curve) consistent with observations (Moum

et al., 2014).

Sporadic rain events associated with the MJO active phase replenish the saline stratification

that existed prior to the wind burst. The renewed fresh layer causes the SL base to shoal as a

stratified fresh layer at the surface is formed (e.g. asterisk on figures 4.6 and 4.12). The fresh

layer insulates the underlying water from the surface momentum flux, leading to a rapid decrease

of turbulence around 20m depth in figure 4.6 near the initial halocline. Smyth et al. (1997) have

described several similar events observed during COARE. The fresh layer persists until near-surface

turbulence is able to re-entrain the fluid that had been part of the mixed layer before the downpour,

leading to a resumption of turbulence around 20m depth.

The model resolution is chosen so that the resolved turbulent momentum flux dominates the

momentum budget (i.e. the sub-grid scale fluxes are relatively small). As the wind event begins,

an area of strong momentum flux forms near the surface driven by Stokes production (figure 4.7a)

and accelerates the upper 10− 20m (figure 4.13). A large fraction of the momentum is deposited

near the ML base (Kukulka et al., 2010). During these events, the resulting shear is the cause of

the low Richardson number and high shear production in this region (section 4.44.4.3), and also

of the intense heat and salt fluxes discussed above.

There is little lag between the surface stress and the momentum flux through the mixed layer.

Below the ML base, the turbulent momentum flux lags the surface stress, as illustrated by the

curved plumes of intense momentum flux in figure 4.13. While the present LES covers only the

first 24 hours of the wind burst, observations suggest that this deep turbulence remains active long

after the wind subsides, potentially impacting the subsequent switch to the suppressed phase of

the MJO (Moum et al., 2014).
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Figure 4.11: Mixed layer depths (∆σ = 0.01, 0.10 kg/m3) are plotted with: (a) Resolved heat flux
〈w′T ′〉 as a function of depth and time. (b) Mean temperature. (c) Surface heat flux (grey) and
heat flux at the, surface layer (black) and mixed layer (dashed) depths.
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Figure 4.12: Mixed layer depths (∆σ = 0.01, 0.10 kg/m3) are plotted with: (a) Resolved salt flux
< w′S′ > as a function of depth and time. The asterisk indicates a particular rain event described
in the text. (b) Mean salinity. (c) Surface salinity flux (grey) and salinity flux at the, surface layer
(black) and mixed layer (dashed) depths.
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Figure 4.13: Mixed layer depths (∆σ = 0.01, 0.10 kg/m3) are plotted with: (a) Resolved momen-
tum flux < w′u′ > as a function of depth and time (b) Mean zonal velocity. (c) Surface momentum
flux (grey) and momentum flux at the, surface layer (black) and mixed layer (dashed) depths.
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4.5 COMPARISON WITH THE COARE WIND BURST

Direct measurements of turbulence during WWB are rare due to the technical difficulty of

making small-scale measurements in heavy weather. Such observations have been made once

previously, in the western Pacific warm pool as part of COARE. Here, we will compare the two

cases. The COARE wind burst lasted about 3 days, as in the present case, S99 extended those

observations using LES modeling the second day. The observation site was slightly south of the

equator (2S), but was close enough that the inertial period was long compared with the duration

of the WWB, so that Coriolis effects were negligible over the modeled interval. During that time,

the wind was mostly westerly (veering to northwesterly during the last few hours) with magnitude

around 0.15Nm−2. Because wind stress was significant prior to the modeling period, the initial

surface mixed layer was about 50m deep.

In comparison, the DYNAMO wind burst was brief and intense, lasting only 24 hours, with

wind stress rising from zero to 0.6Nm−2. The wind burst followed a lengthy calm period associated

with the MJO suppressed phase (Moum et al., 2014), with the result that the upper ocean was

well stratified and the surface mixed layer was only a few meters deep.

Both the COARE and DYNAMO simulations lasted ∼ 24 hours. In each case, the net surface

heat flux changed from a daytime value around -400 Wm−2 to a night time value +400 Wm−2,

turbulent kinetic energy production in the upper few meters was dominated by Stokes production

(figure 4.7a, S99 figure 7a), and shear production was strong at the mixed layer base as it descended

in late afternoon and early evening before relaxing to a quasi-stationary state. There was an order

of magnitude difference in the quasi-equilibrium value of shear production: 10−7W/kg in COARE

versus 10−6W/kg in DYNAMO. This difference is consistent with the combination of stronger

winds and shallower mixed layer in DYNAMO.

In COARE, buoyancy production was significantly positive down to 30-40 m depth (S99 figure

7c), whereas in DYNAMO the convectively unstable layer was restricted to the upper 2-3 m

(figure 4.9). This is consistent with the difference in Hoenikker number: Ho ∼ 1 for COARE and

Ho ∼ 0.1 for DYNAMO. At the mixed layer base, in both cases, buoyancy production was smaller

than shear production, typically by a factor consistent with a flux Richardson number in the usual

range 0.2-0.3. Like shear production, the turbulent kinetic energy dissipation rate at the base of
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the nocturnal mixed layer was an order of magnitude larger in DYNAMO (10−6W/kg) than in

COARE (10−7W/kg). As in COARE, the DYNAMO modeled dissipation rates were consistent

with observations, typically to within a factor two. A fraction of the turbulence observed in

DYNAMO was biogenic, and therefore has no counterpart in the LES (Pujiana et al., 2015). At

the mixed layer base that fraction was a few tens of percent at most, and it therefore does not

alter the approximate agreement noted here.

The turbulent heat flux at the mixed layer base base defined by ∆σ = 0.01kg/m3 reached

maximum values around 60Wm−2 in COARE (S99, figure 18d). In DYNAMO, the heat flux at

the mixed layer base was generally larger (figure 4.11).

4.6 CONCLUSIONS AND DISCUSSION

We conduct LES of the upper ocean response to a westerly wind burst that occurred in the

equatorial Indian ocean in boreal fall, 2011 as part of an active MJO phase. During the long

period of relative calm and strong solar heating preceding the wind burst, a layer of strong stable

stratification was established at the base of a shallow surface mixed layer. In the simulation, the

upper ocean reacts to the strong surface forcing with enhanced turbulent kinetic energy production

and expansion of the mixed layer. Parameterized Stokes drift forcing responded instantaneously

(by construction) to the rapid change in wind stress. The resulting Langmuir turbulence mixed

a layer extending to & 5m. Within this layer the vertical kinetic energy was consistent with the

surface layer Langmuir number (LaSL) scaling of Harcourt and D’Asaro (2008) with an observed

range of LaSL = 1− 2.5.

Subsequently the wind-driven mixed layer deepens by entrainment to about 30m. Turbulence

at and below the mixed layer base is consistent with generation by shear instability. Convective

turbulence is not a factor. Instead, the Langmuir and shear-driven turbulence generate potential

energy at a rate consistent with a flux Richardson number of 0.1-0.2 typical of ocean mixing

(Osborn, 1980; Moum, 1996). The near surface is dominated by Stokes production while shear

production dominates turbulent kinetic energy production near the mixed layer base (figure 4.7).

Mixed layer depth (figures 4.11, 4.12, 4.13) is initially comparable to the penetration depth of the

Stokes drift (figure 4.3) due to stratification prior to the MJO active phase (figure 4.2). During
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the wind burst, surface buoyancy and momentum fluxes (figure 4.3) are quickly communicated

into the mixed layer by Langmuir turbulence before shear or convective instabilities can grow as

expected due to the low Hoenikker and turbulent Langmuir numbers (figure 4.4, 4.11, 4.12, 4.13).

As the mixed layer extends beyond the Stokes penetration depth, mixing shifts into a region where

shear dominates production of turbulent kinetic energy.

In the simulation, the heat flux across the mixed layer base is about half as strong as the

sum of latent, radiative and sensible fluxes at the surface. The resulting drop of ∼ 0.5C◦ in sea

surface temperature, which tends to quench atmospheric convection, was therefore controlled in

substantial measure by subsurface processes. Observations show a similar drop in SST (Chi et al.,

2014; Moum et al., 2014). The large downward heat flux occurs despite of a pre-existing saline

barrier layer at the top of the thermocline (Chi et al., 2014; Moum et al., 2014). This suggests

that processes transporting heat through the mixed layer base should be accounted for in order to

capture MJO physics in large-scale models.

Relative to the COARE wind burst previously observed in the Pacific (S99), the DYNAMO

event involved a brief, intense forcing applied to a previously stable upper ocean. The result was

relatively strong turbulence concentrated in a shallow layer in which shear from Stokes drift and

the mean flow dominated over the convection that was important in the COARE observation.

The significant contribution of surface waves to the surface turbulent kinetic energy budget

highlights the need for accurate characterization of the wave state. Careful attempts to model the

influence of wave breaking (e.g. Sullivan et al., 2007) could further improve the fidelity of the model.

Direct measurements of the sea surface height in were made as part of the DYNAMO campaign

(Moum et al., 2014) and may be used in place of (4.2,4.3) for future studies of near-surface mixing.
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5 CONCLUSIONS

These three projects now color how I look at vertical transport in the ocean. Despite the

idealized geometry and narrow focus of chapters 2 and 3 they highlight how strongly the evolution

of flow fields depends on a narrow range of parameters. This strong dependence is echoed in

the contrast between convection in the COARE simulation (Skyllingstad et al., 1999) with the

wave driven surface layer during the westerly wind burst in DYNAMO (chapter 4). The primary

focus of all three questions is to quantify the flows influence on large scale changes in biophysical

conditions.

5.1 BIOLOGICAL CONVERGENCE

The importance of an organisms motility and response to the flow stands out in the peak

aggregation rate (2.22). The relative importance of physical and biological components is alluded to

in by the strong dependence on relative motility Vb but this single parameter is an oversimplification

of the dynamics. The divergence-less flow is unable to spontaneously generate gradients. The

organisms swimming orientation is free to converge or diverge as is rotates (2.8). These two simple

systems when coupled lead to strong aggregation (figure 2.10) because of an additional freedom in

the biological fluxes that is not present in the flow field.

In the system described in chapter 2 organisms are reduced to a simple automata whose behavior

is a function of the flow field (2.17). The gyrotactic model implicitly limits the size of the organisms

for which it is applicable (appendix A.3). Despite these strong restrictions on size and motility it

is the biological motion that changes the concentration.

The simplicity of the biological model (2.17) is contrasted with the sophisticated fluid model

(appendix A.1) which resolves the full scale of fluid motion. The complex flow geometry is always

constrained by incompressibility and can only amplify gradients. In light of the strong assumptions

in idealizing the organism it is difficult to generalize the results quantitatively. Given the primacy

of the biological parameters in this simple biological system it is reasonable to postulate that

in organisms that exhibit swimming behavior aggregation is more strongly dependent on that

behavior than the nature of the flow field in which they are embedded.
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5.2 INSTABILITY AND TURBULENCE

Chapter 2 focused on simulating organisms transit through overturning K-H billows to test if

the vorticies would allow for the Stommel (1949) trapping mechanism. Ensuring overturns required

an exploration of Re0 Ri0 space. The analysis of a idealized shear layer in chapter 3 was performed

after chapter 2 with the hope that it would allow for more efficient usage of computer time.

The simulations in chapter 2 were at low Reynolds numbers due to computational constraints.

As is common in computational fluid dynamics simulation results are extrapolated to oceanic Re0

regimes. The mean flow decay estimated in chapter 3 enforces an upper limit for the accessible

range of dynamically interesting Ri0 of these simulations.

A method to alleviate the decay is to add a momentum flux at the upper and lower domain

boundaries. By adding an energy source to the DNS boundaries a steady state can emerge. This

approach allows for much smaller initial perturbations and does not require an a priori choice

of wave number tuned to the instability. Steady state mixing statistics can be calculated and

compared with the active shear production at the mixed layer base like those in figure 4.10 to

better explore the dynamics marginal instability. The introduction of a significant momentum

flux at the upper boundary of a shear layer is reminiscent of the dynamic exchange between the

Langmuir cell driven upper layer and shear driven layer observed in 4.7.
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Drive, La Cañada, Ca 91011.

Winters, K. B., J. A. MacKinnon, and B. Mills, 2004: A spectral model for process studies of
rotating, density-stratified flows. Journal of Atmospheric and Oceanic Technology, 21, 69–94.

Woods, J. D., 1968: Wave-induced shear instability in the summer thermocline. Journal of Fluid
Mechanics, 32 (04), 791–800.

Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys.
Oceanogr., 28 (11), 2332–2340, doi:10.1175/1520-0485(1998)028〈2332:TWDBTW〉2.0.CO;2,
URL http://dx.doi.org/10.1175/1520-0485(1998)028〈2332:TWDBTW〉2.0.CO;2.

Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the
oceans. Annu. Rev. Fluid Mech., 36 (1), 281–314, doi:10.1146/annurev.fluid.36.050802.122121,
URL http://dx.doi.org/10.1146/annurev.fluid.36.050802.122121.

Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181 (4096), 262–264.

Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden-Julian oscillation.
Bulletin of the American Meteorological Society, 94 (12), 1871–1891.

You, Y., 1995: Salinity variability and its role in the barrier-layer formation during toga-coare. J.
Phys. Oceanogr., 25 (11), 2778–2807, doi:10.1175/1520-0485(1995)025〈2778:SVAIRI〉2.0.CO;2,
URL http://dx.doi.org/10.1175/1520-0485(1995)025〈2778:SVAIRI〉2.0.CO;2.

Young, I., 1999: Seasonal variability of the global ocean wind and wave climate. International
Journal of Climatology, 19 (9), 931–950.

Zhang, C., 2005: Madden-Julian oscillation. Reviews of Geophysics, 43 (2).

Zhang, C., 2013: Madden-Julian oscillation: Bridging weather and climate. Bulletin of the Amer-
ican Meteorological Society, 94 (12), 1849–1870.

http://dx.doi.org/10.1111/j.2153-3490.1970.tb01517.x
http://dx.doi.org/10.1175/1520-0485(2002)032<1041:EOEUSO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2002)032<1041:EOEUSO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122121
http://dx.doi.org/10.1175/1520-0485(1995)025<2778:SVAIRI>2.0.CO;2


90

APPENDICES



91

A TRAPPING OF GYROTACTIC ORGANISMS IN AN UNSTABLE SHEAR LAYER

Mart́ın S. Hoecker-Mart́ınez,

William D. Smyth

Continental Shelf Research

Journals Customer Service

3251 Riverport Lane

Maryland Heights, MO 63043, USA

#36



92

A.1 NUMERICAL IMPLEMENTATION

To simplify the imposing boundary conditions a linear function is removed from the buoyancy

field

b′ = b−N2z (A.1)

with N2 determined by the condition that b′ = 0 at the upper and lower boundaries. For realistic

ocean conditions this large scale stratification is stable and adds a quadratic term to the hydrostatic

pressure field. If we define a perturbation pressure

p′ = p+
1

2
N2z2 (A.2)

then we recover the original differential equation with the additional term representing the large

scale stratification

∂ui
∂t

= −uj∇jui −∇ip′ + b′δ3i + ν∇2ui (A.3)

∂b′

∂t
= −uj∇jb′ −N2u3 + κ∇2b′ (A.4)

∇2p′ = − (∇iuj) (∇jui) +
∂b′

∂x3
. (A.5)

In these reduced variables we can impose boundary conditions which correspond to a free shear

layer in a nearly two layer fluid using a Fourier decomposition (Winters et al., 2004). A transform

in wave-number space reduces the equations (A.3) and (A.5) to

e−νk
2t ∂

∂t

(
eνk

2tF(ui)
)

= −ikjF (ujui)− ikiF(p′) + F(b′)δ3i

(A.6)

e−κk
2t ∂

∂t

(
eκk

2tF(b′)
)

= −ikjF (ujb
′)−N2F(u3)

(A.7)

F(p′) =
−kikjF (ujui)− ik3F(b′)

k2
(A.8)
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where integrating factors of eνk
2t and eκk

2t have been used for the diffusive terms in velocity ui

and buoyancy b′ respectively and products in advective terms are calculated in real space and

transformed into Fourier space. The FFTW routines of Frigo and Johnson (2005) are used to

perform the numerical Fourier transform.

The time stepping algorithm used is an explicit predictor corrector and is accurate to second

order (Burden and Faires, 2004). All variables are advanced in Fourier space. Operating in Fourier

space allows for exact solution of the diffusive terms by use of integrating factors [see (A.6, A.7)].

Advective terms are calculated in real space and then transformed back into Fourier space. Pressure

is not used as a prognostic variable since it arises from the time derivative of incompressibility

∂
∂t∇iui = 0 and numerical rounding errors may allow for the flow to accrue significant divergence

over time. Instead pressure is solved implicitly by projection. The new velocity field u is obtained

from the possibly divergent field u∗ by solving

F(ui) = F(u∗i ) + ki
kjF(u∗j )

k2
(A.9)

at each fractional time step for every non-zero wavenumber ~k. This removes any divergence

introduced into the flow at that time step.

The underlying fluid model is validated comparing growth rates from Hazel (1972) at high

Reynolds number, Re = 1500, to approximate inviscid flow and high Richardson number, Ri = 0.17.

After the initial buoyancy anomaly rings down in Figure A.1, t×∆U/h = 40, the layer thickness has

grown by πt∆U/2hRePr and the growth rate decreases by ≈ 4%. The growing Kelvin-Helmholtz

instability is similar to the simulations of Corcos and Sherman (1976) and Patnaik et al. (1976),

which supports their claims that the evolution of the flow is insensitive to the initial perturbation

or the exact form of the shear layer. Their initial velocity profile was an error function with initial

perturbations tuned to the fastest growing mode.

The random perturbation introduced at t = 0 can cause spurious mixing if it is too large. To

test whether the stratification is strongly influenced by the perturbation, an integral length scale

h(t) is calculated using horizontal averages of buoyancy
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h(t) =

Lz
2∫

−Lz2

1−
(
b̄

∆b

)2

dz, (A.10)

which initially evaluates to the length h in the expression of the initial density profile (2.5). If the

profile evolution is purely diffusive a similarity solution may be found following Pope (2000) using

the boundary conditions on b and the value of the vertical derivative at the center of the shear

layer

1

π

d

dτ

(
h2

h2
0

)
≈ κ

∆U0h0
= (Pr Re)

−1
. (A.11)

The scaled derivative of h2 from the run k is shown in Figure A.2 is initially constant characteristic

of diffusive mixing. This run is chosen as it is closest to realistic conditions and is the jumping off

point for our extrapolations to the oceanic parameter regime.

A.2 THE EFFECTS OF CELL ELLIPTICITY

The above analysis assumed a spherical shape for the organisms. Pedley and Kessler (1992) give

the torsional balance for an elliptical gyrotactic object. Ellipticity couples the particle orientation

to the strain field via the viscous torque given by

τνi = ρνV
(
α‖pipj + α⊥ (δij − pipj)

)
×(

1
2εjkl∇kul − Ωj + α0εjklpkelmpm

) (A.12)

where α0 is the ellipticity defined as

α0 =
1− r2

1 + r2
(A.13)

with r is the ratio of the major and minor axes and α‖,⊥ are non-dimensional numbers which

quantify the resistance to relative rotation about an axis parallel or perpendicular to the symmetry

axis. For a sphere α‖ = α⊥ = 6. V is the volume and p is the vector pointing in the direction of

swimming (assumed to be up in quiescent fluid).

Following the argument for spherical gyrotaxis of small objects the net torque must vanish. If

we assume motion is restricted to an x-z plane we can further simplify the expression since the

angular velocity and the vorticity only have one component Ω2, ε2ij∇juk. The orientation also
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has no component in that direction p2 = 0. Using the subscripts {a, b, c, . . .} to denote the two

dimensions in the problem,

0 = −`ε2abpagb

+να⊥
(

1
2ε2ab∇aub − Ω2 + α0ε2abpaebcpc

) (A.14)

if the co-ordinate system xi is oriented along the principal axes of the strain rate tensor so that

eabxb = (λ1x1, 0, λ
3x3) where the angle between x3 and the z-axis is φ and the angle between the

orientation and x3 is θ. Since the flow is two dimensional and incompressible the eigenvalues are

equal in magnitude and opposite in sign a rotated version of the term in simple gyrotaxis can be

recovered.

Ω = (g` sin (θ − φ)) / (α⊥ν)

+ 1
2ε2ab∇aub + α0λ sin (2θ)

(A.15)

Assuming that the fluid vorticity is essentially a shear ε2ab∇aub = S and using the gyrotactic

restoration rate B = 3ν/`g from Kessler (1986)

Ω =
1

2
S

(
1

BS
sin (θ − φ) + 1 +

2α0λ

S
sin (2θ)

)
. (A.16)

The first two terms are simply a recasting of (2.8). In the third term sin (2θ) and the shape term

α0 are bounded by ±1. To estimate the relative importance of the ellipticity term, an estimate

must be made for the ratio 2λ/S. The simulations of Staquet (1995) and Smyth (2003) all achieved

ratios of strain to shear λ/S below 1/40. This is much smaller than the instability criterion for

gyrotaxis of spherical particles 1/BS ∼ 1. We conclude that for nearly stable organisms in a

Kelvin-Helmholtz instability, the influence of ellipticity may be ignored.

A.3 THE EFFECTS OF INERTIA ON CELL MOTION

Kessler (1986) and Hopkins and Fauci (2002) derive (2.7) for the angular acceleration of a small

gyrotactic organism. For (2.8) to be valid the size of the organism must be below a threshold.

To estimate the size of object for whom inertial effects may be ignored we need to estimate the

timescale for inertial rotary motion. For objects that are small relative to the size of flow features
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the response time of orientation may be estimated using the homogeneous equation

I~α = +
4π

3
r3ρ

(
~L× ~g

)
− 8πρνr3~Ω. (A.17)

The moment of inertia tensor is given by I = Kρr5 where the tensor K is a geometric constant

whose principal values are of order unity. If we restrict the motion to an x-z plane the tensor

K becomes a scalar. Following Kessler (1986) the moment arm of the center of mass should be

proportional to the radius of the organism ` = λr

Kρr5 d2θ

dt2
= −4π

3
ρr4gλ sin θ − 8πρνr3 dθ

dt
. (A.18)

Expanding the sine near the equilibrium, a solution of the form θ ∝ eσt can be found with two

modes

σ = − 4πν

Kr2

(
1±

√
1− gλKr3

12πν2

)
. (A.19)

Using a binomial expansion we find a gravitational mode and an inertial mode.

σ =

 −
8πν
Kr2 →∞ as r → 0

− gλr6ν → 0 as r → 0
. (A.20)

The inertial mode decays rapidly while the slowly decaying mode gives the relationship the gov-

erning equation for a system where viscous and gravitational torques are balanced.

6ν
dθ

dt
= −g`θ (A.21)

For the binomial expansion to be valid the radius of the particle must satisfy

r �
(

12πν2

gλK

)1/3

. (A.22)

which for oceanic values of viscosity ν ≈ 10−6m2/s and using a mass offset from Kessler (1986)

λ ≈ 0.01 implies r � 1mm. As size approaches this limit inertial effects must be included (e.g.

Hopkins and Fauci (2002)). Below this threshold value inertial effects may be ignored and (2.8)
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may be used. Any organism that is small enough to satisfy (A.22) is smaller than Kolmogorv scale

of oceanic flow features r � η for all but the most extreme mixing events ε ∼ 10−4 W/kg Soloviev

and Lukas (2003)].
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The sub-grid scale fluxes use a Smagorinsky (first-order) closure model which gives the eddy

velocity

νt (~x) = 14× 10−5∆x

√
〈∆u2

HP (~x,~r)〉‖~r‖=∆x

κ3 (B.1)

∆u2
HP (~x,~r) = ‖~uHP (~x)− ~uHP (~x+ ~r)‖2 (B.2)

in terms of the variance of the (high pass filtered) velocity ∆u2
HP and the grid spacing ∆x (Ducros

et al., 1996; Wilcox, 2006). In the presence of large scale gradients the unfiltered velocity over-

estimates the local kinetic energy. To filter out large scale gradients we use a discrete Laplacian

whose vertical second derivative term has been neglected to remove the influence of strong vertical

gradients supported by stratification

∇2
H(u)

=
u

4

 +δ(x+ ∆x)− 2δ(x) + δ(x−∆x)

+δ(y + ∆y)− 2δ(y) + δ(y −∆y)

 . (B.3)

This is analogous to the method of (Ducros et al., 1996) for bounded flows in which the wall normal

direction is neglected and a two dimensional Laplacian is used to remove large scale gradients. The

resulting filter transfer function

∇2
H(u) = u(k, l)

(
sin2

(
k∆x

2

)
+ sin2

(
l∆y

2

))
(B.4)

is of order unity at the Nyquist wave-number of the simulation (the average value of the filter

transfer function for a cubic grid, ∆x = ∆y at ‖kNy‖ = 2π
∆x is 1.3). The Laplacian is iterated three

times

uHP = ∇2
H

(
∇2
H

(
∇2
H (u)

))
(B.5)

to strongly suppress the influence of large scales. In addition to Smagorinsky sub-grid scale viscosity

a high order hyper-viscosity term is included in equation 4.4 with a constant coefficient α = 0.001.

This prevents aliasing by damping the smallest scales of motion.
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C EDDY PERTURBATIONS ON EKMAN PUMPING

In an extreme departure from the rest of the ideas in this thesis I am going to explore the

interaction of meso-scale eddies with wind forcing. The goal of this approximation is to parse the

terms into an ordered list thereby allowing for incremental improvement. The scale separation

of atmospheric and oceanic length scales allows significant simplification but a few terms remain

dependent of the curl of the ocean velocity, and the change of planetary vorticity (β-effect). The

ordering the resulting terms is somewhat ambiguous but the most important terms are highlighted.

As contrast the example of fast ocean eddies and weak winds is also calculated.

C.1 DEFINITIONS AND ASSUMPTIONS

To examine the deviations of air-sea interaction it is useful to define air velocity ua, ocean

velocity uo, and relative velocity

uri = uai − uoi (C.1)

The simplest approximation for wind stress is a drag coefficient

τi = ρaCDu
r
i

√
urju

r
j (C.2)

Define total Ekman pumping as a function of ocean density ρ0, surface stress, and total vorticity

(f +∇× uo) assuming the low Rossby number scaling of Stern (1965) holds

W =
1

ρo
∇×

(
τ

f +∇× uo

)
(C.3)

C.2 STRONG WINDS

Assuming characteristic air speed S =
√
〈uai uai 〉 is much larger than the characteristic ocean

speed s =
√
〈uoiuoi 〉 define a scaled ocean and air velocity

oi =
uoi
s (C.4)

ai = ua

S (C.5)
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Writing τi as a function of oi and s

τi = ρaCDS
2
(
ai −

s

S
oi

)√
ajaj − 2

s

S
ajoj −

( s
S

)2

ojoj (C.6)

Writing W as a function of oi, and s

W =
1

ρo
ε3jk∇j

ρaCDS2
(
ak − s

S ok
)√

amam − 2 sSamom −
(
s
S

)2
omom

f + ε3lm∇lsom

 (C.7)

Scaling the Coriolis parameter by the current speed seeking to form a Rossby number Ro = s/f`

of the eddy and removing the uniform scaling factors for velocity S from the derivative we are left

with a function of a small parameters r = s/S, oi, and ai

W = CDS
ρa
ρo

`

r
ε3jk∇j

(
(ak − rok)

√
amam − 2ramom + r2omom
f`
s + `ε3lm∇lom

)
(C.8)

distribute the derivatives across the multiplication and division

W = CDS
ρa
ρo


+ 1
r

√
amam−2ramom+r2omom`ε3jk∇j(ak−rok)

f`
s

+`ε3lm∇lom

+ 1
r

(ak−rok)`ε3jk∇j(amam−2ramom+r2omom)

2( f`s +`ε3lm∇lom)(amam−2ramom+r2omom)
3
2

− 1
r

(ak−rok)
√
amam−2ramom+r2omom`ε3jk∇j( f`s +`ε3lm∇lom)

( f`s +`ε3lm∇lom)
2

 (C.9)

rewriting the magnitude of the scaled relative wind
√
amam − 2ramom + r2omom wherever it appears

outside a derivative as |~a− r~o| for brevity

W = CDS
ρa
ρo


+ 1
r

|~a−r~o|
f`
s

+`ε3lm∇lom
`ε3jk∇j (ak − rok)

+ 1
r

(ak−rok)
f`
s

+`ε3lm∇lom

`ε3jk∇j(amam−2ramom+r2omom)
2|~a−r~o|3

− 1
r

(ak−rok)|~a−r~o|

( f`s +`ε3lm∇lom)
2 `ε3jk∇j

(
f`
s

+ `ε3lm∇lom
)

 (C.10)

remove common factor of |~a− r~o| /
(
f`
s

+ `ε3lm∇lom
)

W =
CDS

ρa
ρo
|~a− r~o|

f`
s

+ `ε3lm∇lom


+ 1
r
`ε3jk∇j (ak − rok)

+ 1
r

(ak−rok)`ε3jk∇j(amam−2ramom+r2omom)
2|~a−r~o|4

− 1
r

(ak−rok)`ε3jk∇j( f`s +`ε3lm∇lom)
( f`s +`ε3lm∇lom)

 (C.11)
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The leading term scales using Rossby number and the Ekman pumping relation (C.3) assumes small Rossby

number and taking the Ro→ 0 limit is informative

CDS
ρa
ρo
|~a− r~o|

f`
s

+ `ε3lm∇lom
≈
CDS

ρa
ρo

Ro

1 + Ro
≈ CDS

ρa
ρo

Ro as Ro→ 0 (C.12)

If we then expand collected terms, group derivatives with `, for clarity terms involve variation of the scaled

wind ~a are red and variation in the Coriolis parameter f are blue. Individual terms are given their scaling

in the limit of small r and small Rossby number simplification.

W =
CDS

ρa
ρo
|~a− r~o|

f`
s

+ `ε3lm∇lom



Scaled Ro� 1

+ 1
r
`ε3jk∇jak 1

r
`
L

1
r
`
L

−`ε3jk∇jok 1 1

+ 1
r

akam`ε3jk∇j(am)

|~a−r~o|4
1
r
`
L

1
r
`
L

−akom`ε3jk∇j(am)

|~a−r~o|4
`
L

`
L

−akam`ε3jk∇j(om)

|~a−r~o|4 1 1

+r
akom`ε3jk∇j(om)

|~a−r~o|4 r r

− okam`ε3jk∇j(am)

|~a−r~o|4
`
L

`
L

+r
okom`ε3jk∇j(am)

|~a−r~o|4 r `
L

r `
L

+r
okam`ε3jk∇j(om)

|~a−r~o|4 r r

−r2 okom`ε3jk∇j(om)

|~a−r~o|4 r2 r2

− 1
r

ak`ε3jk∇j( f`s )
f`
s

+`ε3lm∇lom
1
r

1
Roeq

Ro
1+Ro

1
r

Ro
Roeq

− 1
r

ak`ε3jk∇j(`ε3lm∇lom)
f`
s

+`ε3lm∇lom
1
r

Ro
1+Ro

1
r
Ro

+
ok`ε3jk∇j( f`s )
f`
s

+`ε3lm∇lom
1

Roeq

Ro
1+Ro

Ro
Roeq

+
ok`ε3jk∇j(`ε3lm∇lom)

f`
s

+`ε3lm∇lom
Ro

1+Ro
Ro



(C.13)

an equatorial Rossby Roeq = s/β`2 number is used in the scaling. The theory of Stern (1965) assumes a

small Rossby number, hence we include a small Rossby approximation to each scaling. Geostrophic air

speeds are typically greater than the ocean speeds and r < 1 over much of the world ocean, similarly

oceanic eddy length scales ` are smaller than atmospheric scales L and the ratio will be small `/L < 1.

Both oi and ai have been scaled so that we may estimate them as order unity and derivatives with division

by the appropriate length scale. Many of the terms which scale as the inverse speed ratio r−1 may be

ignored when the oceanic length scale is smaller than the atmospheric length scale. Two inverse speed

ratio r−1 terms are not suppressed by the separation of atmospheric and oceanic length scales. The first
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comes about by variation of the vorticity perpendicular to the wind

WNL = −CDS
S

s

ρa
ρo

|~a− r~o|

Variation of ~∇×~uo ⊥ ~ua︷ ︸︸ ︷
ak`ε3jk∇j (`ε3lm∇lom)(
f`
s

+ `ε3lm∇lom
)2 ∝

(
CDS
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)
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s
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(C.14)

The other involves the β effect and if the ratio β`/f ∼ r with a zonal wind can be of order 1.

Wβ =
CDS

ρa
ρo
|~a− r~o|

f`
s

+ `ε3lm∇lom
1

r
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(C.15)

The term involving the β effect term may be ignored only if the wind direction is parallel to the gradient of

f (ie meridional) or if the ratio β`/f ≤ r2. The NL term may be ignored if Ro < r. If all these conditions

are satisfied this leaves two terms surviving to zeroth order in r, the curl of the oceanic velocity inducing

a negative curl in the relative wind,

Wawesome = −CDS
ρa
ρo

|~a− r~o|
f`
s

+ `ε3lm∇lom
`ε3jk∇jok ∝

CDS
ρa
ρo

Ro

1 + Ro
(C.16)

and a perturbation due to variation in the apparent magnitude of the relative wind due to variations the

dependence of air sea momentum transfer on the square of relative velocity

Wwicked = −CDS
ρa
ρo

akam`ε3jk∇j (om)(
f`
s

+ `ε3lm∇lom
)
|~a− r~o|3

∝
CDS

ρa
ρo

Ro

1 + Ro
(C.17)

C.3 WEAK WINDS

in the case where wind speeds are much smaller that ocean speeds the ratio of speeds becomes a large

parameter r > 1. This can be accommodated in equation C.13 by factoring r out of |~a− r~o| wherever it

appears so that the magnitude is unity in the limit r →∞. Note that the common factor now scales with

ocean velocity s not air velocity S and all of the terms which arise from changes in the magnitude of the

apparent wind are strongly suppressed. The convention where terms involving variation of the scaled wind

~a are red and variation in the Coriolis parameter f are blue is retained. Individual terms are given their
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scaling in the limit of large r and small Rossby number simplification.
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The leading order terms in W for the strong current case are
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which include the same curl of the ocean velocity field found in the strong (but large scale) wind. The other

two terms involve variation of planetary and relative vorticity perpendicular to the current direction.
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D FRONT TRACKING

Tracking fronts is a common activity in oceanography. To that end it would be nice to extract a velocity

from a set of crossing observations. You only need N observations to extract a N dimensional velocity

but it is common to have more observations and an objective method for combining them is desirable. A

similar method has been applied to acoustic Doppler current profilers (ADCP) by (Scotti et al., 2005),

here I generalize the solution for use on an arbitrary planar front.

D.1 FRONT DEFINITION

To combine point measurements we must make assumptions about the geometry of the front, the

simplest of these is that of a planar front. This is equivalent to assuming that the radius of curvature

of the front is much larger than the size of observation array. Similarly we assume that the front travels

at constant speed across the array of observations. With these assumption we can calculate the time at

which the front crosses a point ~xi is given by

ti + τi = t0 +
~xi · ~u
~u · ~u (D.1)

where t0 is the time the front crosses the origin and τi is an error term. Taking the difference in arrival

times between observations i, and j eliminates t0 Re-indexing the differences ∆tk and ∆~xk as a list allows

this to be expressed as a matrix problem where i = 1, 2 (, 3) is the dimension and k = 1, . . . , N(N1)
2

is the

lag pair, also for simplicity introduce a reduced velocity ~u′ = ~u
~u·~u

∆tk + ∆τk = ∆xkiu
′
i (D.2)

Calculating the least square error estimate gives a matrix equation

u′j = ∆tk∆xik (∆xjk∆xik)−1 (D.3)

where the velocity is recovered as ~u = ~u′

~u′·~u′ , assuming the matrix ∆xjk∆xik has an inverse. With this in

hand we can extract a front velocity ~u from an arbitrary number of observations.
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