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The next generation of nuclear safety analysis computer codes will require detailed

modeling of two-phase fluid flow. The most complete and fundamental model used for

these calculations is known as the two-fluid model. It is the most accurate of the two-

phase models since it considers each phase independently and links the two phases

together with six conservation equations.

A major drawback is that the current two-fluid model, when area-averaged to

create a one-dimensional model, becomes ill-posed as an initial value problem when

the gas and liquid velocities are not equal. The importance of this research lies in

obtaining a model that overcomes this difficulty. It is desired to develop a modified

one-dimensional two-fluid model for horizontal flow that accounts for the pressure

difference between the two phases, due to hydrostatic head, with the implementation

of a void fraction distribution parameter. With proper improvement of the one-

dimensional two-fluid model, the next generation of nuclear safety analysis computer

codes will be able to predict, with greater precision, the key safety parameters of an

accident scenario.

As part of this research, an improved version of the one-dimensional two-fluid

model for horizontal flows was developed. The model was developed from a

theoretical point of view with the three original distribution parameters simplified

down to a single parameter. The model was found to greatly enhance *the numerical
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stability (hyperbolicity) of the solution method. With proper modeling of the phase

distribution parameter, a wide range of flow regimes can be modeled. This parameter

could also be used in the future to eliminate the more subjective flow regime maps that

are currently implemented in today's multiphase computer codes. By incorporating the

distribution parameter and eliminating the flow regime maps, a hyperbolic model is

formed with smooth transitions between various flow regimes, eliminating the
unphysical oscillations that may occur near transition boundaries in today's
multiphase computer codes.
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Stability Improvement of the One-Dimensional Two-Fluid Model for Horizontal

Two-Phase Flow with Model Unification

1 INTRODUCTION

Within the area of two-phase fluid flow, there is still little understanding of the

complex nature in which phases interact with each other. The proper modeling of flow

structure is important in determining heat transfer coefficients, pressure drop, and
other important parameters in many research and industrial applications such as

chemical reactors and nuclear power plants. The most complete of the two-phase flow

models is known as the two-fluid model. The two-fluid model is incorporated in

important multiphase computer codes used for modeling transients in nuclear power

plants such as RELAP5 and TRACE. Although the two-fluid model is complete from

a theoretical point of view, there is a lack of complete understanding of the interaction

mechanisms and rates between the different phases.

The current two-fluid model, when area-averaged to produce a one-dimensional

model, has a few problems with respect to computationally modeling two-phase flow.

The current one-dimensional two-fluid model possess unphysical instabilities in the

case were the gas velocity is not equal to the liquid velocity. During these instabilities,

the governing equations become ill-posed as an initial value problem and are not able

to be solved as the solution method is no longer consistent with the equations. The

second downfall of current use of the two-fluid model is that the two-fluid model

equations are typically developed for either the stratified flow case or the fully mixed

bubbly flow case. Due to these restrictions, the flow is not properly modeled when the

flow structure falls outside of these categories. In addition, due to the assumptions

used within the fully mixed case, the two-phase flow no longer has the ability to

become separated in order to transition back into stratified flow.
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With this research, however, the intent is to incorporate phase (void fraction)

distribution parameters into the two-fluid model in order to unify the one-dimensional

two-fluid model. In this case, everything from stratified to fully mixed flow will have

the ability to be properly modeled once the phase distribution parameters are known.

The phase distribution parameter will create a difference in pressure between the two

phases (due to the hydrostatic head). This pressure difference should add to the
stability of the flow, allowing the problem to remain hyperbolic in nature, so that the

problem may properly be solved with one-dimensional multiphase computer codes. In

addition, with this added ability, the two-phase modeling codes will not have to switch

from one flow model to the next, which tends to cause numerical oscillations in

current multiphase computer programs. With proper modeling of the phase
distribution parameters, the multiphase computer codes will no longer need to be
based on the more subjective flow regime maps, as the distribution parameters are all

that would be needed in order to describe the flow. As a result, a smooth transition
from one flow regime type to the next can occur, eliminating the unphysical
oscillations that may occur near transition boundaries using current two-phase flow

codes.
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2 LITERATURE REVIEW

2.1 TYPES OF FLOW REGIMES

The use of flow regimes is a way to visually categorize the void distribution

patterns of gas-liquid flows. These patterns depend upon gas and liquid flow rates,

channel geometry, pressure and orientation to gravity. In the nuclear engineering

industry, the two most important flow orientations are vertical and horizontal. In other

fields such as petroleum engineering, inclined flows are also important. In the nuclear

engineering field, upward, vertical, co-current flow is used in simulating a Boiling

Water Reactor (BWR) fuel assembly. The horizontal co-current flow is important for

simulation of a Light Water Reactor (LWR) piping during transients.

The distinct flow regimes in the vertical flow orientation are bubbly, slug, churn,

and annular. A representation of these flows is given in Figure 2.1. The bubbly flow

regime is characterized by the existence of dispersed bubbles in a continuous liquid

phase. Smaller bubbles are typically spherical, but larger bubbles tend to be between

spherical and ellipsoid in shape. Slug flow is constructed of large gas bubbles

separated by liquid slugs. Within the liquid slug, small bubbles like those in bubbly

flow exist. In addition, in the case of slug flow, a thin liquid film surrounding the slug

bubble falls downward as the slug rises. Churn flow is similar to slug flow but is more

chaotic. The annular flow regime exists at high gas flow rates and is characterized by a

gas core surrounded by a liquid film. The annular flow regime may also contain liquid

droplets within the gas core depending on the flow rates used.
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Bubbly Slug Churn Annular
Flow Flow Flow Flow

Figure 2.1: Flow patterns in vertical flow

Flow in a horizontal section has the ability to become stratified and thus contains

more flow regimes than in the vertical case. The flow regimes for the horizontal case

are given in Figure 2.2. An additional difference between the vertical and horizontal

flow is the radial location of the maximum void fraction. The void fraction distribution

is normally peaked in the center of the pipe for the vertical case, whereas, due to the

bubble buoyancy, the void fraction distribution peak for horizontal flow is near the top

of the pipe. Another important distinction between horizontal flow and vertical two-

phase flow is how the flow develops along the length of pipe. In the case of vertical

flow, the flow quickly develops as the frictional and buoyancy forces become in

balance with the gravitational force. However, in the case of horizontal flow, one does

not obtain fully developed flow as in vertical or inclined flows. This is due to the

constant acceleration from the pressure losses caused by wall friction and the lack of

an opposing force along the flow direction, such as gravity.
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Figure 2.2: Flow patterns in horizontal flow

Knowing the type of flow regime that the channel is currently experiencing is

important in trying to model two-phase flow. This is due to the fact that many

important parameters such as pressure drop and heat transfer coefficients are flow

regime dependent. The flow regimes are typically determined with the use of flow

regime maps. Examples of some typical flow regime maps used for horizontal and

vertical flow cases are given in Figure 2.3 and Figure 2.4, respectively. Flow regime

maps are typically plotted using superficial gas and liquid velocities, j and j, which

are defined as follows:



(2.1)

if (2.2)

where A is the cross-sectional flow area of the channel and Qg and Q- are the
volumetric flow rates of the gas and liquid phases, respectively. These flow regime

maps vary with pipe orientation, pipe diameter, fluid type, etc., so separate maps are
needed for each particular flow case. Also, these maps are created for fuiiy developed

flow, so they are not applicable to entrance regions or regions near bends, piping

expansions, nozzles, etc. The other difficulty with standard flow regime maps is that

some of the transition lines are based only on experimental observation instead of

through a mechanistic approach which adds a subjective nature to these maps. In
addition, numerical oscillations may be created because each region has its own
correlations for pressure drop and other flow parameters, which combined with the

logical switching between regimes, can create unphysical oscillations near flow

transition boundaries. This is because there is no blending of the boundary so, as an

example, one side of the transition boundary could be stratified wavy flow with its

own correlations used and on the other side of the boundary may be slug flow with a

completely different set of correlations. Near this transition boundary, the numerical

calculation may switch back and forth between these two regimes with only small

variations in the calculated flow. This is how these unphysical oscillations can be
created.
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Figure 2.3: Flow map for horizontal flow (Mandhane et all, 1974)
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Figure 2.4: Flow map for vertical flow (Hewitt and Roberts, 1969)



2.2 TWO-PHASE FLOW MODELS

In the field of two-phase flow, three major models have been proposed. These

models include the homogeneous flow model, the drift flux model and the two-fluid

model. A brief description of each of these models is given:

1. Homogeneous model In this model, the two phases are assumed to move

with the same velocity and have the same temperature. This allows the two-

phase mixture to be treated as a single fluid. This model is useful at high

pressure and high flow rate conditions. The temperature is the saturation

temperature for that pressure. Since at high flow rates, the gas and liquid move

with the approximately same velocity, the equal velocity of the two phases is a

good assumption.

2. Drift flux model This model is similar to the homogeneous model except it

allows the two phases to move with different velocities or a slip ratio. This

model requires that the relative velocity between the two phases be given by a

predetermined relationship. This model is useful for low pressure or low flow

rate flows in which the system is at steady-state condition.

3. Two-fluid model This is the most advanced of these three models. The two-

fluid model allows the two phases to have unequal temperatures as well as

unequal velocities. The model uses conservation of mass, momentum, and

energy transfer equations. This model is most useful where transient and non-

equilibrium conditions exist. However, since this is the most descriptive of the

three models, the two-fluid model may also be applied to the simpler flow

conditions.



A more in depth coverage of each two-phase flow model will be covered in the
upcoming subsections.

2.2.1 Homogenous model

The homogeneous model is the most simplistic of these three models since it

assumes that both phases are at the same temperature and move with the same

velocity. Although the homogenous model is the least complex of the traditional two-

phase flow models, it still has important applications for which it is applicable. These

include applications in which the fluids are at saturation temperature, moving at high

flow rates, and at a steady-state condition. An example in which the homogenous

model may work well is in modeling a BWR fuel channel during normal steady-state

operation. The area averaged void fraction given by the homogenous model is given in

equation (2.3).

1x Pg1+--
x

(2.3)

Where x is the vapor quality, Pg 15 the density of the gas, and p is the liquid

density. The vapor quality is defined as the mass flow rate of the vapor divided by the

mass flow rate of the two-phase mixture. The homogenous model, also referred to as

the three-equation model, treats the flow similar to single-phase flow by incorporating

the use of mixture properties along with the three conservation equations: mass,

momentum and energy. The three governing equations for the one-dimensional

homogenous flow model are as follows:

continuity equation:

apmopmum =0 (2.4)at ax
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momentum equation:

ÔPmUmA
+ (JmUmUmA)= _!-A + Apgeosp (2.5)

at ax

enthalpy energy equation:

8PmHmA
+4mHmUmA)= qL
ax (2.6)

Both the mixture density, pm, and the mixture enthalpy, Hm, are functions of the

mixture quality, x. The subscript w identifies the values at the wall and P, u, , p, q"

and 'r are pressure, axial velocity component, perimeter, density, heat flux, and shear

stress, respectively.

2.2.2 Drift-flux model

The drift flux model is currently the most widely used model in two-phase flow.

This is due to the fact that the drift flux model offers more flexibility than the

homogeneous model but is much less complex than the two-fluid model. The drift flux

model assumes that everything is at a uniform temperature, similar to the homogenous

model, but allows for each phase to move at its own velocity. A common application

for the drift flux model is the analysis of the pooi boiling phase during a Loss of
Coolant Accident (LOCA). In this application, both phases are at saturation
temperature with the vapor bubbles rising in a pool of stagnant liquid. The drift flux

model is most commonly used for co-current upward, vertical flows. However, Franca

and Lahey (Franca and Lahey, 1992) successfully applied the drift flux model to

horizontal flows. The drift flux model stems from the work of Zuber and Findley

(Zuber and Findley, 1965). This basic drift flux model has been revised by other

researchers over the years. The one dimensional drift flux model for a relative velocity

Vr is given by:
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(1-a)Vr = (C0-1)j+((V)) (2.7)

where CO3 j, and ((v.)) are the volumetric distribution parameter, total volumetric

flux, and the void fraction weighted area average of the local drift velocity,

respectively. The total volumetric flux is defined as:

= + ,jf (2.8)

where jg and j are the superficial gas and liquid velocities respectively. The relative

velocities between the phases is given by:

Vr _uguf. (2.9)

where ug = jg/a and Uf = jf/(l a). By combining these relations, one can find the

void fraction as follows:

Jg

C0j+((V))
(2.10)

The volumetric distribution parameter, CO3 is defined by equation (2.11). Often the

volumetric distribution parameter is found by using one of the many correlations that

exist. For fully developed bubbly and slug flows, the value of C0 is approximately 1.2.

Kataoka and Ishii (Kataoka and Ishii, 1987) used the drift flux model to apply towards

a large diameter pipe to develop a correlation for pool void fraction. Kataoka and Ishii

found that the drift velocity of a pool system depends upon vessel diameter, pressure,

gas flux, and the physical properties of the fluid being studied. The paper found that

the drift velocity and the void fraction measured experimentally could be quite

different from those predicted by the conventional correlations at the time. The

correlation that Kataoka and Ishii developed based on the drift flux model fit the

existing experimental data much better than the conventional correlations.
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/ j\
\ / (2.11)/ \ .\

(/a2KJ2

Kataoka et al. (Kataoka et al., 1987) applied the drift flux model to a vertical

column in which the liquid phase was stagnant. Kataoka et al. found that the

distribution parameters for the stagnant flow case were higher than those found at

higher liquid flow rates. Kataoka et al. also observed that the drift velocity remained

nearly the same for the various liquid flow rates used. Kaminaga (Kaminaga, 1992)

compared experiments that were in vertical columns with small diameters and having

a low liquid velocity to three different correlations. The correlations that are compared

include Ishii 'S correlation, Kataoka' s (Kataoka and Ishii, 1987) correlation based on

stagnant liquid, and a correlation for stagnant or low liquid velocities in an air-water

system determined by Ellis. Kaminaga determined that the void fraction correlations

of Ishii and Ellis were valid with experimental data within a 30% error for gas

velocities over 0.2 rn/s in a round tube with a diameter less than 50 mm. However, if

the gas velocity is less than 0.2 mIs, Kaminaga found that none of the correlations

selected for this study could be applied and suggested that a correlation that is

applicable in this velocity range for small diameter tubes needed to be determined.

Chen and Fan (Chen and Fan, 1989) applied the drift flux model to a vertical

column consisting of air, water, and 3.04 mm diameter glass beads. It was found that

the drift flux model can be applied to a three phase system such as this one and return

a value for the bubble velocity with an error of less than 10% and 2% error in liquid

holdup for the liquid-solid sedimentation region. This paper demonstrates that the drift

flux model can be applied to more than a gas-liquid system.

Franca and Lahey (Franca and Lahey, 1992) applied the drift flux model to the

horizontal flow orientation and found that horizontal two-phase flows could be well

correlated using the drift flux model. Franca and Lahey also discovered that the

standard variables (jg )/a) and (j) work well for plug and slug flows while
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(a)/(1 (a)) and (jg )/(f) are more appropriate for stratified and annular flows. For

plug, wavy-stratified, and annular flow, the distribution parameter, CO3 is equal to

about 1.0 while for slug flow the distribution parameter is equal to 1.2. For a value of

C0 that is approximately equal to 1.0, indicates a nearly flat profile while values ofC0

greater than 1.0, indicates a more center peaked profile such as a parabolic shape. The

drift velocity, ((v )), found in horizontal flow ranged from 0.20 mIs, for slug flow,

up to 2.7 mIs for annular flow. A negative value for the drift velocity indicates that the

liquid phase is moving faster than the vapor phase.

2.2.3 Two-fluid model

The two-fluid model is considered the most comprehensive of these models

because this model considers each phase separately in terms of two sets of
conservation equations (Hibiki et al., 1998; Hibiki and Ishii, 1999; Revankar and Ishii,

1992; Wu et al., 1998; Ghiaasiaan et al., 1995) along with interfacial transfer terms in

order to link the two sets of conservation equation together. These conservation

equations include a balance of mass, energy and momentum of each phase. Since

mass, energy, and momentum can transfer between the two phases; one needs to

accurately predict these transfer terms. The weakest link of this model is the difficulty

in accurately predicting or measuring the interfacial transfer terms. Since the

interfacial transfer terms are related to the area between the two phases, one needs to

be able to find the interfacial area or interfacial area concentration. Thus, interfacial

area and interfacial area concentration are two important parameters in the field of

two-phase flow. The interfacial area concentration has units of area per volume and is

defined as:

1 Interfacial area
(2.12)

L Mixture volume
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where L is the length scale at the interface and a1 is the interfacial area concentration.

The three conservation equations for each phase are given as follows (Revankar and

Ishii, 1992):

continuity equation:

aakpk
+V.(ukpkvk)Fk

momentum equation:

(2.13)

kPkVk
+V.(akpkvkvk)=-ukVPk +V.ak(Tk +)

(2.14)at

+Mk k 1

enthalpy energy equation:

kpkHk
+V.(ukpkHkvk)v.ak(k +q)

(2.15)
at

Dk+OkPk +HkFk ++(Pk
L

The symbols Fk, MIk, 'ri, q1, and 'k are the mass generation per unit volume,

interfacial drag, the interfacial shear stress, the interfacial heat flux and the dissipation

term, respectively. The subscript ki indicates the value of the term for phase k at the

interface i. The terms Pk' Vk, k' and Hk represent the void fraction, density,

velocity, pressure and enthalpy of phase k, respectively. The terms tk, q, q,
and g are the average viscous stress, turbulent stress, mean conduction heat flux, the

turbulent heat flux, and the acceleration due to gravity, respectively. Hk1 symbolizes

the enthalpy of phase k at the interface. The right hand sides of equations (2.13) -

(2.15) are the interfacial transfer terms and are related to each other by using averaged

local jump conditions. If one rewrites equations (2.13) - (2.15) in terms of the average

mass transfer per unit area, thk, which is defined as = thk /L, one can write the
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right hand side of these equations as an interfacial area multiplied by a driving force.

The results are as follows;

continuity equation:

aakpk
+V.(akpkvk)=at L

momentum equation:

(2.16)

kPkk +V.(akpkvkvk)=_ukVPk+V.k(k+)
(2.17)

at
I+akpg+-(vjrn +k)-Vak

I

enthalpy energy equation:

ôakpkHk +V.(apkHkv)= v.ak(qk +q)

(2.18)
at

Dk 1k'k +(thkHk +q1)+I

With ik in equation (2.17) being the interfacial drag force per cross-sectional

bubble area. Equations (2.16) (2.18) shows that the interfacial transfer terms are

proportional to the interfacial area concentration multiplied by a driving force. The

importance of interfacial area concentration is shown by the appearance of interfacial

area concentration in each one of the conservation equations. Although, the interfacial

area concentration is an important value, measurement of interfacial area

concentration in the real world is very difficult, so there are very few data sets with

good local interfacial area concentration data. Most of the interfacial area data sets are

limited to averaged values over a section of pipe due to many of the interfacial area

concentration data sets being determined by a first order chemical reaction.
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The driving force for the energy equation is the heat flux between the two phases

based on:

q;1 =hk(TITk) (2.19)

where T1 and Tk are the interfacial and bulk temperatures based on the mean enthalpy

and hkl is the interfacial heat transfer coefficient. The driving force for the continuity

equation is the mass generation per volume and for the momentum equation; the

driving force is based on the interfacial drag and velocity. By separating out the length

scale, L, from each of the conservation equations, one is able to determine each of the

driving forces independently of the interfacial area concentration. This allows one to

perform separate experiments for interfacial area concentration and the driving forces

independently and then recombine the information to construct the set of conservation

equations.

2.3 TWO-FLUID MODEL FOR ONE-DIMENSIONAL HORIZONTAL FLOW

The motivation behind this dissertation is the development of the two-fluid model

equations for horizontal two-phase flow geometry. Typically, two-phase flow in a

horizontal channel is modeled using a one-dimensional two-fluid model. The one-

dimensional two-fluid model for horizontal flow is then typically subdivided into two

categories: stratified/annular flow and bubbly/slug flow. Each model has its own
assumptions about the flow conditions, most importantly, the difference in phase

pressure caused by the transverse pressure term. The stratified/annular flow model

accounts for the pressure difference between the two phases caused by gravity head,

the key mechanism for phase separation. The bubbly/slug model in its current form,

however, does not include the gravity head effects on the two phases and gas phase

pressure is assumed to be in equilibrium with the liquid phase pressure (when surface

tension effects are neglected). The difficulty lies in the fact that since the bubbly/slug

model does not include this transverse pressure term, there is no mechanism governing
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the vertical phase distribution and thus, the flow is not able to separate back into a

stratified or annular type of flow. It is desired to create a unified one-dimensional two-

fluid model that allows for a proper transition from bubbly/slug flows to

stratified/annular flow and anything in between. The one-dimensional flow model is

created by taking the general three-dimensional two-fluid model equations, equations

(2.13) (2.15), then integrating over a cross-section and introducing proper mean

values. The one-dimensional two-fluid model is derived using the following
definitions:

Area averaged quantities are defined by:

(F)=-i-JFdA (2.20)

While, the void fraction weighted mean value is given by:

K(F))
@kFk)

(2.21)
(Uk)

The density of each phase is assumed to be uniform such that
Pk = (Pk). The weighted

mean velocity along the axial flow direction is given by:

((uk)) =
()

(2.22)

With the use of these definitions, the one-dimensional two-fluid model will be

developed and discussed in the upcoming subsections for bubbly/intermittent flow as

well as stratified/annular flow.
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2.3.1 Bubbly/Intermittent flow model

Several authors have incorporated the bubbly/intermittent one-dimensional two-

fluid model for predicting two-phase flows with common application to the nuclear

industry (Ulke, 1984; Gidaspow et al., 1983; Murata, 1991; Ishii and Mishima, 1984).

However, due to the assumptions that are typically placed upon this flow model,

several problems appear. There can be numerical stability issues if the phase velocities

do not match, there is problem with predicting flow regime transition as this model is

not able to achieve flow separation, and real horizontal flows tend to have a void

fraction peak near the top wall whereas this model assumes that the void is uniformly

distributed. Assuming thermal processes are unimportant, in order to eliminate the

need of the energy equation, the general one-dimensional two-fluid model for

bubbly/slug regime horizontal flow is as follows (Song and Ishii, 2001):

continuity equation:

a(Uk)Pk k)Pk1k))
+

tX

momentum equation:

(2.23)

2

ak))a((t 4UkWTW
3Kak)pkK(uk)) apkKakcVkK(uk))

D (2.24)ot

ax

With these assumptions, the set of equations, (2.1 3)-(2. 15), is reduced to a set of two

area-averaged equations for each phase. If it is assumed that no phase change is taking

place, such as in the case of air-water flow, the two-fluid model can be simplified to

even a greater extent. The area-averaged form of the shear stress is rewritten as

4akWrW /D, where D is the hydraulic diameter of the channel. This general form is
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applicable for both square channels and round tubes. The quantity Cvk in the above

momentum equation is known as the momentum flux parameter and is defined as:

CVk
kukuk)

(2.25)

In addition, the set of governing differential equations are typically simplified even

further to be directly applied to the bubbly/slug flow regime. It is typically assumed

that the interface pressure,
((PkI))' is equal to the phase pressure, ((Pk)), so that the

term
(K (Pk

)))k) can be eliminated. In addition, it is assumed that locally the gas

phase pressure, Pg is in equilibrium with the liquid phase pressure, Pf, if the effect of

surface tension is ignored. As a result of this assumption, the void fraction weighted

area-averaged pressure of the gas phase equals that of the liquid phase or
((Pg ) = ((Pf)).

2.3.2 Separated (stratified/annular) flow two-fluid model

A description of the general one-dimensional two-fluid separated flow model is

given in Kocamustafaogullari (Kocamustafaogullari, 1985). First the continuity and

momentum equations are written for each phase assuming that the flow is one-
dimensional and both phases are incompressible. It is also assumed that the gas phase

is moving faster than the liquid phase: this determines the sign on the interfacial shear

terms. The equations are developed assuming that the cross-sectional flow area does

not change with liquid height. This assumption is suitable for rectangular flow
channels as well as flow over a flat plate.
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Kinematic field equations:

a(1a\ a
I + [Li a ((uf))]=_xc (2.26)

ät 8x / pfA)

a(a a I
(2.27)=

at
L\

Dynamic field equations:

[aK(uf))
(K

\a(KUf)) aK(Pf))+pgcos+I 1 {(Pfi -((Pf)))
(2.28)

aKu)p -+ U
I

f)/
ax (1-u))

mfi(ufi (Kuf))J +1 11- 1 -[(i u)pfCov(uf)]1A1 A) ax

a((u )) KK!)
+ Pgg COS( +[J_j{(pg ((Pg

at
+((ug)

ax ax Ku) ax (2.29)

gi (ugj ((ug )))
( -t -c

(ge
a

A)
gi

A) ) ax
[(a)pgCov(u

ge

Where subscripts f and g correspond to the liquid phase and gas phase,

respectively. The subscripts i and e identify the internal and external boundaries. The

quantities m and a corresponds to the interfacial mass flux transfer rate and the area

averaged void fraction, respectively. The Cov(F) in the above equation is the

covariance of a quantity. The covariance term is defined as follows for this situation:

Cov(F2)= (F2)_(F)2 (2.30)

The average phasic pressures are determined by:

(l-a)pf g
(2.31)

2
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((Pg)) = Pgj
UPg g

(2.32)
2

Due to the fact that the macroscopic fields ofone phase are not independent of the

other phase, the interaction terms which couple the transport of mass and momentum

across the interface appear in the field equations. By performing a mass and
momentum balance on the interface, the three following relations can be found:

rnfi + rT1 = 0 (2.33)

21ApPfiPgj=thfi!H+
2 (2.34)

PfPg) 3x

'tfi tgi = 0 (2.35)

These balance equations need to be supplemented with an additional relation since

there are more unknowns then there are equations. A physical additional relation that

can be implemented is the kinematic no relative velocity at the interface (no slip

condition).

Ufi = Ugj Ui (2.36)

The momentum equations can now be combined and simplified with the use of the

above relations. Subtracting the liquid phase momentum equation from the gas phase

momentum equation and applying the relations, equations (2.33) - (2.36), the pressure

terms can be completely eliminated from the equation. Thus,
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a((ug)) (a((uf)
+ ((Uf))

a((uf))
( a)

Pg +((ug)) JP
J J

3

(Ap . fflfi

(2.37)

+2!mfi---Apg
[

(a) l-(a)PfPg)

(1 1 tg
tfe fe'Efi+

(a) i(a)J) A) l-(a)AJ

{

[A[PCov(u)PfCoV(u)1l a(ci) öCov(i$) öCov(u)+ Apg

This combined momentum equation replaces the dynamic field equations while

eliminating ((P1)), ((Pg)) Pfi, and Pgj from the formulation in the process. There are

now three equations (one combined momentum equation and two continuity

equations) and three basic dependent variables: (a), ((Uf)), ((Ug)) The remaining

seven variables, ififi (or mJ, U, t11, tfe tge Cov(u), and Cov(u) are known as

supplementary variables. These variable are flow regime dependent, but should be

functionally related to the three basic dependant variables. In general, this functional

relationship may be expressed as:

f = (2.38)

Sadatomi et al. (Sadatomi et al., 1993) incorporated the one-dimensional two-fluid

model momentum equation to predict the axial distribution of liquid level or void
fraction in gas-liquid stratified concurrent flows in horizontal circular and rectangular

flow chaimels during steady conditions. The driving force behind Sadatomi et al. was

to incorporate the effect of having an appreciable interface level gradient since many

previous works had not studied the case of stratified flow with an interfacial level

gradient present. Two different critical liquid levels at the channel exits were found,

under certain flow conditions, from the momentum equation and were incorporated as
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boundary conditions in order to calculate the void fraction upstream of the channel

exit. Based upon these two critical exit conditions, the model that was created would

be applicable to both a free-discharge condition as well as for discharge into a pool.

The predicted void fraction profiles were then compared to existing experimental data

as well as data gather by the authors and were found to agree well with the model

presented for all cases with a smooth interface.

2.4 TWO-FLUID MODEL STABILITY FOR HORIZONTAL FLOW

There are to primary types of instabilities that need to be addressed regarding the

two-fluid model for horizontal flow. The first is a numerical instability that occurs

when the governing flow equations are not properly modeled. This can create

unphysical numerical oscillations and can cause the problem to be unable to be solved

because the equations become inconsistent with the numerical scheme (Lyczkowski et

al., 1978; Song and Ishii, 2001; Song, 2003). The second type of instability is an

interfacial instability of the flow (Trapp, 1986; Kocamustafaogullari, 1985). The

interest of this type of instability lies in the prediction of the flow regime transition

form stratified wavy flow to slug flow. The physical mechanism behind this type of

flow regime transition is due to interfacial wave instability. When the gas flow

exceeds a critical value, the inertia force from the gas phase acting upon the interface

overcomes the gravity force, causing intermittent flow to occur.

2.4.1 Stratified wavy-to-slug flow regime transition

One of the primary ways for determining the flow regime transition point from

stratified wavy flow to slug flow is with the use of a linear perturbation analysis. By

incorporating a linear perturbation analysis, the flow instability of the system can be

determined. The two-fluid model equations are perturbed using the independent

variables of the model. The perturbation is assumed to be very small in order to

neglect the nonlinear effects. The steady-state portion of the equations is then
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subtracted from the perturbed set of equations and the result is a set of equations that

may be analyzed to determine under what conditions flow instability will occur. Under

conditions where the instability point lies, any small perturbation in velocity or void
fraction will cause the inertia force of the gas to overcome the force due to gravity on
the liquid phase. Under these conditions, the crest of the liquid wave is pulled to the
top of the pipe and slug flow is then created.

The process of determining this interfacial instability is given in
Kocamustafaogullari (Kocamustafaogullari, 1985). First, the continuity and

momentum equations are written and constitutive relations are applied for each phase
assuming that the flow is one-dimensional and both phases are incompressible. To

determine under what conditions waves appearing on the interface lead to instability,

the behavior of very small perturbations can be examined using the perturbed flow

equations. Because it is assumed that the perturbations are very small compared to the

mean variable values, the higher order (nonlinear) terms of the perturbed equations

may be dropped. This procedure is known as a linear perturbation analysis. In order to

obtain the perturbed flow equations, first the three basic flow variables, (a), ((uf)) and

((ug)) are written as:

F F + F' (2.39)

where F is the time-averaged mean value of any flow variable, F, while F' is the
perturbation from the mean value. Next, the supplementary variables are expressed by
performing a Taylor Series expansion:

f) + (u ((Uf)) + ((u,))
,
((Ug)) + ((ug

(2.40)
I \\a!, af=f+(u)+ \(Uf// + (Ug)) +NT's

a() a((u,))



where NT's stands for the nonlinear terms. The perturbations are now substituted into

equations (2.29), (2.30), and (2.40). By considering the mean flow equations and

discarding the nonlinear perturbation terms, the flow equations are now linearized.

The linearization applies to long waves (small amplitude in comparison to

wavelength) so that the perturbations considered will be only applicable to long

wavelengths. This restriction is due to forces, such as surface tension, that become

important in short wavelength analyses which adds nonlinearity to the wave problem.

It is assumed that the mean flow variables are fully developed and do not change

appreciably along the flow direction. Due to this assumption, any perturbed value

multiplied by quantities of x-derivatives of the mean flow variables are considered to

be second order and may be dropped during the linearization process.

Following the above procedure, and assuming that no phase change is taking place

in order to simplify the problem, the perturbed flow equations obtained from equations

(2.26), (2.27), and (2.37), respectively, are as follows:

I I

-Uf)) +(l))) =0 (2.41)
at ax ax

I p
/

a(a) aci) aKu ))
+K())__-+)

g=
(2.42)

at ax ax

r p

a((uf)) a(a)I
ö((u)) a(ug))

I

a((u
J=ai

axax
J_PfI

ax
(2.43)

I
pa(uf

+a5(a) a6((ug)) +a7((uf))a3 +a4
ax ax ax

The coefficients ai through a7 are defined in terms of the main flow variables and

are used in order to simplify the form of the shown equation. The above set of
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perturbed equations can be combined into a equation. The process used to combine the

perturbed equations is to first differentiate equation (2.43) with respect to the flow
direction, x, while equations (2.41) and (2.42) are used to express the derivatives of

((ug)) and ((uf)) in terms of those of (cL)'. The combined perturbed equation

becomes:

2

(a)' [ Pf((Uf)) a2(a)
a1

() j l()

[a3 a4 [P(())PfK(f))la2(a)f 2()
(2.44)+ 2

1 () Jj ox )
1 () J

a O(cz)
=

) l()J

This differential equation is the characteristic equation from which stability of the

system can be found. To determine the stability, one must determine whether a
disturbance amplifies or decays for a given mean flow condition. To determine flow

regime transition, one must find the point for a given flow condition where a small

disturbance of the surface, which is directly related to (a), will amplify with time.

This interfacial instability will instigate growth of the wave crest to reach the top of
the pipe. The flow then transitions from the stratified wavy flow regime into the

slug/intermittent flow regime under these conditions.

2.4.2 Numerical stability

Another important concept to consider when modeling two-phase flow is to

account for the numerical stability of the model. If the resultant model is not
numerically stable under typical flow conditions, the model will be of little use since it

cannot be properly solved. Many of the numerical instabilities come about from using



assumptions that oversimplify the model and remove some of the important physical

characteristics of the model in the process.

The one-dimensional two-fluid model equations have been shown to be unstable

for unequal phase velocities by several authors (Lyczkowski et al., 1978; Song and

Ishii, 2001; Gidaspow, 1974). This instability results in complex characteristics which

creates increased difficultly in solving the equations because the equations become

elliptic instead of hyperbolic. The difficultly with having complex characteristics is

that the first order set of partial differential equations is ill-posed as an initial value

problem. Given a set of initial conditions and proper boundary conditions, a stable

numerical method for solving such a set of equations has yet to be determined. It is

important to determine a correct way to model typical two-phase flow conditions

without becoming ill-posed.

Since is common for the gas phase and liquid phase velocity to differ, it is
important for properly modeling two-phase flow systems that restriction of the two

velocities being equal must be eliminated. Many researchers have tried various

methods in order to try to increase the numerical stability of such a system (Song and

Ishii, 2001; Song and Ishii, 2000; Song, 2003; Trapp, 1986, Gidaspow, 1983,

Lyczkowski et al., 1978). Methods of improving the averaged two-fluid model have

ranged from adding a virtual mass term, to accounting for surface tension effects, to

adding fluctuating velocity components (Trapp, 1986) as well as other methods in an

attempt to create a realistic and stable one-dimensional two-fluid model for horizontal

flow.

One of the causes for the instability for unequal phase velocities this the use of

incompressible assumption for both phases (Lyczkowski et al., 1978; Song and Ishii,

2001; Gidaspow, 1974). With the incompressible condition, perturbations are allowed

to travel anywhere in the system at an infinite velocity. That is to say, a disturbance is

felt everywhere in the system at the instance that the disturbance is created. One



28

method of increasing the stability of the model is by accounting for the compressibility

of the fluids. The system is stabilized due to the disturbances being limited to finite

velocities, the speed of sound in each phase, but increased computational requirements

are added.

In Gidaspow (Gidaspow, 1974), the method of determining complex characteristic

is shown for a simplified separated flow two-fluid model. The well-posedness of the

governing differential equation as an initial value problem can be analyzed by
performing a characteristic analysis (Lyczkowski et al., 1978; Song and Ishii, 2001;

Gidaspow, 1974; Gidaspow, 1983). To determine the stability of the two-fluid model

though the use of characteristic analysis, first the governing differential equations are

written. In the case of Gidaspow (Gidaspow, 1974) it was assumed that the flow was

incompressible, potential flow, with no body forces, etc. The simplified case is written

as:

continuity equation:

!+acLkuk =0 (2.45)
at ax

momentum equation:

öUk 5Uk _!!0 (2.46)Pk -+ PkUk
at ax ax

Now define the vector x:

ci.

u
g

(2.47)
uf

P
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The governing differential equation can now be expressed in matrix form.

[A]--x+[B]-_x=[C] (2.48)0t ax

The dependence of the solution based upon a prescribed set of initial data can be
reduced to an investigation of the roots of the following determinant:

Det{[AX{B]}= 0 (2.49)

In this particular case, the value of [A] [B] is:

a 0 01
0 (1a) 0

(2.50)0 Pg2PgUg 0

[ 0 0 pf?pfuf 1j

While the Det{[A]?. {B]} is equal to:

_a(1_4(1_g(?-ug +cLpf(X-uf)j (2.51)

In order for the determinant to be equal to zero, and keeping the solution nontrivial,

the condition 2 = ug u must be met. This implies that the liquid and gas velocities

must be equal for the problem to remain hyperbolic and be well-posed as an initial
value problem.

Song and Ishii (Song and Ishii, 2001; Song and Ishii, 2000) performed a

characteristic analysis, similar to Gidaspow (Gidaspow, 1974), on the stability of the

governing differential equation for an incompressible, one-dimensional, two-fluid

model. Song and Ishii proposes the use of the gas and liquid momentum flux

parameters, which incorporate the effect of velocity and void profiles, to improve the

stability of the governing differential equations. Song and Ishii used a simplified two-

phase model by using existing correlation for the volumetric distribution parameter



and experimentally correlated velocity profiles to determine the validity of the
proposed theory. After taking the determinant and the discriminate of the resulting

matrix with the use of the momentum flux parameters, for X to have real roots and

therefore the differential equation to be hyperbolic, the following criteria must be met:

F(a,Cg,Cvf,Ug Uf,Pf,Pg)

= [(i a)pgCvgug + apfCVfUf] {(i U)pgCvgUg + U pfCVfUf} (2.52)
[(i U)pg + a pf}[(1 a)pgCvgugug + U PvfUfUf] 0

This equation demonstrates that the inclusion of the momentum flux parameters can

make the two-fluid model have real roots without imposing the unrealistic condition
that the gas velocity should equal the liquid velocity. This indicates that the
momentum flux parameters have a stabilizing effect. As long as equation (2.52)
remains positive, two real characteristic roots will exist. If the momentum flux
parameters behave in such a way that the inequality in equation (2.52) is always met,

the two-fluid model with the momentum flux parameters becomes well-posed.

In Song (Song, 2003), the work of Ishii and Song (Song and Ishii, 2001; Song and
Ishii, 2000) was taken one step further by completing a linear stability analysis for

two-phase flow in order to determine the feasibility of using momentum flux

parameters to improve the stability of the one-dimensional two-fluid model. Through
the use of the linear stability analysis, for a finite value of ü/k and letting the wave

number, k, approach infinity, the characteristic equation was obtained. The
characteristic equation obtained using the linear stability analysis produced the same

result for the criterion for stability as was found by Song and Ishii (Song and Ishii,

2001; Song and Ishii, 2000) using a characteristic analysis. In addition, Song (Song,

2003) was able to find the stability criterion for whether the flow model with the

momentum flux parameters would be stable to small perturbations with the use of the

linear perturbation analysis. It was found that the mathematical model was well-posed

and can describe the propagation of the void fraction wave in both bubbly flow and

slug flow within a wide range of void fraction and density ratios. The model was
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found to be consistent with real world bubbly and slug flow cases while neglecting the

influence of the momentum flux parameter causes an unphysical instability.

Another attempt at increasing numerical stability for the one-dimensional two-

fluid model with unequal phasic velocities was proposed by Trapp (Trapp, 1986).

Trapp conjectured that the unstable growth in streaming two-phase flow with unequal

phasic velocities is due to a failure to model the fluctuating velocity components,

in the momentum equations. In single-phase turbulent counterpart, these are

known as the Reynolds stress terms. In single-phase flow, appropriate closure models

for the Reynolds stress terms is the essence of the problem of obtaining a realistic

mean motion description of the turbulent flows. One could use the comparison that if

the Reynolds stress terms were neglected in the mean flow equations, then the mean

flow equations would exhibit the same instability as was present in the laminar flow

cases. Because of this issue, Trapp believes that similar terms should also exist in the

two-phase flow equations in order to properly model the mean motions of the flow and

to improve the one-dimensional two-fluid model stability. Trapp derived a general

form of the equations to include the fluctuating components of velocity and was

shown that this particular model lead to a stable mean motion description for the cases

studied. The continuity and momentum equations proposed by Trapp for one-

dimensional, horizontal, incompressible, stratified flow by neglecting the viscous
forces and the thermal processes are as follows:

continuity:

ô(ag) a I
((Ug))}=O (2.53)+l/a \

a
+ [(af)((uf))}= 0 (2.54)
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momentum:

(Ug)P
OUg)) 8((Ug))O(a)pgU a(ag)((Pg))()o)

(2.55)+((Ug))
ox

J
ox Ox

O(Kuf)) O@f)p O(af)((Pf))
+((Pfi)) (2.56)+(Uf) 1+ --(af)Pf[

at ' ox
)

ox ox Ox

Trapp used the Flelmholtz instability as a basis for speculative closure model for

the fluctuating velocity components, uu . The Helmholtz instability is the shear

induced instability that occurs between two stratified layers of fluid. The Helmholtz

instability in commonly analyzed by considering the basic flow of incompressible

inviscid fluids in two horizontal parallel infinite streams of different velocities, Ug aiid

uf, and densities, P and p, with the faster stream above the other. The two fluids are

considered to be immiscible.

Ug

Pg

jDf U(3

Figure 2.5: Kelvin-Helmholtz problem

In the shear layer, vorticity is approximately uniform while it is equal to zero each

side outside of the layer as velocities are uniform. The shearing layer appears as a

vortex sheet inside an irrotational flow. It is assumed that the lower fluid is stationary,

while the upper fluid moves at the steady and uniform velocity, as the difference in
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velocities is what is important, not the absolute velocities. The general Helmholtz

problem, given in Article 232 of Lamb (Lamb, 1932), assumes both streams to have

infinite depth and considers the stabilizing effect of gravity, but neglects the surface

tension forces. The dispersion relationship for these conditions is given as:

0) PU+PfUf± / pgpf(ug _uf)2
Pg

(2.57)
(Pg+Pj kPg+Pf

From this equation, it can be noted that w has a real part and a complex part. The ±

term indicates that the waves can move in both the upstream and downstream

directions. During condition in which oi has an imaginary part, the Helmholtz

instability occurs. In equation (2.57) it can be noted that if the two fluids have the

same density or if gravity is not considered, the equation can be reduced to:

(0

1pgugJ+
pgpf(ug_uf)2

(PgPf7
(2.58)

Under these conditions, the interface instability will occur for any wave number if the

two velocities are not identical. If surface tension and gravity are considered, the
dispersion relation becomes:

(pgug+pfuf /Pgpf(Ug_Uf)2gPf_pg Yk
(2.59)PgPf )

(g+f)2 kPg+Pf PgPf

It can be seen from this equation that the surface tension and gravity forces add a
restoring force that dampens out perturbations to stabilize the interface. It can be noted

that the surface tension term is related to the wave number, k, so that as k increases

(wave length decreases) the surface tension term becomes more important and helps to

damp out short wavelength phenomena.
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2.5 VOID DISTRIBUTION MEASUREMENT (HORIZONTAL FLOW)

Kocamustafaogullari et al. (Kocamustafaogullari et al., 1 994a) used three double-

sensor conductivity probes at different locations along a 50.3 mm diameter horizontal

pipe to study the profiles of void fraction, interfacial area, and velocity for horizontal

two-phase flow. Each of the probes was placed in a custom instrumentation mount that

allowed for traversing the probe across the diameter of the pipe as well as allowing for

rotation of the probe. These two abilities allow for the creation of cross sectional

mapping of important two-phase flow parameters. The ability for the probe mount to

be able to rotate is especially important in horizontal flow since the parameters such as

void fraction are highly asymmetric due to buoyancy allowing the migration of the

bubble towards the top of the pipe. Kocamustafaogul!ari et al. measured 23 points

along the pipe diameter for each rotation of 22.50 of the probe with respect to the pipe.

This resulted in 108 measurement points for each probe location for each flow rate

tested. Data was sampled for 1 second at 20 kHz for each probe location.
Kocamustafaogul!ari et al. presented the data as three-dimensional plots for each flow

condition and each axial measurement location. One can see from these plots the

development of void fraction, interfacial area concentration, and interfacia! velocity

along the length of the pipe.

Iskandrani and Kojasoy (Iskandrani and Kojasoy, 2001) employed the use of hot-

film anemometry to investigate the internal phase distribution of concurrent air-water

bubbly flow in a 50.3 mm i.d. horizontal pipe. The hot-film anemometry technique

was able to measure time-averaged local values of void fraction, bubble passing

frequency, mean liquid velocity, as well as the liquid turbulent fluctuations. The range

of liquid and gas superficial velocities for which data was gathered were 3.8 to 5.0 mIs

and 0.25 to 0.8 mIs respectively. The experimental results indicated that both the local

time-averaged void fraction and the bubble passing frequency have a local maximum

near the upper wall (rIR 0.8 0.9) under all test conditions. It was also discovered

that the local void fraction for horizontal bubbly flow never exceeded 65%. The data



L,1

also shows a flattening of the void distribution with increasing liquid velocity due to

the impact of increased liquid turbulent fluctuations, however, the relative position of

the void fraction peak was relatively unaffected by changes in the gas or liquid
superficial velocities. The mean liquid velocity was found to follow the same 117th

power law as would be found as in the case of single phase turbulent flow. The mean

velocity profiles indicate an asymmetric distribution with the velocity peak at the
bottom of the pipe. The degree of asymmetry was shown to decrease with increasing

liquid flow or decreasing gas flow. The turbulent intensity was found to be the greatest

near the walls of the pipe with velocity fluctuations around 10 to 15% of the local
mean velocity. It was also discovered that at a very low void fraction, the turbulent

fluctuations could be less than those of single phase flow. However, as the void
fraction increased, the turbulent fluctuations became much greater than the single
phase case. It was determined that the void fraction distribution plays the greatest role

in influencing the local turbulence intensity.

Fukano and Ousaka (Fukano and Ousaka, 1989) constructed a theoretical model to

predict the circumferential liquid film thickness distribution for horizontal and near-

horizontal annular flow. The theoretical model was then compared to experimental

results. The film thickness distribution for horizontal and near-horizontal annular
flows is said to be controlled by the following four mechanisms:

(1) Spreading of the film by a wave action.

(2) Transfer of liquid by entrainment and deposition of droplets.

(3) Spreading by circumferential shear forces due to secondary gas flow.

(4) Spreading by surface tension forces.

Fukano and Ousaka assumed that for the modeling of the annular film that:

(1) The liquid in the film is fully developed.

(2) The film is thin compared to the diameter of the flow channel
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(3) The velocity of the liquid film in the axial direction is much greater than

that in the circumferential direction.

(4) The eddy viscosity in the liquid film is isotropic and is governed by the

axial flow of the liquid.

(5) The distribution of the eddy viscosity is the same as that for single-phase

flow in a tube.

It was found that the pumping action of the disturbance wave tends to be the most

important factor in transferring liquid to the upper portion of the tube, while previous

models ignored this transfer mechanism (Fukano and Ousaka, 1989). The model
presented by Fukano and Ousaka was found to be much more accurate than previous

models as well as having the ability to cover a wider range of flow rates to get
solutions in regions were previous models had no solution (Fukano and Ousaka,
1989).

Andreussi et al. (Andreussi et al., 1993) characterized air-water horizontal slug

flow at atmospheric conditions in 31 and 53 mm i.d. pipes experimentally. Both local

void fraction measurement, with the use of optical probes, and area-averaged void

measurement, using ring type conductance probes, was obtained. The intention of

Andreussi et al. was to use the measured data to improve the description of horizontal

slug flow and the closure relations required in the mean kinematic slug flow models.

The optical probe was used to determine the radial void fraction profile as well as the

size of the smaller dispersed bubbles within the liquid slug as well as those within the

aeration layer underneath the vapor slug. The ring type conductance probe was used to

measure the area-averaged void fraction, slug lengths and frequencies, and the length

of the aerated mixing region that occurs just in front of the slug bubble. Andreussi et

al. found that the measured slug lengths are independent of flow rates and are within

the range of lengths reported by other authors. The dispersed bubbles were found to be

less than 5 mm in diameter shown by bubble size distribution chart given. A few void
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fraction profiles are also given to compare the void fraction distribution at the leading

edge of the slug bubble with the void distribution at the trailing edge.

Shi and Kocamustafaogullari (Shi and Kocamustafaogullari, 1994) used a set of
parallel wire conductance probes to experimentally determine the interfacial

characteristic parameters of horizontal wavy flow patterns. The experiments were
performed in a 15.4 m long Pyrex glass horizontal loop of 50.3 mm internal diameter.

The gas a liquid superficial velocities varied form 0.85 to 31.67 rn/s and 0.0 14 to

0.127 mIs, respectively. The interfacial wave patterns were characterized by wave
height, most dominant frequency, mean propagation velocity and mean wavelength.

The interfacial shear stress calculated from the experimental results was used to
evaluate several widely used interfacial shear models.

2.6 INTERFACTAL PRESSURE MODELING

For the case of bubbly/slug flow, the impact of interfacial pressure is typically
ignored. The reasoning behind this assumption is that the local gas phase pressure
should equal to the local liquid pressure as long as surface tension can be ignored.

This means that the interfacial pressure is also equal to both the liquid and the gas

phasic pressures under this condition. Due to this assumption, the term accounting for

the pressure difference between the interface and either the gas or liquid phases in the

two-fluid model momentum equation is usually ignored. The stratified flow case has a
similar term in the momentum equation with the exception that the definition of the

interface pressure is slightly different in the case of stratified flow as there is only a

single interface versus the many interfaces that would be found in bubbly flow. For the

case of stratified flow, this term should always remain due to the difference in
hydrostatic head both above and below the interface.

(((Pk, ) ((Pk (2.60)
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According to several papers, (Chung et al., 2004; Chung et al., 2001) the
interfacial pressure term can be accounted for in the bubbly flow regime by assuming

the interface has a thickness to it. Chung et al. (Chung et al., 2001) analyzed the

interfacial pressure jump term based on the physics of the phasic interface and bubble

dynamics into the two-fluid model momentum equations. The pressure discontinuity

due to the surface tension of the bubble was expressed in terms of the fluid bulk

moduli and the bubble radius. By incorporating the interfacial pressure terms, the

system of equations was found to have real eigenvalues representing the void fraction

propagation and pressure wave speed in terms of bubble radius. The numerical

stability was found to improve significantly with the inclusion of the interfacial

pressure jump terms over the case of using virtual mass terms.

In Chung et al. (Chung et al., 2004), the two-dimensional numerical calculation

performed existed within the bubbly flow regime at very low void fractions. It was
also assumed that the bubble were small so the shape of the bubbly can be considered

perfectly spherical. Chung et al. (Chung et al. 2004, Chung et al., 2001) considered the

compressibility of both phases in order to determine the sound speed propagated in the

two-phase mixture. The result of the calculated values of speed of sound in the
mixture was compared to experimental data and a good agreement was found. A two-

phase shock tube analysis was performed as a benchmark problem to study the wave

propagation characteristics and interaction between the liquid and gas phases. In

addition to the shock tube problem, additional calculations for a sedimentation
problem and cavity growth in a duct with a bend were also performed.

2.7 INTERFACIAL AREA TRANSPORT EQUATION

As discussed in previous sections, interfacial area or the interfacial area

concentration is vital to the development of two-phase flow modeling. Several

researchers have published papers on one and two group interfacial area transport

equations (Hibiki and Ishii, 1999; Hibiki and Ishii, 2000; Hibiki et al., 2001b; Morel et
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al., 1999; Wu et al., 1998). Typically, the interfacial area transport equations are based

on a particle number densities model. The bubbles are broken up into two groups, the

spherical/distorted bubble group and the cap/slug bubble group. Lafi and Reyes (Lafi

and Reyes, 1991) incorporated a population balance approach as well as a Monte
Carlo approach in determining bubble and droplet breakage and coalescence criteria.

This would be a good basis on which one could develop conceptually how a bubble

size distribution may change from containing only group one bubbles to a distribution

which contains both group one and group two bubbles. The idea behind having an

interfacial area transport equation is that with proper modeling one could determine

the interfacial area concentration at the inlet of the section of interest and predict what

the interfacial area concentration would be at different times and at different axial and

radial positions. The transport equation consists of both source and sink terms for

interfacial area for each of the two groups. Examples of a source term would be

bubble break up or a phase change from the liquid phase to the vapor phase. Examples

of a sink term would be bubble coalescence or bubble collapse. In order to properly

characterize the interfacial area transport equation, all of the source and sink terms

must be fully understood and modeled correctly. The interfacial area sink terms that
need to be properly described are coalescence due to random collision and the wake-

entrainment process. For the interfacial area source terms, one can have bubble
breakup due to turbulence impact, shearing off small bubbles from a larger bubble, or

bubble breakup due to a surface instability. In addition to these source and sink terms,

one could also have phase change as an additional source or sink term. Separate

experiments as well as additional theoretical investigation are needed to identify and

model the entire set of possible source and sink terms in the interfacial area transport

equation. Once these tasks are performed, this information can be combined with

experimental results for interfacial area concentration to provide additional insight into

the behavior of multiphase flow as well as allowing computer codes which model

multiphase flow to become more accurate. Hibiki et al. (Hibiki et al., 2001b) created

an interfacial area transport equation for bubbly flow in a small diameter pipe. They



modeled the sink terms by just using wake entrainment. Hibiki et al. believed that

since the bubble diameter is close to the pipe diameter, the lateral motion of the bubble

would be restricted by the pipe wall and therefore coalescence due to random collision

may be neglected. The interfacial area concentration source terms were neglected

since at low liquid velocities, the amount of bubble breakup would be negligible.

There was no phase change to deal with since this was an adiabatic air/water system.

In addition, since only bubble flow was being studied, the two-group interfacial area

concentration transport equation could be reduced to a one-group equation since cap

or slug bubbles did not exist. The one group interfacial area transport equation may be

given as (Hibiki et al., 2001b):

8a d 1
(2

(2a.1aa d í+av)= _j (2.61)

where
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The terms a, t, Vg, z, j, and a denote the interfacial area concentration, time, gas

velocity, axial position, bubble shape factor (q' = 11(36 t) for spherical bubbles), and

the void fraction respectively. The terms 'PB, and p are the rates of change of

the bubble number density due to bubble breakup, bubble coalescence, and phase

change. The terms B' I ' and I are the rates of change of the interfacial
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area concentration due to bubble breakup, bubble coalescence, phase change, and void

transport respectively.

With all of the simplifications that Hibiki et al. used, the transport equation can be

greatly simplified since many of the terms reduce to zero. Hibiki et al. found that the

modeled interfacial area concentration transport equation could reproduce the axial

interfacial area transport within an error of 11.1% for a 9.0 mm diameter tube with a

superficial gas velocity of 0.013-0.052 nils and a superficial liquid velocity ranging
from 0.58 to 1.OmIs.

Wu et al. (Wu et al, 1998) did some development with the interfacial area transport

equation and then compared the one group theoretical equations to the experimental

results for vertical bubbly flow. Wu et al. analyzed various methods of bubble breakup

and bubble coalescence. They analyzed the important mechanisms for one group

interfacial area transport. These mechanisms include: wake-entrainment induced

bubble coalescence, bubble breakup due to turbulent impact, and random collision

induced bubble coalescence. For two-group interfacial area transport, one must also

include the shearing of small bubbles from large bubbles as well as the breakup of
large bubbles due to surface instabilities. Wu et al. found that the proposed models for

bubble breakup and bubble coalescences compared well to the experimental data and

that the adjustable parameters used in the theoretical modeling were within the range
of expected physical values. However, since the data set that was compared only had

measurements at three axial locations, more data will need to be gathered in order to

finely tune the theoretical model's adjustable parameters.

Several researchers have used the information gained using the theoretical
development of the interfacial area transport equation and have compared the
theoretical results with experimental results (Hibiki et al., 2001a; Hibiki and Ishii,

1999; Hibiki and Ishii, 2000). This sort of comparison could reveal missing areas

within the theoretical result and could help to determine the rate of change of the
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bubble number density within the pipe as well as to characterize the transfer rates

between the two bubble groups.

Leung et al. (Leung et al., 1995) performed several experiments to determine the

axial development of interfacial area and void concentration profiles in a vertical
bubble column. This produces a data set for one to compare the experimental results

with the one group interfacial area transport equation. By employing a double-sensor

conductivity probe, Leung et al. was able to measure the radial profiles of the void

fraction, interfacial area concentration, Sauter mean diameter, bubble velocity, and

bubble frequency at each axial location. Leung et al., unfortunately only took
measurements at two different axial locations: one at the entrance to the test section

(L/D=8) the other at a position far away from the entrance (L/D=60). This makes it

difficult to determine how the interfacial area concentration is actually changing along

the flow direction. Leung et al. found that the void fraction peak is near the wall in the

entrance region for all of the test cases ran. Leung et al. also found that in most of the

flow rates that were used, the void profile remained saddle shaped even at L/D60, but

in one case the void fraction profile developed from saddle shaped at the entrance to a

parabolic shape in the fully developed region. Leung et al. also compared their results

to the drift flux model and found the distribution parameter, CO3 to be 0.7. This value is

consistent with a near wall void peak profile.

Hibiki et al. (Hibiki et al., 2001a) also performed experiments to examine axial

interfacial area transport in vertical bubbly flows. Hibiki et al. used three double-

sensor conductivity probes located at L/D=6.O0, 30.3, and 53.5 to determine the axial

interfacial area transport. The probes were also set up to traverse the pipe in the radial

direction and data was taken at fifteen different radial locations for each flow

condition specified. This allows for the creation of radial profiles for void fraction,

interfacial velocity, and local interfacial area concentration. Hibiki et al. also

employed the use of a hot-film anemometer to measure local liquid velocity and

turbulence. Hibiki et al. also observed some of the same phenomena as Leung et al.
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(Leung et al., 1995) such as the saddle shaped void profiles in the developed region.

However, Hibiki et al. also observed situations in the transitional regime in where the

void profile exhibited a near wall peak as well as a centerline peak. These transitional

regions occur as the flow is transferring from a saddle shaped void profile into a void
profile that is parabolic in shape.

Hibiki and Ishii (Hibiki and Ishii, 2000) provided involved theoretical
development of the two-group interfacial area transport equation. They then applied

this theoretical formulation and performed a comparison with experimental results.

The experimental setup is essentially identical to that used in Hibiki et al. (Hibiki et
al., 2001 a). The difference between this particular set of experiments for the axial
development of interfacial area concentration is that flow rates which contained

cap/slug bubbles were used in order for comparison against their theoretical
development of the two-group interfacial area concentration transport equation. Hibiki

and Ishii observed that for low void fractions, the one-group interfacial area

concentration transport equation could be applied within an average deviation of
± 9.51%. On the other hand, for higher void fractions, one may apply the two-group

interfacial area concentration transport equation within an average deviation of
± 3.6 1% for the flow cases studied.

2.8 INTERFACIAL AREA MEASUREMENT

Typically, one is interested in the measurement of local interfacial area

concentration. However, most of the interfacial area data is an average over a section

of pipe and is typically measured via a chemical technique. Thus, researchers are
trying to develop a database of local interfacial area measurements so one will be able

to improve the modeling of the terms in the interfacial area transport equation as well
as to be able to compare the current one or two group interfacial area transport

equations with experimental data. Currently, the most popular method in acquisition of

local interfacial area is the multi-sensor conductivity/impedance probe. The multi-
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four-sensor probes give better interfacial area measurement results since one does not

have to make assumptions on the actually shape of the bubble. However, the four

sensor probes are more difficult to construct and since the probe area is relatively
large, one experiences many cases in which bubbles miss one or more of the probe

tips. This can make data processing very difficult and can lead to inaccuracies in

interfacial area measurement. However, this problem is currently being combated with

researchers such as Kim et a1. (Kim et al., 2001) with the development of the

miniaturized four-sensor conductivity probe. By reducing the size of these probes, one

will have fewer problems with missing bubbles and be able to get a more accurate

measurement of local interfacial area concentration. This reduction in size, however, is

not without its drawbacks. By reducing the size of the probe tips, one needs to
determine the spacing between the probe tips with greater precision as well as

accounting for the fact that some of the probe tips have more area exposed to the

surrounding fluid. This increased precision of the probe tip spacing must also be
matched with an increased data-sampling rate for good temporal resolution. Revankar

and Ishii (Revankar and Ishii, 1993) produced a theoretical foundation for the
measurement of the time averaged local interfacial area concentration using a four-

sensor conductivity probe. They then used this theoretical formulation to determine

interfacial velocity, local interfacial area concentration, and void fraction in a vertical

air-water cap bubbly flow. Revankar and Ishii then compared the four-sensor probe

results to differential pressure measurements and to theoretical predictions of the

interfacial area concentration profiles and found good agreement between theory and

measurement. At the present stage of research in the field of two-phase flow, there is

some debate on which type of probe, double sensor or four-sensor, is better for local

interfacial area measurement. This will continue until the four sensor probes can be

built easily with a small measurement area and with good precision. Until that time

many researchers will still rely on the more simplistic and smaller double sensor
probe.



In addition to the theoretical development of the local volumetric interfacial area

transport equation, Morel et al. (Morel et al., 1999) also performed numerical

simulations of simple upward bubble flows arid compared the results to the theoretical

calculations. Morel et al. also analyzed the effect that the spacing of the probe tips has

on the measurement of interfacial area concentration as well as the vertical velocity

component measurement numerically. It was discovered that if the probe tip spacing

was less than 50 times smaller than the bubble diameter, one would achieve excellent

measurement of the interfacial area concentration. However, if the spacing of the
probe tips is greater than one fifth of the bubble radius, the measurement error for

interfacial area concentration will be at least 20%. Morel et al. also found that the error

in the vertical velocity component measurement was not sensitively affected by the

probe spacing. These numerical results were obtained with the assumption that the

bubbles are spherical, monodispersed, with the same radius and velocity. Morel et al.

also ran simulations with varying bubble sizes to see the effect of the bubble interfaces

missing one or more of the sensors. They found good agreement with the actual value

of the interfacial area and the vertical velocity component. However, these results are

somewhat artificial since in the simulation, it was assumed that the flow consisted of a

uniform distribution in bubble sizes with no lateral velocity components. In the case of

real two-phase flow, bubbles tend to exhibit size distributions which are not uniform

and do indeed have lateral velocity components.

Another work by Kocamustafaogullari et al. (Kocamustafaogullari et aL, 1 994b) is

similar to the work in Kocamustafaogullari et al., 1994a except for the fact that in this

paper Kocamustafaogullari et al. concentrated on just traversing the double-sensor

conductivity probe across the pipe with no rotation of the probe with respect to the

pipe. The local and are-averaged void fractions and interfacial area concentrations

were analyzed as a function of gas and liquid superficial velocities in the 50.3 mm

internal diameter horizontal test section. These particular parameters were found to

increase with decreased liquid flows and increase gas flows. It was also found that the



void fraction and interfacial area concentration were a stronger function of the gas
flow rate than the liquid flow rate. In addition, Kocamustafaogullari et al. provided
plots of the radial distribution of void fraction and interfacial area concentration

showing the influence of these profiles with various superficial gas velocities while

the superficial liquid velocity was kept nearly constant. Kocaniustafaogullari et aL

provided a theoretical model for mean bubble size and interfacial area concentration

based upon the competing forces of surface tension and turbulent liquid fluctuations

have on the shape of the bubble. The theoretical model was found to agree reasonably
well with that obtained from experimental data. Kocamustafaogul!ari et al. plotted the

experimental results using the drift flux model (Zuber and Finley, 1965). It was found
that, although there was a linear relation between the average gas velocity, Ug and the

area-averaged superficial velocity,
(j), for a given superficial liquid velocity, the

values of the drift velocity, ((v)) and the distribution parameter, CO3 where found to

differ substantially depending on the liquid flow rates used. It was found that a better

way to collapse all of the data would be to plot the data on the (a) (t3) plane, where

(a) and () are defined as:

(a)= () K() (2.62)
Co +

(p)
(jg)

(2.63)
(Jf)+Jg)

It was found that the all of the data gathered collapsed well to a linear relation with

a value of K equal to 1.03, independent of the flow rate. It was determined that the

constant value of K stems from the fact that horizontal bubbly flow occurs at relatively
high mass flow rates. Due to this fact, the local relative velocities tend to be small and

therefore the effect of ((v)) is negligible under these conditions.
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2.9 LITERATURE REVIEW SUMMARY

Several attempts have been made to overcome the non-hyperbolic nature of the

one-dimensional two-fluid model. Although these attempts have shown to add stability

to the problem, some of the methods are not well justified from a physical point of

view. This section will summarize some of the other methods that other researchers

have tried in order to overcome the non-hyperbolic nature of the one-dimensional two-
fluid model for unequal velocities. Many of the techniques either work for limited
cases or lack some physical insight.

Table 2.1: Summary of previous work in improving two-fluid model stability

Author Year Method Result Comment

Gidaspow 1974 Generally, if Ma <0.3, the
Add influence of Creates an improvement of flow should be incompressible.Lyczkowski et al. 1978 compressibility for stability by forcing a finite

Gidaspow et al. 1983 both phases propagation sp eed Compressibility should not be
relied upon for stability.

Ransom and Hicks
1984

Two-pressure model
Shows how the pressure
difference between the phases Only developed for stratified

1988
add stability flow

Trapp 1986 Fluctuating velocity Compares the instability to that
components,

UkOk
between laminar and turbulent
single phase flows

Requires knowledge of virtual
Park et al. 1990

Includes mass of liquid near the mass coefficient
Lahey 1991 Virtual mass term

outer edge of bubbles
May not work for stratified
flows

Song and lshii 2000 Tries to account for both void

Song and Ishii 2001 Use of momentum Uses information from the void and velocity distributions

covanance term and velocity distribution to help
Song 2003 stabilize flow May not work well for

horizontal flows
Finite interface

Chung et al.
2001 thickness

Modifies the interfacial pressure Used for bubbly flows
2004 term to enhance stability Requires knowledge of

Modifies interfacial interface thickness
pressure
Liner and non-linear

Circular pipestability analysis The non-linear analysisGuo et al. 2002
confirms the linear analysis

Created a set of non-linearSurface tension and results
hyperbolic equationsviscosity included

Numerically calculated
Ansari 2004 Two-pressure model Well-posed over a wide range

Only used for stratified flow
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It is seen that previous authors have tried a wide range of techniques in order to

overcome the deficiency of the non-hyperbolic nature of the one-dimensional two-
fluid model for unequal gas and liquid velocities. The various techniques have had

varying degrees of success. Many techniques only work for limited cases or include
things such as compressibility that shouldn't be a factor for low speed flows. Some of

the methods require knowledge of coefficients that are not well known, such as the
virtual mass coefficient. It is desired to create a physical method that will work for a
wide range of flow conditions. The model should not rely on things like

compressibility, surface tension, or viscosity to create stability. Instead, if a model can

be found to be stable without these terms, accounting for these terms will just increase

the stability further.



3 TWO-PRESSURE TWO-FLUID MODEL DEVELOPMENT

In the one-dimensional two-fluid model, the momentum equations for intermittent

flow and stratified flow in horizontal flow channels are different due to different

considerations of the transverse gravity term. In the case of stratified flow, the

pressure difference between the two phases caused by the gravitational head is

modeled, which is the main mechanism responsible for phase separation. By

definition, the average pressure for each phase should be:

JPadA JP(l_a)dA
(Pg) A

, and (Pf))

a)dA
(3.1)

A A

With the effect of gravity considered, the phase-averaged pressures in incompressible

stratified flow are given by:

((Pg)i=_ $(Pr+pggy)dA=Pr+ fydA (3.2)
gAg gAg

((Pf))=- J(PT+pggyj+pfg(y_yj))dA=Pr_Apgyj+PL JydA (3.3)
fA fAf

The reference pressure, P1, is the pressure at the top of the pipe. The value of y is the

vertical distance measured from the top of the pipe, in the downward direction. The

value y is the location of the interface in stratified flow. The area integration is

dependent on the shape of the pipe cross-section. For a rectangular pipe cross-section,

the integration can be greatly simplified.
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Figure 3.1: Stratified flow channel definitions

However, for intermittent or bubbly types of flow in horizontal pipes, the one-

dimensional two-fluid model that is currently employed does not consider the gravity

head effect on the two phases. This model assumes that the liquid and gas phases are

in equilibrium with the average gas phase pressure equal to that of the average liquid

phase pressure for the case when surface tension is neglected. Because of this

assumption, this model is similar to the one-dimensional two-fluid model for vertical

flows with an axisymmetric phase distribution. Due to this equilibrium pressure

assumption, there is no mechanism to allow the phases to separate back into a

stratified flow regime.

It is desired to incorporate a phase distribution parameter that allows for

unification of the stratified flow and intermittent flow two-fluid models for the case of

horizontal flow. By unifying the equations, only one set of equations will need to be

solved for any flow regime. This phase distribution parameter will also allow

accounting for flows in between the fully mixed bubbly type flows and the stratified

type of flows. By incorporating this feature, a smoothing of the flow regime maps are

possible and will reduce or eliminate the numerical oscillations brought on by sudden

changes in flow regime.
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3.1 FULLY-MIXED FLOW VS. SEPARATED FLOW EQUATIONS

The general one-dimensional two-fluid is shown for the two primary flow

assumptions; stratified/annual flow and for bubbly/intermittent flow. The two models

are then simplified using various assumptions and then compared. This way, the

similarities of the two models can be shown and the typical assumptions analyzed in

order to create a unified two-fluid model for one-dimensional flow that can match

these two flow models as well as others that may be encountered.
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Figure 3.2: Control volume for continuity equation

(x, t) liquid-liquid interface area

Sfg (x, t) liquid-gas interface area

S (x, t) surface bounded by the wall

Vf (x, t) volume of liquid in control volume

Vg (x, t) volume of gas in control volume



Assumptions

- flow is incompressible

- 1-Dflow

at the wall, assume no-slip condition (i.e. Uf= u1 = 0)

- at Sff (liquid-liquid interface) u1 = 0

atSfg, JJpf(uf_uI).nds=JJrnfIds

S1g S1

assume that mfi is constant over the interface of the control volume

Now for the one-dimensional control volume for the momentum equation:
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Figure 3.3: Control volume for momentum equation

Continuity (stratified) Given in Kocamustafaogullari (1985)
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Momentum (stratified) - Given in Kocamustafaogullari (1985)

(a(i a)p(u)) a(i a)p(u)
(1- a)p1g (i ((1)),

(3.6)

a((1))
at + ax ax

miiuii[-) +r x --[(1 a)p1Cov(u)]1A) 1A) ax

2

a(P2)
+ (a)p2g cos + (P21

(a(a)p2((u2)a(a)p2((u2))
axat ax ax (3.7)

m21u2l')c ()_ (
a

{(ci)p2cov(u)1le

A
21 A 2e

Continuity (homogeneous) Given in Song and Ishii (2001)

ap1(1-u) a
+pi(1aX(ui)]= (F1) (3.8)

at ax

ap2(a)
+[p2(a)((u2))} (12) (3.9)at 3x

Momentum (homogeneous) Given in Song and Ishii (2001)

2 a(()) \0a[a(1_a)i((ui))a(1_u)Picv((ui))
1=-

+(ia)p1g cos_(P11 _((P1)))
(3.10)at ax

(Ia)

- a(l a, )((x + ))
(MII))((v

D

ax
2 a(2)

+ (a)p2g cos + (p21 ((2)))
(3.11)

[a(a)P2((u2) 3(a)p2C2((u2))
1=at + ax

-(a)
ax

Assuming
- no phase change

(F2)((v21)) 2wt2w a(a)((t2 + T=))
(M2)

D ax

- incompressible

neglect Covariance term neglect surface tension effects
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So the final form of the equations with the assumptions made is:

Continuity (stratified)

ap1(1-a) a
(3.12)

at

ap2 a
(3.13)

at êx

Momentum (stratified)

[a(1_a)P1KKui)) a(1a)pi((ui))2t a((PI))
+(l-a)p1gcos

(3.14)
(ia)at ax

-(p,J -(K1))
)ôcI. (

ax 1A) ie)

[aau2 a((2)
+(a)p2gcos

(3.15)
at ax ax

+ (p2, ((P2
ad.

ax 2A) 2e(A)

Continuity (homogeneous)

ap1(1-a) a r+[p1(1a)((u1))]=O (3.16)
at ax

ap2( a
+[p2(a)((u2)J=O (3.17)

Momentum (homogeneous)

a((P)) )aa(a(1u)p1((u1) a(1_a)p1((u1))2
= +()p1g co(1 _((Pl))/(318)ax

a(I_a)((t1
) -(MI1)

4UIWtIW
+

D aX
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)
+)p2gcosp+(P2 ((p2))

[P2(u2) öP2((u2)

4u2t 5(aX(t2 +))
-(MI2)

D

So the differences between the two sets of equations with the given assumptions lie in

the shear terms as well as having the drag term in the homogenous case. This indicates

with proper modeling of the drag and shear terms, the separated flow equation could

be unified with the fully-mixed flow equations to account for both of these flows and

any flow regime in between these limits. Additional work will need to be performed to

link these cases together with a unified set of governing equations. Work will need to

be performed with the drag and shear terms as well as any mass, momentum, and

energy exchange terms not shown above due to the simplifying assumptions made.

3.2 1NTERFACIAL PRESSURE TERM

In order to develop a unified two-fluid model for horizontal flow, the interfacial

pressure term in each of the equations must be compared and combined in some
manner so that as the flow transitions from one flow regime to another, the two-fluid

model equation are consistent with those currently used in each flow regime. The

pressure terms for the momentum equations will be developed and compared in the
following sections. A distribution parameter, similar to what will be used to unify the

phasic pressure terms, will be proposed in order to unify the interfacial pressure term
for each given flow regime.

3.2.1 Stratified flow - pressure terms

For the case of stratified/annular types of flows, the pressure term in the
momentum equation is derived as follows:



((Pg))

Ag

((Pf))

Af

AX

Figure 3.4: Stratified flow pressure development

The net force acting on the gas phase is:

(((Pg)) + A((Pg))Ag + AAJ+ Ag((Pg)) + PL\Ag
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((Pg)) + A((Pg))

Ag+LAg

((Pf)) + A((Pf))

Af+AAf

Ax

Ag ((Pg)) AgA((Pg)) AAg ((Pg)) AAgA((Pg )) + Ag ((Pg)) + P1AAg
(3.20)

Ax

AgA((Pg)) AAg((Pg)) AAgA((Pg)) + PjAAg

Ax

Divide through by A and take the limit as Ax-) 0

[- (a) A((Pg)) A(a)((Pg)) A(a) A((Pg)) + PA(a)]
Ax

0((Pg))
((Pg))

3(a)3((Pg)) 3(a)
(3.21)

+ P.-* (a)

Assume that the term g is small, the equation for the gas phase becomes:

3//P \\
'ax " 11(p _((Pg)))0 (3.22)

0x
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Using the same process for the liquid phase, we get:

(((Pf)) + A((Pf)))(Af + AAf) + Af ((P, ) + PAf

Af K(Pf)) AfA((Pf ))- AA ((Pf)) AAfA((Pf + Af ((P, ) + PAAf (3.23)

AA((P, )) AA ((PF AAf A((Pf )) + PAAf

Ax

Divide through by A and take the limit as Ax- 0

Ii- (a ) A((Pf ) A(af )((Pf)) AKUf)A(PI)) + P

(3.24)
Ax

> (a)
a(()) ((p)) a(Lf)

+P
ax ox 'Ox

Assume that is small, the equation for the liquid phase becomes:
Ox

O((Pf))(
((Pf))) (3.25)-K'- 'Ox

3.2.2 Bubbly flow - pressure terms

Using a similar approach, the pressure terms may be found for the case of a well

mixed bubbly/intermittent type of flow. Since there are multiple interfaces in this case,

a summation will have to be used in order to include all of the individual interface

pressures.

First, the interface pressure term needs to be defined for a single bubble. The

interface values are defined in Figure 3.5.



Figure 3.5: Interface definitions

The outward force in the direction normal to the interface is defined as:

=PAsñ
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(3.26)

where the term, ASñ , is can be defined in terms of individual components as:

L\Sn=iAs +]z\s, +kAs (3.27)

The pressure force acting in the x-direction on the element AS becomes:

F1 =(PAsñ).1=PAs (3.28)

A slice of the flow channel is shown in Figure 3.6 to show the force in the x-direction

acting on a single bubble due to the interfacial pressure force.

The force in the x-direction acting on a single bubble:

(PA) =Pj(Ag Ag) (3.29)

The total force in the x-direction due to interfacial pressure:

Pjj (Agj - Agj)
(3.30)



=

Ax -' x+Ax

Figure 3.6: Pressure force on bubbly flow

Take the limit as Ax -+0 and divide through by total area, A:

AJaX
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(3.3 1)

Rewriting the summation in integral form, the interfacial term becomes:
1 A

JP. cLA J. dA - ((n. )) LL (3.32)AA'8X I

For the case when no surface tension is present, the interface pressure is equal to the

gas and liquid pressure.

Pj=Pg=Pf (3.33)

The interfacial pressure term becomes:

3(a) 8(a) 3(1_a)
\ j

3x
((Pg))__=((Pf)) (3.34)



Now that the interfacial pressure term is developed for the bubbly flow case, the

remaining pressure terms for the bubbly flow limit may be developed. Figure 3.7

shows the pressures and area definitions related to the development of the fully-mixed

bubbly flow model pressure terms.

P

Agj

Figure 3.7: Fully-mixed flow pressure development

AP

gi

The net force acting on the gas phase for a slice of the flow channel can be determined

by taking the difference in pressures acting the gas phase multiplied by the gas phase

area across the slice while accounting for the interfacial pressure term.

[(p +AP2XA +AA)]+[P2Aj
j=1 (335)

Ax
1

Ax

Breaking up into the individual terms, one gets:

- P2 A AP2jAgj P2JAA AP2jAAg3 + P2A
p AA

P1
+ U (3.36)

Ax Ax
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Dividing through by the flow area, A:

mpA mAPA mV 2j gj 2j
P2JAA APAA APA

itPAA (337)
AxA AxA AxA AxA A A Ax

Taking the limit as Ax- 0 and assuming that the #n bubbles #m bubbles:

AP2A P2AA AP2AA
(3.38)

AxA AxA AxA j=1 AxA

Which then becomes:

rA oP 1 m OA m OA P OA-I-------I-2------ 2j ___ gj
(3.39)

j=1 L A Ox ] AOx OxA AOx

Assuming a large population of bubbles averaged over time, the sunmriation form can

then be converted into an integral form.

1 A 3p i OA 1 OP2 OA i OAg 2 dA P f-dA g dA + P __!dA (3.40)AJAOx 12AOx OxA A'A8x

Using the definition of void fraction, the pressure terms become:

1

S

OP2U-
AA ax

dA_jp2dA_JOP2OUdA+iJpdA (3.41)
Ox AOx

Using the definition of the area averaged void fraction, (a), the integrals in the

pressure term of the gas phase momentum equation can be eliminated with the

addition of the void fraction weighted pressure, ((P2)).

fuP2 dA
(a) J JudA, which lets ((p2))

A

AA
A

(3.42)



The equation then becomes:

()a((P2))
-l2))
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a((P2))a(a)
+-- JP. dA (3.43)AAx

From the above equation, it can be seen that the interfacial pressure, P, could be

defined in terms of a void weighted averaged interfacial pressure as:

Ja dA

JadA
(3.44)

Using this definition of interfacial pressure, the pressure term of the gas phase
momentum equation becomes:

8((P2)) a(a) a((P2))a(a) a(a)(a) ((P2)-_-'ax ax
(3.45)

Assuming that a((
is negligible, the pressure term of the momentum equation

ax

for the gas phase becomes:

a((P2)) a/a\
(a) + (((P,)) ((P2

ax "ax (3.46)

One can see that this result is very similar to that found for the stratified flow case. A

comparison between the two will be discussed in the next section.

3.2.3 Interfacial pressure term unification

It is noted from the previous two subsections (3.2.1 and 3.2.2) that although the

general form of the pressure terms are similar between the two cases, there are some

differences between how the interfacial pressure term is defined in the two models.

The difference comes from the fact that for the stratified two-fluid model, the interface
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only exists at one location for a given position and time. However, in the case of the

well mixed bubbly flow two-fluid model, multiple interfaces do exist. This is the

reason that a void weighted interfacial pressure term is used. The void weighted term

assumes that interfaces occur wherever gas is present with an equal probability being

at any vertical location. In order to develop a unified one-dimensional two-fluid

model, this interfacial pressure term will also need to be unified so that one obtains the

stratified definition if the flow is stratified or annular, but also can obtain the void

fraction weighted pressure term as in the well mixed flow case. There should also be

intermediate points for the interfacial pressure term for when the flow is somewhere in

between the stratified flow case and the well mixed bubbly flow case. The difficultly

in unifying the interfacial term lies in the fact that the interfacial pressure is only

defined on the surface on the gas-liquid interface.

It would physically make sense to define the interfacial pressure in terms of an

interfacial area concentration profile. This way, multiple interfaces could be accounted

for as well as the single interfaced found in the stratified flow case. Going back to the

definition of the average interfacial pressure for the well-mixed flow case:

JaPdA
((P))= A (3.47)

If the bubbles are spherical, the void fraction can be related to the interfacial area

concentration as:

6ct
a

sm

(3.48)

Where a is the interfacial area concentration (interfacial are per volume) and dsm is

known as the Sauter mean diameter.



Substituting into the previous equation, we get:

j, dSffl1i
JPidsmaidA

(3.49)((P____________
A1))= A

dA JdsmaidA

A

This shows that the average interface pressure can be expressed in terms of local

pressure, interfacial area concentration, and Sauter mean diameter. This type of

expression makes more sense to use than using local void fraction because the

interface pressure is a surface quantity instead of a volume quantity. In this definition,

only pressures where interfaces exist are accounted for. This way multiple interfaces

can be accounted for, such as the bubbly flow case, or a single interface can be

properly modeled such as in the stratified flow limit.

3.3 PHASE DISTRIBUTION PARAMETER

The following section will discuss the development of the phase distribution

parameter. The use of this parameter will account for the pressure differences between

the two phases based on hydrostatic head. The value of the distribution parameter is

dependent on the void fraction profile along the vertical direction (transverse to the

flow direction). The use of this parameter is suggested to aid in improving the stability

of the one-dimensional two-fluid model as well as possibly allowing for unification

between the typical stratified flow model and the model that is typically incorporated

for the bubbly type flow assumption.

3.3.1 Development of the phase distribution parameters

The phase distribution parameters can be derived starting with the work of

Kocamustafaogullari and Ishii for stratified flows. By neglecting surface tension and

phase change, Equation (3.1) can be generalized for the derivation of the phase-

averaged pressures to incorporate the influence of the vertical phase distribution.



K (Pg))

kf(PR +P)adA

1

_JadA

(KPf))

+ gtav)(i a)dA

_-J(1-a)dA

av = fpmgdy

1

A
f$PmYU

+

i$adA
AA

A
JmdY'(1dA
AU

iJ(1a)dA
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(3.50)

(3.51)

(3.52)

The equations can be further simplified by using the definition of the mixture density,

Pm' and assuming that the pressure variation due to gravitational head is only a

function of the vertical distance, y. The phase-averaged pressures now become:

f1[pga+pf(1_a)}gdy'ady

((Pg))=Pr+ HO (3.53)

J1[PgU+Pf(1 u)]gdy'(l-a)dy

(3.54)HO

Where L
is the line-averaged void fraction and is defined as follows:

L ---Jady
HH

(3.55)



Y 1 Y y

J Jpa dy' + $Pf (1 c)dy cL dy j Pg JcL dy' + pf J(i a)dy' lady

K (P))
ilLo 0 j H 0 0 j

r

Jady Judy
H H (3.56)

$[y
[ y 11

pg JadY'+Pf[Y__Jad']jad
((pg))_p=gF1L 00

H

y

JJady'ady [YJadY'jUdY
(3.57)HO

Judy Judy
H H

Dividing through by the channel height:

1
ffu dy'u dy I

J
a dy I JJct dy'a dy

HO +pfgHl H HHO
I (3.58)((Pg_PrpggH11

Judy
I

Judy Judy
H LH H j

Using the definition of the line-averaged void fraction:
r

HO +pfgH H LP 1

(3.59)((Pg))_Pr PH[ H2L ThL H2L
j

J
Ju dy'a dy

j

a dy JJu dy'ct dy

The gas phase pressure can then be reduced to:

((Pg)) = pggFIO2 + pfgH[0O 02] (3.60)

If the local void fraction distribution in the vertical direction is known, the gravity

effects can be modeled through the difference in the phase-averaged pressures. By

following this approach, the intermittent and stratified flow models are able to be

unified. The different two-fluid models will be unified with the use of two distribution
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parameters with H as the maximum vertical dimension of a horizontal pipe. A more

detailed development of the phase distribution parameters are shown in Appendix B.

Some common values of the distribution parameters are shown in

Figure 3.8.

mi
LI!

Stratified Fully Mixed Intermittent'Bubbly

Figure 3.8: Phase distribution for different flow regimes

3.3.2 Comparison of the phase distribution parameters

Now that three phase-distribution parameters are developed to describe the void-

weighted pressures of both the gas and liquid phases in a horizontal pipe, it is

important to find what the values of these parameters are in the limit of stratified flow

and fully mixed flow. For the case of stratified flow, the three distribution parameters

can be found as follows:

JXady J--dy H2

H _HgH jij H2 EL2 EL
(3.61)0 ...H

o HEL HEL HEL2HHEL2El 2
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H

Jjady'dy Jaydy fydy+ $YgdY

0
HO H Hg

H2 H2.L H2L (3.62)
H

JYdY+YgJdY+H(_H)
2
+a 1cLU

L( _L)
L

8 =_+(i_L)
H2 HZL 2

fadydy faydy
Hg2

(3.63)02 H2L H2 L
2H2 L 2L

2

((Pg))_Pr =pggHO2 +pfgH[00 02] (3.64)

The average pressure for the gas phase for the stratified flow regime becomes:

[L LpgH((Pg))1)r =
2

(3.65)

Now for the liquid phase.

(KPf))_Pr
PFT[_.L9 Lol+PfH[1_Le L9 +Le2]

pggH [_L[ (l_L)1_L 1 pfgH [i L L LrU
(i

EL)] L L
1 (3.66)+cL I[" [ j 2 j+(i[2 U T [2 2 j

pfgH
(1-)[2 2] 2(1-)

LpggH(
L pfgH

=

The average pressure for the liquid phase for the stratified flow regime becomes:

((Pf)) = pggH [i
L}

(3.67)

Now, the fully mixed flow condition will be tested. For the fully mixed case, it is

assumed that the local void fraction is equal to the area-averaged void fraction or,

a(y)=.



f-
dyJadyJ--dy

H2 =i
(3.68)HL H 2RH 2

Jfady'dy LJJdydy Jydy
2

(3.69)HO
2-L H2L H2 2H2 2Ha

J$ady'ady LJJdyady LJyad Jyady L$ydy
LH2

(3.70)2 H2L H2L H2L H2 H2 2112 2

((Pg))_Pr =p0gHO2+pfgH[00-02] (3.71)

The average pressure for the gas phase for the fully mixed case becomes:

((Pg))_Pr
pfgH(1_L)

(3.72)

Now for the liquid phase:

pfgH Ii L0 L0 L0Kf))_1r
=)[L0 _L0}+ (L)[

I

p8gH
L 1 -L L 1 pfgH [1 -L 1 -L 1 -L

L
1a --a +a -I(1J[a --a

--j+ (i-9[ 2 2 2 j (3.73)
Lp gH1

j
pfgH [I2L+LL]

2(1_p)
=LpggH pfgH [lL}[l_L]29

The average pressure for the liquid phase for the fully mixed case becomes:

((Pi)Pr
LpgH pfgH (1L) (374)
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It is seen that for the gas and liquid phase pressure are equal in the fully mixed case, as

expected.

A table of the theoretical values found for the various distribution parameters the

stratified flow case and the fullymixed condition are given in Table 3.1. The
theoretical limits for the distribution parameters for are shown in graphical form in

Figures 3.9 through 3.11. The theoretical values for the distribution parameters for the

intermittent/bubbly flow condition are not known in general at this point.

Table 3.1: Comparison of theoretical values of the phase distribution parameters

Stratified Flow Fully Mixed Intermittent / Bubbly Flow

02
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Figure 3.9: Comparison of the theoretical limits of the Oo distribution parameter
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Figure 3.10: Comparison of the theoretical limits of the 0 distribution parameter
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Figure 3.11: Comparison of the theoretical limits of the 02 distribution parameter

3.3.3 Simplification of the phase distribution parameters

From the previous section, one can see some possible connection between the

various phase distribution parameters. It appears that 00 and 0 are mirror images of

one another with the reflection about the 0.5 value of the distribution parameter. One

will also note that the third distribution parameter, 02, appears to be equal to /2 for

stratified flow and fully mixed flow. Since, there appears to be a direct relationship

between 00 and 0, and that 02 seems to equal a fixed value, perhaps a single phase

distribution parameter can be found that will describe the phase-averaged pressure for

horizontal flow.
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From the previous section, the distribution parameters are defined as:

JYady JJady'dy ffady'ady
0 n _H0 8 HO (3.75)0 HL I 2 H2L

Using = i, the distribution parameters become:
H

fiadii fSCLd'd1
0 0 =-- 00 (3.76)0 -L 1 -L 2 -LCL U U

To obtain a relationship between 0 and 81, we first evaluate 0 using integration by

parts.

Let:

u=T1 du=dr
11 (3.77)dv=rath1 v=cLdtI'

Judv=uvfvdu (3.78)

fWLdThnilfCLdIl' JfCLd'drt (3.79)

We note that the last term in the equation is equal to L0 the two quantities are

related by:

So,

= Jiadi=iiJadi'_o1 (3.80)

11
1

00 =41ad11 01 (3.81)
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Which leads to:

00=--Jadi'-01 (3.82)

Note that L
= fad1', so the relation becomes:

0 =1:--0i -*1-01

(3.83)

Now to simplify the 02 void distribution parameter. First the 02 void distribution

parameter is defined as:

y

J
fa dy dy

0 _HO
2 H2.L (3.84)

Substituting , the distribution parameter becomes:

$ Ja di'a dr1

0 °°
2 -L (3.85)a

Now to solve by using the method of u-substitution.

u = Ja d1'
0 (3.86)

du = ad1

111 1 u21'

J
fadri'a d1 = Judu -* I (3.87)

00 0
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This is then simplified to:

211

![u]2l'

2 2

(3.88)
*1[1

2
0

2
1

2

Sadi']
1[sadnh] ='[fadfl']

The °2 phase distribution parameter reduces to:

Ii -12

fadri'
I

1{LJ20 Lo J_2
2 L

2
(3.89)

The following relationships between the distribution parameters were found:

00=1el (3.90)

(3.91)2

Substituting into the pressure equations, we get:

= p0gHO2 +pfgll[00 02]

=
Pg1Pfg11[oo

_t_1
(3.92)

The gas phase pressure becomes:

((Pg))_Pr
pgH +PfH[oçJ (3.93)
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Now for the liquid phase.

((Pf)) 'r

pggH [L LO
1 pfgll

(i_)
L0 +Lo2]

r (3.94)pggH LL1 pfgH [1 LL1
(i_LO0)_ 2 j

(1_L)[_U°o
L

2]
Which simplifies to:

((Pf))
r

pggH rL(10)au1±PfH{1LJ
(3.95)2j 2

One can see from the preceding equations that the gas phase pressure contains the

collapsed gas pressure plus a term for the liquid phase that depends on the distribution

parameter, while the liquid phase pressure contains the collapsed liquid pressure plus a

term due to the presence of the gas phase. This physically makes sense as the pressure

due to the hydrostatic head for a given phase cannot be less than the value of that
phase alone.

The distribution parameter, 0, has a possible range of values of:

2 2 (3.96)

1where 0 = corresponds to stratified flow while in the other extreme where 0 =2 2

corresponds to the fully mixed flow condition.
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4 MODEL RESULTS AND COMPARISION

4.1 AVERAGE PHASE PRESSURE BASED ON EXPERIMENTAL DATA

The theoretical values for the distribution parameters for both stratified and well

mixed flow are plotted and compared to experimental data by Kocamustafaogullari

(later known as Kojasoy), and his coworkers (Kocamustafaogullari and Wang, 1991;

Kocamustafaogullari and Huang, 1994; Kocamustafaogullari et al., 1994; Riznic et al.,

1996; Iskandrani and Kojasoy, 2001; Lewis et al., 2002) for horizontal two-phase

flow. Data was obtained by scanning the various data plots and using the commercial

program Digitizelt ver. 1.5 to digitize the image and collect the data points from the

graphs. The test conditions for the various authors are summarized in Table 4.1. Void

fraction based on the area-averaged quantities given, the area-averaged void fraction

calculated based on the homogenous flow assumption, and the calculated line-
averaged void fraction along the vertical direction are also given within Table 4.1. The

majority of the data is just within the bubbly flow regime based on the horizontal flow

regime map of Mandhane (Mandhane et al., 1974). Only a couple of the data points

given exist within the plug or slug flow regimes. Additional experimental data under

different conditions would be beneficial.
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Table 4.1: Experimental data test conditions

Author Year g iç

()
Reported Calculated* Calculated

Measurement Method

Kocamustafaogullari

& Wang
1991

0.24 5.10 0.043 0.045 0.0382

Double Sensor

Resistivity Probe

0.25 3.74 0.057 0,063 0.067

0.53 4.67 0.087 0.102 0.093

0.51 3.77 0.105 0.119 0.115

71 3.83 0.151 0.156 0.160

1.03 3.74 0.183 0.216 0.186

1.34 4.98 0.204 0.212 0.188

1.59 436 0,226 0.267 0.220

Kocamustafaogullari

& Huang
1994

0.213 4.67 0,044 0.044 0.0469

Double Sensor

Resistivity Probe

0.419 4.67 0,085 0.082 0.0941

0.788 4.67 0,146 0.144 0.1479

1.21 4.67 0.2048 0.206 0.2030

Kocamustafaogullari

et al.
1994

0.22 5.00 0.042 0,042 0.025

Double Sensor

Resistivity Probe

0.43 4,98 0.080 0,080 0.079

0.61 4.98 0.111 0.109 0.115

1.00 4.98 0.167 0.167 0.168

1.25 5.01 0.204 0.200 0.207

Riznic et al. 1996

0.55 1.65 - 0.25 0.247
Four Sensor

Resistivity Probe
1.10 1.65 - 0.4 0.401

2.20 1,65 - 0.571 0.480

Iskandrani and

Kojasoy
2001

0.25 3.8 - 0.062 0.069

Hot-Film

Anemometry

0.50 3.8 - 0.116 0.131

0.80 3.8 - 0.174 0.174

0.25 4.4 - 0,054 0.060

0.25

"öö
5.0 - 0.048 0.046

5.0 - 0.091 0.100

0.80 5.0 - 0.138 0.142

Lewis et al. 2002

0.55 1.65 - 0.25 -

Hot-Film

Anemometry
1.10 1.65 - 0.4 -

2.20 1.65 - 0.571 -

'F Calculated based on the homogeneous flow assumption

- Data is similarto Riznic et al. (1996). Used for verification of the hot-film anemometry technique
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Figure 4.1: Comparison of theoretical vs. experimental pressure due to gravity force

From Figure 4.1, one can see the influence that the transverse gravity has on

individual phase pressures. It can be seen that the liquid phase pressure for stratified

flow is nearly equal to the pressure in the well-mixed flow case. This is because the

density of the liquid phase is typically dominant so the majority of the head comes for

the liquid phase. One will also note how the gas phase transverse pressure head is

nearly zero. This is due to the fact that the gas sits on top on the liquid and has a very

small density. This means that the pressure at the bottom of the gas layer is nearly the

same as the top of the gas layer. Included in this figure is the phase pressure based

upon the void fraction distribution measured by Kojasoy and his coworkers for

horizontal bubbly and slug air-water flows. Typically these types of flows are assumed

to be well-mixed (((Pg)) = = One can clearly see from the above figure that



this is not the case. If it were true that ((Pg)) = ((Pf)) ((Pm)) all of the data points

would be on the Pm line. One can see that instead there is a distinct separation in

pressures between the gas and liquid phases. This is due to the fact that buoyancy

causes the bubbles to rise to near the top of the pipe. Because of this, the pressure

difference is almost that of stratified flow, with all pressure are bounded between the
stratified flow limit and the well-mixed flow condition. Because of this difference in

pressures between the two phases, it is the goal of this dissertation to determine the
impact that this pressure difference has on the stability of the one-dimensional two-
fluid model for horizontal flows.

It is also beneficial to look at the pressure differences between the gas and the
liquid phase to compare how the experimental data compares to the stratified and

fully-mixed theoretical limits. The relative pressure difference between the two phases
for stratified flow, experimental data, and the fully-mixed flow condition are shown in
Figure 4.2. The pressure difference is scaled by the area-averaged liquid pressure in
order to get a relative magnitude instead of an absolute pressure difference. This helps

to compare data of different sized pipes and for different fluids directly. The plot
shows that the pressure difference is always zero for the fully-mixed flow condition,

as is expected. The stratified flow condition has a relative pressure difference of nearly

one until high values of void fraction. This means that the gas pressure is small
compared to the liquid pressure in this case. This is primarily due to the fact that water

has a density that is nearly one-thousand times greater than that of air at atmospheric

pressure and near room temperature. The pressure for the experimental data was based

on local void fraction measurements and assuming constant densities of both fluids. It
is seen that the pressure difference between the two phases is between forty percent

and eighty-three percent of the pressure difference that would be seen for stratified

flow (data mostly bubbly flow). This shows that accounting for the pressure difference

between the two phases may improve the stability of the problem as it does in the case
of stratified flow.
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Figure 4.2: Relative pressure difference between two phases

4.2 DISTRIBUTION PARAMETER BASED ON EXPERIMENTAL DATA

In order to determine what value the phase distribution parameters may be under

real types of flow, experimental data from other researchers will be used and the

resultant phase distribution parameters will be calculated and compared to those of the

stratified flow regime and those of the well-mixed bubbly flow regime. Figures 4.3

though 4.6 show some of the void fraction profiles obtained from Kojasoy and his

colleagues (Kocamustafaogullari and Wang, 1991; Kocamustafaogullari and Huang,

1994; Kocamustafaogullari et al., 1994; Riznic et al., 1996; Iskandrani and Kojasoy,

2001; Lewis et al., 2002).
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One can clearly see how the void fraction profile can evolve in the above figures.

In the first case, Figure 4.3, slug and plug flow exists. The profile is similar in shape to

the step profile found in the stratified flow case, except the void fraction does not

equal one at the top of the pipe and there is a continuous transition from the high void

fraction at the top of the pipe to the low transition at the bottom of the pipe. For

stratified flow, one would expect the transition from the high void fraction area to the

low void fraction region to be very sharp. As the liquid superficial velocity is

increased, the large bubbles found in the case of plug and slug flow can no longer

exist. This is because the liquid turbulence force overcomes the surface tension force

found in the larger bubbles, causing the large bubble to break apart. This occurs above

about a liquid superficial velocity of 4 mIs for horizontal air/water flow at atmospheric

pressure and room temperature.

When bubbly flow is formed, a sharp peak in the void fraction is seen near the top

of the pipe. This peak reaches a maximum value of about 0.65. This can be most

clearly seen in Figure 4.4. This corresponds to the maximum packing fraction for

nearly spherical bubbles. Once this point is reached, the bubbles are forced more

towards the bottom of the pipe, widening the void peak in the process. Once the entire

pipe reaches its maximum packing fraction, bubbles are forced to distort and coalesce,

eventually creating annular flow.

Table 4.2 shows the average pressure of each phase based on the void fraction

profiles given and assuming that the densities are constant for both phases. Columns

of non-dimensionalized pressures are also given. This pressure is relative to the pipe

completely full of liquid. This way, one can compare relative pressures of each phase

for different sized pipes and different density fluids directly.

((Pk))* (KPk))-P
(4.1)p gH/2
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Table 4.2: Pressure of gas and liquid phases based on experimental data

(
L

((Pm) ((Pf)) ((Pg))

0.22 5 0.042 0.026 236.93 244.03 74.96 0.96 0.99 0.30

0.213 4.67 0.044 0.050 228.92 233.64 126.34 0.93 0.95 0.51

0.24 5.1 0.043 0.041 231.54 237.68 94.69 0.94 0.97 0.39

0.25 5 - 0.048 229.25 234.91 116.01 0.93 0.96 0.47

(125 44 0.067 221.75 229.47 86.55 0.90 0.93 0.35

0.25 3.8 0.081 215.67 227.03 43.01 0.88 0.92 0.17

0.43 4.98 0.08 0.084 216.19 226.78 94.48 0.88 0.92 0.38

0.53 4.67 0.087 0.101 208,42 221.76 68.40 0.85 0.90 0.28

0.419 4.67 0.085 0.104 207.16 220.57 62.76 0.84 0.90 0.26

0.61 498 0.111 0.124 201.10 216.81 75.29 0.82 0.88 0.31

0.5 3.8 - 0.147 190.80 210.33 41.96 0.78 0.86 0.17

0.5 5 - 0.108 207.30 219.14 88.89 0.84 0.89 0.36

0.8 5 - 0.153 191.17 210.15 72.54 0.78 0.85 0.30

0.788 4.67 0146 0.162 186.31 209.10 53.04 0.76 0.85 0.22

1 4.98 0167 0.180 181.81 204.63 68.18 0.74 0.83 0.28

0.8 3.8 0.188 175.86 203.41 44.99 0.72 0.83 0.18

0.25 3.74 0.057 0.076 216.79 227.19 44.73 0.88 0.92 0.18

0.51 3.77 0,105 0.128 197.99 215.33 50.24 0.81 0.88 0.20

0.71 3.83 0.151 0.176 180.08 204.54 42.55 0.73 0.83 0.17

1.03 3.74 0.183 0.202 172.89 199.34 54.83 0.70 0.81 0.22

1.25 5.01 0.204 0.225 172.08 194.11 86.08 0.70 0.79 0.35

1.21 4.67 0.2048 0.217 178.17 196.45 107.19 0.72 0.80 0.44

1.34 498 0.204 0.201 174,78 203.90 61.15 0.71 0.83 0.25

1.59 4.36 0.226 0.234 164.57 194.05 63.58 0.67 0.79 0.26

0.55 1.65 0.259 156.01 186.24 65.32 0.63 0.76 0.27

1.1 1.65 - 0.417 114.03 147.19 64.28 0.46 0.60 0.26

2.2 L65 0.498 87.06 155.63 35.63 0.35 0.63 0.14



86

4.3 DISTRIBUTION PARAMETER SIMPLIFICATION VERIFICATION

In the previous section, it was shown theoretically how the distribution parameters

can be related to one another and simplified down to a single parameter. This section

will use the void fraction profile data gathered by Kojasoy and his coworkers

(Kocamustafaogullari and Wang, 1991; Kocamustafaogullari and Huang, 1994;

Kocamustafaogullari et al., 1994; Riznic et al., 1996; Iskandrani and Kojasoy, 2001;

Lewis et al., 2002) to calculate what each distribution parameter equals and see how

they are related. Data was obtained by scanning the various data plots and using the

commercial program Digitizelt ver. 1.5 to digitize the image and collect the data

points from the graphs. The distribution parameters were then calculated by

performing a numerical integration technique known as the trapezoidal rule. Since

there are not values of void fraction obtained at the walls, it was assumed that the

values of void fraction at the wall are the same as the values obtained closest to the

wall. The values obtained for the three distribution parameters are plotted in Figures

4.4 though 4.6. One can see that the data is bounded between the stratified and fully

mixed flow extremes as expected. One will also note that values of the 02 distribution

parameter do indeed collapse to the
2 = value.
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Figure 4.9: Comparison of the 02 distribution parameter with experimental data

A comparison between experimentally determined values of the distribution

parameters and the theoretical values found from the simplification analysis is shown

in Table 4.3. It can be seen that 00 + 0 = 1 or 00 = 1-01 is nearly exact. The slight

departure from one can be attributed to round-off error and the limitations of the

numerical integration that was performed. The other simplification, 02 = _-, is also

seen to be true. With the number of significant digits shown, it is seen that 02 is

indeed equal to .-. This substantiates the theoretical values found during the

simplification analysis. Because of this, the model can in fact be reduced to a single

distribution parameter. This makes the model more useful and easier to implement as

well as allowing one to find ways of modeling the phase distribution parameter with

greater ease.
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Table 4.3: Comparison of experimentally obtained distribution parameters and their
theoretical values

Jg J 0 01 00 +01 02 L/2

0.22 5 0.026 0.281 0.717 0.998 0.013 0.013

0.213 467 0.050 0.269 0.730 0.999 0.025 0.025

0.24 0.041 0.255 0.742 0.997 0.020 0.021

0.25 0.048 0.265 0.734 0.999 0.024 0.024

0.25 0.067 0.187 0.811 0.998 0.034 0.034

0.25 3.8 0.081 0.116 0.881 0.996 0.041 0.041

0.43 4.98 0.084 0.249 0.750 0.999 0.042 0.042

0.53 0.101 0.187 0.811 0.998 0.050 0.050

0.419 4.67 0.104 0.172 0.826 0.998 0.052 0.052

0.61 4.98 0.124 0.215 0.783 0.998 0.062 0.062

0.5 38 0.147 0.147 0.850 0.997 0.073 0.073

0.5 0.108 0.220 0.778 0.998 0.054 0.054

0.8 0.153 0.225 0.774 0.998 0.076 0.076

0.788 0.162 0.187 0.811 0.998 0.081 0.081

1 4.98 0.180 0.232 0.766 0.998 0.090 0.090

0.8 3.8 0.188 0.183 0.815 0.998 0.094 0.094

0.25 0.076 0.121 0.876 0.997 0.038 0.038

0.51 0.128 0.159 0.838 0.998 0.064 0.064

0.71 3.83 0.176 0.172 0.826 0.998 0.088 0.088

1.03 3.74 0.202 0.212 0.786 0.998 0.101 0.101

1.25 5.01 0.225 0.296 0.703 0.998 0.112 0.112

1.21 0.217 0.331 0.669 0.999 0.109 0.109

1.34 0.201 0.237 0.761 0.999 0.101 0.100

1.59 436 0.234 0.245 0.753 0.998 0.115 0.117

0.55 1.65 0.259 0.269 0.730 0.999 0.130 0.130

1.1 1.65 0.417 0.342 0.657 0.999 0.208 0.208

2.2 0.498 0.337 0.662 0.999 0.249 0.249



4.4 EFFECTS OF DISTRIBUTION PARAMETER ON STABILITY

An important part of any two-fluid model development is how the model affects

the stability of the problem. First, it is important that the model remains numerically

stable and the solution is consistent with the method used to solve the problem

(hyperbolic). Another type of stability is known as a flow instability. This is caused

when the low pressure area above surface waves becomes low enough due to the

Bernoulli effect to overcome the gravity force. When this occurs, the wave crest to be

pulled towards the top of the pipe and intermittent flow is then created.

4.4.1 Phase transition

A linear perturbation analysis should be performed in order to determine what

influence the unified model with its associated phase distribution parameters has upon
the transition point from stratified wavy flow to intermittent flow. For the model to be

usable, it is important that the predicted transition point agrees with that determined

from experimental results. In order to truly determine the influence that the phase

distribution parameter has on the transition between stratified wavy and intermittent

flow, one must know the distribution parameter and how is changes to perturbations in

quantities such as void fraction, superficial liquid velocity, and superficial gas

velocity. Since this is unknown at this time, the linear perturbation analysis to

determine the transition between stratified flow and intermittent flow will be
performed at a later time.

4.4.2 Characteristic analysis

As part of the unified model development and comparison, the numerical stability

of the new model will be determined in order to see under what conditions the model

remains numerically stable and consistent. This is the main motivation to the work

performed within the scope of this dissertation. The goal is to create a version of the
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one-dimensional two-fluid model that does not suffer from the ill-posed nature that the

standard one-dimensional two-fluid model has for unequal velocities.

Commonly, one may apply the method of characteristics to determine the
numerical stability boundary (i.e. hyperbolic, parabolic, or elliptic) for a set of
governing differential equations. Because we are dealing with a convective type
problem, we need the set of governing equations to remain hyperbolic in order to
properly solve. This is where a problem is created using the one-dimensional two-fluid

model in current form. Because of the assumptions placed on the model, the problem

is only boarder line stable (parabolic) when the gas and liquid velocities are equal. In

the case of unequal velocities, the problem has complex roots and is therefore an
elliptic problem and can no longer be solved as a convection problem. This section

will demonstrate how, by including the phase distribution parameter and the resulting

difference in void weighted pressures between the two phases, the problem can remain

hyperbolic over a wide range of conditions (increased numerical stability). The

equations are now simplified for the characteristic analysis with brackets dropped to

make equations more clear.

Continuity

ôci au+u
at ax

(4.2)
(1_u)-S-=O- - Uf +

at ax ax

Momentum (stratified)

ôu aPg
,ap +p u u u +2ap u --+a---+P -P.)--=O

ax g ax (4.3)
ott1

ad.
(1-a)pf-----pfuf----pfufuf--+2(1-a)pfuf-----+(1--a)-------(Pf P)._=o

Assume that = = in order to reduce the number of unknowns to equalax ax ax
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the number of equations. Now to write the continuity equations and the momentum

equations in matrix form.

a

U
g

(4.4)
Uf

Pm

[A}--x + [B]--x = [c] (4.5)

Matrix [Al becomes:

1 0 0 01

1 0 0
[A]=I (4.6)

I PgUg apg 0

[pfuf 0 (1a)pf oj

while matrix [B] is:

ug a 0 01

[pgugug_Pgj_Pg) 2aPgUg 0 a
(4.7)[B] Uf 0 (1a) 0

[_pfufuf+(Pfi_Pf) 0 2(1a)pfuf (ia)]

Let the terms (Pgj Pg) and (Pfi Pf) be known as AP1 and AP2, respectively for

simplification purposes. In order to perform the method of characteristics, we write the

matrix form of the governing equations as:

[A-[B] (4.8)

Where X contains the eigenvalues of the equations. The problem is solved by taking

the determinant and setting it equal to zero.

Det[AA-B]=0 (4.9)
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For this case, we get:

X_Ug 0 0 1

Det[
-2+Uf 0 (Ia) 0

=0 (4.10)
pgUg(7ug)_(Pg_Pj) apg(?_2ug) 0 a

[-pfuf(_uf)+(Pf--) 0 (la)pf(?--2uf) (ia)j

DET[A2B]=a(1cL)[(AP1 _pg(ug _)(1a)+(AP2 _pf(Uf _2))aj (4.11)

If we assume that the pressures of each phase are equal (zW1 = AP2 = 0), we get the

following relation:

DET{A2_B]=_a(1_a)[(1_a)pg(Ug_2)2+apf(Uf_2)2] (4.12)

This equation has been shown that it can only have a real solution under the condition

thatug = Uf. In the case of stratified flow, the pressure of each phase relative to the

interface pressure is shown to be:

p gHaAP= g
LxP

2
pfgH(1-a)

(4.13)

By accounting for this difference between the two phase pressures, the following
relation is obtained:

or

gHa r

tPf Pg] Pg 2PgUg +Pg22
pfa

{pg 2pf2uf +PfA] (4.14)(1a)

0 22[P pfa 2PfufcL) 2 UfUf gHa
g g ()_[PfP] (4.15)g

(lcL))



The roots of this equation can now be found using the quadratic formula.

A
b ±

(PgUg +')±--
(1-a)) 2

4UPgPf
__(j__y(UfUgJ +2gH[pfPg][pga+_ (4.16)

(ia))

U
Pg +

The primary interest lies in the term under the radical or in other words, b2 4ac. This
is because it is this term that determines what type of problem it is (hyperbolic,

parabolic, or elliptic). These terms are classified as follows:

hyperbolic b2 4ac >0 real distinct roots

parabolic b2 4ac =0 real repeated roots

elliptic b2 4ac <0 imaginary roots

By rearranging the portion under the radical and solving for (ug - u
)2, one gets the

following relation:

(ug uf)2 gllar Pg (i-a)
2Pg a )

=JPfPg +11 (4.17)

t' Pg <<Pf

(UgUf)<±\/[PfPg] (4.18)

This shows how the gravity term helps to stabilize the flow. This result is similar to

that achieved using the Kelvin-Helmholtz instability criterion.

In order to solve the characteristic equation in general for different values of the

distribution parameter, we need to know the value of the interface pressure. For well

mixed flow with the absence of surface tension, the average interface pressure should



equal the average gas and average liquid pressure or ((p)) (()) ((fl)). In the other

Ha pfgH(1-a)extreme, for stratified flow, it is known that ((p.)) I/p \\ = ((i, ))
22

Other types of flows should be somewhere between these two limits. Because the

interface pressure only occurs where an interface is present, it would make sense that
the average interface pressure should be weighted by interfacial area concentration

(area of interface per volume). For a uniform distribution of bubbles, the average

interfacial pressure can be written as:

f,ady

fudy
(4.19)

If the bubbles are spherical, the void fraction can be related to the interfacial area
concentration as:

a
dsm

(4.20)

Substituting into the previous equation, we get:

JPdsrnald
JPidsmaidY

(4.21)HH

jdsrnai
dy JdsmaidY

HH

This type of expression makes more sense to use than using local void fraction
because the interface pressure is a surface quantity instead of a volume quantity.

However, it is difficult to calculate local interfacial area concentration and how

interfacial area concentration relates to void fraction for most general two-phase flow

conditions. To overcome this difficulty so that the characteristic equation can be
solved, an assumption can be made. By examining the relationship between average

interfacial pressure and average gas and liquid phase pressures for well-mixed and



stratified flow conditions, one can see that can range from ((PI)) = ((Pg)) to

((p.)) = ((
pgHa

respectively. Because the term, Pgg' tends to be small
2 2

compared to system pressure and to the liquid head, one can assume that ((i)) = ((Pg))

for simplicity sake. With this assumption in place the characteristic analysis can be

performed for general void fraction distributions. The characteristic matrix becomes:

-a 0 0
1

0 -(1-a) 0 I

Deti PgUg(2_Ug) UPg(X_2Ug) 0
= (4.22)U

LfUf(U+frf _Pg) 0 (l-a)pf(2-2uf) _(l-a)j

The determinant becomes:

DET[AA-B]= _a(l_a){pg(ug -'y(1-U)-((Pf _Pg)_Pf(Uf _A) )aj_ 0 (4.23)

Rearranging, the determinant can be written as:

_*[pg(ug2 +A2 _2AUgK1_U)_(Pf _Pg1+Pf(Uf + -2%u)uj=o

(4.24)

[pg(1_ )+
42 _[2pgug(1_a)+ 2pfuf4% -(P, Pg:kL + pgUg2(1 -a)+ PfUf U 0

The term b2 4ac, becomes:

b2 4ac = [2pgUg(1 ci)+ 2pfuf U]

_4{Pg(1_U)+pfU][_(Pf_Pg)U+pgUg2(l_U)+PfUf2U}=0
(4.25)

For this problem to remain hyperbolic, the condition b2 4ac >0 must be met. For

this case, this means that:

2 2/ 2 22Pg ug Il_U)2+2PfufUpgug(1_a)+Pf Uf U

+ (Pf Pg )pga(1 a) Pg2Ug2(1 )2 PfUlf2Pg(1 (4.26)

+(Pf _Pg)PfU2 _PgUgPfU(1_U)_PfUfPfU >0



97

Which reduces to:

2pfufapgug(l_a)+(Pf _Pg)pg(1_u)a_pfUf2Pg(l_a)a
(4.27)

+(Pf Pg)Pfa2 PgUg2Pfa(1_a)>O

Rearranging, the following relation is obtained:

(4.28)
g _-(u u --(ug_uf)2(Pf_P)a(Pfa+P (1a))

f)<+(l
pfa+pg(1cL)

g

PfPg()C1 g g
pfpg(l_a:kL

Substituting in the relations for the phase pressures with the distribution parameter

included, the following criterion is found:

pfa+pg(1_a)
(4.29)(ug _uf)±(Pf P)a

PfPg(1)U

Substituting the definitions for Pf and Pg, the following criterion is found.

(
I([pgg1T

+pfgll[e ]
Ii PfPg(1)(430)+ Pr])2] 2

J L 2 pfpg(1-a)U

If a rectangular channel is assumed for simplicity, so that it may be assumed that

= (a), the limit for the problem to be hyperbolic is:

(Ug uf)+ ! gHcz (Pgul[2(1_O) pji_a}[ [2O_a]1Y1P(1_a)' (4.31)

] 2 [ li-ulil Pf a

L
It can be seen that the reference pressure, Pr, drops out of the equation. When 0 =

corresponds to stratified flow while in the other extreme where 0 = I corresponds to

the fully-mixed flow condition.
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(uuf)<+ / 2) a l+pf[1-a][lJ1a]1 (+'-__1jP(1_a) 2 [(ia) (i-a)
j

2 [ a )
(4.32)

I gHa (pga[ 1-a _l]+Pf[1_a1[I_[1_a]lil+L(1_a)
pg(i-a)1T[(i-a) 2 [ [i_a]j) pf a )

-+ (Ug_U)O

This result is the same as others have found for the single pressure model. In this limit,

any slip between the two phases will make the problem ill-posed as an initial value
problem.

Now to check the stratified flow limit, which corresponds to 0 =

2(i_ 1
'1

(UgUf)+ I gHa IPgaI 2)a I+i-1 1i+0 (4.33)
2 [(i_a) (1-a)

j
2 [ [l_cL]iJ Pf )

the criterion for stratified flow now becomes:

(uguf)<+
gHa

1aE1_a}h1 (4.34)2(l-a) Pg a )

This result is different from the previously obtained result for stratified flow. This

is due to the assumption that the interface pressure is equal to the gas pressure. To

determine the influence of using the interface pressure assumption, we can calculate

the relative error for stratified flow. Since stratified flow should be the worst case for

this assumption, the relative error for the other types of flow patterns will be less than

this value.



If the actual interface pressure for stratified flow is used, the stability boundary is:

(UgUf)=± i--[p (1a)
Pgj{ +11 (4.35)

2Pg 'Pf )

While using the
((Ps)) ((n)) assumption, we get:

(Ug_Uf)=+ I gHa Ia+{1_a1J[1+(1_ (4.36)
a )Pg

The relative error in the difference in the relative velocity can be found by:

real approximate%diff= xlOO (4.37)real

In this case, the error is given as:

Ii[pf(i-)Pgj+11Pg p a ) 2(1-a) Pg
____________________ xlOO (4.38)
IgHar

Pg
2Pg Pf U

Which then reduces to:

/rf 1 i(1) () Pg)
xlOO (4.39)

/rpI1
1jPg j

If h->> 1, the equation for theerror in the relative velocity cause by the p = ((Pg))
Pg

assumption becomes:
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P!_

%diff=
(1a) Pg)

xlOO (4.40)
LI
Pg

The amount of error using the approximation increases with increasing void fraction

as well as with a decreasing density ratio. The relative error for different density ratios

is shown in Figure 4.10.
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Figure 4.10: Calculation of error in V, for using the = ((Pg)) approximation

For the range of density ratios shown, the amount of error using the ((Pg))

approximation is within ten percent up to void fractions near 0.9. This shows that this
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approximation may be a good one over the range of void fractions and density ratios

of interest.

Figures 4.11 through 4.13 show the relative velocity limit for maintaining a

hyperbolic problem for various density ratios and values of the phase distribution

parameter. Both the actual stratified limit, using the real interface pressure, as well as

the stratified limit, using the ((P)) =((Pg)) approximation, is shown. It can be seen that

the approximation matches the actual limit over the majority of the range.

8
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Figure 4.11: Influence of the distribution parameter on stability limit (2" duct, p1/p2 = 100)
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Figure 4.12: Influence of the distribution parameter on stability limit (2" duct, Pf/Pg = 500)
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Figure 4.13: Influence of the distribution parameter on stability limit (2" duct, Pf/Pg = 1000)
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The above figures show the influence of the distribution parameter for different void

fractions and different density ratios. One can see that in all cases where the flow is

well-mixed, o = , the maximum relative velocity is always zero. This is consistent

with previous analyses. As the flow diverges from the well-mixed condition, one can

see the stabilizing effect that the pressure difference has on the flow. The solid blue

line in the figures represents the stability line for stratified flow, 0 = using the

characteristic analysis with the real value of the interface pressure. On the other hand,

the solid red line shows the predicted stability line for stratified flow using the

= ((Pg)) approximation. One can see that the approximation works increasingly

well with increased density ratios. In addition, the approximation compares well with

the actual value of the relative velocity stability limit except in the case of high void

fractions (a >0.8 or 0.9). The solid black line in the above figures represents the

stability line predicted by the Kelvin-Helmholtz (K-H) stability analysis. The K-H

instability does correspond to a physical flow type instability versus the numerical

type of flow instability that we are calculating using the characteristic analysis. This

may account for the difference between the values found. Further investigation will

have to be performed to determine where the difference comes from and if the
difference is physical or not.

4.5 MODELING OF THE DISTRIBUTION PARAMETER

In order to use the void distribution parameter to aid in the computer simulations

of two-phase codes, one needs to be able to determine what value the distribution

parameter has for a given flow condition. Ideally, this calculation would be performed

using some analytical function that is in terms of know parameters such as void

fraction, pipe diameter, gravity, and superficial velocities. However, this may be

difficult as the physical processes within two-phase flow are still not well understood.
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Proper modeling of the void fraction distribution parameter would allow smooth

transitions between various flow regimes and eliminate the need for the more
subjectively based flow regime maps. This section will explore some of the options

that could be used to determine the void distribution parameter.

4.5.1 Using void fraction distribution to calculate parameter

The most ideal way to determine the void distribution parameter is to first

determine the actual transverse void fraction profile. Once the void profile is known, it

can then be integrated in order to determine the value of the distribution parameter.

This method, however, requires a good understanding of the physics which determine

the void fraction profile. Possible methods for determining the void fraction profile

will be discussed within the following subsections.

4.5.1.1 Determine void distribution using a force balance approach

One method of determining the void fraction distribution would be to perform a

momentum balance. If steady state condition were assumed and assumed that there is

no net flow in the vertical direction, one may be able to use a two or three-dimensional

set of momentum equations to determine where the bubbles will migrate in the vertical

direction.

2a(akpkvk) a(akpv,kvg) a(akpkv,., )
(4.41)

= Uk +apg cos+(PkI
k((tk

)(M)+
D

Assume steady state with no velocity in y-direction

o k "kpkg cos+ (Pk
D ax

--KMk (4.42)
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Rearranging:

ak+(Pk
ki

D 8)'
-(Mk) (4.43)

With no phase change or drag in the y-direction:

(k -Pkl)Oak

8)1 a 8),

the phase difference:

(4.44)

- (4.45)pg COS( Pgg cosç
8)' 0Y8Y Uk Oy

-
+ [

(p 1LI)
(Pg Pgj )i .3a

0)1
0)' [ (i-a) a

(4.46)

Assuming that the local pressure gradient and interface pressures are the same for each

phase:

[ 'L Pg r . p.1 OuI_i \+jf
[

l-U) a [l-a) Uj 8)'
(4.47)

The above analysis neglects the influence of turbulence. It is clear that turbulence,

both liquid and bubble-induced, needs to be included in this approach to account for

fluctuations in the vertical direction. For this type of approach, one needs to know

something about bubble size. The bubble size and relative velocity influences the

amount of bubble induced turbulence. The bubble induced turbulence can then
influence where the bubbles migrate.

One could perform this type of analysis numerically. Assuming an initial
distribution of bubble sizes, one could let the problem run until a steady-state solution

is achieved. This would require a priori knowledge of the bubble size distribution. In

order to obtain this, more experimental data would need to be acquired in conjunction

with additional theoretical modeling.
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4.5.1.2 Determine void distribution using fits of experimental data

Another approach would be to collect an extensive amount of experimental data

where the void fraction distribution is measured along the direction transverse to the

direction of flow. By collecting and examining the data and incorporating the needed

physics, one could possibly develop a correlation where densities, void fraction,

surface tension, and so on are used to determine the profile. This would require

extensive measurements as one needs to traverse the pipe and measure the void

fraction at several locations for each flow condition. In addition, more experiments

would need to be done to determine the effect of density differences, gravity, pipe

diameter, and surface tension.

4.5.1.3 Determine void distribution using a physical modeling approach

Based on the experimental results obtained, it appears that the void peak reaches a

maximum value of about 0.65. This corresponds to a maximum packing faction. If the

void fraction is increased, the void peak becomes wider. At some point, the void

fraction everywhere will reach some maximum packing fraction. Beyond this point,

the bubbles are forced to distort to achieve a higher packing fraction. After the bubbles

cannot achieve a higher packing fraction through distortion, the bubbles will likely be

force to coalesce. This may be the onset of annular flow. This type of modeling could

comprise of a bubble population model in combination with a volume or interfacial

area transport model. The bubbles would initially accumulate towards the top of the

pipe, assuming that the liquid flow is reasonably slow. As bubbles accumulate, the

void peak will become wider. The location of the actual peak is likely due to a balance

of surface tension, inertia forces, and buoyancy forces.
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4.5.2 Determine distribution parameter in terms of non-dimensional numbers

One could possibly use sets of experimental data along with theoretical limits to

determine how the phase distribution parameter may be able to be correlated in terms

of meaningfiul non-dimensional numbers such as the Froude number, Reynolds

number or the Weber number. This method would calculate the distribution parameter

in terms of some parameters instead of trying to determine the void fraction profile

and then calculating the distribution parameter based upon that profile. This method

should be easier than calculating the actual profile, but won't contain as much
information about the actual profile shape.

4.5.2.1 Discussion of parameters to describe flow regime transition

Moving along the direction of the red arrow in Figure 4.14, there can be a change

of both void fraction and liquid velocity. This is because if = Vf (i a). One can see

that moving along this direction will allow for transition between stratified, plug, and

bubbly flows or between wavy, slug, and bubbly flows depending on the gas
superficial velocity. This assumes that the gas superficial velocity is below that

required for annular flow. The annular flow regime will be disregarded in this initial

analysis since the annular flow can have droplet existing within the vapor core, which

will tend to alter the results of the pressure distribution.



108

10

40.1

0.01

0.001

BUBBLE

PLUG SLUG

- ANNULAR

STRATIFIED

0.01 0.1

jg(flhIs)

10 100

Figure 4.14: Flow regime area of focus for distribution parameter modeling

For the regimes of interest, it is likely that some version of the Froude number is

responsible for these flow regime transitions. This is because the Froude number is the

ratio of the inertia forces to buoyancy forces. Typically, the Froude number is written

as:

Fr= I Pv2

ApgD
(4.48)

The values of density, p, characteristic velocity, v, and characteristic length, D,

depend on the problem at hand. It is important to find meaningful values of these

parameters based on the physics which govern the problem. Although other forces



109

may be important such as the Weber number (inertia to surface tension) or the
Reynolds number (inertia to viscous force), it is impossible to tell the impact of these

other forces since the experimental data that is being analyzed is only for air-water

flow. Additional experiments would need to be performed to determine the importance

of surface tension and viscous force on the flow regime transitions.

It is known that the stratified flow regime should exist when the buoyancy force

dominates over the inertia force used. The fully mixed flow structure should exist well

into the bubbly flow regime. In this region, the liquid turbulence force, which is
related to the liquid inertia force, dominates over the buoyancy force to create a flat
profile. This is region should be similar to the results seen in microgravity conditions

at lower flow rates where most flows have profiles that are either flat or symmetric.

There are several definitions of the Froude number that may potentially play a role
in these flow regime transitions. For instance, the Froude number may be based on
liquid density and velocity or possibly some mixture density and velocity, or maybe a
relative velocity and a liquid density. There are several possibilities. One must look at

experimental data and theoretical transition boundaries to determine which parameters
to use.

1. Use of Relative Velocity, Vr - One may consider the use of relative velocity as

the characteristic velocity used in the definition of the Froude number. The

main factor for using the relative velocity is due to the fact that the onset from

stratified wavy flow to slug flow is based on the Kelvin-Helmholtz instability.

This instability is based on the relative velocity between the two phases.

(vg _Vf) Vr
[ApgHa

(4.49)
Pg
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After the transition from stratified wavy flow to slug or plug flow, the relative

velocity between the two phases decreases to the point where the gas phase is

typically just slightly faster than the liquid phase.

Data from Kojasoy and his coworkers (Kocamustafaogullari and Wang,

1991; Kocamustafaogullari and Huang, 1994; Kocamustafaogullari et al.,

1994; Riznic et al., 1996; Iskandrani and Kojasoy, 2001; Lewis et al., 2002)

was again implemented to determine if relative velocity would be a good

parameter to describe the phase distribution parameter. The gas and liquid

velocities were calculated using:

vg (4.50)

vf (4.51)1 (a)

The values were calculated for the data sets which listed the area-averaged

void fraction. The superficial velocities used were the ones given in the papers.

2. Use of a Combined Froude Number, Frm2, Frm2 = Fç2 + Fi2 - For stratified

concurrent liquid flows, one typically uses a modified Froude number which

includes the influence of the gas and liquid Froude numbers. This transition

criterion is the point where the inertia forces over take the buoyancy forces. At

this point, the fluids begin to mix, transitiomng from a stratified flow condition

to a well-mixed flow condition. It may be possible to use such a criterion for

the gas-liquid flows that this dissertation deals with.
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Frm2 Frg2 + Frf2 (4.52)

Fr 2 Pg PfVf
(4.53)

ApgHc ApgH(l

The transition from stratified flow occurs when:

Frm2 1 (4.54)

For this analysis, the distribution parameter should approach the fully-

mixed condition at high Froude numbers. The distribution parameter should

also approach the stratified condition at low values of Froude number. The

problem with using the combined Froude number is that it can approach
infinity in a couple different ways. First, high gas or liquid velocities will

create a large Froude number as expected. Secondly, if the void fraction

approaches zero or one, the Froude number will also approach infinity. The

limit where the void fraction approaches one is not a problem. In this limit,

annular flow exits. During annular flow, the void profile is flat except for the

thin liquid film at the wall. This related to the fully-mixed condition, as one

would expect at a high Froude number. The low values of void fraction do

create a problem with this definition. One could have a small void fraction and

still be stratified; however, the Froude number can be large due to the void

fraction being in the denominator. This high Froude number would predict a

fully-mixed flow instead of the stratified flow that actually exists. The problem

comes from that fact that this dissertation focuses on just the gas phase

distribution, whereas one usually cares about the overall mixture with the

liquid-liquid stratified flows. Table 4.4 shows a comparison of the various

Froude numbers based on experimental data. It can be seen that for these

conditions, the liquid Froude number is dominate.
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Table 4.4: Comparison of experimental Froude numbers

Author Jg j (ci.) Frg2 Frf2 Frm2

Kocamustafaogullari
and Wang

1991

0.24 5.1 0.043 1.71 60.21 61.92

0.25 3.74 0.087 0.22 37.29 37.52

051 3.77 0.057 3.32 34.39 37.71

0.53 4.67 0.105 0.57 61.72 62.30

0.71 3.83 0.151 0.35 48.63 48.98

1.03 3,74 0.183 0.41 52.04 52.45

1.34 4.98 0.204 0.50 99.77 100.27

1.59 4.36 0.226 0.52 83.18 83.70

Kocamustafaogullari
and Huang

1994

0.213 4.67 0.044 1.26 50.64 51.90

0.419 4.67 0.085 0.68 57.76 58.44

0.788 4.67 0.146 0.47 71.04 71.52

1.21 4.67 0.2048 0.40 88.00 88.40

Kocamustafaogullari
etal.

1994

0.22 5.00 0.042 1.55 57.69 59.24

0.43 4.98 0.08 0.85 64.62 65.47

0.61 4.98 0.111 0.64 71.62 72.26

1,00 4,98 0.167 0.51 87.05 87.56

1.25 5,01 0.204 0.44 100.97 101.41

3. Use of a Liquid Froude Number, Fr12 or Fr1 - It appears that perhaps the

liquid Froude number should be used for this analysis. It doesn't suffer from

the problems that the combined Froude number has at very low void fractions.

Physically, the liquid Froude number can be justified by looking at the liquid

turbulence. The amount of liquid turbulence is proportional to The

numerator of the liquid Froude number contains this same term. So either the

liquid Froude number or the square of the liquid Froude number may be

appropriate.
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2

(4.55)Frf
ApgH(1 a)

or

Frf
fVf

(4.56)pgn(la)

4.5.2.2 Functional relation between 0 and non-dimensional numbers

Any functional form that may be used to describe the relation between the

distribution parameter, 0, and some non-dimensional number, such as the Froude

number, must be able to meet the theoretical limits of the distribution parameter for

stratified flow as well as for the fully-mixed flow condition.

As shown previously, the range of the distribution parameter is t o I, with

o = ?t being the stratified flow limit and o = I corresponding to the fully-mixed flow
2 2

condition. A functional relationship must asymptotically approach these two limits. In

the case of using the Froude number to describe the distribution parameter, when the

buoyancy force dominates over the inertia force (small Froude number), the function

relationship should approach the stratified limit. In the case where the inertia force

dominates, the functional relation should approach the fully-mixed flow condition.

The hyperbolic tangent would be a good candidate for this since it has two asymptotic

limits. One can write the functional relation in general as:

0=C1 +C2tanh(C3(Frm2
))

Where C1, C2, C3, and are constants.

(4.57)
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O(Frm2 -+o)=c +C2tanh(C3(_))=. (4.58)

If is large enough, this can be simplified to:

O(Frm2 _o)=c, -C2 " (4.59)

O(Frm2 -co)=C, +c2 =1 (4.60)

The coefficients for the equation become:

C1=(l+a)/4 C2=(1-a)/4

The equation reduces to:

O=(1+a+(1_u)tanh(C3(Frm2 -s))) (4.61)

This function is shown in Figure 4.15 for arbitrary values of C3 and and for several

values of void fraction.
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Figure 4.15: Possible function describing the distribution parameter in terms of Fr

One can see from Figure 4.15 that the asymptotic limits are met. Since the upper end

of the curve is fixed and the general shape of the curve is the same, but the lower limit

changes, it may be beneficial to determine a way to write the function to collapse the

curves onto a single line. This can be done by defining a new number, denoted O. Let

O be defined as:

20 a2 -* (4.62)I(ia) (i-a)
2

For stratified flow:

0 =0 (4.63)
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For the fully-mixed flow condition:

O =1 (4.64)

The function now becomes:

i{1+a+(1_)tanh(C3(Frm2 ))]a
i{1+tan1(C3(Frm2 _))J (4.65)o=2

(iu) 2

The resulting curve for arbitrary values of C3 and is shown in Figure 4.16. It can be

seen that this function is always bounded between zero and one. This function is

independent of void fraction and may allow one to collapse all data onto a single

curve.
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Figure 4.16: The resulting collapsed curve for describing the distribution parameter
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Data from Kojasoy and his colleges (Kocamustafaogullari and Wang, 1991;

Kocamustafaogullari and Huang, 1994; Kocamustafaogullari et al., 1994) are plotted

in terms of liquid Froude number in Figure 4.17 and Figure 4.18 using the average

liquid velocity and the liquid superficial velocity, respectively. The curve plotted in

Figure 4.17 and Figure 4.18 is generated from equation (4.65) by adjusting the values

of the C3 and parameters to best fit the data. It is seen from first glance that the use

of liquid superficial velocity provides data points with less scatter and therefore a

better fit to the function. The use of a local average liquid velocity does make more

sense physically, though. This is because it is a real liquid velocity, unlike the liquid

superficial velocity. The amount of scatter in the data may be a combination of error in

the experimental data, the different transition criterion for different void fractions, and

lack of other important parameters in the model or possibly the use of incorrect

characteristic lengths or velocities.
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Figure 4.17: Using average liquid velocity for Fr, v. = jf/(la)
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Figure 4.18: Using superficial liquid velocity for Fr
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It is important to determine how much of the scatter of the data points is due to

possible experimental uncertainty in order to determine how much to the scatter is

caused from the experiment and how much is due to possible missing information in

the model itself.

In order to determine the uncertainty, we need to know the parameters that the

model relies upon and how much error maybe in those measured parameters to

determine the overall uncertainty. For this model, it is assumed that the phase

distribution parameter is dependent on the liquid Froude number. The liquid Froude

number is defined as:

Frf = I

fVf
(4.66)pgH(la)
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Jf I

a))
Frf =ij

(4.67)ApgH(1 Jj

F-rf

ApgH(1a) (4.68)

depending on the definition of the characteristic liquid velocity that is used. The
(Root-Mean-Square) RMS error in the liquid Froude number can be found in general

AFrf IA
af ) ) a )

(4.69)

The RMS error is the most probable uncertainty in the liquid Froude number for this

case. The RMS error in the liquid Froude number is found by taking the partial

derivative of all possible parameters within the liquid Froude number and multiply

each term by the uncertainty of that parameter. Each term is squared then summed

with the other terms. Finally, the square root of the sum is taken.

For the case where the liquid Froude number is defined as:

2

!Pf I _k')
I

jia)1
Frf =

ApgH(1a)

The RMS error is found using:

(4.70)
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For the case where the liquid Froude number is defined as:

pf ifFrf
.2

ApgH(l-a)

The RMS error is found using:
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(4.71)

(4.72)

(4.73)

The error bars were found assuming an error of 5 percent for the liquid superficial

velocity, and 10 percent for void fraction. The actual errors were not given, so

reasonable errors were used based on what information was available. It was assumed

that densities, gravity, and pipe diameter were all well known and constant. In this

case only the error for the liquid flow rate and void fraction come into play in the

uncertainty analysis for the liquid Froude number. It is seen that the uncertainty in the

experimental data will not account for all of the scatter in the data alone. This is based

on that the amount of error assumed in the analysis is correct. A summary of average

and maximum relative errors for both definitions of liquid Froude number are shown

in Tables 4.5 through 4.8 to get an idea of how the error bars for the data set would

change based on the amount of uncertainty in the experimental data.
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Table 4.5: Average relative error of Frf based on average liquid velocity

2.5 5 7.5 10 12.5 15 17.5 20

0 0.0000 0.0250 0.0500 0.0'750 0.1000 0.1250 0.1500 0.1750 0.2000

2.5 0.0056 0.0258 0.0504 0.0753 0.1002 0.1252 0.1501 0.1751 0.2001

5 0.0112 0.0280 0.0516 0.0761 0.1008 0.1257 0.1505 0.1755 0.2004

7.5 0.0169 0.0311 0.0535 0.0774 0.1018 0.1265 0.1512 0.1761 0.2009

10 0.0225 0.0349 0.0560 0.0792 0.1032 0.1276 0.1522 0.1769 0.2016

12.5 0.0281 0.0391 0.0589 0.0814 0.1049 0.1290 0.1534 0.1779 0.2025

15 0.0337 0.0436 0.0622 0.0839 0.1070 0.1307 0.1548 0.1792 0.2037

17.5 0.0393 0.0483 0.0659 0.0868 0.1093 0.1327 0.1565 0.1806 0.2049

20 0.0450 0.0531 0.0698 0.0900 0.1119 0.1349 0.1584 0.1823 0.2064

Table 4.6: Maximum relative error of Frf based on average liquid velocity

0 2.5 5 7.5 10 12.5 15 17.5 20

0 0.0000 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 0.1750 0.2000

2.5 0.0109 0.0273 0.0512 0.0758 0.1006 0.1255 0.1504 0.1753 0.2003

5 0.0219 0.0332 0.0546 0.0781 0.1024 0.1269 0.1516 0.1764 0.2012

7.5 0.0328 0.0413 0.0598 0.0819 0.1053 0.1292 0.1536 0.1781 0.2027

10 0.0438 0.0504 0.0665 0.0869 0.1092 0.1325 0.1563 0.1804 0.2047

12.5 0.0547 0.0602 0.0741 0.0929 0.1140 0.1365 0.1597 0.1834 0.2074

15 0.0657 0.0703 0.0826 0.0997 0.1197 0.1412 0.1638 0.1869 0.2105

17.5 0.0766 0.0806 0.0915 0.1072 0.1260 0.1466 0.1684 0.1910 0.2142

20 0.0876 0.0911 0.1009 0.1153 0.1329 0.1526 0.1737 0.1957 0.2183
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Table 4.7: Average relative error of Frf based on superficial liquid velocity

0 2.5 5 7.5 10 12.5 15 17.5 20

0 0.0000 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 0.1750 0.2000

2.5 0.0019 0.0251 0.0500 0.0750 0.1000 0.1250 0.1500 0.1750 0.2000

5 0.0037 0.0254 0.0502 0.0751 0.1001 0.1251 0.1501 0.1751 0.2000

7.5 0.0056 0.0258 0.0504 0.0753 0.1002 0.1252 0.1501 0.1751 0.2001

10 0.0075 0.0264 0.0507 0.0755 0.1004 0.1253 0.1502 0.1752 0.2002

12.5 0.0094 0.0271 0.0511 0.0758 0.1006 0.1255 0.1504 0.1753 0.2003

15 0.0112 0.0280 0.0516 0.0761 0.1008 0.1257 0.1505 0.1755 0.2004

17.5 0.0131 0.0289 0.0522 0.0765 0.1011 0.1259 0.1507 0.1756 0.2006

20 0.0150 0.0300 0.0528 0.0769 0.1014 0.1262 0.1510 0.1758 0.2007

Table 4.8: Maximum relative error of Frf based on superficial liquid velocity

0 2.5 5 7.5 10 12.5 15 17.5 20

0 0.0000 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 0.1750 0,2000

2.5 0.0036 0.0253 0.0501 0.0751 0.1001 0.1251 0.1500 0.1750 0.2000

5 0.0073 0.0260 0.0505 0.0754 0.1003 0.1252 0.1502 0.1752 0.2001

7.5 0.0109 0.0273 0.0512 0.0758 0.1006 0.1255 0.1504 0,1753 0.2003

10 0.0146 0.0290 0.0521 0.0764 0.1011 0.1258 0.1507 0.1756 0.2005

12.5 0.0182 0.0310 0.0532 0.0772 0.1017 0.1263 0,1511 0.1759 0.2008

15 0.0219 0.0332 0.0546 0.0781 0.1024 0.1269 0,1516 0,1764 0.2012

17.5 0.0255 0.0357 0.0561 0.0792 0.1032 0.1276 0,1522 0.1769 0.2016

20 0.0292 0.0384 0.0579 0.0805 0.1042 0.1284 0.1528 0.1774 0,2021

Error can also occur along the direction of the distribution parameter, O. With
the way that the distribution parameter is defined, if all void fraction profile data

points were shifted either up or down by a fixed relative amount, no error in the

distribution parameter will occur. However, each void fraction data point could be
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higher or lower than the actual value, independent of the other data points. The

influence of this could be found by performing a numerical sensitivity analysis. One

could assume that the data points measured are the mean value of the void fraction at

that location. One could then assign some uncertainty of each point with a given

distribution, such as a Gaussian distribution. One could then write a Monte Carlo

program and sample the distribution for each data point. The program would sweep

through each point along the vertical direction, sampling from the given distribution at

each point, to generate a new and slightly different void fraction profile. Once swept

through one pass, the distribution parameter could be calculated. The process would

repeat many times (possibly 10,000 or more), which would find the mean phase

distribution parameter along with the associated standard deviation. One would need

to have a good idea of local void fraction error to properly implement this method.

In addition to the uncertainty of the local void fraction measurement, uncertainty

in the position of where the data is coliected will also factor into the error of the

distribution parameter. There should also be at least a minimum number of data points

across the channel. Having more data points will reduce the amount of error in the

numerical integration that is performed to calculate the distribution parameter while

achieving a better description of the actual void fraction profile.

The scatter within the data points shown may be due to other factors besides

uncertainty in the experimental data. The scatter could be caused by the fact that the

model is missing some aspect that is physically important (surface tension, viscosity,

etc.). The other factor that could cause the apparent scatter is that the transition point

from stratified flow to intermittent flow can occur at different liquid Froude numbers

depending on void fraction, gas velocity, and liquid velocity.
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4.6 COMPARISION OF MODEL TO PREVIOUS MODELS

The model created within this dissertation greatly enhances the hyperbolic nature

of the one-dimensional two-fluid model with the use of a phase distribution parameter

which creates a pressure difference between the two phases due to hydrostatic head.

This model is physical in nature and works for a wide range of conditions for

horizontal and inclined flows. Improving the stability of the vertical flow model still

needs to be performed at a later time.

Other models investigated were found to only work under certain flow regimes,

such as only stratified flows or just for bubbly flows. Many of the previous works

relied on things such as incompressibility, surface tension, or viscosity to create an

improved stability of the one-dimensional two-fluid model. However, these effects are

often not included under typical flow calculations and should not be relied upon solely

to create a stable flow situation.

This model, in conjunction with proper modeling of the phase distribution

parameter, could be used to create a unified two-fluid model that would work over a

wide range of flow conditions and eliminate the need of the more subjective flow

regime maps. By eliminating the flow regime maps in conjunction with this model, the

governing equations for the flow will remain hyperbolic and the unphysical

oscillations caused by the sharp transitions within the current flow regime maps may

be eliminated. Instead, a smoothly varying flow structure will exist over a wide range

of conditions.

The use of the phase distribution parameter will also allow the bubbly flow

condition to return back to the stratified condition due to the pressure difference

between the two phases. Currently, bubbly flows are assumed to be in pressure

equilibrium, which basically removes the influence of gravity. Because of this

assumption, the model is not stable in a hyperbolic sense and the model is not able to

transition back to stratified flow once it is in the bubbly flow regime.



125

5 DISCUSSION AND FUTURE WORK

A general two-pressure, two-fluid model was created. It was would that this model

eliminates the non-hyperbolic nature of the single pressure two-fluid model. This

particular model will aid in the hyperbolic nature for horizontal and inclined pipes.

Further work will need to be performed in order to deal with the non-hyperbolic nature

of the single pressure two-fluid model for vertical flows.

It was found that the model presented in this dissertation provides additional

physical information into the one-dimensional, two-fluid model. This creates a

pseudo-one-dimensional model because information of the transverse void fraction

profile is built into the void distribution parameter. This additional information was

found to greatly enhance the numerical stability of the problem (hyperbolic nature) as

well as providing a possible way of unifying the stratified flow model and the fully-

mixed two-fluid model. With this unification and proper modeling of the phase

distribution parameter, the next generation multiphase computer codes could

accurately calculate two-phase flows without the use of the more subjective flow

regime maps. In addition to the flow regime maps being somewhat subjective, their

use can also create unphysical oscillations in computer codes when the calculated flow

is near one of the transition boundaries. At this point, small changes in gas flow, liquid

flow, or void fraction, cause oscillations between two different flow regimes and the

corresponding correlations used.

Future Work This section will discuss the future work that needs to be performed

in this area of research based on findings from this dissertation.

- Additional work regarding the unification of the stratified flow model and the

fully-mixed condition needs to be performed. There needs to be additional

work regarding interfacial area and transport between the liquid and gas phases
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and how to implement this is a general sense to works with different flow

structures.

- Further work needs to be performed in order to take care of the same

hyperbolic problem for vertical applications of the two-fluid model.

Additional theoretical work should be performed to create an analytical or

semi-analytical model to predict the void fraction profile in a horizontal pipe in

order to properly determine the phase distribution parameter in a numerical

calculation.

Additional experimental data to determine void fraction profiles for horizontal

two-phase flows.

o Data needs to be collected at very high liquid flow rates to determine at

what point a flat distribution is achieved and to help determine a

functional relationship between the distribution parameter and a non-

dimensional number such as the liquid Froude number.

o Data for different fluids should be obtained in order to determine what

influences things like surface tension and viscosity have on the void

fraction distribution. This experimental data will help to improve a

model between the phase distribution parameter and known flow
parameters.

- Once a good relationship between the distribution parameter and known flow

parameters is created, one can implement a linear stability analysis to

determine how the distribution parameter influences the transition between

stratified wavy flow and intermittent flow.

L



127

- The interfacial pressure term should be further investigated. The simplification

used in this dissertation works well for air-water flows and the void fraction

range of interest. However, a more exact value of the interfacial pressure

becomes important when the two phases have similar densities or if the void

fraction is very high. As a subpart of this work, additional theoretical and

experimental work will need to be performed to determine the transverse

interfacial area concentration and corresponding interfacial pressure for
horizontal two-phase flows.

- Additional work with interfacial area concentration needs to be performed for

both the interfacial pressure term as well as for proper modeling of the
exchange rates of mass, momentum, and energy between the two phases.

Creation of a good model for the phase distribution parameter could eliminate

the need for the more subjective flow regime maps and the unphysical

oscillations that can be associated with them for numerical calculations near a

transition boundary.
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6 CONCLUSIONS

As part of this dissertation, an improved version of the one-dimensional two-fluid

model for horizontal two-phase flow was developed. By incorporating the phase

distribution parameter, additional information is included making this a pseudo-one-

dimensional model. The incorporation of the distribution parameter allowed the one-

dimensional two-fluid model to remain hyperbolic over a wide range of relative
velocities between the gas and liquid phases, overcoming a major obstacle. It was

found that the stratified flow condition is the most stable and the fully mixed flow case

the least stable. The use of this phase distribution parameter will also allow for

creating a unified two-fluid model that will work over a wide range of flow structures.

Some methods of determining a calculated value of the distribution parameter was

also shown. Additional work will need to be performed in the modeling of the
distribution parameter and as well as interfacial area and mass, momentum, and

energy transport rates between the two-phases in order to create a unified one-
dimensional two-fluid model with smooth transitions between the various flow
regimes.
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NOMENCLATURE

A flow area

a1 interfacial area concentration

C0 distribution parameter

Ck momentum covariance term

dm Sauter mean diameter
g acceleration due to gravity

H flow channel height

j superficial velocity

k wave number

L length scale at interface

th mass flux

n surface normal vector

P pressure

Q volumetric flow rate

q heat flux

t time

U, v velocity

Vgj drift velocity of the jth interface

x vapor quality

x, y, z spatial coordinates

Greek Symbols

a void fraction of gas phase

A difference between two terms

F mass generation rate per unit volume

p density

0 phase distribution parameter
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surface tension

shear stress

w angular frequency

angle from vertical, rates of change of the bubble number density

dissipation, rates of change of the interfacial area concentration

wetted perimeter

w bubble shape factor

Subscripts

B, C bubble breakup, bubble coalescence

P. V phase change, void transport

f, g, i liquid phase, gas phase, value at interface

m,n index

r relative

t per unit time

x, y, z spatial coordinates

0 reference

Mathematical operators

( ) area averaged quantity

void fraction weighted area averaged quantity

mean value

-t

time averaged quantity

line averaged quantity

perturbed quantity
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APPENDIX A: STRATIFIED TWO-FLUID MODEL DERIVATION

Phase2 A2
m2-' m1 \

Phase 1&

1J
.1
IlL

SI' S

x

Figure A.1: Control volume for continuity equation

Sçç (x, t) liquid-liquid interface area

Sfg (x, t) liquid-gas interface area

Stw (x, t) surface bounded by the wall

Vf (x, t) volume of liquid in control volume

Vg (x, t) volume of gas in control volume

Using the integral form of conservation of mass:

[JJ5Pfdv]+ JJPfV.dSO (A.1)



[JJfPfdv]+ J$p1(ui -u1).ndS = 0

u1 (x, t) velocity of the moving control volume surface

n (x, t) outward normal unit vector

Assumptions

- flow is incompressible

- 1-Dflow

- at the wall, assume no-slip condition (i.e. uf= u1 = 0)

- at Sif (liquid-liquid interface) u = 0

- atSfg, Jpf(uf-uI).ndS=JfrnfldS
Sf Sg

assume that rnfi is constant over the interface of the control volume
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(A.2)

Now break up the surface integral into its components:

[sssPfdv]+ JJpf(Uf u1).ndS=O

[sskfdv]+JsPfuf_u.nds+JsPfuf_u.ndsssPfuf_u.nds =0 (A.3)Vç Sif S

[5ssPfdv]+ JJPfUf ndS+ fJpf(uf u1)ndS =0
V1 S S

ffPSU, ndS=-thf1 ffdS
V1 Sif S1

Since ix (1,0,0) on the forward face of Sif and n = (-1,0,0) on the back face of Str, the

second integral can be written as:

SJpfUf n dS = JJPfUfi dS J$PfUfi dS (A.4)

(forward) (backward)
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This is a definition of a derivative and can be written as:

[flJPfufi dv] JJPfUfi dS f JPU dS (A.5)

(forward) (backward)

Lv1

1

] ¶v,I fJJp1u1 dv] = th1 S12 (A.6)_i JJpdV +

Dividing through by the total constant volume, V, we get:

a [1 JJJPiuiidV]=_m1:12
(A.7)at[v

,

- Define liquid fraction as = (XL

- The phasic average is defined as , t) = dV

a r 1 th11S12
{LPL}-i-----[uLpLullJ=---

V (A.8)

Using S12 F1dx and using the incompressible flow assumption, the continuity

equation becomes:

a thh dx th1

(A.9)
PLV PLA

For one-dimensiona' flow using area-averaged quantities:

(F)=-_ffFdA (A.1O)AA
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Perform the area-average of the continuity equation:

1 ÔUL m1ildA (A.11)AJ at [uLuJ=
PLA

IA
12

[3] ]

[1]. (A.12)AAat ötAA at

[2]. 1JJ---[aLuL]dA = (aLUL) (aL)((UL)) (A.13)
AAax ôxA A

[A]. dA = IJdA = (A.14)'AA FL FL A FL

The 1-D continuity equation for the liquid phase becomes:

a(aL)
+--{(L)((uL))]= __i

at ax PLA
(A.15)

a(l-a)
_--+--[(1-a )((uL))]------ a r

=
at ax PLA at ax PLA

The 1 -D continuity equation for the gas phase is derived in the same manner with "g"

subscripts replacing the "L" subscripts. The 1-D continuity equation for the gas phase

becomes:

+[(ug)((ug))]= 2j 1

PgA
(A.16)

a
{(a)((ug))}= rn2

PgA



Now for the one-dimensional momentum equation:

*t2e

y A2 Phase2

)
PA

m

z
IA Phasel

pg tle x+

Figure A.2: Control volume for momentum equation

Using the integral form of the momentum equation:
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(1 +zMXAi +A1)

[sssP!u!dv1+sJPlulu u).ndS= Jnt-nP]dS+fJ$p1FdV (A.17)

Using the same assumptions as the continuity equation, the left hand side of the

equation becomes:

[jssPIudv1+ JJpu(u -u).ndS

[JffPuidV]+SJPiui(ui_u).ndS+SJPu(u_ui).ndS+JSPuu_uindS
(A.18)

[jjJPIuIdV1+SIPluuIndS+JSPuI(ui_ui)ndS

[ssspui1+sspiuu
ndS+th1u1fJdS

Following the same approach as with the continuity equation, the left-hand side of the

one-dimensional momentum equation becomes:
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[flJPiuidv] [ JjfPiuiuidV]+ th1u JjdS (A. 19)

The momentum equation now equals:

['uIdvI
aH fflP1uiuidV]+thiui JJds Jf(tn tle JJP.ndS+ JfJp1g,dV (A.20)

s s S V

Now divide through by V and assume the flow to be incompressible:

p,-[- JJfuidv]+ p1 [! fJJuiuidV]+i fJds
I

JJ( )ds 1 JJP dS+P ffldv (A.21)
V V

Using the definition of liquid fraction, we get:

1I =fJ(t
A V

,e)dS_JJP11SLplgx (A.22)
6}[1] [2] [3]

[4] [5]

The first term in equation (A.22) becomes:

[11. P P JJ[I1LU,1A =P1 P, P1 [KaiX(ui))I (A.23)
A

The second term in equation (A.22) becomes:

1 ô
[uL}'A=pl a 1 r[2]. --[Li1- P JJ1 7JflULUIUI}A =p, [(aiu,u, ] pi [KaLXKuluI))1

(A.24)'ax

note that:

(Kuiui)) ((u))2 + (((U2)) K(u))2) (A.25)

Cov(ui2) (((u]2))_((u]))2)
(A.26)

The second term now becomes:

+Cov(
21

p1 [(aL)((ulul))]pl kaLul2 UI I/i (A.27)
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[3].
th11u1 if$thu(' dA rn11U (A.28)A AA ''LA)

fJ(r1, _r1)ds_-$$r1. dS_IfJt dS
I

[4]. jil' Jjt11 dS-Jjri dS] _ 11I- 11ds- JJdSl (A.29)
.,.fl VAL s V J

A ALV

si Ie1IIIe)j Tii

The fifth term becomes:

[5]. --jjP.ndS---_JfPLnIdS_-i JJPLnIdS (A.30)
S SLL SLI+SLW

[a] [b]

The fifth term is broken into two components:

dx-IA1')
VS Vk } (A.31)
i(aP1A1 (aPaL ' j1L

A ax ) ax ) ax ) ax

[b].-1 JJPLnJdS_*_LPLI jj-nIdS+1PLjf-nIdS-PLJj-nIdS
SL,+SLW SLJ+SLW SLL SLL

(A.32)

VPLI JJl7TLi Jjn1dS
SL SLL

using the divergence theorem, the first term on the right becomes:

(A.33)VLöx
VL

Ip JJn dS =>1p. dS 15 dS I p . -- jjjdVl UV L'
V L,

SL
(forward)

5LL
(back) V

VL
a (A.34)

rr öci
-+---A'ax
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1

= -((n,
/(p)\ 5(UL)P. ndS = "+Pj5

(A.35)

(, /(p)\) -KaL)--

[6]. cLp1g f JJULPIgXdA = (aL)plgX (A.36)

The liquid phase momentum equation becomes:

{(aL X(UI))}+ [u )(((u +cov(u2
))]

(A.37)

=
+

tie) + (PLI
((p\\)aKuL

i -K @L)plgX

The derivation of the gas phase momentum equation is performed in a similar manner

with the exception that the sign on the interface shear term changes from a positive to

a negative. The gas phase momentum equation becomes:

81
8[2 (2\1(a )(Ku2)) + Coy U2 ,j

(A.38)
= - T2i) t2eH)+ (Pg ((P2

)))8(Ug)
(ag)

((P2))
+ (ag)p2gXm2'J

(

The one-dimensional two-fluid model equations for the fully-mixed flow condition

can be derived using a similar procedure as above.



APPENDIX B: PHASE DISTRIBUTION PARAMETERS DERIVATION

Gas Phase Pressure

1

J(PR + Pgrav )u dA

KKPg

AA

IjudA
AA

with, 1grav = Jpmgdy'
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(B.1)

A
JJpmgd1y'1A Jf[p0a+pf(1a)Jgdy'adA

(g)1r+ Aoi
AU (B.2)

JudA ---JudA
A AA A

Now, assume that the pressure variation due to the gravitational head is only a
function of height. The phase-averaged gas pressure now becomes:

1 y

jijJJIPga+Pf(l_u)]gdYadY fJ[p0u+pf(l_cL)}gdy'ady

((Pg))_PT= Ho

-f-Judy Jidy
H H

r

p0 Judy' + p J(i uY']udy

K
(P0))

HL U U

Judy
H

r 11

JadY'+Pf[JdY'_ JudY'] JudY

((Pg))_Pr=g11_°

Judy
H

g

j[0 Judy' + Pf[Y_ JudY']]udY

5 a dy

(B.3)

(B.4)

(B.5)



148

y [ Y
1

fP0 $ady'ady 5Pf I
y Judy' ady

H 0 H [ o((Pg))_P = g
Judy Judy

(B.6)H H

y r
Jfady'ady Y$adY']adY

HL op0g-
lady Judy
H

I-I

y

5ady'ady fyady fjady'ady
HO +pfg Ho((Pg))_Pr=pgg

Judy Judy
(B.7)HH

I [fYudy I JJady'adyI IdYdY
H HHOH-HO___________pggH

Judy
+pfgHj--------

Judy
H [H

1 r
$ Ja dy'a dy a dy

J
Ja dy'a dy

0 +pfgHj HO (B.8)((Pg))Pr H2L

j [

Ha H2L

j

The average gas phase pressure becomes:

pggHO2+pfgH[OØO2] (B.9)

Where:

y y

J-iudy fjctdy'dy JJudy'udy
o = 0 = IL 0 HO
0 Ha H2

2
H2



Liquid Phase Pressure

K(f))

+ Pgrav)(l a)dA

iJ(1a)dA

y

with, 'grav = Jp1g dy'
0

1

A
jJpmgd(1_dA
AU

-*Pr+
J(1a)dA

j_ JJ[Pga+Pf(1)]gdY'(1 -a)dA
AAO

(B.1O)

(B.11)

Now, assume that the pressure variation due to the gravitational head is only a
function of height. The phase-averaged liquid pressure now becomes:

jjJSPg(1+PfO)1Y'Oo)dY fJ[p0a+pf(l-a)dY'(1-a)dY
((PI))

° HO (B.12)
iJ(1_a)dy 5(1-a)dy

J[SP0UdY'+ fPf(1_aY](1_aY J[pgfudy'+p1J(1_ay'](1_u)dy

((Pf)_Pr=g
(1_a)dy f(i-u)dy

(B.l3)

H
UI

Pg Jady' +Pf[JdY JadYl]](1 a)dy fa dy' + Pf[Y - Ju dY]]1- a)dy
H 0 0 0 HL 0 (B.14)

J(1-a)dy fady
H H

r 1f pjady'(la)dy JP1[Y_fadY'](l_a)dY fjady'(l a)dy J[YfY'j(1)dY(B. 15)(1))_P =g°
J(lu)dy

+g±___
J(1a)dy

H H H H

JJudy'(l -a)dy Jy(i -a)dy- JJady'(l-a)dy
(B.16)I-b +pg HO((Pf))_Pr P0jj)

J(1_a)dy
H H



Jjady'(l cL)dy
((p))_p=:pgHO

j (1-a)dy
H

Jy(i a)dy

+pfg
J(1-a)dy

Pf))P p8g
[Jady'dy-Jady'adyl

J (1a)dy[HO HO ]
H

JJa dy'(l a)dy

J(1-a)dy

fg [fd_ Jyady_ ffady'dy+ $1ady'ady1
J(1-u)dy F! H HO HO J
Fl

(KPf))r
pggH

[1JdY'dY_1$dYradY1
S
(1-u)dy HHO 11HO

H

pfgH H y 1 1 Y 1

_-J-_ady-___J$ady'dy+-L-Jfady'adyj
J(1_a)dy[2 H HHO HO J

H

((Pf))
pugH

(j_L
ãL0 -02]+ pfgl-J [1LO jLo +o2]a) L)

Using:

ill

Jiludil Jjadii'dii JJadri'adii
0=0 QOO0 L I L 2 La a a

The simplifying relations were found to be:

0=1-0

Substituting into the pressure equations:

((Pg))_Pr =pggHG2 +pfgH[OO 02]

L 1Pg+Pf11[0o
----j
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(B.17)

(B.18)

(B.19)

(B.20)

(B.21)
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The gas phase pressure becomes:

((Pg))_Pr = (B.22)

Now for the liquid phase with the simplifying relations:

pggH
[-LO

K
(Pf))_Pr= [a

(i_) 2 +_--[_a90]
pfgH r1

pggH=__('-)[ L(1 e)
LL1 pfgH

H
[1LØL(10)

2 2 J
pggH [_L

(1 o)
LL1 pfgH LL1[1 _LOL+LO

(B.23)

2 2 J
pggH ' L

LL1 pfgH -2 +]jL)[U

pggH [ L
('os)

LL1 pfgll L][1L]
2 j 2(1-p)

The liquid phase pressure becomes:

((Pf)) r

pggll o) LL
1

pfgH
[i a] (B.24)

2 j 2

Where the distribution parameter, 0, the following range of values:

1

2 2




