

AN ABSTRACT OF THE DISSERTATION OF

Delvin E. Peterson for the degree of Doctor of Philosophy in

Mechanical Engineering presented on July 11, 2011.

Title: Reduced Order Multi-Legged Mathematical Modeling of Cockroach

Locomotion on Inclines

Abstract approved:

David P. Cann

While the locomotion performance of legged robots over flat terrain or known

obstacles has improved over the past few decades, they have yet to equal the

performance of their animal counterparts over variable terrain. This work

analyzes a multi-legged reduced order model of cockroach locomotion on

variable slopes which will be used as an inspiration for a future sprawled

posture legged robot. The cockroach is modeled as a point mass, and each leg

of the cockroach is modeled as a massless, tangentially rigid, linearly elastic

spring attached at the center of mass. All of the springs are actuated to allow

changes in energy to the system. This is accomplished by varying the force free

length of each leg in a feed-forward manner without reliance on feedback to

change the actuation scheme. Fixed points of the model are found using a

numerical solver that varies the velocity and phase shift parameters while

leaving all other parameters at fixed values selected to match true cockroach

motion. Each fixed point is checked for stability and robustness representing

how effective the model is at staying on the predetermined gait, and transport

cost as a measure of how efficient this gait is. Stable and robust fixed points

were successfully found for the range of heading angles encompassing those of

representative cockroach motion at each slope. Cockroaches may select the gait

used based on stability or efficiency. Thus, additional fixed points were found in

combination with a search routine that varies the leg actuation parameters in

order to optimize either stability or metabolic efficiency, gaining insights into

why cockroaches use the gaits that they do. Optimized fixed points were found

based on four different leg functional combination families depending on

whether each leg pushes or pulls. Optimized fixed point gaits exist for every

incline slope studied between level ground and vertical slopes, at a range of

initial heading angles that encompass those typically used by cockroaches. The

selected gaits using both a stability based and an efficiency based optimization

on the modeled cockroach are very similar. Both are also similar to gaits used

by real cockroaches. The forces generated by the model are qualitatively similar

to the experimental forces.

c©Copyright by Delvin E. Peterson
July 11, 2011

All Rights Reserved

Reduced Order Multi-Legged Mathematical Modeling of
Cockroach Locomotion on Inclines

by

Delvin E. Peterson

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented July 11, 2011
Commencement June 2012

Doctor of Philosophy dissertation of Delvin E. Peterson presented on
July 11, 2011.

APPROVED:

Major Professor, representing Mechanical Engineering

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of
my dissertation to any reader upon request.

Delvin E. Peterson, Author

ACKNOWLEDGEMENTS

Several people deserve special acknowledgment for their assistance in this

research. First, I would like to thank Dr. John Schmitt for his advice and

assistance in this research and his many suggestions that guided the direction of

my work. Also, thank you to my graduate committee for their help. I would

also like to thank Dr. Ginger Ketting-Weller and the administration of my

employer, Walla Walla University, for encouraging me to work on this degree

and granting me a leave of absence for its pursuit. Finally, I would like to thank

my wife Sara and our three children for their encouragement to keep working

and patience as I spent many long hours on this research.

TABLE OF CONTENTS

Page

1 Introduction 1

2 Mathematical Model 4

2.1 Previous Reduced-Order Modeling Efforts 4

2.2 A Reduced-Order Point Mass Model 8

2.3 Alternating Tripod Gait . 8

2.4 Leg Actuation . 12

2.5 Equations of Motion . 14

3 Analysis Methods 17

3.1 Finding Fixed Points . 17

3.2 Stability . 19

3.3 Robustness . 20

3.4 Transport Cost . 21

3.5 Optimization . 24

4 Non-Optimized Fixed Point Results 27

5 Opimization Results 37

5.1 Stability Optimized Gaits . 39

5.2 Efficiency Optimized Gaits . 47

6 Force Comparisons 57

7 Discussion and Conclusions 67

Bibliography 72

Appendices 75

LIST OF FIGURES

Figure Page

2.1 Reduced order point mass model for cockroach locomotion with
multiple legs represented as linear elastic elements 9

2.2 Illustration of leg lengths during a fixed stride length simulation
of cockroaches with six legs. Lengths are plotted at zero length
during the swing phase when the legs are off of the ground. The
affect of leg actuation phase shifts on modeled legs is also shown
for: φF = 63◦, φM = 4◦, φB = −49◦, with positive phase shifts
showing short stance durations and negative phase shifts showing
long stance durations . 11

3.1 Schematic representation of typical cockroach motion. Lateral mo-
tion is exaggerated for clarity. Shows criteria used to identify valid
fixed point gaits: See equations (3.1) - (3.4) 18

3.2 Simulated perturbation force throughout a stance phase used to
check the robustness of modeled motion. Perturbation is modeled
as an impulsive force applied at a time 1/8 of the expected stance
phase. 22

4.1 Contour plot of parameters resulting from fixed point solver as a
function of incline slope and initial heading angle. High phase an-
gles correspond to short durations of the given leg stance period.a)
Initial velocity at foot placement (m/s); b)-d) Leg actuation phase
shifts (rad) for the front, middle, and back legs 28

4.2 Stability of non-optimized fixed point gaits with leg actuation
given by ldev = l0/2. Gaits are most stable where eigenvalues
are close to zero, represented by the dark blue regions. a) Gaits
with all legs pushing; b) Gaits with front and back legs pushing;
c) Gaits with middle and back legs pushing; d) Gaits with back
leg pushing. 31

4.3 Robustness of non-optimized fixed point gaits with leg actuation
given by ldev = l0/2. Gaits are most robust where recovery times
are short, represented by the dark blue regions. a) Gaits with all
legs pushing; b) Gaits with front and back legs pushing; c) Gaits
with middle and back legs pushing; d) Gaits with back leg pushing. 32

LIST OF FIGURES (Continued)

Figure Page

4.4 Robustness, as defined by number of steps to recover from a lateral
impulse of non-optimized fixed point gaits with leg actuation given
by ldev = l0/2. Modeled gaits operating at fixed points at the
preferred heading angle (δ0 = 0.15 rad) as a function of incline
slope and lateral impulse normalized as a percentage of forward
momentum. Gaits are most robust where recovery times are short,
represented by the dark blue regions. 33

4.5 Normalized transport costs of non-optimized fixed point gaits with
leg actuation given by ldev = l0/2. Smaller transport cost values
correspond with more efficient gaits. The minimum possible trans-
port cost can be found from (Ctran,min = sinσ). a) Gaits with all
legs pushing; b) Gaits with front and back legs pushing; c) Gaits
with middle and back legs pushing; d) Gaits with back leg pushing. 35

5.1 Existence of fixed points at various heading angles, δ0 and incline
slopes, σ organized by pushing or pulling function of each leg.
Because of the flexibility in leg actuation parameters (ldev), there
is some overlap between gait existence of different leg functional
sets. 38

5.2 Contour plot of front leg actuation parameter (ldev,F) from fixed
point solver, optimized for stability. The front leg is generally
more strongly actuated as slope increases. a) Gaits with all legs
pushing; b) Gaits with front and back legs pushing; c) Gaits with
middle and back legs pushing; d) Gaits with back leg pushing. . . 40

5.3 Contour plot of middle leg actuation parameter (ldev,M) from fixed
point solver, optimized for stability. The middle leg is generally
not strongly actuated at low slopes unless the leg is pulling and
the heading angle is high. a) Gaits with all legs pushing; b) Gaits
with front and back legs pushing; c) Gaits with middle and back
legs pushing; d) Gaits with back leg pushing. 41

5.4 Contour plot of back leg actuation parameter (ldev,B) from fixed
point solver, optimized for stability. The back leg increases in
actuation as either heading angle or incline slope increase. a) Gaits
with all legs pushing; b) Gaits with front and back legs pushing;
c) Gaits with middle and back legs pushing; d) Gaits with back
leg pushing. 42

LIST OF FIGURES (Continued)

Figure Page

5.5 Contour plot of front leg phase shifts (φF
◦) from fixed point solver,

optimized for stability. High phase angles correspond to short
durations for the front leg stance period. a) Gaits with all legs
pushing; b) Gaits with front and back legs pushing; c) Gaits with
middle and back legs pushing; d) Gaits with back leg pushing. . . 43

5.6 Contour plot of middle leg phase shifts (φM
◦) from fixed point

solver, optimized for stability. High phase angles correspond to
short durations for the middle leg stance period. a) Gaits with all
legs pushing; b) Gaits with front and back legs pushing; c) Gaits
with middle and back legs pushing; d) Gaits with back leg pushing. 44

5.7 Contour plot of back leg phase shifts (φB
◦) from fixed point solver,

optimized for stability. High phase angles correspond to short
durations for the back leg stance period. a) Gaits with all legs
pushing; b) Gaits with front and back legs pushing; c) Gaits with
middle and back legs pushing; d) Gaits with back leg pushing. . . 45

5.8 Optimal stability of fixed point gaits based on varying leg actu-
ation (ldev). Gaits are most stable where eigenvalues are close to
zero, represented by the dark blue regions. a) Gaits with all legs
pushing; b) Gaits with front and back legs pushing; c) Gaits with
middle and back legs pushing; d) Gaits with back leg pushing. . . 46

5.9 Optimal stability of fixed point gaits based on varying leg actuation
(ldev). Gaits are most stable where eigenvalues are close to zero,
represented by the dark blue regions. Gaits selected based on most
stable leg function combination. 47

5.10 Normalized transport costs of fixed points, optimized for stabil-
ity. Smaller transport cost values correspond with more efficient
gaits. The minimum possible transport cost can be found from
(Ctran,min = sin σ). a) Gaits with all legs pushing; b) Gaits with
front and back legs pushing; c) Gaits with middle and back legs
pushing; d) Gaits with back leg pushing. 48

5.11 Normalized transport costs of fixed points, optimized for stabil-
ity. Smaller transport cost values correspond with more efficient
gaits. The minimum possible transport cost can be found from
(Ctran,min = sin σ). Gaits selected based on most stable leg func-
tion combination. 48

LIST OF FIGURES (Continued)

Figure Page

5.12 Contour plot of front leg actuation parameter (ldev,F) from fixed
point solver, optimized for metabolic efficiency. Trends are similar
to those of the stability optimized gaits. a) Gaits with all legs
pushing; b) Gaits with front and back legs pushing; c) Gaits with
middle and back legs pushing; d) Gaits with back leg pushing. . . 49

5.13 Contour plot of middle leg actuation parameter (ldev,M) from fixed
point solver, optimized for metabolic efficiency. Trends are similar
to those of the stability optimized gaits. a) Gaits with all legs
pushing; b) Gaits with front and back legs pushing; c) Gaits with
middle and back legs pushing; d) Gaits with back leg pushing. . . 50

5.14 Contour plot of back leg actuation parameter (ldev,B) from fixed
point solver, optimized for metabolic efficiency. Trends are similar
to those of the stability optimized gaits. a) Gaits with all legs
pushing; b) Gaits with front and back legs pushing; c) Gaits with
middle and back legs pushing; d) Gaits with back leg pushing. . . 51

5.15 Contour plot of front leg phase shifts (φF
◦) from fixed point solver,

optimized for metabolic efficiency. High phase angles correspond
to short durations for the front leg stance period. a) Gaits with all
legs pushing; b) Gaits with front and back legs pushing; c) Gaits
with middle and back legs pushing; d) Gaits with back leg pushing. 52

5.16 Contour plot of middle leg phase shifts (φM
◦) from fixed point

solver, optimized for metabolic efficiency. High phase angles corre-
spond to short durations for the middle leg stance period. a) Gaits
with all legs pushing; b) Gaits with front and back legs pushing;
c) Gaits with middle and back legs pushing; d) Gaits with back
leg pushing. 53

5.17 Contour plot of back leg phase shifts (φB
◦) from fixed point solver,

optimized for metabolic efficiency. High phase angles correspond
to short durations for the back leg stance period. a) Gaits with all
legs pushing; b) Gaits with front and back legs pushing; c) Gaits
with middle and back legs pushing; d) Gaits with back leg pushing. 54

5.18 Optimal transport costs based on varying leg actuation (ldev).
Smaller transport cost values correspond with more efficient gaits.
The minimum possible transport cost can be found from (Ctran,min =
sinσ). a) Gaits with all legs pushing; b) Gaits with front and back
legs pushing; c) Gaits with middle and back legs pushing; d) Gaits
with back leg pushing. 55

LIST OF FIGURES (Continued)

Figure Page

5.19 Optimal transport costs based on varying leg actuation (ldev).
Smaller transport cost values correspond with more efficient gaits.
The minimum possible transport cost can be found from (Ctran,min =
sinσ). Gaits selected based on most efficient leg function combi-
nation. 55

5.20 Stability of fixed point gaits, optimized for metabolic efficiency. .
Gaits are most stable where eigenvalues are close to zero, repre-
sented by the dark blue regions. a) Gaits with all legs pushing; b)
Gaits with front and back legs pushing; c) Gaits with middle and
back legs pushing; d) Gaits with back leg pushing. 56

5.21 Stability of fixed point gaits, optimized for metabolic efficiency.
Gaits are most stable where eigenvalues are close to zero, repre-
sented by the dark blue regions. Gaits selected based on most
efficient leg function combination. 56

6.1 Experimental maximum lateral forces of cockroaches obtained from
force plates. Forces are normalized by dividing by the weight of
the cockroach. a) Front leg; b) Middle leg; c) Back leg. σ = 0◦

data [1]; σ = 90◦ data [2]; Variable slope data from D. Goldman,
2011, personal communication, Georgia Institute of Technology . . 58

6.2 Experimental maximum lateral forces of cockroaches obtained from
force plates. Forces are normalized by dividing by the weight of
the cockroach. a) Front leg; b) Middle leg; c) Back leg. σ = 0◦

data [1]; σ = 90◦ data [2]; Variable slope data from D. Goldman,
2011, personal communication, Georgia Institute of Technology . . 59

6.3 Maximum lateral forces of modeled cockroaches based on gaits
with leg actuation held constant at ldev = l0/2. Forces are normal-
ized by dividing by the weight of the cockroach. a) Front leg; b)
Middle Leg; c) Back Leg; d) Net combined force of all legs. 60

6.4 Maximum fore/aft forces of modeled cockroaches based on gaits
with leg actuation held constant at ldev = l0/2. Forces are normal-
ized by dividing by the weight of the cockroach. a) Front leg; b)
Middle Leg; c) Back Leg; d) Net combined force of all legs. 60

6.5 Maximum lateral forces of modeled cockroaches based on optimal
stability gaits. Forces are normalized by dividing by the weight of
the cockroach. a) Front leg; b) Middle Leg; c) Back Leg; d) Net
combined force of all legs. 61

LIST OF FIGURES (Continued)

Figure Page

6.6 Maximum fore/aft forces of modeled cockroaches based on optimal
stability gaits. Forces are normalized by dividing by the weight of
the cockroach. a) Front leg; b) Middle Leg; c) Back Leg; d) Net
combined force of all legs. 62

6.7 Maximum lateral forces of modeled cockroaches based on optimal
metabolic efficiency gaits. Forces are normalized by dividing by
the weight of the cockroach. a) Front leg; b) Middle Leg; c) Back
Leg; d) Net combined force of all legs. 62

6.8 Maximum fore/aft forces of modeled cockroaches based on optimal
metabolic efficiency gaits. Forces are normalized by dividing by the
weight of the cockroach. a) Front leg; b) Middle Leg; c) Back Leg;
d) Net combined force of all legs. 63

LIST OF TABLES

Table Page

3.1 Additional constraints implemented during optimization based on
stability and metabolic efficiency. Hard constraints can not be
violated by the optimizing routine, while soft constraints can be
violated with additional penalties added to the function that is
being minimized. 26

4.1 Selected parameters for reduced order model of cockroach motion
based on actual cockroach parameters. 28

6.1 Comparison of experimental forces to modeled front leg forces,
showing a qualitative similarity in direction and magnitude. Ex-
perimental data from D. Goldman, 2011, personal communication,
Georgia Institute of Technology. All forces are normalized by di-
viding by cockroach weight. Ranges represent the range of data
for both the experimental data and the modeled data (including
all fixed points for a given slope at heading angles between δ0 =
0.05 rad and 0.40 rad). 64

6.2 Range of modeled middle leg forces. Experimental data does not
exist for middle legs due to the difficulty in measuring this leg
independent of the others. All forces are normalized by dividing
by cockroach weight. Ranges represent the range of data for both
the experimental data and the modeled data (including all fixed
points for a given slope at heading angles between δ0 = 0.05 rad
and 0.40 rad). 65

6.3 Comparison of experimental forces to modeled back leg forces,
showing a qualitative similarity in direction and magnitude. Ex-
perimental data from D. Goldman, 2011, personal communication,
Georgia Institute of Technology. All forces are normalized by di-
viding by cockroach weight. Ranges represent the range of data
for both the experimental data and the modeled data (including
all fixed points for a given slope at heading angles between δ0 =
0.05 rad and 0.40 rad). 66

LIST OF APPENDICES

Page

A Matlab Code 76

A.1 Robot Simulation . 76
A.1.1 simgait multileg.m . 76
A.1.2 legforces.m . 88
A.1.3 footplace.m . 91
A.1.4 locatehips.m . 93

A.2 Parameter Initialization . 94
A.2.1 find fp.m . 94
A.2.2 freq fitter.m . 101
A.2.3 footplace init.m . 102

A.3 Fixed Point Finding . 104
A.3.1 fp multileg.m . 104
A.3.2 calc C.m . 106
A.3.3 find sigfam.m . 107

A.4 Fixed Point Analysis . 116
A.4.1 findeig.m . 116
A.4.2 run fp.m . 123
A.4.3 plotgaits.m . 127

A.5 Robustness Checking . 149
A.5.1 simgait multileg latimp.m 149
A.5.2 robustness family.m . 166

A.6 Optimization . 168
A.6.1 find sigfam varyldev ?opt.m 168
A.6.2 Optimizer ?.m . 179

Chapter 1 – Introduction

Despite advancements in the design and implementation of legged robots, de-

signing a robot to navigate a variety of difficult terrains remains a difficult task.

In particular, a robot which could rapidly and stably navigate inclines of arbi-

trary slope, obstacles, loose stones, and other perturbations would be extremely

useful for disaster response, exploration, and military applications. While the

locomotion performance of legged robots over flat terrain or known obstacles has

improved over the past few decades, they have yet to equal the performance of

their animal counterparts over variable terrain. Ultimately, understanding the

fundamental mechanisms by which animals are able to achieve such performance

could prove instrumental in the design and control of future legged robot designs.

Since cockroaches are relatively inexpensive to obtain and exhibit interesting

dynamic characteristics, their locomotion has been widely studied [1, 3]. Their

lateral motion has been shown to be stable both on the level [4] and on verti-

cal slopes [5]. While many creatures run using legs directly under their body,

cockroaches use legs to the side in a sprawled posture. This results in significant

lateral motion whether the cockroach is on the level [1] or on a cliff [2]. Intuitively,

this lateral motion seems energetically inefficient, but it may be important for

stability or robustness.

A full model of a cockroach including all of the leg segments, muscles, and

body segments would involve many degrees of freedom and be cumbersome to

solve. Thus, a reduced order model will be developed based on the motion of

cockroaches. Similar reduced order models have effectively predicted motion for

2

cockroaches and other animals while being much simpler to analyze than a full

model [6, 4, 7, 2].

Initial investigations with a single-legged, transverse-plane, reduced-order, ac-

tuated model on varying slopes have suggested that cockroaches switch from

pushing to pulling function based on stability and robustness concerns. Based on

optimizing the robustness, the transition from pushing function to pulling func-

tion occurs at around a slope of 15 to 40 degrees depending on speed [8]. However,

no predictions were made for transitions of individual leg function since it was a

single legged model. Additionally, there were no comparisons to actual cockroach

force data for slopes other than level or vertical.

This research will investigate a similar transverse-plane, reduced-order, ac-

tuated model with the full six legs. This will allow predictions for transitions

for each of the legs. Also, the forces generated will be compared with those of

cockroaches on varying slopes. A mathematical model which produces cockroach

motion with legs that transition from pushing to pulling at slopes similar to those

of actual cockroaches will be useful in developing a sprawled posture robot with

natural stability like cockroaches have.

This paper will investigate whether or not cockroaches select their gait based

on dynamic stability or efficiency concerns, or possibly a combination of both

metrics. In particular, optimal gaits will be found based on varying the degree

of leg actuation, similar to how a cockroach can select the amount of muscle

actuation used. This will be done over a range of initial heading angles encom-

passing typical values used by cockroaches, and over a range of incline slopes from

level ground to vertical slopes. These gaits will be optimized both for stability

and separately for metabolic efficiency. By comparing the resulting motion with

3

the actual cockroach motion, we will learn which metric drives the cockroaches

gaits. The implementation of both of these optimization metrics could be partic-

ularly useful in the development of a sprawled posture multi-legged robot that is

similarly stable and efficient.

This document proceeds as follows. Chapter 2 describes the proposed math-

ematical model for cockroach locomotion after listing similar models in the re-

search. Subsequently, Chapter 3 describes the methods used to gather gaits as

well as the metrics used to measure stability, robustness, and metabolic efficiency.

Also, the optimization techniques will be developed. The resulting motion from

the cockroach locomotion model are analyzed in Chapter 4. Chapter 5 will discuss

the resulting gaits from optimization on both metabolic efficiency and dynamic

stability. Both the non-optimized and optimized gaits will be compared to forces

generated by actual cockroaches in Chapter 6. Chapter 7 describes the impor-

tance of the results and suggests some areas for future research.

4

Chapter 2 – Mathematical Model

2.1 Previous Reduced-Order Modeling Efforts

This work proceeds from a body of research modeling animal motion with simple

elastic elements. In the sagittal plane, perpendicular to the ground and parallel

to the direction of forward motion, the fundamental template of this type is the

Spring-Loaded Inverted Pendulum (SLIP) model. Generally, the running body is

modeled as a point mass, and the leg is modeled as a simple inverted pendulum

with a spring. The spring allows an exchange between kinetic and potential

spring energy in a similar manner to how many animals store elastic energy while

running [9]. This model’s obvious advantage lies in its simplicity. With a single

mass-spring system the equations of motion are very easy to derive and to solve

numerically [10].

The motion of many trotting, running, and hopping animals can be repre-

sented with a SLIP model [6]. This simplified model has been shown to accu-

rately match the motion of actual legged creatures such as humans, horses, and

cockroaches [11]. Studies with guinea fowl using the SLIP model show that the

creatures maintain stability after unexpected disturbances in ground height in a

passive uncontrolled manner. This is accomplished by rotating the leg towards

the ground at a constant rate shortly before expected foot contact, which changes

the angle at which the leg is placed on the next step. [12].

While the SLIP model has been shown to accurately describe motion in the

sagittal plane, it does not address lateral motion inherent in sprawl posture an-

5

imals, which deploy legs to the side of the main body. Thus, a similar mass

and spring model has been developed for modeling running animals in the trans-

verse plane, parallel to the ground. This model, termed lateral leg-spring (LLS),

incorporates a point mass or rigid body with a spring attached in a lateral di-

rection [13]. The spring alternates sides in a manner similar to how a cockroach

alternates its tripod gait, causing the body to oscillate back in forth.

Only motion within the transverse plane is modeled, while the hopping motion

in the saggital plane is ignored. This means that unlike the SLIP model, legs

can be touched down at any time rather than waiting for gravity to return the

leg to the ground. Using this model with parameters similar to cockroaches, it

has been shown that the resulting motion is naturally stable while also closely

matching the lateral translational forces and velocities of real cockroach motion

[4]. However the resulting moments and corresponding yaw angles are an order of

magnitude different from the actual cockroach data because the single leg force

cannot adequately produce the moments of the three legs acting together in a

tripod.

To provide a better match to cockroach motion, one multi-legged model re-

places each of three legs in a tripod with a spring element similar to the LLS

model. The generated leg forces are controlled to approximately match prescribed

forcing functions characteristic of actual cockroach motion using a variable equi-

librium spring length and a variable hip location on all three legs [14]. Although

the controlled parameters were calculated based on a model decoupled from the

rotational motion, the resulting forces and moments were very similar to actual

cockroach data both qualitatively and quantitatively. Also, the modeled gaits

were stable at velocities similar to those preferred by cockroaches.

6

Another model replaces lateral linear springs with more biologically relevant

legs that include both a hip and knee joint while still constraining motion to the

lateral plane. This allows rotational motion using torsional springs [15]. Again,

leg forces are controlled to match characteristic functions of cockroach forces in

this case by setting the moment free angle for each of the torsional springs. An-

other development of the model more closely approximates the biological system

by replacing the torsional springs with actuated muscle pairs. The resulting forces

are matched to forces characteristic of cockroaches by adjusting action potential

spike trains for the muscles [16]. These models also resulted in translational and

rotational motion similar to that measured on cockroaches, with models that are

progressively closer to how real cockroaches activate their legs.

All of the preceding LLS models were employed for running on level ground.

Some limited work has been done on reduced order modeling of the lateral mo-

tion of legged creatures on slopes. Despite significant biological differences, cock-

roaches and geckos use a dynamically similar gait while running up a vertical

slope. This fact has inspired a reduced order model, based on the lateral leg

spring model, that produces forces similar to both cockroaches and geckos climb-

ing. This climbing template model is made non-conservative through the addition

of a linear actuator in-line with the leg spring. Shortening the actuator length

pulls the rigid body mass towards the foot attachment point while simultaneously

increasing the potential energy of the spring by extending it [2]. Simulations us-

ing this model have shown that a modeled cockroach displays more stability to

lateral impulses by placing legs off to the side rather than placing them directly

in front. This may provide an answer to why cockroaches employ this lateral

motion [5].

7

Little work has been done with reduced order modeling of legged motion on

inclines varying from level ground to vertical slopes. It has been shown that

stable and robust gaits exist for a variable slope model based on the lateral leg

spring template. This model uses legs actuated by a variable force free length

in a single leg, which produces a similar effect to a linear actuator in-line with

a spring [8]. The actuator was varied to match an assumed lateral force profile

based on interpolating cockroach forces between those observed on the level [1]

and on vertical slopes [2]. While gaits were found using both pushing and pulling

leg function for all inclines, the stability and robustness of these respective gaits

suggest that pushing function is preferred at low slopes, while pulling function is

more stable at higher slopes [8]. The current research is based on a multi-legged

modification to this model which sets the force free length based on a sinusoidal

function with a phase shift.

Many researchers have investigated optimizing robots or mathematical models

with respect to either stability or efficiency. For instance, one example varies

the mass, inertia, and geometric properties of a modeled one legged hopper to

optimize its stability. It uses a numerical solver based on a Nelder-Mead algorithm

in an outer loop to minimize the eigenvalues of the Jacobian of a discretized

version of the system. To ensure that the optimized parameters produce fixed

points, an inner loop is used to find fixed points of the system [17]. Another

paper focuses on a model of the human foot during walking to show that the

optimal foot length and foot ratio for stability are very close to actual human

foot dimensions [18].

One recent work analyzes various possible walking and running gaits for a

modeled human leg. By optimizing for metabolic efficiency, the optimization

8

routine settled on both inverted pendulum walking and impulsive running as the

optimal gaits depending on what speed was desired. In addition to these two

gaits which humans often employ a third gait, termed pendular running, was

also discovered for intermediate speeds [19]. Another work analyzed the energy

losses of a full model of a hexapedal robot to determine the optimal gait to use

during turning of the robot. This turned out to be a tetrapodal gait rather than

a tripodal gait [20].

2.2 A Reduced-Order Point Mass Model

The model used is based on a previous point-mass, actuated spring model with

a single active leg suitable for variable slopes [8]. However, the model has been

extended to a six-legged model more similar to actual cockroach motion. It has

been theorized that a single legged model can not accurately describe the yawing

motion of the cockroach due to a lack of flexibility to choose moments for one leg

rather than a trio of legs [4]. However, initial studies will be done with a point

mass model that does not account for this yawing motion. As insights are gained

regarding the multi-legged model, this model will be extended to a rigid body

which allows rotational motion. The mass of the legs will be neglected since it

amounts to only 13% of the total mass [3].

2.3 Alternating Tripod Gait

Cockroaches typically run with an alternating tripod gait where three legs contact

the ground, forming a tripod around the cockroach while the opposing legs move

[21]. A left tripod is represented in Figure 2.1 where the front left, mid right, and

9

x, Lateral

y,
F
or
e/
A
ft

σ

βi

~ri

g sinσ

Figure 2.1: Reduced order point mass model for cockroach locomotion with mul-
tiple legs represented as linear elastic elements

back left legs contact. In idealized models [14, 2, 16, 8], the right tripod stance

is placed at the instant the left tripod stance is lifted. This gives a duty factor,

or percentage of time a leg contacts the ground, of 50%. However cockroaches

actually employ duty cycles of around 52% to 66% on the level [21] and 50% to

74% on vertical slopes [2].

The stride of each leg is characterized by a stance phase when the leg contacts

the ground and a swing phase when the leg swing to its next location. All legs of

each tripod start based on a fixed clock cycle, but lift-off occurs when each legs’

force returns to zero. This gives a fixed length of time for the stride, but not a

fixed length for the stance phase. It also allows for duty cycles, or percentage of

time a leg contacts the ground, of other than 50%. Figure 2.2 describes a possible

scenario for the modeled alternating tripod gait. Initially, all of the left tripod

feet are placed. The timing clock signals the right stance phase to began at tdes.

10

Then, at 2tdes the left stance phase is signaled to start again. Four complete

steps, or two strides for each of a left and right stance phase are depicted. In this

example, all legs generate a pushing force. This is apparent since the equilibrium

spring length becomes larger than the actual leg length.

Any leg that crosses zero force becomes inactive until the timing clock reac-

tivates it at a new foot placement. This is important since any energy stored in

the spring would be lost to the system if the leg was lifted with force. With legs

modeled as springs, zero force occurs when the leg length equals the leg force

free, or equilibrium, length. The model always starts with a left stance phase.

To allow for right stance phase legs that may still be active, the previous stance

phase foot placements are calculated as if the modeled roach was traveling at the

desired velocity in a stable gait. Each leg that does not produce the desired force

direction (pushing or pulling) at the start of the left stance phase is deactivated

since it must have already crossed the zero force threshold. Both pushing and

pulling leg function are studied, but for this particular simulation (Figure 2.2)

pushing gaits are used for all legs. So, the middle left leg and back right leg are

still active even though they were part of the previous right stance phase tripod

because their forces would still be pushing. However the front right leg has lifted

off since its previous foot placement location would have indicated a pulling force.

11

Simulated LSP Legs

Fr
on

t L
ef

t L
eg

t
des

2t
des

3t
des

Simulated RSP Legs

Fr
on

t R
ig

ht
 L

eg

t
des

2t
des

3t
des

M
id

 R
ig

ht
 L

eg

t
des

2t
des

3t
des

M
id

 L
ef

t L
eg

t
des

2t
des

3t
des

B
ac

k
L

ef
t L

eg

t
des

2t
des

3t
des

B
ac

k
R

ig
ht

 L
eg

t
des

2t
des

3t
des

Figure 2.2: Illustration of leg lengths during a fixed stride length simulation of
cockroaches with six legs. Lengths are plotted at zero length during the swing
phase when the legs are off of the ground. The affect of leg actuation phase shifts
on modeled legs is also shown for: φF = 63◦, φM = 4◦, φB = −49◦, with positive
phase shifts showing short stance durations and negative phase shifts showing
long stance durations

- - - represent leg spring equilibrium length
—– represent actual leg length

12

2.4 Leg Actuation

Each leg of the cockroach is modeled as a massless, tangentially rigid, linearly

elastic spring with a spring force given by:

~Fleg = k (|~ri| − leq)
~ri
|~ri|

(2.1)

where k is the spring stiffness of the leg, ~ri is the leg length vector shown in Figure

2.1, and leq represents the equilibrium length of the spring, or the leg length which

would produce zero force. Since the desired model is for variable slope, traditional

passive springs would not be adequate by themselves since they cannot add the

energy required to climb a slope. However, all of the springs are actuated to

allow changes in energy to the system. As in other similar models [14, 2, 8] this

is accomplished by changing the force free length of the spring, leq. Increasing leq

would cause an increased pushing force along the leg, while decreasing it would

cause an increased pulling force, either of which would change the kinetic energy

of the cockroach mass. In a real system, it would not be feasible to create a

spring with a changing equilibrium length, but a similar result could be obtained

by attaching a traditional spring to an actuated length leg segment.

Variation in the force free length of each leg will be modeled in a feed forward

manner without reliance on feedback to change the actuation scheme. Cock-

roaches seem to use a similarly uncontrolled method for setting their muscle

actuations. When running across a terrain of blocks varying in height up to three

times the hip height of the cockroach, they exhibit the same muscle activation

patterns as when running across level ground even though the motion experi-

enced is significantly different. These similar muscle patterns are even evident

13

when a foot completely misses contacting the ground [22]. Cockroaches seem

to use only their own musculo-skeletal structure, rather than neural control, to

maintain stability within a stride since restorative forces act faster than neural

control would allow when roaches experience large lateral impulses [23].

A sinusoidal actuation pattern will be used to simplify the analysis because

the forces generated by cockroaches are generally sinusoidal both on the level [1]

and on vertical slopes [2].

leq = lo − ldev sin

(
π

tdes
(t− tstart) + φ

)
(2.2)

In Eq. (2.2), lo represents a baseline length for the leg and is taken from obser-

vations of where cockroaches initially place their legs. The actual starting length

in the model will differ since the leg must be placed with zero force regardless

of the controlled phase shift, φ. The amount of deviation in the leg equilibrium

length is limited by ldev, also known as the leg actuation parameter. Physical

observations of cockroaches on the level show typical variations in the distance to

foot placement point of about 10% of the average values [24]. However, in order

to provide enough actuation for climbing a slope, an ldev value 50% of l0 will be

used for the initial set of non-optimized gaits. This value was chosen because it

avoided allowing the deviation to be too large or small relative to the nominal

length. A too small value lead to an ineffective leg on slopes, and a too large

value could lead to places where the equilibrium length would have to be nega-

tive, which is physically impossible. The optimized gaits will vary this parameter

within acceptable limits to optimize certain characteristics of the gait.

A desired step duration, tdes can be calculated from the desired velocity of the

cockroach (vdes) based on a curve fit of measured cockroach data for cockroaches

14

on the level [21]. This relationship between speed and frequency also holds for

cockroaches climbing a vertical slope [2]. The time when each leg was initially

placed is represented by tstart. A similar sinusoidal actuation scheme has been

successfully implemented in the design of a legged robot on vertical slopes [5].

Figure 2.2 demonstrates the effect of the φ parameter on the actuation of a

leg. With a phase shift near zero, as in the middle leg, the leg actuation proceeds

as a sinusoidal wave form. The frequency of the wave form is half of the step

frequency such that the leg force-free length returns to its original value at tdes

when the opposing leg is set to set down. Because of the large phase shift on the

front leg, the leg equilibrium length at set down is very close to its peak value so

it soon returns to the actual leg length and the foot is lifted. On the other hand,

the back leg has a negative phase shift so that the leg equilibrium length climbs

for longer than half of its period before reaching its maximum.

While all parameter values will be based on observations of cockroach motion,

a robot based on the template will need to be built at a larger scale. Fortunately,

the scaling of parameters is a well understood and easily solved problem. In

past work, cockroach templates have been extended to robots ten times longer in

dimension (1000 times more massive). A scaling factor was identified for mass,

frequency, stiffness, velocity, damping, and power [5].

2.5 Equations of Motion

Within the plane of motion, the only forces that act are the leg forces and the

component of the gravitational force that acts in the plane. The equations of

15

motion, developed using Newton’s laws in the inertial frame, are given by:

ẍ =

∑
Fx

m
(2.3)

for
∑

Fx = Cx

(
6∑

i=1

~Flegi

)
(2.4)

ÿ =

∑
Fy

m
(2.5)

for
∑

Fy = Cy

(
6∑

i=1

~Flegi

)
−mg sinσ (2.6)

In Eqs. (2.4) and (2.6), C refers to the inertial frame component of the vector and

~Flegi are the leg forces from Eq. (2.1). The mass of the roach is represented by m

and the slope of the incline by σ. Assuming appropriate initial conditions, these

differential equations can be solved analytically using a numerical solver. This

was done within a Matlab platform using the ode45 function, a numerical ordinary

differential equation solver based on an explicit Runge-Kutta 4-5 formula. The

events option was used to interrupt the simulation at times when any legs were

either placed or lifted off since these discontinuities would otherwise hinder the

numerical solution.

Spring mass based models of cockroach locomotion in the transverse plane

have shown this model to be inherently stable both on the level [4] and on inclines

[25, 8]. It seems that the sprawled posture leg deployment of the cockroach

legs, in combination with the natural springiness of the musculo-skeletal system

are important for stabilizing cockroaches motion. In fact studies of cockroach

response to a large lateral impulse show that they began to generate restorative

forces faster than would be possible using neural signals [23]. This indicates that

the morphology of the cockroach itself naturally generates these forces to stably

16

restore the insect to its natural gait.

17

Chapter 3 – Analysis Methods

3.1 Finding Fixed Points

While the motion of the modeled cockroach is continuous, it can be discretized by

observing the state of the cockroach
(
vTD
i , δTD

i

)
at foot placement of subsequent

steps. In this manner, the state of the system is sampled as it passes through

a Poincaré section represented by the instant when each foot is placed. Figure

3.1 shows motion typical of actual cockroaches, at an exaggerated scale to show

horizontal motion. Cockroaches do not travel in a straight line, but oscillate

back and forth with each step. A Poincaré map is a function that outputs the

state of the continuous system for the next time the Poincaré section is reached

based on the state of the continuous system at the last crossing of the Poincaré

section. A fixed point of the mapping is defined by a set of initial conditions

and foot placement parameters that result in the modeled cockroach returning

to the same velocity and direction heading after each step. This means that the

Poincaré map will return the same output states that were input.

Certain conditions have to be met for a gait to be a fixed point of this model.

Most importantly, the velocity at the next step must be the same and the head-

ing angle must be equal in magnitude but in the opposite direction because of

the assumption of symmetry. Additionally, the average cockroach velocity in

the forward direction should match a prescribed desired velocity. Finally, there

should not be horizontal drift in the foot placement locations from step to step.

18

vTD
o

δTD
o

x

y

(xo, yo)

(x1, y1)

(x2, y2)

vTD
1

δTD
1

vTD
2

δTD
2

Figure 3.1: Schematic representation of typical cockroach motion. Lateral motion
is exaggerated for clarity. Shows criteria used to identify valid fixed point gaits:
See equations (3.1) - (3.4)

19

Mathematically, these conditions are described by Eqs. (3.1) - (3.4).

vTD
i+1 = vTD

i (3.1)

δTD
i+1 = −δTD

i (3.2)

vdes =
yTD
i+1 − yTD

i

tTD
i+1 − tTD

i

(3.3)

xTD
i+1 = xTD

i (3.4)

Whether or not a gait is a fixed point depends partially on the initial condition

of the roach (vo, δo). Additionally, the phase shift parameters of the leg actuation

(φ) discussed in Eq. (2.2) can be selected to meet the fixed point criteria. To

limit the number of parameters required, symmetrical gaits are desired so that

only one of each phase shift parameter for each pair of front, mid, and, back legs

need to be set. Fixed points can be found using a numerical fixed point solver

that varies vo and each of three φ parameters while leaving all other parameters at

fixed values selected to match true cockroach motion. Again the Matlab platform

provides a handy function for this purpose called fsolve. This function for solving

non-linear equations was used with a trust-region dogleg algorithm. The function

value tolerance was set to 10−8 and the solution tolerance to 10−7.

3.2 Stability

Finding a fixed point ensures that a gait will continue to return to the same

state at each step as long as it is not disturbed. However real robots, like real

cockroaches, do experience disturbances such as variance in the terrain, slipping

feet, and external forces. Fixed points are more valuable if they return to their

20

states when disturbed. A good definition of stability is a system’s tendency to

return to its original state after a disturbance. While a disturbance may cause the

motion to deviate from its path, a stable system will eventually return towards the

original path. Contrarily, unstable systems will experience a subsequent growth

in the disturbance over time.

As the continuous system is non-linear, determining stability is not straight-

forward. However if the discretized Poincaré map can be shown to be stable at

a given fixed point, then the continuous system must also be stable in a local

region. Stability of discrete systems can be checked by analytically forming the

Jacobian and observing the eigenvalues. The Jacobian of the Poincaré map is

calculated by first making small changes to the initial state of the system at

foot placement. Simulating the model forward in time from the start of one left-

stance-phase to the start of the next LSP, shows the resulting states after one

complete stride. The differences in the resulting states based on the changes in

the initial conditions define the Jacobian.

Then the eigenvalues of the Jacobian matrix are calculated. For discrete

systems, if all eigenvalues of the Poincaré map lie within a magnitude of one,

the system is stable. This ensures that variations from the initial step are not

growing in subsequent steps. Those gaits that are stable fixed points will return

to the fixed gait after a small disturbance.

3.3 Robustness

Since this is a non-linear system, stability in the local region does not guarantee

stability for a sufficiently large disturbance. Robustness provides an even more

indicative test of the fixed points’ ability to withstand disturbances. Stability

21

describes whether or not a gait can return to its fixed point after a disturbance.

Lower eigenvalue magnitudes correspond to faster recovery. However, a non-

linear system can be very stable for a small disturbance but not be able to return

from a larger disturbance. Robustness quantifies how big of a disturbance can

be withstood as well as how quickly it returns. To test for robustness the model

must be exposed to disturbances of various magnitudes. In each case, the time

for the model to recover to the fixed point should be observed.

As a test for robustness consider a lateral impulse applied during the first

step [8]. This test is similar to a test performed on cockroaches which were

given a lateral impulse by using chemical propellants to accelerate a small steel

ball from a device attached to the cockroach. Despite receiving lateral impulses

equal to 85% of the creature’s forward momentum they were able to recover to

the original gait in two steps on average. Furthermore, restorative forces were

generated as soon as 10 ms after the perturbation was applied, faster than neural

based response would allow for [23]. For each fixed point, lateral impulses from

−80% to 80% of forward momentum are applied over a short period of time. As

shown in Figure 3.2, the force begans ramping up at around tdes
8

. The impulse

used lasts for 0.004 seconds of which 0.003 seconds are during the ramp up time.

The parameters of this theoretical impulse were based on those observed from

the above study. The number of steps required to return to the original fixed

point within 0.1% of its state values are recorded for each case.

3.4 Transport Cost

It seems natural that cockroaches would select certain gaits over others based

on their metabolic efficiency. If a given gait has a high degree of inefficiency, it

22

0

Pe
rt

ur
ba

tio
n

Fo
rc

e

Time

t
start

t
des

/8

t
peak

t
end

t
des

Figure 3.2: Simulated perturbation force throughout a stance phase used to check
the robustness of modeled motion. Perturbation is modeled as an impulsive force
applied at a time 1/8 of the expected stance phase.

will require more energy and thus require more the cockroach to consume more

food. On the other hand, cockroaches may select the gait used based on stability

instead of efficiency. For instance, a cockroach is less likely to escape from a

predator or catch its prey if its unstable but efficient gait causes it to run in

circles. This research will consider gaits optimized based on both stability and

transport cost to gain insights into why cockroaches use the gaits that they do.

Metabolic efficiency can be expressed as the cost of transport which calculates

the energy expended by an animal during its motion. For legged locomotion, this

can include resting costs of energy that an animal uses even when not moving,

stance costs describing the energy cost for using the muscles during a stance,

and swing costs related to the use of muscles during leg swing [26, 27]. Since

optimality is being determined at a fixed desired speed, the resting cost does not

matter since it is constant. Also, the swing leg costs are negligible for a massless

23

leg model.

Studies in metabolic efficiency have proven the optimality of the walking and

running gaits used by humans and predicted the speeds at which each would

occur [19, 26]. A similar approach has been used to determine preferred gaits

of horses and humans at certain speeds [28] and to predict the step width of a

human during walking [29].

Recent research has shown that minimizing the work done by muscles results

in gaits similar to those found by minimizing other metrics of transport cost [27].

One simple equation that describes the cost of work in a muscle is shown below

[26, 27].

Cw =

∫ tdes

0

b1

[
F l̇
]+

+ b2

[
F l̇
]−
dt (3.5)

In this equation, b1 and b2 represent the contribution of positive work and negative

work respectively to the metabolic cost. F is the force generated axially along a

leg, and l̇ is the time derivative of the length of the leg.

Since each of the forces in the legs are modeled as simple springs it is straight-

forward to develop an equation for the cost of work done by each leg. Taking

b1 = b2 = 1, the results are shown in Eq. (3.6). This equation is normalized by

dividing by the weight and the length of the stride.

Ctran =
1

mgLs

∫ t1

0

6∑
i=1

∣∣∣~Fi (t)
∣∣∣
∣∣∣∣∣∣ (x− xfp) ẋ+ (y − yfp) ẏ√

(x− xfp)2 + (y − yfp)2

∣∣∣∣∣∣
 dt (3.6)

Ls and ts represent the length and time of a step respectively. The force in each

leg is given by Fi and x and y represent the motion of the center of mass with

ẋ and ẏ representing their velocities. The original placements of each foot are

given by xfp and yfp.

24

3.5 Optimization

Using the technique described in Section 3.1, fixed points of this model will be

found at constant values of ldev representing the amount of deviation allowed in

the equilibrium length of the each leg spring. It is also possible to allow these

parameters to vary in order to optimize gaits to meet certain design metrics. By

increasing the leg actuation parameter, larger amounts of energy can be added to

the system since the equilibrium length goes through greater change. Similarly,

reducing the leg actuation parameter will typically reduce the amount of work

done by that leg. This change in amount of energy is analogous to a cockroach’s

increased muscle actuation when it requires greater forces.

Fixed points will be found to optimize both stability and transport cost func-

tions. This is done using a Nelder-Mead simplex algorithm which makes small

changes in parameters from a starting point. Each of these points is assigned a

cost based on either minimizing eigenvalues or minimizing transport cost. Based

on the results of these points, a new point is selected in the multi-dimensional

direction most likely to produce lower costs [30, 17]. Using a search algorithm,

optimal fixed points will be found for each of these conditions for a variety of

pushing combinations, slopes, and heading angles.

For the stability optimization method, the cost function was based primarily

on minimizing the absolute value of the largest eigenvalue since this serves as

the metric for stability. In a similar manner, the cost function for the metabolic

efficiency optimization routine was primarily based on minimizing the transport

cost metric. Several additional cost metrics were also added to both optimization

routines to avoid some non-desirable fixed points as shown in Table 3.1. Typically

these constraints describe conditions where the fixed point is close to a transition

25

such that a small change in parameter values could result in drastically different

motion.

These additional constraints were divided into two separate groups. The

soft constraints consisted of added constraint costs that started at zero as the

constraint was crossed and ramped up to higher values as the constrained value

extended beyond the constraint. In this way these constraint violations were

discouraged, but not prohibited. On the other hand, the hard constraints included

a large punitive cost imposed immediately when the constraint was violated in

addition to the gradually growing cost. These prevented the search algorithm

from continuing to violate these constraints. Hard constraints were imposed in

cases where violating the constraint would not produce a valid fixed point.

26

Constraint Type Purpose

Fixed point exists Hard Desired gaits must return to their
original states at each step

Fixed point exists at 105% of δ0 Hard Prevent fixed points right at a bar-
rier of existence

ldevi 6> 0.9l0i Hard Too much actuation could cause
an impossible negative equilibrium
length

ldevi 6< 0.2l0i Hard Too little actuation renders the leg
force insignificant

φi 6< −90◦ Hard Too much negative phase shift can
cause the leg to switch between
pushing and pulling function

φi 6> 60◦ Soft Too much positive phase shift ren-
ders the leg force insignificant

tan−1 d
dt
|leq − lspr|tTD

6< 10◦ Soft Too shallow of a departure between
the equilibrium and actual spring
lengths after leg touch down leads
to an insignificant force or a switch
in leg function

tan−1 d
dt
|leq − lspr|tLO

6< 10◦ Soft Too shallow of an approach between
the equilibrium and actual spring
lengths before leg lift off could lead
to a missed lift off if the difference
never returns to zero

Table 3.1: Additional constraints implemented during optimization based on sta-
bility and metabolic efficiency. Hard constraints can not be violated by the op-
timizing routine, while soft constraints can be violated with additional penalties
added to the function that is being minimized.

27

Chapter 4 – Non-Optimized Fixed Point Results

A number of fixed points were found as described in Section 3.1 over the set of

parameter values found in Table 4.1. Recent analysis of cockroaches indicates

that the preferred speed of the cockroach varies in a linear fashion between the

endpoints shown in the table (D. Goldman, 2011, personal communication, Geor-

gia Institute of Technology). Thus, the desired velocity (vdes) and step duration

(tdes) were interpolated based on the incline slope (σ). The incline slope was var-

ied in increments of 5◦. Additionally, initial heading angles (δ0) varied as shown

from 0 rad to 0.45 rad in increments of 0.05 rad for each slope. Recent research

by Dr. Goldman at Georgia Institute of Technology indicates a preferred heading

angle of δ0 = 0.15 ± 0.10 rad. Additionally, there was an uncertainty of around

0.10 rad on the yaw angle of the cockroaches describing their body orientation

in relation to the inertial frame. This yaw angle is not apparent in the point

mass model used since it does not allow for moments, however it indicated a

need for a greater range of heading angles studied. Parameters for equilibrium

length deviation were selected at ldev = ±l0/2 (see Section 2.4) with positive num-

bers corresponding to pulling leg function and negative numbers corresponding

to pushing leg function.

The resulting fixed point gaits are illustrated in Figure 4.1. Gaits that return

to their initial state at each step exist for the majority of attempted combi-

nations of δ0 and σ. At the lower left corner representing zero slope and zero

lateral motion, only a trivial solution was found. Also at high heading angles and

intermediate slopes, no valid fixed points were found.

28

Parameter Value

k: Leg Stiffness 1.5N/m
m: Mass 2.5 g [31]
σ: Incline Slope 0◦ → 90◦

vdes Desired Velocity 0.35m/s→ 0.20m/s∗

tdes: Desired Step Duration .0364 s→ .0598 s [21, 2]
δ0: Heading Angle 0.00 rad → 0.45 rad∗

β0,i: Foot Placement Angle
F: ±25◦ [24]
M: ∓55◦ [24]
B: ±120◦ [24]

l0i : Nominal leg length
F: 0.032m [24]
M: 0.026m [24]
B: 0.019m [24]

ldevi : Leg Equilibrium
Deviation

F: 0.016m
M: 0.013m
B: 0.0095m

∗D. Goldman, personal communication, Georgia Institute of Technology

Table 4.1: Selected parameters for reduced order model of cockroach motion
based on actual cockroach parameters.

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 20 40 60 80
0

0.2

0.4

0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 20 40 60 80
0

0.2

0.4

−50

0

50

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 20 40 60 80
0

0.2

0.4

−50

0

50

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 20 40 60 80
0

0.2

0.4

−50

0

50

Figure 4.1: Contour plot of parameters resulting from fixed point solver as a func-
tion of incline slope and initial heading angle. High phase angles correspond to
short durations of the given leg stance period.a) Initial velocity at foot placement
(m/s); b)-d) Leg actuation phase shifts (rad) for the front, middle, and back legs

29

The variation in the initial velocity shown in the upper left graph of Figure

4.1 closely tracks the variation in the desired forward average velocity shown in

Table 4.1. In the upper right corner, the graph indicates the variance of the front

leg phase shift parameter. The dark red region representing high phase shifts

indicates short leg force durations for the front leg (see Section 2.4). This region

corresponds with a transition in leg function from pushing at low slopes, to pulling

at high slopes. As the incline slope increases the leg pushing force decreases in

duration and magnitude until both reach zero. Then continuing on, the leg force

increases in duration and magnitude but in a pulling direction instead.

A similar, but less well defined region is shown in the lower left graph for

the middle leg. The middle leg pushes only when both incline slope and initial

heading angle are low. As either increases, this leg soon transitions to a pulling

function. There is no transition for the back leg since all of these gaits use the

back leg in a pushing manner. A large part of this graph shows highly negative

phase shift angles (φB) indicating that the back leg tends to be active longer than

the other legs (see Section 2.4).

Different types of motion can be produced depending on the direction of the

leg force generated in each leg. For a more concise indication of when legs use

pushing vs. pulling function, see Figure 4.2. Fixed point gaits at higher incline

slopes all used only the back leg for pushing and the other legs for pulling. These

gaits are represented by circles on the contour plot. While the back leg continues

to push for all slopes, the middle leg (upward triangles), front leg (downward

triangles), or both legs (squares) also push at lower slopes.

Gaits with only the back leg pushing are preferred for higher slopes since front

or middle legs pushing would hinder the back legs ability to push against gravity

30

in this model. This tendency to use the front and middle legs for pulling has

been observed in cockroaches climbing up vertical slopes [2], while cockroaches

on the level tend to use all legs for pushing [1]. On level ground and lower slopes

the leg function used depends on the heading angle. For instance, gaits with high

heading angles have more pronounced lateral motion and thus require greater

lateral forces. A pulling middle right leg, combined with pushing front left and

back left legs all apply the required lateral forces to the right during a left stance

phase.

A similar actuated model of cockroach motion on variable slopes has shown

that both pushing and pulling leg functions were possible for each fixed point.

However, this was accomplished by using leg placements on the opposite side of

the body (for instance on the right side for a left-stance phase) [8]. With fixed leg

placement angles, the current model does not allow any overlap between pushing

and pulling gaits.

The maximum resulting eigenvalues are plotted in Figure 4.2. Recalling that

eigenvalues with a magnitude of less than one are stable, all of the fixed points

were found to be stable. This makes these fixed points especially useful in de-

signing a controller since any slope and heading angle can result in a gait that

returns to similar states even in the presence of disturbances.

Gaits were more stable in the blue regions of the graph where the incline slope

is high. It seems that the sprawled posture arrangement of the legs allows for a

self stabilization especially in the presence of gravity. A similar self-stabilizing

result was observed for a theoretical model and subsequent physical robot that

used two legs deployed off to the side, but in front of the robot [5].

While all gaits were stable at lower slopes, the most stable gaits were found

31

Incline Slope: σ (°)

H
ea

di
ng

 A
ng

le
: δ

0 (
ra

d)

0 20 40 60 80

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.2

0.4

0.6

0.8

1

Push All Push F,B Push M,B Push B

Figure 4.2: Stability of non-optimized fixed point gaits with leg actuation given by
ldev = l0/2. Gaits are most stable where eigenvalues are close to zero, represented
by the dark blue regions. a) Gaits with all legs pushing; b) Gaits with front and
back legs pushing; c) Gaits with middle and back legs pushing; d) Gaits with
back leg pushing.

for very large heading angles (δ0 = 0.3−0.4 rad) where the lateral motion is very

high. Another stabler region appears at lower heading angles (δ0 = 0.05 − 0.15

rad). The least stable region appears to be at around δ0 = 0.20 rad. Here the

gaits are transitioning between all legs pushing gaits (indicated by squares on the

graph) and front and back legs pushing gaits (indicated by downward triangles).

Since the middle leg is transitioning in function, its forces are smaller. Clearly,

this middle leg is required to maximize the stability of the cockroach model. This

result is not surprising since this leg acts on the opposite side of the body from

the other two legs.

The robustness of the fixed points is shown in Figure 4.3. This figure shows

the response of the fixed points to a lateral impulse equal to 50% of the cockroach

momentum. Recovery in fewer step numbers corresponds to gaits that are robust.

32

Incline Slope: σ (°)

H
ea

di
ng

 A
ng

le
: δ

0 (
ra

d)

0 20 40 60 80

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

10

20

30

40

50

60

70

80

Push All Push F,B Push M,B Push B

Figure 4.3: Robustness of non-optimized fixed point gaits with leg actuation given
by ldev = l0/2. Gaits are most robust where recovery times are short, represented
by the dark blue regions. a) Gaits with all legs pushing; b) Gaits with front and
back legs pushing; c) Gaits with middle and back legs pushing; d) Gaits with
back leg pushing.

Comparison with Figure 4.2 shows that stability and robustness behave similarly

for this model. A gait with high stability is also likely to be highly robust, while

a marginally stable gait is also marginally robust.

For the majority of gaits, the modeled cockroach is able to recover to the

original gait within ten steps of a large lateral perturbation. This is especially

surprising considering that the model does not include any active control and

relies only on the passive dynamics of the system. Similar to the stability results,

the longest recovery times occur at low slopes when the middle leg is transitioning

between pushing and pulling. While the original gait is still recovered, it takes

over seventy steps to do so. In this region, only the front and back legs show

significant force. With both of these legs being placed to the same side of the

modeled cockroach, it is harder to generate the required stabilizing forces.

33

Incline Slope: σ (°)

La
te

ra
l I

m
pu

ls
e

(N
or

m
al

iz
ed

)

0 20 40 60 80
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

10

20

30

40

50

60

Figure 4.4: Robustness, as defined by number of steps to recover from a lateral
impulse of non-optimized fixed point gaits with leg actuation given by ldev = l0/2.
Modeled gaits operating at fixed points at the preferred heading angle (δ0 = 0.15
rad) as a function of incline slope and lateral impulse normalized as a percentage
of forward momentum. Gaits are most robust where recovery times are short,
represented by the dark blue regions.

Figure 4.4 shows the response of the model to varying magnitudes of lateral

impulse. Only variations in slope are shown since the heading angle is fixed at

δ0 = 0.15 rad consistent with the heading angle typically used by cockroaches

at all slopes (D. Goldman, 2011, personal communication, Georgia Institute of

Technology). The plotted lateral impulses are normalized by dividing by the

cockroaches average forward momentum. As should be expected, large impulses

generally cause the model to take longer to recover. All of the gaits at δ0 = 0.15

rad were able to recover from even the highest lateral impulses equal to 80% of

the forward momentum.

For incline slopes grater than σ = 20◦, recovery was exceptionally quick re-

gardless of the magnitude of the lateral disturbance. At lower slopes, the time to

34

recovery increased markedly with the magnitude of the disturbance. However, all

were still able to eventually recover. The least robust gaits are found at incline

slopes of σ = 15◦. For the heading angle used in this plot (δ0 = 0.15) rad, this

is approximately the region at which both the front and middle legs are simulta-

neously transitioning between pushing and pulling function (see Figure 4.3. This

indicates that the back leg, being the primary active force, is not as capable of

maintaining a robust gait as all three legs together would be.

The transport costs of all of the fixed points are shown in Figure 4.5. Recall

that the transport cost is a representation of the work done to the cockroach

by its legs, normalized by the weight of the cockroach and the forward distance

traveled. On level ground, transport could be achieved with no work added or

removed from the system corresponding to a transport cost of zero. Alternatively,

on a vertical slope there must be at least enough work to raise the gravitational

potential energy of the cockroach. This corresponds to a transport cost of one.

On slopes in between, the ideal transport cost is given by:

Ctran,ideal = sin (σ) (4.1)

for an incline slope σ.

For gaits, where only the back leg pushes, the transport cost tracks the ideal

transport cost exactly. This indicates that the legs do not generate negative

power at any time. Any negative power would need to be counteracted by positive

power somewhere else in the stride, both of which would raise the transport cost

calculation above the ideal value. This means that in all cases, leg are contracting

when the leg is pulling (as the front and middle legs do) and expanding when the

leg is pushing (as the back legs do).

35

Incline Slope: σ (°)

H
ea

di
ng

 A
ng

le
: δ

0 (
ra

d)

0 20 40 60 80

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.5

1

1.5

2

Push All Push F,B Push M,B Push B

Figure 4.5: Normalized transport costs of non-optimized fixed point gaits with
leg actuation given by ldev = l0/2. Smaller transport cost values correspond with
more efficient gaits. The minimum possible transport cost can be found from
(Ctran,min = sinσ). a) Gaits with all legs pushing; b) Gaits with front and back
legs pushing; c) Gaits with middle and back legs pushing; d) Gaits with back leg
pushing.

36

The other three categories of gaits do not show this ideal transport cost track-

ing. In general, the lowest transport costs for low incline slopes occur at low

heading angles. As the heading angle increases, the transport cost goes up as

well since more work is wasted in lateral motion. There is a marked increase in

the transport cost as the mid leg transitions from pushing (gaits marked with

squares and upward triangles) to pulling function (gaits marked with downward

triangles). While Figure 4.2 shows that the gaits are more stable for higher head-

ing angles, they do not have a lower transport cost. The fact that cockroaches

tend to employ heading angles of about δ0 = 0.15 rad (D. Goldman, 2011, inter-

nal communication, Georgia Institute of Technology), seems to indicate that they

select this gait based on minimizing transport cost rather than just maximizing

stability. This location allows a low transport cost corresponding to low energy

usage, while maintaining a very stable gait.

37

Chapter 5 – Opimization Results

In addition to the constant leg actuation gaits, fixed points were found and op-

timized for both stability and metabolic efficiency using the parameters in Table

4.1. As before, the incline slope was varied in increments of 5◦ from level ground

to a vertical slope. Additionally, initial heading angles (δ0) varied as shown from

0 rad to 0.45 rad in increments of 0.05 rad for each slope. The leg actuation pa-

rameters (ldev) were varied to find the optimal values for stability and efficiency.

Previously for the non-optimized gaits, this model had developed fixed points

that fall into distinct regions based on whether each leg pulls or pushes. This

resulted in a unique fixed point solution for each combination of incline slope and

heading angle. On the other hand, when the leg deviations are varied to optimize

either stability or efficiency, multiple solutions can exist. Optimized fixed points

were found based on four different leg functional combination families. These

four families are: all legs pushing; front and back legs pushing while middle leg

pulls; middle and back legs pushing while front leg pulls; and back legs pushing

while front and middle legs pull. No gaits were found with the back leg used for

pulling. The regions where fixed points were found for each of the families are

shown in Figure 5.1.

Gaits where only the back leg push are found over the widest range of incline

slopes and heading angles among the leg functional families. In fact they only do

not exist for flat or nearly flat slopes. The middle and back leg pushing gaits are

similarly prevalent for higher slopes, but are not as easy to find at higher initial

heading angles. In order to climb slopes, the cockroaches need to use both the

38

0 10 20 30 40 50 60 70 80 90

0

0.1

0.2

0.3

0.4

Incline Slope: σ (°)

H
ea

di
ng

 A
ng

le
: δ

0 (
ra

d)

Push All Push F,B Push M,B Push B

Figure 5.1: Existence of fixed points at various heading angles, δ0 and incline
slopes, σ organized by pushing or pulling function of each leg. Because of the
flexibility in leg actuation parameters (ldev), there is some overlap between gait
existence of different leg functional sets.

39

front and back legs to generate positive vertical force, which means that the front

legs must pull for these higher slope fixed points.

With all legs pushing, the fixed points are generally found only for low incline

slopes and low heading angles. On the other hand, the front and back leg pushing

gaits are more easily found for high heading angles and low incline slopes. High

initial heading angles are synonymous with gaits that have high lateral motion

(see Figure 3.1). This high lateral motion can only be achieved when all legs act

in the same horizontal direction, which is true of the front and back leg pushing

but middle leg pulling gaits since the middle leg of the tripod is on the opposite

side of the body from the other legs.

There are a number of initial heading and incline slope combinations where

three different fixed points are possible depending on leg function. However, in

no region can all four leg functional families be used.

5.1 Stability Optimized Gaits

When optimizing based on stability, fixed points are found with maximum eigen-

values as small as possible, subject to the constraints described in Section 3.5.

For each leg functional family, the resulting leg actuation parameters are shown in

Figures 5.2, 5.3, and 5.4 for the front, middle, and back legs respectively. In gen-

eral, higher leg actuation parameters correspond to more actuation in the given

leg (however, when the leg also has a very high phase shift the leg is not actuated

for long enough to have a significant effect on the motion of the cockroach). Re-

gions where leg actuations are high are shown in red, while less actuated regions

are shown in blue.

Not surprisingly, the front leg shows significantly more actuation as the slope

40

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

0.01

0.015

0.02

0.025

0.01

0.015

0.02

0.025

0.01

0.015

0.02

0.025

0.01

0.015

0.02

0.025

Figure 5.2: Contour plot of front leg actuation parameter (ldev,F) from fixed point
solver, optimized for stability. The front leg is generally more strongly actuated
as slope increases. a) Gaits with all legs pushing; b) Gaits with front and back
legs pushing; c) Gaits with middle and back legs pushing; d) Gaits with back leg
pushing.

increases since more energy is required to ascend the slope (See Figure 5.2).

In fact, for the gaits where only the back leg pushes, the front leg actuation

parameter reaches its maximum value of 90%ldev at a slope of around σ = 50◦.

A similar trend of actuation increasing with slope is evident in Figure 5.3 for

the middle leg. Further, Figures b) and d) show that the middle leg increases

actuation with increasing heading angle when it is used for pulling. This is

because the increased heading angle results in increased lateral motion which

requires higher lateral forces, specifically from the middle leg. Also of note is

that for these stability optimized gaits, the middle leg is used as little as possible

for the all legs pushing case (Figure a)) regardless of heading angle or incline

slope.

The back leg actuation parameters resulting from the stability optimization

41

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

0.01

0.015

0.02

0.01

0.015

0.02

0.01

0.015

0.02

0.01

0.015

0.02

Figure 5.3: Contour plot of middle leg actuation parameter (ldev,M) from fixed
point solver, optimized for stability. The middle leg is generally not strongly
actuated at low slopes unless the leg is pulling and the heading angle is high. a)
Gaits with all legs pushing; b) Gaits with front and back legs pushing; c) Gaits
with middle and back legs pushing; d) Gaits with back leg pushing.

are shown in Figure 5.4. As with the other two legs, the actuation increases with

increasing slope. Also, there is an increase in back leg actuation for increasing

heading angle in cases where the middle leg is pushing (Figures a) and c)). It

appears that the back leg, as opposed to the front leg, is the preferred way to

increase the lateral motion when the middle leg pushes against this lateral motion.

The resulting phase shifts from the stability optimized fixed points are shown

in Figures 5.5, 5.6, and 5.7 for the front, middle, and back legs respectively. Large

positive phase shifts generally correspond to short stance durations because the

start of the leg actuation function is moved close to its peak value. These regions

are shown in red on the contour plots. On the other hand, large negative phase

shifts generally correspond to long stance durations because the leg actuation

function is moved backward from the peak value (see Section 2.4). These regions

42

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

0.005

0.01

0.015

0.005

0.01

0.015

0.005

0.01

0.015

0.005

0.01

0.015

Figure 5.4: Contour plot of back leg actuation parameter (ldev,B) from fixed
point solver, optimized for stability. The back leg increases in actuation as either
heading angle or incline slope increase. a) Gaits with all legs pushing; b) Gaits
with front and back legs pushing; c) Gaits with middle and back legs pushing; d)
Gaits with back leg pushing.

are shown in blue on the contour plots. For phase shift values near zero, the

stance phase is generally close to the desired step duration (tdes).

As seen in Figure 5.5, the optimally stable gaits with the front legs used

for pushing (Figures a) and b)) have a high phase shift, implying a short stance

duration. This is particularly true as the slope increases beyond flat ground. This

occurs because the modeled cockroach cannot easily ascend slopes when the front

leg is pushing against the motion. Unlike the non-optimized gaits of Chapter 4,

high phase shifts do not always correspond to regions where a leg is transitioning

between pushing and pulling, since these regions overlap for the optimized case.

The resulting phase shifts for the middle leg in Figure 5.6 indicate a partic-

ularly high phase shift for the middle and back leg pushing gaits (Figure c)).

Additionally, the phase shift is high for back leg pushing gaits (Figure d)) at high

43

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

−50

0

50

−50

0

50

−50

0

50

−50

0

50

Figure 5.5: Contour plot of front leg phase shifts (φF
◦) from fixed point solver,

optimized for stability. High phase angles correspond to short durations for the
front leg stance period. a) Gaits with all legs pushing; b) Gaits with front and
back legs pushing; c) Gaits with middle and back legs pushing; d) Gaits with
back leg pushing.

slopes. Regardless of the leg actuation parameters exhibited, these high phase

shifts represent a short stance duration for the leg indicating that the leg is not

effective for very long.

On the other hand, the phase shifts of the back leg when optimized for stable

gaits are almost entirely negative (see Figure 5.7). This indicates that the back

leg is used for a longer stance duration regardless of incline slope, heading angle,

or leg function of the other two legs.

Recall from Section 3.5 that optimizing for stability primarily involves min-

imizing the eigenvalues of the Jacobian associated with the discretized system.

The resulting minimized values are shown in Figure 5.8. Since all values are less

than one, the model is stable regardless of incline slope, heading angles, or leg

function. This is not surprising since all gaits were stable before the gaits were

44

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

−50

0

50

−50

0

50

−50

0

50

−50

0

50

Figure 5.6: Contour plot of middle leg phase shifts (φM
◦) from fixed point solver,

optimized for stability. High phase angles correspond to short durations for the
middle leg stance period. a) Gaits with all legs pushing; b) Gaits with front and
back legs pushing; c) Gaits with middle and back legs pushing; d) Gaits with
back leg pushing.

optimized for stability. The most stable regions are shown in blue where the

maximum eigenvalue is close to zero, while the red regions indicate areas that are

stable but only marginally so.

It is interesting to note that the gaits with a pulling front leg (Figures 5.8

c) and d)) show ideal stability everywhere except for low slopes. This suggests

that the pulling front leg serves as a passive aid to stability for the cockroach on

slopes. A similar self-stabilizing result was observed for a theoretical model and

subsequent physical robot that used two legs deployed off to the side, but in front

of the robot [5].

Fixed point gaits that use the front leg in a pushing manner, have stability

characteristics that are highly dependent on the initial heading angle. When all

legs are pushing, as in Figure 5.8 a), stability decreases as the initial heading angle

45

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

−50

0

50

−50

0

50

−50

0

50

−50

0

50

Figure 5.7: Contour plot of back leg phase shifts (φB
◦) from fixed point solver,

optimized for stability. High phase angles correspond to short durations for the
back leg stance period. a) Gaits with all legs pushing; b) Gaits with front and
back legs pushing; c) Gaits with middle and back legs pushing; d) Gaits with
back leg pushing.

increases. On the other hand, when only the front and back legs are pushing, as

in Figure 5.8 b), stability increases as the initial heading angle increases. On low

slopes, it is preferred to use the middle leg for pushing at low heading angles and

for pulling at high slopes from a stability standpoint. High initial heading angles

are associated with a large degree of lateral motion, which works better when all

legs are acting in the same lateral direction. This is true of the front and back

leg pushing with middle leg pulling gaits since the middle leg is on the opposite

side of the body as the other two.

The next step in the stability optimization is to select between the available

leg functional families for each combination of heading angle and incline slope.

The results of this selection are shown in Figure 5.9. As explained in the legend,

the selection at each heading angle and incline slope is shown with a marker on

46

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

0.2

0.4

0.6

Figure 5.8: Optimal stability of fixed point gaits based on varying leg actuation
(ldev). Gaits are most stable where eigenvalues are close to zero, represented by
the dark blue regions. a) Gaits with all legs pushing; b) Gaits with front and
back legs pushing; c) Gaits with middle and back legs pushing; d) Gaits with
back leg pushing.

the plot. For incline slopes of σ = 20◦ and above, nearly all of the selected gaits

use only the back leg for pushing. At lower incline slopes, the selected gait family

depends on heading angle, with the all legs pushing gaits selected for heading

angles less than δ0 = 0.2 rad. Higher heading angles use gaits with only the front

and back legs pushing. The middle and back legs pushing gaits are not very often

selected since they generally are stable in the same region as the back legs only

pushing gaits which are even more stable.

While these gaits were optimized based on stability rather than efficiency, the

transport cost was also calculated. The resulting transport costs are shown in

Figure 5.10 for each leg functional family and in Figure 5.11 for the final selected

gaits. In both cases, the minimum possible transport cost is simply the energetic

cost of lifting the modeled cockroach up the slope given in Eq. (4.1).

47

Incline Slope: σ (°)

H
ea

di
ng

 A
ng

le
: δ

0 (
ra

d)

0 20 40 60 80

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Push All Push F,B Push M,B Push B

Figure 5.9: Optimal stability of fixed point gaits based on varying leg actuation
(ldev). Gaits are most stable where eigenvalues are close to zero, represented by
the dark blue regions. Gaits selected based on most stable leg function combina-
tion.

Although these gaits were optimized for efficiency, some of the gaits exhibit

both the lowest possible eigenvalues and the lowest possible transport costs. This

is primarily true for the back leg only pushing gaits. As was discussed in Chapter

4, the back leg pushing gaits are optimally efficient since no negative work is

done by any of the legs throughout the stride. This indicates that an optimiza-

tion based on metabolic efficiency should result in gaits similar to the stability

optimized case for the back leg pushing gaits.

5.2 Efficiency Optimized Gaits

A set of fixed point gaits was also found over the same range of incline slopes

and initial heading angles by optimizing for metabolic efficiency as measured by

minimizing the transport cost. The resulting leg actuation parameters are shown

48

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

0

1

2

0

1

2

0

1

2

0

1

2

Figure 5.10: Normalized transport costs of fixed points, optimized for stability.
Smaller transport cost values correspond with more efficient gaits. The minimum
possible transport cost can be found from (Ctran,min = sin σ). a) Gaits with all
legs pushing; b) Gaits with front and back legs pushing; c) Gaits with middle
and back legs pushing; d) Gaits with back leg pushing.

Incline Slope: σ (°)

H
ea

di
ng

 A
ng

le
: δ

0 (
ra

d)

0 20 40 60 80

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.5

1

1.5

2

Push All Push F,B Push M,B Push B

Figure 5.11: Normalized transport costs of fixed points, optimized for stability.
Smaller transport cost values correspond with more efficient gaits. The minimum
possible transport cost can be found from (Ctran,min = sinσ). Gaits selected based
on most stable leg function combination.

49

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

0.01

0.015

0.02

0.025

0.01

0.015

0.02

0.025

0.01

0.015

0.02

0.025

0.01

0.015

0.02

0.025

Figure 5.12: Contour plot of front leg actuation parameter (ldev,F) from fixed
point solver, optimized for metabolic efficiency. Trends are similar to those of
the stability optimized gaits. a) Gaits with all legs pushing; b) Gaits with front
and back legs pushing; c) Gaits with middle and back legs pushing; d) Gaits with
back leg pushing.

in Figures 5.12, 5.13, and 5.14 for the front, middle, and back legs respectively.

These leg actuation values show similar trends to the leg actuation parameters

from the stability optimized cases, but the two cases are not numerically equiva-

lent in most cases. For instance the front leg is generally slightly more actuated

for the efficiency optimized cases (Figure 5.12) as opposed to those optimized

based on stability (Figure 5.2). Also, the middle leg shows some areas above the

minimum actuation level in Figure 5.13 which were not present in Figure 5.3. The

back leg shows a reduction in leg actuation for the transport cost optimized gaits

(Figure 5.14) versus the stability optimized gaits (Figure 5.4). This suggests that

optimizing for metabolic efficiency gives a slight preference to using the front leg,

while the stability optimized gaits slightly prefer to use the back leg.

Figures 5.15, 5.16, and 5.17 are contour plots of the phase shifts for the

50

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

0.01

0.015

0.02

0.01

0.015

0.02

0.01

0.015

0.02

0.01

0.015

0.02

Figure 5.13: Contour plot of middle leg actuation parameter (ldev,M) from fixed
point solver, optimized for metabolic efficiency. Trends are similar to those of
the stability optimized gaits. a) Gaits with all legs pushing; b) Gaits with front
and back legs pushing; c) Gaits with middle and back legs pushing; d) Gaits with
back leg pushing.

front, middle, and back legs respectively, as found from a metabolic efficiency

optimization. The front leg phase shifts in Figure 5.15 a) and b) show regions

of high phase shift for front leg pushing gaits similar to those of the eigenvalue

optimized gaits. However, the effect is even more pronounced in the low slope

regions of the all legs pushing gaits (Figure a)).

When optimizing for metabolic efficiency, the middle leg shows larger regions

of high phase shift for the middle leg pushing gaits (Figures 5.16 a) and c)) as op-

posed to the stability optimized gaits (Figure 5.6). This is especially pronounced

in the lower slope regions. This suggests that the middle leg is used for very short

durations at low slopes when the middle leg is pushing and gaits are optimized

for efficiency. This is not surprising since a pushing middle leg works against the

pushing back leg, which causes more muscle work to be wasted. The phase shifts

51

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

0.005

0.01

0.015

0.005

0.01

0.015

0.005

0.01

0.015

0.005

0.01

0.015

Figure 5.14: Contour plot of back leg actuation parameter (ldev,B) from fixed
point solver, optimized for metabolic efficiency. Trends are similar to those of
the stability optimized gaits. a) Gaits with all legs pushing; b) Gaits with front
and back legs pushing; c) Gaits with middle and back legs pushing; d) Gaits with
back leg pushing.

shown in Figure 5.17 are similar to those of the stability optimized gaits in Figure

5.7.

When optimizing for metabolic efficiency, the indicative parameter is the

transport cost. The resulting minimum transport costs are shown by contour

plot in Figure 5.18. As expected, the back leg only pushing gaits (Figure d))

continue to match the lowest possible transport cost as given by Eq. (4.1). A

transport cost optimization is not strictly necessary for these gaits since it is

known that the back leg only pushing gaits never do negative work regardless of

the leg actuation parameters. The middle and back leg pushing gaits (Figure c))

are also very close to the minimum values after the efficiency optimization.

For both the all legs pushing gaits and the front and back legs pushing gaits

(Figures 5.18 a) and b)) the efficiency is dependent on both slope and heading

52

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

−50

0

50

−50

0

50

−50

0

50

−50

0

50

Figure 5.15: Contour plot of front leg phase shifts (φF
◦) from fixed point solver,

optimized for metabolic efficiency. High phase angles correspond to short dura-
tions for the front leg stance period. a) Gaits with all legs pushing; b) Gaits with
front and back legs pushing; c) Gaits with middle and back legs pushing; d) Gaits
with back leg pushing.

angles. Increases in either parameter increase the transport cost, thus decreasing

the efficiency. When comparing between the two for a common heading angle,

the gaits with the middle leg pulling generally have a preferable transport cost.

Figure 5.19 shows the results of selecting the optimally efficient leg functional

family for each combination of incline slope and heading angle. As was also

true of the stability optimized gaits in Figure 5.9, the back leg pushing gaits are

generally preferred at all but the low slopes. At low slopes, the all legs pushing

gaits are preferred for lower incline angles with front and back leg pushing gaits

preferred at higher incline angles. Again, the middle and back leg pushing gaits

are generally not preferred anywhere. However with the efficiency optimized

gaits, the front and back leg pushing gaits are preferred down to a heading angle

of δ0 = 0.15 rad instead of 0.25 rad. Also, the back leg pushing gaits are preferred

53

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

−50

0

50

−50

0

50

−50

0

50

−50

0

50

Figure 5.16: Contour plot of middle leg phase shifts (φM
◦) from fixed point

solver, optimized for metabolic efficiency. High phase angles correspond to short
durations for the middle leg stance period. a) Gaits with all legs pushing; b) Gaits
with front and back legs pushing; c) Gaits with middle and back legs pushing; d)
Gaits with back leg pushing.

at even lower slopes than was true of the stability optimized gaits.

The resulting eigenvalues of the metabolic efficiency optimized gaits are shown

in Figure 5.20 for each leg functional family and Figure 5.21 for the selection be-

tween leg functional families. In comparing Figures 5.20 and 5.8, there is no

noticeable difference between the resulting eigenvalues between the efficiency op-

timized gaits and the stability optimized gaits when the middle leg pulls (Figures

b) and d)). This means that both optimizations result in similar gaits for these leg

functional families. This result is confirmed in comparing the optimized transport

costs of Figures 5.18 b) and d) to Figures 5.10 b) and d).

There is some reduction in stability for the middle and back leg pushing gaits

when they are optimized for efficiency (Figure 5.20 c)) instead of stability (Figure

5.8 c)) at low slopes. However, this is not an important difference since this gait

54

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

−50

0

50

−50

0

50

−50

0

50

−50

0

50

Figure 5.17: Contour plot of back leg phase shifts (φB
◦) from fixed point solver,

optimized for metabolic efficiency. High phase angles correspond to short dura-
tions for the back leg stance period. a) Gaits with all legs pushing; b) Gaits with
front and back legs pushing; c) Gaits with middle and back legs pushing; d) Gaits
with back leg pushing.

functional family is not preferred based on either optimization scheme.

There is a significant discrepancy between the eigenvalues for the different

optimization scheme for the all legs pushing gaits at low slope. Optimizing for

stability results in maximum eigenvalues of around 0.3 at low slopes (See Figure

5.8 a)), but results in high transport costs of around 1.2 (See Figure 5.10 a)).

However, optimizing for efficiency gives much higher maximum eigenvalues of

around 0.65 (See Figure 5.20 a)) along with the improved transport costs of

around 0.6 (See Figure 5.18 a)). This suggests that the two optimization routines

give differing results and different gaits could be selected depending on which

optimization scheme was being used in this region.

55

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

0

1

2

0

1

2

0

1

2

0

1

2

Figure 5.18: Optimal transport costs based on varying leg actuation (ldev).
Smaller transport cost values correspond with more efficient gaits. The mini-
mum possible transport cost can be found from (Ctran,min = sinσ). a) Gaits with
all legs pushing; b) Gaits with front and back legs pushing; c) Gaits with middle
and back legs pushing; d) Gaits with back leg pushing.

Incline Slope: σ (°)

H
ea

di
ng

 A
ng

le
: δ

0 (
ra

d)

0 20 40 60 80

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.5

1

1.5

2

Push All Push F,B Push M,B Push B

Figure 5.19: Optimal transport costs based on varying leg actuation (ldev).
Smaller transport cost values correspond with more efficient gaits. The mini-
mum possible transport cost can be found from (Ctran,min = sinσ). Gaits selected
based on most efficient leg function combination.

56

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 50
0

0.2

0.4

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

0.2

0.4

0.6

Figure 5.20: Stability of fixed point gaits, optimized for metabolic efficiency. .
Gaits are most stable where eigenvalues are close to zero, represented by the dark
blue regions. a) Gaits with all legs pushing; b) Gaits with front and back legs
pushing; c) Gaits with middle and back legs pushing; d) Gaits with back leg
pushing.

Incline Slope: σ (°)

H
ea

di
ng

 A
ng

le
: δ

0 (
ra

d)

0 20 40 60 80

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Push All Push F,B Push M,B Push B

Figure 5.21: Stability of fixed point gaits, optimized for metabolic efficiency.
Gaits are most stable where eigenvalues are close to zero, represented by the dark
blue regions. Gaits selected based on most efficient leg function combination.

57

Chapter 6 – Force Comparisons

Figures 6.1 and 6.2 show the range of peak forces in the lateral and fore/aft direc-

tion respectively. These were generated from observations of cockroaches running

at their preferred speed. The data for varied slopes is based on preliminary un-

published research by Dr. Daniel Goldman at Georgia Institute of Technology.

For this research, data has not yet been taken for the middle leg forces. These

forces are harder to measure since it is more difficult to isolate these legs on a

force plate.

All measured forces are based on a left stance phase as illustrated in Figure

2.1. Lateral forces are measured positive to the right, while fore/aft forces are

measure positive forward. This means that the front leg should have a positive

lateral force and a negative fore/aft force when pushing. Similarly, the middle

leg should have a negative lateral force and fore/aft force when pushing. Finally,

the back leg should have a positive lateral force and fore/aft force when pushing.

For pulling gaits the opposite conditions would be true.

These graphs indicate that the cockroach uses all legs in a pushing manner

when on a level slope. When climbing a vertical slope however, the front and

middle legs are used for pulling, while the data on the back leg is inconclusive.

The measured fore/aft forces strongly indicate that the back leg is pushing on

vertical slopes as well, but the lateral forces are too close to zero to make any

definitive conclusion. Until more data is taken it is difficult to say at what slope

the transition between pushing and pulling occurs for the front and middle legs.

At least for the front leg it appears to happen some time around a slope of

58

0 30 60 90
−1

−0.5

0

0.5
a)

Incline Slope: σ (°)

M
ax

. F
or

ce

0 30 60 90
−0.5

0

0.5

1

1.5
b)

Incline Slope: σ (°)

M
ax

. F
or

ce

0 30 60 90
−0.2

0

0.2

0.4

c)

Incline Slope: σ (°)

M
ax

. F
or

ce

Running on 0° Slope

Running on 90° Slope

Running on Varied Slopes

Figure 6.1: Experimental maximum lateral forces of cockroaches obtained from
force plates. Forces are normalized by dividing by the weight of the cockroach. a)
Front leg; b) Middle leg; c) Back leg. σ = 0◦ data [1]; σ = 90◦ data [2]; Variable
slope data from D. Goldman, 2011, personal communication, Georgia Institute
of Technology

σ = 15◦ → 30◦.

Since this model is an idealized version of the real cockroach motion it is not

expected to match experimental forces exactly. However, a qualitative match

between the experimental model and the measured data would provide some

validation of the model. Of particular interest, is whether the model predicts leg

transitions between pushing and pulling at similar slopes to those observed in

real cockroaches.

For comparison, the lateral and fore/aft forces of the fixed points from the

simulated cockroach model are shown as contour plots in Figures 6.3 and 6.4.

The transition from pushing to pulling function for the function is visible on

both graphs as a rapid change in color ranging from around 10◦ to 30◦ with the

transition moving higher as the heading angle increases. Based on the upper right

59

0 30 60 90
−0.5

0

0.5

1
a)

Incline Slope: σ (°)

M
ax

. F
or

ce

0 30 60 90
−1

0

1

2
b)

Incline Slope: σ (°)

M
ax

. F
or

ce

0 30 60 90
−0.5

0

0.5

1
c)

Incline Slope: σ (°)

M
ax

. F
or

ce

Running on 0° Slope

Running on 90° Slope

Running on Varied Slopes

Figure 6.2: Experimental maximum lateral forces of cockroaches obtained from
force plates. Forces are normalized by dividing by the weight of the cockroach. a)
Front leg; b) Middle leg; c) Back leg. σ = 0◦ data [1]; σ = 90◦ data [2]; Variable
slope data from D. Goldman, 2011, personal communication, Georgia Institute
of Technology

graphs, the middle leg transitions at varied slope levels. For low initial heading

angles it occurs around 35◦ while for higher heading angles the leg pulls at all

slopes. The exact transition levels are shown using the leg functional gait family

symbols plotted in Figures 4.2, 4.3, and 4.5. The back leg forces in the Figures

c) are fairly uniform regardless of heading angle or incline slope.

Lateral and fore/aft forces were also calculated from the modeled motion of

the fixed points optimized for stability. These are shown in Figures 6.5 and 6.6

respectively. As is also shown more concisely in Figure 5.9, this data shows that

the front leg is pushing for slopes less than σ = 20◦, but pulling for higher slopes.

The middle leg also pulls for slopes higher than σ = 20◦, but pushes at low slopes

only for initial heading angles of less than δ0 = 0.20 rad while continuing to pull

at higher heading angles. The back leg pushes for all combinations of incline

60

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

0

1

2

Figure 6.3: Maximum lateral forces of modeled cockroaches based on gaits with
leg actuation held constant at ldev = l0/2. Forces are normalized by dividing by
the weight of the cockroach. a) Front leg; b) Middle Leg; c) Back Leg; d) Net
combined force of all legs.

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

a)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

b)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

c)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

H
ea

di
ng

: δ
0 (

ra
d)

d)

0 50
0

0.2

0.4

0

1

2

Figure 6.4: Maximum fore/aft forces of modeled cockroaches based on gaits with
leg actuation held constant at ldev = l0/2. Forces are normalized by dividing by
the weight of the cockroach. a) Front leg; b) Middle Leg; c) Back Leg; d) Net
combined force of all legs.

61

Incline Slope: σ (°)

δ 0 (
ra

d)

a)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

δ 0 (
ra

d)

b)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

δ 0 (
ra

d)

c)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

δ 0 (
ra

d)

d)

0 50
0

0.2

0.4

0

1

2

Figure 6.5: Maximum lateral forces of modeled cockroaches based on optimal
stability gaits. Forces are normalized by dividing by the weight of the cockroach.
a) Front leg; b) Middle Leg; c) Back Leg; d) Net combined force of all legs.

slopes and heading angles.

A similar analysis was done on the gaits optimized for metabolic efficiency.

Figures 6.7 and 6.8 represent the lateral and fore/aft forces respectively. Along

with Figure 5.19, this data indicates a front leg pushing function for slopes less

than σ = 10 → 20◦, depending on heading angle, and a pulling function for

higher slopes. The middle leg also is used for pulling at most incline slopes and

heading angles except for those less than σ = 20◦ and δ0 = 0.10 rad. The back

leg again pushes for all combinations of incline slopes and heading angles.

For both stability optimized gaits and gaits optimized to metabolic efficiency,

the transitions between pushing and pulling function are similar to those evi-

denced by real cockroaches on variable slopes. However, more accurate data from

the physical cockroaches is needed to verify this conclusion. This is especially

true for the middle leg for which little data exists.

62

Incline Slope: σ (°)

δ 0 (
ra

d)

a)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

δ 0 (
ra

d)

b)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

δ 0 (
ra

d)

c)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

δ 0 (
ra

d)

d)

0 50
0

0.2

0.4

0

1

2

Figure 6.6: Maximum fore/aft forces of modeled cockroaches based on optimal
stability gaits. Forces are normalized by dividing by the weight of the cockroach.
a) Front leg; b) Middle Leg; c) Back Leg; d) Net combined force of all legs.

Incline Slope: σ (°)

δ 0 (
ra

d)

a)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

δ 0 (
ra

d)

b)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

δ 0 (
ra

d)

c)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

δ 0 (
ra

d)

d)

0 50
0

0.2

0.4

0

1

2

Figure 6.7: Maximum lateral forces of modeled cockroaches based on optimal
metabolic efficiency gaits. Forces are normalized by dividing by the weight of the
cockroach. a) Front leg; b) Middle Leg; c) Back Leg; d) Net combined force of
all legs.

63

Incline Slope: σ (°)

δ 0 (
ra

d)

a)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

δ 0 (
ra

d)

b)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

δ 0 (
ra

d)

c)

0 20 40 60 80
0

0.2

0.4

−1

0

1

Incline Slope: σ (°)

δ 0 (
ra

d)

d)

0 50
0

0.2

0.4

0

1

2

Figure 6.8: Maximum fore/aft forces of modeled cockroaches based on optimal
metabolic efficiency gaits. Forces are normalized by dividing by the weight of the
cockroach. a) Front leg; b) Middle Leg; c) Back Leg; d) Net combined force of
all legs.

Numerical comparisons of the forces exhibited by the cockroaches and the

model are shown in Tables 6.1, 6.2, and 6.3 for the front, middle, and back

legs respectively. The first column of the tables shows the experimental data (D.

Goldman, 2011, personal communication, Georgia Institute of Technology), while

the second column is from the non-optimized fixed points. The last two columns

are the gaits optimized for stability and efficiency. For each slope in the table,

the minimum and maximum forces for heading angles between δ0 = 0.05→ 0.40

are shown, since this is the range of heading angles that consistently produces

valid fixed points. The forces generated are similar in magnitude to that of the

measured data.

64

Front Leg

σ Flat(exp.) Flat(model) Flat(opt. stab.) Flat(opt. eff.)

0◦ 0.00→ 0.38 0.14→ 0.44 0.19→ 0.46 0.11→ 0.25
15◦ −0.04→ 0.12 −0.18→ 0.30 0.12→ 0.29 −0.11→ 0.13
30◦ −0.10→ 0.16 −0.31→ 0.10 −0.30→ −0.14 −0.31→ −0.14
45◦ −0.38→ 0.10 −0.40→ −0.24 −0.45→ −0.31 −0.44→ −0.31
60◦ −0.24→ 0.00 −0.45→ −0.32 −0.61→ −0.39 −0.59→ −0.34
75◦ −0.55→ −0.16 −0.48→ −0.36 −0.64→ −0.46 −0.61→ −0.39
90◦ −0.58→ −0.28 −0.49→ −0.38 −0.66→ −0.51 −0.66→ −0.50
σ Ffa(exp.) Ffa(model) Ffa(opt. stab.) Ffa(opt. eff.)

0◦ −0.04→ 0.04 −0.87→ −0.29 −0.81→ −0.37 −0.49→ −0.22
15◦ −0.04→ 0.06 −0.62→ 0.33 −0.55→ −0.24 −0.27→ 0.20
30◦ −0.02→ 0.20 −0.21→ 0.56 0.27→ 0.52 0.26→ 0.54
45◦ 0.24→ 0.60 0.49→ 0.71 0.60→ 0.80 0.59→ 0.82
60◦ 0.30→ 0.50 0.65→ 0.79 0.81→ 1.08 0.71→ 1.05
75◦ 0.56→ 0.84 0.73→ 0.84 0.92→ 1.16 0.74→ 1.13
90◦ 0.64→ 0.84 0.77→ 0.87 1.05→ 1.23 1.02→ 1.22

Table 6.1: Comparison of experimental forces to modeled front leg forces, showing
a qualitative similarity in direction and magnitude. Experimental data from D.
Goldman, 2011, personal communication, Georgia Institute of Technology. All
forces are normalized by dividing by cockroach weight. Ranges represent the
range of data for both the experimental data and the modeled data (including all
fixed points for a given slope at heading angles between δ0 = 0.05 rad and 0.40
rad).

65

Middle Leg

σ Flat(exp.) Flat(model) Flat(opt. stab.) Flat(opt. eff.)

0◦ N/A −0.31→ 0.62 −0.55→ 0.93 −0.12→ 0.94
15◦ N/A −0.04→ 0.67 −0.50→ 0.89 −0.39→ 0.89
30◦ N/A 0.07→ 0.65 0.20→ 0.95 0.22→ 0.94
45◦ N/A 0.12→ 0.62 0.32→ 0.92 0.33→ 0.90
60◦ N/A 0.19→ 0.60 0.31→ 0.47 0.29→ 0.46
75◦ N/A 0.24→ 0.57 0.12→ 0.32 −0.16→ 0.30
90◦ N/A 0.24→ 0.51 0.04→ 0.14 −0.15→ 0.16
σ Ffa(exp.) Ffa(model) Ffa(opt. stab.) Ffa(opt. eff.)

0◦ N/A −0.18→ 0.25 −0.19→ 0.38 −0.07→ 0.38
15◦ N/A −0.03→ 0.27 −0.19→ 0.37 −0.17→ 0.37
30◦ N/A 0.04→ 0.27 0.09→ 0.40 0.10→ 0.40
45◦ N/A 0.06→ 0.27 0.15→ 0.41 0.15→ 0.40
60◦ N/A 0.10→ 0.27 0.16→ 0.22 0.15→ 0.22
75◦ N/A 0.12→ 0.26 0.07→ 0.13 −0.10→ 0.12
90◦ N/A 0.12→ 0.23 0.02→ 0.07 −0.10→ 0.07

Table 6.2: Range of modeled middle leg forces. Experimental data does not
exist for middle legs due to the difficulty in measuring this leg independent of
the others. All forces are normalized by dividing by cockroach weight. Ranges
represent the range of data for both the experimental data and the modeled data
(including all fixed points for a given slope at heading angles between δ0 = 0.05
rad and 0.40 rad).

66

Back Leg

σ Flat(exp.) Flat(model) Flat(opt. stab.) Flat(opt. eff.)

0◦ −0.20→ 0.04 0.33→ 0.38 0.16→ 0.48 0.15→ 0.27
15◦ −0.18→ 0.12 0.30→ 0.39 0.19→ 0.65 0.16→ 0.46
30◦ −0.12→ 0.26 0.36→ 0.39 0.17→ 0.23 0.18→ 0.23
45◦ −0.12→ 0.20 0.40→ 0.41 0.19→ 0.25 0.19→ 0.26
60◦ −0.18→ 0.18 0.41→ 0.42 0.38→ 0.58 0.39→ 0.61
75◦ −0.14→ 0.16 0.41→ 0.42 0.59→ 0.70 0.64→ 0.77
90◦ −0.02→ 0.24 0.42 0.67→ 0.79 0.65→ 0.77
σ Ffa(exp.) Ffa(model) Ffa(opt. stab.) Ffa(opt. eff.)

0◦ −0.02→ 0.16 0.32→ 0.60 0.20→ 0.96 0.20→ 0.31
15◦ 0.08→ 0.40 0.28→ 0.61 0.26→ 1.07 0.15→ 0.67
30◦ 0.20→ 0.72 0.37→ 0.61 0.21→ 0.27 0.21→ 0.27
45◦ 0.24→ 0.60 0.46→ 0.54 0.23→ 0.28 0.23→ 0.29
60◦ 0.44→ 0.76 0.53→ 0.57 0.39→ 0.67 0.41→ 0.75
75◦ 0.14→ 0.58 0.57→ 0.61 0.56→ 0.79 0.60→ 0.86
90◦ 0.10→ 0.70 0.58→ 0.63 0.58→ 0.78 0.58→ 0.78

Table 6.3: Comparison of experimental forces to modeled back leg forces, showing
a qualitative similarity in direction and magnitude. Experimental data from D.
Goldman, 2011, personal communication, Georgia Institute of Technology. All
forces are normalized by dividing by cockroach weight. Ranges represent the
range of data for both the experimental data and the modeled data (including all
fixed points for a given slope at heading angles between δ0 = 0.05 rad and 0.40
rad).

67

Chapter 7 – Discussion and Conclusions

Fixed points were successfully found for nearly all of the combinations of de-

sired velocity (vdes), initial heading angle (δ0), and incline slope (σ) that were

attempted. These points were found over a range of incline slopes from level run-

ning to cliff climbing as well as a range of initial heading angles that encompass

those observed on cockroaches. Gaits were modeled at velocities similar to that

of those observed in real cockroaches.

Furthermore, Figure 4.1 shows that each of these fixed points were stable.

In fact Figures 4.3 and 4.4 demonstrate that these gaits were also robust even

for lateral impulses as large as 80% of the forward momentum. This return

to a stable gait from large disturbances was accomplished without an active

controller, except to place legs at the locations predetermined to produce a stable

gait. Clearly, this control strategy shows significant promise towards developing

a robot controller for a sprawled posture cockroach like robot with stable and

robust gaits.

As Figures 4.2, 4.3, and 4.5 show, most of the selected gaits for high slopes

(σ >= 25◦) had ideal stability and robustness with eigenvalues approaching zero

and the number of steps to recovery approaching one. Additionally, these gaits

had ideal transport costs. This is an important finding especially since cock-

roaches also seem to use this back leg pushing gait on large inclines.

At lower incline slopes, multiple gait families are available. For these, stability

and robustness are optimized by selecting gaits where the front and back legs

push, while the middle legs pull. These gaits use high heading angles, which

68

corresponds with a large degree of lateral motion. A secondary more stable

region is also evident at heading angles of around δ0 = 0.10 rad, with all legs

used for pushing function. On the other hand, the efficiency of the gaits as

evidenced by the transport cost is most ideal at low heading angles. The transport

cost grows consistently higher as the heading angle increases. It is known that

cockroaches use heading angles of around δ0 = 0.15 rad (D. Goldman, 2011,

personal communication, Georgia Institute of Technology) with all legs used in

a pushing mechanism [1]. This seems to be an acceptable compromise between

lowering the cost of transport while maintaining good stability.

The stability and metabolic efficiency of these gaits was further improved

using optimization routines for each criteria. The resulting gaits consisted of

four overlapping leg functional families which included: all legs pushing; front

and back legs pushing while back leg pulls; middle and back legs pushing while

front leg pulls; and back leg pushing while front and middle legs pull.

For both types of optimization, the resulting gaits for incline slopes above σ =

20◦ consisted almost entirely of back leg pushing gaits. These gaits are naturally

efficient since the leg forces do not generate any negative work. Therefore there

is not significant difference between the two optimization schemes in this area.

The middle and back leg pushing gaits are seldom used as the optimal gait for

a given combination of incline slope and heading angle for either optimization

scheme.

There are also similarities between the two optimization routines regarding

the leg function used at low incline slopes. In both cases, the gaits with all legs

pushing are selected for low initial heading angles with the front and back leg

pushing gaits selected for higher heading angles. However, the transition between

69

the two occurs at around δ0 = 0.125 rad for the efficiency optimized gaits and at

a higher value of around δ0 = 0.20 rad for the stability optimized gaits.

The gaits resulting from the optimization for the front and back leg push-

ing families are remarkably similar. This suggests that the stability based op-

timization and the efficiency based optimization goals are met with similar leg

actuations and phase shifts for this family of gaits. On the other hand there is

a large difference between the gaits resulting from the two optimization for the

all legs pushing gaits. For these gaits, stability and efficiency optimizations work

against each other. While the stability and transport costs of the two cases are

significantly different, there are also differences in the use of the legs. In particu-

lar, the middle leg has a very high phase shift for the efficiency optimized gaits,

which means that this leg is only used for a very short duration. This means that

the middle leg is much less effectual when optimized for metabolic efficiency as

opposed to stability.

While a cockroach cannot choose the slope of the ground which it wishes to

travel on, it could conceivably choose the leg muscle actuation levels, whether

each leg pushes or pulls, and the initial heading angle of its gait. If this selection

were based on stability alone, Figure 5.9 would indicate the preferred selection

at least for the modeled cockroach. At higher slopes, the selected gait would

use only the back leg for pushing. All heading angles are equally stable, so the

choice between heading angles would not matter. At slopes below σ = 20◦, the

selected gaits would use all legs for pushing and the modeled cockroach would

use a heading angle of around δ0 = 0.10 rad → 0.15 rad.

The selected gaits using an efficiency optimization on the modeled cockroach

would actually be very similar based on Figure 5.19. For higher slopes, the

70

selected gait would again use only the back leg for pushing and the same transport

cost would be achieved regardless of the heading angle. At slopes below σ = 10◦,

the selected gaits would use all legs for pushing and the modeled cockroach would

use a similar heading angle of around δ0 = 0.10 rad . However, the gaits would use

the middle leg for a much shorter duration than those of the stability optimized

gaits.

Based on the experimental data that we have, it is hard to determine which

of these very similar optimizations are closer to what the real cockroaches do.

However, given that cockroaches use heading angles of around δ0 = 0.15 rad

(D. Goldman, 2011, personal communication, Georgia Institute of Technology)

and that the front and middle legs transition from pushing to pulling at around

σ = 15◦ → 30◦, both of the optimization routines result in gaits remarkably

similar to real cockroaches. It seems plausible that cockroaches use gaits based

on either stability, efficiency, or a combination of both. It is also telling that the

forces generated by the model are qualitatively similar to the experimental forces.

One major step toward continuing this research would be to get more detailed

estimates of the forces used by cockroaches, particularly in the middle leg. This

would allow a more exact estimation of what slope cockroaches transition their

leg function. This information could be valuable information in designing a robot

based on this mathematical model.

Another advancement in this research would come from a more realistic model

of the cockroach motion which would incorporate rigid body dynamics in rota-

tional motion. This would allow the yawing characteristics of the model to be

compared to actual yawing motion of cockroaches. In particular, a model that

has leg attachment points at locations other than the center of gravity would be

71

needed. Moving the hip joint from the center of mass would allow the legs to

generate torque, causing the body to rotate in the yaw direction.

72

Bibliography

[1] R. Full, R. Blickhan, and L. Ting, “Leg design in hexapedal runners,” The
Journal of Experimental Biology, vol. 158, pp. 369–390, 1991.

[2] D. Goldman, T. Chen, D. Dudek, and R. Full, “Dynamics of rapid vertical
climbing in cockroaches reveals a template,” The Journal of Experimental
Biology, vol. 209, pp. 2990–3000, 2006.

[3] R. Kram, B. Wong, and R. Full, “Three-dimensional kinematics and limb
kinetic energy of running cockroaches,” Journal of Experimental Biology,
vol. 200, pp. 1919–1929, 1997.

[4] J. Schmitt, M. Garcia, R. Razo, P. Holmes, and R. Full, “Dynamics and
stability of legged locomotion in the horizontal plane: a test case using
insects,” Biological Cybernetics, vol. 86, pp. 343–353, 2002.

[5] J. Clark, D. Goldman, P. Lin, L. G., T. Chen, H. Komsuoglu, R. Full,
and D. Koditscheck, “Design of a bio-inspired dynamical vertical climbing
robot,” in Proceedings of Robotics: Science and Systems, 2007.

[6] R. Blickhan and R. Full, “Similarity in multilegged locomotion: Bouncing
like a monopode,” Journal of Comparative Physiology A, vol. 173, pp. 509–
517, 1993.

[7] K. Autumn, S. Hsieh, D. Dudek, J. Chen, C. Chitaphan, and R. Full, “Dy-
namics of geckos running vertically,” The Journal of Experimental Biology,
vol. 209, pp. 260–272, 2006.

[8] J. Schmitt and S. Bonnono, “Dynamics and stability of lateral plane loco-
motion on inclines,” Journal of Theoretical Biology, vol. 261, pp. 598–609,
2009.

[9] R. Blickhan, “The spring mass model for running and hopping,” Journal of
Biomechanics, vol. 22, no. 11/12, pp. 1217–1227, 1989.

[10] P. Holmes, R. Full, D. Koditscheck, and J. Guckenheimer, “The dynamics of
legged locomotion: Models, analyses, and challenges,” SIAM Review, vol. 48,
no. 2, pp. 207–304, 2006.

[11] M. Srinivasan and P. Holmes, “How well can spring-mass-like telescoping leg
models fit multi-pedal sagittal-plane locomotion data?” Journal of Theoret-
ical Biology, vol. 255, pp. 1–7, 2008.

73

[12] M. Daley and A. Biewener, “Running over rough terrain reveals limb control
for intrinsic stability,” Proceedings of the National Academy of the Sciences,
vol. 103, no. 42, pp. 15 681–15 686, 2006.

[13] J. Schmitt and P. Holmes, “Mechanical models for insect locomotion: Dy-
namics and stability in the horizontal plane i. theory,” Biological Cybernetics,
vol. 83, pp. 501–515, 2000.

[14] J. Seipel, P. Holmes, and R. Full, “Dynamics and stability of insect locomo-
tion: A hexapedal model for horizontal plane motions,” Biological Cybernet-
ics, vol. 91, pp. 76–90, 2004.

[15] R. Kukillaya and P. Holmes, “A hexapedal jointed-leg model for insect loco-
motion in the horizontal plane,” Biological Cybernetics, vol. 97, pp. 379–395,
2007.

[16] ——, “A model for insect locomotion in the horizontal plane: Feedforward
activation of fast muscles,stability,and robustness,” Journal of Theoretical
Biology, vol. 261, pp. 210–226, 2009.

[17] K. Mombaur, R. Longman, H. Bock, and J. Schlijder, “Stable one-legged
hopping without feedback and with a point foot,” in Proceedings of the 2002
IEEE International Conference on Robotics 8 Automation Washington, DC
May, 2002.

[18] Q. Wang, K. Wei, L. Wang, and D. Lv, “Modeling and stability analysis of
human normal walking with implications for the evolution of the foot,” in
Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on
Biomedical Robotics and Biomechatronics, The University of Tokyo, Tokyo,
Japan, September 26-29, 2010.

[19] M. Srinivasan and A. Ruina, “Computer optimization of a minimal biped
model discovers walking and running,” Nature, vol. 439, pp. 72–75, 2006.

[20] S. Roy and D. Pratihar, “Study on energy consumption in turning motion
of hexapod walking robots,” in Proceedings of the World Congress on Engi-
neering Vol III WCE 2011, July 6 - 8, 2011, London, U.K., 2011.

[21] L. Ting, R. Blickhan, and R. Full, “Dynamic and static stability in hexapedal
runners,” Journal of Theoretical Biology, vol. 197, pp. 251–269, 1994.

[22] S. Sponberg and R. Full, “Neuromechanical response of musculo-skeletal
structures in cockroaches during rapid running on rough terrain,” Journal
of Experimental Biology, vol. 211, pp. 433–446, 2008.

74

[23] D. Jindrich and R. Full, “Dynamic stabilization of rapid hexapedal locomo-
tion,” The Journal of Experimental Biology, vol. 205, pp. 2803–2823, 2002.

[24] A. Wickramasuriya and J. Schmitt, “Improving horizontal plane locomotion
via leg angle control,” Journal of Theoretical Biology, vol. 256, pp. 414–427,
2009.

[25] S. Bonnono, “Dynamics and stability of lateral plane locomotion on variable
inclines,” Master’s thesis, Oregon State University, 2009.

[26] M. Srinivasan and A. Ruina, “Idealized walking and running gaits minimize
work,” Proc. Roy. Soc. A, vol. 463, pp. 2429–2446, 2007.

[27] M. Srinivasan, “Fifteen observations on the structure of energy-minimizing
gaits in many simple biped models,” Journal of the Royal Society: Interface,
p. doi: 10.1098/rsif.2009.0544, 2010.

[28] A. Ruina, J. Bertram, and M. Srinivasan, “A collisional model of the ener-
getic cost of support work qualitatively explains leg-sequencing in walking
and galloping, pseudo-elastic leg behavior in running and the walk-to-run
transition,” Journal of Theoretical Biology, vol. 237, pp. 170–192, 2005.

[29] J. Donelan, R. Kram, and A. Kuo, “Mechanical and metabolic determinants
of the preferred step width in human walking,” Proc. R. Soc. Lond. B, vol.
268, pp. 1985–1992, 2001.

[30] J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence properties
of the nelder-mead simplex method in low dimensions,” SIAM Journal on
Optimization, vol. 9, pp. 112–147, 1998.

[31] T. Kubow and R. Full, “The role of the mechanical system in control: a
hypothesis of self-stabilization in hexapedal runners,” Philosophical Trans-
actions of the Royal Society B: Biological Sciences, vol. 354, pp. 849–861,
1999.

75

APPENDICES

76

Appendix A – Matlab Code

A.1 Robot Simulation

A.1.1 simgait multileg.m

This is the main code for the simulation. Based on parameters set as global values

and initial conditions passed in as inputs, it simulates and returns the motion of

the cockroach.

function [xtot,xdtot,ytot,ydtot,thetatot,thetadtot,...

timetot,indbrktot,Fxtot,Fytot,Mtot,fpxtot,fpytot,...

leqtot,lsprtot,tot_ener,Ctrantot] = ...

simgait_multileg(X0,numperiod,plotflag)

% This function simulates the number of gaits specified

% in numperiod based on the initial conditions X0. States

% are x, xdot, y, ydot, theta, and thetadot. Plots are

% included if plotflag = 1.

global cval tstartstance fpx fpy FootAct

%The following values are input as global variables but

%local copies need to be stored since their values get

%overwritten

tstartstance0 = tstartstance;

fpx0 = fpx;

77

fpy0 = fpy;

FootAct0 = FootAct;

options = odeset(’Events’,@stancebreak,...

’InitialStep’,.000001);

%Read in global cval

kval = cval(1);

m = cval(2);

Ival = cval(3);

% sigma = cval(4);

tdes = cval(5);

% vdes = cval(6);

% Omega = pi/tdes;

% g = 9.81;

% Initialize storage variables here

xtot = []; %States

xdtot = [];

ytot = [];

ydtot = [];

thetatot = [];

thetadtot = [];

timetot = [];

Fxtot = []; %Forces and Moments

Fytot = [];

Mtot = [];

78

leqtot = []; %Spring length parameters

lsprtot = [];

Ctran0 = 0; %Transport Cost calculator

Ctrantot = [];

fpxtot = fpx; %Foot placements

fpytot = fpy;

indbrktot = zeros(1,6); %Indices of step breaks

%Set stride counters (-1 for not just placed)

stride = -ones(1,6);

end_ft = 1; %Which foot counter is used for termination

stride(tstartstance == tstartstance(end_ft)) = 0;

tsimstart = tstartstance(end_ft);

indbrktot(tstartstance == tsimstart) = 1;

% Simulate stance phases

while stride(end_ft) < numperiod

tspan = [tsimstart tsimstart+tdes];

[T,X,te,˜,ie] = ...

ode45(@stancedynamics,tspan,[X0 Ctran0],options);

Ctran = X(:,7);

X = X(:,1:6);

% Store relevant data

xtot = [xtot;X(:,1)];

xdtot = [xdtot;X(:,2)];

ytot = [ytot;X(:,3)];

79

ydtot = [ydtot;X(:,4)];

thetatot = [thetatot;X(:,5)];

thetadtot = [thetadtot;X(:,6)];

timetot = [timetot;T];

Ctrantot = [Ctrantot;Ctran];

%Store index of events

indbrk = zeros(1,6);

for n = 1:length(ie)

if te(n) == T(length(T))

if ie(n) <= 6

%Store a negative value for liftoff stance-breaks

indbrk(ie(n)) = -length(timetot);

end

end

end

tstarttol = 1e-10;

indbrk((tstartstance + 2*tdes >= T(length(T)))&...

(tstartstance + 2*tdes < T(length(T))+tstarttol)) ...

= length(timetot);

indbrktot = [indbrktot;indbrk];

%Calculate parameters that need stored at every time

for n = 1:length(T)

[Fx,Fy,M,leq,lspr] = legforces(T(n),X(n,:));

leq(˜FootAct) = 0;

lspr(˜FootAct) = 0;

80

Fxtot = [Fxtot;Fx];

Fytot = [Fytot;Fy];

Mtot = [Mtot;M];

leqtot = [leqtot;leq];

lsprtot = [lsprtot;lspr];

end

%Set up for next stride

ind = length(T);

X0 = X(ind,:);

Ctran0 = Ctran(ind);

tstartstance(indbrk > 0) = T(ind);

FootAct(indbrk > 0) = true;

FootAct(indbrk < 0) = false;

[fpxtemp,fpytemp] = footplace(X0);

fpx(indbrk > 0) = fpxtemp(indbrk > 0);

fpy(indbrk > 0) = fpytemp(indbrk > 0);

tsimstart = T(ind);

%Store new foot placement points

fpxtot = [fpxtot;fpx];

fpytot = [fpytot;fpy];

stride(indbrk > 0) = stride(indbrk > 0) + 1;

end

%Reset initial values

FootAct = FootAct0;

fpx = fpx0;

81

fpy = fpy0;

tstartstance = tstartstance0;

%Calculate energy for plotting

kin_ener = m*(xdtot.ˆ2 + ydtot.ˆ2)/2+Ival*thetadtot.ˆ2/2;

pot_ener = sum(kval*(lsprtot - leqtot).ˆ2/2,2);

tot_ener = kin_ener+pot_ener;

% Plot data if required

if plotflag

figure, hold on

N = size(fpxtot,1);

for n = 1:N

%Foot placement points

plot(fpxtot(n,:),fpytot(n,:),’x’,...

’MarkerEdgeColor’,[(N-n)/(N-1) 0 (n-1)/(N-1)])

end

%Center of mass trajectory

plot(xtot,ytot,’k-’)

axis image,axis equal

markstyle = [’b+’;’gx’;’r*’;’c+’;’yx’;’m*’];

%Stance break markers

for n = 1:6

indt = indbrktot(indbrktot(:,n)>0,n);

plot(xtot(indt),ytot(indt),markstyle(n,:),...

’LineWidth’,1,’MarkerSize’,8)

82

end

figure

%Important states

subplot(2,2,1),plot(timetot,xtot), hold on

title(’x’)

subplot(2,2,2),plot(timetot,ytot), hold on

title(’y’)

subplot(2,2,3),plot(timetot,thetatot*180/pi), hold on

title(’\theta’)

ylabel(’\circ’)

for n = 1:6

indt = indbrktot(indbrktot(:,n)>0,n);

subplot(2,2,1),plot(timetot(indt),xtot(indt),...

markstyle(n,:),’LineWidth’,2,’MarkerSize’,8)

subplot(2,2,2),plot(timetot(indt),ytot(indt),...

markstyle(n,:),’LineWidth’,2,’MarkerSize’,8)

subplot(2,2,3),plot(timetot(indt),thetatot(indt)*...

180/pi,markstyle(n,:),’LineWidth’,2,’MarkerSize’,8)

end

figure

%Forces and Moments

COL_ORD=[0 0 1;0 1 0;1 0 0;0 1 1;1 1 0;1 0 1;.6 .6 .6];

subplot(2,2,1), hold on, title(’Fx’)

plot(timetot,sum(Fxtot,2),’Color’,COL_ORD(7,:),...

’LineStyle’,’-.’)

83

subplot(2,2,2), hold on, title(’Fy’)

plot(timetot,sum(Fytot,2),’Color’,COL_ORD(7,:),...

’LineStyle’,’-.’)

subplot(2,2,3), hold on, title(’M’)

plot(timetot,sum(Mtot,2),’Color’,COL_ORD(7,:),...

’LineStyle’,’-.’)

subplot(2,2,4), hold on

for n = 1:6

indt = indbrktot(indbrktot(:,n)>0,n);

subplot(2,2,1), plot(timetot,Fxtot(:,n),...

’Color’,COL_ORD(n,:))

plot(timetot(indt),Fxtot(indt,n),markstyle(n,:),...

’LineWidth’,2,’MarkerSize’,8)

subplot(2,2,2), plot(timetot,Fytot(:,n),...

’Color’,COL_ORD(n,:))

plot(timetot(indt),Fytot(indt,n),markstyle(n,:),...

’LineWidth’,2,’MarkerSize’,8)

subplot(2,2,3), plot(timetot,Mtot(:,n),...

’Color’,COL_ORD(n,:));

plot(timetot(indt),Mtot(indt,n),markstyle(n,:),...

’LineWidth’,2,’MarkerSize’,8)

subplot(2,2,4), plot(0,0,’Color’,COL_ORD(n,:))

end

plot(0,0,’Color’,COL_ORD(7,:),’LineStyle’,’-.’)

set(gca,’Visible’,’off’)

84

legend(’1’,’2’,’3’,’4’,’5’,’6’,’sum’,’Location’,’West’)

figure

%Leg lengths

subplot(3,2,1)

plot(timetot,lsprtot(:,1),timetot,leqtot(:,1),’:’)

title([’Actual and Equilibrium Spring Lengths’...

’ of a Simulated Cockroach’])

ylabel(’Front lng. (m)’)

subplot(3,2,3)

plot(timetot,lsprtot(:,2),timetot,leqtot(:,2),’:’)

ylabel(’Mid lng. (m)’)

subplot(3,2,5)

plot(timetot,lsprtot(:,3),timetot,leqtot(:,3),’:’)

xlabel(’Time (s)’)

ylabel(’Back lng. (m)’)

subplot(3,2,2)

plot(timetot,lsprtot(:,4),timetot,leqtot(:,4),’:’)

title([’Actual and Equilibrium Spring Lengths’...

’ of a Simulated Cockroach’])

ylabel(’Front lng. (m)’)

subplot(3,2,4)

plot(timetot,lsprtot(:,5),timetot,leqtot(:,5),’:’)

ylabel(’Mid lng. (m)’)

subplot(3,2,6)

plot(timetot,lsprtot(:,6),timetot,leqtot(:,6),’:’)

85

xlabel(’Time (s)’)

ylabel(’Back lng. (m)’)

figure

%Energy

plot(timetot,tot_ener,timetot,kin_ener,’r:’,...

timetot,pot_ener,’b-.’)

legend(’Total Energy’,’Kinetic Energy’,...

’Potential Energy’,’Location’,’NorthWest’)

title(’Total Energy of a Simulated Cockroach’)

xlabel(’Time (s)’)

ylabel(’Energy (J)’)

end

end

%%% end main function

%%% stancedynamics function

function Xd = stancedynamics(t,X)

global cval

%Call cval

% kval = cval(1);

m = cval(2);

86

Ival = cval(3);

sigma = cval(4);

tdes = cval(5);

vdes = cval(6);

% Omega = pi/tdes;

g = 9.81;

% read current state

x = X(1);

xd = X(2);

y = X(3);

yd = X(4);

% theta = X(5);

thetad = X(6);

% solve equations of motion

[Fx,Fy,M] = legforces(t,X);

xdd = sum(Fx)/m;

ydd = (sum(Fy)-m*g*sin(sigma))/m;

thetadd = sum(M)/Ival;

Xd = [xd;xdd;yd;ydd;thetad;thetadd];

%Calculate transport cost

global fpx fpy

Xd(7) = sum(sqrt(Fx.ˆ2+Fy.ˆ2).*...

87

abs(((x-fpx)*xd + (y-fpy)*yd)./sqrt((x-fpx).ˆ2 ...

+ (y-fpy).ˆ2)))/(m*g*tdes*vdes);

if isnan(Xd(7)) %remove a discontinuity

Xd(7) = 0;

end

end

%%% end stancedynamics function

%%% stancebreak function

function [delta, isterminal, direction] ...

= stancebreak(t,X)

% Determines when a front leg force returns to zero

global cval FootAct tstartstance

tdes = cval(5);

%Calculate foot ending stance break

[˜,˜,˜,l,dr] = legforces(t,X);

deltal = dr - l;

deltal(˜FootAct) = 1;

%Calculate foot beginning stance break

deltat = tstartstance + 2*tdes - t;

88

%Set return values

delta = [deltal’;deltat’];

isterminal = [FootAct’;true(6,1)];

%Setting any to zero would ignore the corresponding leg

direction = [zeros(6,1);-ones(6,1)];

minstep = tdes/50;

for n = 1:6

if abs(t-tstartstance(n)) < abs(minstep)

isterminal(n) = 0;

end

end

end

%%% end stancebreak function

A.1.2 legforces.m

This code is called by simgait multileg and is used to calculate the forces of the

leg springs in the inertial frame.

function [Fx,Fy,M,l,dr] = legforces(t,v)

% Calculate forces and moments for each leg (fixed frame)

global cval tstartstance fpx fpy FootAct

%Call cval

kval = cval(1);

89

% m = cval(2);

% Ival = cval(3);

% sigma = cval(4);

% tdes = cval(5);

% vdes = cval(6);

% dx = cval(7:12);

% dy = cval(13:18);

l0 = cval(19:24);

ldev = cval(25:30);

% beta0 = cval(31:36);

Tdrv = cval(37:39);

Omega = pi./Tdrv;

Omega = [Omega Omega];

phi = cval(40:42);

phi = [phi phi];

% Read states

x = v(1);

% xd = v(2);

y = v(3);

% yd = v(4);

% theta = v(5);

% thetad = v(6);

%Calculate hip positions in the inertial frame

90

[hpx,hpy] = locatehips(v);

%Calculate position vectors

l = l0 - ldev.*sin(Omega.*(t-tstartstance)+phi);

rx = fpx - hpx;

ry = fpy - hpy;

r = [rx;ry];

%Initialize vectors

dr = zeros(1,6);

F = zeros(2,6);

M3 = zeros(3,6);

for n = 1:6

if FootAct(n)

%Calculate forces

dr(1,n) = norm(r(:,n));

F(:,n) = kval*(dr(n)-l(n))*r(:,n)/dr(n);

r3 = [fpx(n)-x;fpy(n)-y;0];

F3 = [F(:,n);0];

M3(:,n) = cross(r3,F3);

end

end

Fx = F(1,:);

Fy = F(2,:);

M = M3(3,:);

end

91

%%% end legforces function

A.1.3 footplace.m

At each new step, this function finds the placement of feet.

function [fpx, fpy] = footplace(X)

% Calculates foot placement vector. Use only values

% relevant for the appropriate stance phase. First

% position for front leg, second position for middle leg

% (opposite side), third position for back leg. This

% function returns all three leg positions, but can be

% called if only one leg is being placed. The calling

% function must be careful to only reassign the relevant

% foot.

% Modified 5-13, calculate all six legs

%read cval

global cval

% dx = cval(7:12);

% dy = cval(13:18);

l0 = cval(19:24);

ldev = cval(25:30);

beta0 = cval(31:36);

phi = cval(40:42);

92

l0C = l0 - ldev.*sin([phi phi]);

% read initial state

% x = X(1);

% xd = v(2);

% y = X(3);

% yd = v(4);

theta = X(5);

% thetad = v(6);

% Calculate position

% Use the following conventions: theta (body orientation)

% is +CCW for LSP and RSP from straight up beta (leg

% placement angle) is +CCW for LSP and RSP from body axis

% (so legs on the right side are expected to have

% negative values)

[hpx,hpy] = locatehips(X);

fpx = hpx - l0C.*sin(beta0+theta);

fpy = hpy + l0C.*cos(beta0+theta);

end

%%% end footplace function

93

A.1.4 locatehips.m

This function calculates the location of hips. For point mass models, the hips are

located at the center of mass so the function returns zeros.

function [hpx,hpy] = locatehips(X)

%Used to calculate the hip locations of the roach at any

%given point in time

%read cval

global cval

dx = cval(7:12);

dy = cval(13:18);

%read state

x = X(1);

% xd = v(2);

y = X(3);

% yd = v(4);

theta = X(5);

% thetad = v(6);

%Calculate hip positions in the inertial frame

hpx = x + dx*cos(theta)-dy*sin(theta);

hpy = y + dx*sin(theta)+dy*cos(theta);

end

94

%%% end locatehips function

A.2 Parameter Initialization

A.2.1 find fp.m

This script is used to set the initial parameters of a single fixed point. It also

calls fsolve on the fp multileg function to find a fixed point.

clear all, close all,%clc

format long, format compact

global cval tstartstance fpx fpy FootAct fp_guess act_var

global act_con ldev IsPush

%Select pushing legs and desired slope

IsPush = [true true true];

sig = 0;

%These are the options for the fsolve routine

act_var = [1 13 14 15];

%var order = [v0 delta0 tdes 4-6=>ldev1-3 7-9=>beta1-3

%10-12=>Tdrv1-3 13-15=>phi1-3 ldev% beta%]

act_con = [1 2 3 4];

%con order = [Dv Ddelta vdes xdrift]

TypX = [.25 .5 .05 .01*ones(1,3) pi/2*ones(1,3) ...

.05*ones(1,3) pi/4*ones(1,3) 1 1]’;

options = optimset(’MaxIter’,30,’MaxFunEvals’,1000,...

95

’Display’,’iter’,’TolX’,1e-6,’TolFun’,1e-6,...

’TypicalX’,TypX(act_var),’ScaleProblem’,’Jacobian’);

% warning(’ScaleProblem off for older version of Matlab’)

%Set up parameters

% Parameters from Seipel, Holmes, and Full, "Dynamics and

% Stability of Insect Locomotion: A3 Hexapedal Model for

% Horizontal Plane Motions", Biological Cybernetics, 2004

cval = [1.5 0.0025 2.04e-7 sig*pi/180 .05 .25];

%cval = [k m I sig tdes vdes]

%Interpolate to find vdes

vdes0 = .35;

vdes90 = .20;

vdes = vdes0 + sig/90*(vdes90 - vdes0)

cval(6) = vdes;

k = cval(1);

% m = cval(2);

% Ival = cval(3);

% sigma = cval(4);

% tdes = cval(5);

vdes = cval(6);

% vary tdes to fit vdes

tdes = inv(freq_fitter(vdes))/2;

cval(5) = tdes;

96

% The following parameters are in leg order

% FL-MR-BL-FR-ML-BR. Parameters from Kukillaya and Holmes

%, "A Hexapedal Jointed-Leg Model for Insect Locomotion

% in the Horizontal Plane", Biological Cybernetics, 2007.

% dx = [-.0035 .0035 -.0035 .0035 -.0035 .0035];

% dy = [.014 .007 0 .014 .007 0];

%%%%% d = 0 case (hip over C.M.)

dx = zeros(1,6)

dy = zeros(1,6)

%%%%%

% Calculate the foot length and angle based on the

% parameters from the paper.

% fx = [-.011 .013 -.013 .011 -.013 .013];

% fy = [.02 .007 -.01 .02 .007 -.01];

% r = [fx;fy]-[dx;dy]

% for n = 1:6

% l0(n) = norm(r(:,n));

% bet(n) = atan2(-r(1,n),r(2,n))*180/pi;

% end

% l0

% bet

% Use approximate values close to those calculated in the

% commented out section

l0 = [.01 .01 .014 .01 .01 .014];

97

%Updated from Arun’s data

l0 = [.032 .026 .019 .032 .026 .019];

%Starting guess

% ldev = [.015 .015 .015];

ldev = l0(1:3)/2

ldev = abs(ldev);

ldev(IsPush) = -ldev(IsPush);

ldev = [ldev ldev];

%Using Arun’s data

beta0 = [25 -55 120]*pi/180;

beta0 = [beta0 -beta0];

%Half period (step length) used for actuation frequency

Tdrv = [tdes tdes tdes];

phi = [0 0 0];

% phi = [-.5 0 0];

cval = [cval dx dy l0 ldev beta0 Tdrv phi];

%cval7-12 => dx, cval13-18 => dy, cval19-24 => l0

%cval25-30 => ldev, cval31-36 => beta0, cval37-39 => Tdrv

%cval40-42 => phi

ldevX = 1;

betaX = 1;

% Starting guesses

v0 = cval(6);

98

% v0 = 0.286674934558385;

delta0 = .15;

fp_guess = [v0 delta0 tdes ldev(1:3) beta0(1:3) ...

Tdrv(1:3) phi(1:3) ldevX betaX];

%Correct cval based on fp_guess

cval(5) = tdes;

cval(25:30) = ldevX*ldev;

betaC = beta0;

betaC([1 2 4 5]) = betaX*beta0([1 2 4 5]);

cval(31:36) = betaC;

cval(37:39) = Tdrv;

cval(40:42) = phi;

%Initial conditions

theta0 = 0;

thetad0 = 0;

tsdes = [0 0 0];

x_t = zeros(1,6);

y_t = zeros(1,6);

xd = -v0*sin(delta0);

yd = v0*cos(delta0);

X0 = [0 xd 0 yd theta0 thetad0];

% Pre-solve foot place finder

99

footplace_init(tsdes,X0,x_t,y_t)

%Plot initial guess

[x,xd,y,yd,theta,thetad,t,ind,Fx,Fy,M,fpxtot,fpytot,...

leq,lspr,E] = simgait_multileg(X0,2,1);

calc_C

C

%Call fixed point finder

fp = fsolve(@fp_multileg,fp_guess(act_var),options);

fptemp = fp_guess;

fptemp(act_var) = fp;

fp = fptemp

fp_guess

%Set parameters based on the resulting fixed point

v0 = fp(1);

delta0 = fp(2);

tdes = fp(3);

ldev = [fp(4:6) fp(4:6)];

beta0 = [fp(7:9) -fp(7:9)];

Tdrv = fp(10:12);

phi = fp(13:15);

ldevX = fp(16);

betaX = fp(17);

%Correct cval

100

cval(5) = tdes;

cval(25:30) = ldevX*ldev;

betaC = beta0;

betaC([1 2 4 5]) = betaX*beta0([1 2 4 5]);

cval(31:36) = betaC;

cval(37:39) = Tdrv;

cval(40:42) = phi;

%Set initial conditions

xd = -v0*sin(delta0);

yd = v0*cos(delta0);

X0 = [0 xd 0 yd theta0 thetad0];

%foot place finder

footplace_init(tsdes,X0,x_t,y_t)

[x,xd,y,yd,theta,thetad,t,ind,Fx,Fy,M,fpxtot,fpytot,...

leq,lspr,E,Ct] = simgait_multileg(X0,2,1);

calc_C

C(act_con)

% dval = [1e-6 1e-5 1e-1 1e-4];

% eval = findeig([v0 delta0 0 0],dval)

101

A.2.2 freq fitter.m

function omega = freq_fitter(v)

%Uses a fourth order polynomial to estimate the desired

%frequency from the desired velocity. This uses measured

%data of actual cockroach relationships. "Dynamic and

%Static Stability in Hexapedal Runners", Ting, Blickhan

%and Full. Journal of Theoretical Biology, 1994, 197:

%251 269

freqtot2 = [2.9; 4; 4.9; 5; 6.4; 8.8; 9.2; 10.5; 12.4;

10.6; 11.5; 12.1; 11.6; 13.1; 13.8; 13.7; 13.4; 13.7;

13.9; 14.4; 13.6; 13.8];

forv2 = [6; 8.5; 12; 12.2; 13; 18.5; 20; 26; 26; 29;

29.5; 31; 32; 33; 38; 39; 41; 45; 45; 50; 53; 56];

forv2 = forv2/100;

% Create fit of frequency versus velocity and stride

% length versus velocity

% fitfreq = polyfit(forv2,freqtot2,4);

% omega = polyval(fitfreq,v);

fitfreq1 = polyfit(forv2(1:14),freqtot2(1:14),1);

fitfreq2 = polyval(fitfreq1,.35);

if v <= .35

omega = polyval(fitfreq1,v);

102

else

omega = fitfreq2;

end

A.2.3 footplace init.m

This function sets some initial parameters as global values. Essentially it calcu-

lates where the feet must have been placed if you were already running at a fixed

point.

function [] = footplace_init(tsdes,X0,x_t,y_t)

%Finds the initial foot placement at the beginning of a

%simulation. All values are returned as global variables.

global cval tstartstance FootAct fpx fpy IsPush

tdes = cval(5);

vdes = cval(6);

IsPush6 = [IsPush IsPush];

%Set defaults

FootAct = true(1,6);

tstartstance = zeros(1,6);

%Convert tsdes to tstartstance

%Set initial gusses for tstartstance

%tsdes would allow legs to start at different times, but

%all current codes set tsdes to zeros.

103

for n = 1:3

if tsdes(n) > 0

tstartstance([n n+3]) ...

= [tsdes(n)-2*tdes tsdes(n)-tdes];

else

tstartstance([n n+3]) = [tsdes(n) tsdes(n)-tdes];

end

end

%Correct for out of range

while min(tstartstance) <= -2*tdes ...

|| max(tstartstance) > 0

tstartstance(tstartstance <= -2*tdes) = ...

tstartstance(tstartstance <= -2*tdes) + 2*tdes;

tstartstance(tstartstance > 0) = ...

tstartstance(tstartstance > 0) - 2*tdes;

end

%Find correct foot placement

[fpx,fpy] = footplace(X0);

for n = 1:6

X0t = X0+[x_t(n) 0 vdes*tstartstance(n)+y_t(n) 0 0 0];

[fpxt,fpyt] = footplace(X0t);

fpx(n) = fpxt(n);

fpy(n) = fpyt(n);

[˜,˜,˜,lt,drt] = legforces(0,zeros(6,1));

%Turn off legs that should not be active

104

if IsPush6(n)

if drt(n) > lt(n)+eps

FootAct(n) = false;

end

else

if drt(n) < lt(n)-eps

FootAct(n) = false;

end

end

end

A.3 Fixed Point Finding

A.3.1 fp multileg.m

This is the main function that fsolve refers to when finding a fixed point. It runs

a simulation based on the fixed point guess, then calls calc C to calculate the

cost function.

function C = fp_multileg(X)

%Used with fsolve to find a fixed point of a multileg,

%ldev model

global cval tstartstance fpx fpy FootAct fp_guess

global act_var act_con ldev

%Retrieve active variables

105

Xtemp = fp_guess;

Xtemp(act_var) = X;

%Set parameters

v0 = Xtemp(1);

delta0 = Xtemp(2);

tdes = Xtemp(3);

ldev = [Xtemp(4:6) Xtemp(4:6)];

beta0 = [Xtemp(7:9) -Xtemp(7:9)];

Tdrv = Xtemp(10:12);

phi = Xtemp(13:15);

ldevX = Xtemp(16);

betaX = Xtemp(17);

%Correct cval

cval(5) = tdes;

cval(25:30) = ldevX*ldev;

betaC = beta0;

betaC([1 2 4 5]) = betaX*beta0([1 2 4 5]);

cval(31:36) = betaC;

cval(37:39) = Tdrv;

cval(40:42) = phi;

%Set initial conditions

theta0 = 0;

106

thetad0 = 0;

tsdes = [0 0 0];

x_t = zeros(1,6);

y_t = zeros(1,6);

xd = -v0*sin(delta0);

yd = v0*cos(delta0);

X0 = [0 xd 0 yd theta0 thetad0];

footplace_init(tsdes,X0,x_t,y_t)

%Solve for final conditions

[x,xd,y,yd,theta,thetad,t,ind]=simgait_multileg(X0,1,0);

calc_C

%Select constraints

C = C(act_con);

A.3.2 calc C.m

This script is run from fp multileg to calculate the cost function. fsolve minimizes

the cost functions to find a fixed point.

tdes = cval(5);

vdes = cval(6);

%Constraints for one step of front leg

N = min(ind(ind(:,4)>0,4)); %first RSP placement

vf = sqrt(xd(N)ˆ2+yd(N)ˆ2);

107

deltaf = atan2(-xd(N),yd(N)) - theta(N);

%Calculate constraints

C(1) = (vf-v0)/vdes; %vf = v0

C(2) = (deltaf + delta0)/(10*pi/180); %deltaf = -delta0

v = y(N)/t(N);

C(3) = (v - vdes)/vdes; %vavg = vdes

xdes = 0;

C(4) = (x(N)-xdes)/(tdes*vdes/10); %x1 = 0

A.3.3 find sigfam.m

This script is used to find a family of fixed points at a given heading angle and leg

function combination. It finds fixed points for slopes at increments of 5 degrees.

% clear all, close all, %clc

% format long, format compact

global cval tstartstance fpx fpy FootAct fp_guess

global act_var act_con ldev IsPush fp

dval = [1e-6 1e-5 1e-1 1e-4];

%The following variables need to be either set in a batch

%collection script, or manually declared.

% loadfile = [’..\FixedPoints_multileg_varyvdesF\’...

% ’gaitfam_k150_PushA_varyphi_varysig_intvdes’...

% ’_delta20_ldevF016M013B0095_betaF025M055B120’]

% sv_for = false; %Travelling forward in sigma

108

% cont = true; %Continuing from the middle?

% leg_sw = [false true false]; %Which legs switch fnct

% Pushflg = ’B’ %Which gait type?

% deltaExt = .15; %What heading angle

%Load and plot starting point

% load temp

load(loadfile)

save temp

%Use to keep a portion of a saved file

% Nend = length(exflgtot)

% cvaltot = cvaltot(1:Nend-1,:);

% fptot = fptot(1:Nend-1,:);

% IsPushtot = IsPushtot(1:Nend-1,:);

% X0tot = X0tot(1:Nend-1,:);

% tstarttot = tstarttot(1:Nend-1,:);

% FootActtot = FootActtot(1:Nend-1,:);

% evaltot = evaltot(1:Nend-1,:);

% Ctot = Ctot(1:Nend-1,:);

% exflgtot = exflgtot(1:Nend-1,:);

% Fxmaxtot = Fxmaxtot(1:Nend-1,:);

% Fymaxtot = Fymaxtot(1:Nend-1,:);

% Fxcumtot = Fxcumtot(1:Nend-1,:);

% Fycumtot = Fycumtot(1:Nend-1,:);

109

% load temp2

%Choose which point to use as a starting guess

% n = 1;

% n = length(exflgtot)

if cont

nA = 1:length(exflgtot);

nA = nA(exflgtot == 1);

if sv_for

n = nA(end)

else

n = nA(1)

end

else

if sv_for

n = 1;

else

n = length(exflgtot);

end

end

cval = cvaltot(n,:);

fp = fptot(n,:);

IsPush = logical(IsPushtot(n,:));

%Switch legs pushing/pulling direction if required

110

IsPush(leg_sw) = ˜IsPush(leg_sw)

ldev = abs(fp(4:6));

ldev(IsPush) = -ldev(IsPush)

fp(4:6) = ldev;

%Set heading angle

fp(2) = deltaExt; %delta

%Clear previous data (comment out if desired)

cvaltot = [];

fptot = [];

IsPushtot = [];

X0tot = [];

tstarttot = [];

FootActtot = [];

evaltot = [];

Ctot = [];

exflgtot = [];

Fxmaxtot = [];

Fymaxtot = [];

Fxcumtot = [];

Fycumtot = [];

Ctrantot = [];

%Find additional gaits

%These are the options for the fsolve routine

111

act_var = [1 13 14 15];

%var order = [v0 delta0 tdes 4-6=>ldev1-3 7-9=>beta1-3

%10-12=>Tdrv1-3 13-15=>phi1-3 ldev% beta%]

act_con = [1 2 3 4];

%con order = [Dv Ddelta vdes xdrift]

TypX = [.25 .5 .05 .01*ones(1,3) pi/2*ones(1,3) ...

.05*ones(1,3) pi/4*ones(1,3) 1 1]’;

options = optimset(’MaxIter’,100,’MaxFunEvals’,1500,...

’Display’,’iter’,’TolX’,1e-7,’TolFun’,1e-8,...

’TypicalX’,TypX(act_var),’ScaleProblem’,’Jacobian’);

%Identify desired slopes in steps of 5 degrees

if sv_for

sigind = cval(4)*180/pi:5:90

else

sigind = cval(4)*180/pi:-5:0

end

if cont

sigind = sigind(2:end)

end

for sig = sigind

%Set parameters for new fixed point

cval(4) = sig*pi/180;

vdes0 = .35;

vdes90 = .20;

112

vdes = vdes0 + sig/90*(vdes90 - vdes0)

tdes = inv(freq_fitter(vdes))/2

cval(5) = tdes;

fp(3) = tdes;

cval(37:39) = tdes;

fp(10:12) = tdes;

cval(6) = vdes;

fp_guess = fp;

%Call fixed point finder

disp([’Working on sigma = ’ num2str(sig)])

[fp,C,exflg] = fsolve(@fp_multileg,fp_guess(act_var)...

,options);

fptemp = fp_guess;

fptemp(act_var) = fp;

fp = fptemp

%Set parameters based on the resulting fixed point

v0 = fp(1);

delta0 = fp(2);

tdes = fp(3);

ldev = [fp(4:6) fp(4:6)];

beta0 = [fp(7:9) -fp(7:9)];

Tdrv = fp(10:12);

phi = fp(13:15);

ldevX = fp(16);

betaX = fp(17);

113

%Correct cval

cval(5) = tdes;

cval(25:30) = ldevX*ldev;

betaC = beta0;

betaC([1 2 4 5]) = betaX*beta0([1 2 4 5]);

cval(31:36) = betaC;

cval(37:39) = Tdrv;

cval(40:42) = phi;

%Set initial conditions

xd = -v0*sin(delta0);

yd = v0*cos(delta0);

X0 = [0 xd 0 yd 0 0];

%foot place finder

tsdes = zeros(3,1);

x_t = zeros(6,1);

y_t = zeros(6,1);

footplace_init(tsdes,X0,x_t,y_t)

%Simulate at new fixed point to gather forces, Ctran

[˜,˜,˜,˜,˜,˜,˜,ind,Fx,Fy,˜,˜,˜,˜,˜,˜,Ct] ...

= simgait_multileg(X0,1,0);

Fxmax = max(Fx(:,1:3));

Fxmin = min(Fx(:,1:3));

rec_min = abs(Fxmin) > abs(Fxmax);

Fxmax(rec_min) = Fxmin(rec_min);

Fymax = max(Fy(:,1:3));

114

Fymin = min(Fy(:,1:3));

rec_min = abs(Fymin) > abs(Fymax);

Fymax(rec_min) = Fymin(rec_min);

step = max(ind(:,4));

Fxcum = [max(sum(Fx(1:step,:),2)) ...

min(sum(Fx(1:step,:),2))];

Fycum = [max(sum(Fy(1:step,:),2)) ...

min(sum(Fy(1:step,:),2))];

e = findeig([v0 delta0 0 0],dval)

step = ind(ind(:,4)>0,4);

Ctran = Ct(step)

if sv_for

%Store variables - forward travelling

cvaltot = [cvaltot;cval];

fptot = [fptot;fp];

IsPushtot = [IsPushtot;IsPush];

X0tot = [X0tot;X0];

tstarttot = [tstarttot;tstartstance];

FootActtot = [FootActtot;FootAct];

evaltot = [evaltot;e’];

Ctot = [Ctot;C];

exflgtot = [exflgtot;exflg];

Fxmaxtot = [Fxmaxtot;Fxmax];

Fymaxtot = [Fymaxtot;Fymax];

115

Fxcumtot = [Fxcumtot;Fxcum];

Fycumtot = [Fycumtot;Fycum];

Ctrantot = [Ctrantot;Ctran];

else

%Store variables - backward travelling

cvaltot = [cval;cvaltot];

fptot = [fp;fptot];

IsPushtot = [IsPush;IsPushtot];

X0tot = [X0;X0tot];

tstarttot = [tstartstance;tstarttot];

FootActtot = [FootAct;FootActtot];

evaltot = [e’;evaltot];

Ctot = [C;Ctot];

exflgtot = [exflg;exflgtot];

Fxmaxtot = [Fxmax;Fxmaxtot];

Fymaxtot = [Fymax;Fymaxtot];

Fxcumtot = [Fxcum;Fxcumtot];

Fycumtot = [Fycum;Fycumtot];

Ctrantot = [Ctran;Ctrantot];

end

%Save results

vdes = num2str(cval(6)*100);

delta = num2str(fp(2)*100);

if length(delta) == 1

116

delta = [’0’ delta];

end

savefile = [’..\FixedPoints_MultiLeg_varyvdesF\’...

’gaitfam_k150_Push’ Pushflg ’_varyphi_varysig_’...

’intvdes_delta’ delta ’_ldevF016M013B0095_’...

’betaF025M055B120’]

save(savefile,’cvaltot’,’fptot’,’IsPushtot’,’X0tot’,...

’tstarttot’,’FootActtot’,’evaltot’,’Ctot’,...

’exflgtot’,’Fxmaxtot’,’Fymaxtot’,’Fxcumtot’,...

’Fycumtot’,’Ctrantot’)

if exflg ˜= 1

%If the last fixed point was no good

break

end

end

%Plot eigenvalues

figure,plot(cvaltot(:,4)*180/pi,sort(abs(evaltot),2))

A.4 Fixed Point Analysis

A.4.1 findeig.m

This function is used to calculate the eigenvalues of a given fixed point.

function [e] = findeig(init,dval)

%findeig calculates eigenvalues for the six legged model

117

%driven by ldev. Leg switch occurs on corresponding zero

%force for that leg only. Discrete eigenvalues are based

%on simulating for two stances of the front leg.

%Eigenvalues are with respect to states of v, delta,

%theta, and thetadot.

global fpx fpy FootAct tstartstance

%save a copy of initial global variables

fpx0 = fpx;

fpy0 = fpy;

FootAct0 = FootAct;

tstartstance0 = tstartstance;

%Initialize variables

tsdes = zeros(3,1);

x_t = zeros(6,1);

y_t = zeros(6,1);

%Single dval input

if length(dval) == 1

dval = ones(4,1)*dval;

end

vi = init(1);

deltai = init(2);

thetai = init(3);

118

thetadi = init(4);

deltai = -(mod(-(deltai+pi),2*pi)-pi);

% Enforces the range -pi < delta <= pi

thetai = -(mod(-(thetai+pi),2*pi)-pi);

%v variation

disp(’Varying v’)

[xdi,ydi] = states_xy(vi+dval(1),deltai,thetai);

ival = [0 xdi 0 ydi thetai thetadi];

footplace_init(tsdes,ival,x_t,y_t)

[x,xd,y,yd,theta,thetad,t,ind] ...

= simgait_multileg(ival,2,0);

indF = ind(ind(:,1)>0,1);

indf2 = indF(2);

[vf_vU,deltaf_vU] ...

= states_vd(xd(indf2),yd(indf2),theta(indf2));

thetaf_vU = theta(indf2);

thetadf_vU = thetad(indf2);

final_vU = [vf_vU deltaf_vU thetaf_vU thetadf_vU];

%Lower point

[xdi,ydi] = states_xy(vi-dval(1),deltai,thetai);

ival = [0 xdi 0 ydi thetai thetadi];

footplace_init(tsdes,ival,x_t,y_t)

[x,xd,y,yd,theta,thetad,t,ind] ...

= simgait_multileg(ival,2,0);

119

indF = ind(ind(:,1)>0,1);

indf2 = indF(2);

[vf_vL,deltaf_vL] ...

= states_vd(xd(indf2),yd(indf2),theta(indf2));

thetaf_vL = theta(indf2);

thetadf_vL = thetad(indf2);

final_vL = [vf_vL deltaf_vL thetaf_vL thetadf_vL];

%delta variation

disp(’Varying delta’)

[xdi,ydi] = states_xy(vi,deltai+dval(2),thetai);

ival = [0 xdi 0 ydi thetai thetadi];

footplace_init(tsdes,ival,x_t,y_t)

[x,xd,y,yd,theta,thetad,t,ind] ...

= simgait_multileg(ival,2,0);

indF = ind(ind(:,1)>0,1);

indf2 = indF(2);

[vf_dU,deltaf_dU] ...

= states_vd(xd(indf2),yd(indf2),theta(indf2));

thetaf_dU = theta(indf2);

thetadf_dU = thetad(indf2);

final_dU = [vf_dU deltaf_dU thetaf_dU thetadf_dU];

%Lower point

[xdi,ydi] = states_xy(vi,deltai-dval(2),thetai);

ival = [0 xdi 0 ydi thetai thetadi];

120

footplace_init(tsdes,ival,x_t,y_t)

[x,xd,y,yd,theta,thetad,t,ind] ...

= simgait_multileg(ival,2,0);

indF = ind(ind(:,1)>0,1);

indf2 = indF(2);

[vf_dL,deltaf_dL] ...

= states_vd(xd(indf2),yd(indf2),theta(indf2));

thetaf_dL = theta(indf2);

thetadf_dL = thetad(indf2);

final_dL = [vf_dL deltaf_dL thetaf_dL thetadf_dL];

%theta variation

disp(’Varying theta’)

[xdi,ydi] = states_xy(vi,deltai,thetai+dval(3));

ival = [0 xdi 0 ydi thetai+dval(3) thetadi];

footplace_init(tsdes,ival,x_t,y_t)

[x,xd,y,yd,theta,thetad,t,ind] ...

= simgait_multileg(ival,2,0);

indF = ind(ind(:,1)>0,1);

indf2 = indF(2);

[vf_tU,deltaf_tU] ...

= states_vd(xd(indf2),yd(indf2),theta(indf2));

thetaf_tU = theta(indf2);

thetadf_tU = thetad(indf2);

final_tU = [vf_tU deltaf_tU thetaf_tU thetadf_tU];

121

%Lower point

[xdi,ydi] = states_xy(vi,deltai,thetai-dval(3));

ival = [0 xdi 0 ydi thetai-dval(3) thetadi];

footplace_init(tsdes,ival,x_t,y_t)

[x,xd,y,yd,theta,thetad,t,ind] ...

= simgait_multileg(ival,2,0);

indF = ind(ind(:,1)>0,1);

indf2 = indF(2);

[vf_tL,deltaf_tL] ...

= states_vd(xd(indf2),yd(indf2),theta(indf2));

thetaf_tL = theta(indf2);

thetadf_tL = thetad(indf2);

final_tL = [vf_tL deltaf_tL thetaf_tL thetadf_tL];

%thetad variation

disp(’Varying theta’’’)

[xdi,ydi] = states_xy(vi,deltai,thetai);

ival = [0 xdi 0 ydi thetai thetadi+dval(4)];

footplace_init(tsdes,ival,x_t,y_t)

[x,xd,y,yd,theta,thetad,t,ind] ...

= simgait_multileg(ival,2,0);

indF = ind(ind(:,1)>0,1);

indf2 = indF(2);

[vf_tdU,deltaf_tdU] ...

= states_vd(xd(indf2),yd(indf2),theta(indf2));

122

thetaf_tdU = theta(indf2);

thetadf_tdU = thetad(indf2);

final_tdU = [vf_tdU deltaf_tdU thetaf_tdU thetadf_tdU];

%Lower point

[xdi,ydi] = states_xy(vi,deltai,thetai);

ival = [0 xdi 0 ydi thetai thetadi-dval(4)];

footplace_init(tsdes,ival,x_t,y_t)

[x,xd,y,yd,theta,thetad,t,ind] ...

= simgait_multileg(ival,2,0);

indF = ind(ind(:,1)>0,1);

indf2 = indF(2);

[vf_tdL,deltaf_tdL] ...

= states_vd(xd(indf2),yd(indf2),theta(indf2));

thetaf_tdL = theta(indf2);

thetadf_tdL = thetad(indf2);

final_tdL = [vf_tdL deltaf_tdL thetaf_tdL thetadf_tdL];

%Calculate Jacobian

jacc = [(final_vU-final_vL)/(2*dval(1));

(final_dU-final_dL)/(2*dval(2));

(final_tU-final_tL)/(2*dval(3));

(final_tdU-final_tdL)/(2*dval(4))];

e = eig(jacc);

%Reset global values

123

fpx = fpx0;

fpy = fpy0;

FootAct = FootAct0;

tstartstance = tstartstance0;

end

function [xd,yd] = states_xy(v,delta,theta)

%Translates states from v, delta to xd,yd

%(Only works for LSP delta formulation)

xd = -v*sin(delta+theta);

yd = v*cos(delta+theta);

end

function [v,delta] = states_vd(xd,yd,theta)

%Translates states from xd,yd to v, delta

%(Only works for LSP delta formulation)

v = sqrt(xdˆ2+ydˆ2);

delta = atan2(-xd,yd) - theta;

end

A.4.2 run fp.m

This script is used to read and plot a fixed point from a file.

124

clear all, close all, %clc

format long, format compact

global cval tstartstance fpx fpy footact fp ispush

%load in a gaitfamily

% load ..\fixedpoints_mineig\gaitfam_pushB_varysig_...

% k150_intvdes_delta15_varyldev_betaF025M055B120

load ..\fixedpoints_multileg_varyvdesf\gaitfam_k150...

_pushB_varyphi_varysig_intvdes_delta05_...

ldevF016M013B0095_betaF025M055B120

%select fixed point

n = 4;

n = length(exflgtot);

% cvaltot(:,4)’*180/pi

% % exflgtot’

% n = input(’n: ’)

cval = cvaltot(n,:);

fp = fptot(n,:);

ispush = ispushtot(n,:);

x0 = x0tot(n,:);

tstartstance = tstarttot(n,:);

footact = footacttot(n,:);

%load in a single fixed point

125

% load .\vary_ldev_only\fp_pushmb_sig20_vdes3167_...

% delta15_k100_ldevf030m008b018_betaf025m055b120

% load temp

% ispush = [true false true]

%set parameters and plot the resulting motion

tsdes = zeros(3,1);

x_t = zeros(6,1);

y_t = zeros(6,1);

footplace_init(tsdes,x0,x_t,y_t)

[x,xd,y,yd,theta,thetad,t,ind,fx,fy,m,fpxtot,fpytot,...

leq,lspr,e,ct] = simgait_multileg(x0,2,1);

v0 = fp(1);

delta0 = fp(2);

vdes = cval(6);

calc_C

%plot leg response with step starts indicated

titlestr = {’simulated lsp legs’;...

’simulated rsp legs’;’’;’’;’’;’’};

ylabstr = {’front left leg’;’front right leg’;...

’mid right leg’;’mid left leg’;...

’back left leg’;’back right leg’};

indnum = [1;4;2;5;3;6];

figure

126

for graphnum = 1:6

subplot(3,2,graphnum)

plot(t,lspr(:,indnum(graphnum)),’b-’,...

t,leq(:,indnum(graphnum)),’g--’)

title(titlestr(graphnum))

ylabel(ylabstr(graphnum))

xlim([0 4*tdes])

hold on

yspace = ylim;

for n = 1:3

plot(n*tdes*[1;1],[yspace],’r:’)

end

text(tdes*[1 2 3],yspace(1)*[1 1 1],...

{’t_d_e_s’,’2t_d_e_s’,’3t_d_e_s’},...

’horizontalalignment’,’center’,...

’verticalalignment’,’top’)

set(gca,’ytick’,[],’xtick’,[])

end

%display transport cost

indft = ind(ind(:,4) > 0,4);

ct(indft(1))

127

A.4.3 plotgaits.m

This script is used to make contour plots from a set of gait families.

clear all, close all

%Plot all gait families important parameters on a contour

%plot

%Define which families to collect

sigA = (0:5:90)’

deltaA = 0:5:45;

sigM = sigA*ones(size(deltaA));

deltaM = ones(size(sigA))*deltaA;

Pushflg = {’A’;’FB’;’MB’;’B’};

Pushsym = {’bs’;’gv’;’mˆ’;’ro’};

l0 = [.032 .026 .019];

mnldev = .2*l0

mxldev = .9*l0

mg = 0.0025*9.81;

%Set up figure handles

eplt = figure;

Cplt = figure;

robplt = figure;

% for cnt = 1:3

% ldevplt(cnt) = figure;

% end

128

v0plt = figure;

for cnt = 1:3

phiplt(cnt) = figure;

end

for cnt = 1:4

Flatplt(cnt) = figure;

end

for cnt = 1:4

Ffaplt(cnt) = figure;

end

for Pind = 1:4

figure(eplt)

eval([’e’ char(Pushflg(Pind)) ...

’plt = subplot(2,2,Pind);’])

figure(Cplt)

eval([’C’ char(Pushflg(Pind)) ...

’plt = subplot(2,2,Pind);’])

figure(v0plt)

eval([’v0’ char(Pushflg(Pind)) ...

’plt = subplot(2,2,Pind);’])

figure(robplt)

eval([’rob’ char(Pushflg(Pind)) ...

’plt = subplot(2,2,Pind);’])

for cnt = 1:3

% figure(ldevplt(cnt))

129

% eval([’ldev’ char(Pushflg(Pind)) ...

% ’plt(cnt) = subplot(2,2,Pind);’])

figure(phiplt(cnt))

eval([’phi’ char(Pushflg(Pind)) ...

’plt(cnt) = subplot(2,2,Pind);’])

end

for cnt = 1:4

figure(Flatplt(cnt))

eval([’Flat’ char(Pushflg(Pind)) ...

’plt(cnt) = subplot(2,2,Pind);’])

figure(Ffaplt(cnt))

eval([’Ffa’ char(Pushflg(Pind)) ...

’plt(cnt) = subplot(2,2,Pind);’])

end

end

%Collect data

for Pind = 1:4

%Declare empty data sets

eval([’emax’ char(Pushflg(Pind)) ...

’_M = NaN(length(sigA),length(deltaA));’])

eval([’Ctran’ char(Pushflg(Pind)) ...

’_M = NaN(length(sigA),length(deltaA));’])

eval([’nsteps’ char(Pushflg(Pind)) ...

’_M = NaN(length(sigA),length(deltaA));’])

130

eval([’v0’ char(Pushflg(Pind)) ...

’_M = NaN(length(sigA),length(deltaA));’])

for cnt = 1:3

eval([’phi’ num2str(cnt) char(Pushflg(Pind)) ...

’_M = NaN(length(sigA),length(deltaA));’])

eval([’ldev’ num2str(cnt) char(Pushflg(Pind)) ...

’_M = NaN(length(sigA),length(deltaA));’])

eval([’Flat’ num2str(cnt) char(Pushflg(Pind)) ...

’_M = NaN(length(sigA),length(deltaA));’])

eval([’Ffa’ num2str(cnt) char(Pushflg(Pind)) ...

’_M = NaN(length(sigA),length(deltaA));’])

end

eval([’FlatS_’ char(Pushflg(Pind)) ...

’_M = NaN(length(sigA),length(deltaA));’])

eval([’FfaS_’ char(Pushflg(Pind)) ...

’_M = NaN(length(sigA),length(deltaA));’])

%Step through delta

for dind = 1:length(deltaA)

deltaS = num2str(deltaA(dind));

if deltaA(dind) < 10

deltaS = [’0’ deltaS];

end

loadfile= [’gaitfam_k150_Push’ char(Pushflg(Pind))...

’_varyphi_varysig_intvdes_delta’ deltaS ...

’_ldevF016M013B0095_betaF025M055B120’];

131

if exist([loadfile ’.mat’],’file’)

%Prevents a load command for a nonexistent file

loadfile

load(loadfile)

%Step through sigma

for sigind = 1:length(sigA)

%check for a valid data point that matches the

%sigma required

ind = 1:length(exflgtot);

log_ind = (abs(cvaltot(:,4)*180/pi - ...

sigA(sigind))<10000*eps);

val_ind = ind(log_ind);

%Remove non fp

if exflgtot(val_ind)˜=1

val_ind = [];

end

%remove ldev violations

for fpnum = 4:6

if max(abs(fptot(val_ind,fpnum))) ...

> mxldev(fpnum-3)

val_ind = [];

end

if min(abs(fptot(val_ind,fpnum))) ...

< mnldev(fpnum-3)

val_ind = [];

132

end

end

%Remove other fixed points known to be bad

% if Pind == 4 && sigind <= 4 && dind == 8

% warning(’manual remove’)

% val_ind = [];

% end

%Collect data for valid points

if val_ind

%Find maximum eval

etemp = abs(evaltot(val_ind,:));

for cnt = 1:2

[˜,rmv] = min(abs(etemp - 1));

etemp(rmv) = 0;

end

eval([’emax’ char(Pushflg(Pind)) ...

’_M(sigind,dind) = max(etemp);’])

eval([’Ctran’ char(Pushflg(Pind)) ...

’_M(sigind,dind) = Ctrantot(val_ind);’])

indrob = (percimpA == .5);

nsteps = numstepstot(val_ind,indrob);

if ˜recoveredtot(val_ind,indrob)

nsteps = 100;

end

eval([’nsteps’ char(Pushflg(Pind)) ...

133

’_M(sigind,dind) = nsteps;’])

eval([’v0’ char(Pushflg(Pind)) ...

’_M(sigind,dind) = fptot(val_ind,1);’])

for cnt = 1:3

eval([’phi’ num2str(cnt) char(Pushflg(...

Pind)) ’_M(sigind,dind) = ’ ...

’fptot(val_ind,cnt+12)*180/pi;’])

eval([’ldev’ num2str(cnt) char(Pushflg(...

Pind)) ’_M(sigind,dind) = ’ ...

’abs(fptot(val_ind,cnt+3));’])

eval([’Flat’ num2str(cnt) char(Pushflg(...

Pind)) ’_M(sigind,dind) = ’ ...

’Fxmaxtot(val_ind,cnt);’])

eval([’Ffa’ num2str(cnt) char(Pushflg(...

Pind)) ’_M(sigind,dind) = ’ ...

’Fymaxtot(val_ind,cnt);’])

end

eval([’FlatS_’ char(Pushflg(Pind)) ...

’_M(sigind,dind) = Fxcumtot(val_ind,1);’])

eval([’FfaS_’ char(Pushflg(Pind)) ...

’_M(sigind,dind) = Fycumtot(val_ind,1);’])

end

end

else

disp([loadfile ’ does not exist’])

134

end

end

end

%Plot data

for Pind = 1:4

%Stability

eval([’contourf(e’ char(Pushflg(Pind)) ...

’plt,sigM,deltaM/100,emax’ char(Pushflg(Pind)) ...

’_M,’’LineStyle’’,’’none’’,’’LevelStep’’,.02)’])

eval([’colorbar(’’peer’’,e’ ...

char(Pushflg(Pind)) ’plt)’])

eval([’title(e’ char(Pushflg(Pind)) ’plt,’’Push’ ...

char(Pushflg(Pind)) ’ Gaits’’)’])

eval([’xlabel(e’ char(Pushflg(Pind)) ...

’plt,’’Incline Slope: \sigma (\circ)’’)’])

eval([’ylabel(e’ char(Pushflg(Pind)) ...

’plt,’’Heading: \delta_0 (rad)’’)’])

eval([’caxis(e’ char(Pushflg(Pind)) ...

’plt,[0 .7])’])

set(eplt,’name’,’Stability’,’numbertitle’,’off’)

%Transport Cost

eval([’contourf(C’ char(Pushflg(Pind)) ...

’plt,sigM,deltaM/100,Ctran’ char(Pushflg(Pind)) ...

’_M,’’LineStyle’’,’’none’’,’’LevelStep’’,.1)’])

135

eval([’colorbar(’’peer’’,C’ ...

char(Pushflg(Pind)) ’plt)’])

eval([’title(C’ char(Pushflg(Pind)) ’plt,’’Push’ ...

char(Pushflg(Pind)) ’ Gaits’’)’])

eval([’xlabel(C’ char(Pushflg(Pind)) ...

’plt,’’Incline Slope: \sigma (\circ)’’)’])

eval([’ylabel(C’ char(Pushflg(Pind)) ...

’plt,’’Heading: \delta_0 (rad)’’)’])

eval([’caxis(C’ char(Pushflg(Pind)) ...

’plt,[0 2])’])

set(Cplt,’name’,’Transport Cost’,’numbertitle’,’off’)

%Initial Velocity

eval([’contourf(v0’ char(Pushflg(Pind)) ...

’plt,sigM,deltaM/100,v0’ char(Pushflg(Pind)) ...

’_M,’’LineStyle’’,’’none’’,’’LevelStep’’,.02)’])

eval([’colorbar(’’peer’’,v0’ ...

char(Pushflg(Pind)) ’plt)’])

eval([’title(v0’ char(Pushflg(Pind)) ’plt,’’Push’ ...

char(Pushflg(Pind)) ’ Gaits’’)’])

eval([’xlabel(v0’ char(Pushflg(Pind)) ...

’plt,’’Incline Slope: \sigma (\circ)’’)’])

eval([’ylabel(v0’ char(Pushflg(Pind)) ...

’plt,’’Heading: \delta_0 (rad)’’)’])

eval([’caxis(v0’ char(Pushflg(Pind)) ’plt,[0 .4])’])

set(v0plt,’name’,’Initial Velocity’,...

136

’numbertitle’,’off’)

for cnt = 1:3

%phi

eval([’contourf(phi’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),sigM,deltaM/100,phi’ ...

num2str(cnt) char(Pushflg(Pind)) ...

’_M,’’LineStyle’’,’’none’’,’’LevelStep’’,5)’])

eval([’colorbar(’’peer’’,phi’ char(Pushflg(Pind)) ...

’plt(’ num2str(cnt) ’))’])

eval([’title(phi’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),’’Push’ char(Pushflg(Pind)) ...

’ Gaits’’)’])

eval([’xlabel(phi’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),’’Incline Slope:’ ...

’\sigma (\circ)’’)’])

eval([’ylabel(phi’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),’’Heading: \delta_0 (rad)’’)’])

eval([’caxis(phi’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),[-60 60])’])

eval([’set(phiplt(’ num2str(cnt) ...

’),’’name’’,’’phi’ num2str(cnt) ...

’’’,’’numbertitle’’,’’off’’)’])

% %ldev

% eval([’contourf(ldev’ char(Pushflg(Pind)) ’plt(’...

% num2str(cnt) ’),sigM,deltaM/100,ldev’ ...

137

% num2str(cnt) char(Pushflg(Pind)) ...

% ’_M,’’LineStyle’’,’’none’’,’’LevelStep’’,’ ...

% num2str((mxldev(cnt) - mnldev(cnt))/20) ’)’])

% eval([’colorbar(’’peer’’,ldev’ char(Pushflg(...

% Pind)) ’plt(’ num2str(cnt) ’))’])

% eval([’title(ldev’ char(Pushflg(Pind)) ’plt(’ ...

% num2str(cnt) ’),’’Push’ char(Pushflg(Pind)) ...

% ’ Gaits’’)’])

% eval([’xlabel(ldev’ char(Pushflg(Pind)) ’plt(’ ...

% num2str(cnt) ’),’’Incline Slope:’ ...

% ’\sigma (\circ)’’)’])

% eval([’ylabel(ldev’ char(Pushflg(Pind)) ’plt(’ ...

% num2str(cnt) ’),’’Heading: \delta_0 (rad)’’)’])

% eval([’caxis(ldev’ char(Pushflg(Pind)) ’plt(’ ...

% num2str(cnt) ’),[’ num2str(mnldev(cnt)) ...

% ’ ’ num2str(mxldev(cnt)) ’])’])

% eval([’set(ldevplt(’ num2str(cnt) ...

% ’),’’name’’,’’ldev’ num2str(cnt) ...

% ’’’,’’numbertitle’’,’’off’’)’])

%Flati

eval([’contourf(Flat’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),sigM,deltaM/100,Flat’ ...

num2str(cnt) char(Pushflg(Pind)) ...

’_M/mg,’’LineStyle’’,’’none’’,’’LevelStep’’,.1)’])

eval([’colorbar(’’peer’’,Flat’ char(Pushflg(Pind))...

138

’plt(’ num2str(cnt) ’))’])

eval([’title(Flat’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),’’Norm. Lateral Force F_’ ...

num2str(cnt) ’ of a Push’ char(Pushflg(Pind)) ...

’ Gait Family - Opt. for Stab.’’)’])

eval([’xlabel(Flat’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),’’Incline Slope:’ ...

’ \sigma (\circ)’’)’])

eval([’ylabel(Flat’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),’’Heading Angle:’ ...

’ \delta_0 (rad)’’)’])

eval([’caxis(Flat’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),[-1 1])’])

%Ffai

eval([’contourf(Ffa’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),sigM,deltaM/100,Ffa’ ...

num2str(cnt) char(Pushflg(Pind)) ...

’_M/mg,’’LineStyle’’,’’none’’,’’LevelStep’’,.1)’])

eval([’colorbar(’’peer’’,Ffa’ char(Pushflg(Pind)) ...

’plt(’ num2str(cnt) ’))’])

eval([’title(Ffa’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),’’Norm. For/Aft Force F_’ ...

num2str(cnt) ’ of a Push’ char(Pushflg(Pind)) ...

’ Gait Family - Opt. for Stab.’’)’])

eval([’xlabel(Ffa’ char(Pushflg(Pind)) ’plt(’ ...

139

num2str(cnt) ’),’’Incline Slope:’ ...

’ \sigma (\circ)’’)’])

eval([’ylabel(Ffa’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),’’Heading Angle:’ ...

’ \delta_0 (rad)’’)’])

eval([’caxis(Ffa’ char(Pushflg(Pind)) ’plt(’ ...

num2str(cnt) ’),[-1 1.5])’])

end

%Sum(Flat)

eval([’contourf(Flat’ char(Pushflg(Pind)) ’plt(4)’ ...

’,sigM,deltaM/100,FlatS_’ char(Pushflg(Pind))...

’_M/mg,’’LineStyle’’,’’none’’,’’LevelStep’’,.1)’])

eval([’colorbar(’’peer’’,Flat’ ...

char(Pushflg(Pind)) ’plt(4))’])

eval([’title(Flat’ char(Pushflg(Pind)) ...

’plt(4),’’Norm. Lateral Force \SigmaF of a Push’ ...

char(Pushflg(Pind)) ...

’ Gait Family - Opt. for Stab.’’)’])

eval([’xlabel(Flat’ char(Pushflg(Pind)) ...

’plt(4),’’Incline Slope: \sigma (\circ)’’)’])

eval([’ylabel(Flat’ char(Pushflg(Pind)) ...

’plt(4),’’Heading Angle: \delta_0 (rad)’’)’])

eval([’caxis(Flat’ char(Pushflg(Pind)) ...

’plt(4),[0 1.5])’])

%Sum(Ffa)

140

eval([’contourf(Ffa’ char(Pushflg(Pind)) ...

’plt(4),sigM,deltaM/100,FfaS_’ char(Pushflg(Pind))...

’_M/mg,’’LineStyle’’,’’none’’,’’LevelStep’’,.1)’])

eval([’colorbar(’’peer’’,Ffa’ ...

char(Pushflg(Pind)) ’plt(4))’])

eval([’title(Ffa’ char(Pushflg(Pind)) ...

’plt(4),’’Norm. For/Aft Force \SigmaF of a Push’ ...

char(Pushflg(Pind)) ...

’ Gait Family - Opt. for Stab.’’)’])

eval([’xlabel(Ffa’ char(Pushflg(Pind)) ...

’plt(4),’’Incline Slope: \sigma (\circ)’’)’])

eval([’ylabel(Ffa’ char(Pushflg(Pind)) ...

’plt(4),’’Heading Angle: \delta_0 (rad)’’)’])

eval([’caxis(Ffa’ char(Pushflg(Pind)) ’plt(4),[0 2])’])

end

%xo plot

figure, hold on

axis([-2.5 92.5 -.025 .475])

title(’Gait Existence - Opt. for Stab.’)

xlabel(’Incline Slope: \sigma (\circ)’)

ylabel(’Heading Angle: \delta_0 (rad)’)

MrkSz = [9 5 5 7];

for Pind = 1:4

eval([’val_ind = ˜isnan(emax’ ...

141

char(Pushflg(Pind)) ’_M);’])

eval([’legxo(Pind) = plot(sigM(val_ind),’ ...

’deltaM(val_ind)/100,’’’ char(Pushsym(Pind)) ...

’’’,’’MarkerSize’’,’ num2str(MrkSz(Pind)) ’)’])

end

for n = 1:4

labxo(n) = {[’Push ’ char(Pushflg(n))]};

end

legend(legxo,char(labxo),’Location’,’SouthOutside’, ...

’Orientation’,’Horizontal’);

Pushsym = {’ks’;’kv’;’kˆ’;’ko’};

%Find optimized eval

emaxtot = ones(size(emaxA_M));

emaxind = zeros(size(emaxA_M));

Ctrantot = NaN(size(emaxA_M));

v0tot = NaN(size(v0A_M));

phi1tot = NaN(size(phi1A_M));

phi2tot = phi1tot;

phi3tot = phi1tot;

nstepstot = NaN(size(nstepsA_M));

Flat1tot = NaN(size(Flat1A_M));

Flat2tot = Flat1tot;

Flat3tot = Flat1tot;

FlatS_tot = Flat1tot;

142

Ffa1tot = Flat1tot;

Ffa2tot = Flat1tot;

Ffa3tot = Flat1tot;

FfaS_tot = Flat1tot;

for Pind = 1:4

eval([’rep_ind = emax’ char(Pushflg(Pind)) ...

’_M < emaxtot;’])

eval([’emaxtot(rep_ind) = emax’ ...

char(Pushflg(Pind)) ’_M(rep_ind);’])

emaxind(rep_ind) = Pind;

eval([’Ctrantot(rep_ind) = Ctran’ ...

char(Pushflg(Pind)) ’_M(rep_ind);’])

eval([’v0tot(rep_ind) = v0’ ...

char(Pushflg(Pind)) ’_M(rep_ind);’])

eval([’phi1tot(rep_ind) = phi1’ ...

char(Pushflg(Pind)) ’_M(rep_ind);’])

eval([’phi2tot(rep_ind) = phi2’ ...

char(Pushflg(Pind)) ’_M(rep_ind);’])

eval([’phi3tot(rep_ind) = phi3’ ...

char(Pushflg(Pind)) ’_M(rep_ind);’])

eval([’nstepstot(rep_ind) = nsteps’ ...

char(Pushflg(Pind)) ’_M(rep_ind);’])

for lnum = 1:3

eval([’Flat’ num2str(lnum) ’tot(rep_ind) = Flat’ ...

num2str(lnum) char(Pushflg(Pind)) ’_M(rep_ind);’])

143

eval([’Ffa’ num2str(lnum) ’tot(rep_ind) = Ffa’ ...

num2str(lnum) char(Pushflg(Pind)) ’_M(rep_ind);’])

end

eval([’FlatS_tot(rep_ind) = FlatS_’ ...

char(Pushflg(Pind)) ’_M(rep_ind);’])

eval([’FfaS_tot(rep_ind) = FfaS_’ ...

char(Pushflg(Pind)) ’_M(rep_ind);’])

end

emaxtot(˜emaxind) = NaN;

%or

% %Find optimized Ctran

% Ctrantot = 10*ones(size(CtranA_M));

% Ctranind = zeros(size(CtranA_M));

% emaxtot = NaN(size(emaxA_M));

% for Pind = 1:4

% eval([’rep_ind = Ctran’ char(Pushflg(Pind)) ...

% ’_M < Ctrantot;’])

% eval([’Ctrantot(rep_ind) = Ctran’ ...

% char(Pushflg(Pind)) ’_M(rep_ind);’])

% Ctranind(rep_ind) = Pind;

% eval([’emaxtot(rep_ind) = emax’ ...

% char(Pushflg(Pind)) ’_M(rep_ind);’])

% end

% Ctrantot(˜Ctranind) = NaN;

% Also need to replace emaxind with Ctranind everywhere

144

%Plot emax

figure

contourf(sigM,deltaM/100,emaxtot,...

’LineStyle’,’none’,’LevelStep’,.02)

colorbar

caxis([0 .7])

title(’Maximum Eigenvalue of Fixed Points’)

xlabel(’Incline Slope: \sigma (\circ)’)

ylabel(’Heading Angle: \delta_0 (rad)’)

axis([-2.5 92.5 -.025 .475])

hold on

for Pind = 1:4

eval([’val_ind = ˜isnan(emax’ ...

char(Pushflg(Pind)) ’_M);’])

lege(Pind) = plot(sigM(val_ind),...

deltaM(val_ind)/100,char(Pushsym(Pind)));

end

labe = {’Push All’,’Push F,B’,’Push M,B’,’Push B’}

legend(lege,char(labe),’Location’,’SouthOutside’, ...

’Orientation’,’Horizontal’);

%Plot Ctran

figure

contourf(sigM,deltaM/100,Ctrantot,...

’LineStyle’,’none’,’LevelStep’,.1)

colorbar

145

caxis([0 2])

title([’Transport Cost of a Gait Family’ ...

’ With Fixed l_{dev}’])

xlabel(’Incline Slope: \sigma (\circ)’)

ylabel(’Heading Angle: \delta_0 (rad)’)

axis([-2.5 92.5 -.025 .475])

hold on

for sigind = 1:length(sigA)

for dind = 1:length(deltaA)

if emaxind(sigind,dind)

plot(sigM(sigind,dind),deltaM(sigind,dind)/100,...

char(Pushsym(emaxind(sigind,dind))))

end

end

end

%Plot robustness

figure

contourf(sigM,deltaM/100,nstepstot, ...

’LineStyle’,’none’,’LevelStep’,.5)

colorbar

caxis([0 50])

title(’Steps to Recover from a Lateral Impulse’)

xlabel(’Incline Slope: \sigma (\circ)’)

ylabel(’Heading Angle: \delta_0 (rad)’)

axis([-2.5 92.5 -.025 .475])

146

hold on

for Pind = 1:4

eval([’val_ind = ˜isnan(emax’ ...

char(Pushflg(Pind)) ’_M);’])

legr(Pind) = plot(sigM(val_ind), ...

deltaM(val_ind)/100,char(Pushsym(Pind)))

end

labr = {’Push All’,’Push F,B’,’Push M,B’,’Push B’}

legend(legr,char(labr),’Location’,’SouthOutside’, ...

’Orientation’,’Horizontal’);

%Plot v0

figure, subplot(2,2,1)

contourf(sigM,deltaM/100,v0tot, ...

’LineStyle’,’none’,’LevelStep’,.02)

colorbar

caxis([0 .4])

title(’Initial Velocity (m/s)’)

xlabel(’Incline Slope: \sigma (\circ)’)

ylabel(’Heading: \delta_0 (rad)’)

axis([-2.5 92.5 -.025 .475])

hold on

for legnum = 1:3

subplot(2,2,legnum+1)

eval([’contourf(sigM,deltaM/100,phi’ num2str(legnum)...

’tot,’’LineStyle’’,’’none’’,’’LevelStep’’,5);’])

147

colorbar

caxis([-75 75])

title([’Phase Angle (\circ) Leg: ’ num2str(legnum)])

xlabel(’Incline Slope: \sigma (\circ)’)

ylabel(’Heading: \delta_0 (rad)’)

axis([-2.5 92.5 -.025 .475])

hold on

end

%Plot Flat

mg = .0025*9.81

figure

for lnum = 1:3

subplot(2,2,lnum)

eval([’contourf(sigM,deltaM/100,Flat’ num2str(lnum) ...

’tot/mg,’’LineStyle’’,’’none’’,’’LevelStep’’,.05);’])

colorbar

caxis([-1 1])

title([’Normalized Lateral Force: ’ num2str(lnum)])

xlabel(’Incline Slope: \sigma (\circ)’)

ylabel(’Heading: \delta_0 (rad)’)

axis([-2.5 92.5 -.025 .475])

end

subplot(2,2,4)

contourf(sigM,deltaM/100,FlatS_tot/mg, ...

’LineStyle’,’none’,’LevelStep’,.05);

148

colorbar

caxis([-.5 2])

title(’Normalized Lateral Force: Sum’)

xlabel(’Incline Slope: \sigma (\circ)’)

ylabel(’Heading: \delta_0 (rad)’)

%Plot Ffa

mg = .0025*9.81

figure

for lnum = 1:3

subplot(2,2,lnum)

eval([’contourf(sigM,deltaM/100,Ffa’ num2str(lnum) ...

’tot/mg,’’LineStyle’’,’’none’’,’’LevelStep’’,.05);’])

colorbar

caxis([-1 1])

title([’Normalized For/Aft Force: ’ num2str(lnum)])

xlabel(’Incline Slope: \sigma (\circ)’)

ylabel(’Heading: \delta_0 (rad)’)

axis([-2.5 92.5 -.025 .475])

end

subplot(2,2,4)

contourf(sigM,deltaM/100,FfaS_tot/mg, ...

’LineStyle’,’none’,’LevelStep’,.05);

colorbar

caxis([-.5 2])

title(’Normalized For/Aft Force: Sum’)

149

xlabel(’Incline Slope: \sigma (\circ)’)

ylabel(’Heading: \delta_0 (rad)’)

A.5 Robustness Checking

A.5.1 simgait multileg latimp.m

This function is similar to the simulator (simgait multileg), however a lateral

impulse is added and a recovery checker.

function [xtot,xdtot,ytot,ydtot,thetatot,thetadtot,...

timetot,indbrktot,Fxtot,Fytot,Mtot,fpxtot,fpytot,...

leqtot,lsprtot,tot_ener,Ctrantot] = ...

simgait_multileg_latimp(X0,numperiod,plotflag)

% This function simulates the number of gaits specified

% in numperiod based on the initial conditions X0. States

% are x, xdot, y, ydot, theta, and thetadot. Plots are

% included if plotflag = 1.

global cval tstartstance fpx fpy FootAct

%The following values are input as global variables but

%local copies need to be stored since their values get

%overwritten

tstartstance0 = tstartstance;

fpx0 = fpx;

fpy0 = fpy;

150

FootAct0 = FootAct;

options = odeset(’Events’,@stancebreak, ...

’InitialStep’,.000001);

%Read in global cval

kval = cval(1);

m = cval(2);

Ival = cval(3);

% sigma = cval(4);

tdes = cval(5);

% vdes = cval(6);

% Omega = pi/tdes;

% g = 9.81;

% Initialize storage variables here

xtot = []; %States

xdtot = [];

ytot = [];

ydtot = [];

thetatot = [];

thetadtot = [];

timetot = [];

Fxtot = []; %Forces and Moments

Fytot = [];

Mtot = [];

leqtot = []; %Spring length parameters

151

lsprtot = [];

Ctran0 = 0; %Transport Cost calculator

Ctrantot = [];

fpxtot = fpx; %Foot placements

fpytot = fpy;

indbrktot = zeros(1,6); %Indices of step breaks

%Set stride counters (-1 for not just placed)

stride = -ones(1,6);

end_ft = 1; %Which foot counter is used for termination

stride(tstartstance == tstartstance(end_ft)) = 0;

tsimstart = tstartstance(end_ft);

indbrktot(tstartstance == tsimstart) = 1;

%Declare flags for impulse recovery checks

firstrecovery = false; %Was the fixed point

% recovered during the last stance?

terminate = false; %Should the simulation

% loop be terminated?

recovered = false; %Has the fixed point

% recovered permanently

difftrack = NaN(1,4);

X0init = X0;

% Simulate stance phases

while stride(end_ft) < numperiod

152

tspan = [tsimstart tsimstart+tdes];

[T,X,te,˜,ie] = ...

ode45(@stancedynamics,tspan,[X0 Ctran0],options);

Ctran = X(:,7);

X = X(:,1:6);

% Store relevant data

xtot = [xtot;X(:,1)];

xdtot = [xdtot;X(:,2)];

ytot = [ytot;X(:,3)];

ydtot = [ydtot;X(:,4)];

thetatot = [thetatot;X(:,5)];

thetadtot = [thetadtot;X(:,6)];

timetot = [timetot;T];

Ctrantot = [Ctrantot;Ctran];

%Store index of events

indbrk = zeros(1,6);

for n = 1:length(ie)

if te(n) == T(length(T))

if ie(n) <= 6

%Store a negative value for liftoff stance-breaks

indbrk(ie(n)) = -length(timetot);

else

%and a positive for foot down stance breaks

indbrk(ie(n)-6) = length(timetot);

end

153

end

end

tstarttol = 1e-10;

indbrk((tstartstance + 2*tdes >= T(length(T)))&...

(tstartstance + 2*tdes < T(length(T))+tstarttol)) ...

= length(timetot);

indbrktot = [indbrktot;indbrk];

%Calculate parameters that need stored at every time

for n = 1:length(T)

[Fx,Fy,M,leq,lspr] = legforces(T(n),X(n,:));

leq(˜FootAct) = 0;

lspr(˜FootAct) = 0;

Fxtot = [Fxtot;Fx];

Fytot = [Fytot;Fy];

Mtot = [Mtot;M];

leqtot = [leqtot;leq];

lsprtot = [lsprtot;lspr];

end

%Set up for next stride

ind = length(T);

X0 = X(ind,:);

tstartstance(indbrk > 0) = T(ind);

FootAct(indbrk > 0) = true;

FootAct(indbrk < 0) = false;

[fpxtemp,fpytemp] = footplace(X0);

154

fpx(indbrk > 0) = fpxtemp(indbrk > 0);

fpy(indbrk > 0) = fpytemp(indbrk > 0);

tsimstart = T(ind);

%Store new foot placement points

fpxtot = [fpxtot;fpx];

fpytot = [fpytot;fpy];

stride(indbrk > 0) = stride(indbrk > 0) + 1;

%Check for termination on lateral impulse

%if the lead foot or its counterpart was just placed

if indbrk(end_ft) > 0 || indbrk(opp_ft) > 0

% Check to see how close we are to the fixed point.

% For d = 0, we only have v and delta, but I will use

% xd, yd instead (should contain same info).

scaleval = [-cval(6)*tan(.15) cval(6)];

if indbrk(end_ft) > 0

diffinfp = (X0init([2 4]) - X(size(X,1),[2 4])) ...

./scaleval;

else

%For opposite foot, a fixed point occurs when xd is

%equal but opposite

diffinfp = [X0init(2)+X(size(X,1),2) ...

X0init(4)-X(size(X,1),4)]./scaleval;

end

maxdiffinfp = max(abs(diffinfp));

%Track last four to see if it’s going to the wrong

155

%fixed point

difftrack(1:3) = difftrack(2:4);

difftrack(4) = maxdiffinfp;

% Check to see if this is within 1% of the fixed

% point value. Want to make sure, however, that it

% isn’t just a random event. Want to only quit when

% we’re sure that no subsequent steps go outside of

% the region. Assume that if the following stance

% phase is within the desired threshold, then it will

% stay there

if firstrecovery

% If we are in this part, then this will be at

% least the second time that the value is within 1%

if maxdiffinfp < maxdiffinfpold ...

|| maxdiffinfp < .001

%This is a true recovery if the diff has de-

%creased or if the diff while increasing has

%stayed below 1/10 the tolerance

recovered = true;

terminate = true;

disp(’The previous and current differences are:’)

disp([maxdiffinfpold maxdiffinfp])

else

if maxdiffinfp >= .01

%Outside of recovered area

156

firstrecovery = false;

else

%Remains inside recovered area but growing

maxdiffinfpold = maxdiffinfp;

end

end;

else

if maxdiffinfp < .01

%Less than 1% difference from fixed point

% stride

firstrecovery = true;

maxdiffinfpold = maxdiffinfp;

else

%stop if we are at an incorrect fixed point

atfp1 = abs(difftrack(3) - difftrack(1)) < .002;

atfp2 = abs(difftrack(4) - difftrack(2)) < .002;

wrongfp = difftrack(4) > 1;

if atfp1 && atfp2 && wrongfp

disp([’Returned to wrong fixed point:’ ...

’ Tracking diff:’])

disp(num2str(difftrack))

recovered = false;

terminate = true;

end

end

157

end

end

if terminate

break

end

end

numsteps = stride(end_ft)+stride(opp_ft);

%Reset initial values

FootAct = FootAct0;

fpx = fpx0;

fpy = fpy0;

tstartstance = tstartstance0;

%Calculate energy for plotting

kin_ener = m*(xdtot.ˆ2 + ydtot.ˆ2)/2+Ival*thetadtot.ˆ2/2;

pot_ener = sum(kval*(lsprtot - leqtot).ˆ2/2,2);

tot_ener = kin_ener+pot_ener;

% Plot data if required

if plotflag

figure, hold on

N = size(fpxtot,1);

for n = 1:N

%Foot placement points

plot(fpxtot(n,:),fpytot(n,:),’x’,...

’MarkerEdgeColor’,[(N-n)/(N-1) 0 (n-1)/(N-1)])

158

end

%Center of mass trajectory

plot(xtot,ytot,’k-’)

axis image,axis equal

markstyle = [’b+’;’gx’;’r*’;’c+’;’yx’;’m*’];

%Stance break markers

for n = 1:6

indt = indbrktot(indbrktot(:,n)>0,n);

plot(xtot(indt),ytot(indt),markstyle(n,:),...

’LineWidth’,1,’MarkerSize’,8)

end

figure

%Important states

subplot(2,2,1),plot(timetot,xtot), hold on

title(’x’)

subplot(2,2,2),plot(timetot,ytot), hold on

title(’y’)

subplot(2,2,3),plot(timetot,thetatot*180/pi), hold on

title(’\theta’)

ylabel(’\circ’)

for n = 1:6

indt = indbrktot(indbrktot(:,n)>0,n);

subplot(2,2,1),plot(timetot(indt),xtot(indt),...

markstyle(n,:),’LineWidth’,2,’MarkerSize’,8)

subplot(2,2,2),plot(timetot(indt),ytot(indt),...

159

markstyle(n,:),’LineWidth’,2,’MarkerSize’,8)

subplot(2,2,3),plot(timetot(indt),thetatot(indt)*...

180/pi,markstyle(n,:),’LineWidth’,2,’MarkerSize’,8)

end

figure

%Forces and Moments

COL_ORD=[0 0 1;0 1 0;1 0 0;0 1 1;1 1 0;1 0 1;.6 .6 .6];

subplot(2,2,1), hold on, title(’Fx’)

plot(timetot,sum(Fxtot,2),’Color’,COL_ORD(7,:),...

’LineStyle’,’-.’)

subplot(2,2,2), hold on, title(’Fy’)

plot(timetot,sum(Fytot,2),’Color’,COL_ORD(7,:),...

’LineStyle’,’-.’)

subplot(2,2,3), hold on, title(’M’)

plot(timetot,sum(Mtot,2),’Color’,COL_ORD(7,:),...

’LineStyle’,’-.’)

subplot(2,2,4), hold on

for n = 1:6

indt = indbrktot(indbrktot(:,n)>0,n);

subplot(2,2,1), plot(timetot,Fxtot(:,n),...

’Color’,COL_ORD(n,:))

plot(timetot(indt),Fxtot(indt,n),markstyle(n,:),...

’LineWidth’,2,’MarkerSize’,8)

subplot(2,2,2), plot(timetot,Fytot(:,n),...

’Color’,COL_ORD(n,:))

160

plot(timetot(indt),Fytot(indt,n),markstyle(n,:),...

’LineWidth’,2,’MarkerSize’,8)

subplot(2,2,3), plot(timetot,Mtot(:,n),...

’Color’,COL_ORD(n,:));

plot(timetot(indt),Mtot(indt,n),markstyle(n,:),...

’LineWidth’,2,’MarkerSize’,8)

subplot(2,2,4), plot(0,0,’Color’,COL_ORD(n,:))

end

plot(0,0,’Color’,COL_ORD(7,:),’LineStyle’,’-.’)

set(gca,’Visible’,’off’)

legend(’1’,’2’,’3’,’4’,’5’,’6’,’sum’,’Location’,’West’)

figure

%Leg lengths

subplot(3,2,1)

plot(timetot,lsprtot(:,1),timetot,leqtot(:,1),’:’)

title([’Actual and Equilibrium Spring Lengths’...

’ of a Simulated Cockroach’])

ylabel(’Front lng. (m)’)

subplot(3,2,3)

plot(timetot,lsprtot(:,2),timetot,leqtot(:,2),’:’)

ylabel(’Mid lng. (m)’)

subplot(3,2,5)

plot(timetot,lsprtot(:,3),timetot,leqtot(:,3),’:’)

xlabel(’Time (s)’)

ylabel(’Back lng. (m)’)

161

subplot(3,2,2)

plot(timetot,lsprtot(:,4),timetot,leqtot(:,4),’:’)

title([’Actual and Equilibrium Spring Lengths’...

’ of a Simulated Cockroach’])

ylabel(’Front lng. (m)’)

subplot(3,2,4)

plot(timetot,lsprtot(:,5),timetot,leqtot(:,5),’:’)

ylabel(’Mid lng. (m)’)

subplot(3,2,6)

plot(timetot,lsprtot(:,6),timetot,leqtot(:,6),’:’)

xlabel(’Time (s)’)

ylabel(’Back lng. (m)’)

figure

%Energy

plot(timetot,tot_ener,timetot,kin_ener,’r:’,...

timetot,pot_ener,’b-.’)

legend(’Total Energy’,’Kinetic Energy’,...

’Potential Energy’,’Location’,’NorthWest’)

title(’Total Energy of a Simulated Cockroach’)

xlabel(’Time (s)’)

ylabel(’Energy (J)’)

end

end

%%% end main function

162

%%% stancedynamics function

function Xd = stancedynamics(t,X)

global cval percimp

%Call cval

% kval = cval(1);

m = cval(2);

Ival = cval(3);

sigma = cval(4);

tdes = cval(5);

vdes = cval(6);

% Omega = pi/tdes;

g = 9.81;

% read current state

% x = X(1);

xd = X(2);

% y = X(3);

yd = X(4);

% theta = X(5);

thetad = X(6);

163

% Adding in a lateral perturbation only for the first

% stance phase

Fpert = 0;

stancefraction = .125;

tpeak = .002985;

tend = .004;

pertmag = percimp*(m*vdes)*(2/tend);

% Assume that the perturbation occurs at approximately

% the same place in a stance phase. As such, assume that

% it happens at a fraction of tdes? In the Kuk. and

% Holmes simulations, it seems that the impulse occurs

% about 1/8 of the duration of the stance phase into the

% stance. Try that?

if (t >= stancefraction*tdes && ...

t <= (stancefraction*tdes + tpeak))

% Force is on the first part of the force triangle.

% Want peak to happen at .002985 s.

Fpert = pertmag/(tpeak)*(t - stancefraction*tdes);

end

if (t > (stancefraction*tdes + tpeak) && ...

t <= (stancefraction*tdes + tend))

% Force is on the second part of the force triangle

Fpert = pertmag/(tpeak-tend)*...

(t - stancefraction*tdes - tpeak) + pertmag;

end;

164

% solve equations of motion

[Fx,Fy,M] = legforces(t,X);

xdd = (sum(Fx)+Fpert)/m;

ydd = (sum(Fy)-m*g*sin(sigma))/m;

thetadd = sum(M)/Ival;

Xd = [xd;xdd;yd;ydd;thetad;thetadd];

%Calculate transport cost

Xd(7) = sum(sqrt(Fx.ˆ2+Fy.ˆ2))*...

abs((x*xd+y*yd)/sqrt(xˆ2+yˆ2))/(m*g*tdes*vdes);

if isnan(Xd(7)) %remove a discontinuity

Xd(7) = 0;

end

end

%%% end stancedynamics function

%%% stancebreak function

function [delta, isterminal, direction] ...

= stancebreak(t,X)

% Determines when a front leg force returns to zero

global cval FootAct tstartstance

165

tdes = cval(5);

%Calculate foot ending stance break

[˜,˜,˜,l,dr] = legforces(t,X);

deltal = dr - l;

deltal(˜FootAct) = 1;

%Calculate foot beginning stance break

deltat = tstartstance + 2*tdes - t;

%Set return values

delta = [deltal’;deltat’];

isterminal = [FootAct’;true(6,1)];

%Setting any to zero would ignore the corresponding leg

direction = [zeros(6,1);-ones(6,1)];

minstep = tdes/50;

for n = 1:6

if abs(t-tstartstance(n)) < abs(minstep)

isterminal(n) = 0;

end

end

end

%%% end stancebreak function

166

A.5.2 robustness family.m

This script takes an existing gait family stored in a *.mat file and appends infor-

mation regarding how long each takes to recover from various lateral impulses.

%Gathers robustness data for a family of fixed points

% clear all, close all

global cval tstartstance fpx fpy FootAct fp IsPush

global percimp

maxstrides = 50;

percimpA = -.8:.1:.8; %Which impulses to simulate

%Need to define a loadfile before running the script

if exist([loadfile ’.mat’],’file’)

%but only if they actually exist

load(loadfile);

end

%Now gather robustness data

numstepstot = zeros(length(exflgtot),length(percimpA));

recoveredtot = false(size(numstepstot));

slope = cvaltot(:,4)*180/pi;

tsdes = zeros(3,1);

x_t = zeros(6,1);

y_t = zeros(6,1);

for n = 1:size(numstepstot,1)

% Read in each fixed point

167

cval = cvaltot(n,:);

fp = fptot(n,:);

IsPush = IsPushtot(n,:);

X0 = X0tot(n,:);

tstartstance = tstarttot(n,:);

FootAct = FootActtot(n,:);

footplace_init(tsdes,X0,x_t,y_t)

if exflgtot(n) ˜= 1

%Skip the robustness check for nonvalid fixed points

%This could also be done for unstable fixed points

numstepstot(n,:) = 100

recoveredtot(n,:) = false

disp(’Point no good, continuing on ...’)

continue

end

%Calculate steps to recovery

for impind = 1:length(percimpA)

percimp = percimpA(impind);

disp([’Working on sigma = ’ num2str(slope(n)) ...

’; Impulse = ’ num2str(percimp*100) ...

’%; delta = ’ dS ’; Push’ Push]);

[˜,˜,˜,˜,˜,˜,˜,˜,˜,˜,˜,˜,˜,˜,˜,˜,numsteps,...

recovered]=simgait_multileg_latimp(X0,maxstrides,0)

numstepstot(n,impind) = numsteps;

recoveredtot(n,impind) = recovered;

168

end

numstepstot

recoveredtot

end

%Append data onto existing gait family

save(loadfile,’numstepstot’,’recoveredtot’,...

’percimpA’,’-append’)

A.6 Optimization

A.6.1 find sigfam varyldev ?opt.m

Two variations of the find sigfam script were created to find optimal fixed points.

For ? = C, the transport cost was optimized. For ? = e, the stability was

optimized. Shown here is a combined version with Copt currently active. By

commenting and uncommenting the appropriate places either version can be cre-

ated.

% clear all, close all, %clc

% format long, format compact

global cval tstartstance fpx fpy FootAct fp_guess

global act_var act_con ldev IsPush fp minCostfn fp_init

dval = [1e-6 1e-5 1e-1 1e-4];

%Load and plot starting point

169

% load temp2

%Declare variables below outside of script, or activate

% loadfile = [’..\FixedPoints_mineig\gaitfam_PushA_’ ...

% ’varysig_k150_intvdes_delta15_varyldev_’ ...

% ’betaF025M055B120’]

% deltaExt = .15;

% sv_for = true;

% Pushflg = ’A’

load(loadfile)

save temp2

%%%%

%Ctran points used eig points as a starting value.

%The code in this section is for *Copt only

induse = 1:length(exflgtot); %which points to gather

%remove non-fp

induse = induse(exflgtot==1)

%remove ldev violations

l0 = cvaltot(1,19:21);

mxldev = l0*.9;

mnldev = l0*.2;

for n = 4:6

if max(abs(fptot(induse,n))) > mxldev(n-3)

disp([’Removing for max ldev’ ...

num2str(n-3) ’ constraint’])

170

induse = induse(abs(fptot(induse,n)) ...

<= mxldev(n-3))

end

if min(abs(fptot(induse,n))) < mnldev(n-3)

disp([’Removing for min ldev’ ...

num2str(n-3) ’ constraint’])

induse = induse(abs(fptot(induse,n)) ...

>= mnldev(n-3))

end

end

fptotOld = fptot(induse,:);

sigind = round(cvaltot(induse,4)*180/pi)’

%%%%

% n = 1;

% n = length(exflgtot);

% exflgtot

% cvaltot(:,4)’*180/pi

% n = input(’n = : ’)

if sv_for

n = min(induse);

else

n = max(induse);

end

171

cval = cvaltot(n,:);

fp = fptot(n,:);

IsPush = logical(IsPushtot(n,:));

%Set heading angle

% fp(2) = deltaExt;

%Clear previous data (comment out if desired)

cvaltot = [];

fptot = [];

IsPushtot = [];

X0tot = [];

tstarttot = [];

FootActtot = [];

evaltot = [];

Ctot = [];

exflgtot = [];

Fxmaxtot = [];

Fymaxtot = [];

Fxcumtot = [];

Fycumtot = [];

Ctrantot = [];

%Find additional gaits

%These are the options for the fsolve routine

act_var = [1 13 14 15];

172

%var order = [v0 delta0 tdes 4-6=>ldev1-3 7-9=>beta1-3

%10-12=>Tdrv1-3 13-15=>phi1-3 ldev% beta%]

act_con = [1 2 3 4];

%con order = [Dv Ddelta vdes xdrift]

TypX = [.25 .5 .05 .01*ones(1,3) pi/2*ones(1,3) ...

.05*ones(1,3) pi/4*ones(1,3) 1 1]’;

options = optimset(’MaxIter’,100,’MaxFunEvals’,1500,...

’Display’,’iter’,’TolX’,1e-7,’TolFun’,1e-8,...

’TypicalX’,TypX(act_var),’ScaleProblem’,’Jacobian’);

%Identify desired slopes in steps of 5 degrees

%%%%

%*Copt

if ˜sv_for

sigind = sigind(end:-1:1)

fptotOld = fptotOld(end:-1:1,:);

end

%%%%

%%%%

%*eopt

% if sv_for

% sigind = cval(4)*180/pi:5:90

% else

% sigind = cval(4)*180/pi:-5:0

% end

173

%%%%

for sig = sigind

%%%%

%*Copt only

fp = fptotOld((sigind == sig),:)

%%%%

%Set parameters for new fixed point

cval(4) = sig*pi/180;

vdes0 = .35;

vdes90 = .20;

vdes = vdes0 + sig/90*(vdes90 - vdes0)

tdes = inv(freq_fitter(vdes))/2

cval(5) = tdes;

fp(3) = tdes;

cval(37:39) = tdes;

fp(10:12) = tdes;

cval(6) = vdes;

fp_guess = fp;

disp([’Working on sigma = ’ num2str(sig)])

%Minimize transport cost

minCostfn = 10;

fp_init = fp;

%%%%

174

%Choose one

var_final = fminsearch(@Optimizer_C,fp_init(4:6))

% var_final = fminsearch(@Optimizer_e,fp_init(4:6))

%%%%

fp_guess = fp_init;

fp_guess(4:6) = var_final

%Call fixed point finder

[fp,C,exflg] = fsolve(@fp_multileg,fp_guess(act_var)...

,options);

fptemp = fp_guess;

fptemp(act_var) = fp;

fp = fptemp

%Set parameters based on the resulting fixed point

v0 = fp(1);

delta0 = fp(2);

tdes = fp(3);

ldev = [fp(4:6) fp(4:6)];

beta0 = [fp(7:9) -fp(7:9)];

Tdrv = fp(10:12);

phi = fp(13:15);

ldevX = fp(16);

betaX = fp(17);

%Correct cval

cval(5) = tdes;

175

cval(25:30) = ldevX*ldev;

betaC = beta0;

betaC([1 2 4 5]) = betaX*beta0([1 2 4 5]);

cval(31:36) = betaC;

cval(37:39) = Tdrv;

cval(40:42) = phi;

%Set initial conditions

xd = -v0*sin(delta0);

yd = v0*cos(delta0);

X0 = [0 xd 0 yd 0 0];

%foot place finder

tsdes = zeros(3,1);

x_t = zeros(6,1);

y_t = zeros(6,1);

footplace_init(tsdes,X0,x_t,y_t)

%Simulate at new fixed point to gather forces, Ctran

[˜,˜,˜,˜,˜,˜,˜,ind,Fx,Fy,˜,˜,˜,˜,˜,˜,Ct] ...

= simgait_multileg(X0,1,0);

Fxmax = max(Fx(:,1:3));

Fxmin = min(Fx(:,1:3));

rec_min = abs(Fxmin) > abs(Fxmax);

Fxmax(rec_min) = Fxmin(rec_min);

Fymax = max(Fy(:,1:3));

Fymin = min(Fy(:,1:3));

rec_min = abs(Fymin) > abs(Fymax);

176

Fymax(rec_min) = Fymin(rec_min);

step = max(ind(:,4));

Fxcum = [max(sum(Fx(1:step,:),2)) ...

min(sum(Fx(1:step,:),2))];

Fycum = [max(sum(Fy(1:step,:),2)) ...

min(sum(Fy(1:step,:),2))];

e = findeig([v0 delta0 0 0],dval)

step = ind(ind(:,4)>0,4);

Ctran = Ct(step)

if sv_for

%Store variables - forward travelling

cvaltot = [cvaltot;cval];

fptot = [fptot;fp];

IsPushtot = [IsPushtot;IsPush];

X0tot = [X0tot;X0];

tstarttot = [tstarttot;tstartstance];

FootActtot = [FootActtot;FootAct];

evaltot = [evaltot;e’];

Ctot = [Ctot;Ct];

exflgtot = [exflgtot;exflg];

Fxmaxtot = [Fxmaxtot;Fxmax];

Fymaxtot = [Fymaxtot;Fymax];

Fxcumtot = [Fxcumtot;Fxcum];

Fycumtot = [Fycumtot;Fycum];

Ctrantot = [Ctrantot;Ctran];

177

else

%Store variables - backward travelling

cvaltot = [cval;cvaltot];

fptot = [fp;fptot];

IsPushtot = [IsPush;IsPushtot];

X0tot = [X0;X0tot];

tstarttot = [tstartstance;tstarttot];

FootActtot = [FootAct;FootActtot];

evaltot = [e’;evaltot];

Ctot = [Ct;Ctot];

exflgtot = [exflg;exflgtot];

Fxmaxtot = [Fxmax;Fxmaxtot];

Fymaxtot = [Fymax;Fymaxtot];

Fxcumtot = [Fxcum;Fxcumtot];

Fycumtot = [Fycum;Fycumtot];

Ctrantot = [Ctran;Ctrantot];

end

%Save results

vdes = num2str(cval(6)*100);

delta = num2str(abs(fp(2)*100));

if length(delta) == 1

delta = [’0’ delta];

end

if fp(2) < 0

178

delta = [’_’ delta];

end

%%%%

%Choose one

savefile = [’..\FixedPoints_minCtran\gaitfam_Push’ ...

Pushflg ’_varysig_k150_intvdes_delta’ delta ...

’_varyldev_betaF025M055B120’]

% savefile = [’..\FixedPoints_mineig\gaitfam_Push’ ...

% Pushflg ’_varysig_k150_intvdes_delta’ delta ...

% ’_varyldev_betaF025M055B120’]

%%%%

save(savefile,’cvaltot’,’fptot’,’IsPushtot’,’X0tot’,...

’tstarttot’,’FootActtot’,’evaltot’,’Ctot’,...

’exflgtot’,’Fxmaxtot’,’Fymaxtot’,’Fxcumtot’,...

’Fycumtot’,’Ctrantot’)

if exflg ˜= 1

%If the last fixed point was no good

break

end

ldevtest = abs(fp(4:6))

if max(ldevtest > mxldev) || max(ldevtest < mnldev)

break

end

end

plot(cvaltot(:,4)*180/pi,sort(abs(evaltot),2))

179

A.6.2 Optimizer ?.m

These functions are called by the corresponding find sigfam varyldev ?opt. As

before, the ? represents C for transport cost and e for stability. Shown here is a

combined version with Copt currently active. By commenting and uncommenting

the appropriate places either version can be created.

function Costfn = normFerr(var_vals)

%Calculate a cost function based on either maximum

%eigenvalue or transport cost. Penalties are included for

%parameters that do not produce good fixed points.

global fp_init fp_guess act_var act_con minCostfn cval

fp_init([4 5 6]) = var_vals(1:3);

fp_guess = fp_init;

%Set options

act_var = [1 13 14 15]; %v0 and phi

act_con = 1:4; %all

TypX = [.25 pi/4*ones(1,3)]’;

options = optimset(’MaxIter’,20,’MaxFunEvals’,100, ...

’Display’,’iter’,’TolX’,1e-7,’TolFun’,1e-8,...

’TypicalX’,TypX,’ScaleProblem’,’Jacobian’);

%Call fixed point solver

[fp,C,exflg] = fsolve(@fp_multileg,...

fp_init(act_var),options);

180

disp(’Working on higher delta’)

%Check to make sure the fixed point is not at a boundary

if fp_guess(2) > .05

fp_guess(2) = fp_guess(2)*1.05;

else

fp_guess(2) = fp_guess(2) + .0025;

end

[fp2,C2,exflg2] ...

= fsolve(@fp_multileg,fp_init(act_var),options);

fp_guess(2) = fp_init(2);

exflg

fptemp = fp_init;

fptemp(act_var) = fp;

fp = fptemp;

%Set parameters based on the resulting fixed point

v0 = fp(1);

delta0 = fp(2);

tdes = fp(3);

ldev = [fp(4:6) fp(4:6)];

beta0 = [fp(7:9) -fp(7:9)];

Tdrv = fp(10:12);

phi = fp(13:15);

ldevX = fp(16);

181

betaX = fp(17);

%Correct cval

cval(5) = tdes;

cval(25:30) = ldevX*ldev;

betaC = beta0;

betaC([1 2 4 5]) = betaX*beta0([1 2 4 5]);

cval(31:36) = betaC;

cval(37:39) = Tdrv;

cval(40:42) = phi;

%Set initial conditions

xd = -v0*sin(delta0);

yd = v0*cos(delta0);

theta0 = 0;

thetad0 = 0;

X0 = [0 xd 0 yd theta0 thetad0];

%foot place finder

x_t = zeros(1,6);

y_t = zeros(1,6);

tsdes = [0 0 0];

footplace_init(tsdes,X0,x_t,y_t)

[x,xd,y,yd,theta,thetad,t,ind,Fx,Fy,M,fpxtot,fpytot,...

leq,lspr,E,Ct] = simgait_multileg(X0,1,0);

182

Costfn = 0;

%display current places

% disp([’beta: ’ num2str(fp(7:9)*180/pi)])

% disp([’k: ’ num2str(cval(1))])

% disp([’vdes: ’ num2str(cval(6))])

dval = [1e-6 1e-5 1e-1 1e-4];

eval = findeig([v0 delta0 0 0],dval)

%Calculate Ctran

indstep = max(ind(:,4));

Ctran = Ct(indstep)

%Calculate e

for n = 1:2

[˜,delind] = min(abs(abs(eval)-1));

eval(delind) = 0;

end

%%%%

%Ctran Option

Costfn = Ctran

%eig Option

% Costfn = max(abs(eval))

%%%%

183

%Correction for non fixed point

if exflg˜=1

ferr = sum(C.ˆ2)

Corfact = max(10+log10(ferr),0)*2 + 2

Costfn = Costfn + Corfact

end

%Correction for adjacent non fixed point

if exflg2˜=1

ferr2 = sum(C2.ˆ2)

Corfact2 = max(10+log10(ferr2),0)*.5+.5

% Costadj = 1.05ˆCorfact2 - 1

Costfn = Costfn + Corfact2

end

%Correction for phi too close to transition

phi = fp(13:15)

mxphi = pi/3;

mnphi = -pi/2;

for legnum = 1:3

%phi too high

if phi(legnum) > mxphi

Costfn = Costfn + ...

(phi(legnum) - mxphi)*.5/(pi/2-mxphi)

end

184

%phi too low

if phi(legnum) < mnphi

Costfn = Costfn + ...

(-phi(legnum) - -mnphi)*.5/(pi/2-mxphi) + .5

end

end

%Correction for leg missing pick up time tangentially

mnang = 10;

for legnum = 1:3

tempind = ind(logical(ind(:,legnum)),legnum);

footend = abs(tempind(2));

spr_head = atan((lspr(footend,legnum) - lspr(...

footend-1,legnum))/(t(footend)-t(footend-1)))*180/pi;

eq_head = atan((leq(footend,legnum) - leq(...

footend-1,legnum))/(t(footend)-t(footend-1)))*180/pi;

cross_head = abs(spr_head - eq_head);

disp([’Leg #’ num2str(legnum) ...

’ crossing heading angle: ’ num2str(cross_head)])

% Correction for leg botching set down tangentially

if cross_head < mnang

Costfn = Costfn + (mnang-cross_head)*.5/mnang

end

spri_head = atan((lspr(2,legnum) - lspr(1,legnum)) ...

/(t(2)-t(1)))*180/pi;

185

eqi_head = atan((leq(2,legnum) - leq(1,legnum)) ...

/(t(2)-t(1)))*180/pi;

init_head = abs(spri_head - eqi_head);

disp([’Leg #’ num2str(legnum) ...

’ initial heading angle: ’ num2str(init_head)])

if init_head < mnang

Costfn = Costfn + (mnang-init_head)*.5/mnang

end

end

%Correction for ldev outside of bounds

l0 = cval(19:21)

ldev = abs(fp(4:6));

disp([’ldev: ’ num2str(ldev,3)])

mnldev = .2*l0;

mxldev = .9*l0;

for legnum = 1:3

if ldev(legnum) < mnldev(legnum)

disp([’Leg #’ num2str(legnum) ’ l_{dev} too low’])

Costfn = Costfn + (mnldev(legnum) - ...

ldev(legnum))*1/mnldev(legnum) + 30;

elseif ldev(legnum) > mxldev(legnum)

disp([’Leg #’ num2str(legnum) ’ l_{dev} too high’])

Costfn = Costfn + (ldev(legnum) - ...

mxldev(legnum))*1/(l0(legnum)-mxldev(legnum)) + 30;

186

end

end

Costfn

minCostfn

% pause

if Costfn < minCostfn

fp_init = fp; %Start at lost solved point to save time

minCostfn = Costfn;

save temp

end

