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Arti�cial Intelligence (AI) planning techniques have been central to automating a

gamut of tasks from the mundane route planning and beer production to the ethereal

image processing of space-ship images. Of all the planning techniques, hierarchical-

decomposition planning has been the technique most employed in industrial-strength

planners. Hierarchical-decomposition planning is performed by recursively decom-

posing a planning task into its subtasks, until the decomposition results in primitive

tasks which can be directly achieved by executing the primitive actions.

Hierarchical-decomposition planning is knowledge intensive; it exploits knowl-

edge of the structure and the constraints of a planning domain, to decompose a task

into subtasks. Because dependence on human experts for this knowledge leads to

knowledge-acquisition bottleneck, machine learning of this domain-speci�c knowl-

edge becomes important. There exist two opportunities for learning in the context

of hierarchical-decomposition planning. One is to learn how a planning task de-

composes into subtasks. The other is to learn control knowledge to choose among

various decompositions for a task, depending upon situations. In this dissertation,



the focus is on the former; more speci�cally, we focus on learning rules for task or

goal decompositions.

Goal-decomposition rules (d-rules) decompose goals into a sequence of subgoals

under certain conditions. These are a special case of hierarchical task networks

(HTNs). The methodology we used for learning d-rules is to map d-rules to Horn

clauses, and, thus, transform the problem of learning d-rules to learning Horn clauses.

We developed provably correct algorithms for learning Horn clauses. Our algorithms

are based on a \generalize-and-test" method, where inductive least-general gener-

alization of positive examples is followed by pruning of irrelevant literals by asking

queries or performing self-testing. We implemented systems that are founded in the

theoretical algorithms, and tested the applicability of the systems in two planning

domains|a robot navigation domain and an air-tra�c control domain. One of these

systems, ExEL, learned from solved problems and expert-answered queries. The

other, LeXer, learned from unsolved but ordered problems, or exercises, and self-

testing. The applicability of the theoretical algorithms developed for learning Horn

clauses, however, transcends the learning of d-rules and even the learning of the more

general HTNs.
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LEARNING HIERARCHICAL DECOMPOSITION RULES FOR

PLANNING: AN INDUCTIVE LOGIC PROGRAMMING

APPROACH

Chapter 1

INTRODUCTION

Planning is the process of �nding a course of action to achieve a goal from a

given situation. Planning is an important activity in our day-to-day lives. Because

of its ubiquity and importance in the real world, the study of planning in Arti�cial

Intelligence (AI), too, has been one of the oldest and most important sub�elds of

AI. Planning in AI (henceforth, just \planning") involves, given an initial situation

or state, a goal, and a set of operators, each of which is described in some language,

�nding a sequence of instantiations of operators (or actions) that takes the initial

state into a state where the goal is true. An initial state together with a goal

constitutes a planning problem.

1.1 Planning

The classical work on planning can be broadly categorized into three areas: (1) State-

space planning, (2) Plan-space planning, and (3) Task-reduction or Hierarchical-

decomposition planning. State-space planning can be characterized as searching in

the space of states. Each node in a state space is a state describing a situation. Each

edge is an action connecting the state in which the action takes place to the state
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that results as a consequence of that action. A solution plan for a planning problem

is, then, a path in the state space of the planner from the initial state to a state

where the goal of the problem is satis�ed. On the other hand, plan-space planning is

a search through the space of plans. Each node is a plan. Each edge connects a plan

to a re�ned version of the plan. Re�nements could be such as adding or inserting a

new action, ordering existing actions, or other ways of specializing a plan. Here the

ordering of the actions need not be total. In a plan with partially ordered actions,

two actions that are not relatively ordered can be executed in any order to attain

the goal. Re�nement planning is a framework that captures these two methods and

variations on them (Kambhampati, Knoblock, & Yang, 1995; Kambhampati, 1997).

Re�nement planning aims to capture some aspects of hierarchical-decomposition

planning as well.

In hierarchical-decomposition planning, planning is done by recursively decom-

posing planning tasks into subtasks, until decomposition results in primitive tasks

which can be directly achieved (Russell & Norvig, 1995). Hierarchical-decomposition

planning has been the most prevalent technique used in classical \industrial-strength"

planners. SIPE (Wilkins, 1988), O-Plan (Currie & Tate, 1991) and their successor

systems, and VICAR (Chien, Estlin, & Wang, 1997) are prominent examples of

real-world planners. The main reason for the success of hierarchical-decomposition

planning is its ease in capturing and e�ectiveness in utilizing domain-speci�c con-

trol knowledge. Although hierarchical-decomposition planning has been around for a

while (NOAH (Sacerdoti, 1977), HACKER (Sussman, 1975), NONLIN (Tate, 1977)),

many of the powerful ideas in this technique have only been articulated, formalized,

and given a standard name only much later (Erol, 1995). This formalization is called

Hierarchical Task Network (HTN) planning.
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Recently, two other methods|Graphplan and SATplan|have been developed.

These methods use techniques that are distinctly di�erent from the classical meth-

ods. Graphplan (Blum & Furst, 1997) plans for a planning problem by constructing

a planning graph that captures the constraints inherent in the problem, and then an-

alyzing the graph. SATplan (Kautz & Selman, 1996) plans by converting a planning

problem into a propositional satis�ability (SAT) problem and then exploiting fast

satis�ability algorithms, such as GSAT, to solve the SAT problem. Planners based on

these two methods have been shown to outperform the planners based on state-space

and plan-space planning. However, they have not been shown to capture and utilize

domain-speci�c control knowledge as e�ectively as HTNs. Recently, there have been

preliminary e�orts to combine representation power of HTNs with the computation

power of SATplan, by converting HTNs into propositional representations (Mali &

Kambhampati, 1998).

1.2 Need for Learning

Domain-independent planning has been known to be computationally hard (Erol,

Nau, & Subrahmanian, 1995). Therefore, for planners to be practical, they need to

utilize domain-speci�c knowledge. One source of this knowledge is human experts.

Dependence on human experts, however, is not always feasible for reasons such as

(1) high di�culty for experts to articulate their knowledge to be usable by planners;

(2) inordinate cost factors in acquiring knowledge from experts; and (3) unavailabil-

ity of experts for certain planning domains. This infeasibility has been summarized

as the \knowledge-acquisition bottleneck." A more practical alternative is to em-

ploy machine learning. Acquiring domain-speci�c knowledge by machine learning

has been a popular method in the context of state-space or partial-order planning

(Minton, 1988; Kambhampati, Katukam, & Qu, 1996; Estlin, 1998). The problem of
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goal: on(?x, ?y)

subgoals: <clear(?x), clear(?y), put-on(?x, ?z, ?y)>

conditions: block(?x), block(?y), table(?z), on(?x, ?z)

FIGURE 1.1: An example d-rule in blocks world

the knowledge-acquisition bottleneck is exacerbated for hierarchical-decomposition

planning, because of its dependence on domain-speci�c knowledge for goal decompo-

sition. However, there have hardly been any learning systems targeted for hierarchical

planning.

There exist two opportunities for learning in the context of hierarchical-decompositi-

on planning. One is to learn rules for decomposing planning task into its subtasks.

The other is to learn control knowledge to choose among various decompositions for

a task, depending upon situations. In this dissertation, the focus is on the former.

1.3 The Learning Problem Addressed

This dissertation focuses, more speci�cally, on learning rules for goal decompositions.

Goal-decomposition rules (d-rules) are a special case of HTNs. D-rules decompose

goals into a sequence of subgoals under certain conditions. Unlike HTNs, d-rules

do not allow partial orderings between subtasks or non-codesignation (inequality)

constraints between variables. Consider the example of a d-rule in Figure 1.1 taken

from a blocks-world domain. (In the following and in the rest of the thesis, we use

symbols that start with a `?' to denote variables.) The example rule says that to

achieve the goal of putting ?x on ?y (on(?x, ?y)), when ?x and ?y are blocks and ?z



5

is a table, clear block ?x (clear(?x)), clear block ?y (clear(?y)), and then put block

?x on block ?y (put-on(?x, ?z, ?y)). The subgoals may themselves have their own

d-rules, unless they are primitive subgoals. A primtive subgoal is a primitive action

of the domain. (It is also called a primitive operator.) In the example, put-on(?x,

?z, ?y) is a primitive action; so, it will not have a d-rule. Both clear(?x) and

clear(?y) are subgoals, and they have their own d-rules. To achieve the subgoals,

d-rules can be recursively applied until decompositions result in primitive subgoals.

Note that the subgoals clear(?x) and clear(?y) can, in fact, be achieved in

either order as long as both are achieved before put-on(?x, ?z, ?y). d-rules specify

one strict order, and cannot specify the partial order. HTNs, on the other hand, can

specify this partial order, by indicating only that clear(?x) and clear(?y) should

be achieved before put-on(?x, ?z, ?y), and mentioning nothing about the relative

order of clear(?x) and clear(?y). Using HTNs, we can also specify that the

objects speci�ed by the variables ?x, ?y and ?z have to be di�erent.

For the example problem in Figure 1.2, a possible solution is the sequence of primi-

tive actions hput-down(A, B, Table), put-down(B, C, Table), put-on(B,

Table, A)i.

The methodology used in learning d-rules is �rst mapping the problem to that

of learning Horn clauses, and then developing algorithms for learning Horn clauses.

Each of the algorithms for learning Horn clauses learns by a \generalize-and-test"

method, where the algorithm generalizes to produce hypotheses, and each of the

hypotheses is validated by asking a query of a teacher. We implemented two systems

that are related to the algorithms for learning Horn clauses. The implementations

use learning from successful problem-solving instances, as opposed to learning from

failure. One system takes as input positive examples or pairs of planning problems

and their solution sequences. The set of literals describing the initial state and
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A

D C

B D

B

A C

Initial State Goal

(a) Problem

(b) Decomposition

on(B, A)

clear(A) clear(B) put-on(B, Table, A)

put-down(D, A, Table) put-down(C, B, Table)

FIGURE 1.2: A blocks-world problem and its solution

the goal in Figure 1.2, paired with the sequence of primitive actions hput-down(A,

B, Table), put-down(B, C, Table), put-on(B, Table, A)i, for instance, is a

positive example for a d-rule for the on goal. The other system learns from solving

exercises or problems and subproblems supplied in the order of their di�culty. In

this algorithm, the query-answering teacher is replaced by a self-testing process. In

self-testing, the learner generates examples of a hypothesis d-rule it is working on

and tests whether the decomposition suggested by the hypothesis d-rule works. This

kind of examples can be called \near-miss" examples. They correspond to negative

examples in other algorithms.
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1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 describes the represen-

tation of goal-decomposition rules and a planning architecture based on them. It also

discusses how d-rules and the planning architecture can be extended to apply to dy-

namic domains (i.e., domain where the state of the world may change spontaneously

or randomly).

Chapter 3 discusses the mapping between d-rules and Horn clauses. It also dis-

cusses how this mapping can be extended to HTNs. The idea is to apply algorithms

for learning Horn clauses to learn d-rules and HTNs.

Chapter 4 formally describes the problem of learning Horn de�nitions. Further,

it demonstrates the learnability of a special case of Horn de�nitions, namely non-

recursive Horn de�nitions. A Horn de�nition is a set of Horn clauses, all of which

have the same predicate symbol in their heads. A Horn de�nition is non-recursive if

the head predicate symbol does not occur in the body of any Horn clause in the Horn

de�nition. The result described in this chapter signi�cantly extends the theoretical

results in inductive logic programming.

Chapter 5 focuses on learning Horn programs. A Horn program is a set of Horn

clauses, with possible interdependence between clauses|in the sense that the head

predicate symbol of a clause may appear in the body of the same or a di�erent

clause. This chapter outlines the learning problem and presents learnability results

for a restricted version of Horn programs, called acyclic Horn programs, that have

polynomial-time forward-chaining procedures.

Chapter 6 details the implementation of learning d-rules from examples, in a

system called ExEL. This implementation has foundations in the theoretical algo-

rithm for learning Horn de�nitions. Chapter 6 also presents experimental results
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of ExEL on the Blocks world,the STRIPS world, and air-tra�c control domains.

The experimental results suggest ExEL's e�ectiveness and applicability in learning

d-rules.

Chapter 7 concerns with the implementation of learning d-rules from exercises,

in a system called LeXer. In this chapter, we also explore connections between the

algorithms for learning d-rules from exercises and learning Horn programs. Chapter

7 also presents experimental results of LeXer on the STRIPS world and air-tra�c

control domains. LeXer di�ers from ExEL in unburdening a teacher from having

to supply solved problems and having to answer queries. LeXer solves the teacher-

supplied exercises itself, and replaces queries by self-testing. The experiments suggest

that LeXer can e�ectively lessen the burden of its teacher.

Chapter 8 presents conclusions, highlights the contributions of this dissertation,

and identi�es some future work.
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Chapter 2

GOAL-DECOMPOSITION RULES AND PLANNING

In this chapter, we explain how hierarchical-decomposition planning can be done

using goal-decomposition rules. First, we describe the syntax and the semantics of

goal-decomposition rules and how they can be employed for planning. Next, we

extend the representation of goal-decomposition rules to address the problem of re-

activity that is needed to plan in dynamic domains|i.e., domains that have dynamic

changes which are beyond those in the control of the planning agent. Finally, we

show how goal-decomposition rules di�er from Hierarchical Task Networks (HTNs).

2.1 Representation of Goal-Decomposition Rules

A decomposition rule (d-rule) is a 3-tuple hg; c; sgi that decomposes a goal g into a

sequence of subgoals sg, provided that the condition c holds in the state where the

d-rule is applied. Here, g is a single literal, c is a conjunction of literals, and sg is

a sequence of literals with implicit left-to-right ordering. Literals are in function-

free �rst-order calculus representation and are positive. Any variables appearing in

the goal and the subgoal components of a d-rule must also appear in the condition

component of the d-rule. The d-rules for the lowest-level subgoals each have a single

observable action in the place of the subgoals.

Figure 2.1 is an example of a d-rule from the Blocks World for the goal on. This

d-rule can be translated as follows: To achieve the goal of putting block ?x on block

?y, �rst achieve the subgoals that make the tops of the blocks ?x and ?y clear. Then
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goal: on(?x, ?y)

subgoals: <clear(?x), clear(?y), put-on(?x, ?z, ?y)>

conditions: block(?x), block(?y), table(?z)

FIGURE 2.1: A d-rule for on in the Blocks World

goal: clear(?x)

subgoals: <clear(?y), put-down(?y, ?x, ?table)>

conditions: on(?y, ?x), block(?x), block(?y), table(?table)

FIGURE 2.2: A d-rule for clear in the Blocks World

achieve the primitive subgoal put-on to put the block ?x from on top of the table

?z to the top of the block ?y. Each of the non-primitive subgoals may have its own

d-rule(s). For example, the subgoal clear(?x) for the goal on(?x, ?y) has the d-

rule shown in Figure 2.2. The d-rule in Figure 2.2 says that to clear the top of the

block ?x when block ?y is on block ?x, �rst clear the top of block ?y, and then put

block ?y from the top of block ?x on to the table ?table.

The semantics of d-rules, more formally, with respect to planning is described in

the following way. First, we need to mention what a primitive operator or lowest-level

subgoal is. A primitive operator (or lowest-level subgoal) is a primitive STRIPS-style

operator (Fikes, Hart, & Nilsson, 1972) with its standard semantics. Next, we de�ne

the notion of \complete decomposition" of a planning problem with respect to a set

of d-rules.
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De�nition 2.1.1 Let hS;Gi be a planning problem, where S is the starting state

and G is the goal of the planning problem. Given a set of d-rules D and a planning

problem hS;Gi, a complete decomposition of hS;Gi with respect to (w.r.t.) D

� if G is a lowest-level goal (or primitive operator), is G;

� otherwise, a sequence of complete decompositions of the planning problems

hS1; G1i, hS2; G2i; : : : ; hSn; Gni w.r.t. D, where S1 = S, and there is a d-rule

hg; c; sgi in D and a substitution � such that g� = G, c� � S, for i 2 [1; n],

sg = hsg1; : : : ; sgni, Gi = sgi�, and for j 2 [2; n], Sj is the state resulting after

applying a complete decomposition of the subproblem hSj�1; Gj�1i w.r.t. D.

Figure 1.2 illustrates a problem in the Blocks World and its complete decompo-

sition w.r.t. the d-rules in Figures 2.1 and 2.2.

The de�nition of complete decomposition gives an operational semantics of d-

rules. To present declarative semantics of d-rules, we need to consider the state

space formed by the start state S of a planning problem hS;Gi and the primitive

operators of a planning domain. A d-rule hg; c; sgi asserts that starting from any

state S in which the condition c is satis�ed, if each of the subgoals in sg is achieved

one by one in sequence, then the goal g is true in the state that achieved the last

subgoal in the sequence sg. We relate this to a path S0 = S; S1; S2; : : : ; St in the

state space where S is the start state, and Si, for i 2 [1; t], is the child of the state

Si�1 in the state space. Then a d-rule says that for any path S0 = S; S1; S2; : : : ; St

in the state space, if c is satis�ed in the starting state S, and sgi, where i 2 [1; n]

and sg = hsg1; : : : ; sgni, is satis�ed in a state Sj and sgi+1 is satis�ed in Sk for

k 2 [j; t], then g is satis�ed in the state where sgn is also satis�ed after all other sgi

are satis�ed.
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In the next section, we will see how planning can be done employing d-rules.

There we will also examine the soundness and the completeness of d-rules and a

d-rule planner, by appealing to the above semantics.

2.2 Planning With D-rules

The d-rule-based planner for a domain takes as input a goal, a state from which

the goal needs to be achieved, a set of d-rules, and the domain theory (comprising

primitive-operator de�nitions, and background theory). The planner �nds the d-

rules that correspond to the goal, and picks a d-rule whose condition is satis�ed in

the current state. The chosen d-rule suggests a subgoal sequence. The suggested

subgoals in the sequence are achieved one after the other in sequence. Each subgoal

in turn becomes a goal, and has its own d-rules. So, the planner achieves goals

in depth-�rst fashion, recursively, until the recursion bottoms out when a d-rule

suggests only primitive operators as subgoals. Primitive operators are operators of

the domain that are readily executable without recourse to a d-rule. The planner

outputs the plan (the operator sequence) and the �nal state, in which the goal should

be satis�ed.

Since d-rules require their subgoal components to have only the variables in the

condition and goal components, when the planner is trying to achieve a particular

goal and the condition of a d-rule has been satis�ed, the subgoals will all be ground.

Moreover, the subgoals are ordered. This makes planning e�cient. However, in

general, there may be multiple d-rules for a goal, and their conditions may not

be disjoint. This creates a choice for the planner. There are four design options

here: (1) require that d-rules be disjoint; (2) if not, require that any d-rule choice

for a goal achieve the goal; (3) allow backtracking over choice of d-rules; or (4) have

control rules that know how to choose among di�erent d-rules when there is a choice.
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Allowing backtracking makes the planner ine�cient. We shall assume that the set of

d-rules the planner gets is \good"|i.e., any applicable d-rule achieves its goal. With

good d-rules, planning is linear in the number of d-rule applications, and, hence, in

the solution or plan length. The d-rule planner can be incomplete if the d-rules are

not perfect; but it is always e�cient.

Since e�ciency is guaranteed by the planner, the issue of improving problem-

solving translates to improving the coverage of the planner. An issue related to

coverage is completeness of a planner. In the next section, we discuss the complete-

ness of the d-rule{based planner, and also the validity (or soundness) of the plans it

produces.

2.2.1 Soundness and Completeness of the D-rule Planner

First, we present the soundness of a set of d-rules and link it to the soundness of

the D-rule planner described above. Then, we discuss the completeness of a set of

d-rules and the D-rule planner.

We can make use of the declarative semantics of a d-rule with respect to a state

space in de�ning soundness of a d-rule. We can de�ne soundness of a d-rule as the

following. A d-rule hg; c; sgi is sound if for any path S0 = S; S1; S2; : : : ; St in the

state space, de�ned by the start state S of a planning problem hS;Gi, when c is

satis�ed in the starting state S, and sgi, where i 2 [1; n] and sg = hsg1; : : : ; sgni,

is satis�ed in a state Sj and sgi+1 is satis�ed in Sk for k 2 [j; t], then g is indeed

satis�ed in the state where sgn is also satis�ed after all other sgi are satis�ed. Then

we can de�ne soundness of a set of d-rules as the following. A set of d-rules is sound

if every d-rule in the set is sound.

The above notion of soundness of a set of d-rules is restrictive because we can

have a set of d-rules which produces valid plans, but each d-rule may not be sound.
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That is, there can be a d-rule that may not satisfy the soundness condition on all

paths of the state space, but satisfy the condition on those paths of the state space

restricted by the other (higher-level) d-rules. The following de�nition of soundness

relaxes the condition to cover this case.

De�nition 2.2.1 A set of d-rules is sound if for any planning problem a complete

decomposition of the problem w.r.t. the set of d-rules is a valid plan for the problem.

A plan is a valid plan for a planning problem hS;Gi if the sequence of operators in

the plan applied in order starting from S results in a state where G is satis�ed.

A d-rule planner is sound if for any planning problem a plan produced by the

d-rule planner is a valid plan for the problem. Any d-rule planner that is consistent

with the semantics of complete decomposition w.r.t. an input set of d-rules is sound

i� the set of d-rules is sound. The D-rule planner described above is consistent with

the semantics of complete decomposition w.r.t. a set of d-rules. Therefore, we can

say that the D-rule planner is sound i� the input set of d-rules is sound.

Next, we discuss the completeness of a set of d-rules and the completeness of the

D-rule planner w.r.t. a set of d-rules given as input.

De�nition 2.2.2 A set of d-rules is complete if for any planning problem that has

a valid plan, there is a complete decomposition of the planning problem w.r.t. the set

of d-rules that is also a valid plan.

Because a set of d-rules D input to a d-rule planner could be incomplete, a d-

rule planner's completeness should be de�ned relative to D. A d-rule planner is

complete if for any planning problem for which there is a complete decomposition of

the planning problem w.r.t. D that is a valid plan, then there is also a valid plan for

the planning problem produced by the D-rule planner.
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The D-rule planner described earlier does not consider all possible complete de-

compositions of a planning problem w.r.t. the set of d-rules D input to the planner,

but assumes that any d-rule choice made achieves the goal. Once it makes a choice,

it does not backtrack. Therefore, it can miss some complete decompositions of a

planning problem that can produce a valid plan. Thus, the D-rule planner is not

complete w.r.t. D.

However, if the d-rule set D has the \downward solution property", then the

D-rule planner is complete w.r.t. D. The downward solution property (Russell &

Norvig, 1995) when applied to d-rules says that if SP is the sequence of subproblems

resulting from any d-rule, then there is a complete decomposition of the sequence of

subproblems in SP w.r.t. D which solves the planning problem. When this property

is satis�ed of a d-rule set, then any d-rule application leads to a solution. Therefore,

the D-rule planner can �nd a solution without backtracking.

Consider, for example, the d-rules for the Blocks-World domain in Figures 2.1

and 2.2. Given any starting state, when the goal is on(?x, ?y), the d-rules clear

the tops of the blocks ?x and ?y by unstacking the blocks on top of the blocks ?x

and ?y onto the table, and then put the block ?x on the block ?y. Any sequence of

complete decompositions, w.r.t. the two d-rules, of the subproblems corresponding to

the subgoals clear(?x), clear(?y) and put-on(?x, ?z, ?y), can achieve the goal

on(?x, ?y). Thus, the two d-rules exhibit downward solution property. If, however,

the d-rule for clear is modi�ed such that it clears the top of a block ?x by putting the

blocks that are on top of ?x on some other blocks, instead of putting them on table,

then the downward solution property may not be guaranteed. This is so, because,

in achieving on(?x, ?y), after the subgoal clear(?x) is achieved, achieving the

subgoal clear(?y) through the modi�ed d-rule may clobber the already achieved
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subgoal clear(?x) by putting a block that is on top of the block ?y on top of the

block ?x.

2.2.2 Other Representations Versus D-rules

D-rules can be viewed as high-level operators for hierarchical-decomposition planning

as well as representations of control knowledge for non-hierarchical or 
at planners.

In this section, we compare d-rules with macro operators and PRODIGY's control

rules, the two most prominent methods for representing control knowledge.

A macro-operator is a sequence of operators, which may have been learned from

a successful planning episode. It helps in reducing the search depth in planning. If

they are used in addition to the primitive operators, as done by (Minton, 1988), they

decrease the distance to a goal, but increase the number of operators the planner has

to consider at each decision point. That is, this method can decrease the depth of

the search tree, but increases the branching factor of its nodes. Otherwise, a planner

could be incomplete. In any case, they do not have the hierarchical structure of d-

rules. Moreover, learning macro operators in recursive domains is di�cult because a

macro-operator produced forN steps tends to be overly speci�c and cannot generalize

for more than N steps|the so called Generalization-to-N problem (Shavlik, 1990;

Subramanian & Feldman, 1990). PRODIGY's control rules, the other prominent

method of representing control knowledge, select, reject or order applicable domain

operators in each state (Minton, 1988). These rules help reduce the number of

operators considered at each point, but do not a�ect the distance to the goal. They

too, like macro-operators, are prone to the Generalization-to-N problem (Minton,

1988).

D-rules decompose a goal into a sequence of subgoals. Planning using subgoals has

the complexity O(bDmax) where Dmax is the distance between the farthest successive
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subgoals, and b is the branching factor (the number of applicable operators) (Korf,

1987b). Without goal decomposition, the complexity is exponential in the distance

between the start state and the goal, which is typically higher than Dmax. When

goals are recursively decomposed using d-rules into primitive actions and there is no

backtracking over d-rule choice, problem solving is linear in the number of d-rule

applications, which in turn is linear in the solution length. Thus, d-rules can reduce

the planning e�ort more drastically than control rules or macro operators can.

2.3 Reactive Planning with D-rules

In dynamic domains where there can be changes that are not under the control of the

planning agent, situations may change unexpectedly in the course of an execution of

a plan, and the plan the agent has come up with may no longer be valid. A planner

should be able to react and gracefully change its plans in the light of unanticipated

changes. In the following, we extend the representation of d-rules and the d-rule

planner to achieve reactive planning.

Consider a simpli�ed scenario of planning for a long weekend in Oregon. Suppose

our goal is to have fun (have-fun) during a long weekend. Further, suppose that

this goal can be satis�ed in two ways: out-door fun (outdoor-fun) and in-door

fun (indoor-fun). Suppose out-door fun could be had by camping (camping) or

picnicking (picnic). Naturally, we hope the weather will be dry and warm at the

place and the time of our camping. To achieve our goal of having fun during a long

weekend, suppose we choose the subgoal of out-door fun. To have out-door fun,

suppose we choose to go camping. To go camping, suppose we planned all the steps

needed. Now, between the time we start executing the plan and the time we �nish

the plan and achieve the goal of having fun, weather that was balmy and sunny

could become damp, cold and cloudy suddenly (as is its wont in Oregon). We would
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like the weather to be good throughout the execution of this plan for achieving the

having-fun goal. We want to establish some \invariants," and require those invariants

be true throughout the execution of the plan. If an invariant is violated, we need to

replan for the goals the planner is still pursuing from the current situation. In the

above scenario, we need to replan for the goal of having fun from the current state of

our position, when this unexpected weather change occurred|maybe, by achieving

the subgoal of having indoor fun.

To implement \invariants", we extend the representation of d-rules to include a

monitors �eld (Veloso, Pollack, & Cox, 1998). The monitors �eld in a d-rule is a

set of conjunctive conditions that are expected to be true throughout the execution

of plans suggested by the d-rule. If not, the plan suggested by the d-rule is no

longer guaranteed to achieve its intended goal. For example, a d-rule for the goal

outdoor-fun could be the following.

goal: outdoor-fun

condition: camping-site(?at), site-open-now(?at)...

monitors: weather(?at, good)

subgoals: camping(?at)

The D-rule planner also needs to be modi�ed to accommodate monitors. Recall

that the D-rule planner plans in depth-�rst fashion|that is recursively decomposing

a goal fully into a sequence of primitive operators that achieves the goal, before going

on to decompose subsequent goals in a sequence of goals. Because we assume that

any d-rule choice made is good (see Section 2.2), it is safe to perform a left-to-right

depth-�rst re�nement of the plan and to execute primitive operators as soon as they

are encountered during the depth-�rst re�nement process, as long as there are no

dynamic changes to the planner's environment. To take care of dynamic changes
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to the planner's environment, the D-rule planner maintains a list of monitors cor-

responding to all (sub)goals currently being achieved. Before each decomposition

step, the D-rule planner checks the current state to see whether any of the monitors

in the list of monitors is violated (due to unexpected changes). If not, the planner

proceeds as usual. If a monitor is violated, recursion of the decomposition unwinds

until and including the topmost goal, g, whose d-rule has its monitor violated. Re-

planning starts in the current state for achieving the main goal, which may be g or

its ancestor in the decomposition hierarchy. In the above example, when the weather

became inclement while we were executing the plan for achieving the goal have-fun

by achieving the subgoal outdoor-fun, which in turn was being accomplished by

the subgoal camping, the topmost (sub)goal whose d-rule has its monitor violated is

outdoor-fun. Therefore, we replan for have-fun in the state where the weather is

inclement, perhaps by trying a d-rule that suggests the subgoal indoor-fun.

Along with the checking for monitors, the planner checks whether any (sub)goal

among the (sub)goals that are actively being tried for is achieved fortuitously, and, if

so, unwinds the recursion past that (sub)goal, and proceeds with the next (sub)goal.

2.4 Hierarchical Task Networks (HTNs) and D-rules

Similar to d-rules, Hierarchical Task Networks (HTNs) also express goal-decomposition

knowledge. Although HTNs have existed in one form or another since the early

1970's, the ideas behind HTNs have only been consolidated and formalized recently

by Erol (1995). HTNs have tasks that correspond to goals and subgoals of d-rules.

Primitive tasks in HTNs correspond to domain operators. Methods for a task in

HTNs correspond to d-rules for a goal. The representation for methods in HTNs is

more general than the representation for d-rules. HTN methods allow speci�cations

of partial orders among tasks, whereas d-rules only allow total order among subgoals.
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HTN methods specify non-codesignation (inequality) constraints, whereas d-rules do

not. HTN methods can represent constraints such as what literals should be true

between what points during the plan. This type of constraints enable us to specify

between what points in a plan a subgoal is relevant and needs to be protected. Unlike

HTNs, d-rules can only specify literals that need to be true (monitors) throughout

the execution of a plan.

Accordingly, planners for HTNs are more complex than the d-rule planner. Nev-

ertheless, d-rules and the d-rule planner capture the essential aspect of HTNs|task

reduction or goal decomposition.

One aspect of task-reduction representations is that they are e�ective ways to

represent control knowledge|more e�ective than control rules and macro operators.

Task reduction helps a planner focus its search globally and before committing to

speci�c primitive actions. Control rules and macro operators, on the other hand,

aid the planner during search by making local decisions. HTNs and d-rules can

naturally express looping or iteration by means of recursion. An example of looping

is constructing a stack of blocks by placing one block at a time. State-space or

plan-space planners have to resort to converting a goal with quanti�ed variables

representing objects, into a large conjunction of goals|e.g., UCPOP (Penberthy &

Weld, 1992). The stacking example can be expressed as a d-rule in the following

way:

goal: stack(?a, ?small-stack)

condition: first(?b, ?small-stack), rest(?rest, ?small-stack)

subgoals: <stack(?b, ?rest), on(?a, ?b)>

The above d-rule says that to construct a stack of blocks with the block ?a on

top, construct the rest of the stack, and put the block ?a on top of the top-most
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block of the rest of the stack (block ?b). It is hard to express this kind of iterative

knowledge in the representations of either control rules or macro operators.
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Chapter 3

MAPPING D-RULES INTO HORN CLAUSES

The rest of the dissertation concerns learning d-rules. In this chapter, we develop

a mapping from the d-rule representation to Horn-clause representations. Thus, if we

have learning algorithms for Horn clauses, we can utilize them for learning d-rules.

This approach also helps us in exploiting some well-developed tools in the area of

inductive logic programming (ILP) to learn d-rules. We also extend the mapping to

transform HTN representations into Horn-clause representations.

3.1 Preliminaries

This section describes the terminology and the notation of logic we will be needing.

For a more comprehensive description see standard text books on logic programming

such as (Lloyd, 1987).

De�nition 3.1.1 A term is de�ned recursively as follows: (1) a variable is a term;

(2) a constant is a term; and (3) if f is an n-ary function symbol and t1; t2; : : : ; tn

are terms, then f(t1; t2; : : : ; tn) is also a term. A term is a ground term if it does

not contain any variables.

De�nition 3.1.2 If p is an n-ary predicate symbol, and t1; t2; : : : ; tn are terms,

then p(t1; t2; : : : ; tn) is called an atom. A literal is an atom (positive literal), or a

negation of an atom (negative literal).

De�nition 3.1.3 A de�nite Horn clause (Horn clause or clause, for short) is

a �nite set of literals that contains exactly one positive literal. It is treated as a
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disjunction of the literals in the set with universal quanti�cation over all the variables.

The positive literal, if it exists, is called the head of the clause. The set of negative

literals is called the body of the clause. A Horn clause is non-recursive if the

predicate symbol of the head literal of the Horn clause does not occur in the body of

the clause. A unit Horn clause is a Horn clause with no negative literals and hence

no body.

We usually denote a Horn clause as P ! q, where q is the head of the clause

and P is the set of all atoms appearing in the body of the clause. For example, the

clause :l1;:l2; : : : ;:ln; q is denoted as l1; l2; : : : ; ln ! q.

De�nition 3.1.4 A Horn de�nition is a set of Horn clauses where the heads of all

clauses have the same predicate symbol.� It is non-recursive if the head predicate

symbol does not occur in any negative literal in any clause in the de�nition.

De�nition 3.1.5 A Horn program or Horn sentence is a set of de�nite Horn

clauses interpreted conjunctively.

De�nition 3.1.6 A �nite set � = fv1=t1; : : : ; vn=tng is called a substitution, where

each vi is a variable, and the variables are all distinct. Each vi=ti in � is called a

binding. A substitution is a ground substitution if all the terms in it are ground

terms.

3.2 D-rules to Horn Clauses

In this section, we describe how d-rules can be transformed into Horn-clauses.

Recall that a d-rule is comprised of three parts: goal, initial conditions, and a

sequence of subgoals. To represent the notion of state, which is missing in the Horn

� A Horn de�nition is also called a predicate de�nition.
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clause, we add special symbols to the literals that denote \situations". In particular,

the �rst two parameters of each literal are new and denote the names of the situations

in between which that literal must be true. The �rst parameter speci�es the starting

situation in which the literal must be true. The second parameter speci�es the

situation up to and including which the literal must be true. We call these two

parameters of a literal the situation parameters. When we mean that a literal is

true in a particular situation alone, that situation is mentioned in both the situation

parameters of the annotation of the literal. When the situation parameters in a

literal are di�erent, it means that the literal is true throughout the duration between

the situations represented by the situation parameters. In addition, the two situation

parameters in a literal implicitly indicate that the �rst situation occurs before the

second situation or that both the situations are the same. However, this in itself may

not fully represent all the relative orderings between situations we want to specify.

Therefore, to explicitly represent the relative ordering of two situations Si and Sj,

we use a special predicate symbol not-after and add the literal (not-after Si

Sj), meaning that the situation Si does not occur after the situation Sj.

A d-rule can be declaratively read as follows: starting from a state that satis�es

the initial conditions of the d-rule, if each of the subgoals is achieved one by one in

sequence, then the goal of the d-rule would be true in the state that achieved the

last subgoal in the sequence. This declarative reading makes the connection between

d-rules and Horn clauses explicit. The goal of a d-rule corresponds to the head

literal of the corresponding Horn clause and is true in the �nal situation. The initial

conditions, which are conjunctions of positive literals, and the subgoals, which are

single positive literals, when properly annotated with situation variables, correspond

to the body of the Horn clause. In addition, we might need to add some not-after

literals to constrain the relative orderings between di�erent situation variables that
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correspond to the di�erent subgoals. One thing to note is that a d-rule does not say

once a subgoal is achieved how long it should remain true. Another point is that the

use of situation variables in Horn-clause form allows us to express partial ordering

of subgoals. However, the subgoal component of a d-rule de�nes a total ordering of

subgoals.

For example, the d-rule

goal: on(?x ?y)

subgoals: <clear(?x), clear(?y), put-on(?x, ?z, ?y)>

conditions: block(?x), block(?y), table(?z)

translates into the following Horn clause.

block(?S0, ?S0, ?x), block(?S0, ?S0, ?y), table(?S0, ?S0, ?z),

clear(?S1, ?S2, ?x), clear(?S2, ?S3, ?y), put-on(?S3, ?S4, ?x, ?z, ?y),

not-after(?S0, ?S1) ! on(?S4, ?S4, ?x, ?y)

The �rst three literals in the body of the Horn clause correspond to the initial

conditions of the d-rule. Since these literals must be true in the initial state, they

are given the situation parameters corresponding to the initial state (?S0). Next

three literals in the body of the Horn clause correspond to the subgoals of the d-

rule. They are given situation parameters such that they are true one after the

other in a sequence of situations. The last literal in the body, explicitly states that

the situation ?S0 does not come after the situation ?S1. This, with the implicit

orderings between the situations present in the other literals, implies that ?S0 is the

initial state. Finally, in ?S4, the goal literal is true, which is the head of the clause.

Note that it is possible to express partial orders using this notation by simply

not specifying not-after relation between situations. For instance, if we would

like to specify that clear(?x) and clear(?y) can be achieved in any order, we

can replace the literal clear(?S1, ?S2, ?x) by clear(?S1, ?S3, ?x), and add
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not-after(?S0, ?S2). By this, we say that ?S1 and ?S2 are not relatively ordered,

but both of them are preceded by ?S0, and succeeded by ?S3. The ability of the

Horn-clause notation to express partial ordering among subgoal literals raises some

issues in learning d-rules via learning Horn clauses, since the semantics of d-rules say

that subgoals are totally ordered. This issue is explored in Section 4.4.

Since the objective is learning d-rules via learning Horn clauses, training examples

for d-rules should be converted to training examples for Horn clauses. A training

example for learning d-rules has a sequence of states, S0, S1,: : : , Sn and a goal. An

example can be viewed as a fully instantiated (ground) d-rule specifying the initial

condition and a sequence of subgoals, with both including several irrelevant literals.

It can then be converted into a Horn-clause as described above.

In particular, each state of the example is a set of positive literals describing the

relationships between objects in a state. A state may have literals corresponding to

subgoals achieved in that state. Along with a sequence of states the example has

an instance of a goal that is true in the last state. Each state is given a situation

number. In the corresponding Horn-clause form, each literal is annotated with situ-

ation parameters Si and Sj as its �rst two parameters, where Si and Sj represent

a maximal duration in which the literal is true. For example, suppose the literal

clear(?x) is true in S0, S1, S2, and S3, and again in S5 and S6, but nowhere else.

Then, its corresponding Horn-clause form would have only the literals clear(S0,

S3, ?x) and clear(S5, S6, ?x). Then, for each state Si, there is a set of liter-

als comprising the literal not-after(Si, Si) and the literals not-after(Si, Sj)

for each Sj such that i < j � n. These two sets of literals form the body of the

corresponding Horn-clause example. The goal literal annotated with the situation

number of the state in which the goal is true, becomes the head of the Horn-clause

example.



27

So far, we have seen how one d-rule corresponds to one Horn clause. Next, we

consider sets of d-rules. A goal can have multiple ways of achieving it, depending

upon the initial state a planner starts from. These multiple ways correspond to

multiple d-rules for a goal. A set of d-rules intended for a goal, then, corresponds to

a set of Horn clauses with the same predicate symbol in all their head literals|also

known as a Horn de�nition. If the predicate symbol of a goal literal does not appear

in any of its d-rules' subgoals or conditions, then the corresponding Horn de�nition

is a non-recursive Horn de�nition.

A set of d-rules for more than one goal corresponds to a set of Horn clauses or a

Horn program.

3.3 HTNs to Horn Clauses

Methods in HTNs correspond to d-rules. A method is a 2-tuple h�; di where � is a

non-primitive task (or goal/subgoal in our terminology), and d is a task network. A

task network is of the form [(n1 : �1) : : : (nm : �m);�] where each �i is a task, each ni

is a task label, and � is a boolean formula. � can contain the logic connectives such

as conjunction, disjunction and negation, connecting literals of the following types:

� codesignation and non-codesignation constraints, such as a variable equals or

does not equal a variable or a constant;

� ordering constraints between task labels, such as ni precedes nj;

� state constraints of the form (n; l), (l; n) and (n; l; n0) where n and n0 are task

labels, and l is a literal. (n; l) means l is true in a state immediately after the

end of task n; (l; n) means l is true in a state immediately before the start of
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task n; and (n; l; n0) means l is true in all states after the end of the task n and

before the start of the task n0;

� literals true in an initial state.

The declarative meaning of an HTN method h�; di for the task �, where the task

network d is [(n1 : �1) : : : (nm : �m);�], is as follows. If the subtasks �i labeled ni

are achieved obeying the constraint formula �, then the task � is achieved.

As an example consider the Blocks-world example in Section 3.2. For the task

on(?x, ?y) an HTN method is hon(?x, ?y), di where d is the task network

[(n1 : clear(?x)) (n2 : clear(?y)) (n3 : put-on(?x, ?z, ?y)); ((n1

precedes n3)^(n2 precedes n3)^ (n1; clear(?x); n3)^(n2; clear(?y); n3)^

(?x 6= ?y) ^ (?y 6= ?z) ^ (?x 6= ?z))].

The meaning of this method is as follows: To achieve the task on(?x, ?y), achieve

clear(?x) from situation S1 till situation S
0

1, clear(?y) from S2 till S
0

2, and put-on(

?x, ?z, ?y) from S3 till S
0

3 such that the objects (table or blocks) denoted by ?x,

?y and ?z are di�erent, the situations S 0

1 and S 0

2 precede S3, and once achieved

clear(?x) and clear(?y) are true until S3.

The declarative meaning of HTNs makes an explicit connection between HTN

methods and Horn clauses. The task � of an HTN method corresponds to the

head literal of the corresponding Horn clause. Achievement of subtasks in their

situations and the constraint formula correspond to the condition or body part of

the corresponding Horn clause. We consider in the following how to convert a method

into Horn clauses, in detail.

First, Horn clauses contain only positive literals in the body. Hence, only HTN

methods without negative literals can be converted into Horn clauses. Note, however,
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that we do not consider non-codesignation constraints as negative literals. Next,

bodies of Horn clauses cannot contain disjunctions. Therefore, we split a method

containing disjunctions into multiple methods each containing no disjunctions (and

no negations). Each non-disjunctive HTN method with only positive literals that

has codesignation constraints can be converted into a method without codesignation

constraints in the following way. For each codesignation constraint v = x, where v

is a variable and x is either a variable or a constant, remove that constraint from

the method, and replace every occurrence of v in the method by x. Henceforth,

for the sake of brevity, such HTN methods without any disjunctions, negations and

codesignation constraints are referred to as just HTN methods.

Now, we convert each constraint in an HTN method into a literal, in the fol-

lowing way. If it is a non-codesignation constraint, v1 6= v2, then it becomes the

literal neq(v1, v2). For each task ni, we associate two situations Si and S 0

i such

that the task ni is achieved starting from the situation Si till the situation S 0

i, and

add the literal not-after(Si, S 0

i) to the Horn-clause form. An ordering constraint

of the form ni precedes nj is converted to the literal not-after(S 0

i, Sj). A state

constraint of the form (ni; l; nj) where l is p(t1; t2; : : : ; tk) is converted to the lit-

eral p(S 0

i; Sj; t1; t2; : : : ; tk), meaning that p(t1; t2; : : : ; tk) is true starting from the

situation S 0

i where the task ni ends up to the situation Sj where the task nj be-

gins. A constraint of the form (n; l), meaning that the literal l is true in the situa-

tion S 0 when the task n ends, where l is p(t1; t2; : : : ; tk), is converted to the literal

p(S 0; S 0; t1; t2; : : : ; tk). A constraint of the form (l; n), meaning l is true in the situ-

aton S when the task n commences, where l is p(t1; t2; : : : ; tk), is converted to the

literal p(S; S; t1; t2; : : : ; tk).

The constraints of the last type specify literals that must be true in an initial

state. In the Horn-clause equivalent, we add the literal initial-state(S0), and for
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each literal that must be true in the initial state, p(t1; t2; : : : ; tk), we have the literal

p(S0; S0; t1; t2; : : : ; tk). Each subtask element (ni : �i) of the list of subtasks for the

HTN method [(n1 : �1) : : : (nm : �m); �], where �i = pi(t1; t2; : : : ; tk), in its Horn-

clause form, has a literal pi(S
0

i; S
0

i; t1; t2; : : : ; tk), unless there is a state constraint

(S 0

i; pi(t1; t2; : : : ; tk); Sj).

All the literals that we arrived at, using the above process, form the body of a

Horn-clause version of the HTN method. The non-primitive task � of the method

becomes the head of the corresponding Horn clause after being annotated with the

�nal state: pt(Sf ; Sf ; t1; t2; : : : ; tk), where � is pt(t1; t2; : : : ; tk).

The Horn-clause form for the Blocks-world HTN method is the following.

clear(S1, S3, ?x), clear(S2, S3, ?y), put-on(S3, S3', ?x, ?z,

?y), not-after(S1, S1'), not-after(S2, S2'), not-after(S3, S3'),

not-after(S1', S3), not-after(S2', S3), neq(?x, ?y), neq(?y, ?z),

neq(?x, ?z), initial-state(S0)! on(S3', S3', ?x, ?y)

We do not have the literals clear(S1, S1', ?x) and clear(S2, S2', ?y) be-

cause the literals clear(S1, S3, ?x) and clear(S2, S3, ?y), derived from the

state constraints (n1; clear(?x); n3) and (n2; clear(?y); n3), cover them. Note that

the partial order between clear(?x) and clear(?y) present in the HTN method is

also re
ected in the above Horn-clause form.

As in the case of d-rules, the set of Horn clauses corresponding to multiple meth-

ods for a task, forms a Horn de�nition. The set of Horn clauses corresponding to

methods for multiple tasks forms a Horn program.
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Chapter 4

LEARNING HORN DEFINITIONS

In Chapter 3, we have seen how d-rules and HTNs could be converted to Horn

clauses. We noted there that d-rules for a simple goal and HTN methods for a single

task correspond to Horn de�nitions in Horn-clause form. In this chapter, we consider

learning non-recursive, �rst-order Horn de�nitions from entailment|where positive

(negative) examples are clauses (not) implied by the target Horn de�nition. We

show that this class is exactly learnable from equivalence and membership queries.

It follows then that this class is PAC learnable using examples and membership

queries. In Chapters 6 and 7, we will see how d-rules can be learned, based on the

algorithm presented here.

4.1 Introduction

Horn clauses provide a popular way of representing relational or �rst-order knowl-

edge. In this chapter, we consider learning Horn de�nitions|multiple Horn clauses

with the same predicate in the heads of all clauses|in the learning from entailment

setting (Frazier & Pitt, 1993; De Raedt, 1997). In this setting, the target concept

is a Horn de�nition. A positive (negative) example is a Horn clause (not) entailed

by the target. Learning Horn de�nitions is a fundamental problem both in Induc-

tive Logic Programming (ILP) and in Computational Learning Theory. Since it is

NP-hard to test membership in this concept class, it immediately follows that even

non-recursive Horn de�nitions are hard to learn from examples alone, unless NP = P
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(Schapire, 1990). Using only equivalence queries, single non-recursive Prolog clauses

are learnable with restrictions such as determinacy and bounded arity (Cohen, 1995a;

D�zeroski, Muggleton, & Russell, 1992). Restricted versions of single recursive clauses

are also learnable (Cohen, 1995b). However, learning multiple clauses or even slightly

more general versions of either recursive or non-recursive clauses is shown to be hard

without further help (Cohen, 1995c). Page showed that non-recursive Horn de�ni-

tions with predicates having �xed arity and with the restriction that the clauses be

\simple," i.e., only the variables and terms that occur in the head literal of a clause

appear in the body of the clause, are learnable using equivalence and subset queries

(Page, 1993). Here, we examine the learnability of a more general class.

We show that �rst-order non-recursive Horn de�nitions are exactly learnable from

membership and equivalence queries with no other restrictions. In particular, the

target concepts may have an arbitrary number of clauses with the number and the

arity of the literals in each clause also being unbounded. The literals may also contain

functions. Learning from equivalence and membership queries is one of the standard

models (also called the \minimally adequate teacher" by Angluin (1988)) in the

Computational Learning Theory literature. This is a natural model to consider when

the learner has a choice of asking whether a given instance is positive or negative.

Some languages such as deterministic �nite state automata and propositional Horn

sentences which appear not to be learnable from examples alone are learnable in

this model. At the same time, it is a nontrivial model in that there are many

languages, even apparently \simple" ones, such as arbitrary Boolean formulas, which

are not learnable in this model (under some cryptographic assumptions). It is also

known that for some languages such as DNF, membership queries do not help. Thus,

learning a �rst-order language such as Horn de�nitions in this learning model is an

important open problem (Angluin, Frazier, & Pitt, 1992). Most previous theoretical
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work in ILP relies on the corresponding propositional algorithms, and hence does not

really show the importance of using a �rst-order language. Our work is almost unique

in that the hypothesis space we consider cannot be reduced to one that a propositional

learner can learn e�ciently. This is discussed in more detail in Section 4.5.

Our algorithm combines the ideas of several previous learning algorithms that use

membership queries (Angluin, 1988; Frazier & Pitt, 1993; Haussler, 1989; Frazier &

Pitt, 1995). It maintains a set of hypothesis clauses, each of which is subsumed by a

corresponding target Horn clause. Given a new positive example, it either combines

it with one of its hypothesis clauses producing a least general generalization (lgg)

of the example and the hypothesis clause, or stores it as a new hypothesis clause.

It uses membership queries to decide which hypothesis clause, if any, the example

should be combined with. An example is combined with that clause which yields an

lgg that is entailed by the target. The algorithm exploits the fact that there is at

most one positive literal in each Horn clause, and that it cannot be resolved with

any negative literals also in the Horn de�nition because the clauses are non-recursive

and all have the same predicate symbol in their heads. These two facts imply that

any clause which is entailed by the target must be subsumed by one of the clauses

in the target|a property called \strong compactness." This guarantees that the

membership queries, in e�ect, check whether a hypothesis clause is subsumed by a

target clause. After combining the example with a hypothesis clause, the resulting

lgg is pruned of redundant literals using membership queries. Without this step, the

number of literals in the hypothesis clause can grow geometrically with each new

example, exceeding any polynomial bound.

Learnability in our \exact-learning model" which uses equivalence and member-

ship queries, implies learnability in the PAC-learning model (Valiant, 1984) which

uses random examples and membership queries (Angluin, 1988).
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The rest of the chapter is organized as follows: Section 4.2 presents some formal

preliminaries about generalization of Horn clauses. Section 4.3 describes the learning

problem, proves some properties of Horn de�nitions, describes the learning algorithm,

DLearn, and proves its correctness. Section 4.4 shows how DLearn can be employed

to learn d-rules. Section 4.5 concludes the chapter by relating our work to some

previous work in this area and discussing its implications.

4.2 Preliminaries

In this section, we de�ne and describe some more terminology from inductive logic

programming that we need, in addition to the terminology in Chapter 3.

De�nition 4.2.1 (Plotkin, 1970) A clause D subsumes a clause E if there exists

a substitution � such that D� � E. We denote this as D � E, and read it as D

subsumes E or as D is more general than E.

De�nition 4.2.2 If D and E are clauses such that D � E, then a literal l in a

clause E is relevant (irrelevant) w.r.t the clause D, if D 6� E�flg (D � E�flg,

respectively).

De�nition 4.2.3 If D and E are two clauses such that D � E, then a condensa-

tion of E w.r.t. D is a clause E 0 such that E 0 � E, D � E 0, and for any l 2 E 0, l

is relevant w.r.t. D.

For example, if D = f:p1(x); p2(y)g and E = f:p1(a); p2(b); p2(c); p3(c)g, then

f:p1(a); p2(b)g and f:p1(a); p2(c)g are the only condensations of E w.r.t. D.

De�nition 4.2.4 (Plotkin, 1970) Let C, C 0, C1 and C2 be sets of literals. We say

that C is the least general generalization (lgg) of C1 and C2 i� (1) C � C1 and

C � C2, and (2) C 0 � C, for any C 0 such that C 0 � C1 and C 0 � C2.
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The �rst condition says that C is more general than C1 and C2, and the second

says that any other clause more general than C1 and C2, is also more general than C.

The existence and uniqueness of least general generalization of two clauses is shown

by Plotkin (1970), and by Nienhuys-Cheng and de Wolf (1996).

De�nition 4.2.5 (Plotkin, 1970) A selection of clauses C1 and C2 is a pair of

literals (l1; l2) such that l1 2 C1 and l2 2 C2, and l1 and l2 have the same predicate

symbol, arity, and sign.

If C1 and C2 are sets of literals, then lgg(C1; C2) is flgg(l1; l2) : (l1; l2) is a

selection of C1 and C2g. If l is a predicate, lgg(l(s1; s2; : : : ; sn); l(t1; t2; : : : ; tn)) is

l(lgg(s1; t1); : : : ; lgg(sn; tn)). The lgg of two terms f(s1; : : : ; sn) and g(t1; : : : ; tm),

if f = g and n = m, is f(lgg(s1; t1); : : : ; lgg(sn; tn)); else, it is a variable ?x, where

?x stands for the lgg of that pair of terms throughout the computation of the lgg of

the set of literals.

For example, let C1 be f:p1(f(a); b);:p2(a; c); p3(b)g and C2 be f:p1(f(c); d);

:p1(b; a); :p2(c; c); p3(a)g. Then lgg(C1; C2) = f:p1(f(?x); ?y);:p1(?z; ?u); p3(?u);

:p2(?x; c)g, where the variables ?x, ?y, ?z and ?u stand for the pairs of terms (a; c),

(b; d), (f(a); b) and (b; a), respectively.

Note that jlgg(C1; C2)j can be as high as jC1j � jC2j.

Lemma 4.2.1 Let C1, C2 and C3 be Horn clauses. Then C1 � C2 and C1 � C3 if

and only if C1 � lgg(C2; C3).

Proof. The only-if part follows from the property (2) of the de�nition of least-general

generalization. The if part follows from the transitive property of �. ut

We state the following fact explicitly, although it is straightforward, for it is useful

later.

Proposition 4.2.1 If C1 � C2 then C1 � C3 for any C3 such that C2 � C3.
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4.3 Learning Horn De�nitions

In this section, we �rst specify our learning problem. Next we describe the learning

algorithm and then give the learnability result.

4.3.1 Learning Problem

Following the learning from entailment model, a ground Horn clause body ! head

is in a hypothesis H i� all models of H with respect to the literals in body satis�es

head. In other words, body ! head is an instance of H i� H j= (body ! head). Such

an instance is a positive example of H. All other instances are negative examples.

Henceforth, � denotes the target concept in the hypothesis space.

Example 4.3.1 This example illustrates the above de�nitions in a simpli�ed version

of an air-tra�c control domain (see Section 6.3.3.

� = f

plane-at(?p,?loc), level(L1,?loc), free-runway(?r), short-runway(?r),

land-short(?p) ! land-plane(?p);

plane-at(?p,?loc), level(L1,?loc), free-runway(?r), long-runway(?r)

! land-plane(?p)

g

The �rst clause in � gives the conditions under which a plane can land on short

runways, that the plane should be at a level 1 location, that the plane is capable of

landing on short runways, and that a short runway is free. The second clause is

for long-runway landing. The following is a positive example of � (for the second

clause):

plane-at(P737, 10), level(L1, 10), free-runway(R1), long-runway(R1),

short-runway(R2), wind-speed(high), wind-dir(south), free-runway(R2) !

land-plane(P737). ut
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Before stating the learning problem, we de�ne the queries we will need, following

Angluin (1988).

De�nition 4.3.1 A membership query takes as input an instance x, and outputs

yes if x is in �, and no otherwise. An equivalence query takes as input a hypoth-

esis H, and outputs yes if H and � are logically equivalent; otherwise, it returns a

counterexample from H � � |i.e., an instance that is in one but not in the other.

The above combination of queries is called a \minimally adequate teacher" by

Angluin. The learning problem in the exact learning model (Angluin, 1988) is as

follows:

De�nition 4.3.2 An algorithm exactly learns a concept class C if for every concept

� 2 C, if it asks equivalence and membership queries, terminates in time polynomial

in the size of � and the size of the largest counterexample, and outputs a hypothesis

which is logically equivalent to �.

In the rest of this section, we will be showing that the class of non-recursive Horn

de�nitions is exactly learnable from equivalence and membership queries. Note that

learning exactly does not mean learning a syntactically equivalent de�nition, but only

a semantically equivalent one. In other words, there should be no counterexample

for the learner's �nal hypothesis.

4.3.2 The Learning Algorithm

DLearn is an algorithm to learn non-recursive Horn de�nitions using equivalence and

membership queries (Figure 4.1). DLearn makes use of an algorithm Reduce. The

Reduce algorithm takes as input a Horn clause and generalizes it by eliminating

literals from that Horn clause. It removes a literal from the Horn clause and checks
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whether the resultant Horn clause is overgeneral. It can do this by substituting each

variable in the hypothesis clause with a unique constant and asking a membership

query. If it is overgeneral, the literal is retained; otherwise, it is eliminated to form

a new, more general Horn clause.

DLearn starts with an hypothesis H that is initially empty. As long as H is not

equivalent to the target concept C, the equivalence query returns an example e that

is not included in H, and the algorithm modi�es H to cover e. To include e in H,

DLearn checks each Horn clause hi of H whether generalizing hi to cover e would not

make the hypothesis overgeneral|i.e., whether lgg(hi; e) is in the target concept.

If so, concluding that it has found the right Horn clause hi to include e in, DLearn

further generalizes h = lgg(hi; e), by removing irrelevant literals, i.e., those literals

whose removal preserves the entailment relation between � and h. The entailment

relation is checked by using the membership oracle on the result of skolemizing h (see

Reduce in Figure 1). The assumption here is that the skolemizing process generates

constants that are not already present in the target. DLearn �nally replaces hi in

H by the new generalized h. If there is no hi such that lgg(hi; e) is entailed by the

target, it generalizes e using Reduce and makes it a new Horn clause of H.

Example 4.3.2 Let � be f! q(f(f(?x))); ?x); p1(?x; ?y); p1(?y; ?z) ! q(?x; ?z);

p1(?x; ?y); p2(?y; ?z)! q(?x; ?z)g.

Let the �rst example be e1: p1(a; b); p1(a; d); p1(b; z); p2(c; b); p2(c; d); p2(d; e)! q(a; e).

Since H is empty, the next step is Reduce(e1).

In Reduce:

� j= p1(a; d); p1(b; z); p2(c; b); p2(c; d); p2(d; e)! q(a; e)?

yes, so drop p1(a; b).

� j= p1(b; z); p2(c; b); p2(c; d); p2(d; e)! q(a; e)?
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DLearn

(1) Let � be the target concept.

(2) H := fg /* empty hypothesis, initially */

(3) m := 0 /* number of clauses in the hypothesis */

(4) while equivalence(H , �) is not true and e is a counterexample do f

/* fix the clause in H for the example e */

(5) if (m > 0) then, Let H be fh1; h2; : : : ; hmg

(6) found := false; i := 1

(7) while (i � m) and found is false do f

(8) h := lgg(e; hi)

(9) if � j= h then found := true; /* Member?(Skolemize(h)) implements � j= h */

(10) else i := i+ 1

(11) g /* i � m */

(12) if found = false then h := e; m := m+ 1;

(13) hi := Reduce(h) /* further generalize h */

(14) g

(15) return H

Reduce(h)

(1) h0 := h

(2) for each literal l in (the body of) h do

(3) if � j= h0 � flg then h0 := h0 � flg /* Implemented by Member?(Skolemize(h0 � flg)) */

(4) Return h0.

FIGURE 4.1: DLearn: An algorithm to learn Horn de�nitions

no, keep p1(a; d). : : :

Finally, h0 = p1(a; d); p2(d; e)! q(a; e)

h1 = p1(a; d); p2(d; e)! q(a; e)

Let the next example be e2: p1(a; b); p1(a; d); p1(b; z); p2(c; b); p2(c; d); p2(d; e)! q(a; z).

lgg(h1; e2) =

p1(a; ?db); p1(a; d); p1(?ab; ?dz); p2(?dc; ?eb); p2(?dc; ?ed); p2(d; e)! q(a; ?ez)

� j= lgg(h1; e2)? no.

So, Reduce(e2) = h2 = p1(a; b); p1(b; z)! q(a; z).
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With e1 and e2, we have seen how new hypothesis clauses get added to H. The next

example, e3, shows how DLearn combines a new example with a clause in H.

e3: p1(r; s); p2(s; t); p1(r; u); p2(u; v)! q(r; t).

lgg(h1; e3) = p1(?ar; ?ds); p2(?ds; ?et); p1(?ar; ?du); p2(?du; ?ev)! q(?ar; ?et)

� j= lgg(h1; e3)? yes.

h1 = Reduce(lgg(h1; e3)) = p1(?ar; ?ds); p2(?ds; ?et)! q(?ar; ?et).

The next example, e4, shows how DLearn learns clauses with empty body.

e4: p1(a; b)! q(f(f(a)); a)

lgg(h1; e4) = p1(?ar; ?ds)! q(?arf; ?eta)

� j= lgg(h1; e4)? no.

lgg(h2; e4) = p1(a; b)! q(?af; ?za)

� j= lgg(h2; e4)? no.

Reduce(e4) = h3 =! q(f(f(a)); a).

: : : ut

The literal-removal process of Reduce serves a critical purpose. Recall that the

size of the lgg grows as a product of the sizes of the hypotheses being generalized.

Unless the hypothesis size is limited, it can grow exponentially in the number of

examples used to create the hypothesis. Reduce guarantees that the size of each

clause in the hypothesis is bounded by the size of its corresponding target clause

(see Lemmas 4.3.2 and 4.3.3 in Section 4.3.2.2).

4.3.2.1 Strong Compactness of Non-recursive Horn De�nitions

In this section we describe a property of non-recursive Horn de�nitions, which is

called strong compactness by Lassez, Maher, and Marriott (1988), and Page (1993),

and relate this property to membership queries.
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Strong compactness says that for non-recursive Horn de�nitions if we know that

a clause is logically implied by a set of clauses �, then we can conclude that that

clause is subsumed by a clause in �. The following lemma, in addition, says that

the converse is true. This is useful to show later that each clause in the current

hypothesis of our algorithm is always a specialization of some target clause.

Lemma 4.3.1 Let � be a non-recursive Horn de�nition and h be a Horn clause

which is not a tautology. Then � j= h if and only if there exists a clause C in � such

that C � h. We call C the target clause of h and h the hypothesis clause of C.

Proof. The if part follows from the fact that � is interpreted as a conjunction of

its clauses. The only-if part is a direct consequence of the Subsumption Theorem

(Kowalski, 1970). We give a brief sketch of the proof here. Since � j= h and h is not

a tautology, there must be a non-trivial proof of h from the clauses of �. However,

since the head predicate symbol of the clauses in � does not appear in the body of

any clause, there can be no chaining of the clauses in the proof of h. This implies

that h must be subsumed by a single clause in �. ut

If a clause h has variables, determining � j= h is equivalent to determining

whether all instances in h are also in �|which is the same as a subset query (An-

gluin, 1988). However, by substituting each variable in h by a unique constant|

skolemization|we can form a fully ground clause that is an instance of h. Now,

determining whether � j= h is equivalent to asking whether � j= Skolemize(h). Ask-

ing whether � j= Skolemize(h) is the same as a membership query, since Skolemize(h)

is ground. In e�ect, this membership query simulates a subset query, and it is an-

swered yes, by Lemma 4.3.1, if and only if some clause in � subsumes h.
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4.3.2.2 Proof of Learnability

In this section, we prove that DLearn exactly learns non-recursive Horn de�nitions,

by exploiting their strong compactness property. Lemma 4.3.2 and Lemma 4.3.3

together show that Reduce guarantees that the sizes of the hypothesis clauses are

bounded from above by the sizes of their corresponding target clauses. Lemma 4.3.2

also shows that Reduce does not over-generalize in the process.

Lemma 4.3.2 If the argument h of Reduce is such that � j= h, then, at the end

of Reduce, h0 has a target Horn clause Cj|i.e., Cj � h0. Moreover, h0 in line 4 of

Reduce is a condensation of h w.r.t. Cj.

Proof. In the beginning of Reduce, h0, which is the same as the argument h, is not

overgeneral. h0 is modi�ed only when the modi�cation still leaves the result inside

�. That is, � j= h0. By Lemma 4.3.1, there exists a target Horn clause for h0, say

Cj, and Cj � h0.

To show that h0 in line 4 of Reduce is a condensation of h w.r.t. Cj, we need

only to show that for any literal l 2 h0, Cj 6� (h0 � flg). Suppose that for some

l 2 h0, Cj � (h0 � flg). Let h00 be the value of h0 when l is considered for removal in

the loop of lines 2|3. Since h0 � h00, by Proposition 4.2.1, Cj � (h00 � flg). From

Lemma 4.3.1, � j= (h00 � flg). In that case, l would have been removed by line 3 of

Reduce. But, l 2 h0, a contradiction. Therefore, for any literal l 2 h0, Cj 6� (h0�flg).

ut

Lemma 4.3.3 If h0 is a condensation of h w.r.t. Cj, then Cj� = h0 for some

substitution �. Moreover, jh0j � jCjj.

Proof. Suppose h0 is a condensation of h w.r.t. Cj. Then there exists a � such

that Cj� � h0. Suppose Cj� � h0. Then, for some l 2 h0 � Cj�, Cj� � h0 � flg.
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Hence, Cj � (h0 � flg). This is a contradiction, since h0 is a condensation w.r.t. Cj.

Therefore, Cj� = h0. This implies that jh0j = jCj�j � jCjj. ut

The following de�nition relates an example to a hypothesis clause and to a target

clause.

De�nition 4.3.3 If C1; C2; : : : ; Cn are the Horn clauses of the target concept �, and

h1; h2; : : : ; hm are the Horn clauses in the hypothesis H, then the correct hypothesis

Horn clause in H for an example e is a Horn clause hi with the smallest index i such

that for some 1 � j � n, Cj � e and Cj � hi.

Lemma 4.3.4 In DLearn, suppose that e is a counterexample returned by the equiv-

alence query such that e is covered by �, but not by H. Then DLearn includes e in

a hypothesis Horn clause if and only if it is the correct hypothesis Horn clause in H

for e.

Proof. First the only-if part. DLearn includes e in hi of H only if i is the smallest

index such that � j= lgg(e; hi). Hence, by Lemma 4.3.1, Cj � lgg(e; hi) for some Cj

of C; and this is not true for any earlier hi. Then, by Lemma 4.2.1, i is the smallest

index such that Cj � e and Cj � hi. Therefore, if DLearn includes e in hi of H, then

hi is a correct hypothesis Horn clause for e.

Now, the if part of the claim. Let hi be the correct hypothesis Horn clause for

e in H, which means that there is no hypothesis Horn clause hk for e such that

k < i. Then there exists a Cj of C such that Cj � e and Cj � hi. This implies,

by Lemma 4.2.1, that Cj � lgg(e; hi). By Lemma 4.3.1, � j= lgg(e; hi). Also, for

k < i, Cj 6� hk, which implies � 6j= lgg(e; hk). Therefore, hi is the �rst clause in

the hypothesis H for which � j= lgg(e; hi). Then, by lines 7{13 in Figure 4.1, e is

included in hi by assigning the result of Reduce(lgg(e; hi)) to hi. ut
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Lemma 4.3.5 The following are invariant conditions of DLearn:

1. Every Horn clause hi in the hypothesis H has a target clause;

2. Every Horn clause Cj in the target concept � has at most one hypothesis clause.

Proof.

Proof of (1). For every Horn clause hi in H, � j= hi. This is true because (a) the

input h to Reduce is checked to be such that � j= h, (by lines 7{13 of DLearn), and

(b) by Lemma 4.3.2 the output of Reduce, which replaces hi, preserves this condition.

Therefore, by Lemma 4.3.1, hi has a target Horn clause.

Proof of (2). First, we show that any new hypothesis clause added to H has a target

clause distinct from the target clauses of the other hypothesis clauses in H. Next,

we show that if two hypothesis clauses have distinct target clauses at the beginning

of an iteration of the loop of lines 4{14, then they still have distinct target clauses

at the end of the iteration.

Let hi be the �rst hypothesis Horn clause in H for Cj. That is, there is no hk

such that k < i and hk is a hypothesis Horn clause in H for Cj. Another hypothesis

clause hi0 with the target clause Cj would have been added to H such that i0 > i,

only if there was a counterexample e belonging to Cj for which hi is not the correct

hypothesis Horn clause (by Lemma 4.3.4). That means Cj � e and Cj 6� lgg(hi; e).

This implies, by Lemma 4.2.1, Cj 6� hi. That is a contradiction, because hi is a

hypothesis Horn clause for Cj. Therefore, such a hi0 cannot exist in H. That is, hi0

could have been added only if it had a distinct target clause.

Let hi be the clause in H that changes during an iteration of the loop of lines

4{14. Further, let for any target clause Cj of any other clause hi0 in H, Cj 6� hi.

That is, Cj is not a target clause for hi. We show that even after the iteration, Cj

is not a target clause of hi. hi can change in the lines 8 and 13. We need to show

that both these changes maintain that Cj 6� hi. Since Cj 6� hi, Cj 6� lgg(hi; e)
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(by Lemma 4.2.1). Therefore, line 8 maintains the property. In line 13, Reduce

returns a subset of its argument. By the contrapositive of Proposition 4.2.1, Cj 6�

Reduce(lgg(hi; e)), thus maintaining the property. Therefore, hi and any other hi0

have di�erent target clauses at the end of the iteration. ut

Now to the main theorem on the exact learnability.

Theorem 4.3.1 Non-recursive Horn de�nitions are exactly learnable using equiva-

lence and membership queries.

Proof. We prove this theorem by showing that DLearn exactly learns non-recursive

Horn de�nitions.

Part 1 of Lemma 4.3.5 implies that for every hi of H, there is a Cj such that

Cj � hi. That means, H covers no example that is not covered by the target

concept C. In other words, H is never over-general in DLearn. Therefore, every

counterexample is an example that is covered by �, but not by H.

Each equivalence query guarantees that whenever DLearn gets a new example,

it is not already covered by the hypothesis H. At the end of each iteration, before

asking an equivalence query, by Lemma 4.3.4, DLearn guarantees that all the previous

examples are covered by H. Each example, either modi�es an existing hypothesis

Horn clause (its correct hypothesis Horn clause) or adds a new Horn clause. The

minimum change inH that is required to cover a new example is a change of a variable

in its correct hypothesis Horn clause if one exists. That is, each new example, except

the ones that add new Horn clauses, contributes at least one variable. Let n be

the number of Horn clauses in a concept, l be the maximum number of literals in

a clause in the concept, v be the maximum number of variables in a clause in the

concept, and k be the number of literals in the largest counterexample. Because

Reduce guarantees that each Horn clause in the hypothesis has at most as many

literals as there are in its target Horn clause (by Lemma 4.3.2 and Lemma 4.3.3),
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the number of variables in each Horn clause is at most v. Lemma 4.3.5 guarantees

that H has at most n Horn clauses. Therefore, the total number of variables is at

most nv. DLearn requires n examples to add each of the n Horn clauses in H. It

requires at most nv examples to variablize all the Horn clauses in H. Therefore,

DLearn requires n(v + 1) examples, and, hence, n(v + 1) equivalence queries.

Let m be the number of hypothesis clauses in the hypothesis H at any time.

Then, for each of the base examples that forms a new Horn clause in H, DLearn

asks at most m membership queries for deciding that there is no correct hypothesis

Horn clause in H, and at most k membership queries to simplify and generalize using

Reduce (because there are at most k literals in an example). Each new Horn clause

has at most l literals (by Lemma 4.3.2). For each of the other examples, at most m

membership queries are needed to determine a correct hypothesis Horn clause, and

kl (which is the size of the lgg) number of membership queries to generalize using

Reduce. Therefore, the total number of queries is at most mn + kn + nv(m + kl),

which is at most n2 + kn+ nv(n+ kl). This is also an upper bound on the running

time of the algorithm. ut

By the above theorem and the transformation result from the exact learning

model to the PAC model (Angluin, 1988), we have the following.

Corollary 4.3.2 Non-recursive Horn de�nitions are polynomial-time PAC-learnable

using membership queries.

4.4 Learning D-rules via Learning Horn De�nitions

In Chapter 3, we have seen how d-rules and example d-rules can be converted to

Horn clauses. In this chapter, so far, we have studied the DLearn algorithm for
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learning Horn de�nitions from Horn-clause examples. In the following, we examine

how DLearn can be utilized to learn d-rules from example d-rules.

One problem in utilizing the algorithm for learning Horn de�nitions to the task

of learning d-rules is that a d-rule hierarchy for a planning domain, when converted

into Horn clause notation, is a Horn program rather than a Horn de�nition. That

is, literals appearing as heads also appear in the bodies of clauses.

Since a hierarchy of d-rules is equivalent to a Horn program, to learn a hierarchy

of d-rules, we need a way to learn Horn programs. As far as we know, excepting

the work of Arimura (1997) which learns Horn programs, most ILP methods that

guarantee correctness are directed towards learning Horn de�nitions. In Arimura's

work, among other restrictions, the clauses in a Horn program are required to be

\simple"|that is, only the terms in the head of a clause can appear in the body

of the clause. This is too restrictive for our purposes, because objects that do not

appear in goal literal (which corresponds to the head literal in the Horn-clause form)

can be tested in the condition part of a d-rule (which corresponds to the body in the

Horn-clause form). Here, instead, we use the Horn-de�nition learning algorithm to

learn Horn programs. (In the next chapter, we will study an algorithm for learning

Horn programs directly.)

In Horn programs, since the head literal of a clause can appear in the body of

another clause, the resulting interactions between clauses make Lemma 4.3.1 inap-

plicable. Hence, the Horn-de�nition learner cannot be used directly to learn Horn

programs. However, if clauses for each head literal are learned separately, assuming

that the other clauses are known, we can use the Horn-de�nition learner. Thus,

d-rules can be learned for each goal separately|i.e., assuming that d-rules for lower-

level (sub)goals are already known.
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However, there is a glitch here. There is a dependency among the not-after

literals in that they are transitive: not-after(?Si, ?Sj), not-after(?Sj, ?Sk)

! not-after(?Si, ?Sk). This makes the Lemmas 4.3.1 and 4.3.2 inapplicable.

Following an insight in our work on Horn programs (Reddy & Tadepalli, 1998a), also

reported in the next chapter, we order the not-after literals in the input h of Reduce

such that the literals that match not-after(?Si, ?Sj) and not-after(?Sj, ?Sk)

come earlier than the literals that are implied by them, such as not-after(?Si,

?Sk). Hence, Reduce considers the literals for removal in that order. In this way, the

output of Reduce will be a condensation, as was the case without the not-after literals.

The idea here is that, in Reduce, if we removed not-after(?Si, ?Sk), before we

removed not-after(?Si, ?Sj) and not-after(?Sj, ?Sk), the membership query

would be answered yes, and we would remove not-after(?Si, ?Sk). This may

cause Reduce to leave the two literals not-after(?Si, ?Sj) and not-after(?Sj,

?Sk), instead of just not-after(?Si, ?Sk). If this were to occur, the output of

Reduce might neither be a condensation nor be subsumed by a clause in the target.

Ordering the removal of literals in the above manner overcomes this problem.

Another point to note is that learning d-rules via learning Horn clauses by the

DLearn algorithm gives us d-rules that have partially ordered subgoals. Once a d-rule

with partial ordering of subgoals is learned, we can output a d-rule with any total

ordering that is consistent with the partial ordering. (Insisting that this method

learn d-rules with totally ordered subgoals as the target makes it an intractable

method. This is so for the following reason. Horn-clause translations of d-rules allow

partial orderings among subgoals. When a query is asked by a Horn-clause learning

algorithm if it has to be answered by a teacher having d-rules with totally ordered

subgoals as the target, every total ordering of the literals in the Horn-clause must
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be checked for consistency with the teacher's d-rule. The number of total orderings

for a partial ordering is exponential in the number of subgoals.)

Taking the above point into consideration, with the change needed for not-after

literals, it follows from Theorem 4.3.1 that d-rules (partially ordered subgoals) can

be learned from example d-rules and membership queries. In Chapter 6, however,

we will employ a variation of this algorithm for learning d-rules from examples.

4.5 Discussion

In this work, we have shown that �rst-order non-recursive Horn de�nitions are learn-

able utilizing a reasonable amount of time, and, hence, a reasonable number of

examples and queries. As a special case, it follows that �rst-order monotone disjunc-

tive normal forms (monotone DNF) formulas are PAC-learnable from examples and

membership queries.

The learning setting we have used is that of learning from entailment. There

is another setting of learning called learning from interpretations (De Raedt, 1997).

In the setting of learning from interpretations, positive examples are models of the

target, and negative examples are negative interpretations. It has been shown that

propositional Horn programs are exactly learnable from equivalence and membership

queries, in the learning from interpretation setting (Angluin et al., 1992), as well as

in the learning from entailment setting (Frazier & Pitt, 1993). When membership

queries are available, learning from interpretations reduces to learning from entail-

ment. This is because we can convert every negative interpretation of the target

into a a positive example in the entailment model (a Horn clause entailed by the

target). Since every negative interpretation violates some Horn clause, we can prune

all but one negative literal in the interpretation, while making sure that the result

is still a negative interpretation. We can then convert that reduced negative inter-
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pretation into a positive Horn clause by negating it. (This is explained more fully

in Section 5.4.) Thus, our results imply that Horn de�nitions are learnable from

interpretations as well.

Most of the positive results for PAC-learnability in ILP, so far, depend either

on polynomial-time transformations of �rst-order clauses to propositional logic and

propositional PAC-learning algorithms (D�zeroski et al., 1992; Cohen, 1995a; Page &

Frisch, 1992), or on exhaustively enumerating polynomially sized hypothesis spaces

(Frazier & Page, 1993). Therefore, the classes considered were very restrictive. In

comparison, the hypothesis space for the language class we consider is unbounded.

Because the arity of the predicates is not constant, converting the �rst-order tar-

get to a propositional one yields an exponentially large target, which requires an

exponentially large number of equivalence queries to learn. The negative results by

Cohen (1995c) for PAC-learning interesting classes suggest that membership queries

are necessary. Along with our work, the work by Page (1993) and the work by Haus-

sler (1989) are signi�cant e�orts in making learning tractable using membership and

subset queries.

The algorithm in Figure 4.1 is similar in spirit to an ILP system called CLINT

(De Raedt & Bruynooghe, 1992), in the sense that they both are incremental and

interactive. Like in our algorithm, CLINT uses queries to eliminate irrelevant literals.

CLINT raises the generality of hypotheses by proposing more complex hypothesis

clauses, whereas our algorithm uses the lgg.

Several pieces of research have used the lgg idea in di�erent ways for the purpose

of generalization. Haussler (1989) considers learning �rst-order conjunctive concepts.

In the hypothesis language considered by him where the number of objects per scene

is �xed, the lgg of two hypotheses is at most as big as one of the hypotheses, but

is not unique. Haussler uses queries to select an lgg which is in the target. On the
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other hand, in our case, the lgg of a set of hypotheses is unique, but its size grows

exponentially with the number of hypotheses. We use queries to reduce the size of

the hypothesis generated by the lgg (see Reduce procedure in Figure 4.1). Frazier

and Pitt (1995) also use a pruning procedure similar to our Reduce procedure to

limit the size of the lgg in learning descriptions in Classic. GOLEM (Muggleton

& Feng, 1990) is another system that uses lgg to generalize hypotheses. GOLEM

mitigates the problem of combinatorial explosion due to the lgg in two ways: (1) by

restricting the hypothesis language to ij-determinate Horn clauses which guarantee

polynomial-sized lggs; and (2) by using negative examples to eliminate literals from

the hypotheses. In the case of the work by Page (1993), the simplicity and the �xed-

arity restrictions make the size of the lgg polynomial in the sizes of the hypotheses

being generalized.

The work we described here is one of the �rst to theoretically demonstrate that

polynomial-time �rst-order learning is more powerful than propositional learning.

We believe that structural domains such as planning and scheduling are inherently

relational and are better suited to �rst-order learning. However, to build practical

systems, we need to generalize our results in many directions. These include learning

more general Horn programs, handling noise, probabilities and real numbers, and

incorporating background theories. We will address the learnability of Horn programs

in the next chapter.
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Chapter 5

LEARNING ACYCLIC HORN PROGRAMS

In Chapter 3, we have seen how d-rules for multiple goals and HTN methods for

multiple tasks can be mapped to Horn programs. In Chapter 4, we have seen how

we can apply the algorithm for learning Horn de�nitions to learn Horn programs.

In this chapter, we present a direct method to learn Horn programs from examples

and queries. In Chapter 7, we will study learning d-rules from unsolved problems

which are ordered according to their levels of di�culty. There, we will study the

connections between the algorithm presented here and the method introduced in

that chapter.

5.1 Introduction

Learning �rst-order Horn programs is an important problem in inductive logic pro-

gramming with applications ranging from speedup learning to grammatical inference.

Here, we consider learning �rst-order Horn programs in the setting of learning

from entailment (Frazier & Pitt, 1993; De Raedt, 1997). In learning from entailment,

a positive (negative) example is a Horn clause that is implied (not implied) by the

target. Results by Cohen (1995a, 1995b), D�zeroski et al. (1992) and others indicate

that classes of Horn programs having a single or a constant number of clauses are

learnable from examples. Khardon (1996) shows that \actions strategies" consisting

of a variable number of constant-size �rst-order production rules can be learned

from examples. However, Cohen (1995a) proves that even predicting very restricted
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classes of Horn programs (viz. function-free 0-depth determinate constant arity) with

variable number of clauses of variable size from examples alone is cryptographically

hard.

Frazier and Pitt (1993) �rst used the entailment setting for learning arbitrary

propositional Horn programs. In addition to examples, they also used entailment

membership queries (\entailment queries" from now on) which ask if a Horn clause

is entailed by the target. Moving to �rst order representations, Frazier and Pitt

(1993) showed that Classic sentences are exactly learnable in polynomial time from

examples and entailment queries. Page (1993) considered non-recursive Horn pro-

grams restricted to simple clauses and predicates of constant arity, and showed that

they are learnable from examples and entailment queries. A simple clause is a clause

where only the variables and terms that occur in the head literal of a clause ap-

pear in the body of the clause. Arimura (1997) generalized Page's result to acyclic

(possibly, recursive) simple Horn programs with constant-arity predicates. In the

previous chapter, we showed that non-recursive Horn de�nitions are learnable from

examples and entailment queries. The result we present in this chapter applies to

non-generative Horn programs, where the variables and the terms in the head are

restricted to those in the body. We show that acyclic non-generative Horn programs

with constant arity that have a polynomial-time subsumption procedure are learnable

from examples and entailment queries when certain closure conditions are satis�ed.

In particular, the result applies to acyclic Horn programs with constant-arity deter-

minate clauses.

Goal-decomposition rules are hierarchical in nature, as are Horn programs. One

aspect of learning in hierarchical domains is the hierarchical order of literals (goals

or concepts). In many systems, learning hierarchically organized knowledge assumes

that the structure of hierarchy or the order of the literals is known to the learner.
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Examples of such work include Marvin (Sammut & Banerji, 1986) and our system

LeXer in Chapter 7, on the experimental side; learning from exercises by Natarajan

(1989) and learning acyclic Horn sentences by Arimura (1997), on the theoretical

side. Our algorithm also assumes that the hierarchical order of the literals is known.

The rest of the chapter is organized as follows. Section 5.2 provides de�nitions

for some of the terminology we use. Section 5.3 describes the learning model and

the learning algorithm, and proves the learnability result. Section 5.4 concludes the

chapter with some discussion on implications and limitations of the work.

5.2 Preliminaries

In this section, we de�ne and describe some of the terminology we use in the rest

of the chapter, in addition to the terminology we used in Chapter 3 and 4. In the

following, we use capital letters P and A, and their variants each to stand for a

conjunction of literals; and small-case letters b; q; l and their variants each to stand

for a single literal.

De�nition 5.2.1 A derivation of a Horn clause P ! q from a Horn program H is

a �nite directed acyclic graph G such that there is a node q, there is no arc (q; r) in

G, and for each node l in G, either l 2 P or if (l1; l); : : : ; (ld; l) are the only arcs of G

terminating at l, then l1; : : : ; ld ! l = C� for some clause C 2 H and a substitution

�.

For example, let H be fparent(x; y); parent(y; z) ! grandParent(x; z); mo-

ther(x; y)! parent(x; y)g. Figure 1 shows a derivation ofmother(a; b); mother(b; c)

! grandParent(a; c).

Proposition 5.2.1 In a derivation G of a clause P ! q from a Horn program H,

for any node l, either l is in P or H j= P ! l.
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grandParent(a,c)

parent(b,c)parent(a,b)

mother(a,b) mother(b,c)

FIGURE 5.1: A derivation of mother(a; b); mother(b; c) ! grandParent(a; c) from
H.

Let P be a set of predicate symbols, and T be a set of terms. Let L be a set

of atoms de�ned using P and T . Let H be a set of Horn programs using atoms in

L only. If k is an integer, then Pk is a subset of P containing only those predicate

symbols of arity k or less. Further, Lk is a set of atoms de�ned using Pk and T ,

and Hk is a set of Horn programs using atoms in Lk only. In the following three

de�nitions, we describe a class of Horn programs AHk for which minimal models are

of polynomial size.

De�nition 5.2.2 (Arimura, 1997) Let � 2 H. Then a binary relation sup-

ported by (denoted, �) over atoms in L w.r.t. � is such that (1) for all P ! l 2 �,

and for all l1 2 P , l � l1; (2) for all l1; l2 2 L and every substitution �, if l1 � l2,

then l1� � l2�; and (3) if l1 � l2 and l2 � l3 then l1 � l3.

De�nition 5.2.3 A Horn program � is acyclic over L if the relation � over L

w.r.t. � is terminating; i.e., for any l 2 L, there is no in�nite decreasing sequence

l � l1 � : : : .
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In the last example, H is acyclic because grandParent(x; y) � parent(x; y) �

mother(x; y) and there is no cycle formed by the � relation.

Following Khardon (1998), we call a de�nite clause a non-generative clause if the

set of terms in its consequent are a subset of the set of terms and subterms in its

antecedent.

De�nition 5.2.4 If k is a constant, we de�ne a Horn program � 2 Hk to be in the

class AHk, if � is acyclic over Lk, and each clause is either non-generative or has

an empty antecedent.

De�nition 5.2.5 Let A ! b be a clause in a Horn program �, and P ! q be a

clause. Then, A! b is a target clause in � of P ! q i� A! b � P ! q, i.e., for

a substitution �, A� � P , b� = q. We call P ! q a hypothesis clause of A! b.

De�nition 5.2.6 For an antecedent P , q0 is a prime consequent of P wrt � if

� j= P ! q0, q0 62 P , and there is no l 2 L such that q0 � l, � j= P ! l and l 62 P .

In the last example, parent(a; b) is a prime consequent of mother(a; b); mo-

ther(b; c), but grandParent(a; c) is not|since grandParent(a; c) � parent(a; b).

5.3 Learning Horn Programs

In this section, we show that a subclass of AHk is learnable, using the exact learning

model (Angluin, 1988) in the entailment setting. Henceforth, � 2 AHk denotes a

target Horn program.

5.3.1 The Learning Model

In learning from entailment, an example is a Horn clause. An example P ! q is

a positive example of � if � j= P ! q; negative, otherwise. An entailment query
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takes as input an example (P ! q), and outputs yes if it is a positive example of

� (� j= P ! q), and no otherwise. An equivalence query takes as input a Horn

program H and outputs yes if H and � contain (entail) exactly the same Horn

clauses; otherwise, it returns a counterexample that is in (entailed by) exactly one of

H and �. A derivation-order query, �, takes as input two atoms l1 and l2 in L and

outputs yes if l1 � l2, and no otherwise. An algorithm exactly learns a Horn program

� in AHk in polynomial time from equivalence, entailment, and derivation-order (�)

queries if and only if it runs in time polynomial in the size of � and in the size

of the largest counterexample, and outputs a Horn program in AHk such that the

equivalence query answers yes.

5.3.2 The Learning Algorithm

In this section, we describe the learning algorithm, PLearn, shown in Figure 2. PLearn

is similar to DLearn in that it always maintains a hypothesis H which is entailed by

the target, so that every instance ofH is also an instance of � and all counterexamples

are positive. It is, however, more complicated than DLearn because the clauses in

the target can be chained together in a derivation of a positive example.

Suppose that a counterexample P ! q is given to the learner|see Figure 2.

Every such counterexample has a derivation from the target theory, �. Since this

derivation is not possible from the current hypothesis H, there is some clause used

in the derivation that has not been learned with su�cient generality. The algorithm

tries to identify the antecedent literals of such a clause, c�, in the target by expanding

the derivation graph from its leaves in P toward the goal using the clauses in H. In

other words, PLearn computes the minimal model (P 0

f) of H implied by P (\closure"

or \saturation") by forward chaining (line 4). To identify the consequent of c�, also

called the \prime consequent" of P 0

f , PLearn calls PrimeCons in line 5. PrimeCons
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�nds the prime consequent of P 0

f by tracing the \supported-by" chain starting from

q for a literal qf not in P
0

f , but that is directly supported by some of the literals in P 0

f

(lines 13{18). In line 6, PLearn makes use of Reduce to trim away \irrelevant" literals

from the antecedent P 0

f to form a new clause Pf ! qf that is also a counterexample

to the hypothesis and is subsumed by a single target clause|see Lemmas 5.3.8, 5.3.1,

and 5.3.2.

PLearn combines Pf ! qf with an \appropriate" clause Pi ! qi in H by comput-

ing the lgg (lines 7{9). It uses the entailment query to �nd an appropriate hypothesis

clause by checking if the lgg is implied by the target (line 7). If no such clause exists

in H, Pf ! qf is appended to H as a new clause (line 10).

One problem with this approach is that the size of the lgg is a product of the

sizes of its two arguments. This causes the size of a hypothesis clause to grow

exponentially in the number of examples combined with it in the worst case. We

use a solution similar to the one employed by DLearn to avoid this. The antecedent

literals of the clause after computing the lgg are again trimmed using Reduce so that

the size of the resulting clause is bounded, while it is still subsumed by the target

clause (lines 19{25). The result of Reduce then replaces the original hypothesis clause

Pi ! qi it is derived from (line 9). After this step, only the antecedents of the target

clause and some of their consequents remain in the resulting hypothesis clause|see

Lemma 5.3.4. This process repeats until the hypothesis H is equivalent to �. The

algorithm works for unit clauses (which have empty antecedents) without change.

5.3.3 An Example

As an example to see how PLearn works, consider � = fl1(f(?x)); l2(?x); l3(?x)

! l4(?x); l1(f(?x)); l2(?x) ! l5(?x); l4(?x); l5(?x) ! l7(?x)g where f is a func-

tion symbol. Suppose H = fl1(f(c)); l2(c) ! l5(c)g. Let the counterexample be
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PLearn

Given equivalence, entailment queries, and the derivation order �

outputs a Horn program H such that equivalent?(H;�) is Yes.

(1) H := fg /* empty hypothesis-clauses set */

(2) while not equivalent?(H;�) do f

(3) Let P ! q be the counterexample returned

(4) P 0

f := fl : H j= (P ! l)g /* forward chaining */

(5) qf := PrimeCons(P 0

f ! q)

(6) Pf ! qf := Reduce(P 0

f ! qf )

(7) if 9Pi ! qi 2 H such that � j= Pg ! qg ,

(8) where Pg ! qg is lgg(Pi ! qi; Pf ! qf )

(9) then replace �rst such Pi ! qi by Reduce(Pg ! qg)

(10) else append Pf ! qf to H

(11) g /* while */

(12) return H

PrimeCons(P ! q) /* finds prime consequents */

(13) Let L be the set of all possible literals having only those terms that are in P

(14) q0 := q;

(15) L0 := fl : l 2 L� P and � j= P ! lg

(16) while 9l 2 L0 such that q0 � l

(17) q0 := l;

(18) return q0

Reduce(P ! q) /* trims irrelevant literals */

(19) P 0 := P

(20) repeat

(21) for each literal l in P 0 in sequence do

(22) if � 6j= (P 0 � flg)! l and � j= (P 0 � flg)! q

(23) then P 0 := P 0 � flg

(24) until there is no change to P 0

(25) return P 0 ! q

FIGURE 5.2: PLearn Algorithm
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l1(f(d)); l2(d); l3(d) ! l7(d). In step 4, this clause does not change. In PrimeCons,

since l7(d) � l4(d) and l7(d) � l5(d), l7(d) is not a prime consequent, but any one

of l4(d) and l5(d) is. Suppose PrimeCons returns l5(d). Reduce eliminates l3(d) from

the antecedent, because � j= l1(f(d)); l2(d)! l5(d), and � 6j= l1(f(d)); l2(d)! l3(d).

Thus, Pf ! qf = l1(f(d)); l2(d) ! l5(d). Combining this with the clause in H,

we obtain Pg ! qg = l1(f(?x)); l2(?x) ! l5(?x). Since l1(f(?x)); l2(?x) ! l5(?x) is

entailed by �, the new H is fl1(f(?x)); l2(?x)! l5(?x)g.

Suppose the next counterexample is l1(f(c)); l2(c); l3(c)! l7(c). Then, qf = l4(c),

and P 0

f = fl1(f(c)); l2(c); l3(c); l5(c)g. Pf ! qf = l1(f(c)); l2(c); l3(c); l5(c) ! l4(c),

since Reduce cannot remove l5(c), because it is implied by the other literals wrt

� (line 22). The modi�ed counterexample Pf ! qf cannot be combined with the

clause in H, because the resultant Pg ! qg after lgg, l1(f(?x)); l2(?x) !, is not

entailed by �. Hence, it is appended to H to make H = fl1(f(?x)); l2(?x) !

l5(?x); l1(f(c)); l2(c); l3(c); l5(c)! l4(c)g.

Suppose the next counterexample is again l1(f(c)); l2(c); l3(c) ! l7(c). After

line 4, P 0

f = fl1(f(c)); l2(c); l3(c); l5(c); l4(c)g. qf now is l7(c), because it is a prime

consequent of P 0

f . After Reduce, Pf = l5(c); l4(c). Pf ! qf cannot be combined with

the clauses in H, because the resultant lgg's are not entailed by �. Again, Pf ! qf

is added to H. This process continues until H and � are equivalent.

To bring out the nuances in Reduce, let us revisit the last part of the previous

example. Consider the input l5(c); l2(c); l3(c); l1(f(c)); l4(c) ! l7(c) to Reduce. Al-

though � j= l1(f(c)); l2(c); l3(c) ! l7(c), since � j= l1(f(c)); l2(c); l3(c) ! l4(c) and

� j= l1(f(c)); l2(c)! l5(c), the literal l5(c) cannot be removed. This is because l5(c)

is implied by the other literals (l1(f(c)); l2(c)) w.r.t �. The order in which the liter-

als are removed in Reduce follows the derivation order: if li � lj, then if li must be

removed, it is removed after lj is removed. This can be intuitively imagined in the fol-
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lowing way. Consider a derivation tree for a counterexample, with the consequent lit-

eral on top and the antecedent literals at the bottom. The above process trims o� the

literals bottom-up in the tree up to the appropriate level, so that the resulting clause

is subsumed by some clause in the target. In the above case, if Reduce removes l5(c)

and leaves over l1(f(c)); l2(c), the resulting clause (l1(f(c)); l2(c); l3(c); l4(c)! l7(c))

is not subsumed by any clause in �.

However, this means that Reduce leaves literals which are implied by the remain-

ing literals, i.e., l cannot be removed from P 0 if � j= (P 0 � flg) ! l (line 22).

Removing such literals could result in hypothesis clauses which are not subsumed

by any target clause, as the following example illustrates. Let � be fl1(a) ! l2(a);

l1(?x); l2(?x) ! l3(?x)g. Suppose the �rst counterexample is l1(a); l2(a) ! l3(a).

Hence P 0

f = fl1(a); l2(a)g and qf = l3(a) in line 6. If Reduce were to remove l2(a)

from P 0

f because � j= l1(a) ! l3(a), it would end up with a clause that is not

subsumed by any target clause. We would like to prevent such redundant hypoth-

esis clauses so that their number is not too high compared to the number of target

clauses. (This argument is formalized in Lemmas 5.3.5, 5.3.6 and 5.3.7.)

5.3.4 Learnability of AHk

In this section, we prove that the PLearn algorithm in Figure 5.2 exactly learns a

subclass of AHk for which subsumption is of polynomial-time complexity. The plan

of the proof is as follows: Through a series of lemmas, we �rst establish that every

hypothesis clause learned has a target clause (Lemma 5.3.5). We then show that ev-

ery target clause has at most one hypothesis clause (Lemma 5.3.7). Together, these

two lemmas establish that the number of hypothesis clauses is bounded by the num-

ber of target clauses. We use this fact and the bounds of the sizes on the hypothesis

clauses (established in Lemma 5.3.4) to show that PLearn learns successfully in poly-
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nomial time (Theorems 5.3.1 and 5.3.2). We then de�ne a speci�c hypothesis class

that obeys the conditions of these theorems and prove that this class is learnable

(Theorem 5.3.3).

Lemmas 5.3.1 and 5.3.2 show that PrimeCons with the input P ! q �nds a

(prime) consequent q0 of P such that P ! q0 is subsumed by a clause in �.

Lemma 5.3.1 Let P ! q be the input and q0 be the output of PrimeCons. Assume

that q 62 P and � j= P ! q. Then, (1) PrimeCons terminates; (2) q0 is a prime

consequent of P wrt �.

Proof. (1) Since � is acyclic, there is a terminating sequence q � l1 � l2 : : : . Since

the loop of lines 16{17 can only iterate as many times as the length of the sequence,

PrimeCons terminates. (2) q0 is such that � j= P ! q0, and q0 62 P (by lines 15{17).

Since q0 is as in line 17 in the iteration immediately prior to the terminating iteration

of lines 16{17, there is no l such that q0 � l, � j= P ! l and l 62 P . Thus, q0 is a

prime consequent of P wrt �. ut

Lemma 5.3.2 If q0 is a prime consequent of P wrt �, then there is a clause C 2 �

such that C � P ! q0.

Proof. Assume that q0 is a prime consequent of P wrt �. Consider a derivation

G of P ! q0 in �. Let (l1; q
0); : : : ; (ld; q

0) be the only arcs of G that terminate at

q0. This implies that q0 � li for all li 2 fl1; : : : ; ldg. It must be that every li is

in P ; otherwise, there is an l (viz. li) such that q0 � l, � j= P ! l and l 62 P|

contradicting the assumption that q0 is a prime consequent. Thus, fl1; : : : ; ldg � P .

But, l1; : : : ; ld ! q0 = C� for some clause C 2 H and a substitution �, following the

de�nition of derivation. Thus, C� � P ! q0, implying that C � P ! q0. ut
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The following de�nition and Lemmas 5.3.3 and 5.3.4 help show that Reduce,

given a clause P ! q as input, removes irrelevant literals from antecedent P , while

maintaining q as a consequent.

De�nition 5.3.1 If A is a conjunction, closure of A with respect to �, denoted by

�A, is de�ned as flj� j= (A! l)g.

Lemma 5.3.3 If q is a prime consequent of P w.r.t. � and P 0 ! q = Reduce(P !

q), then q is a prime consequent of P 0 also.

Proof. Suppose that q is not a prime consequent of P 0. This implies that there is

another literal q0 62 P 0 so that � j= P 0 ! q0 and q � q0. Consider a derivation of

P 0 ! q0 that does not contain q. Since q � q0, there must be such a derivation. If q0

is not in P , then q would not have been a prime consequent of P , since q � q0, and

� j= P ! q0. If q0 2 P , however, it would still have been in P 0, since � j= P 0 ! q0,

and, by lines 22-23, only those literals that are not supported by P 0 are removed.

Since we have a contradiction that neither q0 2 P nor q0 62 P , q must be a prime

consequent of P 0. ut

Lemma 5.3.4 If the input P ! q to Reduce is s.t. q is a prime consequent of P

wrt �, then the output P 0 ! q is such that P 0 � �A� where A ! b is a clause in �

and A� � P 0 and b� = q.

Proof. Since q is a prime consequent of P , by Lemma 5.3.3, q is a prime consequent

of P 0 also. Then, by Lemma 5.3.2, there is a clause A ! b 2 �, and a � such that

A� � P 0 and b� = q. We now show that P 0 � �A�. Assume that there exists a literal

in P 0 � �A�. Let l 2 P 0 � �A� be a least such literal so that there is no literal l0

in P 0 � �A� such that l � l0. Such a literal must exist, because � is acyclic. There

are two reasons for l to remain in P 0 � �A�: either (a) � 6j= (P 0 � flg) ! q or (b)
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� j= (P 0 � flg)! l. We disprove both the cases: (a) Since A� � P 0, and l is not in

�A� and thus not in A�, A� � (P 0 � flg). Therefore, � j= (P 0 � flg) ! q. (b) The

only other reason why l remains in P 0 is that � j= (P 0 � flg)! l. That means that

P 0 � flg contains literals that imply l. There must be at least one such literal l0 in

P 0 that is not in �A�, or else l 2 �A�, contradicting l 2 P 0 � �A�. But then P 0 � �A�

contains literals l0 such that l � l0, which contradicts the statement that there is no

such l0. Thus, we disprove both the possibilities. Hence, P 0 � �A�. ut

Lemmas 5.3.5, 5.3.6 and 5.3.7, below, show that PLearn only maintains correct

clauses in H.

Lemma 5.3.5 Every clause Pi ! qi 2 H has a target clause.

Proof. We �rst show that each Pi ! qi 2 H is such that qi is a prime consequent

of Pi. Then, by Lemma 5.3.2, Pi ! qi has a clause C 2 � such that C � Pi ! qi.

We show that qi is a prime consequent of Pi by induction on the number of

times a clause at position i in H is updated. It is �rst introduced by line 10. By

Lemmas 5.3.1 and 5.3.3, qf is a prime consequent of Pf . This proves the base case.

The other way a clause becomes a hypothesis clause is by line 9. The clause at

position i in H (Pi ! qi) is updated by line 9. As inductive hypothesis, assume

that each Pi ! qi in H is such that qi is a prime consequent of Pi, at the beginning

of an iteration of the loop of lines 2{11 when position i in H is updated. Consider

Pg ! qg = lgg(Pi ! qi; Pf ! qf ). Suppose qg is not a prime consequent of Pg,

but q0g such that qg � q0g is. Let �f and �i be substitutions such that Pg�f � Pf ,

qg�f = qf , Pg�i � Pi, and qg�i = qi. Let q
0

f = q0g�f and q0i = q0g�i. Since qg � q0g, by

the de�nition of � order, qf � q0f and qi � q0i. Since qf is a prime consequent of Pf ,

q0f must be in Pf . Similarly, q0i must be in qi. Therefore, lgg(q
0

i; q
0

f) = q0g must be in

Pg, contradicting the assumption that q0g is a prime consequent of Pg. Hence, qg is a
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prime consequent of Pg. By Lemma 5.3.3 if Pi ! qi = Reduce(Pg ! qg), then qi is a

prime consequent of Pi. So by Lemma 5.3.2, Pi ! qi has a target clause. ut

Lemma 5.3.6 If PLearn combines a modi�ed counterexample Pf ! qf with a clause

Pi ! qi 2 H, then there is a target clause C s.t. C � Pf ! qf and C � Pi ! qi.

Further, there is no C 0 s.t. C 0 � Pj ! qj and C 0 � Pf ! qf , for any j < i.

Proof. PLearn combines Pf ! qf with Pi ! qi only if � j= lgg(Pi ! qi; Pf ! qf).

By Lemma 5.3.5, qg is a prime consequent of Pg where Pg ! qg = lgg(Pi ! qi; Pf !

qf). By Lemma 5.3.2, there is a C 2 � such that C � Pg ! qg. Hence, C � Pi ! qi

and C � Pf ! qf . Since Pf ! qf is combined with Pi ! qi, for any j < i, � 6j=

lgg(Pj ! qj; Pf ! qf ). Therefore, there is no C 0 s.t. C 0 � lgg(Pj ! qj; Pf ! qf).

Thus, there is no C 0 s.t. C 0 � Pj ! qj and C 0 � Pf ! qf . ut

Lemma 5.3.7 Every clause C 2 � has at most one hypothesis clause.

Proof. First, we show that any new hypothesis clause added toH has a target clause

distinct from the target clauses of the other hypothesis clauses in H. Next, we show

that if two hypothesis clauses do not have common target clauses at the beginning

of an iteration of the loop of lines 2{11, then they still do not have common target

clauses at the end of the iteration.

When Pf ! qf is added to H, by Lemma 5.3.6, for any clause Hi in H, there is no

C 2 � such that C � Hi and C � Pf ! qf . Therefore, Pf ! qf , a new clause added

to H, has a target clause distinct from the target clauses of the other hypothesis

clauses then in H. Next, at most one of Hi and Hj can change in an iteration of

the loop. If neither changes, we are done with the proof. Suppose that Hi changes,

without loss of generality. Let C be any target clause of Hj. Assume that Hi and

Hj do not have a common target clause at the beginning of an iteration. Hence, C
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is not a target clause of Hi. That is, C 6� Hi. Let e be the counterexample for the

current iteration. We �rst show that lgg(Hi; e) does not have C as a target clause.

Since C 6� Hi, C 6� lgg(Hi; e). Therefore, C is not a target clause of lgg(Hi; e). Let

lgg(Hi; e) be Pg ! qg, and C be A! b. Hence, for every �, either A� 6� Pg or b� 6= qg.

If A� 6� Pg, A� is not a subset of any subset of Pg. Since Reduce outputs a clause with

a subset of Pg as the antecedent and qg as the consequent, C 6� Reduce(lgg(Hi; e)).

Therefore, Hj and the new clause in position i, Reduce(lgg(Hi; e)), do not have a

common target clause even at the end of the iteration. ut

The following lemma shows that even after the modi�cations due to PrimeCons

and Reduce, a counterexample remains a counterexample.

Lemma 5.3.8 Pf ! qf as in line 6 of PLearn is a positive counterexample.

Proof. First, we show that every counterexample P ! q, as in line 3, is a positive

counterexample. Then, we argue that P 0

f ! qf (lines 4 and 5) is also a positive

counterexample. Finally, we show that Pf ! qf (line 6) is a positive counterexample.

Since, by Lemma 5.3.5, for every Hi 2 H, there is a clause C 2 � such that

C � Hi, � j= H. Therefore, P ! q, as in line 3, is a positive counterexample. Since

P � P 0

f , � j= P 0

f ! q. Since P 0

f contains all and only those literals l such that

H j= P ! l, for any literal l0 62 P 0

f , H 6j= P 0

f ! l0. Since qf (by lines 5 and 15) is

not in P 0

f , H 6j= P 0

f ! qf . By line 15, � j= P 0

f ! qf . Therefore, P 0

f ! qf is also a

positive counterexample. Finally, since Pf � P 0

f , H 6j= Pf ! qf . By lines 6 and 22,

� j= Pf ! qf . Thus, Pf ! qf is a positive counterexample. ut

Finally, Theorem 5.3.1 shows that PLearn exactly learns AHk when forward chain-

ing using H is of polynomial-time complexity. Theorem 5.3.2 identi�es conditions on

� such that PLearn returns an H for which the time complexity of forward chaining

is polynomial.
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Theorem 5.3.1 PLearn exactly learns AHk with equivalence, �, and entailment

queries, provided that determining H j= P ! l is polynomial in the sizes of H

and P .

Proof. By Lemma 5.3.8, Pf ! qf is a positive counterexample. For each coun-

terexample, either a new antecedent is added (line 10) or an existing antecedent is

replaced (line 9). In the latter case, the replaced clause Pi ! qi must be subsumed

by the replacing clause P 0 ! qg, since both lgg and Reduce generalize the original

clause by turning constants to variables and dropping literals. On the other hand,

the replaced clause must not subsume (and hence be di�erent from) the replacing

clause P 0 ! qg = Reduce(Pg ! qg). If not, that is if Pi ! qi � P 0 ! qg, since

P 0 ! qg � Pg ! qg � Pf ! qf , Pi ! qi � Pf ! qf . Since Pi ! qi 2 H,

H j= Pf ! qf|thus contradicting that Pf ! qf was a counterexample of H. Hence,

the replacement at a position in H changes the clause at that position. The mini-

mum change there can be is either a variablization of a constant or a removal of a

literal.

Let n be the number of clauses, and s be the number of distinct predicate symbols

in �. Further, let the maximum number of terms in any clause be t, and in any

counterexample be te.

Since k is the maximum arity of the predicates in �, the maximum possible num-

ber of literals there can be using t terms is at most stk. Hence, the maximum number

of literals in �a, and therefore, by Lemmas 5.3.4 and 5.3.5, in each clause is at most

stk. This includes all literals and their variablized versions. Hence, we can consider

variablization as removing a literal. Thus, we need at most stk counterexamples for

each clause. (This includes one base counterexample to introduce a clause into H.)

By Lemmas 5.3.5 and 5.3.7, there are at most n clauses in H. Hence, we need at

most nstk counterexamples or equivalence queries. A call to PrimeCons from line 5
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takes at most stke entailment queries, because the literals we need to try as possible

consequents are all in L, and jLj � stke . PrimeCons is called once for each of the

counterexamples.

For each of the nstk counterexamples, the condition in line 7 is tested at most n

times, which needs at most n entailment queries. Reduce is called with the argument

P 0

f ! qf once for each of the counterexamples, and with the arguments Pg ! qg

for at most nstk counterexamples. In Reduce(P ! q), in jP j iterations of the loop

of lines 21{23, at least one literal is removed. So, this loop can be tried at most

jP j times. Each iteration of the loop of lines 21{23 takes two entailment queries.

Therefore, Reduce(P ! q) needs at most jP j(jP j + 1) entailment queries. Hence,

Reduce(P 0

f ! qf) needs at most nf = stke(st
k
e + 1) entailment queries. Since Pi ! qi

and Pf ! qf are outputs of Reduce, the maximum possible number of literals in

Pg ! qg = lgg(Pi ! qi; Pf ! qf ) is at most s2t2k. Hence, Reduce(Pg ! qg) needs at

most ng = s2t2k(s2t2k + 1) entailment queries. Thus, the total number of entailment

queries is at most nstk(stke + n + nf + ng).

If determining H j= (P ! l) takes P(n; l; te) time where P is a polynomial, then

line 4 takes at most stke �P(n; l; te) time. In the rest, the number of entailment queries

dominates the time. Hence, the time taken by PLearn is polynomial in n; s; l; v; t;

and te. ut

De�nition 5.3.2 Let P ! q be a Horn clause. P 0 ! q is called its antecedent

expansion if P � P 0 and P 0 contains only those variables in P . A class C of

Horn sentences is closed under antecedent expansion, if every Horn sentence obtained

by selecting a subset of its Horn clauses and replacing them with their antecedent

expansions is also in C.
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De�nition 5.3.3 A subsumption algorithm takes a clause A! b, a conjunction

of literals P , and a ground substitution � for the variables in b, and returns true if

and only if A� � P .

Theorem 5.3.2 PLearn exactly learns a subclass C of AHk with equivalence, �, and

entailment queries, provided that (a) C is closed under substitution and antecedent

expansion and (b) the clauses A ! b of the target concepts in C have a polynomial-

time subsumption algorithm.

Proof. By Lemma 5.3.4, each clause Pi ! qi 2 H in PLearn has a target clause

A ! b and a substitution � such that A� � Pi � �A�. Since the target class is

closed under substitution and antecedent expansion, the hypothesis clauses have a

polynomial-time subsumption algorithm. Hence, the forward-chaining step of com-

puting the consequents of P in line 4 of PLearn can be done in polynomial time

by repeatedly checking for a hypothesis clause A ! b whose antecedent subsumes

P after a substitution � of the variables in b, and adding b� to P . Hence, by the

previous theorem, PLearn exactly learns C. ut

The following de�nition and theorem identify some syntactic restrictions on AHk

such that the resulting subclass satis�es the conditions of the previous theorem.

De�nition 5.3.4 Let P be a set of literals. A Horn clause l1; : : : ; ln ! q is i-

determinate w.r.t. P i� there exists an ordering lo1 ; : : : ; lon of l1; : : : ; ln such that

for every i < j � n and every substitution � such that (lo1 ; : : : ; loj�1
! q)� is ground

and flo1; : : : ; loj�1
g� � P , there is at most one substitution � for the variables in loj�

such that loj�� is ground and is in P .� We call such an ordering of the literals in

� This de�nition strictly generalizes the standard de�nition of determinacy (Muggleton & Feng,
1990), in that a Horn clause (program) is determinate w.r.t. a set of literals p when it is 0-
determinate w.r.t. P . i-determinacy should not be confused with ij-determinacy, or constant-
depth �xed-arity determinacy, which is more restricted than determinacy.
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the clause an i-determinate ordering w.r.t. P . A Horn program is i-determinate

w.r.t. P i� each of the clauses in the program is i-determinate w.r.t. P .

Theorem 5.3.3 The class of i-determinate Horn programs in AHk, denoted as

iDetAHk, is exactly learnable with equivalence, �, and entailment queries.

Proof. First we show that iDetAHk is closed under substitution and antecedent ex-

pansion. Consider a target clause (l1; : : : ; ln ! q) for a target program in iDetAHk,

whose antecedent literals are sorted in the determinate order. Let (l1; : : : ; ln; ln+1;

: : : ; lm ! q)� be the target clause after antecedent expansion and substitution. We

want to show the new clause to be i-determinate.

For every set of literals P , substitution �, and j such that i < j � m and

(l1; : : : ; lj�1)�� � P is ground, there is a substitution 
 which is equivalent to apply-

ing � and � one after another so that (l1; : : : ; lj�1)�� = (l1; : : : ; lj�1)
 and lj�� = lj


for any lj. Since the target clause satis�es i-determinacy, there must be at most a

single ground substitution � for lj
, j � n, so that lj
� 2 P , which means that

this is true for lj�� as well. Since the literals from ln+1 through lm do not have any

variables not already in l1 through ln, there is at most a single ground substitution

for them as well. Hence, (l1; : : : ; lm ! q)� is also i-determinate.

Now we show that the clauses of the programs in iDetAHk have a polynomial-

time subsumption algorithm. Given a set of literals P and a clause l1; : : : ; ln ! q

(whose literals have an unknown determinate ordering), consider all possible subsets

of fl1; : : : ; lng of size i and less. Note that there are at most O(ni) such subsets. For

each such subset, instantiate all the ki variables in that subset in all possible ways. If

the total number of terms in p and � is t, this gives us tki di�erent substitutions. For

each such substitution, there is at most one substitution for the remaining literals in

the clause. The order in which the remaining literals have to be substituted can be
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determined by sequential search|apply the current substitution to each literal and

pick the one that only allows one possible substitution for its remaining variables.

This can be done in O(n2jP j) time. If the antecedent l1; : : : ; ln subsumes P , then

one of the considered subsets should yield a successful match. Hence, the total time

for the algorithm is bounded by O(nitkin2jP j), which is polynomial in all variables

except k and i which are assumed to be constants.

Since the class iDetAHk satis�es the two conditions required by Theorem 5.3.2

for PLearn to be successful, the result follows. ut

5.4 Discussion and Conclusions

In this chapter, we have shown the learnability of certain subclasses of acyclic k-ary

Horn programs. More speci�cally i-determinate Horn programs in AHk, are exactly

learnable with equivalence and entailment queries. Unlike the work of Page (1993)

and Arimura (1997), the programs we considered allow local variables in the an-

tecedents. However, the clauses must be non-generative in that the set of terms

and variables that occur in the head of the clause must be a subset of those that

occur in the body of the clause. This is needed to constrain the forward-chaining

inference step to �nish in polynomial time; otherwise, it could become unbounded.

It appears that simultaneously removing both the non-generative and simplicity re-

strictions could be di�cult when functions are present, due to the unbounded nature

of inference in that case.

Learning from entailment and learning from interpretations are two of the stan-

dard settings for �rst-order learning (De Raedt, 1997). In learning from interpreta-

tions, the learner is given a positive (or negative) interpretation for which the Horn

sentence is true (or false). Interpretations can be partial in that the truth values of

some ground atoms may be left unspeci�ed. When membership queries are avail-
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able, learning from entailment and learning from interpretations are equivalent for

Horn programs. Hence we can use PLearn to learn from (negative) interpretations

as follows. Given a negative interpretation, \minimize" it by removing the negative

literals from it and asking membership queries. Since every negative interpretation

must violate some Horn clause, this yields an interpretation with a set of positive

literals l1; : : : ; ln and at most one negative literal qi. We can convert this into a

positive counterexample for PLearn: l1 ^ : : : ^ ln ! qi. Similarly, if PLearn asks an

entailment membership query on some clause, say, l1 ^ : : : ^ ln ! qi, we can turn

that into a membership query on the interpretation l1; : : : ; ln;:qi after substituting a

unique skolem constant for each variable in the clause. The answer to the entailment

query is true i� the answer to the membership query is false.

One limitation of our algorithm is that it assumes that the supported by relation,

�, is given. While this is a reasonable assumption in some planning domains, where

it is known which goals occur as subgoals of which, it is desirable to learn this rela-

tion. Unfortunately, this seems to be di�cult due to a number of problems. One of

the main di�culties is that it is sometimes not possible to determine which, of the

set of consequents of an antecedent, is the prime consequent. For example, consider

the target � : fl1(?x) ^ l2(?x) ! l3(?x); l1(?x) ^ l3(?x) ! l4(?x)g. Given the coun-

terexample l1(c)^ l2(c)! l4(c), the literal l4(c) is not a correct consequent, but l3(c)

is. Although Lemma 5.3.2 says that a prime consequent is the right consequent to

choose, without knowing the order it is not clear how to identify it. Learning all pos-

sible clauses while maintaining all consequents also does not seem to work, resulting

in spurious matches between some of these redundant clauses and counterexamples

in some cases.

There is a problem in the way the acyclicity property and the supported-by rela-

tion are de�ned. They do not allow acyclic recursive Horn programs. For example,
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according to De�nition 5.2.2 and De�nition 5.2.3, the following Horn program is not

acyclic:

ffather(?x; ?y)! parent(?x; ?y);

mother(?x; ?y)! parent(?x; ?y);

parent(?x; ?y)! ancestor(?x; ?y);

parent(?x; ?y); ancestor(?y; ?z)! ancestor(?x; ?z)g

If we substitute the same variable ?u for the variables ?x; ?y and ?z in the last

clause, we have ancestor(?u; ?u) � ancestor(?u; ?u)|which violates the de�nition

of acyclicity. In their usual meaning, the relations father;mother and ancestor are

not re
exive. Therefore, in reasonable domains, we do not encounter literals such as

father(a; a) where a is a constant. Also, we do not expect the literals father(a; b) and

father(b; a) both to be true in a reasonable interpretation. We call such reasonable

interpretations \legal interpretations." Thus, it is reasonable to de�ne supported-by

and acyclicity with respect to a legal interpretation and a Horn program, instead of

de�ning them with respect to just a Horn program. Then, the derivation-order query

would answer queries on the ground literals with respect to a legal interpretation.

Each example can be a Horn clause containing literals from a legal interpretation

with respect to which the target Horn program is acyclic. In this scenario, the

PLearn algorithm can be shown to learn Horn programs, such as the ones in the

example above, which are recursive but are acyclic with respect to a set of legal

interpretations.

In Chapter 7, we will see the connections and di�erences between the PLearn

algorithm and the method we applied for learning d-rules from exercises.
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Chapter 6

LEARNING D-RULES FROM EXAMPLES

In Chapters 3, 4 and 5, we have seen how d-rules can be learned via learning Horn

clauses. In this chapter, we implement a system that learns d-rules from examples,

where each input example is a pair consisting of a planning problem and its solution

as a sequence of actions. The system is based on the ideas we developed in DLearn,

in Chapter 4, which learns Horn de�nitions from Horn-clause examples.

6.1 Introduction

One of the goals of machine learning is to improve the problem-solving performance

of systems with their own experience and from external teaching. One approach to

this problem is to empirically learn heuristics or control knowledge from examples

of successful and unsuccessful problem solving. For example, this is the approach

adopted to learn heuristics for symbolic integration in LEX (Mitchell, Utgo�, &

Banerji, 1983).

The purely empirical approach of LEX and other similar systems does not ex-

ploit the knowledge of the goals and the operators of the domain (i.e., \the domain

theory") that the problem solver already has. Exploiting this prior knowledge could

potentially expedite learning by �nding more general rules from only a few exam-

ples. Explanation-based learning (EBL) is based on this observation. It applies the

domain theory to explain why a particular problem-solving episode is successful (or
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unsuccessful), and from that explanation, it extracts the conditions relevant to that

success (Mitchell, Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986).

EBL was employed as the learning technique in LEX2 (Mitchell et al., 1983) as

well as in many other learning systems including PRODIGY (Minton, 1988) and

SOAR (Rosenbloom & Laird, 1986). Unfortunately, however, EBL does not always

lead to e�cient problem solving. Many EBL systems su�er from the \utility prob-

lem" identi�ed by Minton as the problem of excessive cost of �nding and using the

appropriate learned knowledge in problem solving (Minton, 1988). One of the sources

of the utility problem is the speci�city of the explanations in EBL. To learn macro-

operators, for example, the system has to explain why a particular operator sequence

led to a goal. Since the preconditions of each relevant operator in the sequence are

included in the condition extracted by the EBL process, if the operator sequence

is long, the macro precondition is long as well. Such long preconditions lead to an

expensive match process when the system attempts to use that learned macro.

The goal of speedup learning can be viewed as �nding an e�cient \target problem

solver" by searching the hypothesis space of potential problem solvers. As in any

induction system, it is possible to search this space e�ciently only when the space

is suitably constrained by a bias. This suggests that learning should begin with

a hypothesized architecture for the problem solver which constrains the learner's

hypothesis space. To eliminate the utility problem, the hypothesized architecture

should only allow e�cient problem solvers. Tambe, Newell, and Rosenbloom (1990)

restrict the expressiveness of their knowledge representation method (chunking) to

allow for e�cient utilization of the learned knowledge. Here, we restrict the whole

problem solvers to enable e�cient problem solving.

In this chapter, we describe a learning system for a decomposition-based target

problem-solving architecture. The architecture guarantees e�ciency by relying en-
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tirely on backtrack-free recursive goal-decomposition for problem solving. However,

this target architecture also poses some di�culties for the learner. One of the im-

portant issues raised is that of e�ciently �nding a problem solver in the hypothesis

space which is consistent with the examples. Unfortunately, this problem is hard

for expressive hypothesis spaces that involve �rst-order rules, as we have seen in

Chapters 4 and 5.

The system relies on two sources to overcome this di�culty. First, it uses the

domain theory to simplify the examples by removing some irrelevant literals and to

add some possibly relevant abstract literals. Second, it asks the teacher membership

queries about speci�c instances, as done in Chapters 4 and 5. The domain theory

helps simplify the hypothesis in focusing on only the relevant literals and in using

abstract literals. Membership queries make it possible to ask about the relevance

and generality of each literal in the example, and thereby determine which current

hypothesis a given example belongs to, and how to combine it with that hypothesis.

We tested our system, ExEL, in three di�erent domains|the blocks world, a

variation of the STRIPS world, and a simpli�ed air-tra�c control world. In each

of these domains, it found a target problem solver which has 100% accuracy on the

test problems, with only a few random examples. Our results suggest that guiding

empirical learning approaches by biasing them with a domain theory and providing

them with suitable teacher oracles could be a successful approach to speedup learning

in complex domains.

The rest of the chapter is organized as follows. Section 6.2 describes our system

for learning d-rules. Section 6.3 describes the experimental results. Section 6.4

discusses our work in the context of the related work.
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6.2 Learning System

In this section, we describe our learning system. For each domain, the input to

the system is its domain theory and a teacher. The domain theory comprises the

operators and the de�nitional axioms. The operators are speci�ed in STRIPS style

| i.e., with parameters, explicit preconditions, an add list and a delete list for

each operator (Fikes et al., 1972). Axioms are de�nitions of utility functions (e.g.,

+, >, etc.), and of abstract or higher-level terms such as toLeftOf, above. The

teacher provides training examples and answers the learner's queries. The task for

the learner is to �nd a set of d-rules which are consistent with the solutions of the

training problems.

All training examples are examples of successful problem solving, i.e., positive

examples. Each example consists of a problem|an initial state and a goal|and its

solution|the sequence of actions the planner has taken to reach the goal from the

initial state. The following is a training example from the air-tra�c control (ATC)

domain.

hproblem :

hstate :

(at(p1, 10), type(p1, propeller), fuel(p1, 5),

cursor-loc(4), free(1), free(2),: : :, free(9),

free(11),: : :, free(15), runway-cond(wet),

wind-speed(high), wind-dir(south))

goal : land-plane(p1) i

operator-sequence :

(jump(4, 10), select(10, p1), jump(10, 14), short-deposit(p1 R2)) i

Observe that there is a correspondence between the components of an example

and that of a d-rule. The goal of an example corresponds to the d-rule's goal, and
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the initial state corresponds to the d-rule's conditions. Note that the subgoals are

either eventually achieved by the actions in the action sequence or they are true

in the initial state. Hence, the literals in the initial state and the literals in the

subsequent states resulting from each action correspond to the d-rule's subgoals.

Because a subgoal occurring in a state is achieved before a subgoal in a later state,

inter-state literal ordering should be maintained for the purpose of learning subgoal

order. This is done by treating the subgoals component as a sequence of sets that

contain literals that are true in successive states. For the example above, the �rst

set is the initial state state, the second set is state with cursor-loc(4) removed

and cursor-loc(10) added|the result of the action jump(4, 10)|and so on.

The conditions component of a single d-rule is a conjunction of a set of positive

literals. In Chapter 3, we have seen that multiple d-rules for the same goal that di�er

in their conditions and subgoals can be mapped to Horn de�nitions. In Chapter 5,

we studied an algorithm for learning Horn de�nitions. Next, we will see how the

learning algorithm for Horn de�nitions can be adapted to learn d-rules from d-rule

examples.

As discussed in Chapter 4, Section 4.4, there is a problem in utilizing the algo-

rithm for learning Horn de�nitions to the task of learning d-rules. A d-rule hierarchy

maps to a Horn program rather than to a Horn de�nition. That is, literals appearing

as heads also appear in the bodies of clauses. The resulting interactions between

clauses violate the strong compactness property (Lemma 4.3.1). Hence, the Horn-

de�nition learner cannot be used directly to learn Horn programs. As suggested in

Section 4.4, we learn clauses for each goal separately, by assuming that d-rules for

lower-level (sub)goals are already known.
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6.2.1 ExEL's Empirical Generalization Process

For generalizing and learning d-rules, we employ an algorithm that is a slight varia-

tion of the Horn-de�nition learning (DLearn) algorithm. Although DLearn algorithm

is usable for learning d-rules, by performing the mapping described in Chapter 3, we

implemented a variant of it to exploit the speci�c optimization opportunities present

in learning d-rules. In Chapter 3, we have seen that each literal in every d-rule (and

d-rule example) is annotated with two situation parameters to keep track of state

information. Moreover, we add not-after literals to keep track of the temporal

ordering of situations. Instead, here, we separate the condition literals from subgoal

literals of a d-rule. The sequence in which the subgoal literals occur is the sequence

in which they need to be achieved while planning. For d-rules that are examples (or

that are hypothesized), we separate initial-state literals, which are candidate condi-

tion literals, from subsequent state literals, which are candidate subgoal literals. In

addition, the subgoal literals are maintained in a sequence. Then we use a separate

procedure (Order-Subgoals) to learn an ordering among subgoals.

The algorithm is presented in Figure 6.1. It is quite similar to the DLearn al-

gorithm. It takes as input the learned d-rules so far (d-rule hypotheses) and the

current example d-rule. It outputs a new set of d-rules that is a generalization of the

example d-rule and the previously learned d-rules.

It tries to include the example d-rule in each hypothesis d-rule. It does so by �nd-

ing the lgg of the hypothesis d-rule with the example d-rule and querying whether

the resultant hypothesis d-rule is a correct d-rule. The querying process carried out

by Test-Query is essentially a membership query as in Chapter 4, but it has a slight

variation when dealing with subgoal literals (cf. Section 6.2.3). If the query suc-

ceeds, the old hypothesis d-rule is replaced by the generalized d-rule. Otherwise, the

example d-rule is added as a new d-rule in the set of hypothesis d-rules. In both
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cases, the learned d-rule goes through further processing. First, the irrelevant literals

in the generalized d-rule are pruned by Reduce. The Reduce procedure is the same

as in Chapter 4, except for the slightly di�erent Test-Query. After removing irrele-

vant literals, the hypothesis d-rule's subgoal order is re�ned by the Order-Subgoals

procedure (cf. Section 6.2.3).

Generalize-Query(dRuleSet; egDrule)

if there is a dRule in dRuleSet such that

Test-Query(lgg(dRule; egDrule)) is successful

/* correct hypothesis to generalize is found */

replace dRule by Order-Subgoals(Reduce(lgg(dRule; egDrule)))

else dRuleSet Reduce(egDrule) + dRuleSet

/* example becomes a new drule*/

return dRuleSet

Reduce(lgg; dRuleSet)

for each lit in lgg do

if Test-Query(lgg � flitg; dRuleSet) is successful then

remove lit from lgg

return lgg

FIGURE 6.1: Generalize-and-query algorithm for generalizing d-rules, given an ex-
ample d-rule

So far, we have described empirical generalization from examples. Next, we

describe the role of the domain theory in generalization.
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6.2.2 Guiding Learning with Domain Theory

There are two problems if we directly generalize the examples: (1) there may be

extraneous literals in the initial state of an example, which result in increased cost

of generalization, in terms of learning time; (2) the literals in the example may not

be at the right level of abstraction. Therefore, after the components of d-rules are

identi�ed in the examples, and before they are used in the inductive generalization

process described in the previous section, the learner performs the following two steps

to transform them. Both these steps are guided by the domain theory.

6.2.2.1 Explanation-Based Pruning

Examples may contain literals describing relations among objects that may be irrel-

evant to a target d-rule. For instance, in the STRIPS-world domain, if the goal is to

navigate the robot from one room to another the relations involving objects that are

in various rooms are irrelevant to the d-rules for this situation. Even if the objects

are relevant, some of the relations between them may not be relevant.

The extraneous literals, unless eliminated, increase the generalization cost. Our

solution is to �rst explain the training example using the domain theory, and then to

collect the literals that are leaves of the proof tree that explains the example. This

is basically like explanation-based generalization (EBG) without the generalization

step. This solution limits the literals in the example to only the relevant ones. We do

not use the generalization step of EBG, because (1) conditions of d-rules may need

to be more speci�c than the result of the generalization step, and (2) the induction

process does the necessary generalization anyway.

To illustrate the pruning process, consider the example at the start of Section 6.2.

After the pruning step, all free literals are removed, except the literal free(14),
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because it so happens that only the literal free(14) is required among all the free

literals to prove the preconditions of the primitive operators in the solution sequence.

The literals runway-cond(wet) and wind-speed(high) are also removed, because

it so happens that none of the actions requires these literals in preconditions of the

operators.

6.2.2.2 Abstraction by Forward Chaining

If d-rules are speci�ed using literals expressed at a higher level of abstraction than

the terms in the operator's add and delete lists, they are more readable and con-

cise. Furthermore, abstract terms may be used to cover di�erent disjunctive cases.

Because the conditions in d-rules are conjunctive, without abstract terms, we need

a separate d-rule for each di�erent case. Consider, for instance, adjacency of two

rooms. A room, Room1, is adjacent to another room, Room2, if Room1 is to the

north, south, east, or west of Room2. Without the abstract term for adjacency, we

may need four separate d-rules | one each for each of the directions. Thus, abstract

terms reduce the number of d-rules required for a domain.

Axioms in the domain theory help the planner in understanding these high-level

terms by translating them into the planner's language. For example, one of the

translations for the high-level term can-land-short(?plane) in the ATC domain

is type(?plane DC10) ^ wind-speed(low)^ runway-cond(dry).

To introduce abstract literals into the learning example, we employ forward chain-

ing. We take the example that is in the planner's low-level language, and apply for-

ward chaining using the axioms. This would result in literals that are at the required

levels of abstraction. The axioms are shallow|mostly one-level|rules; therefore,

there is no danger of forward chaining introducing too many literals.
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For our running example, after the pruning step, this step introduces the literals

can-land-short(p1), wind-axis(north-south), runway-loc(R2, 14), runway-

dir(R2, north-south), short-runway(R2) and free-cursor().

6.2.3 Learning Subgoals

The subgoals of our d-rules do not contain any new variables besides the ones that

are in the goal and the conditions. Since subgoals are learned after the goal and the

conditions components are generalized, learning subgoals consists of selecting candi-

date subgoal literals and ordering them correctly. The subgoal literals are determined

using membership queries on the candidate subgoal literals selected from the �rst

example of a d-rule, which we call the \seed example." The remaining examples are

used to re�ne the ordering of the subgoals learned from the seed example.

The literals which are true in the intermediate states when solving the seed ex-

ample of a d-rule are candidates for subgoals. Out of these candidate subgoals, the

extraneous ones are removed by asking a membership query for the sequence of re-

maining literals after temporarily removing each literal. While asking a query, the

inter-state ordering of the subgoal literals is preserved, and intra-state ordering is

ignored. In other words, the subgoal sequence of a hypothesis d-rule consists of a

sequence of sets of literals, where the literals in each set were all true in the same

step during the solution of the example. A queried subgoal sequence is consistent

with a d-rule, if all subgoals in the d-rule are present in the queried sequence, and for

every pair of subgoals in the d-rule, they either both occur at the same step in the

queried sequence, or in the same temporal order as in the d-rule. In this case, the

query is answered yes, and the literal which is removed is considered irrelevant and

is permanently dropped. If the query is answered no, the removed literal is made a

subgoal of the hypothesis d-rule and is included in the future queries.
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The above procedure �nds all the correct subgoal literals in the d-rule, but it

does not necessarily �x their order, because more than one subgoal may have been

achieved in the same step in the seed example. For instance, in the STRIPS-world

domain, in the context of entering some room A from another room B, the door

between A and B may already be open, thus obviating the application of the action

open-door. Since this is unlikely to repeat in every example, the remaining examples

are used to re�ne the order learned from the seed example.

Order-Subgoals procedure. The procedure is listed in Figure 6.2. Assume that

the subgoal order in the current hypothesis d-rule is hS1; : : : ; Sni, where S1; : : : ; Sn

are sets of subgoals. A re�nement might further split these sets, but never merges

them. Consider a new example which is described by L0; : : : ; Lm, which represent

the sets of subgoal literals which are true respectively after 0; : : : ; m steps in the

solution. At any step, the subgoals in the current set Si are matched, after applying

the substitutions generated during the generalization of the conditions part, with the

literals Lj in step j of the example. Let �i be the substitution for the hypothesis

and �j be the substitution for the example. If Si�i \ Lj�j is not empty, Si is split

into two sets, those which match with the literals in Lj and those which do not. The

pointer j in the example advances to j+1 and a match is attempted between literals

of Lj+1 and those in the second subset of Si. Similarly, if the match is successful

for all literals in Si with some literals in Lj, then Lj is split into two sets, and the

pointer i is advanced. A match is then attempted between the literals of Si+1 and

those of Lj that have not been successfully matched. If Si�i \Lj�j is empty, that is

none of the literals in Lj successfully match with any literals in Si, only the j pointer

is advanced.

The above algorithm works correctly if the subgoal literals of both the original

hypothesis and the new example are consistent with the d-rule. In particular, we
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Order-Subgoals(hS1; : : : ; Sni, �i, hL0; : : : ; Lmi, �j)

i := 1; j := 0;

while i � n and j � m do f

if Si�i \ Lj�j is not empty

then Split Si into Si and S0

i where

S0

i := fsjs�i 2 Si�i \ Lj�jg, and Si := Si � S0

i;

Lj := Lj � fljl�j 2 Si�i \ Lj�jg

j := j + 1

else i := i+ 1;

g

return re�ned Si's

FIGURE 6.2: Order-Subgoals procedure

rely on the assumption that the order of any two subgoal literals in any example is

not reversed with respect to their order in the d-rule. Hence, we can proceed with

the matching of the literals in the hypothesis and the example in a strict left-to-right

order.

For example, consider that we are in a state (cursor-loc(10), at(p1 10))

from which we want to reach the goal state at(p1, 14). Given a sequence of

actions that achieves this goal, the system might extract the subgoal sequence

h(cursor-loc(10), at(p1, 10)) (selected(10, p1)) (cursor-loc(14)) (de-

posit-at(p1, 14))i, after eliminating all the irrelevant literals using queries. Since

the plane p1 and the cursor were in the same location 10, there was no need to move

the cursor before selecting the plane in this example. Given another similar exam-

ple with start state (cursor-loc(7), at(p2, 8)) and goal at(p2, 11), it splits

the �rst subgoal set (cursor-loc(10), at(p1, 10)) into two sets, and learns the
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subgoal sequence h(cursor-loc(?x)) (at(?p, ?x)) (selected(?x, ?p)) (cur-

sor-loc(?y)) (deposit-at(?p, ?y))i, for the goal at(?p, ?y).

6.2.4 Summary of the Learning Algorithm

In this section we summarize the learning algorithm. Recall that each example is

presented by a problem and a sequence of actions. The learner starts by identifying

in the examples the components corresponding to the d-rule, namely the goal, the

condition, and the subgoals. Next, the learner transforms the conditions component

by �rst removing the irrelevant literals using the explanation-based pruning step,

and then by introducing higher-level terms using the forward-chaining step.

The transformed version of the example is then empirically generalized. Then the

Generalize-Query algorithm in Figure 6.1 is invoked to �nd the matching hypothesis

d-rule for the example d-rule. If one is found, it generalizes the example and that

hypothesis d-rule, and ultimately replaces the hypothesis d-rule. If not, the example

d-rule is added as a new d-rule to the set of hypothesis d-rules. In both cases, the

subgoal ordering of the learned d-rule is re�ned as described in the previous section,

before placing the learned d-rule in the set of hypothesis d-rules.

This learning process stops when the set of training examples is exhausted or

when the desired performance is reached on a set of test examples.

To illustrate this algorithm, consider our running example to be the �rst training

example. After the transformation step, explanation-based pruning, and forward

chaining, it becomes the initial hypothesis, h1:

g : land-plane(p1)

c :f at(p1, 10), type(p1, propeller), fuel(p1, 5), free(14),

cursor-loc(4), wind-axis(north-south), free-cursor(),

can-land-short(p1), runway-loc(R2, 14),

short-runway(R2), runway-dir(R2, north-south)g
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sg :h(cursor-loc(10))(selected(10, p1))

(cursor-loc(14))(short-runway-deposit(p1, R2))i.

Suppose the next example e1 after the initial transformation steps is

g : land-plane(p5)

c :fat(p5, 8), type(p5, DC10), fuel(p5, 5), free(16),

cursor-loc(3), short-runway(R4), free-cursor(),

can-land-short(p5), wind-axis(east-west),

runway-loc(R4, 16), runway-dir(R4, east-west)g

sg :h(: : : cursor-loc(8): : :)

(: : : selected(8, p5): : :) (: : : cursor-loc(16): : :)

(: : : short-runway-deposit(p5, R4): : :)i.

Since h1 and e1 match and the result passes the query, the new h1 is

g : land-plane(?p)

c :fat(?p, ?x), type(?p, ?type), fuel(?p, 5), free(?y),

cursor-loc(?loc), wind-axis(?dir), free-cursor()

can-land-short(?p), runway-loc(?r, ?y)

short-runway(?r), runway-dir(?r, ?dir)g

sg :h(cursor-loc(?x)) (selected(?x, ?p))

(cursor-loc(?y)) (short-runway-deposit(?p, ?r))i.

Suppose the next example e2 after the initial transformation steps is

g : land-plane(p9)

c :fat(p9, 10), type(p1, propeller), fuel(p9, 3), free(14),

cursor-loc(10), selected(10, p9), runway-loc(R2, 14),

wind-axis(north-south), can-land-short(p9),

short-runway(R2), runway-dir(R2, north-south)g

sg :h(: : : cursor-loc(14): : :)

(: : : short-runway-deposit(p9, R2): : :)i.
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The example e2 does not match with h1 and the result does not pass the mem-

bership query, because e2 does not have free-cursor(). Hence, e2 is made into a

new hypothesis d-rule for the goal land-plane(?plane).

6.3 Experimental Results

The algorithm discussed so far has been implemented in Common Lisp as a system

called ExEL. It has been tested using three di�erent domains | the blocks world,

a variation of the STRIPS world and a simpli�ed air-tra�c control domain. The

objective is to see whether ExEL is able to learn d-rules in these domains e�ciently,

i.e., using a reasonable number of examples and queries. Another objective is to see

how well the learned d-rules perform on the test set. As discussed earlier, because

the d-rule problem-solver is guaranteed to be fast, the performance can be evaluated

by its coverage rather than speed. The third objective is to see how well the system

works on varied domains.

For the purpose of experiments, the teacher is implemented by providing a set

of target d-rules for each domain. Training and test problems are randomly chosen.

Each training problem and its solution provide several training examples for learning,

for a problem may require several applications of a d-rule. Similarly a test problem

tests several learned d-rules. The membership queries are answered by syntactic

match with the teacher's d-rules.

6.3.1 Blocks World (BW)

The blocks-world domain has three d-rules. Problems are randomly generated with

5 to 10 blocks and a table, with a single goal. Each problem involves making some

con�guration of the blocks from some initial con�guration. There are no multiple
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d-rules for the same goal in this domain. ExEL takes at most 3 training problems

for 100% performance on test problems.

6.3.2 STRIPS World (SW)

This is a minor variation of the STRIPS-world domain (Fikes et al., 1972); the

con�guration of the rooms in this domain is a grid, whereas in the standard STRIPS

world it could be of any shape. The domain consists of rooms which are connected

to each other by doors. The doors can be open or closed. Each room has zero or

more boxes. There is a robot that can open doors, move around, and push a box

from room to room. A typical goal for the robot is to move a box that is in some

room to some other room. There are 16 d-rules for this domain. The goal of moving

an object to a di�erent room required six d-rules. It has subgoals such as moving

from one room to another room, holding a box, releasing a box, opening a door,

and closing a door. The subgoal for moving from one room to another room had six

d-rules, and the rest of the subgoals had one d-rule each. Eight of these 16 d-rules

are recursive.

The con�guration has 12 rooms (4 � 3 grid) with 17 doors connecting them.

There are also 5 to 10 boxes distributed among the 12 rooms. The robot is placed

randomly in one of the rooms.

Figure 6.3 plots the number of training problems and their solutions versus the

percentage of test problems ExEL successfully solves in SW. Both the training and

the test problems are randomly generated. The training problems were for goals at

all levels, whereas the test problems were for the goal of moving a box from some

room to some other room, which makes use of all other (sub)goals. Each data point

is the mean of 5 runs. The error-bars show one standard deviation on either side of
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FIGURE 6.3: Performance of ExEL in the SW domain

the mean for these runs. The d-rules generated were useful for con�gurations other

than the 4� 3 grid ExEL learned from.

6.3.3 Air-Tra�c Control (ATC) domain

This domain is a simpli�ed version of the Kanfer-Ackerman air-tra�c control task

(Ackerman & Kanfer, 1993). The main task is landing a plane from any con�guration.

The task has a queue of incoming planes, holding patterns, and runways. The planes

are accepted into the holding patterns, and then are landed on the runways. The

type of conditions pose restrictions on landing a plane. The operators select a plane

to land, deposit a plane either on a runway or in a holding position, or move the

cursor on the screen. There are 13 d-rules for this domain, including multiple d-rules

for some goals. The main goal of landing a plane from any holding pattern required

three d-rules. Its subgoal to take the plane to the correct runway required four d-
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rules. Depositing a plane on a runway needed three d-rules. Moving a plane between

holding patterns, and its subgoals of moving the cursor and selecting a plane all

required one d-rule each.
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FIGURE 6.4: Performance of ExEL in the ATC domain

Figure 6.4 plots the number of training problems and their solutions versus per-

centage of test problems ExEL successfully solves in ATC. Both the training and the

test problems are randomly generated. The training problems were for goals at all

levels, whereas the test problems were for the toughest goal of landing a plane from

any level onto a runway. Each data point is a mean of 20 runs. The error-bars show

one standard deviation on either side of the mean for these runs.
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6.4 Discussion

Our work is related to a number of di�erent research areas including EBL, Inductive

Logic Programming (ILP), and Computational Learning Theory (COLT). In this

section, we explicate some of these connections and outline some future work.

Our work was initially motivated by the utility problem in EBL. Our approach

to this problem is to constrain the problem solver to use its d-rules in a backtrack-

free mode, and to allow the conditions of our d-rules to be expressed in high-level

abstract terms which are common to all positive examples. The SteppingStones

approach by Ruby and Kibler also learns subgoal sequences, which are similar to d-

rules (Ruby & Kibler, 1991). However, as in EBL, their system learns by generalizing

single examples. Comparing multiple examples of the same d-rule allows ExEL to

eliminate redundant literals much more e�ectively, because di�erent examples that

use the same d-rule may not share the entire solution, and hence may not share many

literals in their initial states. This allows for shorter and more general preconditions

with better coverage and e�ciency of match.

Our system uses membership queries to overcome the hardness problem of �nding

a conjunctive concept consistent with a set of positive examples. GOLEM, an ILP

system, circumvents this problem by restricting the target class to be \determinate,"

which means that there is a unique binding to all the free variables of a literal in a

clause given the bindings of all the previous literals (Muggleton & Feng, 1990). The

class of determinate conjunctive clauses is proved to be PAC-learnable from examples

and the input-output information of the literals when the arity of the literals and the

depth of the dependency chain of the variables in the clause are constant (Cohen,

1995b). Unfortunately, however, these assumptions are too strong in practice.
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Another ILP system, FOIL, starts from the most general hypothesis and progres-

sively specializes it by restricting the hypothesis from covering negative examples

(Quinlan, 1990). DOLPHIN (Zelle & Mooney, 1993), Grasshopper (Leckie & Zuk-

erman, 1993), and SCOPE (Estlin, 1998) are systems that use FOIL for learning

control knowledge for a problem solver. FOIL is di�cult to adapt to our work be-

cause it needs negative examples. It is not possible to get relevant negative training

examples in our learning-from-observation setting: d-rules do not have choice points

for backtracking in case of failure, and only successful problem-solving instances are

available. Moreover, unlike FOIL and GOLEM which process the examples in batch

for their greedy hill-climbing, ExEL processes examples incrementally.

One advantage of FOIL and GOLEM, however, is that they do not require queries.

In Chapter 7, we will show a way to eliminate queries by self-testing. In self-testing

the learner generates actively its own negative or \self-critical" examples for its

hypotheses and validates the hypotheses by testing the examples.

Hierarchical partial orders (HPOs) of Marsella (1993) also concerns recursive de-

composition of problems. HPOs represent separate planning and execution orders

for subproblems, whereas d-rules combine them into one. Moreover, these orders can

be partial. Marsella's work is in the context of problem-solving, and not planning.

The decompositions he considers are in terms of subproblems, and not subgoals.� He

also considers learning HPOs, in two ways: learning from teacher-given solutions,

the method he calls BU-PRL, and learning by solving problems, the method he calls

PRL. BU-PRL is akin to ExEL. (The connection between PRL and our method is

described in Chapter 7.) From a given solution (operator sequence), BU-PRL uses

heuristics about the inter-dependency of operators and subproblems to generate new

� A problem (subproblem) is a pair of a starting state and a goal state, whereas a goal (subgoal)
is a literal that should be satis�ed in a state.
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subproblems by coalescing operators and subproblems. It asks the teacher for solu-

tions to the new subproblems. The idea is that this process builds a hierarchy of rules

to decompose a problem into subproblems. These rules are generalized by making

constants into variables. This kind of generalization is not robust, and not guar-

anteed to work always. There is no control over checking whether the subproblems

generated are generally applicable. This results in a proliferation of subproblems

and corresponding rules|a case of the utility problem. The learning mechanism is

validated using only a \Tile-World" domain. It is unclear whether the heuristics

used in generating the subproblems generalize to other domains.

In d-rules, the subgoal parameters are instantiated after the literals in the con-

dition are satis�ed in a state. However, in some domains, this may be a restrictive

assumption; we may be able to ground subgoal literals only after further exploration.

For example, in Marsella's Tile-World domain, to move a tile, call it the goal tile,

from one square to another square, �rst the tiles on a path from the starting square

to the destination square should be cleared out of the path, and then the goal tile has

to be moved along the path. We do not know which tiles are to be cleared unless we

know the path we are choosing for moving the goal tile. But, if we plan for �nding

a path to move the goal tile to its destination (but not execute the plan), then we

will know which tiles are in the way and need to be cleared. Then, we can execute

actions for clearing the obstructing tiles �rst, and then execute actions for moving

the goal tile to its destination. Here, the planning order of the subproblems of clear-

ing the obstructing tiles and moving the goal tile is di�erent from their execution

order. For this reason, Marsella separates the planning order from the execution

order. While planning, the subproblems in a HPO are planned for in the planning

order, to correctly instantiate all the subproblems. These instantiated subproblems

are then tried in their execution order.
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LEAP (Mahadevan, Mitchell, Mostow, Stienberg, & Tadepalli, 1993) is another

system that learns methods for decomposing problems into subproblems. Although

its underlying method can be extended to learn decompositions in planning, its main

focus is problem decomposition. Unlike d-rules or HPOs, which use ordering for

composing subgoals or subproblems, LEAP can consider any arbitrary \combinator"

for composing subproblems. LEAP, however, expects a problem and the problem's

subproblems and their combinator as an example. It veri�es using some transfor-

mation rules (which are provided as part of the input domain theory) whether the

decomposition supplied in the example is correct. Using transformation traces, it

then identi�es the relevant parts of the example needed for constructing a general

decomposition method by performing constraint backpropagation. Then it uses the

variable bindings generated during the veri�cation process to generalize the resulting

decomposition method. This process is basically the explanation-based learning pro-

cess. The supply of subproblems makes the research problem in LEAP considerably

easier in comparison to the problem addressed by ExEL and BU-PRL. Subgoals, in

ExEL, and subproblems, in BU-PRL, need to be recovered from operator sequences.

In a way, ExEL and BU-PRL are solving the plan-recognition problem by empirical

generalization of several observed problem-solution pairs.
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Chapter 7

LEARNING D-RULES FROM EXERCISES

The ExEL system in Chapter 6 learns d-rules from teacher-provided problem and

solution pairs. In this chapter, we introduce the LeXer system, which learns d-rules

from exercises|sequences of problems and subproblems that are in increasing of

their di�culty.

7.1 Introduction

The research work in learning control knowledge falls under one of two extremes: su-

pervised speedup learning and unsupervised speedup learning. In supervised speedup

learning, the system is provided with examples or solved instances by a teacher (De-

Jong & Mooney, 1986; Mitchell et al., 1986; Shavlik, 1990). In unsupervised speedup

learning, the system is given only problems without their solutions (Laird, Rosen-

bloom, & Newell, 1986; Minton, 1988). In this chapter, we explore a middle course

of learning from exercises|useful subproblems of natural problems that are ordered

in increasing order of di�culty.

Teaching problem-solving through exercises is a widely used pedagogic technique.

A human teacher selects certain problems and orders them according to their level

of di�culty to form a sequence of exercises. A human student starts by solving

simple problems �rst; then attempts harder problems by applying the knowledge

gained from solving the earlier problems; and then attempts still harder problems,

and so on. This process continues until the student learns the concepts satisfactorily.

Machine learning of problem-solving skill using exercises, apart from following this
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pedagogic tradition, o�ers a compromise between supervised speedup learning and

unsupervised speedup learning. Supervised speedup learning, although more e�-

cient than unsupervised learning, places the burden of providing the solutions to the

training problems on the teacher|usually a human. Unsupervised speedup learning,

in contrast, expects the learner to solve the training problems, while unburdening

the teacher. However, this is computationally hard for the learner because it lacks

control knowledge and, hence, its only recourse is brute-force search. In the exer-

cises approach, the teacher has the task of providing an exercise set|a sequence of

problems ordered by di�culty. The learner has to solve the exercise problems using

the bootstrapping method akin to the above-described method followed by a human

student.

The exercises approach for speedup learning has been used for learning control

rules (Natarajan, 1989). In this work, we use exercises for learning goal-decomposition

rules (d-rules). The learning of control rules in (Natarajan, 1989) is essentially propo-

sitional, whereas learning d-rules is �rst-order or relational. Moreover, d-rules can

be recursive, which complicates solving of exercise problems: to solve a particular

goal, the learner should already know something about solving that very goal.

Our approach, implemented as a system called LeXer, follows two main steps: For

each exercise, (1) an exercise-solver solves the exercise, and outputs the solution (the

plan) and the subgoals used; and (2) a �rst-order inductive learner forms an example

d-rule using the initial state as the d-rule condition and the subgoals as the d-rule

subgoals, and then uses a \generalize-and-test" algorithm to include this example

d-rule in the previous hypothesis d-rules. The generalization phase of the generalize-

and-test algorithm �nds the least general generalization (lgg) of the example d-

rule with previously formed similar hypothesis d-rules. In the test phase, to ensure

appropriate generalization, the algorithm generates examples of the hypothesized
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d-rule and tests whether the examples are correct. This generalization algorithm

is similar to ExEL's (Chapter 6), except that here the subgoal ordering is directly

recovered from solutions of exercises, and queries are replaced by testing.

The rest of the chapter is organized as follows. Section 7.2 discusses the learning

approach and the related algorithms. Section 7.3 discusses the results of experiments.

Section 7.4 concludes with a discussion of previous work and related issues.

7.2 Learning from Exercises

Learning from exercises requires that the teacher give a sequence of problems ordered

according to their level of di�culty: from least di�cult problems which come �rst,

to most di�cult problems which come last. This is similar to the way exercises are

presented at the end of a lesson in a textbook on mathematics. In the examples

framework, on the other hand, the examples the learner gets are randomly chosen

from a natural distribution. However, in the exercises framework, the burden of

solving the input problems is on the learner, unlike in the examples framework where

that burden is on the teacher.

We have not yet de�ned what a problem's level of di�culty means. Natarajan

(1989) employed the solution length of a problem as the level of di�culty|i.e.,

problems with longer solution lengths are more di�cult. This, however, does not

work for d-rules. A d-rule, depending on the problem it is applied to, may produce

varying solution lengths. Therefore, exercises are ordered, instead, according to a

bottom-up examination of the goal-subgoal hierarchy of the domain. That is, an

exercise related to a goal in the hierarchy is less di�cult than an exercise related to

goals that are higher in the hierarchy. This, however, does not work when there is

recursion among goals, for there is no strict hierarchy then. In the case of recursion,
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exercises for base cases are considered less di�cult than the exercises for more general

recursive cases.

LeXer

dRuleSet fg

hstate; goali  Next-Exercise() /*next problem*/

while hstate; goali is not FAIL do f

depthLimit MIN-DEPTH

done FALSE

while depthLimit <= MAX-DEPTH and not done do f

hplan; subgsi  X-Solver(prob; dRuleSet; depthLimit; nil; nil)

if hplan; subgsi is not FAIL then done TRUE

else depthLimit depthLimit+ 1

g /* IDS */

exampleDR Preprocess(hgoal; state; subgsi)

dRuleSet Generalize-Self-Test(dRuleSet; exampleDR)

hstate; goali  Next-Exercise()

g /* all exercises are processed */

return dRuleSet

FIGURE 7.1: Algorithm for learning from exercises

First we present an overview of the learner. (See Figure 7.1 for the pseudo-code.)

The learner (LeXer) takes in exercises, which are in an order of increasing di�culty,

as input. The goal-subgoal hierarchy of the domain can also be an optional input.

This does not a�ect the correctness of the learner, but a�ects its e�ciency. LeXer

starts with an empty set of d-rules. It makes use of a routineNext-Exercise() to get

the next exercise. An exercise is a problem|i.e., a state-goal pair. LeXer employs an

exercise solver X-Solver that uses depth-�rst search (DFS). X-Solver utilizes LeXer's
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own previously learned d-rules along with primitive domain actions to solve the

exercises. With DFS there is a danger of the solver going too deep in a wrong

direction. Therefore, LeXer uses iterative-deepening depth-�rst search (IDS)|i.e.,

starting with a depth limit and doing DFS until that depth limit is reached, and

if no solution is found, increasing the depth limit and re-doing DFS with the new

depth limit, and so on (Korf, 1987a). IDS also guarantees that the solution, if any,

is reached with the fewest number of operator applications. The solver returns the

solution plan that solves the exercise problem along with the subgoal sequence used

to solve the exercise.

Once an exercise is solved, an optional preprocessing step (Preprocess) prunes

irrelevant literals and introduces abstract literals using a domain theory. This step

prepares an example for the next, generalization step.

Next, LeXer calls a �rst-order generalizer (Generalize-Self-Test) to include the new

case in the learned set of d-rules. Generalize-Self-Test tries to include the new case

in one of the existing d-rules by generalizing each d-rule and testing the validity of

the generalized d-rule. If that is not possible, the new case forms the basis for a new

d-rule.

In the following subsections, we describe the exercise solver, X-Solver, the prepro-

cesser step, Preprocess, and the d-rule generalizer, Generalize-Self-Test, in detail.

7.2.1 Solving Exercises

To solve exercises in a domain, our exercise solver employs previously learned control

knowledge|d-rules learned from the exercises seen so far|and primitive actions of

a domain. Of course, to solve the initial exercises, only the primitive operators are

used, for the learner has had little opportunity to learn yet.
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X-Solver(prob; dRs; depth; prevP lan; prevSgs)

hstate; goali  prob

if goal is reached then return hprevP lan; prevSgsi

else if depth > 0 then f

operators dRs [ domainActions

for each op operators dof

if op's condition is satis�ed then f

if op is a d-rule then hnewState; plani  D-rule-plan(prob; op; dRs)

else /*op is a primitive action*/

hnewState; plani  execute(state; op)

sgs prevSgs+ op or op's goal /*append*/

plan prevP lan+ plan /*append*/

newProb hnewState; goali

hfinalP lan; finalSgsi  X-Solver(newProb; dRs; depth� 1; plan; sgs)

/* look deeper */

if hfinalP lan; finalSgsi is not FAIL return hfinalP lan; finalSgsi

g /* if op's cond is... */

g /* for each */

return FAIL /*no op is successful*/

g /* else if depth */

else return FAIL /* gone too deep! */

FIGURE 7.2: DFS-based exercise solver

The exercise solver, X-Solver, employs �xed-depth depth-�rst search to solve the

exercises. It uses, along with primitive actions of a domain, previously learned d-

rules as operators for the search. Primitive actions of a domain are speci�ed as

STRIPS-style operators, and their execution is straightforward (Fikes et al., 1972).

In particular, �rst the solver checks whether the conditions of the action are

satis�ed. If yes, the current state is modi�ed by adding and deleting, respectively,

the add- and delete literals of the action. But, to execute d-rules, X-solver employs
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the d-rule-based planner (D-rule-plan). The d-rule-based planner applies the d-rules

suggested by the search. If the conditions of the d-rule to be executed are satis�ed

in the current state, using a set of bindings suggested by this match, the solver

instantiates the subgoal sequence of the d-rule. Then, X-solver asks D-rule-plan to

achieve the subgoal sequence. D-rule-plan has the primitive actions of the domain

and the current d-rule base available to it. D-rule-plan, if successful, returns a plan

applied in achieving the subgoal sequence, and the resultant state; else, it reports

failure. In case of failure and when the conditions of the action or the d-rule are not

satis�ed in the current state, the solver considers alternative operators. If there are

no more untried alternative operators for the current state, X-solver backtracks and

considers alternate operators for the previous state. In case of successful application

of the operator (action or d-rule), the resultant state is made the current state and

the process continues till the goal is reached or the �xed depth limit is reached. See

Figure 7.2 for the algorithm.

Let us consider an example from air-tra�c control (ATC) domain (see Section 7.3

for details.). To land a plane which is at holding level 2, it has to be �rst moved

to holding level 1 (node n2 in Figure 7.3), and then be landed on a free runway

(node n4 in Figure 7.3). To execute the d-rule corresponding to move-plane, the

d-rule planner achieves the subgoals|such as move-cursor, select-plane, and

deposit-plane|suggested by the d-rule, and returns the resultant state and the

sequence of actions. Similarly, for land-plane, the d-rule planner achieves its sub-

goals, and returns the resultant state and the sequence of actions. Presumably, the

sequence of exercises is such that the d-rules corresponding to the goals move-plane

and land-plane have already been learned. In this example, the successful so-

lution path contains only d-rule operators and no primitive-action operators. X-

solver �nally outputs the instantiated goals of the d-rules tried|move-plane(P,
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land-plane move-plane

FAIL

move-plane land-plane

. . .

. . .

Success!

land

n3 n4

n2n1

FIGURE 7.3: Exercise solver achieving the goal land using IDS with the current
depth limit 2

L1) land-plane(P)|as the subgoals for a d-rule hypothesis for the main goal|

land(P)|and the concatenation of the actions produced by each operator as the

�nal plan.

If the learner is provided with the goal-subgoal hierarchy, X-Solve can exploit this

to focus its search. In particular, it can limit the operator set used in the search

to only those d-rules and primitive actions that address the subgoals of the current

goal. In the above example, if the learner knows that land has only land-plane

and move-plane as subgoals, then it can try only the instantiations of the d-rules of

land-plane and move-plane as the operators, and ignore others.

7.2.2 Example Preparation

If X-Solver succeeds on an exercise, the resultant solved exercise forms an example

of a d-rule: the goal and the initial state of the exercise problem correspond to the
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example d-rule's goal and condition, respectively; the subgoal sequence output by the

exercise solver for the exercise problem corresponds to the subgoal part of the example

d-rule. This example d-rule (or simply, example) is subjected to the explanation-

based pruning step and the step that introduces abstract literals by forward chaining,

before the inductive generalization process. These two steps comprise Preprocess, and

they are the same as the ones in Section 6.2.2. Explanation-based pruning removes

irrelevant literals from examples, while forward-chaining step introduces abstract

literals into examples.

For the example of Figure 7.3, the example d-rule, after the two steps, is

g: land(P)

c: (at(P, 10), type(P, prop), runway-cond(wet),

free(1), hold-level(1, 10), cursor-loc(4),

fuel(P, 5), wind-speed(high), wind-axis(NS))

sg: hmove-plane(P, L1), land-plane(P)i

7.2.3 Generalization of d-rules

Given an example d-rule with all three components (goal, condition and subgoals),

and a set of d-rules learned so far, the task is to form a new set of d-rules that cover

the example. The sketch of the algorithm (Generalize-Self-Test) to accomplish this is

given in Figure 7.4.

First, Generalize-Self-Test tries to include the example in one of the existing d-

rules. If that is not possible, it creates a new d-rule with the current example as

the basis. This algorithm is essentially the same as the Generalize-Query algorithm

in Chapter 6, with two di�erences. One is that, since the example d-rule already

has the necessary subgoals, and their relative order, here we need not do anything

to order subgoals. Thus, we do not use Order-Subgoals or any other such procedure.

The other di�erence is that instead of querying a teacher, it performs self-testing
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Generalize-Self-Test(dRuleSet; egDrule)

if there is a dRule in dRuleSet such that

Test(lgg(dRule; egDrule)) is successful

/* correct hypothesis to generalize is found */

replace dRule by Reduce(lgg(dRule; egDrule))

else dRuleSet Reduce(egDrule) + dRuleSet

/* example becomes a new drule*/

return dRuleSet

Reduce(lgg; dRuleSet)

for each lit in lgg do

if Test(lgg � flitg; dRuleSet) is successful then

remove lit from lgg

return lgg

FIGURE 7.4: Generalize-and-test algorithm for generalizing d-rules, given an exam-
ple d-rule

(Test) to test the validity of its generalizations. This change is consistent with our

intent to unburden the teacher. Also, assuming the availability of a teacher who

knows the target concepts can be an unreasonable demand in certain domains.

The idea of self-testing is as follows. Given a hypothesis d-rule to test, the learner

�rst generates a problem compatible with the condition of the hypothesis, and then

decomposes the goal of the problem into the subgoals suggested by the hypothesis

d-rule. Next, this sequence of subgoals is given to the solver to solve. The solver

is supplied with the set of d-rules learned so far. If the solver is successful, then it

generates another test problem and attempts to solve it, in a similar way. If the

hypothesis d-rule is successful on a number of test problems, then the hypothesis

d-rule is accepted as correct. If not, by concluding that the example d-rule and the

learner's candidate rule for inclusion are not compatible, the learner returns FAIL.
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This process is accomplished by Test in the generalization algorithm of Figure 7.4.

The idea here is that if a hypothesis d-rule purports to be correct, then it must

correctly decompose the goal of the problem that satis�es the condition part of the

hypothesis d-rule into its subgoals. If the solver cannot solve the problem using the

decomposition suggested by the hypothesis d-rule, then the decomposition is deemed

incorrect. In such a case, the learner rejects the hypothesized d-rule.

The self-testing process in Reduce has a slight variation. Here, we remove a literal

and check to see whether it was relevant by testing rather than querying. During

this testing, we would like the examples generated by Test to be of the \near-miss"

kind. That is, to remove a literal from the condition of a hypothesis d-rule, we would

like test examples in which that literal is not true. Otherwise, the test example is

not informative about the relevance of that literal for the hypothesis d-rule. When

called from Reduce, Test generates such test examples, and tests them as before.

7.3 Experimental Results

We have implemented the algorithms discussed so far as a system called LeXer, in

Common Lisp. LeXer has been tested on two domains: (1) A variant of the STRIPS

world (SW), with recursive d-rules; and (2) the Kanfer-Ackerman air-tra�c control

(ATC) task. The purpose is to see how feasible and e�ective the approach of learning

d-rules from exercises is. Since our d-rule-based planner is guaranteed to be e�cient,

we evaluate the performance of the system only by its coverage on test problems. In

particular, we have measured the coverage of learned d-rules on randomly selected

test cases against the number of exercises supplied. The test problems are natural

problems that occur in a domain and are among the hardest, whereas the exercises

are selected problems such that they span all levels of di�culty. The exercise set

at each data point, except the �rst, includes the exercise set at the previous data
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point. The test set is, however, �xed for all the data points. Each exercise set has an

almost equal number of exercises for all the goals at all levels of di�culty. Moreover,

the exercises in a set are ordered in increasing order of di�culty. To expedite the

experiments, we have supplied the solvers with the goal-subgoal hierarchies in both

domains, so that X-Solve can focus its search in solving the exercises.

7.3.1 STRIPS World (SW)

This domain is the same as the one used in ExEL's experiments. The tasks in the

domain have 7 levels of di�culty. Basic tasks such as opening and closing doors,

and holding and releasing objects are the least di�cult. Going from a room to

another room is recursive. For example, to go to a goal room that is to the left of

the starting room, go to the right-neighbor room of the goal room, where going to

the right-neighbor room may follow the same rule. Moving or pushing a box to a

neighboring room, from a room, is at the next level. The most di�cult tasks involve

starting from one room, and pushing a box from a second room to a third room.

Figure 7.5 gives the learning curve: coverage versus number of exercises. The test

set contained 10 randomly generated problems for the goal of moving a box from one

room to another room. Each exercise set contained almost equal number of randomly

generated problems for each level of di�culty. LeXer required 5 self-test examples.

At the end of training, LeXer came up with 24 d-rules for SW. These d-rules are such

that they are applicable to any-sized grid. These results demonstrate that learning

from exercises is a feasible approach to learn recursive d-rules.
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FIGURE 7.5: Performance of LeXer in SW

7.3.2 Air-Tra�c Control Domain

This domain is the same as the one used in ExEL's experiments. The primitive

actions in this domain are selecting a plane, moving the cursor between holding posi-

tions, and depositing a plane on a holding position or on a runway. The exercises that

are the least di�cult correspond to these basic tasks. There are 4 other gradations

of di�culty: moving a plane from a holding level to the next holding level is the next

gradation; landing a plane from the �rst holding level is the next di�cult task; the

most di�cult exercises concern landing a plane without a runway being speci�ed and

from a holding level other than the �rst. The test problems were randomly generated

with this task as the goal task.

Figure 7.6 gives the learning curve: coverage versus number of exercises. The

test set contained 20 randomly generated problems for the goal of moving a box

from one room to another room. Each exercise set contained almost equal number of
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FIGURE 7.6: Performance of LeXer in ATC

randomly generated problems for each level of di�culty. LeXer required 4 self-test

examples in this domain. LeXer came up with 14 d-rules for this domain at the end

of training. They perform correctly on all 20 test cases. Here, too, each exercise set

contained almost equal numbers of randomly generated problems for each level of

di�culty.

The error bars in Figure 7.5 and Figure 7.6 indicate one standard deviation on

either side of the mean. In both the domains, if an exercise cannot be solved within

a maximum depth limit, it is abandoned, and no learning results from it. Maximum

depth limits are set such that if an exercise cannot be solved, it is only due to the

inadequacy of LeXer's learned d-rules. The inadequacy of LeXer's d-rules is due to

the inadequacy of training. (In the plots, unsolved exercises are also counted when

counting the number of exercises used by LeXer.) Some data points in both plots

have large error bars. The reason for large error bars early on in both the plots is
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that in some runs the exercises supplied resulted in LeXer learning good lower level

d-rules, and thus enabling solving of and learning from higher-level exercises. On the

other hand, in Figure 7.6, the large error bars later on are due to some runs getting

unlucky: the randomly picked exercises had coincidences, in the sense that they

were about the same plane or the same runway, which prevented the generalization

of constants into variables in the d-rules learned from these exercises.

7.4 Discussion

We have shown that learning d-rules from exercises is a feasible and e�ective ap-

proach. The approach used in LeXer is directly related to speedup learning from

examples and inductive logic programming (ILP). In the following, we position our

work in the context of the related work in those two areas.

In the previous chapter, we have presented the ExEL system ,which learns d-

rules from examples, i.e., problems and their solutions, unlike LeXer that learns

from exercises. Another di�erence is as noted while discussing the Generalize-Self-

Test algorithm. LeXer replaces queries with testing by generating \self-critical"

examples.

Considering that planning without search-control knowledge is intractable, any

unsupervised speedup learner may, in practice, need to behave like the learning-from-

exercises systems to be successful. If an unsupervised learner gets a hard problem in

the beginning, it may get bogged down in trying to solve the problem, unless there

is a limit on the amount of time it can spend on a problem. As a result, learning

may not be feasible, because there may not be enough of simple problems to learn

from. If there are enough of simpler problems, then its behavior approaches that of

learning from exercises. In any case, in the process, it may squander computing time

and available training problems.
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As we have seen in Chapter 3, a set of d-rules can be mapped to �rst-order

Horn programs. In this respect, learning d-rules is an ILP problem. From (Cohen,

1995c), one can infer that this concept class is hard to learn without external help.

Our system uses testing to learn this class of concepts. GOLEM, an ILP system,

instead restricts the concept class to determinate clauses, which means in a clause

there is a unique binding to all the free variables of a literal, given the bindings

of all previous literals (Muggleton & Feng, 1990). In fact, this concept class with

the further restriction of keeping the depth of the dependency chain of the variables

in a clause constant, is shown to be PAC-learnable from examples (Cohen, 1995b;

D�zeroski et al., 1992). Unfortunately, these restrictions are too limiting on the

expressiveness of d-rules to enable e�cient planning. Therefore, we circumvent this

problem by employing exercises and self-testing.

We have seen in Chapter 3 that a set of d-rules for multiple goals maps to a Horn

program. In Chapter 5, we have discussed learnability of acyclic Horn programs

using the PLearn algorithm. Here, we will explore the connection between PLearn

and LeXer. The derivation order of literals for Horn programs corresponds to the

order of di�culty for d-rules. Although learning is not explicitly ordered in PLearn,

the process of �nding prime consequents e�ectively serves this purpose. So, the

next clause PLearn learns is a clause which can be constructed from literals derived

from the clauses it already knows. Similarly, LeXer constructs a new d-rule whose

subgoals are those that can be achieved using the existing learned d-rules. Another

related similarity is in what the forward-chaining step of PLearn and the exercise-

solving step (X-Solver) of LeXer accomplish. The forward-chaining step of PLearn

introduces the literals that can be derived from the body of an example using the

clauses learned so far. This ensures that the new clauses learned are as compact as,

and are subsumed by, the clauses in the target program. The exercise-solving step
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of in LeXer, similarly, introduces the subgoals that can be solved given the initial

state of the exercise problem, using the d-rules learned so far. This makes the d-

rules more compact. In both cases, these steps increase the generality or abstraction

of the rules (clauses or d-rules) learned. PLearn, LeXer, and also DLearn, the Horn-

de�nition learner, and ExEL, the example-based d-rule learner, all employ almost the

same generalize-and-test method for the purpose of generalizing multiple examples.

LeXer is an exception in that it employs self-testing instead of querying a teacher.

One other di�erence between our system and the above systems is in the way

negative examples are generated.

DOLPHIN, Grasshopper and SCOPE consider the choices that did not lead to a

goal as the negative examples of a \good" control rule. In our setting, the choices

the exercise solver makes are over what subgoals to use. Since we obtain the subgoal

literals of a prospective d-rule directly from the exercise solver, subgoal learning does

not need any powerful inductive learner. So, the choice sequences of subgoals that did

not lead to the goal are of no signi�cant use for subgoal learning. However, they could

possibly be used for learning the conditions part: each one is a negative example for

a d-rule that has the matching goal and sequence of subgoals. This is because the

sequence of subgoals in the example could not lead to the goal, because the example's

conditions are wrong for the application of the subgoal sequence. However, instead

of using these negative examples, LeXer generates self-critical examples for testing

in an active manner, for the following connected reasons. First, not every hypothesis

d-rule of the learner may have a negative example in the set collected during the

search. Second, even if there are negative examples that address a hypothesis d-rule,

they may not be near-miss examples. In LeXer, since the learner has control over

which examples are generated, it can generate suitable near-miss examples.
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The way the testing examples are generated and used is somewhat similar to the

way Gil (1993, 1994) generates and uses experiments in learning operator models.

Gil uses them to specialize overgeneral conditions, whereas we use test examples to

generalize overspeci�c conditions. In our case, to eliminate a literal for generalizing a

condition, we choose a literal that is already there in the condition. Gil, in contrast,

needs to consider all possible literals and their various variablizations, to add to a

condition that is to be specialized. To combat the explosive nature of this process,

Gil employs heuristics to choose a literal to add.

The Marvin system by Sammut and Banerji (1986) also generates self-critical

examples to validate its hypotheses in the context of concept learning. However, it

depends on its teacher to tell whether the generated example of the hypothesis is an

instance of the target concept. In e�ect, it is a membership query. As with LeXer,

Marvin's learning is also ordered in increasing order of di�culty of the concepts

to be learned. It depends on a single positive example to learn a concept. For

generalization, it employs the ad-hoc process of turning constants into variables.

As promised in Section 6.4, we now compare Marsella's PRL system to LeXer.

Recall that PRL learns Hierarchical Partial Orders (HPOs) to decompose problems

into subproblems in a problem-solving framework (cf. Section 6.4). Like LeXer,

PRL, too, takes as input problems without their solutions. However, PRL does

not depend on ordering of problems to learn. It attempts to learn only when it

fails to solve a problem by decomposing it into subproblems using existing problem-

reduction rules. Failure occurs when there are no applicable reduction rules for

the subproblem PRL is attempting. PRL then tries to solve the subproblem by bi-

directional search. It expands partially to a \limited-depth" from the forward as well

as the backward directions. It pairs each forward-frontier node with each backward-

frontier node. It eliminates some pairs using some heuristics. The left-over pairs are
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considered alternate hypotheses of a problem-reduction rule. It applies a critique

which employs some further heuristics (such as preferring decompositions that allow

independence between subproblems) to identify a hypothesis rule. This hypothesis

rule is generalized by variablizing constants. One shortcoming PRL su�ers from is

that the number of pairings could be intractably high to even prune using heuristics,

in some domains. Another shortcoming is in credit|or more accurately, blame|

assignment for failure. PRL decides that the reason for a failure to solve a problem

is a lack of reduction rules, rather than a possible fault with the existing rules. So,

it goes on to learn new reduction rules including lower-level rules for the problem.

Although the heuristic nature of the process does not justify that reason, PRL did not

seem to be a�ected by this problem in learning for the Tile-World domain, because

the reduction rules in the domain are of just two levels.

We discussed some of the representational advantages of HPOs over d-rules ear-

lier in Section 6.4. On the learning front, PRL and BU-PRL employ a primitive

generalization scheme which may not be robust across domains, whereas ExEL and

LeXer makes use of the lgg method and other apparatus which are theoretically

grounded and robust. An explanation for the quality of the generalization scheme

in PRL and BU-PRL may be that Marsella emphasizes increasing the degree of in-

dependence between the subproblems generated in the learned HPO rules, as the

main performance goal for PRL and BU-PRL, rather than the traditional goal of

producing rules with high generality.
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Chapter 8

CONCLUSIONS

In this chapter, we �rst summarize the research work in the dissertation, and

then highlight contributions of this work. We end this chapter by looking back and

identifying some interesting extensions to this work that can be tackled in future.

In the course of this dissertation, �rst we showed the need for learning control

knowledge for hierarchical-decomposition planning. We did so by appealing (1) to

the e�cacy of hierarchical planning, (2) to the impracticality of total dependence

on human experts for providing control knowledge, hence to the need for automatic

learners, and (3) to the scarcity of such learners for hierarchical planning. We pre-

sented goal-decomposition rules (d-rules) as a way of representing hierarchical control

knowledge. We then showed how planning can be performed based on d-rules, and

how d-rules can be extended to be applicable for reactive planning. We also discussed

how the d-rule representation for control knowledge is more advantageous than the

other forms of representations such as control rules and macro operators. Next, in

Chapter 3, we showed how d-rules can be seen as Horn clauses. There, we also

showed that HTNs, a more general form of representation than d-rules for hierar-

chical planning, when restricted to positive literals, can be mapped to Horn clauses.

We also observed that d-rules (HTN methods) for a single goal (task) can be seen

as a set of Horn clauses with the same predicate symbol|or Horn de�nitions; and

that d-rules (HTN methods) for multiple goals (tasks) can be seen as a set of Horn

clauses|or Horn programs. The idea here was to exploit the techniques available in

inductive logic programming (ILP) to learn d-rules for planning.
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We then showed how Horn de�nitions can be learned tractably in the entailment

setting from examples and membership queries. We noted that this result is appli-

cable to the learning from interpretations setting also. In Chapter 5, we studied the

learnability of Horn programs in the entailment setting, and showed that acyclic Horn

programs restricted to those that have a polynomial-time forward-chaining procedure

can be learned tractably from a combination of examples, membership queries, and

derivation-order queries. We also identi�ed syntactic restrictions on Horn programs

that guarantee a polynomial-time forward-chaining procedure. As in the case of Horn

de�nitions, this result is also applicable to the learning from interpretations setting.

In Chapters 6 and 7, we considered implementations of systems for learning d-

rules. These systems have foundations in the theoretical algorithms developed for

Horn de�nitions and Horn programs. ExEL system, described in Chapter 6, learns

d-rules from examples, each of which comprises a planning problem and its solution

as a sequence of actions. ExEL �rst converts an input example into the d-rule form.

It then employs an incremental generalize-and-test algorithm to identify a correct

hypothesis d-rule for combining with the example d-rule at hand. This algorithm

uses the least-general-generalization (lgg) procedure to combine an example with a

correct d-rule. The algorithm depends on membership queries to identify a correct

hypothesis d-rule to generalize with. To keep the size of d-rules tractably small,

literals are removed with the help of membership queries. This part of the algorithm

is the same as the DLearn algorithm for learning Horn de�nitions. ExEL learns d-

rules for one goal at a time, to learn d-rules for multiple goals. Also, ExEL explicitly

re�nes the order of subgoals in a hypothesis d-rule.

In Chapter 7, we described a system, LeXer, that alleviates the burden, on the

part of the teacher, of providing solved examples and answering learner's queries.

LeXer takes as input a sequence of planning problems and subproblems that are
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ordered in increasing order of di�culty. Except from having to order the problems,

the teacher is freed from the tedium of solving all the problems, and from having to

answer queries. LeXer solves each input problem by itself by performing an iterative-

deepening depth-�rst search using previously learned d-rules as operators. From the

solving process, it gathers a sequence of subgoals that achieve the goal of the problem

being solved. Using this and the initial state of the problem, it constructs an example

d-rule. It incorporates this example d-rule into the existing d-rules by employing the

generate-and-test algorithm similar to DLearn, except that it replaces queries by self-

testing. LeXer tests a hypothesis d-rule by generating a problem whose initial state

satis�es the conditions of the d-rule and whose goal literal matches with the goal of

the d-rule. It, then, asks the d-rule planner to solve the problem by attempting to

solve the subgoals suggested by the decomposition in the hypothesis d-rule. If the

d-rule planner cannot solve the problem with the suggested decomposition, then the

hypothesis d-rule is considered incorrect. Otherwise, it generates another problem

and tests again. This process is repeated until it is successful on a certain number

of test problems, or until it fails. Also, in Chapter 7, we explored the many close

similarities between learning from exercises in LeXer and the learning algorithm for

acyclic Horn programs.

8.1 Contributions

We highlight here some of the contributions the thesis makes.

� We showed a mapping from d-rules to Horn clauses. We extended this mapping

and showed how HTN methods with only positive literals can be transformed

into the Horn-clause form. A consequence of these mappings is that learnability

of Horn clauses implies learnability of d-rules and HTNs. There has been
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a great body of past and current work devoted to learning �rst-order Horn

clauses in the �eld of inductive logic programming (Muggleton, 1992; Lavra�c

& D�zeroski, 1994; Bergadano & Gunetti, 1996; Nienhuys-Cheng & de Wolf,

1997). Thus, research work on learning d-rules and HTN methods can exploit

techniques developed in ILP, in addition to the traditional speedup-learning

methods (Reddy & Tadepalli, 1997a).

� In Chapter 4, we showed the learnability of �rst-order non-recursive Horn def-

initions from examples and membership queries (Reddy & Tadepalli, 1997c,

1998b). Earlier work on this front was limited to language classes that have

hypothesis spaces of polynomial size. The language class we studied has un-

bounded size. Also, we do not assume that the alphabet of the language|such

as of the predicate and function symbols|is known a priori. We also showed

how d-rules can be learned by applying the algorithm for learning Horn de�ni-

tions.

� In Chapter 5, we showed that acyclic �rst-order Horn programs that have

polynomial-time forward-chaining procedure are learnable given the derivation

order of the literals from examples and membership queries (Reddy & Tadepalli,

1998a). Earlier work was limited to learning language classes that either have

their number of clauses limited or have the restriction that the clauses have

no local variables. In our result, the number of clauses can be variable. We

allow local variables in the body of a clause, but we restrict that the clauses

to be non-generative|that is, the head of a clause cannot have terms that are

not already present in the clause's body. This suits d-rule learning, in general

speedup learning, well, because we are likely to operate on objects that satisfy

a set of conditions.
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� In Chapter 6, we demonstrated that control knowledge that is organized hi-

erarchically and represented e�ciently as d-rules is learnable from examples

in a system called ExEL (Reddy, Tadepalli, & Roncagliolo, 1996). Each ex-

ample comprises a planning problem and its solution as a sequence of actions.

This could be perceived as making a 
at state-space planner into a more ef-

�cient hierarchical planner. In this view, the learned knowledge helps speed

up planning. There is another view. It has been argued that while building

real-world planners one of the hard and tedious tasks is to acquire and encode

HTN schemata (Chien, 1996). In this context, ExEL can be viewed as a tool

for automatic knowledge acquisition.

� ExEL depends in two places on a domain expert or teacher. One is in expecting

solved problems as input, and the other in expecting answers to its member-

ship queries. To further automate the task of knowledge acquisition, these two

expectations need to be removed. In the LeXer system, described in Chap-

ter 7, we attempted to reduce this burden on a teacher (Reddy & Tadepalli,

1997b). LeXer does not expect solved problems as input. Instead, it expects

as input a sequence of unsolved problems in increasing order of di�culty|that

is, exercises. Further, instead of querying a teacher, LeXer tests its hypotheses

by itself. There is, however, still some dependence on a teacher to order the

problems. This is similar to the requirement by PLearn that the derivation

order of literals be given for learning Horn programs. Lifting this requirement

is, however, an open problem.
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8.2 Future Work

We have seen in Chapter 2 that HTNs are more general than d-rules. Although we

have theoretically indicated the learnability of HTN methods by way of translating

HTN methods to Horn clauses, and showing the learnability of Horn clauses, we

have not demonstrated it through implementations. The crucial issue here is in

formulating a given example into the HTN notation. Once we have the examples in

the HTN form, we can make use of the theoretical algorithms to implement learning

algorithms for HTN methods.

Similarly, we have not dealt with learning monitors for d-rules for the purpose of

reactive planning. The main issue here, too, is in obtaining good examples when the

planner is in reacting setting. Another important issue is in implementing the self-

testing process to answer queries. The feature of the learner generating self-critical

problems, as in LeXer, cannot be implemented in a reactive setting, because all

literals in a state cannot be set in the way the learner wants|for example, weather

is not under the control of the learner.

In Chapter 1, we identi�ed two opportunities for learning in the context of

hierarchical-decomposition planning. One is to learn task decompositions, and the

other is to learn to choose among various task decompositions. In this dissertation,

we concentrated only on the former. For the latter, it appears that existing tech-

niques such as in Prodigy (Minton, 1988) and SCOPE (Estlin, 1998) developed for

state-space and plan-space planners are applicable. The validity of this conjecture,

however, needs to be examined.

The ATC domain we used in the experiments in Chapters 6 and 7 is only a

part of the task. The main task of the ATC domain is in fact an optimization

task of landing as many planes as possible in a given time. This task requires
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decisions such as which planes to land, and which runways to land on. We tackled

this problem by encoding by hand preference rules that choose among alternative

goals and subgoals. Learning such rules requires a learning mechanism that takes

costs into account, such as reinforcement learning. D�zeroski, Blockeel, and De Raedt

(1998) address reinforcement learning in the context of �rst-order learning. Dietterich

(1998) addresses reinforcement learning for hierarchical domains.� We presume that

an appropriate combination of the ideas in these two methods should be suitable for

learning preference rules.

In Chapter 5, we showed that acyclic Horn programs with some restrictions are

learnable from examples, with the help of membership and derivation-order queries.

One of the restrictions we impose is that the clauses be non-generative|that is, in

each clause, only the terms and subterms that appear in the body of the clause appear

in the head of the clause. Arimura (1997), on the other hand, shows learnability

of Horn programs that are constrained so that in each clause only the terms and

subterms that appear in the head of the clause appear in the body of the clause. The

class addressed by him, called simple Horn programs, did not allow local variables,

unlike our case, but had the other restrictions our class had. Independently of

our work, Krishna Rao and Sattar (1998) showed that simple Horn programs with

local variables are learnable. Although this class generalizes the class addressed by

Arimura (1997), it is not more general than our class. Moreover, they assume mode

declarations|indications that say whether a variable in a predicate is an input or an

output variable|which we cannot assume in the context of our planning application.

We believe that there is a more general class which generalizes the class addressed by

us and the class addressed by Krishna Rao and Sattar (1998) that is learnable. Such

� In fact, the MAXQ hierarchical learning system described by Dietterich (1998) was used to learn

non-�rst-order value functions for the ATC optimization task.
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a more general algorithm may be applicable to a variety of tasks both in planning

and in logic programming.

Another direction of future work is in establishing PAC-learnability of d-rules in

the framework of learning from exercises. Natarajan (1989) �rst showed the PAC-

learnability of control rules from exercises. Tadepalli and Natarajan (1997) extended

this to the PAC-learnability of macro operators from exercises. The control rules

addressed by Natarajan (1989) are essentially propositional. The macro operators

addressed by Tadepalli and Natarajan (1997) are not recursive. The d-rules, on

the other hand, are �rst-order representations and can be recursive. Thus, it would

be signi�cant to further extend the PAC-learnability from exercises to d-rules also.

Some of the solutions we addressed in Chapters 4 and 5 for learning �rst-order

representations and in Chapter 7 for learning recursive d-rules from exercises should

be useful in establishing this result.
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