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Characterization of Best Approximations by Classic Cubic Splines

Introduction

The study of cubic splines has been a large and interesting subject

in mathematics for many years. Much research has been done with

different kinds of cubic spline functions. This study will

concentrate on the case of the classic cubic spline. A classical

cubic spline is a function that is a piecewise cubic polynomial and is

twice continuously differentiable. Cubic splines are noted for their

accuracy of approximation and ease of calculation. In comparison

with linear and quadratic splines the cubic spline provides a higher

degree of accuracy. At the same time, it is more easily computed

than either fourth or fifth degree splines.

The main purpose of this study is to present a theorem which

characterizes the best approximation to a given continuous function

f(x) by a spline, with fixed knots by counting alternating extreme

points of its error function E(t).
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Notation

Here is a list of the notation used in this paper:

1. := is the sign indicating " by definition".

2. N:= {1,2,3,...}

3. f:= is a continuous real valued function on the interval [a, b].

4. S:= is a cubic spline function.

5. I:= interval [a, b].

6. Error function E := S - f, where f is a continuous function defined

on I and S is some spline approximation of f.

7. m:= is a counting number; m E N.

8. P:= is a polynomial.

9. II:= maximun norm on I.

10. R:= the real numbers.

11. is the set of knots and E={4; I a= 40 <

12.

n
(x- 4) =

41:1 for x> 4

0, for x <

13. A:= is a set of coefficients for a cublic spline; A = (a1, a2, a3,

, am+4 )

41 42 <..-< 4m< 4m+1=b}.
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14. (1):= is a cubic spline basis with (I) = (4)j).

1:D= {40j
}m+4 =

(

1

(x)
j - 1,

(= x-
4)(x)

j=1,2,3,4

j=5,6,...,m+4

15. S(A,E,X):= is a spline function of degree 3 with m interior knots

and S = S(A,EX) = 1,a0i(x), for i=1, 2, 3, ..., m+4.

16. S := set of all cubic splines.

Definitions

1. Basic interval

A basic interval is a closed interval bounded by adjacent knots.

2. Uniform Norm, j

N = N(f) - II Pt) II = max I BO I
t [a,b]

3. Alternating extreme points
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extreme points:

Suppose a function f is defined on an interval [a,b] and c is a

point in [a,b]. Then c is an extreme point if I f(x) I < I f(c) I for

every x in [a,b].

Alternating extreme point

Let E : [a, b] --3 R: A set of alternating extreme points of E is a

subset
(xJ)

of extreme points of E with (for each j)

1. xi<xj+1

2. lE(xj)1=11E11

3. E(xj)E(xj+i )<0
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Splines

In the introduction we defined a classical cubic spline to be a

function that is a piecewise cubic polynomial and is twice

continuously differentiable. A classic cubic spline can be

represented using a linear combinations of { coi }i m+4.

In this section we are going to concentrate on root counting. In

early college mathematics courses, students learn how to find roots

of a polynomial and what single and double roots look like on a graph.

Since root counting is an important fact which leads to the main

theorem, we are going to define simple and double roots as follows:

Definition. A double root of a function will be an interior root of

the function where the function does not change sign. Other roots

will be called simple roots.

Remark. For a differentiable function, the derivative is zero at a

double root.

Remark. In counting roots, a double root will count as two roots.

Definition. A classical cubic spline has x suitably placed roots if it

has at least x roots, counting no more than j+3 roots in any union of

j adjacent basic intervals for each positive integer j < m+1. The
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relationship between cubic splines and suitably placed roots is

significant. John R. Rice proved a Lemma in 1967 about

interpolation. (Numerical Analysis, Vol 4, No. 4, page 557.). We

restate the lemma for the cubic spline case below:

Rice's Lemma. The system

(*) I avoi(xj)=yj

has a solution A for arbitrary values yj, j=1, 2, ..., m+4,

if and only if

Xi <i < xi+4 , where i=1, 2, ..., m.

in this case the solution of (*) is unique.

Following John R. Rice's Lemma, we discovered some interesting

results which are specific to a classical cubic spline.

Theorem 1. A classical cubic spline with m interior knots which is

not identically zero has no more than m+3 suitably placed roots.

Remark. This means that on any union of j adjacent basic intervals

if the spline has at least j+3 roots it is identically zero on that

union.

Proof. The proof depends on m, the number of interval knots using

Rice's Lemma for a basic interval.
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1. m=0

In this one interval case, the splines are cubic polynomials. For

each root, there is a linear factor of (x - 9). There can not be

more than three roots for a cubic polynomial. This works even

for double roots.

2. For m interior knots in m+1 intervals

a). Distinct roots

If the spline has at least m+4 suitably placed and distinct

roots and no more than 4 roots in any basic interval with

spline basis {4i }1 m+4. Then by Rice's Lemma

and

det (0i(9))*0 i, j=1, 2, ..., m+4.

S (9)=EajOi(9)=0 i, j=1, 2, 3, ..., m+4

ai=0

S4

Therefore, this concludes the proof of Theorem 1 for simple

roots.

b). Double roots

If some pairs of 9 are equal; i.e., we have double roots

then we argue this way: Using Rice's lemma and
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positive integer n, we can interpolate a spline T that

has the following properties:

T(9) =0, for a simple root rj of S

=1/n, for rj=9+1 (a double root) Sa near root

=-1/n, for rj =rj +1 (a double root) S>0 near root

=0, for rj =rj +1 (a double root) S=0 near root

(In this last case we also make T(x)=0 for some x near

r1. where S(x) is zero. If the S>0 and S<0 cases do not

happen then T is identically zero.)

For large enough n, S+T will be a cubic spline with m+4

roots, counting just distinct roots. The spline S+T will

have all the simple roots of S and two distinct roots

for each double root of S. Thus S+T is identically zero

by the previous argument. This is a contradiction since

S is not identically zero and, for some j, T(9) is not

zero.

Thus, this concludes the proof of the Theorem.

In the opposite direction we have:

Theorem 2. Given Icrn+3 suitably placed potential roots, {ri}l k,
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then there exists a cubic spline S which has only these {9}1k roots

and no others.

Proof.

1. m=0

Suppose we are given 3 potential roots, {9}13. So in one

interval [a, b] we can find a cubic polynomial P which has these

{ ri}1 3 as its only roots. We can write P as

P=(x-r1)(x-r2)(x-r3) These {9}13 are all simple roots. If there

is a double root, i.e.: r2=r3, then we can write P as:

P=(x-r1)(x-r2)2. Fewer than 3 roots is handled in a similar way.

Since a cubic spline S in one interval is just a cubic polynomial,

therefore, S exists and S is not identically zero.

2. m=1

a). Distinct roots

Suppose we are given 4 potential simple roots (9)14

which are suitably placed. Then, by Rice's Lemma we

can construct a cubic spline S which has only these 4

simple roots {9}14.

Such S=Ea1Oi(ri)=0, for i=1, 2, ...,5

j=1, 2, 3, 4

and let's choose a tE [a,b] such that
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S(t)=Eavtoi(t)=1, for i=1, 2, ..., 5.

Thus, S exists, is not identically zero, and has these

(9)14 roots. Also it has no other roots by Theorem 1.

b). Double root(s)

i). Given 4 potential roots {ri}i 4

Suppose we are given 4 potential roots {rj }14 which are

suitably placed, with a double root, i.e.: r2=r3

Let r3 = r2 + 1/n where n=1, 2, 3,...

Construct a spline Sn with roots ri , r2, r3, and r4 as in

part 1) and norm which is defined in Part I. Let n go to

oo. Then, r3 moves to r2 as n goes to oo. A subsequence

of Sn converges to a spline S by compactness of

bounded set of cubics. S has the appropriate roots. By

previous theorem S has no additional suitably placed

roots.

ii). Given 3 potential roots

We know that we can make a cubic spline with 4 roots.

Now, suppose we are given 3 potential roots. If a

function Si has 4 roots and one root is at one of the
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end-point. (see Figire 1.)

S
1

I

a

Figire 1.

We can construct another function S2 with 4 roots and

one root is at the other end-point.

The other 3 roots are the same as S1. (see Figire 2.)

Figire 2.

By the same argument as in the previous proof, each S

has an unique solution with its four simple roots
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(counting double roots twice). So that if S1 + S2 = G, G

would have only 3 roots at 1.1, r2, r3 positions. (see

Figire 3.)

Figire 3.

If r1=a, or r3 = b, or both, we can extend the interval [a,

b]. Then we are able to construct splines by previous

method. Thus, we can contruct a cubic spline with 3

roots.

i i i). Given 2 potential roots.

Since we know that we can construct a cubic spline

with 4 roots, we construct a spline, a ,with 4 roots.

Two are simple roots, and one is a double root. (see

Figire 4.)
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Figire 4.

Then, add a similar spline, 13 , with r1 and r2 as two

simple roots, and one double root which is nearby a's

double root. (see Figire 5.)

Figire 5.

Then let i = a + (3, and v has only two simple roots. (see

Figire 6.)
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Figire 6.

iv). Given one potential root

If there is only one potential root, then we can use the

two end-points to construct 2 roots. Also by extending

the interval, using previous 2, we can construct a cubic

spline with one single root.

Thus, the result of m=1 case is cubic spline S having no more than 4

suitable placed roots.

3. m interior knots.

Suppose we are given m+3 potential simple roots {ri}i r11+3

which are suitably placed throughout [a,b]. i.e.: ri < i < ri+4,
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i=1,2,...,m, then we can construct a cubic spline S which has

m+3{9}1 as it's roots. Such that

S(9)=I,a0i(9)=0 for i=1, 2, ..., m+4

j=1, 2, ..., m+3

let's choose a tE [a,b] such that S(t)=Eaj4i(t)=1. By Rice's

Lemma, S exists, has a unique solution, and is not identical zero.

If there are some double roots amoung the m+3 potential roots

{9}1 m+3, then we use the same method as for the case m=1 part

2) to construct simple roots from all double roots. If there are

less than m+3 potential roots, then we can use the end-point

method, and/or the combine-splines-with-double-roots method.

These methods were used on pages 10, 11,12,13, and 14.

This concludes the proof of the theorem.
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The Best Approximation Theorem

The root-counting theorem in the previous section is a necessary

tool for establishing a characterization theorem for best

approximation. The error function, E, and alternating axtrema

points, which are defined in the beginning of this paper, are the

basis for the characterization theorem for best approximation.

Now, we restate the Best Approximation Theorem by I.M. Singer.

Let f be a continous function. Then S is a best approximation in

uniform norm if and only if the error function, E=S-f, satisfies the

condition below:

Max E(t) h(t)?_0 for V hE S, where t E extreme points of E.

Remark. Besides Singer's long and complex proof, one way to prove

this is to use the directional derivative of II S-f II with respect to S.

At a minimum, this derivative must be nonnegative for each

direction h.

Theorem. Let f be a continous function on [a,b] and let S(A,E,X) be a

cubic spline with m fixed interior knots. S is a best approximation

to f if and only if for some nonnegative integer j, the error function,

E=S-f, has j+5 alternating extreme points in the union of j+1

adjacent basic intervals.
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One implication of the theorem states:

Let f be a continous function on [a,b] and let S(A,E,X) be a cubic

spline with m fixed interior knots. Assume that for some

nonnegative integer j, the error function, E=S-f, has j+5 alternating

extreme points in the union of j+1 basic adjacent intervals. Then S

is a best approximation to f.

Proof. Let j be the least j for which E has j+5 alternating extreme

points in the union of j+1 adjacent basic intervals. without loss of

generality, j = m; for if j < m, then we could apply the following

proof to the j+1 basic intervals instead. Let E have m+5

alternating extreme points. So that E has at least m+4 roots in m+1

intervals. We use the method of contradiction to prove this

implication of the theorem.

Assume E(t)h(t)<0 for all extreme points t

Graph 7.
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Let's look at one part of the error function E from the Figire 7 above.

Let p and y be adjacent alternating extreme points of E. Since h and

E must have opposite sign at extreme points, h must have one root

between 13 and y, and must also change sign. That is true for every

adjacent pair of alternating extreme points. So h has at least m+4

simple roots. Because of the choice of the least j at the beginning

of the proof, these roots can be chosen to be suitably placed.

However, by the root-counting theorem from the last section, a

spline with m+4 suitably placed roots is identically zero. Thus

h a0 where h E S

max E(t) h(t) >_0

which is a contradiction with the assumption made above.

Before we prove converse of the last theorem, we are going to

carefully describe a particular way to choose a root rj of E between

two adjacent alternating extreme points. To do this, we pick the

very last point xi of one group of alternating extreme points, and the

very first point xi+i of the next group of alternating extreme points

with opposite sign. (see Figire 8.)
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alternating extreme point
first x.+1

last x .

J

alternating extreme point

Figire 8.

Between each two opposite alternating extreme points, there is at

least one root, R of E. So we choose ri.R.

Now, we prove the converse of the theorem:

If S is the best approximation to f, then E has at least m+5
alternating extreme points in [a,b].

Proof. Let S be the best approximation to f in [a, b]; then by Singer's

Theorem, the error function E satisfies the condition below:

Max E(t)h(t) >_0 for V h E S, and t E extreme points of E.

Assume that the error function E has m+4 or fewer alternating

extreme points in [a,b]. From the previous section, we can find an

hE S so that h has only these m+3 simple roots (9). We can choose

the sign of h so that

E(t) h(t)<0 for t E extreme points of E
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This contradicts our assumption.

Consequently, if S is the best approximation, then error function E

must have m+5 or more alternating extreme points. If the above

roots are not suitably placed then we can apply the above argument

to some subinterval which is the union of several basic intervals.

Thus, the proof of this theorem is completed.

We note that if E alternates too few times, then we have
constructed a direction h to search for a better approximation. This

is the basis for the Remes algorithm (also called exchange

algorithm), which has been inducled in many approximation theory

books.



Example

Here is an example using a spline with 3 fixed interior knots (m=3)

on the interval [0,1] to approximate the function f = exp(x). The

cubic spline of best approximation is

S(x) = a + bx + cx2 + dx3 + A(x-0.25)+3 + B(x-0.50)+3 + C(x-0.75)+3
with

a = 0.9999904756
b = 1.0005464294
c = 0.4940500173
d = 0.1937944127
A = 0.046738283
B = 0.070834890
C = 0.085522924

Figure 9 below is the graph of error function E.

E
R

0
R

1.

0. 8

0. 6

0. 4

0. 2

x10-0 exp( x) sip) 1 ne, m=3 I nt erne') nodes

J

0. 1 0. 2 0.3 0. 4 0. 5 0. 6 0. 2 0. 8 0. S

Figure 9

x

21
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The maximum error = 9.524423E-0006 at x = 0 and seven other
places. From the graph above, we can count that there are eight

alternating extreme points. These alternating extreme points (qi)07

satisfy:

q0 = 0

0.20 < q1 <0.25

0.35 < q2 < 0.40

0.48 < q3 < 0.52

0.61 < q4 < 0.65

0.73< q5 < 0.77

0.85 < q6 < 0.88

0.96 < q7 < 1.00

We can apply the theorem for the specific case of three fixed knots.

By the theorem we know that the cubic spline is the best

approximation to the function f = exp(x).
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Conclusion

The Theorem proved here describes the relationship between

alternating extreme points and the best approximation. We

characterized the best approximation to a given continuous function

f by a spline using alternating extreme points of the error function

E. This study deals specifically with classical cubic splines. In

addition, this study leads to more open questions about splines in

general. For example, how does the Hermite spline behave? Do

Hermite splines behave in the same way as the classical cubic

spline? What kinds of conditions do Hermite splines need? These

questions require more study.
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