PREDICTING RUNNING SKYLINE PERFORMANCE BASED ON THE MECHANICAL CAPABILITY OF THE YARDER

by
SAMUEL JAMES WILBANKS

A PAPER
submitted to
Oregon State University

```
in partial fulfillment of
the requirements for the
    degree of
    Master of Forestry
```


ACKNOWLEDGEMENT

I would like to express my sincere gratitude to the U. S. Forest Service for the opportunity to participate in the Advanced Logging Systems Training Program here at 0. S. U. I hope that this paper contributes to the goal of improved planning and layout of Forest Service timber sales.

I would like to thank John Sessions not only for his untiring assistance in the undertaking of this project, but also for the contagious energy he put into all of the classes that I took from him during my stay here at O.S.U.

People who have completed a project such as this can understand the tremendous impact it has on family life. My wonderful wife Kim worked lots of "overtime" to allow me to complete this project. The successful conclusion of my work here is as much due to her dedicated work in the home, as my long hours in the "dungeon." Thank you, Kim.

Finally, I would like to thank Don and Tillie Wilbanks, my parents, for without them, none of this would have been possible.

TABLE OF CONTENTS

PageI. INTRODUCTION 1
Objective 3
Scope 3
II. YARDER POWER FLOW 5
Non-interlocked 5
Mechanical Interlock 6
Variable Ratio, Hydraulic interlock 11
III. MODELING YARDER COMPONENTS 16
Engine 16
Torque Converter 16
Gearbox 22
Drum Set 25
IV. RUNNING SKYLINE LOAD PATH 33
Full Suspension 33
Partial Suspension 35
Condition 1 35
Condition 2 39
Condition 3 39
V. ESTIMATING LINE SPEEDS 46
Non-interlocked 46
Mechanical Interlock 47
Variable Ratio Hydraulic
Interlock 48
VI. RESULTS 52
VII. CONCLUSION 56
VIII. SUGGESTIONS FOR FURTHER STUDY 57
LITERATURE CITED 59

TABLE OF CONTENTS

(continued)

Page

VI. APPENDICES 60
APPENDIX 1. Key to Symbols 60
APPENDIX 2. Computer Codes 64
Non-interlocked 65
Mechanical Interlock. 77Variable RatioHydraulicInterlock 89
APPENDIX 3. Derivations 102
Number of Wraps 103
Motor Torque 105

LIST OF FIGURES

Figure Page

1. Power flow in a non-interlocked running skyline 7
2. Power flow in a running skyline with a mechanical interlock 8
3. Drum set of a running skyline with a variable ratio hydraulic interlock 12
4. Power flow in a running skyline with a variable ratio hydraulic interlock 15
5. Engine torque as a function of engine speed 17
6. Example of relationship of speed ratio to converter capacity factor as regressed from performance data. 20
7. Relationship of calculated torque ratio (Tr_{C}) and actual torque ratio (Tr) to input torque. 21
8. Flow chart of procedure to determine engine-torque converter operating condition. 23
9. Flow chart of gear selection procedure. 24
10. Yarding drum geometry. 26
11. Clutch (brake) torque as a function of applied pressure. 30
12. Log drag geometry. 36
13. Search limits for log-to-ground angle. 37
14. Search limits for downhill yarding with ground slope less than coefficient of friction. 40
15. Search limits for downhill yarding with ground slope greater than coefficient of friction. 41
16. Flow chart of procedure for load path analysis. 43
17. Location of "dummy" terrain points on skyline profile. 45
18. Flow chart of procedure for calculating pump torque. 51
19. (a) Relative efficiencies of threeyarders. (b) Required powerfor each yarder to move the load atequal speed53
20. Payloads over the same profile predictedusing a working tension of one-third ofbreaking strength, versus mechanicalcapability of the yarder. 55

I. INTRODUCTION

During the timber sale planning process, the forest engineer must determine the type of yarding system which can most efficiently harvest the area. In the case of steep, environmentally sensitive terrain, the running skyline system is often an alternative. The first step in the analysis is to determine physical feasibility. Once this is known, yarding costs are estimated in order to help determine the most efficient system.

Currently, skyline analysis programs, available for desktop computers and hand held calculators, are used to determine the maximum payload which can be supported at various points along the skyline corridor.

The programs are based on the following information:

1. Diameter and length of wire rope recommended for the yarder.
2. Yarder tower height.
3. Profile geometry.
4. Minimum skyline or log clearance.
5. Allowable working tensions.

The rope dimensions and tower height are available from manufacturers' specifications. Profile geometry is obtained from field or map surveys. Minimum skyline clearance is
determined as necessary to meet sale objectives. Finally, the engineer must decide what allowable working tensions will be acceptable. Often the tensions are assumed to be the safe working load of the line and the tensioning capability of the yarder is not considered.

After determining that payloads are adequate, production is estimated using available regression equations for cycle time, or "rules of thumb" based on past local experience. Yarding costs can. then be calculated as a basis for comparison between systems.

The assumption that the tensioning capability of the yarder is not limiting may not be valid and can result in the predicted payloads being unattainable. In addition, the yarder may be unable to deliver the power necessary to achieve the predicted production rates. Consequently, actual production could fall significantly below that originally estimated.

In order to more accurately predict running skyline performance, this paper presents a method for modeling the interaction between the yarder, the load, and the terrain. To accomplish this, profile geometry is established using conventional methods. Carriage position is then found based on an assumed payload, and the tensioning capability of the yarder. Next, torque required at the mainline drum to support the load is calculated. The operating condition of the engine/drive train that can deliver the required torque is
then determined. Finally, line speed is calculated based on engine speed, torque converter speed ratio, drum set gearing, and effective radius. To do this, power flow must be defined for the specific running skyline. Each component of the yarder is modeled to permit simulation of the inhaul element of the yarding cycle.

The Agricultural Engineering Department of the University of California at Davis is currently doing work on modeling the drive trains of various running skyline yarders. Their research does not include the interaction of the yarder with the choosen load and profile.

Objective

The objective of this paper is to develop a methodology for determining running skyline yarder performance based on the mechanical characteristics of the yarder and its interaction with the load and the terrain. A code for implementing this procedure on the HP-9020 will be prepared.

Scope

This paper will consider the following three designs of running skyline yarders.

1. Non-interlocked
2. Mechanical interlock
3. Variable ratio hydraulic interlock

The three designs will be modeled in the uphill configuration only. That is, when the engine must supply positive torque to drive the system rather than negative torque to slow the system down. Analysis will be limited to the inhaul element of the yarding cycle. The line configuration consists of mainline and haulback shackled to the carriage. The line segments are assumed to act as "rigid links" as suggested by Carson (1976).

II. YARDER POWER FLOW

Power flow must be considered in order to predict yarder performance. Power delivered into the system must equal power leaving the system. Since the purpose of a yarder is to bring a load of logs to the landing, the minimum input power requirement would be the power necessary to perform useful work on the load. Therefore, other sources of power loss can be considered inefficiencies in the system. The relative efficiency of a running skyline yarder is defined here as the power necessary to do the required work on the load and lines, divided by the total power input by the engine. This measure of efficiency can be used to compare the abilities of different designs to deliver power to the load. The power flow between the yarder, the lines, and the load varies with each design. Mann (1977) described power flow in running sky ine yarders.

Non-interlocked

The non-interlocked running skyline is the simplest and least efficient of the three designs. The yarder may be equipped with a multi-stage torque converter without a gearbox, or a single stage converter with a power shift gearbox. The power lost in the converter can vary from 5% to 50% depending on design and operating condition. Power flows from the converter output shaft to the mainline drum. The
mainline drum then transmits the power to the mainine. At the carriage, some power flows to the load to do the work required to yard the turn, while the rest is transferred to the haulback line. Power leaves the haulback line at the large water-cooled brake which is used to maintain tension in the system (Figure 1.).

Mechanical Interlock

Power flow in the mechanical interlock is the same as the noninterlocked design except that a portion of the power at the haulback drum is recycled back to the mainline drum. This is accomplished by placing a clutch between the haulback and mainline drum gears (Figure 2.). This regenerative clutch substantially reduces the input torque required from the engine. To transfer power from the haulback drum to the mainline drum, the angular speed of the haulback side of the clutch must always be greater than the mainine drum side of the clutch. In the absence of any intermediate gearing between the drums, this can be accomplished by selecting drum radii which allow the effective radius of each drum to be equal when the carriage is at the tailhold of the longest possible span. At this position the haulback drum is nearly full and the mainine drum virtually empty. Assuming equal line speeds, there is no slip across the clutch at this point. This is known as the "lock-point". As inhaul progresses, the haulback loses line reducing its effective radius, while the

Figure 1. Power flow in a non-interlocked running skyline

Figure 2. Power flow in a running skyline with a mechanical interlock
main drum gains line, increasing its radius. The net effect is the haulback drum begins to speed up relative to the mainline drum. The differential speed is greatest when the carriage nears the landing. In practice, intermediate gearing is used to control the location of the lock point rather than drum radii. Since the mainline and haulback speeds are rarely equal, the differences between them must be accounted for when calculating differential speed. The differential speed (Δn) is expressed as:

$$
\begin{equation*}
\Delta n=n_{m} \frac{\left(r_{m}\right)\left(H_{v}\right)}{\left(r_{h}\right)\left(M_{v}\right)}-\frac{\left(n_{h} / n_{i}\right)}{\left(n_{m} / n_{j}\right)} \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& n_{m}=\text { angular speed of the mainline drum gear } \\
& n_{h}=\text { angular speed of the haulback drum gear } \\
& n_{i}= \\
& \text { angular speed of the intermediate drive } \\
& r_{m}=\text { mainline drum effective radius } \\
& r_{h}=\text { haulback drum effective radius } \\
& H_{v}=\text { haulback line speed } \\
& m_{v}=\text { mainline speed }
\end{aligned}
$$

Differential speed is necessary to calculate the amount of power dissipated at the clutch face (P_{ρ}). Power dissipated is the product of differential speed and the torque transferred across the clutch (M_{C}).

$$
\begin{equation*}
P_{1}=\frac{(\Delta n)\left(M_{c}\right)}{5252} \tag{2}
\end{equation*}
$$

The power dissipation capability of the clutch varies with design. Line speeds and/or clutch torque may be limited in some situations so that power absorbed does not exceed manufacturers recommendations. This is less of a concern with water-cooled clutches than with air-cooled clutches. Information on clutch power absorption capacity is available from manufacturers.

Interlock Efficiency

Efficiency is the ratio of power-out to power-in. In this case, power-in is the power on the haulback side of the clutch, and power-out is the power on the mainline side of the clutch. Since torque is equal on both sides of the clutch, the efficiency of the mechanical interlock (E_{j}) can be defined as the speed of the mainline side of the clutch divided by speed of the haulback side of the clutch. This speed ratio is dependent on drum radius ratio, line speed ratio, and the speed ratio between the mainline gear and the haulback gear. Interlock efficiency can be mathematically expressed as:

$$
\begin{equation*}
E_{i}=\frac{\left(r_{h}\right)\left(M_{v}\right)\left(n_{m} / n_{i}\right)}{\left(r_{m}\right)\left(H_{v}\right)\left(n_{h} / n_{i}\right)} \tag{3}
\end{equation*}
$$

The mechanical interlock substantially reduces the power required to obtain loads and line speeds comparable with those of the non-interlocked yarder.

Variable Ratio Hydraulic Interlock

One type of variable ratio interlock utilizes a hydrostatic drive to continually vary the speed ratio between the haulback and mainline drums as necessary to control their relative speed. The two drums are interlocked by placing a hydraulic vane motor between them. The haulback drive pinion is attached to the motor housing and the intermediate shaft is spliced to the rotor. The mainline drum is geared to the intermediate shaft (Figure 3.).

Unlike the mechanical interlock the geared speed ratio between the main and haulback drums is selected so that the lock-point occurs near the mid-point of the longest possible span. Once again assuming equal line speeds, the theoretical angular velocity of the haulback drum is less than that of the mainline drum from the tailhold to the lock-point, where the rotational speeds match. From the lockpoint to the landing, the haulback drum will begin to turn progressively faster relative to the mainline drum.

Figure 3. Drum set of a running skyline with
a variable ratio hydraulic interlock

When the haulback drum turns slower than the mainline drum, speed must be added through the interlock. This requires a positive flow of power from the engine, through the hydrostatic drive, to the drums. If the haulback drum is rotating faster than the mainline drum, power must be absorbed by the hydraulic motor and transmitted back to the output shaft of the engine through the pump. This negative power flow reduces the amount of torque the engine has to supply to meet tensioning requirements of the main line drum (Figure 4.).

Interlock Efficiency

The efficiency of the variable ratio interlock is dependent on the overall efficiency of the hydrostatic drive. Typical values range from 75% to 95%. To calculate interlock efficiency, the direction of power flow must be considered (Carson, 1972). The power at the hydraulic motor (P_{m}) is the product of differential speed and torque output. The power at the pump (P_{p}) depends on the direction of flow. For positive flow from the pump to the motor P_{p} equals P_{m} / E_{j}, and for negative flow from the motor to the pump P_{p} equals $P_{m}{ }^{*} E_{i}$. Power loss is calculated as follows:

Positive flow,

$$
\begin{equation*}
P_{1}=\frac{P_{m}\left(1-E_{i}\right)}{E_{i}} \tag{4}
\end{equation*}
$$

Negative flow,

$$
\begin{equation*}
P_{p}=-P_{m}\left(I-E_{i}\right) \tag{5}
\end{equation*}
$$

Figure 4. Power flow in a running skyline with a variable ratio hydraulic interlock

III. MODELING YARDER COMPONENTS

In order to estimate performance, each component of the yarder must be modeled. These include the engine, torque converter, gearbox, and drumset.

Engine

Performance curves showing torque characteristics of engines are available from manufacturers. These curves describe engine torque output versus speed at the full throttle setting. The performance curves are based on dynamometer tests and usually must be derated for such basic components as fan, alternator, air compressor, etc. The deduction for auxiliary equipment is approximately 7 to 8 percent.

The engine can be modeled using piecewise linear regression of manufacturer's published data (Figure 5.). The result is an equation, or group of equations, which will predict engine output torque as a function of engine speed.

Torque Converter

The torque converter is designed to multiply engine torque. As the torque requirement of the load increases, the torque converter responds by automatically increasing the ratio of output torque to engine input torque. This is the

Figure 5. Engine torque as a function of engine speed
same as selecting a lower gear which modifies the power received from the engine, producing more torque and cor respondingly less speed. The magnitude of speed reduction and torque multiplication is defined by the speed ratio ($\mathrm{Sr} \mathrm{C}_{\mathrm{c}}$) and the torque ratio $\left(T r_{c}\right)$. The speed ratio is the ratio of output speed to input speed. The torque ratio is the ratio of output torque to input torque. The efficiency of the torque converter is the product of the torque ratio and the speed ratio. The torque ratio and speed ratio which result from a particular combination of input power and load conditions, define the operating condition of the torque converter. The converter capacity factor $\left(K_{c}\right)$ is a convenient way of expressing the power input to the converter. The capacity factor is defined by:

$$
\begin{equation*}
K_{c}=n_{e} / \sqrt{M} e \tag{6}
\end{equation*}
$$

where:

$$
\begin{aligned}
& n_{e}=\text { engine input speed, rpm } \\
& M_{e}=\text { torque input to converter, ft-1b }
\end{aligned}
$$

The relationship between capacity factor and converter operating condition is established through dynamometer tests. The results of these tests are available from manufacturers in the form of torque absorption charts or converter performance curves. Regression analysis is used to develop relationships for speed ratio as a function of the capacity factor and
torque ratio as a function of speed ratio (Figure 6.).

An iterative approach is used to model the converter. The problem is to determine the input torque and input speed that yields the required output torque (Mout). Output torque is the torque necessary at the output shaft of the converter to achieve the desired ine tension at a given carriage position. Calculation of output torque varies with drum set design, and will be discussed in more detail later.

The iterative solution begins by selecting an initial operating condition for the engine. The converter capacity factor is then calculated. Next, speed ratio and torque ratio are determined using the regression relationships previously developed. If the proper input power has been chosen, the torque ratio as defined by the converter operating condition (Tr_{c}) must equal the ratio of output torque to input torque (Tr). If this is not the case, input torque must be adjusted until these two variables balance. Figure 7. shows how these two parameters vary relative to input torque. If Tr is greater than Tr_{c}, then input torque must be increased. Similarly, input torque must be decreased if Tr is less than Tr_{C}. Input torque can be varied by changing engine speed (Figure 5.) or throttle setting. For example, if the engine is assumed to be operating at full throttle and governed speed and input torque must be increased, engine speed is reduced. This results in higher values for input torque. The

Figure 6. Example of relationship of speed ratio to converter capacity factor as regressed from performance data.

Figure 7. Relationship of calculated torque ratio (Tr_{r}) and actual torque ratio (Tr) to input torque.
physical interpretation of this is the engine lugging down under heavy torque demand. When the engine is operating at full throttle governed speed the only way to decrease torque is to lower the throttle setting. A binary search technique is used to converge on the operating point that satisfies the condition that $\operatorname{Tr}=\operatorname{Tr} . A$ flow chart of the torque converter modeling procedure is shown in Figure 8. Once the operating condition of the engine/torque converter is known the output speed is calculated by multiplying engine speed by the converter speed ratio.

Gearbox

Many yarders are equipped with a gearbox. The gearbox is defined by the speed ratios of each gear. Proper gear selection allows the engine and torque converter to operate in an efficient range. For example, if too high a gear is selected, the converter may not be able to generate a large enough torque ratio to meet demand. When this happens, the converter will stall resulting in an efficiency of zero. In order to model the gearbox, the highest gear is sefected initially. After determining the converter operating condition, checks are made to determine if the converter is operating within a desirable range. If not, a lower gear is selected and the process repeated until a feasible combination is found (Figure 9.).

Figure 8. Flow chart of procedure to determine engine-torque converter operating condition.

Figure 9. Flow chart of gear selection procedure.

Drumset

The design of the drum set directly influences: 1) the ability of the yarder to support tension in a specific drum at a specific carriage position, and 2) the torque requirements placed on the power unit during yarding. Two factors that vary with drum set design and have the largest impact are effective drum radius and drum torque.

Effective Radius

The effective radius is the radius as measured from the center of the drum to the center of the outermost layer of the wire rope (Figure 10.). Effective radius varies as line is spooled on and off of the drum during yarding. Assuming that torque (M) delivered to the drum is constant, tensioning capacity is inversely proportional to the effective radius.

This can be illustrated as follows:

$$
\begin{equation*}
T=M / r_{e} \tag{7}
\end{equation*}
$$

where:

$$
\begin{aligned}
T & =\text { tension } \\
M & =\text { torque delivered to drum } \\
r_{e} & =\text { effective radius of the drum }
\end{aligned}
$$

Referring to Figure 10 , as line leaves the drum, r_{e} will decrease while M, being independent of r_{e}, will remain constant. The result is an increase in tension. The

Figure 10. Yarding drum geometry.
effective radius depends on drum geometry, carriage position and the drum under consideration.

Drum geometry controls the range of effective radius as the carriage moves along the span. The wider and larger the drum diameter, the narrower the range of effective radius. For the haulback drum, the effective radius is greatest when the carriage is near the tailhold. As a result, this is the carriage position where the haulback drum produces minimum tension. As the yarder brings in the turn, the tensioning capability of the haulback drum increases to a maximum as the load approaches the landing.

The variation of tensioning capability with carriage position for the mainline drum is opposite that of the haulback. It is highest at the back of the setting and lowest near the landing.

In order to determine tensioning capability, the effective radius of each drum must be calculated at each load point. A convenient way to do this is to calculate the number of "wraps" (layers) of wire rope stored on the drum and then use the following equation.

$$
\begin{equation*}
r_{e}=b_{r}+(n-.5) d \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
b_{r} & =\text { barrel radius empty } \\
n & =\text { number of wraps } \\
d & =\text { rope diameter }
\end{aligned}
$$

The geometry of a typical yarding drum is shown in Figure 10. The number of wraps on a drum can be calculated using the following equation.

$$
\begin{equation*}
n=\frac{-b+\left[b_{r}^{2}+\left(\frac{d^{2} L}{K W}\right)\right]^{\cdot 5}}{d} \tag{9}
\end{equation*}
$$

where:

$$
\begin{aligned}
& L=\text { length of line on drum, ft } \\
& W=\text { width of drum, in } \\
& K=.2618
\end{aligned}
$$

A derivation can be found in Appendix 3.

Drum Torque
Given the effective radius, torque available at a drum controls the amount of tension which can be applied to the line. Drum torque is generated either by the engine through the drive train, or by resisting torque supplied using brakes, clutches or, in the case of hydraulic interlocks, a hydrostatic drive. The engine and drive train will be discussed in detail later. For the moment, assume that torque will not be limited by the engine.

Torque is applied to the mainline drum, from the engine and drive train, through a pulling clutch. In many yarders, this clutch is designed not to limit the tension that can be exerted by the drum. That is, the torque rating of the clutch is adequate to tension the line close to its breaking strength at any effective radius. However, in cases of high tension requirements close to the landing, this clutch may become limiting to mainline tension.

As mentioned previously, the non-interlocked yarder uses a brake, usually water cooled, to tension the haulback line. In the case of the mechanical interlock, the regenerative clutch limits torque available for tensioning the haulback. Torque supplied by clutches and brakes is assumed to increase linearly with the pressure applied to the friction surfaces. The pressure is commonly supplied by compressed air. (Figure ll.). The following relationship is

Figure 11. Clutch (brake) torque as a function of applied pressure.
used To calculate the torque capability of clutches or brakes.

$$
\begin{equation*}
M=(p)\left(C_{t}\right) \tag{10}
\end{equation*}
$$

where,

$$
\begin{aligned}
M & =\text { Torque, in }-1 b \\
p & =\text { Air Pressure, psi } \\
C_{t} & =\text { torque constant, } i n-1 b / p s i
\end{aligned}
$$

The constant C_{t} is dependent on design and is available from the manufacturer.

Example

$$
C_{t}=3000, p=100 \mathrm{psi}
$$

The torque available $=(100)(3000)$

$$
M=300,000 \mathrm{in}-1 \mathrm{~b}
$$

This would be the torque available to produce tension in the haulback drum.

The resisting torque in the haulback of a variable ratio hydraulic interlock is supplied by the hydrostatic drive. This device consists of a fixed displacement hydraulic motor placed between the mainline and haulback drums that is supplied with torque through a variable displacement pump driven by the engine. The torque rating, C_{h}, of the hydraulic motor is a function of the motor design, displacement, and angular speed. The variation of output torque to motor speed is relatively small and can be neglected
for the range of speeds involved. Neglecting effects of motor speed, the motor torque can be expressed as the product of the torque rating and the hydraulic pressure differential ($\Delta \mathrm{p}$) between the inlet and outlet ports of the motor. The torque available at the haulback drum is a function of the hydraulic motor torque and the speed ratio of the haulback to the motor drive pinion (Figure 3.). Therefore, the torque available in the haulback drum of a hydraulically interlocked yarder can be calculated as follows:

$$
\begin{equation*}
M_{h b}=\frac{(\Delta p)\left(C_{h}\right)}{n_{h} / n_{i}} \tag{11}
\end{equation*}
$$

where:

$$
\begin{aligned}
M_{h b} & =\text { torque at haulback } \\
\Delta p & =\text { pressure differential } \\
C_{h} & =\text { torque rating of motor }
\end{aligned}
$$

IV. RUNNING SKYLINE LOAD PATH

Payload capability is often determined by calculating maximum load carrying capacity for a given hauback tension and deflection (Carson, 1976). For the purpose of yarder modeling, a more useful method determines deflection, and ultimately a load path, for a given load and tension. Calculation of the load path yields three important pieces of information relative to yarder modeling.

1) Mainline tension necessary for a static force balance at the carriage.
2) The line speed ratio necessary for the carriage to travel along the load path.
3) Deflection of the skyline, and whether the load is fully or partially suspended.

Two separate procedures are used in load path determination. One treats the fully suspended case while the other deals with partial suspension.

Full Suspension

Analysis of the fully suspended load path was developed by Carson and Mann (Carson and Mann, 1971). A brief summary of this procedure is presented here.

For each terrain point the secant method is used to determine the value for deflection that will provide the desired payload. This method requires two initial guesses for D_{y}. The initial guess for deflection ($D_{y i}$) is the value that would put the carriage on the skyline chord. The net payload $\left(W_{0}\right)$ is calculated using the initial estimate of the deflection. For the second guess, a deflection equal to the first guess plus one percent of the span is used. Once again, the corresponding value for payload is calculated. The third, and all successive trials for D_{y} are determined from the secant formula:

$$
\begin{equation*}
D_{y_{n e w}}=\frac{\left(W_{g}-W_{0}\right)\left(D_{y}-D_{y i}\right)}{\left(W-W_{0}\right)}+D_{y i} \tag{12}
\end{equation*}
$$

where:

$$
\begin{aligned}
& W_{g}=\text { desired net payload } \\
& W_{0}=\text { previous value for payload } \\
& W=\text { current value for payload } \\
& D_{y_{n e w}}=\text { new trial deflection } \\
& D_{y}=\text { current trial deflection } \\
& D_{y i}=\text { previous trial deflection }
\end{aligned}
$$

The method usually converges on D_{y} in 4 to 8 iterations.

Once the fully suspended deflection is known, the skyline clearance is calculated and checked to verify if full suspension is possible.

Partial suspension

Carson (1975) discussed an algorithm which included the effects of log drag in the determination of the running skyline load path. However, this procedure assumed a known log to ground angle (β) which was constant as deflection varied (Figure 12). This is not the case since deflection is a function of B. Because of this another method was developed. This procedure is somewhat similar to Carson's fully suspended algorithm. Instead of iterating for D_{y}, the secant method is used to find the log to ground angle that gives sufficient deflection to support the desired payload. The secant method was sightly modified for this procedure. It was found necessary to restrict the search within certain bounds associated with different ground conditions.

Condition 1

Condition 1 consists of the uphill yarding situation. The two initial guesses define the limits of the solution space in the search for β. The first guess assumes the log virtually laying on the ground (Figure l3a.). This initial guess for the log to ground angle ($\beta 1$) is calculated as:

$$
\beta 1=\sin ^{-1}(D / L)+5
$$

Figure 12. Log drag geometry.

Figure 13. Search limits for log-to-ground angle.
where:

$$
\begin{aligned}
& D=\log \text { diameter } \\
& L=\log \text { length }
\end{aligned}
$$

The five degree addition is to insure a high positive value for payload with the initial trial. The second guess for the log to ground angle (β_{2}) approximates the condition where the log is hanging nearly vertical (Figure $13 b$) and is calculated as:

$$
\begin{equation*}
\beta_{2}=89-\theta \tag{13}
\end{equation*}
$$

where:

$$
\theta=\text { ground slope angle }
$$

Eighty nine degrees is used because for flat slopes ($\theta=0$) the tangent of θ which is used in the denominator of subsequent calculations is zero resulting in an undefined number.

For the third and all successive guesses, the secant formula is used.

$$
\begin{equation*}
\beta_{\text {new }}=\frac{\left(W_{g}-W_{0}\right)\left(\beta-\beta_{0}\right)}{\left(W-W_{0}\right)}+\beta_{0} \tag{14}
\end{equation*}
$$

where:

$$
\begin{aligned}
& W_{g}=\text { desired payload } \\
& W_{0}=\text { previous payload } \\
& W \quad=\text { current payload } \\
& B \quad=\text { current log to ground angle }
\end{aligned}
$$

If the calculated $\beta_{n e w}$ does not fall within β_{1} and β_{2}, it is arbitrarily adjusted to fall within these limits. This process eliminates extraneous values of β, and considerably speeds up the iteration procedure. Four to ten iterations are normally needed to obtain values for payload within two percent of the desired load.

Condition 2

Condition 2 occurs when the \log is moving down hill and the ground slope is less than the coefficient of friction. The two initial guesses for this condition are the same as for condition 1. Figure 14 . illustrates the \log to ground geometry.

Condition_3

Condition 3 is when the ground slope is greater than the coefficient of friction as the log moves down hill. Since ground slope (decimal percent) is greater than the coefficient of friction, the log must be held on the slope by the haulback (Figure 15.).

It would have to be very steep for the log to actually run ahead of the carriage. However, this log to ground geometry is consistent with the static analysis of forces which is a major assumption in this analysis. Once again, trials for β are held within the solution space defined by the two initial guesses. Four to ten iterations are necessary

Figure 14. Search limits for downhill yarding with ground slope less than ooefficient of friction.

Figure 15. Search limits for downillyarding with ground slope greater than coefficient of friction.
in order to find a log to ground angle which yields payloads within two percent of the desired load (Figure 16.).

Once the load path is established, mainline tensions at each terrain point are known. These tensions are used with mainline effective radius to determine the torque requirement at the mainline drum. Finally, the line speed ratio is calculated to determine the amount of power which is delivered to the haulback drum during inhaul. Line speed ratio is expressed as follows:

$$
L_{\text {srat }}=\frac{H V}{M V}
$$

```
where: MV = mainline speed
```

It can be rewritten as

$$
L_{\text {srat }}=\frac{\frac{\Delta H l}{\text { time }}}{\frac{\Delta M l}{\text { time }}}
$$

$$
\text { where: } \begin{aligned}
\Delta M 1= & \text { change in length of } \\
& \text { mainline out } \\
\Delta H 1= & \text { change in length of } \\
& \text { haulback line out. }
\end{aligned}
$$

The two time terms cancel out and leave:

$$
L_{\text {srat }}=\frac{\Delta H 1}{\Delta M 1}
$$

Figure 16. Flow chart of procedure for load

The value for $\Delta M 1$ or $\Delta H l$ can be readily calculated from the information obtained during the load path calculations. The pythagorean theorem is used to determine the total amount of haulback and mainline out at each terrain point. Less averaging error is introduced if the terrain points are very close together. The closer the points, the closer the calculated value will approximate the differential value for line speed ratio. This can be done by adding "dummy" terrain points immediately on the tailhold side of the field measured terrain points (Figure 17.). The procedure for adding the extra points can be found in the program listing (Appendix 2).

Figure 17. Location of "dummy" terrain points on skyline profile.

V. ESTIMATING LINE SPEEDS

Once the load path has been established, the line speeds at each terrain point may be calculated.

Non-interlocked

Of the three types of machines considered in this paper, the non-interlocked yarder is the simplest to model. All of the power in the haulback line is dissipated through the haulback brake. The engine and torque converter merely have to respond to the required mainine drum torque at each terrain point. Once the converter operating condition is found, the mainline speed $\left(M_{v}\right)$ is calculated using the following equation.

$$
M_{v}=n_{\text {out }}(R)\left(2 \pi r_{m}\right)
$$

where:

$$
\begin{aligned}
n_{\text {out }}= & \text { converter output speed, rpm } \\
R= & \text { the total reduction from the } \\
& \text { converter output shaft to the } \\
& \text { mainline drum. } \\
r_{m}= & \text { mainline drum effective radius }
\end{aligned}
$$

Mechanical Interlock

Modeling of mechanical interlock larder differs from the non-interlocked yarder in the calculation of torque required at the converter output shaft. The formula for calculating output torque is.

$$
\begin{equation*}
M_{\text {out }}=\frac{\left[M_{m 1}-\left(M_{h b}\right)\left({ }_{n} /{ }^{n_{m}}\right)\right](R)}{E} \tag{14}
\end{equation*}
$$

where:

$$
\begin{aligned}
M_{m l}= & \text { total torque required at the mainline } \\
& \text { drum. } \\
M_{h b}= & \text { torque available through the } \\
& \text { regenerative clutch. } \\
n_{h} / n_{m}= & \text { speed ratio from the haulback gear to } \\
& \text { mainline gear. } \\
E= & \text { overall efficiency }
\end{aligned}
$$

After the algorithm converges on the torque converter operating point, the line speeds are calculated in the same manner as for the non-interlocked yarder.

Variable Ratio Hydraulic Interlock

The variable ratio hydraulic interlock is the most complex of the three designs and, therefore, the most difficult to model.

After completing the load path phase of the program, total torque requirement at the mainline drum is known. Converter output torque is then calculated as follows:

$$
\begin{equation*}
M_{\text {out }}=\frac{\left[M_{m 1}-\left({ }^{M} h\right)\left({ }^{n_{i}} /{ }^{n_{m}}\right)\right](R)}{E} \tag{15}
\end{equation*}
$$

where:

$$
\begin{aligned}
M_{h}= & \text { torque at the hydraulic motor } \\
n_{i} / n_{m}= & \text { speed ratio from the intermediate } \\
& \text { shaft to the mainline drum gear. }
\end{aligned}
$$

The torque converter operating condition must now be determined. This is complicated by the design of the interlock.

In order to calculate the converter capacity factor, the input torque must be known. This was straight forward in the two previous cases discussed. However, as illustrated in Figure 3, the power take off for the pump is between the engine and torque converter. As a result, the input torque to the converter is found by subtracting the amount of
torque added (or absorbed) by the pump from the engine torque. Therefore, the capacity factor can be written:

$$
\begin{equation*}
k_{c}=\frac{n_{e}}{\left(M_{e}-M_{p}\right)^{-5}} \tag{16}
\end{equation*}
$$

where:

$$
M_{p}=\text { pump torque }
$$

Pump torque will be positive when the hydrostatic drive is adding power to the drums, and negative when it is absorbing power from the drums.

As in the case of the hydraulic motor, pump torque is a function of displacement and pressure differential. The pressure differential is held constant. Pump displacement is varied so that pump flow equals motor flow. Motor flow is the product of differential speed and displacement. Pump speed is proportional to engine speed. The ratio of pump speed to engine speed is available from the manufacturer.

Once the desired pump displacement (D_{p}) is known, pump torque $\left(M_{p}\right)$ is calculated as follows:

$$
\begin{equation*}
M_{p}=\frac{\left(D_{p}\right)(p s i)}{24 \pi} \tag{17}
\end{equation*}
$$

A derivation can be found in Appendix 3.

The direct solution for pump torque involves the simultaneous solution of six equations and six unknowns. An iterative method for the calculation of pump torque is used. Initially pump torque is assumed to be zero. Converter capacity factor, speed ratio, mainline speed, differential speed, and pump displacement are then computed. Based on these values, an improved value for pump torque is calculated. This value is compared to the previous value. If they are not within some acceptable tolerance, the calculations are repeated using the improved value for pump torque until the difference between them is within acceptable limits (Figure 18.).

The program enters the torque converter phase each time a value for pump torque is found. This is repeated until the engine/converter operating condition is determined. At this point, mainline speed is calculated in the same manner as the other yarder designs.

Figure 18. Flow chart of procedure for calculating
pump torque.

VI. RESULTS

Three computer programs, which utilize the methodology presented in this paper for predicting running skyine performance were written for use on the HP-9020. Complete program listings and numerical examples are included in the Appendix. A representative yarder was selected from each design category. Figure $19 a$ shows the relative efficiency of the three machines yarding over the same profile. Figure 19 b shows the engine power relative to power consumed by the load if all three yarders could inhaul the same load at equal speeds. In practice, a non-interlocked yarder could probably not move a given load as fast as an interlocked yarder because of the extremely high power input and dissipation requirements. The shape of the plots in Figure 19 reflect the overall design of the machine.

For example, near the tailhold the relative efficiency of the mechanical interlock yarder drops-off markedy, whereas the efficiency of the variable ratio interlock yarder continues to increase to a maximum in excess of one hundred percent. The difference in efficiency is largely due to the different torque converters used in each yarder. The mechanical interlock yarder in this case is equipped with a torque converter and a two-speed gearbox. While the variable ratio interlock uses a different torque converter

Figure $19(a)$ Relative efficiencies of three yarders. (b) Required power for each yarder to move the load at equal speed.
in combination with a 4-speed gearbox. The drop in relative efficiency shown for the mechanical yarder is attributable to low converter efficiency resulting from the low drum torque requirements of the relatively light load (5000 pounds) used in this example. The different torque converter and 4-speed transmission allows the variable ratio interlock machine to operate more efficiently over a wider range of loading conditions. The high relative efficiency near the tailhold demonstrates the capability of an interlock to utilize the potential energy given up by the log, thus reducing required input power. In fact, the engine may need to function as a brake in some cases.

This illustrates that two yarders which can support the same payload may have very different productive potential. Forest engineers can use the method of analysis presented here to verify that production estimates for a given yarder are reasonable.

Figure 20 shows the potential error involved when predicting payloads using design tensions unrelated to the tensioning capability of the yarder. If the safe working load (one-third of the breaking strength) of a $7 / 8$ inch line were used as the limiting haulback tension for the mechanical interlock yarder, the payload capability would be overestimated by as much as 86%.

Figure 20. Payloads over the same profile predicted using a working tension of one-third of breaking strength, versus mechanical capability of the yarder.

VII. CONCLUSION

```
A systematic approach for determining running skyline performance based on the mechanical characteristics of the yarder has been developed. This approach can be applied to the three basic designs of running skyline machines. Computer code for implementing this procedure can be found in the Appendix. These programs can be integrated into existing skyline analysis software. Forest engineers should be able to utilize these algorithms in order to more accurately appraise the relative performance of different machines. This will assist in making decisions concerning equipment selection and sale layout.
```


VIII. SUGGESTIONS FOR FURTHER STUDY

Further development of the procedures presented in this paper is desirable:

1. Adaptation of the method to other systems such as live and standing skylines.
2. Addition of a slackpulling line.
3. Model development for downhill yarding.
4. Using catenary relationships to estimate line tensions and lengths.

The methods outlined in this paper would be readily adaptable to other systems. Power flow for live and standing skylines would be the same as that for the non-interlocked yarder. Many running skyline systems use slackpuling carriages. Addition of a slackpulling line would more accurately model these systems.

Addition of downill yarding capability to the model is desirable since a significant proportion of runing skyline settings fall into this category. Downhill yarding has been defined as any time the yarder engine must supply negative torque in order to control the load. To add downhill yarding to the model, closed throttle engine performance curves must be related to converter "braking" data so the engineconverter operating condition associated with the required
braking torque can be determined. Finally, catenary
relationships could be added in order to refine the
estimation of line tensions. This would be particularly
desirable when low interlock or brake pressures result in
line tensions substantially below the safe working load of
the line. catenary analysis would increase computational
time of the model.

LITERATURE CITED

CARSON, W. Influence of auxiliary power unit efficiencies on the design of a planetary/hydraulic interlock yarder. (unpublished paper), Pacific Northwest Forest and Range Experiment SEation. (1972).

CARSON, W. Analysis of running skyline with drag. USDA Forest Service Research Paper PNW-193, (1975).

CARSON, W. Determination of load carrying capability with a programmable calculator. USDA Forest Service Research Paper PNW-205, (T976).

CARSON, W. and C. MANN. An analysis of the running skyline load path. USDA Forest Service Research Paper PNW-120, (1971).

Mann, Charles N. Running skyline systems for harvesting timber on steep terrain. SAE Paper 770519. (1977).

$$
\begin{gathered}
\text { APPENDIX I } \\
\text { KEY TO SYMBOLS }
\end{gathered}
$$

KEY TO SYMBOLS

b_{r}	Empty drum radius.
$c_{\text {c }}$	Torque rating of motor
c_{t}	Torque rating of clutch or brake.
D	Log diameter.
D_{p}	Displacement of the hydraulic pump.
Dy	Current trial for deflection.
$D_{\text {y }}$	Previous trial for deflection.
Dynew	New trial for deflection.
d	Diameter of wire rope.
E	Over all efficiency (not including converter).
E_{i}	Interlock efficiency.
H_{V}	Haulback line speed.
K	Constant equal to . 2618.
K_{c}	Converter capacity factor.
L	Length of line stored on drum.
L_{1}	Log length.
$L_{\text {srat }}$	Line speed ratio.
M	Torque delivered to drum.
M_{c}	Torque transferred across the interlock clutch.
Me	Engine torque.
$M_{h b}$	Torque at haulback drum.
M ${ }_{\text {hyd }}$	Torque at hydraulic motor.

$M_{m l}$	Torque at mainline drum.
Mout	Required converter out put torque.
M_{p}	Pump torque requirement.
M_{v}	Mainline speed.
n	Number of wraps of wire rope on drum.
${ }^{\text {e }}$	Rotational speed of the engine.
n_{h}	Rotational speed of th haulback drum.
n_{i}	Rotational speed of the haulback or mainline drive pinion.
n_{m}	Rotational speed of the mainline drum.
nout	Converter output speed.
p	Air pressure.
P_{1}	Power lost through the brake, clutch, or the hydrostatic drive.
P_{m}	Hydraulic motor power.
P_{p}	Hydraulic pump power.
R	Total speed reduction from converter output shaft to the mainline drum.
r_{h}	Effective radius of the haulback drum.
r_{m}	Effective radius of the mainline drum.
${ }^{\text {e }}$ e	Drum effective radius.
Sr_{C}	Converter speed ratio.
T	Tension.
Tr ${ }_{\text {c }}$	Calculated torque ratio (regression).
Tr	Actual torque ratio.
W	Current value for payload.
W_{d}	Drum width.

W_{g}	Desired net payload.
W_{0}	Previous value for payload.
α	Tagline angle.
β	Log to ground angle.
β_{0}	Previous trial for log to ground angle.
ΔH^{7}	Change in length of haulback.
Δn	Differential speed or slip.
ΔM_{1}	Change in length of mainline.
Δp	Hydraulic pressure differential.
θ	Ground slope angle.

APPENDIX II
 EXAMPLES OF PROGRAM INPUT AND OUTPUT
 and
 COMPUTER CODES

terrain point	x_{n}^{x}		SLOPE OIST	* SLLOPE
1	136.79	938.45	150.00	-45.00
2	322.48	864.17	200.00	-40.00
3	461.76	808.46	150.00	-40.00
4	647.45	734.18	200.00	-40.00
5	786.72	678.47	150.00	-40.00
6	972.42	604.19	200.00	-40.00
7	986.58	599.24	15.00	-35.00
8	1086.58	599.24	100.00	
10^{9}	1228.15 1369.73	648.79 698.34	150.00 150.00	35.00 35.00

Yarder:

```
    EDCO Mustang III
Head spar/tailspar geometry:
```

 YAROER IS LOCATED AT T.P.き 0
 TAILHOLD IS 20 FEET HICH AT T.P. \(\ddagger 10\)
 External yarding limit:
Terrain point \#6
Air pressure on haulback brake:

Design payload:

OUTPUT

T.P.	MLT (LBS)	HBT, (LBS)	REQUIRED H.P.	LSPD (FPM)	SUSPENSION	LOG CLEARANCE	BETA (FT)
(OEG)							

AUE. HORSE POWER DISSIPATED AT HAULBACK BRAKE=239.33

INDEX
Item
Line Numbers
"Dummy" terrain points 320-390
Yarder specifications 780-1020
Log drag parameters 1060-1140
Effective radius 1540-1570
Equation for engine torque 3310
Speed ratio (Sr) as a function of K_{C} 3550-3610
Torque ratio (Tr_{c}) as a function of $S r$ 3660-3710

All variables that are subscripted for retrieval from memory, are listed between lines 100 and 160 . For internal calculations, the subscripts are twice the terrain point value. For example, the torque converter efficiency at terrain point \#4 is designated as Tce(8).

```
!********************* NON-INTERLOCKED *************************
```

!********************* NON-INTERLOCKED *************************
USES MODIFIED SECANT SEARCH PROCEDURE TO FIND LOAD PATH
USES MODIFIED SECANT SEARCH PROCEDURE TO FIND LOAD PATH
+
+
PRINT PAGE
PRINT PAGE
|
|
INPUT "NAME OF PROFILE YOU UISH TO USE",F% | REAOS PROFILE DATA
INPUT "NAME OF PROFILE YOU UISH TO USE",F% | REAOS PROFILE DATA
DEG
DEG
DIM S(100),A(100),X(100),Y(100),Ss(100),Aa(100),Sclear (100),Beta(100)
DIM S(100),A(100),X(100),Y(100),Ss(100),Aa(100),Sclear (100),Beta(100)
DIM Dy(100),L3(100),Mrig(100), Hig(100), Drt (100) Dit(100) Skyl(100)
DIM Dy(100),L3(100),Mrig(100), Hig(100), Drt (100) Dit(100) Skyl(100)
DIM Hre(100),Mre(100),Dratio(100),Hbt(100),Cl(100), Lsr (100), Xe(100)
DIM Hre(100),Mre(100),Dratio(100),Hbt(100),Cl(100), Lsr (100), Xe(100)
DIM Erpm(100),Me(100),Mml(100),Mout(100), Tr (100), Trt(100), Sr(100)
DIM Erpm(100),Me(100),Mml(100),Mout(100), Tr (100), Trt(100), Sr(100)
DIM Mrpa(100),Hrpm(100),Mlspd(100),P1(100),Tce(100), Unet (100), Uu(100)
DIM Mrpa(100),Hrpm(100),Mlspd(100),P1(100),Tce(100), Unet (100), Uu(100)
DIM MIt(100), theta(100),Lc(100),Ge(100),Alpha(100),Hpreq(100),Pml(100)
DIM MIt(100), theta(100),Lc(100),Ge(100),Alpha(100),Hpreq(100),Pml(100)
DIM Ml tmax (100),Trc(100), FIc(100)
DIM Ml tmax (100),Trc(100), FIc(100)
ASSIGN \#1 TO "WTLRANKS/"\&Fs
ASSIGN \#1 TO "WTLRANKS/"\&Fs
N=0
N=0
Nm=0
Nm=0
READ \#1; <(0),Y(0)
READ \#1; <(0),Y(0)
FOR I=1 TO 100 LOAD EUEN \# PTS. INTO ARRAY
FOR I=1 TO 100 LOAD EUEN \# PTS. INTO ARRAY
j=2*I ! (fCTUALL TERRAIN POINTS)
j=2*I ! (fCTUALL TERRAIN POINTS)
READ \$1;5s(I),Aa(I)
READ \$1;5s(I),Aa(I)
IF ABS(Ss(I))+ABS(Aa(I))=0 THEN 320
IF ABS(Ss(I))+ABS(Aa(I))=0 THEN 320
A=ATN(AG(1)/100)
A=ATN(AG(1)/100)
x(J)=x(J-2)+5s(I)*COS(A)
x(J)=x(J-2)+5s(I)*COS(A)
Y(J)=Y(J-2)+5s(I)*SIN(A)
Y(J)=Y(J-2)+5s(I)*SIN(A)
S(J)=5s(I)
S(J)=5s(I)
A(J)=Aa(I)
A(J)=Aa(I)
N=N+1
N=N+1
NEXT I
NEXT I
FOR I=0 TO N ILOADOOD \# PTS. INTO ARRAY
FOR I=0 TO N ILOADOOD \# PTS. INTO ARRAY
j=2*i+1
j=2*i+1
x(J)=x(J-1)+.01*(x(J+1)-x(J-1))
x(J)=x(J-1)+.01*(x(J+1)-x(J-1))
Y(J)=Y(J-1)+.01*(Y(J+1)-Y(J-1))
Y(J)=Y(J-1)+.01*(Y(J+1)-Y(J-1))
S(j)=.01*5s(i+1)
S(j)=.01*5s(i+1)
A(J)=AO(I+1)
A(J)=AO(I+1)
Nn=Nn+1
Nn=Nn+1
NEXT I
NEXT I
N=N+Nn-1
N=N+Nn-1
PRINT "WILBANKS/"\&F
PRINT "WILBANKS/"\&F
PRINT
PRINT
S(0)=0
S(0)=0
A(0)=0
A(0)=0
PRINT "TERRAIN POINT X Y SLOPE DIST : SLOPE"
PRINT "TERRAIN POINT X Y SLOPE DIST : SLOPE"
FOR I=0 TO N STEP 2 | PRINTS PROFILE DATA
FOR I=0 TO N STEP 2 | PRINTS PROFILE DATA
Tp=1/2
Tp=1/2
PRINT USING 510;Tp,X(1),Y(1),S(1),A(I)
PRINT USING 510;Tp,X(1),Y(1),S(1),A(I)
IMAGE 4X,4D,9X,5D.2D,2X,5D.2D,4X,5D.2D,4X,5D.2D
IMAGE 4X,4D,9X,5D.2D,2X,5D.2D,4X,5D.2D,4X,5D.2D
NEXT I
NEXT I
PRINT
PRINT
INPUT "YARDER LOCATION ?",Tpl
INPUT "YARDER LOCATION ?",Tpl
INPUT "LOCATION OF TAILHOLD AND HEIGHT ?",Tp2,Hh2
INPUT "LOCATION OF TAILHOLD AND HEIGHT ?",Tp2,Hh2
IF Tp2)Tp THEN
IF Tp2)Tp THEN
BEEP
BEEP
DISP "TAILHOLD MUST BE BETWEEN O AND";Tp;" PRESS CONT WHEN READY"
DISP "TAILHOLD MUST BE BETWEEN O AND";Tp;" PRESS CONT WHEN READY"
PAUSE
PAUSE
GOTO 540

```
    GOTO 540
```

```
END IF
PRINT USING 630:Tp1
IMAGE "YARDER IS LOCATED AT T.P.#",3D
PRINT
PRINT USING 660;Hh2,To2
IMAGE "TAILHOLD IS",3D,X,"FEET HIGH AT T.P.#",3D
PRINT
Tpl=2*Tpl
Tp2=2*Tp2
INPUT "EXTERNAL YARDING LIMIT ?",Eyd
EydzEyd*2
If Eyd=Tp2 THEN Eyd=Eyd-2
|******************* RUNNING SKYLINE ANALYSIS ************************
INPUT "WEIGHT OF TURN TO BE YARDED (LES)?",Wg
|************* YARDER SPECS. BASED ON EDCD MUSTANG III ***************
Rma in=.0698
                    | REDUCTION : TRANS TO ML DRUM
Egear=.8 OVERALL MECHANICAL EFFICIENCY
Mir=7
|thw=24
Mlc=2700
Hbr=7
Hbw=24
HIC=4200
Tower=50
                    | MAINLINE BARREL RADIUS
                            " M
                    MAULBACK BARREL RADIUS
| TOWER HEIGHT
HhleTower
*
INPUT "PRESSURE SETTING ON HAULBACK BRAKE (PSI)?" .Psi
PRINT "粙枓抖 BRAKE PRESSURE HELD CONSTANT AT";Psi;"PSI {抖科"
PRINT
```



```
PRINT
M=Psi*208.3 | TORQUE AUAILABLE AT HAULBACK DRUM
Diam=7/8 I DIA., MAINLINE
Diah=3/4 IDIA. HALLBACK
W1=1.04 WEIGHT/FOOT OF HAULEACK
W3=1.42 WEIGHT/FOOT OF MAINLINE
WC=600 I CARRIAGE WEIGHT
Count=0
j=0
|
|********************** LIG DRAG PARAMETERS ****************************
```



```
Ll=32 ! LOG LENGTH
He=3 CARRIAGE HEIGHT
U=.6 \OEFFICIENT OF FRICTION
Choke=24 CHOKER LENGTH
Logdia=2 LOG OIAMETER (FEET)
Ce=Choke-PI*Logdia EFFECTIUE CHOKER LENGTH
Fly=Ll+Ce+Hc I REQ. CLEARANCE TO FLY
```



```
IF Tp1=0 THEN
    First=2
ELSE
    First=Tp1+1
END IF
1230 FOR I=First TO Eud
```



```
!******************** SKYLINE RIGHT ************************
IF Hrt>0 THEN
    Tu=Hbt(I)-WI*Lh ITU @ TAILSPAR
    Hh=Hit
ELSE
    Tu=Hbt(I)-WI*Dy(I) ITU G CARRIAGE
    Hh=-Hrt
    END IF
D=Drt(I)
WW=W1
G0548 5910
H2=H
IF Hrt>0 THEN U2=V1
IF Hrt<0 THEN V2=-(V1+W1*L)
|************************** HARLLBACK ********************************
IF Hrt>0 THEN
    Tu=Hbt(I)-W1*Lh ITU @ TAILSPAR
    Hh=Hrt
ELSE
    Tu=Hbt(I)-WI*Dy(I) ITU @ CARRIAGE
    Hh=-Hrt
    END IF
D=Drt(I)
WNW=W1
GOSUB }591
H4=H
IF Hrt>0 THEN U4=U1
IF Hrt<O THEN U4=-(VI+WI*L)
|****************** PAYLDAD AND MAINLINE TENSION ********************
IF Drag>0 THEN
    GOSUB 3900 : DRAGGING
    ELSE
    GOSUB 4050 | FLYING
    END IF
    !*********************************************************************
    IF Drag>0 THEN
        IF ABS(Z)<,02**GO THEN
        IF H1>=50 THEN *(Mre(I)/12) TEST FDR SUFFICIENT
            Mml(I)=Mlt(I)*(Mre(I)/12) I HALLLBACK LENGTH
            IF Mml(I)<27150 THEN I TEST FOR LLUTCH LIMITING
                    GOTO 2510
            ELSE
                DISP "MAINLINE DRLM ClUTCH IS LIMITING AT TERRAIN POINT #";I/2
                WAIT 4
                    GOTO }251
                END IF
            ELSE
                    DISP "HAULLBACK LENGTH EXCEEDED,TRY AGAIN"
                    WAIT }
            GOTO }76
        END IF
        END IF
    ELSE
        IF ABS(2)<.02*Wg THEN 2470
END IF
```

IF Cl(I)<Fly THEN : TEST FOR FULL SUSPENSION Drag=1 GOTD 1350
END IF
NEXT I
1
!********************* CALC. POLUER BALANCE ***********************
FOR I=Tp1+2 TO Eyd STEP 2
T=0
Et=0
IF Et>0 THEN
GOSLB 3350 | ITERATE FOR THROTTLE SETTING
GOSUB 3530 CALC SPEED RATIO
GOSUB 3650 I CALC CONUERTER TORQUE RATIO
GOSLEB 3750 I CALC ACTLAL TORQLE RATIO
ELSE
GOSUB 3160
GOSUB }353
| ITERATE FOR ENGINE SPEED
| CALC SPEED RATIO
GOSUB 3650
CALC CONMERTER TORQUE RATIO
GOSLB 3750 : CALC ACTUAL TORQLE RATIO
END IF
IF Mout(I)<O THEN GOTO 2990
! TEST FOR NEGATIUE OUTPUT TORQUE
t=Tr(1)-Trc(I)
IF Et=0 THEN
: FIRST ITERATION OF ENGINE SPEED
IF T=0 THEN ROUTINE (GOU SPD),MUST REDUCE
IF Zt<0 THEN ! THROTTLE SETTING IF Zt IS NEG.
Et=1
GOTO 2580
END IF
END IF
END IF
IF ABS(Zt)<.001 THEN ! IS OPERATING COND, ERROR ACCEPTABLE?
IF Ke(I)>=49.86 THEN I IS OPERATING COND. FEASIBLE?
IF Erpm(I)>2100 THEN
Et=1
GOTO}258
ELSE
PRINT "INFEASIBLE LOAD AT TP*";I/2
60T0 }258
ENDD IF
ELSE
T=T+1
GOTO }258
END IF
Mrpm(I)=5r(I)*Erpm(I)*Rmain \& MAIN DRIMM RPM
Mispd(I)=Mrpm(I)*(Mre(I)/12)*2*PI MAINLINE SPEED
Pml(I)=MmI(I)*Mrpm(I)/5252 POWER IN MAINLINE
GOSUB 3820 CALC POWER LOST AT HB BRAKE
GOSNB 5800 : CALC AUE POUER LOST AT BRAKE
Hpreq(I)=Me(I)*Erpm(I)/5252 I REQUIRED HORSE FOWER
NEXT I

```

```

GOSUB 5420 I PRINT OUTPUT
INPUT "DO YOU WISH TO CHANGE YARDER LOCATION DR TAILHOLD GEOMETRY ?",T\$
IF T\$="ND" THEN }312
INPUT "NEW YARDER LOCATION ?",TP1
INPUT "NEW LOCATION OF TAILHOLD AND HEIGHT ?", Tp2,Hh2

```

```

IF Sr(I)<=.709 THEN

```
IF Sr(I)<=.709 THEN
    Trc(I)=5.0812*EXP(-2.2878*Sr(I))
    Trc(I)=5.0812*EXP(-2.2878*Sr(I))
ELSE
ELSE
    Trc(I)=-.11566-3.35498*LOG(5r(I))
    Trc(I)=-.11566-3.35498*LOG(5r(I))
END IF
END IF
Tce(I)=Trc(I)*Sr(I) : CALC. CONUERTER EFFICIENCY
Tce(I)=Trc(I)*Sr(I) : CALC. CONUERTER EFFICIENCY
RETURN
RETURN
!
!
------------- SuBroutine CalCulateS actual torque ratio
------------- SuBroutine CalCulateS actual torque ratio
Mml(I)=Mlt(I)*(Mre(I)/12) ITRRDUE REQ. Q MAIN DRUM
Mml(I)=Mlt(I)*(Mre(I)/12) ITRRDUE REQ. Q MAIN DRUM
Mout(1)=Mml(I)*Rmain/Egear % TORGUE RED, OUTPUT SHAFT
Mout(1)=Mml(I)*Rmain/Egear % TORGUE RED, OUTPUT SHAFT
Tr(I)=Mout(I)/Me(I) IACTUAL TORQUE RATIO
Tr(I)=Mout(I)/Me(I) IACTUAL TORQUE RATIO
RETURN
RETURN
************** CALCULATE ANGLLAR VELOCITY OF HALLBACK **************
************** CALCULATE ANGLLAR VELOCITY OF HALLBACK **************
Dratio(I)=Mre(I)/Hre(I) \ DRUM RADIUS RATIO
Dratio(I)=Mre(I)/Hre(I) \ DRUM RADIUS RATIO
Lsr(I)=ABS((Hrig(l+1)-Hrig(I))/(Mrig(l+1)-Mrig(I))) :LINE SPEED RATIO
Lsr(I)=ABS((Hrig(l+1)-Hrig(I))/(Mrig(l+1)-Mrig(I))) :LINE SPEED RATIO
Hrpm(I)=Mrpm(I)*Dratio(I)*Lsr(I) HAULBACK RPM
```

Hrpm(I)=Mrpm(I)*Dratio(I)*Lsr(I) HAULBACK RPM

```


```

RETURN

```
RETURN
!
!
!^^^^^^^^^^^^^^^^^^^^ COMPUTE NET PAYLDAD DRAGGING
!^^^^^^^^^^^^^^^^^^^^ COMPUTE NET PAYLDAD DRAGGING
!
!
Wnet=((Dy(I)/Dlt(I))*(H4+H2-H1)-.5*|3*L3(I)-Wc+U1+N2+N4)/(N1-N2*Dy(I)/Dl
Wnet=((Dy(I)/Dlt(I))*(H4+H2-H1)-.5*|3*L3(I)-Wc+U1+N2+N4)/(N1-N2*Dy(I)/Dl
Wv(I)=unet *N1
Wv(I)=unet *N1
Whymet*N2
Whymet*N2
!
```

!

```


```

+

```
+
H3=H2+H4-H1+岒
H3=H2+H4-H1+岒
U3=WU(1)+WC-U1-U2-V4
U3=WU(1)+WC-U1-U2-V4
M1t(1)=SQR(H3^2+U3^2)+U3*Dy(I) : MAINLINE TENSION
M1t(1)=SQR(H3^2+U3^2)+U3*Dy(I) : MAINLINE TENSION
z=unet-Wg DRGGGING PAYLOAD
z=unet-Wg DRGGGING PAYLOAD
Sclear(I)=Cc+Hc-Xp*TAN(Theta(I)) |DRAGGING SKYLINE CLEARANCE
Sclear(I)=Cc+Hc-Xp*TAN(Theta(I)) |DRAGGING SKYLINE CLEARANCE
RETURN
RETURN
***************** CALC SUSPENDED MAINLINE TENSION ********************
***************** CALC SUSPENDED MAINLINE TENSION ********************
!
!
H3=H2+H4-H1
H3=H2+H4-H1
U3=H3*Du(1)/DIt(1)-.5*W3*L3(1)
U3=H3*Du(1)/DIt(1)-.5*W3*L3(1)
MIt(1)=SQR(H3^2+(U3+43*LZ(I))^2)
MIt(1)=SQR(H3^2+(U3+43*LZ(I))^2)
!
!
|***************** COMPUTE NET PAYLOAD SUSPENDED *********************
|***************** COMPUTE NET PAYLOAD SUSPENDED *********************
!
!
W=U1+U2+U3+N4-Wc ! NET PAYLOAD
W=U1+U2+U3+N4-Wc ! NET PAYLOAD
IF G=0 THEN WO=\H
IF G=0 THEN WO=\H
Cl(I)=Y(Tp1)+th1-Dy(1)-Y(1) CALC SKYLINE CLEARANCE
Cl(I)=Y(Tp1)+th1-Dy(1)-Y(1) CALC SKYLINE CLEARANCE
Flc(I)=Cl(1)-Fly CALC SUSPENOED LOG CLEARANCE
Flc(I)=Cl(1)-Fly CALC SUSPENOED LOG CLEARANCE
z=W-WG ! SUSPENDED PAYLOAD ERROR
z=W-WG ! SUSPENDED PAYLOAD ERROR
RETURN
```

RETURN

```


```

D1t(1)=x(1)-x(Tp1)

```
D1t(1)=x(1)-x(Tp1)
                                    | SEGMENT GEOMETRY
                                    | SEGMENT GEOMETRY
Drt(1)=X(Tp2)-X(I)
Drt(1)=X(Tp2)-X(I)
Span=Drt(I)+DIt(I)
Span=Drt(I)+DIt(I)
Lh=((Y(Tp1)+Hh1)-(Y(Tp2)+H2 2))
Lh=((Y(Tp1)+Hh1)-(Y(Tp2)+H2 2))
IF G=0 THEN
IF G=0 THEN
    Dvi=Dlt(1)*Lh/Span | 1st GUESS FOR DEFLECTION
```

 Dvi=Dlt(1)*Lh/Span | 1st GUESS FOR DEFLECTION
    ```

```

Beta(1)=Betao
4 8 8 0
4 8 9 0
4 9 0 0 .
4 9 1 0
4 9 2 0
4 9 3 0
4 9 4 0
4 9 5 0
4 9 6 0
4 9 7 0
4 9 8 0
4990
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5 1 1 0
5120
5130
5140
5150
5160 !
5170
5180
5190
5200 N1=1-(COS(Theta(I))-SIN(Theta(I))*TAN(Beta(I)))*(COS(Theta(I))-U*SIN(The
ta(1)))/Kk
5210 N2 =(COS(Theta(I))-SIN(Theta(I))*TAN(Beta(I)))*(SIN(Theta(I))+13*COS(Theta
(1)))/Kk
5220 AlphazATN(N2/N1)
5230
5240 Ga=Beta(I)+Theta(I)-ATN(Logdia/LI)
5250 Lc(I)=LI*SIN(Ga)-(LI*COS(Ga)*TAN(Theta(I))) \CALC LOG END CLEARANCE
5270
5280
5280
5290
5300
5310
5320
5330 Drt(I)=X(Tp2)-X(I)+Xp
5 3 4 0 Span=Drt(I)+Dlt(I)
5350 Lh= ((Y(Tp1)+Hh1)-(Y(Tp2)+Hh2))
5360 Dy(I)=Y(TpL)+Hh1-Cc-HC-Y(I) I DEFLECTION
5370 Draqm=Drag+1
5370
5380 IF Slide}0 THEN Slide=Slide+1
5390 RETURN
5400
5410 !

```
\begin{tabular}{|c|c|}
\hline 5420 & |********************** PRINT OUTPUT ************************* \\
\hline 5430 & \\
\hline 5440 & PRINT \\
\hline 5460 & PRINT "T.P. MLT HET REQUIRED LSPD SUSPENSION LDE CLE \\
\hline \[
\begin{aligned}
& \text { ARANCE } \\
& 54700
\end{aligned}
\] & \begin{tabular}{l}
BETA" \\
(LBS) (LES) H.P. (FPM)
\end{tabular} \\
\hline FT) & (DEG) \\
\hline 5480 & PRINT \\
\hline 5490 & FOR \(1=T \mathrm{~T} 1+2\) TO Eyd STEP 2 \\
\hline 5500 & Tp=1/2 \\
\hline 5520 & IF Fle (i)>0 THEN \\
\hline 5530 &  \\
\hline 5540
5550 & \begin{tabular}{l}
ELSE \\
PRINT USING 5660 ;Tp, Mlt (I), Hbt (I) ,Hpreq(I), Mlspd (I),Le(I) ,Beta(I)
\end{tabular} \\
\hline 5560 & END IF \\
\hline 5570
5580 & ELSE \({ }_{\text {IF }}\) FIc(I) \()\) O THEN \\
\hline 5590 & PRINT USING 5670 ;Tp,M1t( 1 ),Hbt(1),Hpreq(1),M1spd(I),Flc(I),Beta(I) \\
\hline 5600
5610 &  \\
\hline 5620 & END IF \\
\hline 5630 & Brake \(=1\) \\
\hline 5640
5650 & END IF \\
\hline 5650 & IMAGE 30,5X,50,6X,50,5X,40,6X,40,5x, "FULL", \(11 \times, 30,80,30\) \\
\hline 5660 &  \\
\hline 5680 &  \\
\hline 5690 &  \\
\hline 5700 & IF Brake=1 THEN \\
\hline 5710 & PRINT \\
\hline 5720 & Print ** NEGATIUE ENGINE TORQUE REQUIRED,SPEED INFORMATION NOT AUAILAB \\
\hline LE" & \\
\hline \[
\begin{aligned}
& 5730 \\
& 5740
\end{aligned}
\] & \[
\begin{aligned}
& \text { END IF } \\
& \text { RRINT }
\end{aligned}
\] \\
\hline 5750 & PRINT USING 5760;Ap \\
\hline 5760 & IMAGE "AUE. HORSE POUER DISSIPATED AT HAULBACK BRAKE=" , 30.20 \\
\hline 5770 & PRINT \\
\hline 5780
5790 & RETURN \\
\hline 5800 & (************** SUBROUTINE FOR AUE. HP DISSAPATION *************** \\
\hline 5810 & \\
\hline \({ }_{5820}\) & \(j=j+1\) \\
\hline 5830
5840 & If \(\mathrm{TOL}=\mathrm{P}\) THEN \\
\hline 5850 & ELSE \\
\hline 5860 & Tplapl l\()+\mathrm{Tpl}\) \\
\hline 5870 & END IF \\
\hline 5890 & \[
\begin{aligned}
& \text { Ap } 1=\text { Tpl } 1 / 3 \\
& \text { RETURN }
\end{aligned}
\] \\
\hline 5900 & \\
\hline 5910 & ************ SUBROUTINE FOR H,U (RIGID LINK MOMENT ARMS) *********** \\
\hline 5930 &  \\
\hline 5940 & \(H=T u * D / 2 * S Q R(1-(.5 * d w * D / T u) \wedge 2)-.5 * d \omega * D * H h / L\) \\
\hline 5950 &  \\
\hline 5960 & RETURN \\
\hline
\end{tabular}
```

EXAMPLE OF MECHANICAL INTERLOCK RUNNING SKYLINE MODEL
INPUT
Profile:

```

\begin{tabular}{cc} 
SLOPE OIST & \& SLOPE \\
0.00 & 0.00 \\
150.00 & -45.00 \\
200.00 & -40.000 \\
150.00 & -40.00 \\
200000 & -40.00 \\
150.00 & -40.00 \\
200.00 & -40.00 \\
15.00 & -35.00 \\
100.00 & 0.00 \\
150.00 & 35.00 \\
150.00 & 35.00
\end{tabular}

Yarder:
PSY 200 (original model)
Head spar/tailspar geometry:

YARDER IS LOCATED AT T.P. \(\ddagger 0\)
TAILHOLD IS 20 FEET HIGH AT T.P. \(\# 10\)

External yarding limit:
Terrain point \#6
Air pressure on interlock clutch:


Design payload:

PAYLOAD= 5000

\section*{QUTPUT}
\begin{tabular}{cccccccc} 
T.P. & \begin{tabular}{c} 
MLT \\
(LBS)
\end{tabular} & \begin{tabular}{c} 
HBT \\
(LBS)
\end{tabular} & \begin{tabular}{c} 
RERUIRED \\
H.P.
\end{tabular} & \begin{tabular}{c} 
LSPD \\
(FPM)
\end{tabular} & SUSPENSION & LOG CLEARANCE & \begin{tabular}{c} 
BETA \\
(FT)
\end{tabular} \\
(DEG)
\end{tabular}

AUE. HORSE POUER DISSIPATED AT INTERLOCK CLUTCH=144.13

INDEX
\begin{tabular}{|c|c|}
\hline Item & Line Numbers \\
\hline "Dummy" terrain points & 340-410 \\
\hline Yarder specifications & . 800-1050 \\
\hline Log drag parameters & . 1080-1170 \\
\hline Effective radius & - 1560-1590 \\
\hline Equation for engine torque & . 3170-3210 \\
\hline Speed ratio (Sr) as a function of \(K_{C}\) & . 3460-3530 \\
\hline Torque ratio ( \(\mathrm{Tr}_{c}\) ) as a function of Sr & . 3580-3620 \\
\hline All variables that are subscripted for & retrieval from \\
\hline memory, are listed between lines 120 and 180. & For internal \\
\hline calculations, the subscripts are twice the & terrain point \\
\hline value. For example, the torque converter & efficiency at \\
\hline terrain point \#4 is designated as Tce(8). & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 10 & 1******************* MECHANICAL INTERLDCK ********************* \\
\hline 20 & \\
\hline 30 & USES MODIFIED SECANT SEARCH PROCEDURE TO FIND LOAD PATH \\
\hline 40 & \\
\hline 50 & \\
\hline 60 &  \\
\hline 70 & \\
\hline 80 & PRINT PAEE \\
\hline 100 & INPIT "NAME OF PROFILE YOU WISH TO USE", F\% : READS PROFILE DATA \\
\hline 110 & DEG \\
\hline 120 & DIM S 100 ) , \(A(100), X(100), Y(100), 53(100)\), Aa(100), Sclear (100), Beta (100) \\
\hline 150 & DIM Dy(100), L3(100), Mrig(100), Hrig(100) , Drt (100), Dlt (100), Skyl(100) \\
\hline 140 & DIM Mre(100), Mre (100), Dratio(100), Hbt (100), [1 (100), Lsp (100), Ke(100) \\
\hline 150 & DIt Erpm(100), Me(100), Mal (100), Mout (100) \(\operatorname{Tr}\) (100) Trt (100) Src (100) \\
\hline 160 & DIM Mrpm(100), Hrpm(100), Mlspd(100), Pl(100), Tce(100), Wnet (100), Wv(100) \\
\hline 170 & DIM Mlt (100), theta (100), Le (100), Ge(100), Alpha(100), Apreg(100), Pmi (100) \\
\hline 180 & DIM Mltmax (100), Trc (100) Dn(100), Hbspd (100) , Phbe(100), Re (100), Flc (100) \\
\hline 190 & ASSIGN \(\# 1\) T0 "WILBANKS/" \({ }^{\text {a }}\) \% \\
\hline 200 & \(\mathrm{N}=0\) \\
\hline 210 & \(\mathrm{N}=0\) \\
\hline 220 & READ \(\# 1 ; X(0), Y(0)\) \\
\hline 230 & FOR \(\mathrm{I}=1\) T0 100 : LOAD EUEN \(\ddagger\) PTS. INTO ARRAY \\
\hline 240 & J=2* 1 ! (ACTUAL TERRAIN POINTS) \\
\hline 250 & READ \(\ddagger 1 ; \mathrm{Ss}(1), \mathrm{Aa}(1)\) \\
\hline 260 & IF ABS (Ss (1)) ABS ( \(\mathrm{Aa}(\mathrm{l})\) ) \(=0\) THEN 340 \\
\hline 270 & \(A=\operatorname{ATN}(\mathrm{Aa}(1) / 100)\) \\
\hline 280 & \(X(J)=X(J-2)+5 s(1) * C 05(A)\) \\
\hline 290 & \(Y(J)=Y(J-2)+5 s(I) * S I N(A)\) \\
\hline 300 & S(J) \(=\) Ss (1) \\
\hline 310 & A(J) Aa ( l\()\) \\
\hline 320 & \(\mathrm{N}=\mathrm{N}+1\) \\
\hline 330 & NEXT I \\
\hline 340 & FOR I=O TO N ! LOAD OD \& PTS. INTO ARRAY \\
\hline 350 & \(5 \times 2 *\) I +1 ( (DUAMHY TERRAIN POINTS) \\
\hline 360 & \(X(J)=X(J-1)+.01 *(X(J+1)-X(J-1))\) \\
\hline 370 & \(Y(J)=Y(J-1)+01 *(Y(J+1)-Y(J-1))\) \\
\hline 380 & \(\mathrm{S}(\mathrm{J})=.01 * 5 s(1+1)\) \\
\hline 390 & \(\mathrm{A}(\mathrm{J})=\mathrm{Aa}(1+1)\) \\
\hline 400 & \(\mathrm{Nn}=\mathrm{N} \mathrm{n}+1\) \\
\hline 410 & NEXT I \\
\hline 420 & \(\mathrm{N}=\mathrm{N}+\mathrm{Nn}-1\) \\
\hline 430 & ASSIGN \(\ddagger 1\) TO * \\
\hline 440 & PRINT "WILBANKS/"\&Fs \\
\hline 450 & PRINT \\
\hline 460 & \(S(0)=0\) \\
\hline 470 & \(A(0)=0\) \\
\hline 480 & PRINT "TERRAIN POINT \(X\) Y \(Y\) Y SLOPE DIST \% SLOPE" \\
\hline 490 & 'ROR I=0 TO N STEP 2 I PRINTS PROFILE DATA \\
\hline 500
510 &  \\
\hline 520 & PRINT USING 530:Tp, X (1), Y(1), \(5(1), A(1)\) \\
\hline 530 & IMAGE 4X,4D,9X,50.20,2X,50.20,4X,50.2D,4X,50.2D \\
\hline 540 & NEXT I \\
\hline 550 & PRINT \\
\hline 560 & INPUT "YARDER LOCATION ?", Tpl \\
\hline 570 & INPUT "LICATION OF TAILHOLD AND HEIGHT ?", Tp 2,Hh2 \\
\hline 580 & IF Tp 23 Tp THEN \\
\hline 590 & BEEP \\
\hline 600 &  \\
\hline
\end{tabular}
```

620 GDTJ 570

```
```

 PALSE
    ```
    PALSE
    PRINT USING 650:Tol
    PRINT USING 650:Tol
    IMAGE "YARDER IS LOCATED AT T.P.#",3D
    IMAGE "YARDER IS LOCATED AT T.P.#",3D
    PRINT
    PRINT
    PRINT USING 680;Hh2,Tp2
    PRINT USING 680;Hh2,Tp2
    IMAGE "TAILHOLD IS",30,X,"FEET HIGH AT T.P.&",3D
    IMAGE "TAILHOLD IS",30,X,"FEET HIGH AT T.P.&",3D
    PRINT
    PRINT
    Tp1=2*Tp1
    Tp1=2*Tp1
    Tp2=2*T02
    Tp2=2*T02
    INPUT "EXTERNAL YARDING LIMIT ?",Eyd
    INPUT "EXTERNAL YARDING LIMIT ?",Eyd
    Eyd=Eyd*2
    Eyd=Eyd*2
    IF Eyd=Tp2 THEN Eyd=Eyd-2
    IF Eyd=Tp2 THEN Eyd=Eyd-2
    !******************** RUNNING SKYLINE ANALYSIS ***********************
    !******************** RUNNING SKYLINE ANALYSIS ***********************
    INPUT "WEIGHT DF TURN TD BE YARDED (LBS)?",Wg
    INPUT "WEIGHT DF TURN TD BE YARDED (LBS)?",Wg
|***************** YARDER SPECS. BASED ON PSY 200 **********************
|***************** YARDER SPECS. BASED ON PSY 200 **********************
!
!
Rmain=.07146 | REDUCTION: TRANS TO ML DRUM
Rmain=.07146 | REDUCTION: TRANS TO ML DRUM
Hinp=.2456 | REDUCTION : HB GEAR/INT. SHAFT
Hinp=.2456 | REDUCTION : HB GEAR/INT. SHAFT
Minp=.3111 | REDUCTION : MAIN GEAR/INT. SHAFT
Minp=.3111 | REDUCTION : MAIN GEAR/INT. SHAFT
Rinp=Hinp/Minp ISPEED RATIO: HB TO ML
Rinp=Hinp/Minp ISPEED RATIO: HB TO ML
Gear(1)=.976
Gear(1)=.976
Gear(2)=1.964
Gear(2)=1.964
Egearx.8 ! OVERGLL EFICIENCY
Egearx.8 ! OVERGLL EFICIENCY
Mbr=15
Mbr=15
Mbw=13
Mbw=13
Mlc=1600
Mlc=1600
Hbr=16
Hbr=16
Hbw=28.75
Hbw=28.75
HlC=3700
HlC=3700
Tower=50
Tower=50
thlaTower
thlaTower
!*********************************************************************
!*********************************************************************
|
|
INPUT "PRESSURE SETTING ON INTERLOCK (PSI)?",Psi
INPUT "PRESSURE SETTING ON INTERLOCK (PSI)?",Psi
MPsi*250 : TORQUE AUAILABLE AT INTERLOCK
MPsi*250 : TORQUE AUAILABLE AT INTERLOCK
Diam=7/8 MAINLINE DIAMETER
Diam=7/8 MAINLINE DIAMETER
Diah=7/8 | HAULBACK DIAMETER
Diah=7/8 | HAULBACK DIAMETER
W1=1.42 USIGHT /FOOT OF HAILBACK
W1=1.42 USIGHT /FOOT OF HAILBACK
W3=1.42 | WEIGHT/FOOT OF MAINLINE
W3=1.42 | WEIGHT/FOOT OF MAINLINE
WC=600 ! WEIGHT OF CARRIAGE
WC=600 ! WEIGHT OF CARRIAGE
Count=0
Count=0
j=0
j=0
|********************** LOG DRAG PARAMETERS ***************************
|********************** LOG DRAG PARAMETERS ***************************
LI=32
LI=32
LOG LENGTH
LOG LENGTH
H=33 CARRIAGE HEIGHT
H=33 CARRIAGE HEIGHT
Un.6
Un.6
                    COEFFICIENT OF FRICTION
                    COEFFICIENT OF FRICTION
Choke=24 CHOKER LENGTH (FEET)
Choke=24 CHOKER LENGTH (FEET)
Logdia=2 LOG DIAMETER (FEET)
Logdia=2 LOG DIAMETER (FEET)
CemChoke-PI*Logdia | EFFECTIUE CHOKER LENGTH
CemChoke-PI*Logdia | EFFECTIUE CHOKER LENGTH
Fly=Ll+Ce+Hc I REQ. CLEARANCE TO FLY
Fly=Ll+Ce+Hc I REQ. CLEARANCE TO FLY
|**********************************************************************
```

|**

```


\begin{tabular}{|c|c|}
\hline 2370 & |******************** CALC. PRLUER BALANCE ********************* \\
\hline 2380 & \\
\hline 2390 & FOR I=Tpl 12 TO Eyd STEP 2 \\
\hline 2400 & \multirow[b]{2}{*}{\(\mathrm{T}=0\)} \\
\hline 2410 & \\
\hline 2420 & \multirow[t]{2}{*}{IFt=0} \\
\hline 2430 & \\
\hline 2440 & GOSUE 3250 - ITERATE FOR THROTTLE SETTING \\
\hline 2450 & CALC Speed ratio \\
\hline 2460 & \begin{tabular}{l}
CALC CONUERTER TORQUE RATIO \\
- calc actual torque ratio
\end{tabular} \\
\hline 2470 & GOSUB 3660 ! CALC ACTUAL TORQUE RATIO \\
\hline 2480 & ELSE \\
\hline 2490
2500 & \multirow[t]{2}{*}{\begin{tabular}{l}
ITERATE FOR ENGINE SPEED CALC SPEED RATIO \\
CALC COMUERTER TORQUE RATIO calc actual torque ratio
\end{tabular}} \\
\hline 2510 & \begin{tabular}{l}
GOSUB 3560 \\
C CaLC conuerter tordue ratio
\end{tabular} \\
\hline 2520 & \\
\hline 2530 & \\
\hline 2540 & ! TESt for negative Output torque \\
\hline 2560 &  \\
\hline 2570 & \multirow[t]{2}{*}{\begin{tabular}{l}
FIRST ITERATION OF ENGINE SPEED \\
- ROUTINE (GOU SPD), MUST REDUCE \\
I Throttie setting if Zt is neg.
\end{tabular}} \\
\hline 2580 & \\
\hline 2590 & \multirow[t]{2}{*}{\({ }_{\substack{\text { ctal } \\ \text { GOTO }}} 2430\)} \\
\hline 2600 & \\
\hline 2610 & \multirow[t]{2}{*}{} \\
\hline 2620 & \\
\hline 2640 & IS OPERATING COND. ERROR ACCEPTABLE? Is operating cond. FEASIBLE? \\
\hline 2650 & \multirow[b]{2}{*}{IF \(\mathrm{Ge}(\mathrm{l})=1\) THEN} \\
\hline 2660 & \\
\hline 2670 & \multirow[t]{2}{*}{PRINT "INFEASIBLE LOAD AT TP\#" \({ }^{\text {a }}\) [/2
COTO 2840} \\
\hline 2680 & \\
\hline 2690 & ELSE \\
\hline 2700 & \\
\hline 2710 &  \\
\hline 2720 & \multirow[t]{2}{*}{ENO IF 2430} \\
\hline 2730 & \\
\hline 2750 & ElSE \\
\hline 2760 & \multirow[t]{2}{*}{\[
\text { GOTO } 2430
\]} \\
\hline 2770 & \\
\hline 2780 & GOTO 2430 \\
\hline 2790 & \begin{tabular}{l}
! CALC POUER LOST AT INTERLOCK \\
- CaLC ane power lost through
\end{tabular} \\
\hline 2880 & GOSLB 5770 ICALC AUE POUER LOST THROUGH \\
\hline 2810 & ! CLULCH REQUIRED HORSE POMER \\
\hline 28820 &  \\
\hline 2840 & \multirow[t]{2}{*}{} \\
\hline 2850 & \\
\hline 2860 & GOSUE 5390 ! PRINT OUTPUT \\
\hline 2870 & \multirow[t]{2}{*}{INPUT "DO YOU HISH TO CHANGE YARDER LOCATION OR TAILHOLD GEOMETRY?",Ts IF TS="NO" THEN 2970} \\
\hline 2880 & \\
\hline 2890 & \multirow[t]{2}{*}{INPUT "NEW YARDER LOCATION?",TpI input meeh location of talliold and height ?", Tp2, hh2} \\
\hline 2900 & \\
\hline 2910 &  \\
\hline 2920 & PRINT \\
\hline 2930 & PRINT USING 680;Hh2, Tp2 \\
\hline 2940 & \multirow[b]{2}{*}{Tp \(1=2 \pm \mathrm{T} p 1\)} \\
\hline 2950 & \\
\hline 2960 & \multirow[t]{2}{*}{\[
\begin{aligned}
& T_{p}^{2}=2=T_{p} \\
& \text { Brake }=0
\end{aligned}
\]} \\
\hline 2970 & \\
\hline 2990 & G1=0 \\
\hline 3000 & ENO !+++++++++++++t+1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline 3620
3630 & END IF
\(\operatorname{Tce}(\mathrm{I})=\operatorname{Trc}(\mathrm{I}) * \operatorname{Src}(\mathrm{I}) \quad\) I CALC. CONUERTER EFFICIENCY \\
\hline 3640 & RETURN \\
\hline 3650 & \\
\hline 3660 & ------------ SUBROUTINE CALCULATES ACTUAL TORQUE RATIO \\
\hline 3670 & \\
\hline 3680 & Mml(I)=Mlt(1)*(Mre(I)/12) ! MAIN DRUM TORRUE \\
\hline 3690 & Mout (I)=(Mal (I)-M*Rinp)*Rma in*Gear(Ge(I) )/Egear I CONU OUTPUT TORQUE \\
\hline 3700 & \(\operatorname{Tr}(\mathrm{I})=\mathrm{Mout}(\mathrm{I}) / \mathrm{Me}(\mathrm{I})\) ! ACTUAL TORQUE RATIO \\
\hline 3710 & RETIURN \\
\hline 3720 & \\
\hline 3730 & (**************** CALCLLATE POWER LOST AT INTERLDCK ***************** \\
\hline 3740 & \\
\hline 3750 & Dratio(I)=Mre(1)/Hre(I) ! DRUM RADIUS RATID \\
\hline 3760 & \(\operatorname{Lsr}(1)=A B S((H r i g(I+1)-\mathrm{Hrig}(1)) /(\operatorname{Mrig}(1+1)-\mathrm{Mrig}(1)])\) ILINE SPEED RATIO \\
\hline 3770 & Mrpm(I) \(=\) Src(I)*Erpm ( ) *Rma in*Gear (Ge(I) ) MAIN DRUM RPM \\
\hline 3780 & Mlspd( 1 ) \(=\mathrm{Mrpm}(1) *(M r e(I) / 12) * 2 * P I \quad\) MAINLINE SPEED \\
\hline 3790 &  \\
\hline 3800 & Hbspd(I)=M1spd(I)*Lsr(I) HALLBACK SPEED \\
\hline 3810 &  \\
\hline 3820 &  \\
\hline 3830 & Pl 1 ) \(\times\) M*On( 1\() / 5252\) : POUER DISSIPATED AT INTERLOCK \\
\hline 3840 & RETURN \\
\hline 3850 & \\
\hline 3860 &  \\
\hline 3870 & \\
\hline \[
3880
\] &  \\
\hline 3890 & Wu(I) \(=\) Whet \({ }^{\text {a }}\) NI \\
\hline 3900 & Wh=Unet*N2 \\
\hline 3910 & \\
\hline 3920 &  \\
\hline 3930 & \\
\hline 3940 & \(\mathrm{H}^{3}=\mathrm{H} 2+\mathrm{H} 4-\mathrm{Hl}\) + L h \\
\hline 3950 & U3 \(=4 \mathrm{Uv}(1)+4 \mathrm{LC}-\mathrm{U1}-\mathrm{V} 2-\mathrm{U4}\) \\
\hline 3960 & Mlt (1)=S[R(H3^2+U3^2)+W3*Dy(1) : MAINLINE TENSION \\
\hline 3970 & \(Z=W\) net-Wg I DRAEEING PAYLOAD ERROR \\
\hline 3980 & Sclear (1)=Cc+Hc-Xp\%TAN(Theta(I)) I DRAGGING SKYLINE CLEARANEE \\
\hline 3990 & RETURN \\
\hline 4000 & \\
\hline 4010 & |**************** CALC SUSPENDED MAINLINE TENSION ***************** \\
\hline 4020 & \\
\hline 4030 & \(\mathrm{H} 3=\mathrm{H} 2+\mathrm{H} 4-\mathrm{H} 1\) \\
\hline 4040 &  \\
\hline 4050 &  \\
\hline 4060 & \\
\hline 4070 & !****************** COMPLTE NET PAYLOAD SUSPENDED ***************** \\
\hline 4080 & \\
\hline 4090 & \(\mathrm{W}=\mathrm{U1}+\mathrm{U2}+\mathrm{U3}+\mathrm{U4} 4 \mathrm{HC}\) \\
\hline 4100 & IF \(\mathrm{G}=0\) THEN W0=W \\
\hline 4110 & Cl(I)=Y(Tpl)+Hh1-Dy(1)-Y(1) : CALC SKYLINE CLEARANCE \\
\hline 4120 & Fic (I)=Cl(I)-Fly \\
\hline 4130 & \(\mathrm{Z}=\mathrm{W}\)-Wg \\
\hline 4140 & RETURA \\
\hline 4150 & \\
\hline 4160 &  \\
\hline 4170 & Dlt \((1)=X(1)-X\left(T_{0} 1\right) \quad\) SEGMENT GEOMETRY \\
\hline 4190 & Drt (I) \(=\times(\operatorname{To} 2)-\mathrm{X}(1)\) \\
\hline 4200 & Span=Drt(I)+Dlt(I) \\
\hline
\end{tabular}
```

Lh=((Y(Tp1)+Hh1)-(Y(Tp2)+Hh2))
IF G=0 THEN
Dyi=Dlt(I)*Lh/Span I 1st GUESS FOR DEFLECTION
Dy(I)=Dyi
END IF
IF G=1 THEN
Dy(I)=Dyi+Span/100 ! 2nd GUESS FOR DEFLECTION
40=W
END IF
IF G\1 THEN
Slope=(W-Wo)/(Dy(I)-Dyi)
HOW\
Dyi=Dy(I)
DY(I)=(Wg-WO)/Slope+Dyi - I NEW EUESS FOR DEFLECTION
G=G+1
RETURN

```


```

Flc(I)=0
Theta(I)=-ATN(.01*A(I)) I GROUND ANGLE

```

```

|********************* LOG TO GROUND ANGLE (BETA) **********************
|
IF Slide)0 THEN 4810
IF Drag=1 THEN ! CONDITION 182
Betao=ASN(Logdia/LI)+2 ! 1st GUESS FOR BETA
Laymetao i (LOWER LIMIT)
Beta(I)*Betao
END IF
IF Drag=2 THEN
Beta(I)=89-Theta(I) (2nd GUESS FOR BETA
HangrBeta(I). I (UPPER LIMIT)
Woalnet
END IF
IF Drag)2 THEN
Slope=(Wnet-Ho)/(Beta(I)-Betao)
Wo=Wnet
Betao=Beta(I)
Step=(Wl/W0)/Slope _ NEW GUESS FOR BETA
Beta(I)=Step+BetaO
Step=Step/2
GOT0 4640
END IF
IF Beta(I)<Lay THEN I KEEP SEARCH WITHIN
Step=Step/2 IUPPER AND LOWER BOUNDS
G0T0 4640
END IF
IF Beta(I)<Lay+.1 THEN
CHECK FOR SIJFICIENT
IF Betao<Lay+.1 THEN TENSION/DEFLECTION
DISP "INSLFFICIENT HALLBACK TENSION AT TP\&";I/2
WAIT 4
GOTO 2870
END IF
END IF
END IF

```
```

IF Slide=1 THEN

```
IF Slide=1 THEN
    Betao=180
    Betao=180
    Lay=Betao
    Lay=Betao
    Beta(1)=Betao
    Beta(1)=Betao
ENO IF
ENO IF
IF SIIde=2 THEN
IF SIIde=2 THEN
    Beta(I)=89-Theta(I) I 2nd GUESS FOR BETA
    Beta(I)=89-Theta(I) I 2nd GUESS FOR BETA
    Hang=Beta(I) (LOWER LIMIT)
    Hang=Beta(I) (LOWER LIMIT)
    Wo=Wunt
    Wo=Wunt
END IF
END IF
IF Slide>2 THEN
IF Slide>2 THEN
    Slope=(Wnet-Wo)/(Beta(I)-Betao)
    Slope=(Wnet-Wo)/(Beta(I)-Betao)
    Wo=Wnet
    Wo=Wnet
    Betao=Beta(I)
    Betao=Beta(I)
    Step=(Wg-Wo)/Slope
    Step=(Wg-Wo)/Slope
    Beta(I)=5tep+Betao I NEW GUESS FOR BETA
    Beta(I)=5tep+Betao I NEW GUESS FOR BETA
    IF Beta(I)<Hang THEN
    IF Beta(I)<Hang THEN
            Step=Step/2
            Step=Step/2
                GOT5 4960
                GOT5 4960
        END IF
        END IF
        IF Beta(I)>Lay THEN I KEEP SEARCH WITHIN
        IF Beta(I)>Lay THEN I KEEP SEARCH WITHIN
            Step=Sted/2 | UPPER AND LOLWER BOLNNDS
            Step=Sted/2 | UPPER AND LOLWER BOLNNDS
            GOTO 4960
            GOTO 4960
        END IF
        END IF
        IF Beta(I)>179.9 THEN | CHECK FOR SUFFICIENT
        IF Beta(I)>179.9 THEN | CHECK FOR SUFFICIENT
            IF Betao>179.9 THEN TENSION/DEFLECTION
            IF Betao>179.9 THEN TENSION/DEFLECTION
                DISP "INSUFFICIENT HAULBACK TENSION AT TP&";I/2
                DISP "INSUFFICIENT HAULBACK TENSION AT TP&";I/2
                    WAIT }
                    WAIT }
                    GOTO 2870
                    GOTO 2870
                END IF
                END IF
        END IF
        END IF
    END IF
    END IF
    !
    !
    |************************* TAGLINE ANGLE ****************************
    |************************* TAGLINE ANGLE ****************************
!
!
Kk=2*(1+U*TAN(Beta(I)))
Kk=2*(1+U*TAN(Beta(I)))
Nl=1-(COS(Theta(I))-SIN(Theta(I))*TAN(Beta(I)))*(COS(Theta(I))-U*SIN(The
Nl=1-(COS(Theta(I))-SIN(Theta(I))*TAN(Beta(I)))*(COS(Theta(I))-U*SIN(The
/Kk
/Kk
N2=(COS(Theta(I))-SIN(Theta(I))*TAN(Beta(I)))*(SIN(Theta(I))+U*COS(Theta
N2=(COS(Theta(I))-SIN(Theta(I))*TAN(Beta(I)))*(SIN(Theta(I))+U*COS(Theta
5180 
(I)))/Kk
5190 Alpha=ATN(N2/N1)
5190 Alpha=ATN(N2/N1)
5200
5210
5220
5230
5240
5250
5260
5270
5
5280
5290
5300
5310
5320
5330 Ln=((Y(Tpl)+HR1)-(Y(Tp2)+HN2))
5330 Ln=((Y(Tpl)+HR1)-(Y(Tp2)+HN2))
5330 Dy(I)=Y(Tp1)+Hh1-Cc-Hc-Y(I)
5330 Dy(I)=Y(Tp1)+Hh1-Cc-Hc-Y(I)
5340 Drag=Drag+1
5350
5}3
5370
5380
```



```
EXAMPLE OF VARIABLE RATIO, HYDRAULIC INTERLOCK RUNNING
    SKYLINE MODEL
INPUT
Profile:
```

TERRAIN POINT
0
1
2
3
3
4
5
6
7
8
9
10

X	Y
0.00	1000.00
136.79	938.45
322.48	864.17
461.76	808.46
647.45	734.18
786.72	678.47
972.42	604.19
986.58	599.24
1086.58	599.24
1228.15	648.79
1369.73	698.34

SLOPE DIST	SLOPE
0.00	0.00
150.00	-45.00
200.00	-40.00
150.00	-40.00
200.00	-40.00
150.00	-40.00
200.00	-40.00
15.00	-35.00
100.00	0.00
150.00	35.00
150.00	35.00

Yarder:
Washington Iron Works model 118
Head spar/tailspar geometry:

YaRDER IS LICATED AT T.P. $\ddagger 0$
TAILHOLD IS 20 FEET HIGH AT T.P. $\ddagger 10$
External yarding limit:
Terrain point \#6
Hydraulic pressure at interlock:

Design payload:

PAYLDAD= 5000

OUTPUT

T.P.	MT (LBS)	HBT (LBS)	REQUIRED H.P.	LSPD (FPM)	SUSPENSION	LOG CLEARACE		
(FT)								BETA
:---:								
(DEG)								

* negative engine torque required, speed information not auailable

INDEX

Item

> Line Numbers
"Dummy" terrain points340-400
Yarder specifications 840-1190
Log drag parameters 1250-1330
Effective radius 1740-1770
Equation for engine torque 3560-3600
Speed ratio (Sr) as a function of $K_{c} \ldots . . .$. 4000-4040
Torque ratio (Tr_{c}) as a function of Sr. 4080-4120

All variables that are subscripted for retrieval from memory, are listed between lines 110 and 180 . For internal calculations, the subscripts are twice the terrain point value. For example, the torque converter efficiency at terrain point \#4 is designated as Tce(8).

```
!******************* UARIABLE RATIO HYDRAULIC *************************
```

!******************* UARIABLE RATIO HYDRAULIC *************************
USES MODIFIED SECANT SEARCH PROCEDURE TO FIND LOAD PATH
USES MODIFIED SECANT SEARCH PROCEDURE TO FIND LOAD PATH
PRINT PAGE
PRINT PAGE
INPUT "NAME OF PRDFILE YOU WISH TO USE",Fs I READS PROFILE DATA
INPUT "NAME OF PRDFILE YOU WISH TO USE",Fs I READS PROFILE DATA
CEG
CEG
DIM S(100),A(100),X(100),Y(100),Ss(100),Aa(100),Selear(100),Beta(100)
DIM S(100),A(100),X(100),Y(100),Ss(100),Aa(100),Selear(100),Beta(100)
DIM Dy(100), L3(100), Mrig(100), Hrig(100),Drt(100),Dlt(100), 5kyl(100)
DIM Dy(100), L3(100), Mrig(100), Hrig(100),Drt(100),Dlt(100), 5kyl(100)
DIM Hre(100), Mre(100),Dratio(100),Hbt(100), Cl(100),Lsr(100),Mp(100)
DIM Hre(100), Mre(100),Dratio(100),Hbt(100), Cl(100),Lsr(100),Mp(100)
DIM Ke(100),Erpm(100),Me(100),Mi(100),Mml(100), Mout(100) Tr (100)
DIM Ke(100),Erpm(100),Me(100),Mi(100),Mml(100), Mout(100) Tr (100)
DIM Trc(100),Sre(100),Mrpm(100),Mlspd(100),Dn(100),Pm(100),Pp(100)
DIM Trc(100),Sre(100),Mrpm(100),Mlspd(100),Dn(100),Pm(100),Pp(100)
DIM Pl(100),Tce(100),Wnet (100), Wv(100),Mlt(100),Theta(100),Lc(100)
DIM Pl(100),Tce(100),Wnet (100), Wv(100),Mlt(100),Theta(100),Lc(100)
DIM Ge(100),Alpha(100),Hpreg(100),Flc(100),Hbspd(100),Pml(100),Phb(100)
DIM Ge(100),Alpha(100),Hpreg(100),Flc(100),Hbspd(100),Pml(100),Phb(100)
DIM Spt(100),Dispp(100),Re(100)
DIM Spt(100),Dispp(100),Re(100)
ASSIGN \&1 T0" "WILBANKS/"\&F%
ASSIGN \&1 T0" "WILBANKS/"\&F%
N=0
N=0
N}=
N}=
READ \#1;X(0),Y(0)
READ \#1;X(0),Y(0)
FOR I=1 TO 100 I LOAD EUEN \& PTS. INTO ARRAY
FOR I=1 TO 100 I LOAD EUEN \& PTS. INTO ARRAY
J=2*I READ \#1;Ss(1),Aa(1)
J=2*I READ \#1;Ss(1),Aa(1)
IF ABS(SS(I))+ABS(AB(I))=0 THEN 340
IF ABS(SS(I))+ABS(AB(I))=0 THEN 340
A=ATN(Aa(1)/100)
A=ATN(Aa(1)/100)
X(J)=X(J-2)+5s(1)*COS(A)
X(J)=X(J-2)+5s(1)*COS(A)
Y(J)=Y(J-2)+5s(I)*SIN(A)
Y(J)=Y(J-2)+5s(I)*SIN(A)
S(J)=Ss(I)
S(J)=Ss(I)
A(J)=Aa(I)
A(J)=Aa(I)
N=N+1
N=N+1
NEXT I
NEXT I
FOR I=0 TON ! LOAD ODO \# PTS. INTO ARRAY
FOR I=0 TON ! LOAD ODO \# PTS. INTO ARRAY
J*2*i+1
J*2*i+1
(DUMTYY TERRAIN POINTS)
(DUMTYY TERRAIN POINTS)
X(J)=X(J-1)+.01*(X(J+1)-X(J-1))
X(J)=X(J-1)+.01*(X(J+1)-X(J-1))
Y(J)=Y(J-1) +.01*(Y(J+1)-Y(J-1))
Y(J)=Y(J-1) +.01*(Y(J+1)-Y(J-1))
S(J)=.01*5s(1+1)
S(J)=.01*5s(1+1)
A(J)=Aa(l+1)
A(J)=Aa(l+1)
Nn=Nn+1
Nn=Nn+1
NEXT I
NEXT I
N=N+Nn-1
N=N+Nn-1
ASSIGN \&1 TO*
ASSIGN \&1 TO*
PRINT "WILBANKS/"\&FS
PRINT "WILBANKS/"\&FS
PRINT
PRINT
5(0)=0
5(0)=0
A(0)=0
A(0)=0
PRINT "TERRAIN POINT Y Y Y OLIPE OIST * SLIOPE"
PRINT "TERRAIN POINT Y Y Y OLIPE OIST * SLIOPE"
j=0
j=0
FOR I=0 TO N STEP 2 |PRINTS PROFILE DATA
FOR I=0 TO N STEP 2 |PRINTS PROFILE DATA
Tp=[-]
Tp=[-]
PRINT USING 540;Tp,X(1),Y(1),S(1),A(1)
PRINT USING 540;Tp,X(1),Y(1),S(1),A(1)
IMAGE 4X,4D,9X,50.2D,2X,50.20,4X,50.2D,4X,5D.2D
IMAGE 4X,4D,9X,50.2D,2X,50.20,4X,50.2D,4X,5D.2D
J=]+1
J=]+1
NEXT I
NEXT I
PRINT
PRINT
INPUT "YARDER LOCATION ?",TpI

```
INPUT "YARDER LOCATION ?",TpI
```



```
INPUT "LOCATION OF TAILHOLD AND HEIGHT ?",Tp2,Hh2
```

INPUT "LOCATION OF TAILHOLD AND HEIGHT ?",Tp2,Hh2
IF Tp2STp THEN
IF Tp2STp THEN
BEEP
BEEP
OISP "TAILHOLD MUST EE BETWEEN O AND";Tp;" PRESS CONT WHEN READY"
OISP "TAILHOLD MUST EE BETWEEN O AND";Tp;" PRESS CONT WHEN READY"
PAUSE
PAUSE
GOTO 590
GOTO 590
END IF
END IF
PRINT USING 670;Tp1
PRINT USING 670;Tp1
IMAGE "YARDER IS LOCATED AT T.P.\#",3D
IMAGE "YARDER IS LOCATED AT T.P.\#",3D
PRINT
PRINT
IMAGE "TAILHPLD IS";3D,X,"FEET HIGH AT T.P.\#",3D
IMAGE "TAILHPLD IS";3D,X,"FEET HIGH AT T.P.\#",3D
PRINT
PRINT
Tp1=2*Tp1
Tp1=2*Tp1
D2=2*To2
D2=2*To2
INPUT "EXTERNAL YARDING LIMIT ?",Eyd
INPUT "EXTERNAL YARDING LIMIT ?",Eyd
Eyd=Eyd*2
Eyd=Eyd*2
IF Eyd=Tp2 THEN
IF Eyd=Tp2 THEN
Eyd=Eyd-2
Eyd=Eyd-2
END
END
****************** RUNNING SKYLINE ANALYSIS **********************
****************** RUNNING SKYLINE ANALYSIS **********************
INPUT "WEIGHT OF TURN TO BE YARDED (LBS)?", UNg
INPUT "WEIGHT OF TURN TO BE YARDED (LBS)?", UNg
******************** YARDER SPECS. FOR WIW 118 ************************
******************** YARDER SPECS. FOR WIW 118 ************************
|
|
Rmain=. }054
Rmain=. }054
Hinp=. }285
Hinp=. }285
Minp=.2268 SPEED RATID: MAIN DRUM/INT. SHAFT
Minp=.2268 SPEED RATID: MAIN DRUM/INT. SHAFT
Rinp=Hinp/Minp
Rinp=Hinp/Minp
Gear(1)=1/5.31
Gear(1)=1/5.31
Gear (2)=1/2.71
Gear (2)=1/2.71
Gear(3)=1/1.4
Gear(3)=1/1.4
Gear(4)=1/.71
Gear(4)=1/.71
Egear=.80 : OVERALL EFFICIENCY
Egear=.80 : OVERALL EFFICIENCY
MBr=18 MMNLINE BARREL RADIUS
MBr=18 MMNLINE BARREL RADIUS
Mbw=36
Mbw=36
Mlc=1620
Mlc=1620
Hbr=13
Hbr=13
Hbw=36
Hbw=36
HIC=3300
HIC=3300
SPEED RATIO : TRANS.TO ML DRIM
SPEED RATIO : TRANS.TO ML DRIM
SPEED RATIO: HB DRLMYINT. SHAFT
SPEED RATIO: HB DRLMYINT. SHAFT
SPEED RATIO : MAIN DRIM/INT. SHAFT
SPEED RATIO : MAIN DRIM/INT. SHAFT
*" "" WIDTH
*" "" WIDTH
HALLBACK BARREL RADIUS
HALLBACK BARREL RADIUS
Tower=53
Tower=53
th1=Tower
th1=Tower
|**
|**
!
!
INPUT "HYORALLIC PRESSURE TO INTERLOCK (PSI)?",Psi

```
INPUT "HYORALLIC PRESSURE TO INTERLOCK (PSI)?",Psi
```



```
PRINT
```

PRINT
Cpump=500 I CHARGE PUMP PRESSURE
Cpump=500 I CHARGE PUMP PRESSURE
Dpsi=Psi-Coump I HYDRALLIC PRESSLIRE DIFFERENTIAL
Dpsi=Psi-Coump I HYDRALLIC PRESSLIRE DIFFERENTIAL
Mh=Dpsi*3 | TORQUE AUAILABLE AT INTERLOCK
Mh=Dpsi*3 | TORQUE AUAILABLE AT INTERLOCK
!
!
|*********************业**
|*********************业**
Dispm=226
Dispm=226
MOTOR DISPLACEMENT (FIXED)
MOTOR DISPLACEMENT (FIXED)
EFFICIENCY OF HYDROSTATIC DRIUE
EFFICIENCY OF HYDROSTATIC DRIUE
DIA. MAINLINE
DIA. MAINLINE
DIA. HAULBACK
DIA. HAULBACK
WEIGHT/FOOT OF HALLBACK
WEIGHT/FOOT OF HALLBACK
WEIGHT/FOOT OF MAINLINE
WEIGHT/FOOT OF MAINLINE
! WEIGHT/FOOT OF MAINLINE
! WEIGHT/FOOT OF MAINLINE
WEIGHT OF CARRIAGE

```
    WEIGHT OF CARRIAGE
```



```
---------- SUBROUTINE CALCULATES CONUERTER CAPACITY FACTOR
                                    OR ENGINE TORONJE
IF Et>0 THEN Me(I)=Erpm(I)^2/Ke(I)^2+Mp(I) IIF UARYING THROTTLE CALC Me
Mi(I)=Me(I)-Mp(I)
Mmil(I)=Mlt(I)*(Mre(I)/12) IMAIN DRUM TRRQUE
Mout(I)=(Mml(I)-(.98*Mh/Minp))*Rma in*Gear(Ge(I))/Egear ICONU OUTPUT
! TORQUE
!
Tr(I)=Mout(I)/Mi(I) IACTUAL TORQUE RATIO
IF Et=0 THEN Ke(I)=Erpm(I)/SQR(ABS(Mi(I))) ! IF VARYING RPM CALC K
RETURN
---------- SUBROUTINE CALCLHLATES PLHTP TORQUE DEMAND
Mrpm(I)=Erpm(I)*Src(I)*Rmain*Gear(Ge(I)) IMAIN DRUM RPM
Mlspd(I)=Mrpm(I)*(Mre(I)/12)*2*PI !MAINLINE SPEED (FPM)
Mbspd(I)=MIspd(I)*Lsr(I)
HAULLACK LINE SPEED (FPM)
*)
!HAULLBACK LINE POWER (HP)
Pml(I)=M1spd(I)*Mlt(I)/33000
Dn(I)=Mrpm(I)*(Ring-Dratio(I)*Lsr(I))
MMAINLINE POWER (HP)
IDIFFERENTIALL SPEED (RPM)
Pm(I)=Dn(I)*Hh/5252
    IPOWER AT INTERLOCK (HP)
Flow=Dispm*Dn(I)
Dispp(I)=Flow/Erpm(I)
Mpo=Hp(I)
IF Dn(I)>O THEN
    Mp(I)=(Opsi*Dispp(I)/(24*PI))/E
    PI(I)=Pp(I)*(1-E)
ELSE
    M(I)=(Opsi*Dispg(I)/(24*PI))*E TPMMP TORQUE
                            ! IF POWER FLOW NEGATIUE
```



```
                                    !PDWER LOST AT INTERLOCK
END IF
Pp(I)=Mp(I)*Erpm(I)/5252 I PUMP POWER (HP)
RETURN
INECESSARY PJMP DISPLACEMENT
                                    ! IF POUER FLOLU POSITIUE
                                    !PUMP TORQUE
                                    !POWER LOST AT INTERLOCK
                                    IPUMP TORQUE
------------------ SUBROUTINE CALCULATES SPEED RATID
                            --------------------
IF Ke(I)>139 THEN
    Src(I)=(Ke(I)-139)*.000136826+.98
ELSE
4030 Sre(I)=-7.364243008+.246378172*Ke(I)-.002381983*Ke(I)^2+.000007492*Ke(
    4190 Wu(I)=Wnet (I)*N1
```

I) ${ }^{\wedge} 3-.00072861$
4040 END IF
4050
4060
4070
4080
4090
4100
4110
0455877
4120
4130
4140
4150
4160
4170
4180
olt (I)
4200
4210


```
END IF
IF Drag=2 THEN
    Beta(I)=90-Theta(I) I 2nd GIESS FOR BETA
    Hang=Beta(I) ! ( UPPER LIMIT)
    Wom|net(I)
END IF
IF Drag>2 THEN
    Slope=(Wnet(I)-Wo)/(Beta(I)-Betao)
    Betao=Beta(I)
    Ho=Wnet(I)
    Step=(Wg-Wo)/Slope
    Beta(I)=Step+BetaO INEN GUESS FOR BETA
    IF Beta(I)>Hang THEN
        Step=5tep/2
        GOTO 4930
    END IF I KEEP SEARCH UITHIN UPPER
    IF Beta(I)<Lay THEN I AND LOWER BOUNDS
        Step=Step/2
        GOT6 4930
    END IF
    IF Beta(I)<Lay+.1 THEN \CHECK FOR SUFFICIENT
        IF Betao<Lay+.1 THEN ITENSION/DEFLECTION
            DISP "INSUFFICIENT DEFLECTION AT TP#";I/2
            WAIT }
            GOTO 3080
        END IF
    END IF
END IF
    IF Slide=1 THEN \ CONDITION 3 (LDGGSLIDES)
        Beta0=180 1 1st GUESS FGR BETA
        Lay=Betao ! (IJPPER LIMIT)
        Beta(l)=Betao
    END IF
    IF Slide=2 THEN
        Beta(I)=89-Theta(I) ! 2nd GUESS FOR BETA
        HangzBetg(I) ! (LOWER LIMIT)
        Wo={稆et (I)
    END IF
    IF Slide>2 THEN
        Slope=(Wnet(I)-Wo)/(Beta(I)-Betao)
        Betao=Beta(I)
        WowWnet (I)
        Step=(Wg-Wo)/Slope
        Beta(I)=Step+Betao
        IF geta(I)<Hang THEN
            Step=Step/2
            G0TO 5250
        END IF
        IF Bata(I)>Lay THEN | KEEP SEARCH WITHIN
            Step=Step/2 I UPPER AND LOWER BOUNOS
            GOTO }525
        END IF
        IF Beta(I)>179.9 THEN | CHECK FOR SUFFICIENT
            IF Betao>179.9 THEN ITENSION/DEFLECTION
                    DISP "INSLIFFICIENT HAULBACK TENSION AT TP#";I/2
                    WAIT 4
                    GOTO 820
            END IF
        END IF
    END IF
```

```
5430
heta(I)
heta(I)
ta(I) )/k
    5440
    5510
    5520
    5530
    5540
    550 I
    $550
    5580
    5580
    5590
    5610
    5620
    5630
    5650
    5670
    5680
    5 7 0 0
    $5720
LEARANCE
    5730
FT)
    5740
    5750
    5760
    5770
    5780
    5790
    5800
a(I)
    5810
    5820
(I)
        5830
        5840
        5850
        5860
        5870
        5880
        5890
        5900
            5900
        5920
        5920
    5930
    5940
    5950
    5960
!************************ TAGLINE ANGLE *************************
Kk=2*(1+H*TAN(Beta(I) )
    N1=1-(COS(Theta(I))-SIN(Theta(I))*TAN(Beta(I)))*(COS(Theta(I))-U*SIN(T
)/kk
    N2=(COS(Theta(I))-SIN(Theta(I))*TAN(Beta(I)))*(SIN(Theta(I))+L#COS(The
/k
    Alpha(I)=ATN(N2/N1)
!
    Ga=Beta(I)+Theta(I)-ATN(Logdia/LI)
    Lc(I)=Ll*SIN(Ga)-(LI*COS(Ga)*TAN(Theta(I))) CALC LOGGNN CLEARANCE
                    ; (VERTICAL)
!
!********************* COMPUTE SEGMENT GEOMETRY *********************
Xp=LI*COS(Beta(I)+Theta(I))+Ce*SIN(Alpha(I))
    Cc=LI*SIN(Beta(i)+Theta(I))+Ce*COS(Alpha(I))
    Dlt(1)=<(1)-X(Tp1)-趷
    Drt(1)=X(Tp 2)-X(1)+Xp
    Span=Drt(I)+Dlt(I)
    Lh=((Y(Tp1)+th1)-(Y(Tp2)+Hh2))
    Dy(I)=Y(Tp1)+Hh1-Cc-HC-Y(I) ! DEFLECTION
    Dy(a)=0(1p1)+Hh1-Cc-Hc-Y(1)
    IF Slide`O THEN Slide=Slide+1
    RETURN
```



```
    !************************** PRINT OUTPUT ****************************
    !
        MRINT
    MPINT "T.P. MLT 
    MRINT""" (LBS) (LBS) H.P. (FPM) (
    PRINT ""
    FOR 1=TP1+2 TO Eyd STEP 2
        Tp=1/2
        If=1/2
            IF Ma(I)>0 THEN
                IF FIC(I)>0 THEN
                                    PRINT USING 5930;Tp,Mlt(I),Hbt(I),Hpreq(I),Mlspd(I),Flc(I),Bet
            ELSE
                PRINT USING 5940;Tp,Mlt(I),Hbt(1),Hpreq(I),M1spd(I),Le(I),Beta
                END IF
            END IF
            ELSE
            IF Flc(I)>0 THEN
                PRINT USING 5950;Tp,Mlt(I),Hbt(I),Fle(I),Beta(I)
            ElSE
                PRINT USING 5960;Tp,M1t(I),Ht(1),Le(I),Beta(I)
            END IF
                Brake=1
            END IF
            IMAGE 3D,5X,5D,6X,5D,5X,4D,64,4D,5X,"FLLLL",11X,3D,8X,3D
            M,
            IMAGE 30,5X,50,6x,5D,5X," * ",66,""* ",'"PART",11X,3D,8X,3D
```

5970
5980
5990 6000 6010 6010 6020
6030
6040
6050
6060
6070
6080
6090

NEXT I
IF Brake=1 THEN
PRINT
PRINT "* NEGATIUE ENGINE TQRQUE REQUIRED,SPEED INFORMATION NOT AVAIL
ENO IF RETURN
(*********** SUBROUTINE FOR H,V (RIGID LINK MOMENT ARMS)
$L=\operatorname{SQR}\left(D^{\wedge} 2+H h^{\wedge} 2\right)$
$\mathrm{H}=\mathrm{Tu} * \mathrm{D} / \mathrm{L} * 5 Q R(1-(.5 * W \omega * D / T u) \wedge 2)-.5 * W \omega * D * H h / L$
 RETURN

APPENDIX III

DERIVATIONS

NUMBER OF WRAPS

Sketch a

From Sketch a:
d Volume $=d L d R d W$
Volume $=\int d L \int d R \int d W$

Sketch b

$$
\begin{aligned}
\int d L= & R_{j}^{\int d \theta}=2 \pi R \\
& \int d W=W \\
\text { Volume } & =2 \pi W \int \quad R d R
\end{aligned}
$$

Length of the wire rope equals the volume divided by the cross -sectional area of the rope. If it is assumed that the rope is "stacked" on the drum as illustrated in Figure 10 , and the effects of crushing are neglected, the cross -
sectional area is equivalent to the square of the rope diameter (sketch c).

Therefore:

$$
L=\frac{2 \pi W \iint^{\int} R d R}{d^{2}}
$$

This gives L in inches. A more convenient unit is feet.
L in feet equals:
$L=\frac{2 \pi W \int R d R}{12 d^{2}}=\frac{2 \pi W}{12 d^{2}} \int_{b_{r}}^{b r_{+} n d} R d R=w \pi\left[\frac{\left(b_{r}+n d\right)^{2}}{2}-\frac{b_{r}^{2}}{2}\right]$

$$
L=\frac{2618 W\left[\left(b_{r}+n d^{2}\right)-b_{r}^{2}\right]}{d^{2}}
$$

Letting $K=.2618$ and solving for n yields

$$
n=\frac{-b_{r}+\left[\left(b_{r}^{2}+\frac{d^{2} L}{K W}\right)\right] \cdot 5}{d}
$$

HYDRAULIC PUMP TORQUE

$$
\begin{gathered}
M_{p}=(p)(D p) \\
\text { Displacement }\left(D_{p}\right) \text { is measured in cubic inches per revolution } \\
M p=\left(1 b / i n^{2}\right)\left(i n^{3}\right)=1 b \text {-in/rev. }
\end{gathered}
$$

To convert to pound-feet:

$$
M_{p}=(1 b-i n / r e v .)(1 \mathrm{ft} / 12 \mathrm{in})(1 \mathrm{rev} .12 \pi \mathrm{radians})=1 b-f t
$$

