
•

•

•

DEVELOPING TRUE DIAGNOSTIC SOFTWARE

Michael Prusynski

Oregon State University

MSCS Research Paper & Project (CS501)

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science

Presented at Oral Exam:
December9, 1988

Final Revision:
December 23, 1988

ABSTRACT

This document describes the need for, and design of, diagnostic software that
provides circuit verification, fault isolation, and troubleshooting aids. The differ­
ence between verification software and true diagnostic software is explained. A
modular design of diagnostic software is proposed, consisting of a series of 3-
part tests, a test manager, results analyzer, and user interface. The design guide­
lines are described in general terms so that they may be applied to other
computer-based boards or systems. An implementation of these design princi­
ples is described for a circuit board in a Tektronix product -- the DAS9200 (Digi­
tal Analysis System) .

• CONTENTS

1. THE PROBLEM: LACK OF TRUE DIAGNOSTICS .. 1
1.1 Pul'J)C)se and Scoi:,e of This Pai:,er 1

2. INTRODUCTION TO TESTING 2
2.1 The Need for Diagnostics 3

3. A SOLUTION: PROPER SOFfW ARE DESIGN .. 4
3.1 Hardware and Software Partitioning 5
3.2 Test Module Design 6
3.3 Test Manager Design .. 11

3.3.1 The RAM Test Anomaly .. 14
3.4 The Results Analyzer 15
3 .5 The User Interface 17
3.6 Other Troubleshooting Aids 19

4. THE PRODUCT IMPLEMENTATION ~ ... 19

5. CONCI..USION .. 24

6. ACKNOWLEDGMENTS" ... 25

7. BIBLIOGRAPHY .. 26

•

•
- i -

•

•

•

DEVELOPING TRUE DIAGNOSTIC SOFTWARE

Michael Prusynski

OSU CS501 - MSCS Research Paper & Project

1. THE PROBLEM: LACK OF TRUE DIAGNOSTICS

Although the true purpose of "diagnostic" software should pertain to diagnosing (as its

name implies), its major shortfall is, in fact, its inability to diagnose. Much so-called diagnostic

software of today does little more than verification -- exercising the hardware and reporting when

a test failure occurs. This type of software may detect all the problems if it truly tests all the

hardware, but it does not really diagnose the problems it finds. This fact has been re-iterated by

complaints from both manufacturing technicians and customer service personel, based on their

experiences of being left unassisted by the software once a failure has been detected. True diag­

nostic software not only needs to indicate when there is a hardware problem, it needs also to

identify where the failing component or circuit is, or at least provide troubleshooting aids for

faults that it cannot identify.

1.1 Purpose and Scope of This Paper

Because many diagnostic software packages fall short in at least one of the above areas

(verification, fault identification, and troubleshooting), this research paper proposes a design of

software that can satisfy the main requirements of all three categories. This paper can be con­

sidered a plea to the engineering community to do a better job of designing diagnostic software.

Since the purpose of diagnostic software is to test hardware, any discussion of diagnostic design

must also include some hardware discussion. However, this paper is meant to address the com­

puter science field, so the discussion of hardware will be kept to a minimum. Many related topics

have been researched, including the areas of Automated Test Equipment (A TE), Design for Tes­

tability (DFr), Artificially Intelligent (AI) expert systems, user interfaces, fault classification and

•

•

-2-

modeling, and test algorithms. Related terms and phrases are explained and referenced as they

are used. This paper attempts to remain focused on techniques for the proper design of diagnostic

software that is executed by a CPU within the unit under test. These design techniques are not

intended to produce a diagnosis down to a single faulty component, although this is possible for

RAM tests. With these techniques however, software can be designed that will either diagnose

by isolating a fault to a circuit path, or help a human troubleshooter diagnose by providing him

the software tools that allow him to use his skills to pinpoint the fault and repair it. Implementa­

tion examples are provided to further clarify these design techniques.

2. INTRODUCTION TO TESTING

Two of the main approaches to digital electronic testing can be tenned structural and func­

tional testing [Susskind73]. Structural testing, as the name implies, is based on the component

structure. A primary example is a "bed-of-nails" implementation of an Automated Board Test

(ABn that connects to the inputs and outputs of the components on a circuit board. The board is

tested by applying signals to the component's inputs and monitoring its outputs, which must

comply with its structural description. This approach tests the discrete components indepen­

dently, but does not test the overall functionality of the board. Functional testing verifies that the

hardware behaves as intended, and this testing can be done at the system, board, or component

level. Typical diagnostic software takes a functional approach that lies somewhere between

board and component level.

When considering the purpose for testing, there are two main categories that are known

under various names [Ligouri74]: (1) go/no-go, pass/fail, verification, acceptance or qualification

testing - which detennines that a unit is "good" or "bad", and (2) fault location, isolation,

identification, or diagnostic testing - which indicates the probable cause of a failure. This second

• category of testing is usually applied to a unit that has failed a test of the first category.

•
. -3-

2.1 The Need for Diagnostics

With the increase in hardware complexity and component counts, structurally testing each

component becomes less economical and less feasible, while the concern for product reliability

increases [Breuer76]. Diagnostics can provide an alternate means of verifying a product, how­

ever, testing a product with its normal operating software is sometimes good practice and often

appears more economical. If using operating software can produce a system-level test relatively

quickly, why bother developing diagnostics? One major flaw in this reasoning is apparent when

considering overall test coverage of the hardware. With today's virtual memory operating sys­

tems the user often does not know what physical memory is being addressed. How can one

ensure that all address lines are tested? How does one verify all memory locations in RAM or

ROM? Another major drawback appears when the product inevitably fails a "system-level" test.

With only a "go/no-go" functional test for a complex system, how does the repair person iden-

• tify the source of the problem? These concerns can be resolved by building true diagnostic

software into the product. Properly designed diagnostic software verifies hardware functions

rather than software functions, so it can provide extensive test coverage of the hardware as well

as localizing faults when they occur.

•

Once designed and implemented, internal diagnostic software brings with it other advan­

tages [David79]. Internal diagnostics can reduce the manufacturing test time, the troubleshooting

and re-work time, as well as reducing the need for external test fixturing and costly external test

equipment Since internal diagnostics go with the product, they can be executed by the customer

(or at powerup) for verification, thereby increasing customer confidence in the reliability of the

product. They can provide built-in troubleshooting aids, thereby reducing the time, labor, and

cost of at-customer-site service calls.

The major differences between testing in manufacturing (production testing) and support

testing in the "field" (usually a customer site) involve the number of faults in the unit under test,

•

•

-4 -

and the repair strategy [Greenspan73]. The field service person can assume that a failed unit was

once operational, and that the failure is due to a single fault. He may not require component-level

fault identification, because the repair strategy is typically to "swap" the bad board with a good

one rather than locating and repairing the faulty component at the customer site. However, local­

izing the fault will enable him to efficiently detennine the faulty board, and provide an alternative

to board swapping if the diagnosis indicates a problem that is easy to remedy. Eventually, a

board that has been "swapped out" will need to be repaired, and component level diagnostics will

again be required. When a unit is first tested in manufacturing, there is the possibility of catas­

trophic faults (voltages shorted to ground, etc.) which should be checked for, and the potential for

multiple faults make good diagnostics invaluable. When a major fault or multiple faults prevent

the diagnostics from executing, a hardware feature which forces a CPU op-code on the data bus

can provide a starting point for troubleshooting. (This was incorporated into the DAS9200 board,

but since it is a hardware design feature, further discussion is left to [Dobrin84].)

Diagnosis becomes more difficult as hardware complexity increases [Chang74], which may

discourage the diagnostic designer in his efforts to incorporate true diagnosis capability into the

software. However, this also indicates that a repair person is more likely to need diagnosis assis­

tance from the software when complex hardware is involved. In order to provide true diagnosis

software, the diagnostic designer must place himself in the role of "servant to service", in that he

must consider the needs of the repair person as his highest priority. By designing diagnostic

software for the more stringent troubleshooting and fault isolation requirements, the software

package as a whole will provide verification as well.

3. A SOLUTION: PROPER SOFTWARE DESIGN

Much has been published in recent years on hardware designed for testability [Bennetts84,

• Fujiwara85], fault modeling, path sensitization techniques [Cortner84], and other test algorithms

•

•

•

- 5 -

[IBM84], but much less attention has been given to techniques for effective diagnostic software

design. This section does not describe specific algorithms or test approaches, but rather describes

a set of general guidelines for the design of software that is "diagnostic" in more than name only.

3.1 Hardware and Software Partitioning

"Design for testability" means designing hardware that is testable, and should be the respon­

sibility of the diagnostic engineer as well as the hardware design engineer [Dougherty88]. Just as

the diagnostic engineer should encourage the design of hardware that can be divided into testable

units, he must design the diagnostic software likewise. The design process starts in a top-down

fashion by studying the circuitry, partitioning it into major test areas, and further dividing these

areas into the smallest testable hardware units, such as the CPU, ROM, RAM, busses, selection

circuitry, and so forth [Cortner84]. Each of these hardware units is tested by a respective "test

module". The series of test modules make up the lowest level of diagnostic software. A second

software layer should be a test manager that controls the test sequence, looping, and reporting of

test results. An optional, but valuable, third software layer is a mini "expert system" [Morley86]

program that analyzes the results of the tests as a whole. The top layer of software must provide

a useful interface to the end user. Refer to the simplified conceptual diagram below:

+------------------------------------
user interface

+---------------------------
results analyzer

+-------------------
test manager

+----1----1----1----+
I tl I t2 I t3 I t4 I
I test modules I
+----1----1----1----+

+-------------------

•
- 6 -

3.2 Test Module Design

Because the test modules fonn the foundation of diagnostic software, proper design of this

software layer is a major emphasis of this paper. The most important guideline is that each test

module should be restricted to verify a minimum of the hardware, such as one circuit path. The

test modules should be grouped according to circuit functions, and arranged in a ordered execu­

tion sequence that verifies from the hardware "kernel" outward, in small increments. This has

several advantages. Because each test is narrowly focused, corresponding test error messages are

more focused and more meaningful. As an extreme example, contrast a "system test failed" error

message with one such as "XX interrupt enable line stuck". Also, tests restricted to a minimum

of hardware are more apt to run properly and produce the proper diagnosis in. the presence of

multiple faults. Because the tests have a functional grouping, a sequential failure of tests within a

particular group immediately identifies a failure of a major hardware block. It is worth noting

• that this guideline is contrary to typical efficiency goals for minimizing the number of tests for a

product, because it encourages many small tests, including some that are redundant or overlap­

ping. However, redundancy in tests can be a great aid in fault location [Susskind73]. If a com­

ponent or circuit path cannot be verified by a unique test, but testl verifies units A & B, test2

verifies units C & D, and test3 verifies units B & C, then tests 1 & 2 are sufficient for fault detec­

tion, and all three tests can be used for fault location. This redundancy can be further exploited

by implementing a results analyzer (discussed in Section 3.5).

•

Other test design guidelines originate from troubleshooting requirements, and help create

tests that can be used further by a troubleshooter in the event that the software diagnosis is

insufficient. Typical troubleshooting practice is to probe the circuitry with an oscilloscope or

logic probe, following circuit paths until a suspicious or unexpected signal is discovered, or back­

tracking from the point of failure to a point where the signal appears good [Cortner87]. Two

more test design guidelines aimed at assisting this troubleshooting practice are as follows:

•

•

•

-7-

1. To allow the troubleshooter to select and run individual tests, each test should be designed

to run without relying on initialization from other tests.

2. To provide the troubleshooter with a pulse that repeats rapidly enough to be usable by a

scope, each test must be designed so that the repeated portion is kept to a minimum (called

a "scope loop").

The common theme in these guidelines is that of reducing the tests to their smallest func­

tional elements. Tests which stimulate a minimum of circuit paths also allow the troubleshooter

to probe rapidly with a scope, rather than resorting to a logic analyzer to filter out the event he

wishes to inspect from all the extraneous circuit activity (sometimes a very time consuming and

frustrating experience).

These general requirements can be fulfilled by a test module design that consists of three

parts, as shown in the diagram below .

•

•

V

+-----------+

I pre-code
I
+-----------+

I<------------+
V

+-----------+

I test body I
I I
+-----------+

1------------>+
V

+-----------+

I post-code I
I I
+-----------+

V

- 8 -

scope
loop

The block marked "pre-code" represents initialization code that must be executed immediately

prior to the actual test, and can remain unchanged during that test (sometimes called "loop­

invariant" code). An example of this is code that initializes areas of memory for interrupt vectors

or for multi-processor communication. Therefore, this initialization would be perfonned once

prior to the initial entry to a test. On subsequent loops (repeated runs of a single test), the initiali­

zation would be bypassed. The main test body is where the actual test occurs. This is the

minimum code that must be executed to actually perfonn the test, but includes test initialization

that must be repeated for each run of the test. A simplified example is code that resets a signal,

reads its state to verify that it is deasserted, then asserts the signal and re-verifies its new state.

The "post-code" block is "cleanup" code that need to be done only once after the test completes,

• such as restoring interrupt vectors to their previous values. In some cases, a test for additional

•
-9-

errors or additional error analysis could be done in post-code. The test body should leave the test

"cleanup" to the post code, to provide an immediate exit if an error occurs. This helps to "freeze"

the hardware in the state in which the error occurred, in case further manual troubleshooting is

necessary. The pre-code, test body, and post-code should be separate callable routines, in order

to provide a common interface to the test manager. Note in the figure above that looping is not

performed within any part of the test itself, but by the test manager which is explained in the Sec­

tion 3.3.

A second major point is to maximize the use of readback hardware. Early input from the

diagnostic designer to influence the hardware design towards testability is encouraged, which is

another subject in itself [Bennetts84, Fujiwara85]. One write and read port is all that is required

for testing of a data bus, which may span a major portion of the circuit board. Address bus tests

can make use of available RAM, since a wide range of addresses with write and read capability is

• needed. If readback hardware has been incorporated into the circuit under test, the diagnostic

software designer should use those readbacks to identify the location of the problem when a test

failure occurs. A readback midway through a long circuit path may eliminate half of that path

from suspicion if that test fails. Failure messages can say more than "XXX test failed" if read­

back hardware is utilized. These messages can instead be correlated to component numbers on a

schematic diagram, thereby giving tests the ability to truly diagnose. In the latter case, the

software designer must ensure that these diagnosis messages do not get truncated back into the

popular "pass/fail" flag on their way through the various software layers before reaching the user.

•

The following example describes a test that utilizes readback hardware during post-code

error analysis. In this case, a test must generate ail interrupt and verify that it occurred. This is

commonly done by pointing the interrupt vector to a special routine which sets a flag to say "I got

here!". When designing a test of a specific signal, it is good practice to anticipate related failures .

A good design should also take into account a stuck interrupt line or enable line, and verify that

•

•

- 10-

each can be properly asserted and deasserted. Consider the following algorithm in "pseudo

code":

<pre-code>
initialize interrupt vector

< main test body >
deassert interrupt signal
clear "interrupt-received" flag
enable interrupt
poll interrupt flag in wait loop
if interrupt flag is set before timeout,

report "ERROR: interrupt stuck on" and exit
(else)
disable interrupt
attempt to assert interrupt signal
if interrupt flag is set before timeout,

report "ERROR: interrupt enable stuck on" and exit
(else)
enable interrupt
poll interrupt flag in wait loop
if interrupt flag is not set before timeout,

report "ERROR: interrupt not received"
(else no errors -- test passed)

< post-code >
if no interrupt

read the interrupt port
if the interrupt can be read

report "Interrupt signal sensed at component XX"
"Check components YY and ZZ"
(the fault is between the readback point
and the interrupt input to the CPU)

else (the interrupt cannot be read)
report "Can't sense interrupt signal at component XX"

"Check components AA and BB"
(fault is between the interrupt source
and the readback point)

restore original interrupt vector
disable interrupts

This example assumes that the readback hardware is for diagnostics only, thus it is used only to

isolate the failure and is not used if the interrupt occurs successfully. Note also that the interrupt

flag is polled during each iteration of the wait loop, so that the loop tenninates as soon as the

interrupt occurs rather than waiting for the full loop count. This minimizes the time interval dur-

• ing repeated scope loops of the test.

•

•

•

- 11-

A final point is to maximize the use of proven diagnostic algorithms (such as that for

busses, ROM, and RAM) in common re-usable routines. After these general-purpose routines

have been implemented, they have the obvious software development advantages. They become

building blocks that allow the specific tests to be implemented quite rapidly, and making

enhancements or bug corrections in the implementation usually involves a single base routine,

rather than replicating changes in each of similar tests. But more importantly, the diagnosing

ability of the base routines is automatically passed on to every dependent test. If several interrupt

sources exist, the interrupt test algorithm above can provide a general-purpose base routine. All

bus tests can use a common routine that implements an algorithm based on a single error­

correcting Hamming code [Srini78], so that random errors in RAM or other readback devices do

not produce an erroneous fault diagnosis. All ROM tests should use a common routine based on

a proven checksum algorithm. A proven RAM test algorithm can be made general-purpose by

requiring only the start and end addresses of the RAM, and possibly a bit map for ignoring

specified bits on its data bus. The intent here is not to debate the effectiveness of the many test

algorithms that have been published over the past 10 years, but to emphasize the value of re-using

proven algorithms with good diagnosis capabilities.

3.3 Test Manager Design

This software layer provides test sequencing, looping, and message reporting seivices based

on control flags set by the user or by the executing test The advantage to this type of design is

that the control checking for looping, error reporting, and "what next?" needs not be duplicated

within each test. The test merely sets a flag corresponding its pass or fail result, and returns con­

trol to the test manager. This allows new tests to be implemented and added quite rapidly, once

the test manager is operating .

•
- 12 -

For sequencing, the manager software maintains a list of pointers to each tests' pre-code,

test body, and post-code. Some tests may require identical initialization, so their precode

pointers would all reference the same routine. Some tests may require that their initialization

and/or cleanup be perfonned within the test body, and have no need of the pre- ·or post-code. In

this case, a "null" or zero pointer indicates to the test manager that this portion of a particular test

does not exist (and is not to be executed). The test sequence is dictated by the operational mode,

ultimately decided by the user (discussed in the user interface section). Complete verification

requires a straight-forward execution of all available tests (possibly requiring that external

fixtures are installed), and a corresponding list of all test pointers. Alternate test sequences (again

detennined by the user) can be handled simply by reorganizing the list so it contains only the

selected tests' pointers in the proper order.

Looping capability is not only valuable for troubleshooting as discussed earlier, but is criti-

• cal to reliability verification as well. Situations such as product "bum-in" require repeated execu­

tion of a sequence of all available tests, usually indicated by a loop control flag. Looping on the

entire sequence of tests is sufficient for bum-in if the unit under test (UUT) never fails, but the

purpose of bum-in is to "screen out" components, boards, or products that fail prematurely [Han­

lon83]. Therefore, diagnostics should provide additional looping capabilities, such as looping

continuously on the first test that fails, looping on the test as long as the fault is present, or stop­

ping the verification loop after the first error. The looping capabilities provided are somewhat

dependent on the error reporting capabilities (discussed next), and the recording device (printer,

hard disk, etc.)

•
The test manager should provide at least two display modes, "no display" and "error

display". As with sequencing and looping, the message reporting function should be responsibil­

ity of the test manager, independent from the test modules. The test module calls the test

manager with a pointer to the message to be sent (typically an error report), but the test manager

•

•

•

- 13 -

decides how much to actually report based on the display mode selected by the user. For a tight

scope loop, the display flag would be set to "no display". When called, the display routine would

first check the flag and return immediately without reporting anything. The normal display mode

is to report errors only, but a sometimes useful third display mode is to report the status of tests as

they progress. This optional mode would require more reporting from within the test modules,

similar to the technique of inserting "print" statements when debugging code. This "display all"

mode should be handled in the same manner as displaying errors in that the corresponding

display routine would decide whether to actually report the message.

These display modes have been implemented in various ways. For printing on a local ter­

minal, the "display all" and "display error" routines check their corresponding flags, and return to

the test if not set. Otherwise they each call a base print routine (similar to the C-language "printf''

function) which handles the formatting and print controls .

The test sequencing, looping, and error printing are depicted in the flowchart below:

- 14 -

• +------------->I

•

•

V
+--------------+
I Run pre-code I
+--------------+

test loop
+---------->!<--------------------------------------+

V
+---------------+
I Run test body I
+---------------+

V
+-------------+ +-------------+
I Any errors? 1--YES--> I Count and
+-------------+ I print error I

I NO +-------------+
V

+----------------+ +----------------+
lloop_till_error?I loop_on_error?

+<---1 OR I OR 1--YES-->+
YESI loop_always? I loop_always? I

+----------------+ +----------------+
I NO I NO
I +------------------+
l<--------NO--1 loop_till_error? I
I +------------------+

V YES
+---------------+
I Run post-code I
+---------------+

V

V +-------------+
+-------------+ I Stop and

+<--YES--1 More tests? 1--NO--->I Prompt user I
+-------------+ +-------------+

3.3.1 The RAM Test Anomaly

An often overlooked requirement of RAM tests is a unique looping/display mode needed

when RAM test errors occur. Because of today's large RAM arrays and the need to minimize the

time for testing RAM, contiguous RAM is typically considered a single test element. Regardless

of the number of discrete RAM components, the RAM chips are usually verified by a single test.

•
- 15 -

Under nomial looping conditions, a single test runs only until the first error, and then repeats .

Although reporting one RAM failure is sufficient during verification, it is often valuable to find

all RAM errors to diagnose the problem, especially when address bus and data bus tests for the

RAM are not available. A special loop mode should be provided so that when RAM failures

occur, the test can report the failure and continue at the next address to find any additional prob­

lems, rather than restarting at the first address of RAM. This situation can be generalized to non­

RAM components as well, whenever multiple identical components are verified· by a single test,

or when numerous functions of a single VLSI component are exercised by a single test. This

anomaly should not be overlooked by diagnostic designers.

Depending on the implementation, this situation can be handled by the test manager or

within the test itself. In an earlier implementation, the special looping was handled in the RAM

test's post code. If the post code detected that the RAM test failed, it incremented the failing

• address, and modified the test manager's "next test pointer" to re-execute the RAM test body

using "failing address + 1" as the new starting address of the test. In my most recent implementa­

tion, the display flag is checked within the RAM test itself (after an error) and if set to "display

all", the test continues through the remainder of RAM and reports any further errors before

returning back to the test manager. (Sample output is shown in Section 4.)

3.4 The Results Analyzer

A test that is designed to run independently, without relying on initialization from previous

tests is prevented from making run-time decisions based on previous test failures. An indepen­

dent test's error reporting does not consider results of other tests. As a result, most diagnostics do

not sufficiently analyze the summation of failure data to identify the problem and isolate it to a

component or area. If an integral component failed (a fault on a major data bus for example),

• diagnostics could display numerous individual error messages, each with a different assessment

•
- 16 -

of where the fault is located. In this situation, the repair person is made aware of various failures,

but is frustrated by the software's confusing diagnosis which does not help him pinpoint and rec­

tify the problem.

This is an optional layer of diagnostic software that is too often omitted. The value of a

results analyzer is that it takes a "macro" view of test failures (seeing the "forest" instead of only

"trees"). The results analyzer could "know" that a bus test failure invalidates more specific error

messages displayed by subsequent tests (which could be quite confusing to the repair person). By

diagnosing RAM error messages (failing addresses, actual and expected data), the expert system

could identify a bus or decoder fault, or pinpoint a single faulty RAM chip. Based on the com­

plexity and cost of the system under test, the results analyzer could have the capabilities of large

expert systems [Rich83]. A more moderate approach ranges in capability from analyzing error

message content and changing the run-time sequence based on its conclusions, to a minimum

• approach which analyzes only the sequence of test failures. The communication interface

between the test manager and results analyzer depends on the desired analysis capabilites.

Minimally, a mapping of each test with its pass or fail result is required for post analysis of the

failure sequence. For a more extensive diagnosis, error messages must be either stored for later

inspection or analyzed real-time (as the errors are reported).

•

Some simplifying assumptions were made during the implementation. Unlike expert sys­

tems that must deal with with weighted probabilities caused by the uncertainty of human symp­

toms or measurements, this simplified version has exact, "digital" input data -- an indication that

a test either passed or failed -- there is no "middle ground". This implementation does not con­

tain knowledge of electronic component structures [Rehfuss84], and it does not query the user for

additional details as it progresses through its diagnosis. This simple expert system reasons back­

ward from its top-level goal: find the cause of the test failure(s) [Laffey86] .

•

•

- 17 -

Only the minimal "bit-map" approach mentioned above has been implemented, for reasons

explained in Section 4. The result analyzer's input data is a static record of failure data, where a

bit position in the record corresponds to a specific test. As the test sequence is run, the pass/fail

result of each test is recorded in sequential bits of memory. This expert system contains a

knowledge base specific to the unit under test, consisting mainly of "if-then-else" cases, such as

"if testl & test2 failed, but test3 passed, then the fault is ... ". It uses a "fault dictionary" approach

where the failure pattern is matched with pre-determined causes. Different faults cause a dif­

ferent failure pattern, so those failure patterns are programmed into the knowledge base and

correlated to the components that cause them.

3.5 The User Interface

Since this paper deals with general design guidelines, this user-interface discussion will be

kept "device-independent". That is, an ASCII input/output device is assumed, and special graph­

ics devices are not discussed. A specific product implementation is described in the next section.

Verification and troubleshooting pose different requirements for the user interface.

Verification requires a "run all" mode of sequential test execution, possibly with looping on the

entire sequence, that is easily selectable. A menu-based user interface [Rubenstein84] can be

generally applied and can be made quick and easy to use. To simplify the user's selections, some

interfaces have "built-in" loop and display options, such as looping that occurs automatically on a

test that fails. A single menu with options for "run all" or individual test selection is sufficient for

verification, but troubleshooting requires more flexibility. Some menus lead the user down a very

restrictive path, frustrating the troubleshooter because he cannot get the diagnostics to do what he

wants. So although the loop and display control mechanisms are sometimes inter-related, they

should be presented to the troubleshooter as separate selectable options. On the contrary,

• verification users frequently follow the same menu path, and are annoyed by too many selections

•

•

•

- 18 -

that get repetitious and seem needless .

The acceptable number of items per menu and levels of menus has been the subject of much

study [Paap86], and the optimum user interface can be an entire subject in itself. One solution to

the above requirements is a top-level menu that presents an immediate choice between

verification or troubleshooting. The second-level menus that appear next differ based on that ini­

tial choice, with the verification menus being minimal in number and options, and the troub­

leshooting side having more options, possibly distributed over several menu levels. The figure

below depicts a previous implementation that follows this scheme with multiple levels of small

menus.

MODE SELECT MENU

1 - AUTOMATIC VERIFICATION MODE
2 - TEST SELECTION MODE

Enter desired number followed by RETURN key:_

If menu item #1 was · selected: If menu item #2 was selected:

AUTO MODE MENU

1 - RUN ALL TESTS ONCE
2 - RUN ALL TESTS CONTINUALLY

SELECT MODE MENU

1 - RUN TEST AAA
2 - RUN TEST BBB
3 - RUN TEST CCC

(and so on ...)

LOOP MODE MENU

1 - LOOP ON ERROR
2 - LOOP UNTIL ERROR
3 - DO NOT LOOP

An acceptable alternative is a top-level menu that presents all the basic options (looping,

display, run all tests, run one test), but requires only one user selection and uses "defaults" for

selections not made by the user. An example of this user interface is shown in the implementa­

tion section .

•

•

- 19 -

3.6 Other Troubleshooting Aids

Several features can be added to diagnostic software to help the troubleshooter diagnose a

problem, if the software diagnosis is insufficient:

1. "Breakpoints" to stop test execution (RAM-based software only) and freeze the state of the

hardware for inspection. This item is unnecessary if the tests can be forced to terminate as

soon as the error occurs, without running the "cleanup" code.

2. The ability to exercise signals which are otherwise untested because they cannot be verified

automatically, such as a repeated toggling or pulsing of a signal which allows it to be

verified manually with a scope or logic probe.

3. The ability to read and write memory, with looping if desired. Commands for "read byte"

and "write byte" would be minimally sufficient, with looping as a useful addition for troub­

leshooting. This feature is depicted below, in the implementation section .

4. THE PRODUCT IMPLEMENTATION

This section describes an actual implementation based on the guidelines presented in this

paper. This implementation gives credence to these design guidelines, and hopefully the imple­

mentation examples will further clarify the guidelines. The implementation is described in a

top-down fashion by illustrating the user-interface and its use. Some of the test names have been

generalized to avoid confusion.

The user-interface consists of basically a one-level menu, with temporary look-up menus

that list the tests and test groups. (Test groups are called "functions" in the actual implementa­

tion, because of a pre-established precedence.) The main menu and its default selections are

shown below, with self-explanatory examples of user input and program output. Notice how the

• user "prompt" gives an immediate indication of the current selections (function, print mode, loop

•

•

•

- 20-

mode). The one or two characters after the">" symbol of the prompt represents what is typed in

by the user.

**** DIAGNOSTICS DEBUG MONITOR ****
?N Show available functions (?f) or tests (?t)
fN Select function (N = function Number in decimal)
tN Select test (N = test Number in decimal)
/ Unselect function (selects all tests)
lN l0=no loop, ll=loop on error, 12=loop till error, 13=loop always
pN p0=no print, pl=print errors, p2=print all test info

r Run selected tests
a Analyze test results
h Display this help menu
q Quit (exit from diagnostics)

Run all tests, PrintErrors, NoLoop > ?f

Available functions:
f0-Kernel
fl-Bus tests
f2-Interrupts
f3-LAN circuitry

- 21 -

• Run all tests, PrintErrors, NoLoop > ?t

•

•

Available tests:
f0-Kernel Tests

t0-RAM chips
tl-EPROM checksum
t2-CPU

fl-Bus Tests
t0-RAM address bus
tl-RAM data bus
t2-I/O data bus
t3-Bus error

f2-Interrupts
t0-Clock interrupt
tl-Port Interrupt
t2-Interface interrupt

f3-LAN Circuitry
t0-LAN PROM check
tl-LAN data bus
t2-LAN interrupt
t3-LAN self-test
t4-LAN address setup
t5-LAN internal loopback
t6-LAN SIA loopback
t7-LAN external loopback

Notice that only the tests for the selected group are listed. Above, all tests are listed when "Run

all tests" is the selected function. Below, only the kernel tests are listed because function "ID" has

been selected.

Run all tests, PrintErrors, NoLoop > f0
f0-Kernel tests, PrintErrors, NoLoop > ?t
Available tests:

t0-RAM chips
tl-EPROM checksum
t2-CPU

f0-Kernel tests, PrintErrors, NoLoop > t0
f0-Kernel, t0-RAM chips, PrintErrors, NoLoop >

Test failure infonnation is given by a run-time error message, followed by a "Fault

Analysis" message after the test completes its looping (if looping was selected). The first line of

the error message alerts the user that the test failed, and the second line identifies the faulty area

•

•

•

- 22-

after isolating the failure through readback hardware or additional error analysis. An error in the

LAN interrupt test, for example, may produce the following error display (the "<>" symbol

denotes the schematic page):

£0-Kernel, t0-RAM chips, PrintErrors, NoLoop > f3t2
£3-LAN circuitry, t2-LAN interrupt, PrintErrors, NoLoop > r
Error: LANINT not received by CPU
Fault Analysis: LANINT present at <7>U348 but not at CPU; check <2>U364

The RAM test loop/print anomaly is depicted in the following example. When the RAM

chip test is first run with "loop always" mode, notice how the same (first) error is -repeated. When

"print all" is selected, all RAM errors are displayed, and in this example it becomes apparent that

the errors are caused by a stuck data line rather than a failure within a RAM chip.

£3-LAN circuitry, t2-LAN interrupt, PrintErrors, NoLoop > f0t013
£0-Kernel, t0-RAM chips, PrintErrors, LoopAlways > r
Error: Location= 80000 Expected data= 55 Actual data= 65
Error: Location= 80000 Expected data= 55 Actual data= 65
Error: Location= 80000 Expected data= 55 Actual data= 65

£0-Kernel, t0-RAM chips, PrintErrors, LoopAlways > p2
£0-Kernel, t0-RAM chips, PrintAll, LoopAlways > r
Error: Location= 80000 Expected data= 55 Actual data= 65
Error: Location= 80001 Expected data= 55 Actual data= 65
Error: Location= 80002 Expected data= 55 Actual data= 65
Error: Location= 80003 Expected data= 55 Actual data= 65

The memory manipulation commands were implemented as "read byte" and "write byte"

and "dump memory". These commands were added to the main menu, and they are illustrated in

the figures below:

- 23 -

• **** DIAGNOSTICS DEBUG MONITOR ****

•

•

dN Dump memory starting at hex address N
rN Read byte at hex address N (obeys Loop_all and Print_all)
wM N Write hex byte M to hex address N (obeys Loop_all and Print_all)
?N Show available functions (?f) or tests (?t)
fN Select function (N = function Number in decimal)
tN Select test (N = test Number in decimal)
/ Unselect function (selects all tests)
lN l0=no loop, ll=loop on error, 12=loop till error, 13=loop always
pN p0=no print, pl=print errors, p2=print all test info

r Run selected tests
a Analyze test results
h Display this help menu
q Quit (exit from diagnostics)

f0-Kernel, t0-RAM chips, PrintAll, LoopAlways > 10
f0-Kernel, t0-RAM chips, PrintAll, NoLoop > r80067

80067= 07

f0-Kernel, t0-RAM chips, PrintAll, NoLoop > w80067 55
Write completed .

f0-Kernel, t0-RAM chips, PrintAll, NoLoop > 13
f0-Kernel, t0-RAM chips, PrintAll, LoopAlways > w80067 55
Looping on write to 80067(hex), press any key to quit_

f0-Kernel, t0-RAM chips, PrintAll, LoopAlways > d80000

0 1 2 3 4 5 6 7 8 9 A B C D E F
80000= 00 01 02 03 04 05 06 07 08 09 0A OB 0C OD OE OF
80010= 00 01 02 03 04 05 06 07 08 09 0A OB 0C OD OE OF
80020= 74 68 69 73 20 69 73 20 61 6E 20 41 53 43 49 49 this is an ASCII
80030= 72 65 70 72 65 73 65 6E 74 61 74 69 6F 6E 20 OF representation
80040= 6F 66 20 74 68 65 20 73 61 60 65 20 64 61 74 61 of the same data
80050= 00 01 02 03 04 05 06 07 08 09 0A OB 0C OD OE OF
80060= 00 01 02 03 04 05 06 55 08 09 0A OB 0C OD OE OF U
80070= 00 01 02 03 04 05 06 07 08 09 0A OB 0C OD OE OF
80080= 00 01 02 03 04 05 06 07 08 09 0A OB QC OD OE OF
80090= 28 43 29 54 65 6B 74 72 6F 6E 69 78 31 39 38 38 (C)Tektronixl988
800A0= 00 01 02 03 04 05 06 07 08 09 0A OB 0C OD OE OF
800B0= 00 01 02 03 04 05 06 07 08 09 0A OB 0C OD OE OF
800C0= 00 01 02 03 04 05 06 07 08 09 0A OB 0C OD OE OF
800D0= 00 01 02 03 04 05 06 07 08 09 0A OB 0C OD OE OF
800E0= 00 01 02 03 04 05 06 07 08 09 0A OB 0C OD OE OF
800F0= 00 01 02 03 04 05 06 07 08 09 0A OB 0C OD OE OF
Press space bar to continue or any other key to quit_

•

•

•

- 24-

The results analyzer is invoked with the "a" command, and sample output is shown below:

f0-Kernel, t0-RAM chips, PrintAll, NoLoop > a

Recording test results ...
Searching for failure patterns ...

All interrupt tests failed --
-fault ~ probably at <2>U364: enable stuck hi or PORTINT stuck lo

Failure pattern analysis completed.

As mentioned earlier, the results analyzer (as implemented) only considers a pass/fail bit for

each test, rather than analyzing error message content. An inherent limitation with this approach

is that all conclusions are a result of a match with predicted failure patterns (developed apriori).

Failure patterns may show up in manufacturing that were not predicted, and will not draw any

matching conclusion from the results analyzer. This implementation resides in EPROM on the

circuit board and is not easily modified once the board is into production. However, this

approach was implemented because 32 bits of test result information can be passed to the "system

controller" on another board in the DAS9200 product. The system controller can perform the

results analysis in an identical fashion, with the program loaded from a diagnostic floppy disk

which is maintained for manufacturing use. It is my intent to upgrade a floppy-based results

analyzer whenever unpredicted failure patterns appear in manufacturing.

5. CONCLUSION

So-called "diagnostic" software that provides only verification is the bare minimum a diag­

nostic software designer should be responsible for. The previous discussion has shown that in

manufacturing and other service areas there is a definite need for software that is "diagnostic" in

more than name only. The design techniques proposed and discussed in this paper can produce

test software worthy of the name "diagnostic", so that it provides verification, fault identification,

and troubleshooting aids. They are a result of much research and my eight years of experience as

a diagnostic design engineer and manufacturing test engineer. These techniques have been

•

•

•

- 25 -

authenticated by their implementation in a real product, and their worth should be realized when­

ever this implementation is used by manufacturing and field service.

6. ACKNOWLEDGMENTS

I wish to recognize Maria Agoston, David Maguire, and John Richartz, who as fonner co­

workers, helped develop some of the ideas presented here. I also acknowledge Forest Ross, who

originated the Diagnostic Debug Monitor (DOM) user interface for the DAS9200 .

•
- 26-

7. BIBLIOGRAPHY

Of the references listed, the book "Digital Test Engineering" by J. Max Cortner is by far the best
single reference on fault modeling, test algorithms, diagnostics, troubleshooting, and other related
topics.

Agoston, M. & Dale, I. & Irlandez, L. & Hoke, T. "Building an Expert System for Digital Board
Diagnosis using HIPE", Oregon State University Project Report, 1986.

Bennetts, R.G. "Design of Testable Logic Circuits", London: Addison-Wesley, 1984.

Breuer, M.A. & Friedman, A.O. "Diagnosis & Reliable Design of Digital Systems", Rockville,
MD: Computer Science Press, 1976.

Chang, H.Y. & Manning, E. & Metze G. "Fault Diagnosis of Digital Systems", Huntington, NY:
R.E. Krieger, 1974.

Cortner, J. Max. "Digital Test Engineering", New York: John Wiley & Sons, 1987.

David, John G. "The Value of Internal Diagnostics to Tektronix" Tek Labs Internal Publication,
May 1979.

Dobrin, A. & Novak, F. "Freerunning the M68000", Electronics Test, p. 124, April 1984.

Daugherty, David W. "Taking on Design-for-Test in the Real Engineering World", Electronics
Test, pp. 16-20, February 1988.

[Greenspan73] see Ligouri, Fred.

• Fujiwara, Hideo. "Logic Testing & Design for Testability", Cambridge, MA: MIT Press, 1985.

•

Hanlon, Everett. "Intelligent Bum-in for High Density Memories", Electronics Test, pp. 60-64,
January 1983.

Hewlett Packard. "Computer Aided Test Symposium", Spring 1988.

IBM. "Coding and Error Control", IBM Journal of Research & Development, Vol.28 #2, March
1984. (The entire issue is devoted to related articles.)

Kirkpatrick, Donald C. "Diagnostic Fundamentals for the System Planner", Technology Report
(Tektronix Internal Publication), August 1981.

Laffey, T.J. & Perkins, W.A. & Nguyen, T.A. "Reasoning About Fault Diagnosis with LES",
IEEE Expert, pp. 13-20, Spring 1986.

Liguori, Fred (Editor). "Automatic Test Equipment: Hardware, Software, & Management", New
York: IEEE Press, 1974. This is a collection of reprinted IEEE articles. The most
noteworthy are on pages 57-64 and 93-100 and are referenced (respectively) by their
authors:
Greenspan, Arnold M. "Automatic Test Systems", IEEE Transactions on Instrumentation
and Measurement", November 1973.
Susskind, A.K. "Diagnostics for Logic Networks", IEEE Spectrum, October 1973

Morley, R. & Taylor, W. "Why Bother With Expert Systems?", Digital Design, pp. 47-51, July
1986.

Paap, K. & Roske-Hofstrand, R. "The Optimal Number of Menu Options per Panel", Human Fac­
tors Journal, pp. 377-385, August 1986.

•

•

•

- 27 -

Pradhan, D.K. (Editor). "Fault Tolerant Computing", Englewood Cliffs, NJ: Prentice-Hall, 1986 .

Rehfuss, S. & Freiling, M. & Alexander, J. "Particularity in Engineering Data", Oregon State
University Technical Report, 1984.

Rich, Elaine. "Artificial Intelligence", New York: McGraw-Hill, pp. 284-291, 1983.

Rubenstein, R. & Hersh H. "The Human Factor", Bedford, MA: Digital Press, 1984

Srini, Vason P. "Fault Location in Semiconductor RAM", IEEE Transactions on Computers, pp.
349-358, April 1978.

[Susskind73] see Ligouri, Fred .

