
AN ABSTRACT OF THE THESIS OF

John R. Placer for the degree of Doctor of Philosophy in Computer Science presented

on November 4, 1988.

Title: C: A Language Based On Demand-Driven Stream Evalutions

Abstract approved:

Redacted for privacy

Timothy Budd

A programming paradigm can be defined as a model or an approach employed

in solving a problem. The results of the research described in this document demon-

strate that it is possible to unite several different programming paradigms into a

single linguistic framework. The imperative, procedural, applicative, lambda-free,

relational, logic and object-oriented programming paradigms were combined in a

language called G whose basic datatype is the stream. A stream is a data object

whose values are produced as it is traversed.

In this dissertation we describe the methodology we developed to guide the

design of G, we present the language G itself, we discuss a prototype implementation

of G and we provide example programs that show how the paradigms included in

G are expressed. We also present programs that demonstrate some ways in which

paradigms can be combined to facilitate the solutions to problems.

G : A Language Based On Demand-Driven Stream Evaluations

by

John R. Placer

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Completed November 4, 1988

Commencement June 1989

APPROVED:

Redacted for privacy

Professor of Computer Science in Charge of Major

Redacted for privacy
Head of Department of Computer Science

Redacted for privacy

Dean of Gradutate Sc o 1

Date thesis is presented November 4, 1988

Typed by John R. Placer for John R. Placer

Acknowledgements

I want to thank each of the members of my committee. Each of you made

a unique contribution to my research efforts. Thank you Tim Budd for always dis-

playing confidence in my work and for the special effort you made as my major

advisor. Thank you Toshi Minoura for your friendship and for those long and chal-

lenging discussions. Thank you Bruce D'Ambrosio for knowing how to blend honest

criticism with warmth and encouragement. Thank you Ted Lewis for your doubts;

they pushed me deeper than I might otherwise have gone. Thank you Walter Rudd

for the many ways you lent your support both as replacement committee member

and as department chairman. I also want to thank Ralph Griswold who I had the

good fortune to study under when I worked for my M.S. degree at the University of

Arizona. Thank you Ralph for showing me how interesting and joyful the study of

programming languages can be.

I want to thank each of the members of my family. Each of you supported

the efforts that resulted in this dissertation in ways I can never fully express. Thank

you Carol for your endless patience and encouragement. Thank you Carol, Jeff and

Meredith for providing a background of love to whatever "work" I might be engaged

in. Thank you mom for expressing support and encouragement in many different

ways.

Table of Contents

1 Introduction 1

1.1 Motivations For Multiparadigm Research 5

1.2 Previous Work 8

1.3 Research Goals 9

1.4 Research Results 11

2 Related Work 13

2.1 Programming With Streams 13

2.2 The Functional Paradigm 14

2.3 The Logic Paradigm 14

2.4 The Object-Oriented and Relational Paradigms 15

2.5 Incorporating Many Paradigms into a Multiparadigm System 16

2.6 Incorporating Many Paradigms Into One Language 17

3 Developing the Underlying Structure of G 19

3.1 Guiding Principles 19

3.2 The Choice of a Fundamental Underlying Datatype 21

3.3 Choosing the Paradigms 22

3.4 Decomposition of the Paradigms 23

3.4.1 The Functional Paradigm 23

3.4.2 The Logic. Paradigm 25

3.4.3 The Relational Paradigm 27

3.4.4 The Imperative Paradigm 27

3.4.5 The Procedural Paradigm 28

3.4.6 The Object-Oriented Paradigm 28

4 The Language G 32

4.1 Overview 32

4.2 Primitive Operators 33

4.3 The Hierarchical Structure of G 34

4.4 Types 35

4.4.1 Scalar Types 35

4.4.2 String 36

4.4.3 Tuple 37

4.4.4 Func 42

4.4.5 Relation 44

4.4.6 Pattern 45

4.4.7 User-defined Types 46

4.5 Libraries 48

4.6 Function Call Semantics and Inheritance 48

4.7 Scope 50

4.7.1 The Global Environment 50

4.7.2 Local Declaration Expressions 50

4.7.3 Function Arguments 51

4.8 Built-in Functions 51

4.8.1 Conditional and Arithmetic Operators 52

4.8.2 Concatenation Expressions 52

4.8.3 And Expressions 52

4.8.4 Miscellaneous Built-in Functions 53

4.9 Summary 53

5 The Prototype Implementation of G 55

5.1 The Type Hierarchy 55

5.2 Environments 56

5.3 Copying Values 58

5.4 Lazy Evaluation 59

5.5 Representing the Values of G 59

5.5.1 Representing Scalars 60

5.5.2 Representing Strings 60

5.5.3 Representing Tuples 61

5.5.4 Representing Code Bodies 65

5.5.5 Representing Functions 67

5.5.6 Representing And and Concatenation Expressions 68

5.5.7 Representing Pattern-Matching Values 70

5.5.8 Representing Relation Values 71

5.5.9 Representing Primitive Expressions 73

5.5.10 Representing Function Calls 74

5.5.11 Representing User-defined Values 75

6 Expressing and Integrating the Paradigms of G 79

6.1 The Imperative and Procedural Paradigms 79

6.2 The Lambda-free Paradigm 81

6.2.1 Primitive Functions 83

6.2.2 Functional Forms 84

6.2.3 Inner Product and Matrix Multiplication 84

6.3 The Applicative Paradigm 86

6.3.1 Simple Function Definition Examples 88

6.3.2 The Hamming Problem 89

6.4 The Relational Paradigm 90

6.4.1 G and the Relational Algebra 91

6.4.2 Query-By-Example 93

6.5 The Logic Paradigm 94

6.6 The Object-Oriented Paradigm 98

6.7 Integrating the Paradigms 102

6.7.1 A Database With a View 102

6.7.2 The Buckets and Well Problem 107

7 Conclusions and Future Work 112

7.1 Conclusions 113

7.2 Suggested Future Research 114

Bibliography 116

Appendices

Appendix A:Functional Paradigm Library 122

Appendix B:The Standard Library 124

Appendix C:Grammar for the Language G 125

List of Figures

1

2

3

4

5

Type Hierarchy of the Language G

A G Value Descriptor

Data Structures Used in the G Type Hierarchy

Examples of G Scalar Values

Data Structure that Represents the String "hello"

34

56

57

60

61

6 The Tuple [15, 4.5] 62

7 The Tuple [local [a : 23.4], 15, a] 64

8 The Foreach Code Body foreach(a) [15, ' e'] 66

9 Form of the If Code Body Data Structure 67

10 The Range Code Body 1..10 step 2 68

11 The Function func(a : 23.4)[15, a] 69

12 General Form of an And Expression 70

13 Data Structures for the Value s [?x,<=99] 72

14 General Form of a Relation 73

15 Data Structure for the Primitive Expression 61+a 74

16 Data Structure for the Function Call foo (10) 75

17 Data Structure for the Function Call func(a) [a] (10) 76

18 General Representation of an Instance of a User-defined Type 77

19 Representation for the Expression mystack: :push(10) 78

List of Tables

1 The Primitive Stream Operators of G 33

2 Types and Their Associated Domains 35

G : A Language Based On Demand-Driven Stream Evaluations

Chapter 1

Introduction

A programming paradigm can be defined as a model or an approach employed

in solving a problem, a definition suggested by Shriver [Shr86]. A programming

paradigm represents a way of thinking about a problem, a way of modeling a prob-

lem domain. The ontologies represented by different paradigms are different. For

example, the logic paradigm views the world as composed of predicates and relations

while the functional paradigm models a world of functions, function composition and

function application.

In general, the theoretical power of the languages that implement the various

paradigms is the same. For example, if a problem can be solved in the logic paradigm

in Prolog, then that same problem can be solved in the functional paradigm in Lisp

or in the object-oriented paradigm in Smalltalk. But, as pointed out by MacLennan,

"although it's possible to write any program in any programming language, it's not

equally easy to do so" [Mac87]. For example, when solving problems that involve

complex matrix arithmetic, APL and not Prolog is likely to be the language of choice.

This is true not because Prolog is less powerful than APL, but because it is so much

simpler to write solutions to matrix arithmetic problems in APL.

The recognition that paradigms can be applied to certain problems more easily

than others has prompted new directions in the design of programming languages.

The question is now being asked "Can we design languages that give programmers

the freedom to choose among diverse paradigms?" Ghezzi and Jazayeri [GhJ87] have

described the current directions in programming language foundations as consisting

of the following three primary perspectives:

2

1. The various programming paradigms should be kept separate. The application

should determine which approach is chosen.

2. One programming paradigm should be used in all applications.

3. An attempt should be made to integrate the various paradigms into one "uni-

form linguistic proposal ".

Attempts to explore the feasibility of the third view expressed above form the ba-

sis of a relatively new area of current investigations called multiparadigm research.

Hailpern [Hai86] has called this field of research "exciting and vital". He predicts

that many cycles of experimental efforts followed by theoretical insights and con-

solidation will transpire before the research is mature and well understood. Shriver

[Shr86] echos this enthusiasm when he predicts that "exciting times" are ahead of us

as progress begins to be made in this research area.

The expression "multiparadigm language" has been used in the literature to

refer to the languages that are being created as a result of this particular area of

research [JGM86]. A multiparadigm language provides constructs that support more

than one programming paradigm. According to Hailpern:

"The ideal multiparadigm language would give the programmer the tools
needed to solve each part of a programming task in the most natural and
convenient way." [Hai87]

We agree with this assessment by Hailpern about what constitutes the ideal for multi-

paradigm languages. The challenge that naturally follows from this ideal is to create

languages which integrate a maximum number of different programming paradigms

in a consistent and natural framework. The research described in this document

involves the creation of a multiparadigm language that combines a larger number of

paradigms than have yet been combined into a single programming language.

Several paradigms which are referred to often in this document have been

defined below for clarification. The general classification of these paradigms was

taken from Jenkins, Glasgow and McCrosky [JGM86].

3

1. functional: The functional paradigm preserves referential transparency. There

are two basic properties that define referential transparency. The first property

is that all subroutines of a language must be true functions. That is, given a

subroutine f and value x, the value of f applied to x must always be the same.

The second property states that the value of a variable cannot be altered or

modified in the middle of its scope (i.e. once a variable is assigned a value, it

retains that value throughout its scope). Taken together these properties (i.e.

referential transparency) imply that computation does not occur by the pro-

duction of side effects but by defining functions which, for any given argument

set, compute a unique value.

Purely functional languages are also distinguished by their data structuring

capabilities and by their ability to create higher order functions. The data

structuring capabilities allow complex data structures to be passed as argu-

ments or returned as results from expressions. A higher order function is either

a function created by combining other functions or a function which returns

another function when evaluated.

The functional paradigm consists of the applicative and lambda-free paradigms.

la. applicative: The applicative paradigm uses function application and re-

cursive function definitions. Each expression in this model can be broken

up into components which are either operators or operands; the operators

are applied to the operands. Pure Lisp [Wil84] is an example of a language

based on this paradigm.

lb. lambda-free: The lambda-free paradigm is a restriction of the applicative

model to the use of two types of functional mechanisms. One type is used

for applying a function to its argument, the other is used for creating

and naming functional forms. Backus's FP [Bac78] is an example of a

language reflecting this approach to programming.

2. imperative: The imperative paradigm is marked by fundamental use of com-

mands such as assignment and flow control structures. The effects of the se-

4

quential list of commands that make up the imperative program combine to

produce the desired computational effect. The language Pascal [SWP82] is an

example of an imperative language.

3. procedural: This paradigm combines the imperative programming facilities de-

scribed above with an abstraction mechanism to build procedures and func-

tions. This mechanism allows the creation of generic commands. The lan-

guage C expresses this paradigm. (Note that the imperative and procedural

paradigms are often considered to be different aspects of one paradigm called

the traditional or von Neumann paradigm.)

4. relational: The relational paradigm is based on a world of relations which in

turn may be thought of as tables. Operators provided in this world of relations

operate on old tables in order to create new tables. The relational model has

become an important model for database systems. SQL [Dat86] is an example

of a relational database programming language.

5. logic: Implicit in the logical paradigm is the existence of an underlying search

mechanism. This paradigm emphasizes an incremental rule-based program

structure and the logical variable. Logical variables allow the input and output

specifications of relational expressions to be completely unspecified which in

turn permits relations to be used in arbitrary modes. In addition to this,

logical variables support the existence of partial data structures (i.e. data

structures with unbound variables) and they support the binding of variables

by the intersection of constraints. Prolog [StS86] is an example of a logic

programming language.

6. object-oriented programming: Central to this paradigm is the notion of a

world of objects organized into an inclusion hierarchy. The behavior of an ob-

ject is determined by methods associated with the class of that object. Methods

may be inherited from ancestor classes. Smalltalk [GoR83] is an example of an

object-oriented language.

5

The approaches to programming outlined above represent well-established paradigms

that have been targeted for integration in one combination or another by various

researchers. The research described in this document has been directed toward the

integration of all of these paradigms in a single programming language.

1.1 Motivations For Multiparadigm Research

There are a variety of interests and motivations that have provided the im-

petus for multiparadigm research. Shriver writes:

"It is not clear that the paradigms in use today are either the right match
to current and imminent technology or the right match to current and
imminent user needs. We must develop new programming paradigms
that lie beyond the ones currently studied and used in some degree of
detail." [Shr86]

Jenkins, Glasgow and McCrosky [JGM86] created the multiparadigm language Nial

mainly to use as a pedagogical tool for teaching different programming paradigms.

Alan Kay, although he was writing in support of the "message-activity" model, ac-

tually offered a strong argument in favor of the development of multiparadigm lan-

guages for pedagogical purposes. In his now classic article that introduced Smalltalk

and its object-oriented paradigm Kay wrote:

"Our experience, and that of others who teach programming, is that
a first computer language's particular style and its main concepts not
only have a strong influence on what a new programmer can accomplish
but also leave an impression about programming and computers that can
last for years. The process of learning to program a computer can impose
such a particular point of view that alternative ways of perceiving and
solving problems can become extremely frustrating for new programmers
to learn." [Kay77]

Kay was actually making a case for a single general model that he felt was a superior

paradigm, but we feel that his argument suggests that a linguistic framework that

supports several powerful paradigms may well represent an excellent pedagogical

tool. Novices instructed in the use of several programming paradigms, would be less

likely to fall into the rigidity of thought that Kay described.

6

In addition to these pedagogical concerns, Jenkins, Glasgow and McCrosky

also argue that another important practical reason exists for the creation of multi-

paradigm languages. They feel that combining several paradigms in one program-

ming environment would result in an environment that directly supports the ex-

pression of multiple approaches to problem solving and would, therefore, represent

a better environment in which to create large, complex software. The environment

they envision would be made more feasible by an effective multiparadigm language.

Hailpern supports this line of reasoning when he states that "multiparadigm systems

are being created to give programmers the right tool at the right time [Hai86]".

Other investigators are trying to merge the capabilities of one paradigm with

the special gains made in the understanding and utilization of another paradigm in

order to extend the capabilities of a given language. In their paper in which they

propose the extension of the functional language HOPE by the addition of unification,

Darlington, Field and Pull write:

"Techniques, such as graph reduction and data flow, have been evolved
for the parallel evaluation of functional languages taking advantage of
their simplicity of execution, and it would be advantageous if these tech-
niques could also be used to support languages with the extra expressive
capability of logic." [DFP86]

Lindstrom [Lin85], in his paper describing the extension of the functional language

FGL with the logical variable, discusses how even the partial combination of program-

ming paradigms can be beneficial. He asserts that even without the usual supporting

features of logic programming (e.g. search and clausal programs), adding the logi-

cal variable to a functional language is worthwhile. The logical variable, he asserts,

extends the range of efficient functional programming applications and provides a

means by which functional programming can be utilized in a widened conceptual

framework.

Yet another motivation found among multiparadigm researchers is the cre-

ation of a database programming language. DSM [Rum87] is a language that has

been created by merging the object-oriented and relational models in order to create

a database programming language. DSM is currently being used to write real appli-

7

cations programs. Korth [Kor86] has proposed the extension of relational (database)

languages to include the functional and object-oriented paradigms. He argues that

the resulting multiparadigm language would enable the relational model to be ef-

fectively applied to several areas outside of traditional "data-processing-style" ap-

plications. Korth lists computer-aided design databases, knowledge bases and user-

interfaces as potential application areas for an extended relational model.

As indicated above, the benefits of multiparadigm research are already being

reported as newly created multiparadigm languages begin to be used. Fukunaga and

Hirose [FuH86] have reported on what they perceived as the significant advantage of

unifying object-oriented programming and logic programming paradigms into a sin-

gle language called SPOOL. They found that the knowledge representation capability

of the object-oriented programming paradigm and the application independent in-

ference mechanism of logic programming combined to yield a powerful "synergism".

The benefits of the combined approaches was realized when SPOOL was used to

write a non-trivial application program called PROMPTER. PROMPTER produces

a higher-level description of the control program of an IBM operating system given

its assembly language source code. Even though SPOOL is reported to need further

linguistic support in order to exploit the full power of its combination of paradigms,

Fukanaga and Hirose found it was useful for the development of PROMPTER in two

major ways: the object-oriented framework of SPOOL greatly contributed to simpli-

fying the architecture of PROMPTER and the logic capabilities of SPOOL helped

clarify important ideas in the problem domain.

This discovery of the synergistic effect produced by a combination of paradigms

is also reported by the creators of Common Loops [BKK86]. They argue that the

unification of object-oriented programming with the procedure-oriented design of

Lisp resulted in something greater than the sum of the parts and that the mechanisms

needed for integrating these two paradigms gave Common Loops unexpected strength.

8

1.2 Previous Work

The field of multiparadigm research is quite young; there are a variety of

efforts and approaches being attempted in order to learn how best to integrate diverse

paradigms. Some researchers are working on interfaces to join languages of different

paradigms, others are extending existing languages with the components of additional

paradigms and a few are attempting the creation of wholly new languages. Regardless

of the particular approach, however, a majority of the work done so far in the field

of multiparadigm research has been focused on the integration of two or three well-

established paradigms.

In particular, much effort has been directed toward the integration of the func-

tional and logic paradigms. Examples of the results of this research include Funlog

[SuY86,SuY84] and its extended unification algorithm, and the programming lan-

guages TABLOG[YoM86] and LEAF[BBL86]. These efforts have contributed insight

into various characteristics of the logic paradigm such as non-directionality and the

logical variable but they have not been attempts to produce broadly multiparadigm

linguistic frameworks. In an analogous way, other limited attempts at paradigm inte-

gration have contributed to the understanding of characteristics of specific paradigms

but have not been directed toward maximizing the number of paradigms woven into

one linguistic fabric. Among the results of these attempts are, Flavors [Moo86]

and Common Loops [BKK86] which combine the applicative and the object-oriented

paradigms, the language SPOOL and the Koschman and Evens [KoE88] language

interface which combine the object-oriented and logic paradigms, and DSM [Rum87],

mentioned above, which combines the object-oriented and relational paradigms.

The language Nial represents the only attempt known to us, beyond our own

efforts, to approach the creation of the "ideal" multiparadigm language by combining

several major paradigms in one language. Hailpern is also currently in the design

stages of a project meant to integrate several paradigms, but this effort is being

directed toward the creation of a multiparadigm "system" composed of several lan-

guages of different paradigms. Nial currently integrates the imperative, procedural,

applicative and lambda-free approaches to programming[JGM86]. It does not sup-

9

port the logic and object-oriented paradigms, although research is currently being

conducted that may allow a future version of Nial to offer extensions that support

these other paradigms. These additional paradigms will not be directly supported

by Nial.

1.3 Research Goals

As already noted earlier, Ghezzi and Jazayeri [GhJ87] described the current

directions in programming language foundations as consisting of three primary per-

spectives. The third perspective, which embraces the field of multiparadigm research,

was described in the following way:

"An attempt should be made to integrate the various paradigms into one
`uniform linguistic proposal' ."

The questions raised by this third perspective are to what extent such an integration

is possible and how can such an integration be realized. Harland has described this

problem as a "challenge" to "devise a sufficiently expressive mechanism and then

construct a fully integrated mixture of these paradigms [Har86]". This is the problem

of central concern to the research described in this dissertation: "How can the major

programming paradigms be combined within one 'unified linguistic proposal' ."

The structure of this dissertation generally conforms to the methodology we

followed in order to answer the problem stated above. This methodology needed to

produce both a language design and a demonstration that the design could result

in a programming language capable of expressing the paradigms of interest. We

have given below a brief outline of this methodology. Basically steps 1 through 4

correspond to the language design stage of our research and the remaining steps

correspond to the implementation and demonstration of the language.

1. A single unifying datatype was chosen on which to base a new language design.

The choice of this datatype was based upon the following criteria:

(a) The datatype's ability to represent any arbitrarily complex data structure.

10

(b) The datatype's compatibility with a dynamic environment and interpreted

implementation.

(c) The datatype's ability to support a simple "world view" with very few

primitive functions.

The basic datatype chosen was the stream. A stream is a data object whose

values are produced as it is traversed.

2. The paradigms to be included in the language design were chosen. (The

paradigms chosen were all of those defined earlier.)

3. The target paradigms were decomposed into their fundamental characteristics.

These characteristics were analyzed with respect to the language semantics,

structures and functionality that they implied and required. Furthermore,

when necessary, the structures targeted for the language were "molded" into a

form and interpretation compatible with and supportive of the "world view"

implied by the fundamental datatype chosen for the language.

4. The remaining syntactic constructs necessary to directly support the essential

characteristics of the paradigms were chosen and the language grammar and

semantics were completed.

5. A prototype interpreter was implemented from the completed design.

6. Programs were written to demonstrate both how the individual paradigms are

expressed and ways in which the paradigms may be integrated or mixed.

The execution of the steps outlined above resulted in the research presented

in this dissertation. The details of each of these steps are described in the remaining

chapters of this document. Steps 1 through 3 form the heart of our initial language

design process whereby we combined an analysis of the paradigms of interest with a

single unifying datatype that could embrace those paradigms. The details of steps

1 through 3 are discussed in Chapter 3 Developing the Underlying Structure of G.

Step 4 represents the final stage of the language design process where the language

11

attributes and structures determined in the previous steps were united into a com-

plete language specification. The results of the efforts made at this step are covered

in chapter 4, The Language G, where details about the syntax and semantics of the

final design of G are discussed.

The efforts made in the remaining steps of the outlined methodology resulted

in a prototype implementation of the language G and in the creation of several

programming examples. The details of the implementation of G are given in chapter

5 The Prototype Implementation of G. The programs that were generated in step

6 to demonstrate the expression of the individual paradigms and some combinations

of paradigms are presented and discussed in chapter 6 Expressing and Integrating

the Paradigms of G. Finally chapter 7 contains the conclusions we have reached

concerning the research presented in this dissertation as well as a discussion of future

work suggested by this research.

1.4 Research Results

The results of the research reported in this dissertation demonstrate that it

is possible to unite several different paradigms into a single linguistic proposal. The

chosen paradigms can be expressed both individually and in various combinations

within the language G. Semantic issues were challenging during the language design

period and yet the semantics of the completed language are surprisingly uncluttered;

the syntax of G is simple and concise. The language G can be improved and ex-

panded, it is not a "finished product." It does provide, however, a good framework

on which to base further research and it does provide a good example of how the

major paradigms can be united into one "unified linguistic proposal."

It was also our intention to create a small interpreter for G. This goal was also

realized. The G interpreter consists of approximately 5000 lines of C code. Work

is currently in progress on a second version of the interpreter which has already

demonstrated significant reductions in memory utilization and response time. Re-

cently we have been contacted by a research group designing VLSI based hardware

support for streams; they have shown an interest in the language G. The possibility

12

of implementing a version of G on specialized hardware opens up new potential for

expanding our research.

All of this suggests that the design methodology developed for this research

was appropriate to our stated goals and that it itself represents a contribution of the

research described in this document.

13

Chapter 2

Related Work

This chapter discusses research efforts that in varying degrees are related to

the work described in this dissertation. Some of the research efforts reported here

have contributed ideas or techniques or both to the research and development that

resulted in the language G while others have been related only in a peripheral way.

Most of the sources cited in this chapter refer to projects with research goals different

to one degree or another than our own, yet these projects often offered insight into

programming language issues that were important to the research described in this

dissertation.

2.1 Programming With Streams

There are a few languages based upon the stream, for example, Lucid [AsW77],

Segue [Gr085,GrB85], KRC [Tur82] and GRAAL [BeR85]. None of these languages,

however, are multiparadigm in the sense described in this document. Lucid has

actually been called multiparadigm by Faustini and Lewis [FaL86] because it is a

family of languages, each described by its own algebra. But this clearly is not meant

in the same sense in which this document has used the term multiparadigm. Segue is

an experimental language that resulted from ideas and notations developed by Ralph

Griswold [Gri83]. Icon [GrG83], the language in which Segue is embedded, has had

a considerable influence on the design of G. It was the power of Icon generators

[GHK81,WaG81], integrated so completely into that language, which suggested that

the stream could itself provide the fundamental data structure of a simple, compact

multiparadigm language. Of the other stream-based languages mentioned above

GRAAL is a language that implements the lambda-free (FP [Bac78] style) paradigm

and KRC is a recursion equation language [Tur82].

14

2.2 The Functional Paradigm

Ideas developed by functional language implementors concerning the creation

and manipulation of environments provided a major contribution to the implemen-

tation of G. These ideas derived mainly from work done in the Lisp community and

are discussed in detail by several authors including Abelson and Sussman [ASS85]

and Wise [Wis82]. Other helpful ideas offered by the Lisp community involved im-

plementation of lazy evaluation. A good discussion of lazy evaluation can be found

in Henderson [Hen80]. Brian Boutel's discussion of ALICE, a graph reduction com-

puter, also offered some insight into how to efficiently handle primitive functions

[Bou87].

The syntactic form of function definition used in ISETL [BDL87] was adopted

for use in G. It can be used in a manner similar to the lambda form of Lisp [Wi184].

2.3 The Logic Paradigm

A number of researchers who are attempting to combine the functional and

logic programming paradigms have written about problems associated with the log-

ical variable. These researchers have discussed how the full range of power of the

logical variable carries with it some serious performance difficulties.

Concerning the non-directionality or multimode character that logical vari-

ables provide logic programs, Uday Reddy has emphasized how different uses of

the same relation can result in extreme differences in the amount of computational

resources utilized by a language. In addition Reddy [Red86] writes that "... non-

directionality also makes the operational behavior of logic programs hard to under-

stand, and poses problems in developing parallel implementations of logic languages".

He develops a notation for explicitly introducing directionality into logic programs

in order to deal with this difficulty.

In an attempt to gain some use from this power but to limit its negative side

effects Darlington, Field and Pull [DFP86] argue that because of the problems of

implementation efficiency, some of the expressive power of logic programs should be

reserved for specifications and not be supported at run-time. They present tech-

15

niques for transforming these specifications into functions which can be executed

more efficiently using only pattern matching and deterministic computation (i.e. by

eliminating the logical variable).

In addition to these investigators, Abramson [Abr86] has warned about the

problem of incorporating full unification into a functional language. He warns that

bidirectional information flow during formal and actual parameter evaluation can

require "delicate suspensions of function applications" until arguments have been

sufficiently instantiated for evaluation.

Based on the results of these and other researchers, it seemed prudent not

to initially incorporate the logical variable into G. Output variables are used in

G, however, to provide some of the functionality of the logical variable. (Output

variables are discussed in detail in chapters 3 and 4.)

2.4 The Object-Oriented and Relational Paradigms

Much work is being done today to unite the object-oriented paradigm with

other paradigms.. In particular, researchers are attempting to combine it with the

relational model in order to work toward the creation of database programming

languages.

Rumbaugh [Rum87] has made some helpful suggestions concerning the need

for semantic and syntactic support for expressing relations directly in object-oriented

languages. Several of the attributes needed to support the relation as a logical

construct, as described by Rumbaugh, are provided in G as a natural consequence of

its underlying stream semantics. For example, pattern-matching expressions and the

basic stream semantics of G, which will be discussed in Chapter 4, provide simple

query operation capabilities for membership testing and scanning a relation.

Rumbaugh has also suggested that relations should exist outside the type or

class hierarchy of an object-oriented language. He argues that the relation should be

a semantic construct equal to objects in an object-oriented structure. We have not

found it necessary to move relations outside the type hierarchy of G. Relations are

given special syntactic and semantic support and placed within the type hierarchy

16

of G as a special case of the root type Stream.

The technique of using standard function invocation syntax for message pass-

ing is used in the language Flavors [Moo86] and in the language Common loops

[BKK86]. Each language interprets the function name of such an expression to be

the method selector of a message-passing expression. This idea was used for built-

in types in the language G as an aid in keeping the object-oriented structure of G

invisible to the other paradigms included in G.

2.5 Incorporating Many Paradigms into a Multiparadigm System

Current work by Brent Hailpern to create a multiparadigm system offers some

comparisons with our own work, although there are far more differences to be noted

than similarities between the two projects. At a seminar he gave, Hailpern [Hai87]

outlined some of the criteria that he has developed and is using for the development

of a multiparadigm system meant to integrate the object-oriented, functional and

imperative paradigms. Details are sparse in Hailpern's lecture notes, but he appears

to be designing a "language" that is actually a system composed of other languages;

each component language supports a paradigm to be included in his "multiparadigm

language". G is, of course, a single language and is not composed of component

languages. Our two projects are, therefore, starting from quite different ground.

It is possible, however, to find one significant similarity between our two "lan-

guages". Hailpern has chosen an object-oriented language, Emerald, to serve as

the basis for his multiparadigm "system". The basic structure of G is also object-

oriented. We feel that the fundamental structure of a multiparadigm language is well

served by an object-oriented structure; it provides flexibility and easy extensibility

to the language. Hailpern rejects, however, choosing a single powerful datatype as

the foundation of his multiparadigm language. He feels that such a datatype would

"optimize for one set of problems" and impede the flexibility of the language. We

have found just the reverse. Our choice of streams as the fundamental datatype of

G has supported flexibility and simplicity in our language design. All types within

the G type hierarchy, including user-defined types, are descendents of the root type

17

Stream. This reflects a simple "world view" in which values of all types respond to

the small set of stream primitives built into G. It should be noted here that we have

been able to make user-defined types an integral part of the world of streams through

an innovative interpretation of an instance of a user-defined type. The details of this

interpretation are given in Chapter 3.

From this point on there seem to be few similarities between G and the lan-

guage proposed by Hailpern. Where we have chosen to allow the basic design features

of G support the use and creation of functions and functionals, Hailpern is experi-

menting with an extension to Backus's FP in order to manipulate functions which

are maintained in a"well-defined function space". Again differences seem to arise be-

tween our two approaches in part because Hailpern's decisions are being made with

respect to languages which are components of his proposed multiparadigm system

whereas our research is directed toward the creation of a single linguistic framework.

2.6 Incorporating Many Paradigms Into One Language

Nial is a single linguistic framework that supports the imperative, procedural,

applicative and lambda-free paradigms [JGM86]. Nial does not directly support the

object-oriented, logic and relational paradigms. Jenkins, Glasgow and McCrosky do

state, however, that current research is being done to develop "extensions" for logic

and object-oriented programming [JGM86].

Another significant difference between the two languages stems from the fact

that Nial is based on array theory which in turn is concerned with a universe of

finite, nested, rectangular arrays. In this sense, Nial is a descendent of APL [GiR76].

Data values in Nial are, therefore, constrained to be finite whereas streams can

accommodate infinite as well as finite data values.

G and Nial represent very different design methodologies. In the design

methodology formulated to create the language G, we used the flexibility of a fun-

damental datatype, the stream, to allow us to mold the objects and entities of other

paradigms into stream interpretations. In this way we were able to maintain unifor-

mity with respect to how data values are treated and at the same time accommodate

18

a diverse collection of paradigms. In addition, this methodology allowed us to re-

strict G to a small set of built-in primitives and it allowed us to choose a small

set of concise syntactic structures with which to directly support the paradigms of

interest. Nial, on the other hand, was strictly designed around array theory. "It

uses the notations developed by More and colleagues for array theory as the basis for

the syntactic constructs of the language." [JGM86] Since the array is general and

flexible, several paradigms can be expressed within Nial by an appropriate selection

of primitive functions. But the methodology of interpreting the elements of various

paradigms in terms of a basic datatype and then choosing syntactic constructs to

support those interpretations was clearly not used by the creators of Nial.

19

Chapter 3

Developing the Underlying Structure of G

This chapter describes the process by which the basic structures and attributes

of the language G were chosen. There were several ideas that served as axioms on

which we developed a methodology for determining the fundamental elements of G.

We will discuss these guiding principles first and then discuss the details of the first

three steps of our design methodology.

3.1 Guiding Principles

One of the basic axioms on which we based our language design strategy in-

volved the choice of a fundamental structure for the language G. We felt strongly that

we could achieve compactness, simplicity, and extensibility by utilizing an underlying

object-oriented hierarchy for G. What was crucial to this idea, however, was the ad-

ditional notion that an underlying object-oriented structure did not have to impose

an object-oriented perspective on the expression of the other paradigms in the lan-

guage. We avoided such an imposition by using a flexible fundamental datatype to

provide an underlying semantics that helped unify the various paradigms. Further-

more, by making the fundamental datatype the root of G's type hierarchy, we made

the object-oriented structure serve the basic datatype of the language. These ideas,

of course, made it essential to chose a datatype with generality sufficient enough to

provide the base for an "underlying semantics" that could embrace the paradigms of

interest. The choice of this datatype was based on several criteria which are discussed

later in this chapter.

Another important axiom of our design was the idea that we should not ap-

proach paradigms as atomic entities. Instead we decomposed the paradigms into

their essential characteristics and then, whenever possible, treated those character-

istics as though they were independent features. We made every effort to include as

many as possible of the essential characteristics of the paradigms into the linguistic

20

structure of G. Furthermore, the inability to integrate one characteristic of a given

paradigm into G was not considered reason to eliminate that paradigm from inclusion

in the language.

This idea of "unbundling" a paradigm was actually used, albeit in a somewhat

more restricted context, by Lindstrom when he incorporated the logical variable into

the language FGL. In his paper describing that extension, Lindstrom argued that

the new ideas embodied in logic programming do not form a "monolithic semantic

whole" but can be separated for individual consideration [Lin85].

The ideas discussed above suggested an approach to the design of a language

with a single unifying semantic framework in which diverse paradigms could com-

fortably coexist. They suggested that a versatile underlying structure, a flexible fun-

damental datatype and supportive language attributes could provide the semantic

"glue" necessary to bring diverse paradigms together in one programming language.

These ideas were used to form the initial phase of a language design process. The

steps of this process are summarized below.

1. Choose a single unifying datatype on which to base the new language. Base

this choice upon the following criteria:

(a) The datatype's ability to represent any arbitrarily complex data structure.

(b) The datatype's compatibility with a dynamic environment and interpreted

implementation.

(c) The datatype's ability to support a simple "world view" with very few

primitive functions.

2. Choose the paradigms to be included in the language.

3. Decompose the target paradigms into their fundamental characteristics. An-

alyze these characteristics with respect to the language semantics, structures

and functionality that they imply and require. When necessary, "mold" the

structures targeted for the language into a form and an interpretation com-

patible with and supportive of the "world view" implied by the fundamental

21

datatype chosen for the language.

These steps are discussed in detail in the remaining parts of this section.

3.2 The Choice of a Fundamental Underlying Datatype

The stream was chosen as the underlying fundamental datatype on which to

base the design of G. A stream can be defined as a data object that is capable of pro-

ducing values, where the values are produced on demand and constitute a sequence

of values produced in time [Gr085]. Wise expressed this succinctly when he wrote

"A stream can be pictured as a data structure which unfolds as it is traversed."

[Wis82]. Stream programming can be used without assignment, it can be used to

model systems that have state, and it can capture common patterns of data manipu-

lation in concise abstractions. A good discussion of some of the intricacies of stream

programming can be found in the book by Abelson and Sussman [ASS85]. A quote

from their book gives some idea of the importance of this area of programming:

"Perhaps the best that one can say at present is that time-varying objects
and time-invariant streams both lead to powerful modeling disciplines.
The choice between them is far from clear, and the search for a uniform
approach that combines the benefits of both of these perspectives is a
central concern of research in programming methodology."

The extreme simplicity and generality of the stream make it well suited to be

the basic datatype of a language that integrates a large number of paradigms. Some

of the main attributes that contributed to the decision to choose the stream as the

fundamental datatype of G are discussed below.

1. The stream can represent any arbitrarily complex data organization.

Streams can be used to organize data in any arbitrarily complex manner. Com-

plex organizations of data with nested composite data values can easily be

represented as streams of streams.

2. The stream can support a simple "world view".

A datatype can imply the existence of elementary operations. For example,

a stack datatype implies the existence of push and pop operations. In a lan-

22

guage in which all objects are manifestations of a single underlying datatype,

these elementary operators can be applied to all data values. If the operators

are conceptually simple, few in number and computationally useful then an

effective underlying semantics that links all values will have been established.

In addition, the need to support only a small number of these basic operators

helps keep the language design simple and compact. The stream is an excel-

lent datatype with which to capture all of these qualities. The basic operators

implied by the stream datatype are few in number; we defined only four. We

need operators (1) to inquire what the current value of a stream is, (2) to move

a stream on to its next value, (3) to inquire what is the index of the current

value of the stream, (4) to concatenate streams together, (5) to inquire what

particular type or manifestation of a stream a value is and (6) to implement

a special enumeration protocol. Each of these basic operators is conceptually

quite simple. A similar structure (the list) has already demonstrated how com-

putationally useful the stream might be. Thus the stream embodies the criteria

we listed above.

3. The stream is compatible with a dynamic environment and an interpreted im-

plementation.

The stream datatype allows dereferenced structures to be recycled with relative

ease thus supporting dynamic memory management. This is much in line with

attributes of functional languages based on the list datatype and is discussed

by several others including Abelson and Sussman [ASS85] and Wise [Wis82].

3.3 Choosing the Paradigms

The paradigms that were chosen for inclusion in the language G were defined

in chapter 1 and are listed below:

1. functional (applicative and lambda-free)

2. imperative

23

3. procedural

4. logic

5. relational

6. object-oriented

This is a list of programming paradigms that have been used extensively for several

years and as such have shown themselves to be useful and powerful aids to problem

solving on the computer.

3.4 Decomposition of the Paradigms

In the phase of the design process described in this section each of the

paradigms was decomposed into its principal characteristics. Each characteristic

was in turn matched to those language structures and attributes needed to support

it. When necessary to maintain semantic unity, language structures were "molded"

into forms compatible with and supportive of the general stream semantics of G.

3.4.1 The Functional Paradigm

Each of the fundamental characteristics of the functional paradigm is given

below. Each characteristic is followed by a brief discussion of the language attributes

and functionality that were chosen in order to support that characteristic.

1. Expression-based semantics.

Expressions were chosen as the basic currency of the language G. This caused

no conflict with the other paradigms.

2. A hierarchical structure of expressions with components that may be decomposed

into operators (possibly recursive) applied to operands.

Supporting such a structure necessitates both a mechanism for applying func-

tions to their arguments and a function definition mechanism that permits

recursive function definitions. Both of these mechanisms are provided in G.

24

3. Data structuring capabilities and the ability to create higher order functions.

All values in G are guaranteed to be first-class values. This is all that is

needed in order to assure that the language has data structuring capabilities

and the ability to create higher order functions. Data structuring capabilities

guarantee that structured or composite values can be used in the same way as

any other value in a language. Structured values should be able to be passed as

function arguments, returned as values by functions or used in assignment even

when assigned as components to other structures. In an analogous manner, a

language that can accommodate higher order functions will permit functions

to be passed as function arguments, returned as values by other functions and

assigned as values to variables. All of these capabilities are provided in a

language that guarantees first-class status of all values.

4. Referential transparency.

Referential transparency (defined in Chapter 1) can be supported in a number

of ways. Two ways included in the basic structure of G are the parameter

passing mechanism adopted for G and the assignment protocol enforced by G.

Either a call-by-value or a call-by-need parameter passing mechanism would

have been supportive of referential transparency. Since the stream was chosen

as the fundamental datatype of G, however, the call-by-need protocol became

the preferred mechanism. Call-by-need is really just a call-by-value mechanism

realized in the context of lazy evaluation.

In order to prevent aliasing as a consequence of assignment it was decided

to enforce an assignment protocol that would preclude aliasing. Values are

always copied before they are assigned. A copy of the right-hand-side value

of an assignment expression is always assigned to the left-hand-side variable

of the assignment. This allows single assignment to be used with no threat to

referential transparency. It should also be noted that since it was decided to

make G an expression-based language, the assignment operation is interpreted

to be an expression that always returns the null value sequence. In this way

25

an assignment statement does not contribute to the value sequence in which it

is written but is used solely for its side effect of assigning a value to a variable.

This interpretation of assignment is an example of "molding" a language feature

into a form compatible with and supportive of the general stream semantics of

G.

It should be noted that the parameter passing mechanism and the assignment

protocol given above do not, by themselves, guarantee referential transparency;

these mechanisms only serve to narrow the number of ways in which it can

be violated. In order to guarantee referential transparency it also would be

necessary to enforce the prohibition of destructive assignment. To build this

prohibition into the linguistic framework, however, would also prohibit a prime

feature of the imperative paradigm. Such prohibition was not, therefore, built

into the structure of G. Expression of the "purely" functional paradigm in

G does rely on the user choosing not to utilize destructive assignment in G

programs.

3.4.2 The Logic Paradigm

Each of the fundamental characteristics of the logic paradigm that were iden-

tified are given below. Each characteristic is followed by a brief discussion of the

language attributes and functionality that were chosen in order to support that

characteristic.

1. An underlying interpreter that supports search-based computation.

There was little question that our language would need to be interpreted. This

characteristic did emphasize, however, that some search-based computational

mechanism would need to be a part of the interpreter. The generate-and-test

search mechanism is certainly an intuitive part of the semantics of any language

based upon generators or streams. But far more efficient search strategies can

be employed by the G interpreter when relations are used instead of general

structured data types like the tuple. An important point to note here, how-

26

ever, is that the user can simply view the underlying search functionality in

a simplistic way and know that every value is a stream and, therefore, every

value can potentially participate in computations that involve search.

The actual structures that were chosen to support search-based computation

were pattern-matching expressions (i.e. values of type Pattern) and conjunc-

tions. Both of these structures are discussed in detail in chapter 4. In passing

we do wish to mention, however, that the language QBE (see [Dat86] for an in-

troduction to query-by-example) and the mapping operations of SETL [SDD86]

readily suggested the syntactic form given to values of type Pattern. This de-

cision was particularly influenced by consideration of the extreme ease with

which relational queries can be expressed in QBE.

2. Unspecified input and output specifications of relations.

What is needed to support this characteristic is some mechanism by which

information can flow bi-directionally in and out of streams. What was chosen

to support this need was a special type of variable called an output variable.

Output variables are understood to be initially uninstantiated. The binding

of output variables to values is coupled to the underlying search process built

into the interpreter. The output variable is explained in detail in Chapter 4.

3. The existence of data structures with unbound variables.

To fully realize this characteristic requires the functionality provided by uni-

fication. It was decided not to utilize unification in G for reasons discussed

in Chapter 2. It is possible, however, to use output variables in conjunctions

to allow expressions with unbound variables to exist in the form of Prolog-like

rules. These structures are discussed in Chapter 4.

4. The binding of variables by the intersection of constraints.

This characteristic also calls for a form of uninstantiated variable that can ac-

quire bindings through the search mechanism built into the interpreter. Vari-

ables of this type must be able to be used more than once within an expression.

27

In addition, the semantics of such expressions must guarantee that the initial

bindings of values to uninstantiated variables will be coupled to the underlying

search mechanism and that these bindings will be retained for the remaining

period of computation of that expression. The semantics of conjunction ex-

pressions in G was defined in exactly this way in order to support the binding

of variables by the intersection of constraints.

5. An optional incremental rule-oriented program structure.

Given the facilities already mentioned, G has the functionality necessary to re-

alize incremental rule-oriented program structures. The conjunction expression

of G can be used to create Prolog-like rules and the assignment mechanism can

be used to "name" these rules. In this way rules can be created and named

such that they form an arbitrarily complex hierarchy of rules built one upon

the other. (The details of constructing such rules are given in chapter 4 and

examples are included in chapter 6).

3.4.3 The Relational Paradigm

The relational paradigm models a world of relations (or tables) with operators

that map relations to relations (or tables to tables). Relations are provided as first-

class values in G and built-in functions that operate on values of type Relation are

also provided. Stream values of types other than type Relation may also represent

tables, therefore, in general the relational paradigm is easily expressed in G.

3.4.4 The Imperative Paradigm

The imperative paradigm is marked by fundamental use of commands such as

assignment and flow control structures. As mentioned earlier an assignment mech-

anism was chosen for incorporation into G. The assignment mechanism does allow

destructive assignment which is a prime feature of the imperative paradigm of pro-

gramming.

Flow control operators have unique interpretations in G. The sequential op-

28

erator (the comma) actually has a dual role in G; it is also the main constructor

operator. This has resulted in there being no differentiation between a stream spec-

ification and a program in G. In a sense, therefore, there are no programs in G, just

stream expressions.

Special constructs called code bodies were created in order to represent the

additional control flow features of iteration and selection. Basically code bodies are

interpreted to be value sequence specifications. They are syntactic entities used to

specify repeated value sequences or alternative values sequences within a stream

specification. Code bodies are discussed in chapter 4.

3.4.5 The Procedural Paradigm

The procedural paradigm utilizes an abstraction mechanism to build proce-

dures and functions and allows the creation of generic commands. All of the facilities

necessary to realize this paradigm have already been mentioned. A function defini-

tion mechanism which permits recursive definitions was incorporated into G. This

can be combined with the assignment mechanism of G to permit named functions

and procedures to be created in G.

3.4.6 The Object-Oriented Paradigm

Each of the fundamental characteristics of the object-oriented paradigm are

given below. Each characteristic is followed by a brief discussion of the language

structures and attributes that were chosen in order to support that characteristic.

It is worth noting that, where necessary, elements of the object-oriented paradigm

incorporated into G have been given novel forms or interpretations compatible with

the underlying stream semantics of G.

1. An inclusion hierarchy composed of types or classes.

G is provided with an inclusion hierarchy of 10 built-in types and with a facility

for creating user-defined types. The root of the type hierarchy is the type

Stream. All other types thus became a subtype of Stream and, therefore, can

29

be interpreted to be special manifestations of streams. To help prevent an

object-oriented perspective from being cast onto other paradigms expressed in

G, the creation of instances of built-in types is assumed simply by typing the

symbolic representation of that type. Instances of user-defined types, however,

must be created with the built-in primitive make.

It should be emphasized that the built-in types in G are distinct from the

underlying types (lower category objects) they mirror. For example, the type

Int in G is considered to be populated by all single element streams whose

sole element is an integer. Thus when the symbol 53 is encountered in G it

represents a stream whose single element is the integer fifty-three. The reason

for interpreting all types as actual streams, distinct from the more primitive

types or objects implied by them, is to provide semantic consistency throughout

the language. This interpretation allows any of the primitive stream operators

to be applied to instances of any of the built-in or user-defined types. For

example, it is as legitimate to ask for the current value of the stream 53 as it is

to ask for the current value of the stream [1,2 , 3] . Thus any primitive stream

operator can be applied to an identifier in a G program and a legal operation

is always guaranteed to result regardless of the value of that identifier at the

time of computation.

2. The existence of a world of objects.

All G values can be viewed as objects which are instances of G types. Instances

of built-in types, however, are "protected" from the outward protocol that is

normally associated with the object-oriented paradigm. The two ways in which

this is accomplished are listed below:

(a) Each built-in type has a special syntax that allows its instances to be rec-

ognized by the interpreter without the use of a special creation primitive.

(b) The message passing syntax associated with all built-in types is identical

to standard function invocation syntax.

30

This "protects" other paradigms, which must use the built-in datatypes, from

having the object-oriented approach to programming imposed on them.

Instances of user-defined types, however, are subject to some of the outward

protocol of the object-oriented structure. They must be created with the prim-

itive operator (make) and a special message-passing syntax must be used when

they are passed messages.

User-defined values, however, have also been "molded" into a form that is very

compatible with and supportive of the underlying stream semantics of G. The

two major components of an instance of a user-defined type are:

(a) An interface expression.

The definition of a user-defined type includes an optional interface value;

this can be any stream value, for example, a variable name, a Prolog-like

rule or a general tuple expression. This interface value becomes the visible

value of an instance of a user-defined type. Application of stream primi-

tives to an instance of a user-defined type would result in those primitives

being applied to the interface value of that instance. If no interface value

has been defined then the empty stream is simply returned. We developed

the idea of an interface value for user-defined types in order to make in-

stances of user-defined types completely compatible with the underlying

stream semantics of G. The application of any stream primitive to any

instance of a user-defined type will always result in a legal operation. An

example of how this interface value can be used is given in chapter 6 in

the section Integrating the Paradigms.

(b) Instance variables.

Instance variables defined for a type are used to form the local environ-

ment of instances of that type. In other words, when an instance of a

user-defined type is created, it contains a local environment which is pop-

ulated with copies of the instance variables defined for that type. Instance

variables may or may not have initial values associated with them. This

31

local environment of the instance then forms the local environment in

which methods are evaluated when that instance is passed messages.

3. Message-passing and methods. A special message-passing syntax was provided

for user-defined types. Methods are function definitions that have been defined

and associated with types. When an instance of a type is passed a message, the

method associated with that message is evaluated within the local environment

of the instance that received the message.

4. Inheritance.

The property of inheritance is extended to both instance variables and methods

defined in ancestor types. All instance variables inherited from ancestor types

are combined into the local environment associated with an instance of a type.

32

Chapter 4

The Language G

This chapter discusses the specification of the language G. This specification

resulted from uniting all of the language attributes, structures and functionality

determined in the language design process discussed in chapter 3. But there was also

much work done in deciding the final set of syntactic features with which to express

the attributes that needed to be incorporated into G. It is not really enough to simply

determine through analysis what needs to be combined into a language. A language

must also "feel" right, which is to say there are human factors that are difficult to

quantify but which are very important to language design. We engaged in a lengthy

process of experimenting with a variety of syntactic devices in order to finally decide

upon a set of structures that not only expressed the functionality needed in G but

which also "worked well together" and gave the language a comfortable feeling.

4.1 Overview

The language G is an expression-based language whose basic data structure

is the stream; there are no statements in G. Every expression returns a value and

every value is a stream. All values are first-class objects able to be passed as func-

tion arguments, returned as elements of streams, assigned to variables and used as

components of other streams. G is also an interactive language. A session with the

language G consists of typing G expressions at a terminal. After an expression is

entered the value sequence of that expression is enumerated and printed. G utilizes a

demand-driven evaluation protocol; values are evaluated only when they are needed.

It is important to note that in G a stream is composed of both a sequence

of values and a mechanism for enumerating those values. A stream is, therefore, a

generator of values. In G the different types generally share the same enumeration

protocol. This protocol enumerates the elements of a stream one-at-a-time, from

left-to-right, as they are needed.

33

Operator Symbol Operator Name

0
-

II

and

type

index

next operator

current operator

concatenation operator

and operator

type operator

current position operator

Table 1: The Primitive Stream Operators of G

4.2 Primitive Operators

There are six primitive stream operators in the language G that apply to every

type. As noted earlier, every value in G is a stream. The primitive G operators reflect

this fact and bring together the different types of G as separate cases of one general

type, the stream. Every type must include definitions of the six primitive operators

either in the methods associated with that type or in the methods of one of its

super-types. The six primitive operators are shown in Table 1. Associativity and

precedence information for these operators can be determined from the grammar

given in Appendix C.

Streams of any type can be made to enumerate a value from their value se-

quence by application of either the at sign (©) or the tilde("). The at sign is the

"next" operator; it requests its operand to enumerate the current value in its value

sequence and then to advance the stream to the next element. The tilde is the

"current" operator; it requests its operand to enumerate its current value but not to

advance the stream. For example, assume that the following expression was given to

the G interpreter:

aList := [4,5,13,8]

In this expression the variable aList has been assigned the value [4,5,13,8]. Applica-

tion of the "next" operator to aList (Oa List) results in the value 4 being returned,

34

Stream

1 I I I

1

I I I I

Int Char Real Tuple String Type Pattern Relation User-defined

1

Func

Figure 1: Type Hierarchy of the Language G

but if executed subsequent times in a loop, the values 5, 13 and 8 will be returned

in that order.

The other primitive operators are concatenation (II), conjunction (and), type

and index. Concatenation joins two streams into a single combined stream while

conjunction joins streams and imposes a special enumeration protocol on the joined

streams. The type operator returns the type of its argument stream and the index

operator returns the position of the current element of the stream.

4.3 The Hierarchical Structure of G

G is organized around a tree structure. Each node in this tree represents a

type in the language G. There are ten predefined types in the G hierarchy. The basic

tree structure of G is shown in Figure 1.

A parent node in this figure is called the super-type of its children. A child

node is called a sub-type of its parent. The domain referred to by each of the type

names shown in Figure 1 is given in Table 2.

TYPE-NAME DOMAIN

Int integers

Char characters

Real floating point numbers

String strings of characters

Type type values

Tuple any mixture of types

Func any mixture of types

Pattern any mixture of types

Relation values with a fixed arity and types

Table 2: Types and Their Associated Domains

4.4 Types

35

Data types are divided into two categories : scalar and structured data types.

Scalar types include types Int, Char, Real and Type. Structured data types are

defined to be types which may contain more than one value in their value sequence.

There is no restriction on the number of values that can make up a structured data

type (i.e. infinite streams are permitted in the language G) . In addition to this,

the types Tuple, Func and Pattern may contain any mixture of types. Each of these

stream types has one or more special attributes which will be discussed in subsequent

sections of this chapter. It is important to note at the outset that every type in G

is a stream. The different types of G merely represent a convenient classification of

streams.

4.4.1 Scalar Types

The types Int, Real, Type and Char are called scalar types. When an integer,

floating point number, type value or character is encountered in a G expression, it

is interpreted to be a single element stream which responds to the primitive stream

36

operators in the same way that any single element stream would respond. An exam-

ple of each scalar and its notation is given below:

345 a stream whose single element has the integer value 345

23.4 a stream whose single element has the floating point value 23.4

a stream whose single element is the character e

Int a stream whose single element is the type value representing integers

When considering the examples given above, it is important to note that each exam-

ple represents a stream and not simply a single value. This means that each of the

examples represents a generator of a single value and responds appropriately to the

primitive operators of G. For example, application of the "current" operator to inte-

ger 345 (-345) would return the single element stream 345. The following example

further illustrates this point. Consider the following sequence of expressions given to

the G interpreter in the order shown. The comment to the right explains the effect

of each expression.

t := 5 t is assigned the stream value 5

-t the first value (5) of t is enumerated

Ot the first value (5) of t is enumerated and t is advanced

-t stream t is exhausted; end-of-stream is returned

4.4.2 String

String is a special form of structured data type in G. Each of the elements of

a value of type String is itself of type Char. Strings have a dual nature. A string may

be used as an integral unit, for example in a lexicographic comparison with another

string, or it may be regarded as a stream of individual characters which have no

implicit association beyond their membership in the stream. To accommodate this

dual nature of strings, they have been given their own unique type. In this way,

functions that treat strings as integral units and functions that treat strings as less

closely coupled elements can both be easily provided in the methods assigned to type

37

String or through inheritance in the methods provided in type Stream. Double quotes

are used to delimit strings in the language G. For example "12" would represent

a string whose first element is the character '1' and whose second element is the

character '2'. Application of the primitive stream operators to any string works in

the expected manner. For example the expression "hello " returns the value 'h'.

4.4.3 Tuple

Streams of type Tuple may contain any number and any mixture of values.

The value sequence of a given tuple is simply the enumeration from left-to-right of

the values denoted within the tuple. The value sequence is always delimited with

square brackets. The individual components of a tuple can be listed explicitly or

indicated through the use of implicit sequence denotations called code bodies. Code

bodies are not themselves streams but are sequence constructors; they have meaning

only in tuple brackets. Regardless of the manner in which the values of a tuple are

specified, implicitly, explicitly or both, a tuple is always delimited with square brack-

ets. Shown below are two examples of tuples with explicitly denoted value sequences.

[1 , 'e' , 45.6 , "hi"]

['a' , [1, 'e'] , Int]

There are six basic categories of code bodies. These categories are:

1. Range Specification

2. Control Structures

3. Assignment

4. Local Declaration

5. Break Expressions

6. Recursive Function Calls

38

Regardless of the form, a code body is used to specify a sequence (possibly empty)

of values. Range specifications implicitly specify a homogeneous sequence of values

of type Int or type Char. The four notations for range specifications are given below.

1. En..m] The values between 'n' and 'm' inclusive.

2. [n..] The values between 'n' and the end of the sequence defined for the type

of 'n'.

3. [n..m step k] The values between 'n' and 'm' skipping k-1 values after each

enumeration.

4. [n.. step k] The values between 'n' and the end of the sequence defined for

the type of 'n' skipping k-1 values after each enumeration.

In each of the forms of range specification shown above, both 'n' and 'm' must be

either of type Int or of type Char while 'k' must always be of type Int. Some exam-

ples of range specifications are given below.

[1..10] is equivalent to [1,2,3,4,5,6,7,8,9,10]

is equivalent to

[1..] represents the stream of integers from 1 to infinity

step 2] is equivalent to [' A' , 'C' , 'E' , 'G']

There are four forms of code bodies that serve both as sequence construc-

tors and as control structures. These forms are the while, foreach, repeat and

if constructions. While, foreach and repeat constructions allow their tuple bod-

ies to be repeatedly enumerated. They serve, therefore, as iterative control struc-

tures. Repeat constructions simply enumerate repeatedly the value sequence of their

body. For example, the expression repeat[1,2,3] represents the infinite sequence

[1,2,3,1,2,3,...].
A foreach construction will enumerate the value sequence of its body once

for each element of its argument that it is able to enumerate. Variables may be

inherited by a foreach body from the global environment if they are not overridden

by identifiers listed in a local declaration expression within the body. The values that

39

the argument to a foreach construction will enumerate may be named by prepending

the name to the argument value and separating the name and value by a colon. For

example, in the expression

[foreach (nums : [1,2,3]) [nums, ' # '] .

the variable nums will be assigned the value 1 on the first iteration of the loop,

then the value 2 on the next iteration and finally the value 3 on the last iteration.

The variable nums is local to the body of the foreach construction. The sequence

described by the example above is [1, ` #' ,2, ` #' ,3, (#'] .

A while construction will enumerate the value sequence of its body each time its

argument expression returns a result other than the empty stream (i.e. each time it is

successful). Variables may be inherited by a while body from the global environment

if they are not overridden by identifiers listed in a local declaration expression within

the body. The argument to a while construction may be named in the same manner

described above for foreach constructions. In the following expression

[while(a < 5)[a: =a+1,1,2,3]].

the sequence "1 2 3" will be enumerated each time the conditional within the while

argument is successful.

If constructions enumerate the value sequence of one of an arbitrary number

of alternative tuple bodies. An if construction will enumerate the value sequence of

the tuple body associated with the first argument that is not at the end of its value

sequence. If none of the arguments satisfy this condition and if an else clause exists,

the body in that clause is enumerated otherwise the empty sequence is enumerated.

For example, consider the following expression:

if(s1) [ti]
elif (s2) [t2]

else [t3]

The meaning of the above expression can be expressed this way:

If an element can be enumerated from sl then construct sequence tl else
if an element can be enumerated from s2 then construct sequence t2 else
construct sequence t3.

40

Global variables may be inherited by the selected body of an if construction if they

are not overridden by an identifier named in a local declaration expression within

the body.

As a more concrete example, consider the following expression which con-

structs the repeating sequence [1,2,3,1,2,3, .. .] if 'a' is not at the end of its

value sequence, otherwise it constructs the value sequence [4,5,6] :

[if (a) [repeat [1,2,3]] else [4,5,6]] .

The above expression is another example of an infinite or potentially infinite stream.

In order for such streams to be useful they need to be assigned to a variable. Since

all computation is G is lazy, assigning an infinite structure to a variable causes

no difficulty. After the assignment, values may be enumerated from that infinite

structure one at a time as needed.

A break expression is interpreted to be a code body which returns the end-of-

stream marker and so does not contribute to the value sequence of a stream in which

it is found. It is used only for its side effect of terminating sequences. A break will

immediately terminate the value sequence of any stream or code body in which it is

encountered. It should also be noted that a break encountered at any arbitrary level

of nesting of code bodies will terminate all code bodies up to and including the top

level. If the break is encountered in a code body, then the value sequence denoted by

that code body is immediately terminated. If the break is encountered as an explicit

element of a tuple or function, then the value sequence of the stream represented by

that tuple or function is immediately terminated. As an example of how break may

be used, consider the following expression:

[foreach(a: [if (a = 3) [break] else Pa' , 'b'n] .

This expression represents the stream [' a' , 'b' , 'a' , 'b']. For the first two ele-

ments of the argument to the foreach code body, the argument to the if code body

fails and so the sequence given as the else body is constructed. The last value of the

foreach argument causes the if argument to succeed and the break to become part

41

of the sequence. At this point the if and the foreach code bodies terminate their

sequences.

Local declarations and assignments are also examples of code bodies that re-

turn only the empty sequence and which are used solely for their side effect. Local

declarations enter variables and optionally their default values into the local envi-

ronment. When a local declaration is encountered in a tuple, function or sequence

constructor body, it has the side effect of declaring all of the identifiers listed within

it to be local to that tuple, function or code body from the point at which the local

declaration expression is found until the end of the tuple, function or code body. It

should also be noted that a global identifier will be inherited if it is not preceded by

a local declaration construction.

Assignments associate a copy of their right-hand-side value with the variable

given on their left-hand-side. If the variable given does not exist in the visible

environment, it is entered as a local variable and a copy of the right-hand-side value

is associated with it as its default value. The following example shows both the

assignment and local declaration constructions. It represents the value sequence

[3,2].

[local [x : 1,y:2] ,x :=3 ,x , y]

The final code body to be discussed is the recursive call construction self

This code body is only permitted within function bodies and will also be discussed

in the next section on functions. The self code body constructs a value sequence

which depends on the function it refers to and on the arguments it is being passed.

Examples are deferred until self is discussed in the following section on functions.

Below are given four more examples of values of type Tuple. Note that square

brackets always delimit the values of a stream of type Tuple.

['w' , 34 , "hello" , 23.5] - a simple heterogeneous stream

[[23 , 'r'] , "green"] note here the nesting of streams

[1..3,'a'..'d'] or [1,2,3,'a','b','c','d']

[foreach("ab") [1..3]] or [1,2,3,1,2,3]

42

4.4.4 Func

The type Tuple has a single sub-type, the type Func. We will call streams

of type Func functions. A function is a structured data type which contains a tuple

body but that has additional functionality beyond that of a simple tuple. Functions

are really just parameterized stream expressions. The value sequence of a function is

defined by the value sequence of its tuple body. Functions have the following special

properties:

1. Functions allow parameters to be passed to a stream "by need".

2. Functions allow default values to be associated with parameters.

3. Functions allow recursive stream definitions. This is another way in which

streams with infinite value sequences can be defined.

A function definition consists of a function header followed by a tuple. A func-

tion header consists of the reserved word func followed immediately by an arbitrary

number of parameters separated by commas and enclosed in parentheses. Arguments

may be referred to in the body of a function by the same name they were given in

the formal parameter list as in most programming languages. Functions with an ar-

bitrary number of arguments may be defined by specifying a function definition with

no arguments and then referring in the body of that function to the special variable

args which will refer to the entire stream of parameters passed to the function. If

the list of formal parameters of a function definition is left empty, therefore, the only

access to the arguments passed to an instance of that function would be through

the special variable args. As a simple example of a function, consider the following

expression of a function definition.

double := func(a) [2*a] .

Note that the function is named in this example with an assignment operation. The

assignment inserts the function definition into the visible environment. The built-in

function addop could have been used to insert the function definition directly into the

43

G hierarchy. This last point will be discussed in a subsequent section. The function

assigned to double simply doubles the value of its single argument. The function call

double (4) simply returns the value [8].

Consider now the following function that makes use of a code body:

doubleall := func(s) [foreach(s) [s *2]] .

The function on the right-hand-side of the assignment returns its argument stream

with each of its values doubled. For example, the function call

doubleall([1,2,3])

would return the value [2 ,4 , 6] . Now let us look at an example of a function that

accepts an arbitrary number of arguments.

dbl := func() [foreach(args) [args * 2]] .

The function in this example will accept an arbitrary number of arguments (not

enclosed in brackets) and return each argument value doubled. Thus the function

call db1(1,2,3) will return the value [2,4,6].

Parameters are local to a function, they are passed "by need". Local identifiers

may also be declared by including a local declaration construction in the tuple body

of the function as explained earlier. Global identifiers will be inherited from the

environment in which a function call occurs if they are not overridden by identical

names in the parameter list or by names listed in a local declaration construction

within the function body.

A function definition can be made recursive by using the special variable self

which indicates a call to the same function being defined. As discussed earlier, self is

a code body which constructs a sequence determined by the function it refers to and

the arguments it is passed. The following recursive function definition for factorial

illustrates the use of self.

factorial := func(n) [if (n<=1) [1] else[n * [self (n-1)]]] .

44

Notice in the example above how the recursive call is delimited with brackets. This is

necessary since a recursive call is defined as a code body (i.e. a value sequence spec-

ification) and not a stream value. This presents no difficulty with the multiplication

expression in which the recursive call is embedded since the arithmetic operators are

vector functions.

Nameless functions can be created in a manner similar to that of lambda

functions. The example below shows an example of a nameless function being called

with the arguments 2 and 3. This function call returns the value 5.

func(a,b) [a+b] (2,3) .

In the example above, func(a,b) [a +b] is the nameless function and (2,3) is the

argument to the function.

4.4.5 Relation

Another special form of structured data type is the relation. Relations are

streams whose order of enumeration is determined by the implementation. This

allows storage techniques to be utilized that permit efficient search strategies (e.g.

hashing) to be used with relations. Such efficiency can become important when

relations are used in the formation of Prolog-like rules. The creation of rules as a

G programming technique will be illustrated later. Relations can be declared in G

with the following special syntactic form:

#typel,type2,...,typeN#

Each element of a declared relation is constrained to contain the same number of

components of the types designated in the declaration. The only types permitted

for field values of relations at this time are scalar types and the type String. The

above expression would normally be used in an assignment in order to assign a value

of type Relation to a variable. For example, in the following expression, a relation

of pairs of values each of type String is assigned to the variable father.

father := #String,String#.

45

The following special built-in functions have also been provided to support

values of type Relation.

insert (var, avalue)

delete (var , avalue)

If the value of the variable var is not of type Relation in either case above then the

empty stream is returned. The insert function will only insert avalue into a given

relation if it conforms to the arity and type constraints that were given when the

relation was created. In any other case it simply returns the the empty stream. If

avalue does not exist in the given relation, then delete returns the empty stream

otherwise it removes avalue from that relation and returns the value of avalue.

4.4.6 Pattern

Values of type Pattern allow a user to specify a stream to be enumerated

and a pattern to be matched against values within that stream. These expressions

are composed of a variable followed immediately by a pattern delimited with square

brackets. Any type can be used as the base stream of a value of type Pattern. Values

of the named stream are enumerated if they match the entire pattern specified. For

example, the expression foo [>10] represents the stream of all integer elements of

stream foo that are greater than the value 10. Values of type Pattern can be thought

of as filters that delete all values of the underlying base stream that do not conform

to the given pattern.

Output variables are special variables that may be used within values of type

Pattern and that act as wild cards. These variables greatly enhance the power of the

pattern-matching capability of such expressions. Although logical variables are not

supported in G, output variables offer a helpful subset of their functionality. Out-

put variables permit a restricted form of bi-directional information flow to and from

streams and they allow variables to bind by the intersection of constraints. Further-

more, although the output variable does not provide the full utility of partial data

structures (since unfettered non-directionality is not permitted) output variables do

permit a limited type of partial data structure in the form of conjunction expressions

46

which contain output variables. A simple example of a pattern-matching expression

that uses an output variable would be the following expression:

fee [?word,> `Sam "]

This expression represents all values contained in stream fee that have two elements

the second of which is lexicographically greater than the string "Sam". Each time

one of these elements from stream fee is generated, the output variable ?word will be

assigned the value of the first component of that element. Note that output variables

always begin with the `?' character. Pattern-matching expressions are goal-directed

expressions and may be used to transform streams into expressions that can be used

like Prolog(StS87) if-then rules in logic programming. This capability allows a form of

programming with constraints and will be discussed in the section And Expressions.

The following example gives a quicksort using a recursive function definition

and values of type Pattern as arguments to the recursive function calls.

qs := func(s) [local [x] ,x :=@s , if (x) [self (s [<x]) ,x , self (s [>=x])]]

Notice how the recursive calls specify two implicit value sequences that are to be

constructed on each side of the value of x. The first sequence only involves a sort of

values less than x while the second sequence involves a sort of values greater than or

equal to x.

4.4.7 User-defined Types

The last form of structured data type available in G is the user-defined type.

The following syntax declares a user-defined type in G.

addtypefname , supertype, expression, local [. 1

The built-in operation addtype installs a new type named name into the G hierarchy

as a subtype of supertype. The expression given as the third argument to newop is

"visible" to users and represents the stream that will be used for pattern-matching

and other stream operations applied to an instance of the user-defined type. The

list of locals given within the brackets preceded by the keyword local represents the

instance variables associated with each instance of the user-defined type. These

variables are "hidden" from the world in which an instance of a type exists (i.e. they

47

can only be directly accessed by functions associated with the type itself).

Methods (functions) to be associated with a user-defined type may be intro-

duced with the following built-in function:

addop{aType , `fname" ,funcdef}

addop associates with type a Type the given function name fname and function defi-

nition funcdef.

In order to create a new instance of a newly defined type the make function is

used. The following example shows the syntax of an expression that returns a new

instance (named me by assignment) of the user-defined type Utype.

me := make{Utype}

Finally the syntax for passing a message fname to the instance me is given below.

We have assumed here that the method associated with message fname takes no

arguments.

me : : fname ()

We see here that the double colon is a special lexical token that represents message

passing to user-defined types.

The following example demonstrates how to define a new type named Stack,

how to associate a method with that new type, how to create an instance of the new

type and how to make function calls associated with that type. Consider this first

expression:

addtype{Stack, Stream, stack, local [stack : 0]}

In this expression a user-defined type name Stack has been defined and inserted as

a sub-type of the built-in type Stream. An interface stack has been defined. This

means that the value of an instance of type Stack will be determined by whatever the

current value of variable stack is for that instance. Note also that the variable stack

has been declared as a local variable of each instance of type Stack. This means that

its value can be "seen" by users of an instance of type Stack and its value can be

modified by methods associated with type Stack if such methods have been defined.

Notice also that every new instance of type Stack will have its instance variable stack

initialized to the value 0. Now consider the following method declaration.

48

addop{Stack, 'push" ,func (val) [stack : =val I I stack]

In the above expression a method named push has been defined and associated with

the user-defined type Stack. Note that push when passed as a message to an instance

of type Stack will have the side-effect of assigning a new value to the local (instance)

variable stack of that object.

Below we have created an instance of the user-defined type Stack and named

it myStack through an assignment expression.

myStack := make{Stack}

Now we will add the value 25 to the instance variable associated with the value of

myStack by executing the following message passing expression:

myStack::push(25)

If the instance myStack is now handed to the G interpreter by simply typing the

variable name myStack, the value [25 , 0] will be printed.

4.5 Libraries

Libraries can be maintained as files of simple G expressions. Any G expression

is allowed in a library file although assignments or installation of user-defined types

and methods into the G type hierarchy would normally be all that is included in a

library file. These library files can be integrated into the G environment from the

G interpreter by using the built-in function include {filename }. For example, assume

that we have a library of function definitions for string analysis in the file named

stringlib. When these functions are needed, the user can simply type the expression

include{ stringlib} and the library would be read into the current environment.

There are several libraries provided in the appendices to this dissertation.

4.6 Function Call Semantics and Inheritance

The hierarchical type structure shown earlier is the basis of function call

semantics in G. Each type in the G hierarchy is represented by a global variable

of the same name that is maintained by the G interpreter. Each of these global

variables has associated with it the name-definition bindings of functions associated

49

with the type named by that global variable.

Function call semantics in G are similar to that used by object-oriented lan-

guages such as Smalltalk [GoR83]. The type of the first argument of a function

determines where the G interpreter will begin to search for the meaning of that

function. When a function name is encountered within a G expression, the meth-

ods associated with the type of the first argument of the function are searched for

the function's name. If the function's name is found, then the associated function

definition is applied to the arguments of the function. If the function's name is not

found, then the search for the function's name resumes beginning with the parent

type (super-type) of the type just searched. This process continues until either the

function's name is found and the function definition is applied to the given arguments

or there are no more super-types to search. At this point, however, G departs from

Smalltalk's search protocol. If the appropriate function was not yet been found, a

search is made of the environment for a variable of the given name whose associated

value is a function definition. If this last search is successful, the defined function is

applied to the arguments of the function call. If it was not successful, an error mes-

sage is printed by the interpreter. This search protocol allows sub-types to "inherit"

function definitions from super-types and it allows function definitions to be added

to the environment by assignment of a function definition value to a variable.

For example, consider the G expression foo (1, 2) . The G interpreter will

begin its search for the name foo in the functions associated with type Int. If the

name foo is not found, then the search will resume with the functions associated

with type Stream. If this search is unsuccessful then the environment is searched

for a variable foo whose value is a function definition. An appropriate error message

would be printed if none of these searches is successful. In this way, both the type

hierarchy of G and the environment of a variable can be used to define the meaning

of a function in a function call. In the example given above, if either of the following

two G expressions had been executed before the foo function call, the call would have

been successful.

foo := func(a,b) [a+b] .

50

addop(Int , efoo" ,func(a,b) [a+13]) .

4.7 Scope

Dynamic scoping is used in the language G. Understanding the scope of

identifiers in G is easy when it is understood what the possible sources of identifiers

are in G expressions and what the scope of identifiers from those different sources

are. The sources from which identifiers may enter an expression are :

1. The global environment

2. Local declaration expressions

3. Function arguments

4. Pattern-matching expressions

The scope of identifiers from each of these sources is discussed in the following sec-

tions.

4.7.1 The Global Environment

A stream or sequence constructor may inherit identifiers that exist within

its global environment. The name of a global identifier is always hidden from a

stream or sequence constructor, however, by an identifier of the same name in a

local declaration expression in the stream or sequence constructor. The masking

of the global variable would only occur from the point of occurrence of the local

declaration expression to the end of the stream or constructor body. Arguments to

functions also mask global variables of the same name.

4.7.2 Local Declaration Expressions

Tuples, functions, and sequence constructors may include local declaration

expressions as elements. These expressions introduce identifiers as locals to the

stream in which they occur and may even denote the initial values of these new local

variables. When a local declaration expression is encountered in a tuple, function,

51

or code body, it has the side effect of declaring all of the identifiers listed within it

to be local to the body that contains it from the point at which the local declaration

expression is found to the end of that body. Local declaration expressions return

the empty sequence and, therefore, do not contribute to the value sequence of which

they are a part. Given below is a typical local declaration expression in a value of

type Tuple.

[local[x:1,y:`'hi"] ,x,y].

In the expression above two variables, x and y, have been declared as local to the

tuple body. The variable x has been initialized to the value 1 and the variable y to

the value "hi". The value of the entire tuple is [1, " " .

4.7.3 Function Arguments

When an identifier is an argument to a function, that identifier becomes local

to that function. In other words, the parameter passing mechanism of functions is

by need. The value of the identifier passed as a function argument is not altered

by that function. The only exception to this rule is when values of type Relation

are passed as arguments. Relations are considered to be persistent objects whose

values should not be copied when passed as function arguments. A new "view" into

the relation is created when a relation is passed to a function so that it may be

enumerated and searched without disturbing other uses of that relation, however,

the values themselves within the relation are not copied. If a value is inserted into

or deleted from that relation, computations involving other variables whose value is

that relation can potentially be effected.

4.8 Built-in Functions

This section discusses more of the built-in functions provided by the G inter-

preter. The concatenation and and operations are considered to be primitive stream

operations that may be applied to any G values.

52

4.8.1 Conditional and Arithmetic Operators

The standard set of arithmetic and conditional operators are provided by the

G interpreter. Conditional expressions produce the rightmost term of the conditional

expression if the conditional is successful otherwise they produce the empty stream.

As an example consider the expression 10 < 20. This simple G expression would

return the value 20. The expression 20 < 10 would produce the empty stream.

Arithmetic expressions perform as expected. If a scalar is matched with a non-

scalar, however, the operation is applied to the first value of the structured data

type. For example, the value of the expression 2 + [1,2,3] is 3.

4.8.2 Concatenation Expressions

The concatenate operator (I I) allows two values to be concatenated together.

Since every value in G is a stream, this operator can be used legally with any G

type. Consider the example below where a tuple, a function call and a string are all

concatenated together.

[1, 'z'] H func(a,b) [a+b] (1,3) H "no" .

The result of the above expression is the stream [1 , ' z' ,4,'n','o'].

4.8.3 And Expressions

The and operator has a special enumeration protocol that can be used to form

complex pattern-matching expressions. These expressions allow the user to construct

Prolog-like rules using conjuncts of type Pattern. The enumeration protocol of an

and expression can be expressed in the following way:

For each member of the Cartesian product of the conjuncts of an and
expression, the value of the last conjunct is returned.

As a simple initial example consider the following and expression:

[1,2] and "hi".

53

The result of this expression is [' h' 1] . For each value of the first

conjunct each of the values of the second conjunct are enumerated. Now consider

a slightly more complicated example. Assume that a relation named father has

already been created in the current G environment. The following expression would

then assign to the variable gf a tuple that represents the grandfather relation:

gf : = father [?gdad , ?dad] and

father [?dad , ?gson] and

[[?gdad ,?gson]] .

Notice how the binding of output variables in the above expression subjects that

expression to certain constraints. Use of the same output variable in several subex-

pressions constrains each location of that variable to bind the same value. This

then adds further constraints upon each pattern-matching expression within which

the variables are embedded. Also notice that the last conjunct is double bracketed.

The result of an and expression is the concatenation of all values it returns. It is

necessary, therefore, to delimit any values that must remain associated within their

own stream. And expressions are goal directed. Each time a value is requested from

an and expression, the next successful element of the stream represented by that

expression is produced.

4.8.4 Miscellaneous Built-in Functions

There are two built-in functions not mentioned previously which are used in

examples later in this dissertation. These are the functions write and the function

random. The function write is a simple output primitive that writes its argument

values to the standard output. The function random takes a single integer argument

and returns an integer in the range of 1 up to and including the value of the argument.

4.9 Summary

G is a language of streams and is based on expressions. Streams are values

and all values are first-class objects in the language G. A stream is composed of both

54

a sequence of values and a method for enumerating those values. The basic enumer-

ation protocol of all streams (except and expressions) is enumeration of the values of

a stream in left-to-right order, one element at a time upon demand. This demand-

driven character of all G expressions allows streams with infinite value sequences

to be represented in G. The language G is organized around a tree of types. Each

type has associated with it a set of name-definition bindings. This hierarchy of types

allows function call semantics similar to the object-oriented language Smalltalk and

supports inheritance of function definitions and instance variables. Values of type

Pattern and and expressions are goal-directed. They allow streams to be searched

for values that match a given pattern. Pattern-matching expressions can be used to

create expressions that act like if-then rules in Prolog.

55

Chapter 5

The Prototype Implementation of G

This chapter describes the prototype implementation created from the lan-

guage design discussed in earlier chapters of this dissertation. In order to implement

any language based on streams, it is necessary to use some form of lazy evaluation

technique. The functional programming language community has written about and

experimented with such techniques [Wis82,ASS85,Hen80]. The implementation of G

was aided by these earlier efforts, however, G directly supports many paradigms and

has some unique features. In general, therefore, the unique computational model

of G and its large combination of paradigms demanded an implementation strategy

with some unique elements.

The prototype implementation of G is composed of approximately 5000 lines

of C code. The Unix tools yacc and lex were used to create the parser and lexical

analyzer for the G interpreter. In the implementation, a G value is always represented

by a value descriptor, the general form of which is shown in Figure 2. The type field

contains a pointer into the G type hierarchy, the value field is dependent on the

specific type and value represented by the value descriptor and the next field is

used to link values together to form streams of multiple values. A special internal

value descriptor is used to represent the end-of-stream (EOS) marker. The last

value descriptor in a stream of values will always have its next field set to the EOS

descriptor.

5.1 The Type Hierarchy

A small representation of the data structures used to implement the G type

hierarchy is shown in Figure 3. The type table is an array of pointers, one pointer for

each G type. Each pointer in the type table points to a data structure that records

the string name of a type, the methods associated with that type and the parent or

super type of that type. In addition to this information, an optional interface value

56

Type

Value

Next

Figure 2: A G Value Descriptor

and/or an optional local environment is recorded where appropriate for user-defined

types. Notice in Figure 3 how the methods associated with a type are recorded in a

list of nodes. Each node contains the name of a method, a pointer to the function

definition associated with that name and a pointer to the next method node in

the list. Also note that the data structure associated with type Stream is the only

structure whose parent field is nil.

5.2 Environments

Environments are represented in the implementation by a chain of nodes

(which may be empty), each node of which contains the name of a variable, the

value associated with that name and a pointer to the next environment node in the

chain. The form of environment nodes is identical to the nodes shown in Figure 3 that

record the function name and definition associations in the methods lists for types in

the G hierarchy. When a change is made to a local environment, a new environment

node is created and placed at the start of the list of nodes that represents that local

environment. Complex data structures that contain local environments (e.g. tuples

and functions) always maintain two pointers to the list of nodes that represent their

local environment. One pointer is called the static pointer; this pointer always points

to the initial set of environment nodes with which a G value was created.

The other environment pointer maintained for structures that have local envi-

Type Table

etc.

Methods Interface Environment Parent

57

`Stream' ' EOS Nil Nil

) etc.

Stream "next" function

Methods Interface Environment

"Int" EOS Nil

etc.

Integer addition function

Figure 3: Data Structures Used in the G Type Hierarchy

58

ronment is called the dynamic pointer. When a change occurs in a local environment,

the dynamic pointer is pointed at a newly created node that represents the change

to the environment, and the new node is set to point at the head of the list of nodes

that represented the local environment before the change was made. Thus the dy-

namic pointer is changed each time a node is added to an environment, but the static

pointer is never changed and always points at the original head of the list of nodes

that represent a local environment. Internally it is sometimes necessary to refresh

stream values. All that needs to be done to refresh a stream value is to set the

dynamic pointer back to the node pointed to by the static pointer.

A novel technique is used in G to create closures. A closure in G refers to

a data value whose environment may only be altered locally. For example, when

a complex structure is assigned as a value to a variable a copy of that value is

made and is marked "closed". This means that the value has been taken out of

whatever environment in which it was originally embedded and it may no longer

alter environments global to that original environment. Arguments to functions are

also copied and marked as closed values. An argument value is also a value that

is to be used in an environment other than that in which it originated. It may

not be allowed, therefore, to alter environments associated with its original context.

Structured data values that are closed maintain a list of nodes which point to the

states of the outer environments that existed at the time of closure.

5.3 Copying Values

The copy operation is frequently used in G computations since parameter

passing is by need and since the assignment operation always assigns a copy of its

right-hand-side value to its left-hand-side variable. Copying of scalars is quite simple

and only involves creation of a new value descriptor plus a copy of the values of the

type and value fields of the original value descriptor.

Copying complex data structures is slightly more complicated. Every complex

data value consists of a value descriptor whose value field points to a header struc-

ture which contains local information for that data value. For example, the header

59

structure maintains a record of the current index of the data value and it points to

the first and current elements of the value sequence of the data value. One general

rule that is observed for all the complex data structures is that the value sequence

of a complex data structure is never altered. This allows complex structures to be

copied by simply creating a new value descriptor and header structure and then

copying the appropriate local information for the newly copied value into its new

header structure. A new header structure will usually contain pointers into the orig-

inal expression's value sequence or some segment of the original value sequence; there

is generally no need to copy any of the values in the original value sequence. This

results in efficient quick copy operations. More details about the copying process

may be found in subsequent sections that discuss the representations of the complex

data types of G.

5.4 Lazy Evaluation

Lazy evaluation is utilized in G. This means that computations are only

performed when they are needed. Thus, when a G expression is parsed by the

interpreter, computation of the value of the expression is delayed. The interpreter

must create an internal data structure that records enough information about the

expression to allow later computation of the value it represents. The G evaluation

function, called print, recursively computes and then prints each value in its argument

stream. As print moves deeper into a nested stream structure, the local environment

of the nested structure is stacked onto the environment that has accumulated to

that point and this composite environment is then used when needed to evaluate

subsequent values encountered.

5.5 Representing the Values of G

This section describes the data structures used to represent each of the G

types as well as the various forms of built-in expressions and primitives that may be

specified in G.

60

Real Type

3.14 Int

EOS EOS

Int Char

5 'e'

'EOSEOS

Figure 4: Examples of G Scalar Values

5.5.1 Representing Scalars

Scalar values are the simplest values represented in G. Figure 4 shows value

descriptors representing the floating point value 3.14, the integer value 5, the type

value Int and the character value ' e' . Here we see clearly that scalar values are

indeed stream values. Each scalar shown is a single element stream whose single

value is followed immediately by the end-of-stream (EDS) marker.

5.5.2 Representing Strings

Figure 5 shows a data structure that represents the G value "hello " and

which has the G type String. The value field of the value descriptor points to a

simple header structure that contains an integer and a pointer to the character

string associated with the G value. The integer recorded in the header structure is

the current index of the stream. Thus, in Figure 5, the current position of the stream

61

String

EOS

1

"hello"

Figure 5: Data Structure that Represents the String "hello"

value displayed is 1 which means that none of the characters of this stream have yet

been enumerated.

5.5.3 Representing Tuples

A data structure diagram for the simple tuple [15,4.5] is shown in Figure

6. As is typical of all the complex data types of G, the value descriptor of a tuple

points to a header structure which contains all the information necessary for the G

evaluation function to evaluate the tuple. The value of a tuple's type is the special

value Tuple. Since the tuple shown in Figure 6 is not embedded in another stream,

the next field of its value descriptor is set to the end-of-stream marker.

In Figure 6 we see that the tuple header contains a pointer to the local envi-

ronment associated with that tuple, a pointer to the first value in the value sequence

of the tuple and a pointer to the current active value of the tuple. For simplicity

both the static and dynamic environment pointers are represented by a single arrow

in Figure 6. We will use this simplification in all subsequent diagrams. Also note

that the environment pointer points to the symbol A which is being used here simply

to denote the empty list of environment nodes. Thus in the case of Figure 6 there is

no local environment associated with the tuple. The current value pointer and the

first value pointer point to the same value in Figure 6, the G value 15. This means

that the next operator has not yet been applied to the tuple value represented in the

Tuple Environment

EOS

figure.

1st Value

Curren

State-Info

Int

15

Real

4.5

EOS

Figure 6: The Tuple [15, 4.5]

62

The tuple header also contains a field called State-Info. This field contains

the current index of the tuple and a single bit of information that is used when the

current value of the tuple is a code body. To understand how this bit field is used,

recall first that no value in the value sequence of a tuple may be altered. This assures

that a copy operation of a tuple need not make copies of the values that make up the

value sequence of that tuple. Since the value sequence is never altered, all tuples that

rely on the original value sequence (or some part of it) may exist independent of each

63

other. Normally there is no difficulty in implementing this rule of non-modifiability

of value sequences. However, when a code body is encountered in a value sequence a

difficulty arises. A code body represents an implicit value sequence of the structure

in which it is embedded. Because of this it is necessary to modify the header of a

code body in order to maintain information concerning the current location into the

implicit sequence represented by the code body. But modifying the code body data

structure would mean modifying an element of the value sequence of the structure

in which the code body is embedded and this is not allowed.

The solution used by the G implementation is the following. When a code

body is encountered as the current value of a tuple or function and when the first

value of that code body is requested, a copy of the code body is made and the

current value pointer of the tuple header structure is pointed at the copy. In this

way, the original value sequence of the tuple is not altered which is critical since a

number of other tuples may be dependent on it. The copy of the code body points

to the next value after the original code body and so no information has been lost

concerning what values follow the implicit sequence represented by the code body.

When a copy of a code body has been made, a bit field (mentioned earlier) in the

tuple header is set to record that a copy has been made. Thus if and when another

value is requested from the tuple it will be known that a copy of the code body has

already been made and whatever changes are necessary may be made to the header

of the code body copy in order to determine and enumerate the next value in its

value sequence. When the code body has been exhausted and the next value after it

in the tuple's value sequence is requested, the copied code body may be freed and the

current value pointer of the tuple moved on to the next value in its value sequence.

Copying tuples requires creating a new value descriptor and header structure,

and then copying values from the old to the new structures. As mentioned above,

the value sequence of the original tuple is not copied; pointers into the original value

sequence are merely assigned to the new header structure. The static and dynamic

environment pointers of the new header structure are both set to the value of the

original tuple's dynamic environment pointer. Figure 7 shows a simple tuple with

Tuple Environment

EOS

1st Value

Current

State-Info

Int

15

Id

"a ,

, ca, ,

-EOS

Figure 7: The Tuple [local [a : 23.4],15, a]

Real

23.4

1

EOS

64

65

a single local environment node. Making a copy of the value depicted in Figure 7

would involve making copies of all the structures shown except those in the value

sequence which includes the G value 15 and the G identifier a. From this example we

can see that the cost of copying complex data values is generally independent of the

length of the value sequence of the value being copied. Before moving on to the next

section note in Figure 7 that G identifiers are represented by value descriptors with

the internal type value Id. The value field of the value descriptor for an identifier

contains a pointer to the character string that represents the name of the identifier.

5.5.4 Representing Code Bodies

Code bodies that serve as control structures (i.e. foreach, while, repeat and

if code bodies) have underlying representations very similar to the tuple. The main

difference is that the header structure of these code bodies also contains a pointer to

the value of the argument of the code body. The repeat code body is given a default

argument that is guaranteed to always be true. In Figure 8 the data structures

needed to represent the code body foreach(a) [15, 'e'] are presented. Note that

the main difference between this diagram and a diagram for the representation of

the tuple [15,'e'] would be the added value descriptor for the G identifier " a"

shown in Figure 8; this value descriptor represents the argument to the code body.

In a tuple there is no pointer to an argument. Notice in Figure 8 that the type

value for the entire code body is Foreach. Each different kind of code body has its

own internal identifying type value that allows it to be recognized and evaluated

appropriately.

Figure 9 shows the general form of the representation of an if code body. The

information recorded in the header structure is somewhat different than that recorded

by the code body types discussed above. An if code body needs to record all possible

tuple clauses that it may manifest and it needs to record the information necessary

to select and activate the appropriate clause. When an if code body is activated

(i.e. when a value is first requested from an if code body) a clause is chosen from

the list of potential clauses and then pointers for the first and current values of the

Id

((a,

Foreach

EOS

Environment

1st Value

Current

State-Info

Int

15

Char

'e'

EOS

Figure 8: The Foreach Code Body foreach(a) [15,'e']

66

67

If

EOS
State-Info

Environment of Active Tuple

1st Value of Active Tuple

Current Value of Active Tuple

List of Possible Tuple Clauses

Figure 9: Form of the If Code Body Data Structure

value sequence of the chosen clause are set in the header structure. In addition to

this, the environment pointers of the header structure are set. In this way the header

structure is "transformed" into a header for whatever clause is appropriate when the

if code body is activated.

Range code bodies are represented by two simple data structures, a value

descriptor and a header. Figure 10 shows these data structures for a typical range

code body. The header of a range code body records the first, last and current value

of the implicit sequence that the code body represents. It also records the step or

distance between successive values in that sequence. The value Range seen in the

value descriptor of Figure 10 is the internal type value for all range code bodies.

5.5.5 Representing Functions

Functions are a sub-type of type Tuple and this is clearly reflected upon ex-

amination of their underlying representations. Figure 11 shows the data structures

used to represent the function func(a:23.4) [15,a]. Note that in G a default value

may be assigned to an argument of a function. If Figure 7, which shows the rep-

68

Range

EOS

Current

1

Start

10

End

2

Step

Figure 10: The Range Code Body 1..10 step 2

resentation of the tuple [local [a: 23 . 4] , 15 , a] , is compared with Figure 11, it is

seen that there is no difference in the data structures displayed in both figures. In

fact, the only difference between the two figures is in the values of the type fields of

the value descriptors for the function and the tuple. In processing functions, the G

interpreter relies on the fact that the original arguments of a function are guaranteed

to be located at the start of the static environment list of the function. This allows

function calls to be properly handled. For more details about handling function calls

refer to the section Representing Function Calls.

5.5.6 Representing And and Concatenation Expressions

Both and and concatenation expressions are represented with the same basic

underlying data structures. The general form of this representation is shown in

Figure 12. Both of these expressions are created with the type value Stream. A bit

field in the state-info section of the header is used by the G interpreter to distinguish

an and from a concatenation expression.

As shown in Figure 12, pointers in the header structure provide access to both

an inactive template set of copies of the original conjuncts as well as a working or

active set of conjuncts being used by the and expression. This same general scheme

Func Environment

EOS

1st Value

Current

State-Info

1

Int

15

Id

' a"

`a"

. EOS

Real

23.4

Figure 11: The Function func(a : 23.4) [15, a]

EOS

69

Stream

EDS
State-Info

Local Environment

Active Copies of Conjuncts

Inactive Copies of Conjuncts

Figure 12: General Form of an And Expression

70

is used for the components of a concatenation expression. Maintaining two copies

of the components of these types of expressions is used to facilitate more than one

operation. In copy operations, the exact state of a set of working conjuncts can

be captured by copying these active values to the inactive set of the newly copied

and expression. It is also important to note that all references to identifiers in the

components of these types of expressions can only have their referent value captured

or recorded when the expression is actually activated (i.e. when the first value is

requested from the expression). If such an activated expression is re-encountered

later, for example, after a refresh of the stream in which the expression is embedded,

its referents will need to be re-evaluated with respect to the environment when the

second activation occurs. This process could occur repeatedly.

5.5.7 Representing Pattern-Matching Values

The data structures used to represent a pattern-matching expression all gen-

erally follow the same form. The value descriptor points to a header which maintains

the following information.

71

1. Local state information. For example, the current index value of the expression.

2. A pointer to the current value of the base stream that the pattern is being

applied to. If the pattern-matching expression has not been enumerated, then

this pointer will be nil.

3. A pointer to a value descriptor representing the base stream identifier. This

descriptor is followed by a list of nodes which represent the pattern to be

applied to the base stream values.

Figure 13 shows the underlying data structures used to represent the G value

s [?x, =99] . Notice that output variables use the same value descriptor as regular

G variables but have the special internal type value Output. The first occurrence

of each output variable in an and expression is actually given the special type value

FOutput. This allows the implementation to properly process output variables by

either assigning them values or by using values they have already been assigned in

the pattern-matching process. Also notice that a comparison component of a pattern

has a special data structure that records the operation name and the G value to be

compared against.

5.5.8 Representing Relation Values

The data structures used to represent a relation are quite simple. The stan-

dard value descriptor is used in the usual way with composite data values to record

a header data structure. The header structure records the current index of the rela-

tion and points to a hash table where the values that make up the relation may be

accessed. Each non-empty bucket of the hash table is made up of G values chained

together by their next fields in the same way they would be linked if they formed a

single stream value. There is no need for the header structure to record a local envi-

ronment for a relation since values entered into a relation are always evaluated upon

insertion into the hash table. Figure 14 shows the general structure of a relation.

Every relation is composed of either tuple values or scalars. In the case of

scalars, the scalar value itself is used to generate the hash table index. For tuple

Pattern State Info

EOS
Id

Current Value of Id "s"

1 ((s »

Output

Pat

" ?x "

EOS

Int

99

Figure 13: Data Structures for the Value s [?x, < =99]

EOS

72

Relation

73

Index

Hash Table

EOS etc.

Hash Bucket 1

Hash Bucket 2

Figure 14: General Form of a Relation

values, the first value of the tuple is used to generate the hash table index. Hashing is

used only for values of type Pattern whose base stream is a relation. For all other non-

hashed access of a relation, the order of enumeration of a relation is implementation

dependent. Values are simply enumerated one-at-a-time starting with the first hash

bucket values and proceeding down the hash table until all values in all hash buckets

have been enumerated.

5.5.9 Representing Primitive Expressions

Functions calls that invoke primitive (built-in) functions are called primitive

expressions. Primitive expressions are treated uniformly by the G interpreter. A

primitive expression is represented by a value descriptor whose type field contains

the value Pfunc. The value field of the descriptor points to a header structure which

contains two pointers. One pointer points to the primitive function that needs to be

invoked in order to compute the value represented by the primitive expression. The

other pointer points to a list of G values that are to be used as arguments to the

primitive function that is invoked. The first G value of every list of arguments in

Pfunc

EOS
Environ

Nil

Plus function for integer receiver

Int

61

Id

"a"

EOS

Figure 15: Data Structure for the Primitive Expression 61+a

74

one of these representations is always of an internal type called Environ. The value

field of this internal value is used by the G interpreter to pass an environment into

whatever primitive function is being invoked. Figure 15 shows the data structures

that are used to represent the primitive expression 61 + a. Before closing this section

it is important to note that, as with all G values, representations of primitives values

do not result in any computation unless the value they represent is needed. All

evaluation in G is lazy. The parser merely creates these underlying representations

in case the values they represent are later requested.

5.5.10 Representing Function Calls

A function call has the same underlying form as the representation of any

primitive or built-in function. It follows the same general form explained above in the

section Representing Primitive Expressions. In the case of a function call, however,

the primitive function pointed to in the header structure is a general function call

routine that expects the name of the function being invoked to appear in an argument

list. The argument list must be headed by this function name and followed by the

Pfunc

EOS
Environ

Nil

General function call routine

Id

`-` (foo"

Id

10

Figure 16: Data Structure for the Function Call foo (10)

'EOS

75

actual argument values that are being passed to the named function.

The general function call primitive implements the object-oriented look-up

protocol described in an earlier section that explained the function call semantics of

G. Once the function definition is located, a copy of the definition is made and the

formal parameters are instantiated with copies of the actual values of the arguments

that were passed. The G interpreter then evaluates the newly created function. Fig-

ure 16 shows the data structures used to represent the simple function call foo(10).

Figure 17 shows a representation of a nameless function call. Note that in this

representation a value descriptor with a special internal type Funcdef is expected.

The value field of this descriptor contains a pointer to the definition of the nameless

function that is to be invoked. The actual arguments to the nameless function always

follow the value descriptor that points to the function.

5.5.11 Representing User-defined Values

Instances of user-defined types are all represented in a uniform manner in

the G implementation. An instance of a user-defined value is represented by a value

Pfunc

EOS
Environ

Nil

'Function preparation routine

Funcdef

func definition

Int

10

Figure 17: Data Structure for the Function Call func(a) [a] (10)

EOS

76

descriptor whose type field contains a pointer to the data structure in the G type

hierarchy that represents the user-defined type. The value field of the descriptor

points to a header structure which contains two pointers. One pointer points to the

local environment of the user-defined value if instance variables (local variables) have

been declared for that user-defined type. The other pointer points to an interface

value if one has been defined for that user-defined type. This general representation

scheme for instances of user-defined types is shown in Figure 18.

A message passing expression is considered a primitive expression in G and is

represented in a fashion analogous to any primitive expression. Figure 19 shows a

representation of the message passing expression mystack: :push(10). This expres-

sion was used as an example in a previous section describing user-defined types in G.

Notice how Figure 19 shows the same basic form of any primitive expression. The

primitive function pointed to in the header structure is a generic primitive that does

the following:

1. Locates the instance of the user-defined type named by the expression. This

would be the value of mystack in Figure 19.

77

User-Type

EOS

Local environment

G interface value

Figure 18: General Representation of an Instance of a User-defined Type

2. Locates the function definition associated with the given selector for the given

user-defined type. In Figure 19 the selector is push.

3. Creates a function from the named function definition. The parameters are

instantiated with the actual values passed as arguments. In Figure 19 the

single argument 10 is being passed to the function associated with selector

push.

As with all values in G, none of the computation just described occurs unless the

value of the given expression is needed.

78

Pfunc

EDS

Environ

nil

Id

Id

Int

10

" Message passing function

e (mystack"

"push"

-EDS

Figure 19: Representation for the Expression mystack: :push(10)

79

Chapter 6

Expressing and Integrating the Paradigms of G

This chapter presents programs and various stream expressions that demon-

strate how each of the paradigms included in G are expressed. In addition to this, the

last section of the chapter presents programs that illustrate how different paradigms

can be used together to form problem solutions. All of the programs and expressions

presented in this chapter have been run on the G interpreter.

6.1 The Imperative and Procedural Paradigms

In order to demonstrate the traditional "von Neumann" model of procedural

and imperative programming, a small Monte Carlo simulation is presented below.

This simulation was taken from a problem presented by Walker [Wa186]. The G

solution of the simulation follows the standard form of the traditional paradigm; it

is composed of several function definitions, makes use of standard flow control struc-

tures including the while loop, the selection (if) operator and the sequential (the

comma) operator, and it relies heavily on destructive assignment and its "accumu-

lated effect" in order to complete a computation .

The simulation may itself be outlined in the following way:

1. Perform Initialization

a. Number of wins for each team is initially 0.

b. Initialize the number of rolls to be completed.

c. Print introductory information.

2. Repeat the roll of the dice the desired number of times.

a. Roll the dice.

b. If the sum of the dice is 7, 8, 9, 10, or 12 then record

a win for player A else record a win for player B.

80

3. Print the results of the simulation.

The G program that implements this simulation is given below.

monteCarlo := func() [

local[winA:0,winB:0,sum,numberRolls:100,total:100],

printIntro(),

while(numberRolls > 0)[

sum := random(6) + random(6),

if(sum>=7 and sum<=10 II sum=12)[winA := winA+1]

else[winB := winB+1],

numberRolls := numberRolls-1

],

printResults(winA,winB,total)].

printIntro := func()[

write["This program simulates a game of dice.\n"],

write["Side A wins on a roll of 7, 8, 9, 10, or 12.\n"],

write["Side B wins otherwise.\n"]

printResults := func(awins,bwins,rolls)[

write["When the dice were rolled ",rolls," times:\n"],

write["Side A ",awins," wins or ",awins*100.0/rolls,"3/4.\n"],

write["Side B ",bwins," wins or ",bwins*100.0/rolls,"%.\n"]

The main function, monteCarlo, initializes variables through local variable specifica-

tions and prints out introductory information by making a function call to printIntro.

The main work of function Monte Carlo is carried out in a while loop which simulates

dice rolling with a primitive function call and then updates the values of local vari-

81

ables to record the effect of the rolled dice. Notice the argument of the if sequence

constructor embedded in the while loop. It can be interpreted as either a disjunction

or a stream concatenation. For this application it is most easily interpreted as a

disjunction. Finally the results are printed out by function monteCarlo through a

function call to printResults.

An important aspect of the above code is that it is written exactly in the

style of a traditional imperative and procedural language. The "statements" are

written one after the other each one separated from the next by a comma which is

the sequential operator. There is no need in the above G solution to consider stream

semantics or even be aware that one is programming in an environment of streams.

The imperative and procedural paradigms are effortlessly captured.

6.2 The Lambda-free Paradigm

John Backus, in his now classic Turing Award Lecture [Bac78], described a

class of programming systems called functional programming (FP) systems. The

structure of these FP systems provides the basis for describing a large class of lan-

guages with diverse styles and capabilities. As described by Backus, any given FP

system is made up of the following parts:

1. A set of data objects. These are the permitted members of the domain and

range sets of functions.

2. A set of primitive functions that map objects into objects.

3. A set of functional forms used to combine existing functions or objects to make

new functional forms.

4. The application operation that allows a function to be applied to its arguments

and produce a value.

5. A mechanism for naming new functions.

Backus presented one example of a set of primitive functions and a set of

functional forms that could form the basis of an FP system. G code that imple-

82

ments these functions and functional forms is contained in Appendix A. A glance

at Appendix A will illustrate how concisely each of the primitive functions and the

functional forms is expressed as a G expression. This collection of FP primitives can

be kept as a small library of G functions and simply included into the environment

if it is anticipated that the lambda-free approach to programming will be used.

Data objects, the application operation and a naming mechanism are also

required in order to create an FP system; these components already exist in G.

Objects of the various types supported by G become the potential objects of our

FP style system. Furthermore, in G, since a function is a first-class object, new

functional forms may readily be defined; this is an extension of the capabilities of

FP systems. The application operation is provided in G as a built-in facility and

assignment can be used to bind names to function definitions. Assignment is no

threat to referential transparency if destructive assignment is not utilized.

In order to insure that the lambda-free paradigm preserves referential trans-

parency, it is also necessary that the primitive operator next (D) not be used in code

meant to be restricted to the lambda-free paradigm. The next operator represents a

composite operation which implicitly involves destructive assignment when applied

to an identifier. It is simple to see this when one considers that after application

of the next function to an identifier, the value of that identifier has been modified.

Since moving a stream ahead to its next value without side-effects is a needed ca-

pability in the functional paradigm, this functionality has been provided by defining

the function tail which is one of the primitive functions suggested by Backus and

which is defined in the library given in Appendix A.

As a final protection of referential transparency the data type Relation should

not be used. The primitives associated with relations (insert and delete) both directly

alter the relation they are applied to and so do not preserve referential transparency.

In addition to this relations are the sole exception to the by-need parameter passing

protocol of G as explained in a preceding section that discusses Relations.

In order to give at least a feeling for the ease with which the primitives and

functionals of Backus were coded in G, we will now discuss the G implementations of

83

two primitive functions and one functional form that are presented in Appendix A.

After these selected functions are discussed, we will explore how the inner product

and matrix multiplication examples, also given by Backus, can be expressed in the

G lambda-free paradigm.

6.2.1 Primitive Functions

We begin by presenting the function that distributes its second argument

among each of the elements of its first argument. This is the function distr found in

Appendix A. It was called distribute from right by Backus and defined by him in the

following way:

distr:x- x= <0,y > *q
=<< Yn >12' Z >) 1 Yn1Z >>

The G code that implements this primitive is:

distr := func(y,z) [foreach(y) [[y,z]]] .

In the expression above a code body is used to create a tuple for each element of the

first argument y. Each tuple so created contains the current value of y followed by

the value of the second argument z to the function.

In our next example we consider a slightly more complicated function that

transposes a matrix (i.e. the ith column of the original matrix becomes the ith

row of the resulting matrix). Backus called this function trans. The G code that

implements this primitive is:

func (s ,n: 1) [if (n<=len(-s)) [Iforeach (s) [Thel(s ,n)]] , self (s ,n+1)]] .

The foreach code body is itself enclosed in brackets within the function body since

the function returns the resultant matrix as a list of lists. The foreach code body

calls the function sel(s,n) which selects the nth element of stream s. Also notice that

the second argument of trans is given a default value of 1. The function is meant

to be called with a single argument, which is the matrix to be transposed. Since

the second argument will be missing from the original function call, it will be given

the default value of 1. Subsequent recursive calls will each increment the second

84

argument. Each recursive call enumerates the nth row of the transposed matrix by

selecting the nth element from each row of the original matrix. The if argument

provides the exit condition for the recursion; it tests to make sure that n remains

less than or equal to the length of the rows of the original matrix.

6.2.2 Functional Forms

As an example implementation of a functional form, we will consider the

function apply since it is quite simple and yet it represents the same general technique

used to create all the functional forms. The G code that implements this primitive

is:

func (f) [func (x) [f °reach (x) [f (x)]]] .

Like all of the functionals, apply is implemented as a function that returns a function.

In the case of apply, the "outer" function takes a single argument which has a function

value. This function argument is then applied to each element of the argument of

the inner function. In order to demonstrate the way in which a functional is used,

assume that a simple function dbl has been defined which doubles the value of its

single argument. The function dbl may then be applied to each element of the stream

[1 , 2 , 3] by forming the following G expression:

apply (dbl) ([1,2,3]).

The result of this function call would be the stream [2,4,6].

6.2.3 Inner Product and Matrix Multiplication

In order to demonstrate how to use his hypothetical FP system, Backus gave

FP solutions for inner product and matrix multiplication. In each case we present

Backus's solution to the problem and then we present two G solutions for each

problem. The first G solution presented for each case renders, as close as possible,

a direct translation of the solution given by Backus. In addition to the "direct"

translation solutions, however, we also offer simplified mixed paradigm solutions

which use functions suggested by Backus within the context of G stream semantics.

The solution given by Backus for inner product was:

85

I P = (1+) o (a*) o trans

It should be explained here that "/" represents the insert functional, "+" the plus

function, "*" the multiplication function, "o" the composition functional, "a" the

apply functional, and trans the transpose function. The "direct" translation of this

into G would be:

ip := func(s) [insert (plus) (apply (mult) (trans (s)))] .

The composition functionals are a built-in feature of G and, therefore, are not explic-

itly shown in the G expression. Note that in G only the names of types may begin

with an uppercase letter, therefore, we used the variable ip as the name of the G

inner product function. This G definition can be simplified by recognizing that the

multiplication operator in G (defined in the G standard library (Appendix B)) is a

vector operation. Thus it is not necessary to transpose the argument matrix. The

new simplified G expression for inner product is:

gip := func (s) [insert (plus) (-mult (s))J .

The solution given by Backus for matrix multiplication is given by the follow-

ing expression:

MM HE (aaI P) o (adistl) 0 distr o [1, trans o

In this representation the square brackets represent the construction functional, distr

is the distribute from right operator and distl is the distribute from left operator. In

addition to these symbols the numbers 1 and 2 stand for the select operations. For

example, 1 means select the first element. The most direct translation of this into G

would be:

mm := func(s) [apply ("apply (ip))

(apply (distl) (distr([sel(s , 1) ,trans(sel (s ,2))])))] .

In the above expression sel represents the select operator. If the function names for

the G expression were translated into their equivalent Backus symbols and if com-

position were shown explicitly, then the G expression would be:

mm := func(s)[(aaIP) o (adistl) 0 distr o [1 o s, trans o 2 o s]j

Note that a near literal translation of the Backus formula is enclosed in a G function

definition. This is the general form for translation of the FP expressions given by

86

Backus. A glance at the inner product example above shows this same form.

This is a very involved rendering of matrix multiplication. Again a mixing

of the paradigms lends itself to a simplification of this expression, only this time

the simplification is even more marked than was seen in the inner product example.

Using only the primitives defined by Backus but recognizing that the multiplication

operator is a vector operation in G, we can write a more concise and efficient repre-

sentation of matrix multiplication in G code:

gmm := func(s)[

f °reach(s 1 : @s) [[foreach(s2 : trans (Os)) [-insert (plus) (sl * s2)]] .

This expression is conceptually simpler than the Backus solution. Notice that each

row of the first matrix will be assigned to si in the first foreach loop and that each

column of the second matrix will be assigned to s2 in the second foreach loop. Fur-

thermore, the expression s1 * s2 is a vector multiplication in which each of the

corresponding elements of si and s2 are multiplied together and the resulting vector

is returned. Finally note that insert (plus) (si * s2) simply sums the elements of

its argument stream si * s2.

Now we can see that the above expression forms element j of row i of the

product of two matrices by multiplying row i of the first matrix by column j of the

second matrix and summing over the product obtained. An explanation of Backus's

solution is considerably more complicated.

6.3 The Applicative Paradigm

There are a number of requirements that must be met in order to program

within the applicative paradigm. Most of these requirements are already met by

the built-in facilities of G. Since all data objects in G are first class, including func-

tions, G supports the creation of higher order functions and it allows entire data

structures to be treated as single values. Both of these capabilities are requirements

of the applicative paradigm. Another essential requirement of this paradigm is the

preservation of referential transparency. Although G does provide support for this

requirement, it does not guarantee its preservation and so some specific actions must

87

be taken.

There are two important ways in which G supports maintenance of referential

transparency. The first way is by assuring that parameter passing is strictly by need;

the value of an argument is always copied when a function call is made. Another

way in which G supports referential transparency is by prohibiting aliasing via as-

signment. When an assignment is executed, a copy of the value of the right-hand

side is always assigned to the left-hand side variable. When combined with by need

parameter passing this assures that two different G variables can never reference

identical entities.

Yet these facilities of G, by themselves, are not enough to preserve referential

transparency. In addition to these built-in supports it is necessary to prohibit each

of the following:

1. Use of destructive assignment.

2. Use of the primitive operator next (@).

3. Use of the data type Relation.

One easy way to assure that destructive assignment is not used is to use assignment

only to define new functions and then never to use the same function name twice

when defining functions. The examples given below follow this protocol.

Prohibiting the use of the next primitive is necessary because it implements an

implicit destructive assignment. Since side effects are not allowed in the applicative

paradigm this primitive may not be used within code meant to express solely that

paradigm. The ability of the next operator to move a stream to its next element

is an important capability, however, and needs to be preserved without side effects.

In Lisp, this capability resides in the cdr primitive. In G it is a simple matter to

program a function to produce the results of a cdr primitive. This function already is

provided in the standard stream library (Appendix B) and has been given the name

tail. Tail returns a copy of its argument stream minus the first element.

Data values of type Relation may violate referential transparency in two basic

ways. Primitives associated with relations in G directly alter the data structure of

88

the relation they are applied to and values of type Relation are exempted from the

strict by-need parameter passing protocol imposed on all other value types. This

last point is discussed in detail in a preceding section that describes relations. The

attendant potential for creating side-effects, however, precludes the use of Relations

if it is intended that coding remain solely in the applicative paradigm in G.

Given the above criteria, we will now give examples that illustrate how to

express the purely applicative paradigm in G. First two simple examples of functions,

one non-recursive and one recursive, will be given. Then a solution to a non-trivial

problem will be solved in the applicative paradigm.

6.3.1 Simple Function Definition Examples

Our first two examples are simple yet illustrative of function creation in the

applicative paradigm. Initially we will consider a function called putatendof. This

function was given as an example of a function in the applicative paradigm by Hen-

derson [Hen80]. The function putatendof takes two arguments and makes the second

argument the last member of the stream given as the first argument. Henderson pre-

sented the following Lisp-like function definition as an applicative implementation of

putatendof.

if eq(x,NIL) then cons(y,NIL)

else cons(car(x),Fitatendof(cdr(x),y))

This is certainly within the bounds of good applicative programming form. Now

consider the following G expression that represents the same function:

func(x,y)[foreach(x)[x],y].

This expression is simpler and yet still remains completely within the bounds of the

applicative paradigm. The foreach code body simply constructs the value sequence

of x and then the value of y is merely added on as a final value in that sequence.

Recursive function definitions also frequently occur in applicative program-

ming. We turn to Henderson again for an example of how to program the recursive

89

function reverse in the applicative paradigm. The function reverse simply reverses

the order of the elements in its argument stream. Consider Henderson's solution:

if eq(x,NIL) then NIL

else append(reverse(cdr(x)),cons(car(x),Nil))

The G definition of this function looks similar but is somewhat less involved:

func(s) [if (s) [self (tail(s)) ,-s]] .

Basically the G solution first calls itself recursively on the tail of the input stream

if s is not empty. It then enumerates what was the first element of stream s making

it the last element of the returned value.

6.3.2 The Hamming Problem

As a final example of the applicative approach to programming in G we

consider a solution to the non-trivial Hamming problem. The Hamming problem

may be stated in the following way [Con88]:

Given as input a finite increasing sequence of primes <A,B,C, ...> and integer

n, output in order of increasing magnitude and without duplication all integers less

than or equal to n of the form:

(A**i) * (B**j) * (C**k) * j, k, >=0

Notice that if m is in the output sequence then so are:

A*m, B*m, C*m, <=n.

We will present a G applicative solution to this problem which is composed of

three function definitions. Filter is a function which eliminates duplicates and adds

the next set of output values to the output sequence. The G code for filter is given

below:

filter := func(min,s,max,prim)

[foreach(s) [min<s] ,foreach (z:gennext(min,max,prim)) [z]] .

90

The first foreach code body eliminates all occurrences of the minimum from the out-

put stream and the second foreach sequence adds the new elements generated from

the minimum to the output stream.

The function gennext is used to generate the new values that should be added

to the output sequence by multiplying the target value (argument seed) by each of

the given primes and eliminating any product that is greater than the allowed max-

imum. The G code for gennext is:

gennext := func(seed,max,prims)

[local [t] ,foreach(prims) [if (seed*prims<=max) [seed*prims]]] .

The final and main function which completes our solution to the Hamming

problem is the recursive function ham. The function ham selects the minimum value

in the output sequence generated so far, enumerates that value and then calls itself

with its output sequence modified by the function filter. The G code for function

ham follows:

ham := func (max, s,prims) [local [low] ,low:="min(s) ,

if (low<max) [low, self (max ,f liter (low , s ,max ,prims) ,prims)]] .

The function min used within function ham is the minimum function and is defined

in the standard library (Appendix B).

6.4 The Relational Paradigm

The relational database paradigm is easily expressed in G given the function-

ality of pattern-matching expressions and output variables. Each of the five primitive

operators of relational algebra can be concisely expressed in G code as either a func-

tion or a pattern-matching expression. This will be demonstrated in the section G

and the Relational Algebra in order to demonstrate that G is relationally complete.

Also in that section, a few examples of relational algebra queries will be compared

with equivalent G expressions. G expressions, however, tend to be expressed more

naturally in a form similar to query-by-example. This will be demonstrated in the

section Query-By-Example. All of the example queries given in these two sections

have been taken from Date [Dat86].

91

The queries given in the following two sections assume that the streams s, sp

and p exist and that they name streams whose values possess the following logical

fields:

s(sn,city,sname,status) , p(pn,color,city) , sp(sn,pn,qty)

In this sample database, relation s is a relation of suppliers where field sn is a unique

supplier number and sname is the name of the supplier. Relation p is the parts

relation where pn is the part number field. Relation sp is the shipment relation

where field qty is the quantity field referring to the quantity of a part with the part

number pn and the supplier number sn. These streams could have been introduced

as relations with the following three G expressions:

s ;= #Int,String,String,Int#.

p ;= #Int,String,String#.

sp := #Int,Int,Int#.

6.4.1 G and the Relational Algebra

The five primitive operations essential to relational completeness are selec-

tion, projection, union, product and difference. Union, product and difference are

easily expressed as G functions. The code for each is shown below along with the

auxiliary function in:

union := func(sl,s2)

[foreach(s1) [if (not (in (s1 , s2))) [s1]] ,foreach(s2) [s2]] .

difference := func(sl,s2) [foreach(s1) [if (not (in(s1, s2))) [sl]]] .

product := func(s1, s2) [foreach(s1) Eforeach(s2) [sl. I s2]]]

in := func (x, s) [foreach(s) [if (x=s) [x, break]]] .

The auxiliary function in is used by the first two functions given above and so is

included here for completeness. The function in returns its first argument if it is a

member of the second argument passed to in, otherwise in returns the empty stream.

Projection is most easily expressed in G using pattern-matching and and ex-

pressions. For example, to project the single field representing quantity from the

relation sp one could write:

92

sp[?sn,?pn,?qty] and ?qty

This would produce a stream of values corresponding to the third field of each value

of relation sp.

The basic selection operation simply restricts the number of tuples selected

from a given relation. This restriction is based on conditions which must be met

by attributes of the relation values. The conditions could be based on comparisons

among the attributes themselves or on comparisons of attribute values with values

obtained external to the relation. An example of the former case, where two at-

tributes are compared would be the following G expression which assumes a binary

relation intRel of integer pairs:

intRel[?a,?b] and ?a<?b and [[?a,?b]]

The above expression would select all tuples from intRel whose first component is

smaller than its second component. For an example of the second type of select we

will consider our sample database . If we wanted to display information for all sup-

pliers that supplied more than 20 units of part "p2" we could write the G expression:

sp [?sn, "p2" , >20]

Below are given several examples of relational queries followed first by their

relational algebra expressions offered by Date and then by an equivalent expression

in G.

1. Get supplier names for suppliers who supply part "p2".

Relational Algebra:

((s join sp) where pn = 'p2')[sname]

G Expression:

s[?sn,?x,?sname,?y] and sp[?sn,"p2",?z] and ?sname

2. Get supplier names for suppliers who supply at least one red part.

Relational Algebra:

(((p where color = 'red')[pn] join sp)[sn] join s)[sname]

G Expression:

p[?pn,"red",?cl] and sp[?sn,?pn,?q] and s[?sn, ?c2, ?sname, ?st]

93

and ?sname.

3. Get all pairs of suppliers such that the two suppliers are located in the

same city.

Relational Algebra:

define alias first for s; define alias second for s

((first times second) where first.city = second.city

and first.sn < second.sn)[first.sn,second.sn]

G Expression:

s[?snl,?c,?al,?bl] and s[?sn2,?c,?a2,?b2] and ?snl<?sn2

and [[?snl,?sn2]]

It should be noted that each of the G solutions shown above is a general solution

that can be used for any type of base stream (i.e. s, p, and sp could be any type of

value). Notice also how each of the G solutions above rely on constraints imposed

by the patterns. For example, in the first query the same output variable ?sn is used

in the patterns for both the s and sp streams. This means that whatever value is

bound to ?sn in the first pattern for a given value of s must also be used as the value

of ?sn in the second pattern associated with stream sp.

6.4.2 Query-By-Example

The above examples of queries expressed in G demonstrate that the form or

style of G queries is similar to query-by-example. The following additional examples

illustrate more of this style. These examples were also taken from Date [Dat86].

For these examples we are assuming the existence of the same database used above

except that the parts relation (p) has been extended to include a field for a part's

weight.

1. Get supplier numbers for suppliers in Paris with status > 20.

s [?sn, "Paris" ,?sname ,>20] and ?sn.

2. Get supplier numbers and status for suppliers who either are located

94

in Paris or have status > 20.

s[?sn,?city,?sname,?status] and (?status>201I?city="Paris") and

[[?sn,?status]]

Notice in the second example above how the or operation is realized through the

use of concatenation. If either or both of the conditions given in the concatenation

are true then the concatenation will produce a non-empty stream. If both of the

conditions are false then the concatenation will simply return the empty stream

which is equivalent to failure.

3. Get parts whose weight is in the range 16 to 19 inclusive.

p[?pn,7c1r,?wt,?cty] and ?wt>=16 and 7wt<=19 and ?pn.

4. For all parts, get the part number and the weight of that part in

grams. (Part weights are expressed in the relation in pounds.)

p[?pn,?x,?wt,?y] and [[?pn, "weight =",454*?wt]]

5. Get all supplier-number/part-number combinations such that the

supplier and part in question are colocated.

s[?sn,?city,?x,?y] and p[?pn, ?z, ?wt, ?city] and [[?sn,?pn]].

6.5 The Logic Paradigm

As mentioned earlier, through the use of output variables, pattern-matching

and basic stream semantics, some of the important characteristics of the logical

variable are able to be realized in G even though G does not actually employ the

logical variable. In particular, G programs may be written in an incremental rule-

oriented structure which allows some degree of bi-directional flow of information

to and from G data values. Furthermore, output variables allow pattern-matching

expressions to produce values based on the intersection of constraints.

In order to illustrate how to express in G the characteristics of the logic ap-

proach mentioned above we will first consider a Prolog program taken from Clocksin

and Mellish [C1M81]. We will then consider an equivalent program written in G.

Given below is the Prolog program.

95

aveTaxpayer(X) :-

not(foreigner(X)),

not(spouse(X,Y), grossInc(Y,Inc), Inc > 3000),

grossInc(X,Inc), 2000 < Inc, 20000 > Inc.

grossInc(X,Y) :-

not(recPension(X,P), p < 5000),

grossSalary(X,Z),

investInc(X,W),

Y is Z+W.

The above program consists of two rules or Horn clauses. The first rule makes use

of the second; both rules can be interpreted to be logical statements. The rule

ave Taxpayer may be read, "X is an average taxpayer if X is not a foreigner and the

spouse of X does not make a gross income of over 3000 and X makes a gross income

of between 2000 and 20000." The body of the aveTaxpayer rule may be interpreted,

therefore, as a compound conjunction whose component conjuncts are separated by

commas. Note that not only does ave Taxpayer uses the rule for gross income (also

given above) but it assumes the existence of additional rules or relations representing

the entities foreigner, spouse, recPension and investInc.

An equivalent G program for deciding if a person is an average taxpayer is

given below.

aveTaxpayer :=

grossInc[?x,?Inc] and ?Inc>2000 and ?Inc<20000 and

not (foreigner [?x]) and

not (spouse[?x,?p] and grossInc[?p,>3000]) and

[?x] .

grossInc :=

grossSalary[?x,?y] and

investInc[?x,?z] and

not (recPension[?x,<5000]) and

[[?x,?y+?z]] .

96

Like the Prolog program, the G program is incrementally constructed from program

rules. The taxpayer rule and the gross income rule also depend upon the entities

foreigner, spouse, recPension and investlnc. These latter entities could also be rules

or they could simply be "data" known to the system. In the case of Prolog, data

would be represented by simple assertions or facts in the knowledge base. In the case

of G, these facts would simply be stream values, quite possibly of type Relation.

Both the Prolog program and the G program are using uninstantiated variables

within their rules to allow the binding of certain values to be based on the intersection

of constraints. For example, in the final line of the Prolog rule for average taxpayer,

the variable Inc is initially instantiated by the call to the grosslnc rule and then

subsequent conjuncts are used to assure that the value newly bound to Inc is between

the limits of 2000 and 20000. This same technique is used in the first line of the G

rule for average taxpayer.

Another similarity between the two programs above is that both programs

may use the rules defined in more than one input/output mode. The determination

of which variables are used for input and which are used for output may be varied for

different applications of the rules allowing a bi-directional flow of information to and

from the rules. For example, in Prolog and in G it is possible to use the aveTaxpayer

rule to ask for the names of all the average taxpayers or to ask if a particular person,

say John Smith, is an average taxpayer. Given below are examples of how to ask

both of these questions in Prolog and in G.

Prolog Queries:

aveTaxpayer (X) .

aveTaxpayer (j ohnSmith) .

G Expressions:

aveTaxpayer [?x] .

aveTaxpayer ["JohnSmith"] .

Both Prolog rules and G rules may be interpreted in more than one way. Prolog

rules have both a logical and a procedural interpretation. Consider the following

97

Prolog rule:

son(A,B) father(B,A),male(A).

This rule may be viewed as a logical axiom and may be translated "A is the son of

B if B is the father of A and A is a male." But this rule can also be interpreted

procedurally by translating it "To answer the query Is A the son of B? answer first

Is B the father of A? and then answer Is A a male? "

G rules may also be interpreted as logical implications similar to Prolog. The

procedural interpretation of G rules differs from that of Prolog, however, since G is

based on an underlying stream semantics. Consider the following G rule:

son := father[?B, ?A] and male[?A] and [?A,713].

This rule may also be viewed as a logical axiom and may be translated "A is the son of

B if B is the father of A and A is a male". But the procedural interpretation of this G

rule varies from that given for its Prolog counterpart. The G rule could be translated

procedurally as "To generate the son and father pairs [A,B] first generate the father

and son pairs B and A and then filter out any children that are not males." For a

further illustration of a G procedural interpretation consider the average taxpayer

rule. Seen from the viewpoint of the world of streams, this rule can also be viewed as

a generator. The expression grossInc[?x,?Inc] serves as the base generator which

generates values (?x and ?Inc) that are subsequently run through several filters.

The programs given above demonstrate some of the similarities in style that

can be achieved between logic programming in Prolog and programming in the logic

paradigm in G. Although the logic approach to problem solving can be captured by

G, there are differences between the two programs above that can be noted. First,

note that ave Taxpayer and grossInc are being declared as the formal heads of Horn

clauses in the Prolog program and as such are each declared with a specific number

of argument variables. In G, however, aveTaxpayer and grossInc are simply variables

being assigned G data values. No "argument" is associated with these variables.

One consequence of this is that in Prolog it is possible to declare more than one

aveTaxpayer rule each with a unique arity, whereas in G at a given scoping level,

only one variable named aveTaxpayer may exist. No claim is being made for which

98

situation is more desirable, it is merely being pointed out that this difference exists.

A second difference between Prolog and G rules rests in the radical difference

between the underlying mechanisms of Prolog and G. Rules in Prolog are used to

instantiate logical variables and the rules do not in themselves "return" a value.

Rules in G are streams that return a stream value. Therefore, G rules may be used

wherever any other value may be used in G. This allows rules to be used within

any of the other paradigms that are able to be expressed in G thus achieving the

integration of the logic paradigm with these other paradigms.

6.6 The Object-Oriented Paradigm

In the object-oriented paradigm data values exist as independent objects able

to communicate by sending messages to each other. These types of data objects are

easily created and manipulated in G. Simple primitives are supplied that allow the

creation of user-defined types and the methods associated with those types. In order

to demonstrate how to express the object-oriented paradigm in G a simple simulation

of the operation of an ice cream store is developed below. Budd first developed this

discrete event-driven simulation in Smalltalk [Bud87]. The Smalltalk code will not

be presented.

Our simulation will involve the processing and recording of a number of actions.

Each action will be marked with a time at which it should occur. The simulationwill

maintain its own relative "clock" which keeps track of the current time within the

simulation. As time progresses, an event will occur when its marked time matches

the current time on the simulation clock; the occurrence of that event will in turn

control the sequence of future actions to occur in the simulation.

Our simulation will assume that there is never more than one event that is

scheduled but which has not yet taken place. When this pending event does actually

occur, it will cause the scheduling of the next pending event and so on. We will ini-

tially create a type called Simulation that will contain the actions of our simulation

that are common to all similar discrete event-driven simulations and that are inde-

pendent of our particular application. The user-defined type Simulation will then

99

become the superclass of the application we will develop. The code that creates this

new type is given below:

addtype {Simulation, Stream,

local[currentTime:0,nextEvent,nextEventTime] }.

Notice that type Simulation has been defined as a subtype of Stream.

Three instance variables currentTime, nextEvent and nextEventTime have

been defined. Here we are using the term instance variable in the same sense that it

is used in the language Smalltalk. When an instance variable is defined for a given

type, each instance of that type is created with a local variable of the same name.

The variable currentTime will represent the simulation "clock" and will maintain the

current time of the simulation. The variable nextEvent will record the next scheduled

event and the variable nextEventTime will represent the time at which the next event

is scheduled to occur. These three quantities would be common to all similar types

of simulations and so are appropriately captured in the general class Simulation.

The code that creates the methods associated with the type Simulation is

given below:

addop{Simulation,"time",funcO[currentTime] } .

addop{Simulation,naddEvent",func(event,eventTime)

[nextEvent:=event,nextEventTime:=eventTime] }.

addopfSimulation,"proceed",func()

[currentTime:=nextEventTime,me::processEvent(nextEvent)]}.

The message time simply returns the current time of the simulation. In order to

record the next event and its scheduled time the message addEvent has been provided.

The message proceed will be sent when the next action is to take place. Since the

interpretation of an event depends on the specific simulation being run, the method

proceed leaves the interpretation and processing of the actual event to the subclass

represented by the special variable me. This special variable refers to the original

recipient of the message. At execution time it will refer to the actual type created

100

for the specific application being run. One consequence of this is that the message

processEvent must be recognized by each future subtype of type Simulation.

The type IceCreamStore will model our specific application of an ice cream

store. The code to create this type is given next.

addtype{IceCreamStore,Simulation,local[profit:0]}.

Note that the type IceCreamStore is declared here as a subtype of type Simulation.

Therefore, each instance of the type IceCreamStore will inherit all of the instance

variables declared in type Simulation. Type IceCreamStore itself only has one de-

clared instance variable, profit, that will be used to keep track of the profits accumu-

lated during the simulation. In our simple simulation model, customers will arrive

one at a time. A customer will order some number of ice cream scoops and then leave.

The number of scoops ordered by a customer determines the profit received by the

ice cream store. Our simulation has used G's built-in function random to determine

exactly how many scoops of ice cream each customer orders and to determine when

the next customer will arrive.

The methods associated with type IceCreamStore that implement the above

actions are given below.

addop{IceCreamStore , "init" func0 [me: : scheduleArrival] .

addop{IceCreamSt ore , "scheduleArrival" ,

func [me : : addEvent (make{Customer} , -me : :time ()+random(5))] .

addop{IceCreamStore , "processEvent" ,func (event) [

write ["customer received at " , -me: :time ()] ,

profit : =prof it+event : : numberOf Scoops 0*(0 . 17) ,

me: : scheduleArrival .

addop{IceCreamStore, "reportProf it s" ,

func() [write ["profits are " ,profit , " \n"]] .

The message init must be sent to initialize an IceCreamStore object. The method

associated with init in turn sends the message scheduleArrival to the same receiver.

101

This message causes a new customer to be scheduled for a future time in the simula-

tion. The message processEvent first reports the time at which the current customer

arrived. It then records the profits made from that customer and finally it schedules

the next customer and the time at which that customer will arrive. The final message

reportProfits simply writes the profits that have been accumulated by the ice cream

store during the simulation.

The last object needed by our simulation application is the customer. We

must represent in some way the actions performed by the customers of our ice cream

store. The G code that creates this new type named Customer is given below.

addtype{Customer,Stream}.

Note that the type Customer has been declared as a subtype of Stream, the root type

of G. No instance variables have been associated with this new type. The message

numberOfScoops is the only message associated with type Customer. This message

results in the object "deciding" how many scoops of ice cream to order, printing out

that information and then returning the number chosen to the sender of the message.

The code for this method is given below.

addop{Customer,"numberOfScoops",func() [local [number] ,

number :=random(3) ,

write["customer has ",number,"scoops\n"] ,

number] }.

All that is left now is to actually run our simulation. The expressions given

below will do just that. It is assumed below that all of the code described above is

contained in a file named sim.

include{sim}.

s:=make{IceCreamStore}.

s::init().

Ewhile(s: :time()<15) [s: :proceed()]] .

s::reportProfits().

102

The output from the above expressions is shown below in order to give some feel for

the actual simulation.

customer received at 1

customer has 1 scoops

customer received at 6

customer has 2 scoops

customer received at 11

customer has 1 scoops

customer received at 14

customer has 1 scoops

customer received at 16

customer has 2 scoops

profits are 1.19

6.7 Integrating the Paradigms

In a preceeding section, which discussed the expression of the lambda-free

paradigm in G, a matrix multiplication example was presented which integrated the

stream semantics of G with the FP primitives suggested by Backus. In this section

we present two programs that demonstrate the integration of the paradigms of G in

a more extensive manner.

6.7.1 A Database With a View

For our first example, we will create a database to represent information about

the employees and managers of a department store. To represent the employee

information we will create a base relation which we will call workRel. Any given

record of workRel contains the name of an employee and the name of the department

within which the employee works. To represent manager information we will create a

second base relation which we will call man agesRel. Any given record of managesRel

contains the name of a manager and the name of the department which the manager

103

is in charge of. The two relations workRel and managesRel will be the only actual

relations that exist in our database.

We will also create a view into our database. This view will represent informa-

tion about who manages each employee in the department store. Any given record

of this view will contain the name of an employee and the name of the manager of

that employee. We will call this view WorksForView. Furthermore we will define

one operation on this view called add. This operation will take two arguments: an

employee's name and a manager's name. The add operation must implement the

following rule:

If employee named is new but manager named is not then

record new employee as working in manager's department

else if manager named is new but employee named is not then

record new manager as managing employee's department

else if both manager and employee named are not new

delete employee's old department information and then

record employee as working in manager's department

We will now present the G solution to the database problem just presented.

To begin, we will simply create the two relations named workRel and managesRel.

This can be done directly in G and the code to do so is given below.

workRel := #String,String#. & workRel[employee,department]

managesRel := #String,String#. & managesRel[manager,department]

The comments given after each expression record the logical meaning of each field

value for the relations.

Although we have created the basic relations of a "relational database" we will

shift paradigms at this point and employ the object oriented paradigm in order to

implement the view Works ForView. There are several ways in which representing a

view as a type can be useful.

Defining a view as a user-defined type allows easy addition of new operations

on the view by simply defining new messages and their associated methods for the

104

view. In addition to this, and somewhat unique to object-oriented programming,

we can define a number of different views and at the same time use many of the

same messages for each view. For example, we could define several views as objects,

each one of which utilizes the message add. Although the actual manipulations of

the underlying database might be different for each view when it is sent the message

add, the same logical operation of addition to a view would be occurring each time

the message is sent, regardless of the view that receives it.

Making views types also allows the views to enforce limits on the manner in

which the underlying database may be changed. A set of views and their messages

can be defined which represent the only ways a user may legally interact with the

database; the names of the actual underlying relations need not be known by the

user. A system of views can, therefore, be used to enhance the security of a database

and control the method of access to the relations that compose that database.

Directly below is given the G code that creates the view Works ForView.

addtype{WorksForView,Stream,

workRel[?emp,?dept] and

managesRel[?mgr,?dept] and

[[?emp ,?mgr]]1.

Notice that the view is installed as a subtype of Stream, the root of the G hierarchy.

No instance variables have been defined on this view but an "interface" or visible

aspect of the view has been defined. This interface represents the value returned by

an instance of type WorksForView. If no interface is defined, then an instance of a

type simply returns the empty stream. Note also that the interface defined has the

form of a logical rule or a QBE query. This represents a virtual relation (i.e. view)

into the actual underlying database.

The action add is defined for type WorksForView through the use of the G

primitive addop. Using this primitive we simply define the message add and its

associated method (function) for type WorksForView. The code to do this is given

below.

105

addop {WorksForView, "add ",func(emp,mgr)[

not (workRel [emp , ?x]) and managesRel [mgr , ?dept] and

insert (workRel , [emp , ?dept]) II

not (managesRel [mgr , ?x]) and workRel [emp , ?dept] and

insert (managesRel, [mgr ,?dept]) II

managesRel [mgr , ?new] and workRel [emp , ?old] and

(delete (workRel , [emp , ?old]) I insert (workRel , [emp , ?new]))] 1

The body of the method or function associated with the message add is a conjunc-

tion composed of three major conjuncts. Each of these conjuncts implements the

three conditions that message add was meant to embody and that were listed ear-

lier. In the first conjunct, if the given employee's name is not found in the database

but the manager's name is, then the employee's name is associated with the man-

ager's department and is inserted into the underlying relation workRel. In the second

major conjunct, if the manager's name given in not found in the database but the

employee's name is, then the manager's name is associated with the name of the

department within which the employee works and is inserted into the relation man-

agesRel. Finally the third major conjunct takes a known employee and manager and

removes the employee's old database record replacing it with a new record in which

the employee is associated with the department of the given manager. We have thus

provided a Prolog type rule as the body of our method for the message add which is

itself associated with instances of objects of type WorksForView.

As an example of how to use our view, assume that information has been

inserted into our base relations through the following insert expressions.

insert (workRel , ["ben" , "cs"]) .

insert (workRel , ["bill" , "een])

insert (workRel , [" sally" ,"eeu]) .

insert (managesRel , ["walt" , "cs"]) .

insert (managesRel , [" sue" , "ee"]) .

Now we can simply create an instance of type WorksForView and assign the

106

instance to a variable of our choice. For example, consider the following expression:

worksfor := make{WorksForView}.

After the above expression is executed, the value of variable worksfor is an object of

type WorksForView. This variable then allows us to "see" into the database simply

by typing the name of the variable. Thus if we were to type the name of the variable

worksfor into the G interpreter the following value would be printed:

Et ''ben" "wait" "bill" "sue"] ["sally" "sue"]]

If the expression worksfor::add("ben","sue"). is then executed, the entry

[" "ben","ce] would be deleted from the underlying relation workRel and the value

["ben","ee"] would be inserted into the same relation. Whatever actions are actu-

ally carried out on the underlying database, however, they are invisible and not of

concern to the user of this view. What is important to the user is that the values

"ben" and "sue" have been added to the value of worksfor in an appropriate way

(i.e. that the view has been appropriately modified). Thus if we were again to type

the variable name worksfor into the G interpreter the following value would now be

printed:

CE "ben" "sue" ["bill" "sue" "sally" "sue" 3] .

This abbreviated example of a database with a view demonstrates the manner

in which the object-oriented paradigm can be integrated with the rule-based or logi-

cal approach to programming in order to solve a relational database problem. These

are distinctly different paradigms and yet, since they are expressed within a single

linguistic framework, they are intermixed and integrated in a manner appropriate to

solving the problem at hand. Views are expressed as objects in order to benefit from

the characteristics inherent in the object-oriented paradigm (see discussion above)

whereas the use of rules as object methods allows the semantics of the methods to be

emphasized promoting clarity and brevity which are qualities inherent in the logic

programming paradigm. It is also important to note that the transition from one

107

paradigm to another can be "seamless", that is, there need not be an awkward tran-

sition in moving from one paradigm to the next. This natural blending of paradigms

supports writability in software; programs can be expressed in a manner that is

natural for the problem or subproblem being solved.

6.7.2 The Buckets and Well Problem

For our next example of the integration of paradigms in G we present a solu-

tion to the buckets and well problem presented by Schwartz et. al in their discussion

of the language SETL [SDD86]. In this particular statement of the problem, we are

given two buckets, one of volume 3 quarts and the other of volume 5 quarts, and we

are given a well full of water. We are asked to use the two buckets and the well to

measure out exactly four quarts of water. Since exactly four quarts of water must

be measured, the solution to this problem is limited to the execution of operations

in which we can make exact measurements. The only operations that meet this

requirement are operations of the following kind:

1. Any bucket can be filled completely full from the well.

2. Any bucket can be emptied completely.

3. Any bucket can be poured into the other until either the first bucket becomes

completely empty or the second bucket becomes completely full.

Our solution to this problem will mainly make use of two paradigms, the ap-

plicative and the logic paradigms. We will use the applicative paradigm to construct

a simple type of general problem solver where states are generated and then tested

to see if they are target states. We will use the logic paradigm of programming to

construct our generator of states so that the legal operations defined above can be

encoded as simple rules which themselves generate the next set of states.

The G code that implements our "general problem solver" is given below:

wellprob := func(init) [local [red ,rec := #Int , Int# ,

if (istarget (init)) [init] else [main([insert (rec, init)])] .

108

main : =func (states) If oreach(s :"genstates (states)) [

if (istarget (s)) [reverse([s] I f states)]

else [self ([s] I I states)]

The function wellprob simply tests the initial state given as its argument to see if it

is a goal state. If it is, then the problem is trivially satisfied, otherwise the function

main is called with that initial state. Notice that when main is called, the initial

state is inserted into rec which is a relation that will maintain a record of all states

generated in the course of the computations that solve the problem. The function

insert simply returns the value it has inserted.

The function main, also given above, is a recursive function that tests each

new state generated from the current state and then takes one of two possible actions

for each state tested. If the state tested is a goal state main prints out the entire

path of states that is associated with that goal state. This path represents a solution

to the problem. If the state tested is not a goal state, main simply calls itself again

adding that new state onto an accumulating path of states in which the new state

becomes the current state. Notice that when no new states can be generated for a

given current state, the function main returns the end of stream which effectively

ends that line of inquiry.

The function main has the form of a general problem solver based on the

generate-and-test search methodology. It requires that two functions istarget and

genstates be defined. The function istarget simply tests a state for membership in

the set of goal states. The function genstates generates a (possibly empty) set of

new states from the current state so that the search for a solution may proceed. To

use our general problem solver to find solutions for different problems with this same

generate-and-test methodology, all that is needed is to redefine istarget and genstates

for the problem domain of interest.

For our solution, the function istarget is very simple. If the sum of the two

integers that make up the state passed to istarget is 4, then the state is a goal state.

109

The G code that implements this function is:

istarget := func (state) [if (plus (state)=4) [1]] .

The function plus was borrowed from the FP style library (Appendix A). It simply

adds together the first two elements of its argument stream.

The function genstates utilizes Prolog-like rules to encode the conditions that

lead to the production of new states. The code for genstates is:

genstates := func(s) [local [st ,b1 ,b2 ,b1b2 ,b2b1] ,

st := -s, b1 := @st, b2 := @st,

b1b2 := lowest (5-b2 ,b1) , & amount to pour from bl to b2

b2b1 := lowest (3-b1 ,b2) , & amount to pour from b2 to b1

not (rec [3) and insert (rec, [3 ,b2]) I I & fill bucket 1

not (rec [b1, 5]) and insert (rec, [b1,5]) II & fill bucket 2

not (rec [0) and insert (rec, [0) II & empty bucket 1

not (rec [b1, 0]) and insert (rec, [bl , 0]) II & empty bucket 2

not (rec [=b1-b1b2 ,=b2+b1b2]) and insert (rec, [bl-b1b2 ,b2+b1b2]) I

not (rec [=b1+b2b1,=b2-b2b1]) and insert (rec, [bl+b2b1,b2-b2b1])

.

The argument of genstates is a stream of states. It represents a partial path solution

to the problem in reverse order. The first state of the argument stream represents

the current state of that partial solution. The function genstates initially takes the

current state and assigns the values of the bucket volumes within that state to local

variables Id (for the 3 quart bucket) and 1)2 (for the 5 quart bucket). It then computes

the amount to be poured from bucket one into bucket 2 (variable blb2) and from

bucket 2 into bucket 1 (variable b2b1). Assignments always return the empty value

sequence so none of the work done so far has contributed a value to the value sequence

of genstates. The next term, however, is a disjunction whose disjuncts each encode a

"rule" that, if satisfied, will generate a new state from the current state. These rules

implement the three legal operations discussed earlier. The first two rules embody

110

the operation of filling a bucket full. For example, consider the first disjunct, which

is itself a conjunction. The code is:

not (rec [3 , b2]) and insert (rec, [3 , b2]) & fill bucket 1

The first conjunct of this expression is successful (i.e. returns a result) if the state

that results from filling the first bucket full has not been previously generated (i.e.

is not recorded in relation rec). If the state has not been generated previously then

the second conjunct inserts it into relation rec and returns it, making it a member

of the enclosing disjunction.

The third and fourth rules embody the operation of emptying a bucket com-

pletely. For example, consider the third disjunct, which is itself a conjunction. The

code is:

not (rec [0 ,b2]) and insert (rec , [0 ,b2]) & empty bucket 1

In exactly the same manner explained above, if the state that results from emptying

the first bucket has not been generated previously, then it is recorded and returned

as one member of the larger disjunction within which the third conjunction exists.

In an analogous way the last two conjunctions embody the operation of emptying

one bucket into another. They also result in states being returned if they have not

previously been generated.

For completeness it should be mentioned that the function lowest simply re-

turns the lowest value of its two arguments. That function is defined below:

lowest := func (a,b) [if (a<b) [a] else [b]] .

If the expression wellprob ([0 , 0]) . is typed into the interpreter and the code

described above has been either included as a library or typed into the interpreter,

the following two solutions are returned:

[[0 0] [3 0] [3 5] [0 5] [3 2] [0 2] [2 0] [2 5] [3 4] [0 4]]

[[O 0] [3 0] [0 3] [3 3] [1 5] [1 0] [0 1] [3 1]]

111

The solution presented for the buckets and well problem integrates two major

paradigms in a way that takes advantage of the strengths of each one. The applica-

tive paradigm was used to create an expression of a general problem solver which

forms the basic framework of the solution. The simple procedural nature of the prob-

lem solver could be clearly and concisely stated using the applicative programming

approach. The logic paradigm was used to allow the generation of states to be stated

as rules. This allowed those operations that can legally generate new states to be

encoded with clarity and brevity.

112

Chapter 7

Conclusions and Future Work

The exact nature of the relationship between thought and language is a deep

and open question. The early twentieth century linguist Benjamin Lee Whorf saw the

relationship as one of such intimacy that he wrote "thinking is a matter of different

tongues" [Who79]. On the process of "understanding" itself Whorf has written:

"The WHY of understanding may remain for a long time mysterious; but
the HO Wor logic of understanding its background of laws or regulations

is discoverable. It is the grammatical background of our mother tongue,
which includes not only our way of constructing propositions but the way
we dissect nature and break up the flux of experience into objects and
entities to construct propositions about." [Who79]

Whorf was referring to natural languages, but in an analogous fashion programming

languages limit the ways in which we are able to think about problem domains of

interest. Programming languages can impose upon our view a world of forms and

processes inappropriate to the problem domain they are being applied to. A prin-

cipal goal of multiparadigm research is the development of languages with which it

is possible to express and integrate multiple and diverse world views. Such research

investigates our potential to create flexible linguistic systems in which problem do-

mains of interest may be "dissected" in a variety ways. The ideal is to be able to

choose an approach to a problem that depends on the characteristics of the domain

of our interest and not on the confining prejudice of the linguistic system we are

utilizing.

The field of multiparadigm research is young; the foundations of the research

are just now being explored. What effect, if any, the research will have upon pro-

gramming languages of the future cannot be predicted at this time. What is needed

are languages and language design efforts that help us to understand to what extent

programming paradigms can be unified in one "uniform linguistic proposal". Once

we have such languages, we need to earnestly explore what benefits such unifications

113

provide. The language G takes us one step closer toward the development of a com-

prehensive multiparadigm language. It sheds light on some of the techniques that

can be used to design such languages and it gives us a view of some of the success

that can be expected by efforts to combine paradigms. Furthermore, it provides the

core of a system that can be extended and experimented with in future research on

multiparadigm languages and systems.

7.1 Conclusions

There are several ideas and conclusions that have emerged from this work.

These conclusions are summarized below:

1. It is possible to integrate several paradigms into one "uniform linguistic pro-

posal". The full extent to which this can be done has not yet been determined.

The research presented in this paper has demonstrated, however, that it is

possible to combine the main characteristics of the procedural, imperative,

lambda-free, applicative, object-oriented and relational paradigms into one lin-

guistic structure and that it is possible to integrate some of the attributes of

the logic paradigm into this same linguistic framework.

2. Streams are a good datatype on which to build a multiparadigm language.

They provide a unifying underlying semantics that helps to unite the diverse

characteristics of different paradigms and they are very compatible with the

requirements of a flexible, interpreted language.

3. The objects and structures of diverse paradigms can be given a form and in-

terpretation compatible with and supportive of a deeper underlying semantics

of a language. This can provide a unifying influence on the language that aids

in the paradigm unification process. An example of this was the structure and

interpretation of instances of user-defined types in G.

4. The object-oriented structure serves well as the basic structure of a multi-

paradigm language. It can provide a linguistic framework with extensibility,

compactness and simplicity.

114

5. It is possible to make the object-oriented structure of a language serve a

deeper underlying semantics based on the fundamental datatype of the lan-

guage. This prevents the object-oriented structure from being imposed on the

other paradigms integrated into the language.

7.2 Suggested Future Research

The research presented in this document has laid a foundation for the further

exploration of multiparadigm language design and development; it has not produced

a finished product. There are many improvements and extensions that could now

be explored with respect to both the design of G and to the implementation of G.

This section summarizes several of these possibilities for future work on the language

design and implementation of G.

1. Develop a supportive multiparadigm environment around the G interpreter.

2. Add "paradigm assertions" to G which allow the programmer to declare his or

her intention to remain completely within a given paradigm and to have certain

policies enforced to assure that the paradigm is not violated. For example

assert (Functional) could enforce a policy of no destructive assignment as

well as dissallow the use of relations as function argument values. It could also

be used to restrict function definitions from producing side effects.

3. Extend the pattern-matching facilities of G to include "sequence directed"

pattern-matching. Sequence-directed pattern-matching expressions would al-

low the user to create and use stream patterns in the style of SNOBOL4

[GPP71] pattern-matching. A much enhanced capability for describing pat-

terns would need to be developed, possibly based on SNOBOL patterns or

regular expressions.

4. Add to G the ability to create concurrent processes that may be used to activate

daemons and serve other special programming needs. Korth's [Kor86] "printer

queue relation" could be implemented with this addition.

115

5. Extend G to include access-oriented programming [SBK86]. Add a new prim-

itive that would allow functions to be evaluated each time a given variable is

accessed.

6. Extend G to include trigger and constraint capabilities, better query optimiza-

tion and the ability to handle large amounts of data. All of this would be

directed toward making G a full database programming language. Bloom and

Zdonik j131Z871 provide an outline of the conflicting issues that have inhibited

the creation of such languages. Andrews and Harris present an overview of

the language VBASE which combines language and database advances in an

object-oriented framework.

7. Implement G on the new VLSI stream hardware being developed at Simon

Fraser University.

8. Develop a parallel implementation of G.

9. Add the logical variable to G.

116

Bibliography

[AnH87] Andrews, Timothy and Craig Harris. Combining Language and Database
Advances in an Object-Oriented Development Environment. OOPSLA '87:
Special Issue of SIGPLAN Notices, 22,12, December 1987, pp. 430-440.

[Abr86] Abramson, Harvey. A Pro logical Definition of HASL: A Purely Functional
Language With Unification-Based Conditional Binding Expressions. Logic
Programming: Functions, Relations and Equations, D. DeRoot and G.
Lindstrom (Editors), Prentice-Hall, 1986.

[ASS85] Abelson, Harold and Gerald. J. Sussman with Julie Sussman. Structure
and Interpretation of Computer Programs. MIT Press, 1985.

[AsW77] Ashcroft, A. and W.W. Wadge. Lucid, a Nonprocedural Language With
Iteration. Communications of the ACM, 20,7, July 1977, pp. 519-526.

[Bac78] Backus, John. Can Programming Be Liberated from the von Neumann
Style? A Functional Style and Its Algebra of Programs. Communications
of the ACM 21,8, August 1978, pp. 613-640.

[Bai87] Bailey, Roger. An Introduction to Hope. Functional Programming: lan-

guages, tools and architectures. Susan Eisenbach (Editor), Ellis Horwood
Limited, 1987.

[Bou87] Boutel, Brian. Combinators as Machine Code for Implementing Functional
Languages. Functional Programming: languages, tools and architectures,
Susan Eisenbach (Editor), Ellis Horwood Limited, 1987.

[BDL87] Baxter, Nancy, E. Dubinsky and G. Levin. Learning Discrete Mathematics
With ISETL. Clarkston University, June 1987.

[BBL86] Barbuti, R., M. Bellia and G. Levi. Leaf. A Language Which Integrates
Logic, Equations and Functions. Logic Programming: Functions, Rela-

tions and Equations, D. DeRoot and G. Lindstrom (Editors), Prentice-
Hall, 1986.

117

[BeR85] Be llot, P. and B. Robinet. Streams Are Not Dreams. Combinators and
Functional Programming Languages, Thirteenth Spring School of the LITP
Proceedings, G. Goos and J. Hartmanis (Editors), Springer-Verlag, May
1985.

[B1Z87] Bloom, Toby and S. B. Zdonik. Issues in the Design of Object-Oriented
Database Programming Languages. OOPSLA '87: Special Issue of SIG-
PLAN Notices, 22,12, December 1987, pp. 441-451.

[BKK86] Bobrow, D.G., K. Kahn, G. Kiczales, L. Masinter, M. Stefik and F. Zdybel.
Common Loops: Merging Lisp and Object-Oriented Programming. OOP
SLA '86: Special Issue of SIGPLAN Notices, 21,11, November 1986, pp.
17-29.

[Bud87] Budd, Timothy. A Little Smalltalk. Addison-Wesley, 1987.

[C1M81] Clocksin, W.F. and C.S. Mellish. Programming in Prolog. Springer-Verlag,
1981.

[Con88] The Conference on High-Speed Computing, Language Session Problems,
Salishan Lodge, Gleneden Beach, Oregon, March 1988.

[Dat86] Date, C.J. An Introduction to Database Systems: Volume I. Fourth Edi-
tion, Addison-Wesley, 1986.

[DFP86] Darlington, J., A.J. Field and H. Pull. The Unification of Functional and
Logic Languages. Logic Programming: Functions, Relations and Equations,
D. DeRoot and G. Lindstrom (Editors), Prentice-Hall, 1986.

[FaL86] Faustini, Antony A. and E. B. Lewis. Toward a Real-Time Dataflow Lan-
guage. IEEE Software 3,1, January 1986, pp. 29-35.

[FuH86] Fukunaga, Koichi and Shin-ichi Hirose. An Experience with a Prolog-based
Object-Oriented Language. OOPSLA '86:Special Issue of SIGPLAN No-
tices, 21,11, November 1986, pp. 224-231.

[GhJ87] Ghezzi, C. and M. Jazayeri. Programming Language Concepts. John Wiley
and Sons, 1987.

118

[GiR76] Oilman, Leonard and Allen J. Rose. APL: An Interactive Approach. John
Wiley and Sons, 1976.

[GoR83] Goldberg, Adele and David Robson. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, 1983.

[GHK81] Griswold, R. E. and D. R. Hansen and J. T. Kolb. Generators in Icon.
ACM TOPLAS, 3,2 April 1981, pp. 144-161.

[Gri83] Griswold, Ralph E. The Description and Manipulation of Sequences.
Tech. R.ep TR 83-15, Dept. of Comp. Sci., University of Arizona, Oc-
tober 1983.

[0r085] Griswold, R. E. and .1 O'Bagy. Segue: A Language for Programming with
Streams. Tech. Rep. TR 85-2, Dept. of Comp. Sci., University of Arizona,
January 1985.

[GrB85] Griswold, R. E. and J O'Bagy. Reference Manual for the Seque Program-
ming Language. Tech. Rep. TR 85-4, Dept. of Comp. Sci., University of
Arizona, March 1985.

[GrG83] Griswold, R. E. and M. T. Griswold. The Icon Programming Language.
Prentice-Hall, 1983.

[GPP71] Griswold, R.E., J.F. Poage and I.P. Polonsky. The SNOBOL4 Program-
ming Language. second edition, Prentice-Hall, 1971.

[Hai86] Hailpern, Brent. Multiparadigm Languages and Environments. IEEE
Software 3,1, January 1986, pp. 6-9.

[Hai87] Hailpern, Brent. Design of a Multiparadigm Language. Notes from a ses-
sion given by Dr. Hailpern at IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, 1987.

[Hen80] Henderson, Peter. Functional Programming: Application and Implemen-
tation. Prentice-Hall, 1980.

[Har84] Harland, D. M. Polymorphic Programming Languages Design and Imple-
mentation. Ellis Horwood Ltd., 1984.

119

[Har86] Harland, D. M. Concurrency and Programming Languages. Halsted Press,
1986.

[JGM86] Jenkins, Michael A., J. I. Glasgow, and C. D. McCrosky. Programming
Styles in Nial. IEEE Software 3,1, January 1986, pp. 46-55.

[Kay77] Kay, Alan C. Microelectronics and the Personal Computer. Scientific Amer-
ican, 237,3, September 1977, pp. 230-244.

[KeR78] Kernighan, Brian W. and Dennis M. Richie. The C Programming Lan-
guage. Prentice-Hall, 1978.

[Kor86] Korth, Henry F. Extending the Scope of Relational Languages. IEEE Soft-
ware 3,1, January 1986, pp. 19-28.

[KoE88] Koschmann, Timothy and Martha Walton Evens. Bridging the Gap between
Object-Oriented and Logic Programming. IEEE Software 5,4, January 1988,
pp. 36-42.

[Lin85] Lindstrom G. Functional Programming and the Logical Variable. Twelfth
Annual ACM Symposium on Principles of Programming Languages, Jan-
uary 1985, pp. 266-279.

[Mac87] MacLennan, Bruce J. Principles of Programming Languages. Holt, Rine-
hart and Winston, 1987.

[Moo86] Moon, David. Object-Oriented Programmming with Flavors. OOPSLA '86:

Special Issue of SIGPLAN Notices, 21,11, November 1986, pp. 1-8.

[Red86] Reddy, Uday S. On the Relationship Between Logic and Functional Lan-

guages. Logic Programming: Functions, Relations and Equations, D. De-
Root and G. Lindstrom (Editors), Prentice-Hall 1986.

[Rum87] Rumbaugh, Jim. Relations as Semantic Constructs in an Object-Oriented
Language. OOPSLA '87: Special Issue of SIGPLAN Notices, 22,12, De-

cember 1987, pp. 466-481.

120

[SBK86] Stefik, Mark J., D. G. Bobrow, and K. M. Kahn. Integrating Access-
Oriented Programming into a Multiparadigm Environment. IEEE Software
3,1, January 1986, pp. 10-18.

[SDD86] Schwartz, J.T., R.B.K. Deware, E. Dubinsky, E. Schonberg. Programming
With Sets: An Introduction to Setl. Springer-Verlag, 1986.

[Shr86] Shriver, Bruce D. From the Editor-in-Chief. IEEE Software 3,1, January
1986, pp. 2.

[StS86] Sterling, L. and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[SWP82] Schneider, G. Michael, Steven W. Weingart, and David M. Perlman. An
Introduction to Programming and Problem Solving With Pascal. John Wi-
ley and Sons, 1982.

[SuY86] Subrahmanyam, P. A. and J. You. Funlog: A Computational Model Inte-
grating Logic Programming and Functional Programming. Logic Program-
ming: Functions, Relations and Equations, D. DeRoot and G. Lindstrom
(Editors), Prentice-Hall 1986.

[SuY84] Subrahmanyam, P. A. and J. You. Pattern Driven Lazy Reduction: A Uni-
fying Evaluation Mechanism for Functional and Logic Programs. Eleventh
Annual ACM Symposium on Principles of Programming Languages, 1984,
pp. 228-234.

[Tur82] Turner, D. A. Recursion Equations As A Programming Language. Func-
tional Programming and its Applications, J. Darlington, P. Henderson and
D. A. Turner (Editors), Cambridge University Press, 1982.

[Wa186] Walker, Henry M. Introduction to Computing and Computer Science With
Pascal. Little Brown and Company, 1986.

[WaG81] Wampler S. B. and R. E. Griswold. The Implementation of Generators and
Goal-Directed Evaluation in Icon. SoftwarePractice and Experience, Vol
13, October 1983, pp. 495-518.

[Who79] Whorf, Benjamin Lee. Language, Thought and Reality. The M.I.T. Press,
1979.

121

[Wi184] Wilensky, Robert. LISPcraft. W. W. Norton and Company, 1984.

[Wis82] Wise, D. S. Interpreters For Functional Programming. Functional Pro-
gramming and its Applications: An Advanced Course. J. Darlington, P.
Henderson and D. A. Turner (Editors), Cambridge University Press, 1982.

[YoM86] Yonathan, Malachi and Zohar Manna. TABLOG: A New Approach To
Logic Programming. Logic Programming: Functions, Relations and Equa-
tions, D. DeRoot and G. Lindstrom (Editors), Prentice-Hall, 1986.

APPENDICES

122

Appendix A

Functional Paradigm Library

& BACKUS'S PRIMITIVE FUNCTIONS

sel := func(s,n)[if(n=1)[-s] elif(n>1)[self(tail(s),n-1)]].

tail:= func(s)[local[x,z],z:=s,x:=Oz,foreach(z)[z]].

id := func(s)[foreach(s)[s]].

atom: = func(s) [

if(type(s)=IntlItype(s)=CharlItype(s)=ReallItype(s)=Type)

[1]] .

reverse := func(s)[local[x],x:=-s,if(x)[self(tail(s)),x]].

null := func(s)[if(s)[break]else[1]].

not := func(s)[if(s)[break]else[1]].

distl := func(s)[local[y],y:=-s,

foreach(z:-select(s,2))[[y,z]]].

distr := func(s)[local[z],z:=-select(s,2),

foreach(y:-s)[[y,z]]].

len := func(s)[local[x:0],foreach(s)[x:=x+1],x].

or := func(s)[local[x],foreach(s)[x:=xIIs],if(x)[1]].

appendL := func(y,z)[y,foreach(z)[z]].

appendR := func(y,z)[foreach(y)[y],z].

rightselect := func(s,n)[-select(reverse(s),n)].

tailR := func(s)[if(tail(s))[-s,self(tail(s))]].

rotateL := func(s)[local[x],x:=-s,foreach(z:tail(s))[z],x].

rotateR := func(s)[-rightselect(s,1),foreach(z:tailR(s))[z]].

trans := func(s,n:1)

[if(n<=length(-s))[[foreach(s)[-select(s,n)]],self(s,n+1)]].

& BACKUS'S FUNCTIONAL FORMS

composition := func(f,g)[-func(x)[f(g(x))]].

construction := func()

[func(x) [foreach(args) [local[z] ,z:= args,z(x)]]]

condition := func(p,f,g)Efunc(x)[if(p(x))[f(x)] else[g(x)]]].

apply := func(f)[func(x)(foreach(x)[f(x)]]].

insert := func(f)[func(s)[local[x,y,z],

s:=reverse(s),x:=Os,y:=Cs,

if(x)[if(y)[z:=~f([y,x]),

foreach(s)[z:=-f([s,z])],z]else[x]]]].

& LISP_LIKE ARITHMETIC OPERATORS USED BY BACKUS

123

Appendix A continued

plus := func(s)[-s + "tail(s)]
sub := func(s)("s "tail(s)] .

mult := func(s)[-s * "tail(s)] .
div := func(s)["s / "tail(s)] .

124

Appendix B

The Standard Library

&

& GENERAL ROUTINES

&

reverse := func(s) [local [x] ,x : =Os , if (x) [self (s) , x]] .

not := func(s) [if (s) [break] else [1]] .

length := func(s) [local [x : 0] ,foreach(s) [x :=x+1] , x] .

min := func(s) [local [low ,x] ,low:=Os ,

foreach(s) [if (s<low) [low : =s]] , low] .

Appendix C

Grammar for the Language G

program:

PERIOD

I expression PERIOD

expression:

catterm

I ID ASSIGN catterm

catterm:

andterm

I catterms CATOP andterm

catterms:

andterm

I catterms CATOP andterm

andterm:

relational_term

I andterms ANDOP relational_term

andterms:

relational_term

I andterms ANDOP relational_term

relational_term:

term

I relational_term RELOP term

term:

factor

I term ADDOP factor

factor:

125

exponential

I factor MULOP exponential

exponential:

prim_term

1 prim_term EXPOP exponential

prim_term:

base_term

I PRIMITIVEOP prim_term

base_term:

OUTPUTVAR

I basic

;

basic:

ID

GSTRING

CHARACTER

function_call

functional

intvalue

floatvalue

userobject

tuple

LPAREN expression RPAREN

relation

function_definition

pattern_match

TYPE

UTYPE

RANDOMkw LPAREN INTNUMBER RPAREN

INSERTkw LPAREN ID COMMA expression RPAREN

DELETEkw LPAREN ID COMMA expression RPAREN

INCLUDEkw LCURLY ID RCURLY

MAKEkw LCURLY UTYPE RCURLY

ADDTYPEkw LCURLY addtype RCURLY

ADDOPkw LCURLY addop RCURLY

intvalue:

126

127

INTNUMBER

I ADDOP INTNUMBER

floatvalue:

FLOATNUMBER

I ADDOP FLOATNUMBER

function_call:

ID LPAREN expression_list RPAREN

I function_definition LPAREN expression_list RPAREN

functional:

function_call LPAREN expression_list RPAREN

function_definition:

FUNCkw pexp ftuple

tuple:

ftuple:

LBRACE local_setup texpression_list RBRACE

LBRACE local_setup hdr_setup texpression_list RBRACE

local_setup

: /* Action only - prepare a new local environment */

{newlocal();}

expression_list

/* NIL */

I expressions

expressions:

expression

I expression COMMA expressions

128

texpression_list

: /* NIL */

I texpressions

texpressions:

texpression

I texpression COMMA texpressions

texpression:

expression

I codebody

I LOCALkw LBRACE local_stream RBRACE

I SELFkw LPAREN expression_list RPAREN

I WRITEkw LBRACE expression_list RBRACE

I BREAKkw

relation:

POUND relation_list POUND

relation_list

: /* NIL */

I relation_spec

I relation_list COMMA relation_spec

relation_spec:

TYPE

I UTYPE

codebody:

FOREACHkw cparam tuple

I WHILEkw wparam tuple

I
IFkw ifparam tuple else_clause

I REPEATkw tuple

I range_specification

range_specification:

range_item TOkw range_item

129

I range_item TOkw

I range_item TOkw range_item STEPkw stepvalue

I range_item TOkw STEPkw stepvalue

stepvalue:

INTNUMBER

I ADDOP INTNUMBER

range_item:

INTNUMBER

I CHARACTER

else_clause

: /* NIL */

I ELSEkw tuple

I ELIFkw ifparam tuple else_clause

hdr_setup

: /* Action only - prepare a header for a function */

{newhead();}

pexp:

LPAREN parameter_stream RPAREN

parameter_stream

: /* NIL */

I parameter

I parameter COMMA parameters

parameters:

parameter

I parameter COMMA parameters

parameter:

ID

1 ID COLON expression

ifparam:

cparam:

wparam:

LPAREN texpression RPAREN

ifparam

1 LPAREN ID COLON expression RPAREN

LPAREN relational_term RELOP term RPAREN

pattern_match:

ID LBRACE pattern_stream RBRACE

pattern_stream:

pattern

I pattern_stream COMMA pattern

pattern:

OUTPUTVAR

1 RELOP expression

I basic

local_stream

: /* NIL */

1 local

I local COMMA locals

locals:

local:

local

I local COMMA locals

ID

I
ID COLON expression

130

131

local_decl:

LOCALkw LBRACE local_stream RBRACE

addtype:

UTYPE COMMA atype

UTYPE COMMA atype COMMA expression COMMA local_decl

UTYPE COMMA atype COMMA expression

UTYPE COMMA atype COMMA local_decl COMMA expression

UTYPE COMMA atype COMMA local_decl

atype:

TYPE

I UTYPE

addop:

atype COMMA GSTRING COMMA function_definition

userobject:

ID COLON COLON ID LPAREN expression_list RPAREN

