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In this paper we use the set of all positive integers

as a sample space whose probability density function is un-

known. Then a generalization of the probability distribu-

tion of the most significant digits of the set of all physi-

cal constants is obtained on the strength of (i) a very gen-

eral assumption imposed on the density function of the

sample space, and (ii) a generalized invariance principle.

The assumption is quite weak in the sense that it merely

states that the occurrence of an event containing infinitely

many elementary events is not impossible. The invariance

principle, as is shown, is equivalent to another principle

and to two functional equations. A function is constructed

and, on the basis of the two foregoing stipulations that

characterize the generalization, it is shown that this func-

tion is a unique solution, within a multiplicative positive

constant, to another functional equation. The function so
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constructed serves as a stepping stone in reaching our goal.

Having the generalization at our disposal, we deduce

from it some of the consequences that are of interest. As

it turns out, the deduction gives, on one hand, a proof to

two empirical formulas published previously and, on the

other, a fairly good agreement with the probabilities of

three continuous density functions established in the liter-

atures concerning the distribution of the leading digits

under algebraic computation. In concluding the paper, a

justification is made as to why a special case of the con-

sequences of our result coincides with the probability of

one of the three continuous density functions, even though

our function is discrete.
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CN THE GENERALIZATION OF IHE DISTRIBUTION CF THE SIGNIFICANT DIG ITS

UNDER COMPUTATION

I. Introduction

It has been observed that in a well-used table of log-

arithms the pages containing the lower first or most signi-

ficant digits, say 1, 2 and 3, are invariably better

used, more ragged, than those beginning with the higher di-

gits, say 8 and 9. This phenomenon was observed by

Benford [1938]. No one could be expected to be interested

in the actual condition of such a table but we may recall

that the table is a base upon which some of our scientific

studies are built. Consequently, an explanation was then

sought by that observer in an attempt to obtain some mean-

ingful measure of explanation for this peculiarity. For if

we stipulate that the higher degree of decrepitude indicates

more frequent usage we may then come to the conclusion that

the numbers having the lower significant digits occur more

frequently than those having the higher ones. As a result

of his observation Benford remarked

"A compilation of some 20,000 first digits taken
from widely divergent sources shows that there
is a logarithmic distribution of the first di-
gits when the numbers are composed of four or
more digits. An analysis shows that the numbers
taken from unrelated subjects, such as a group
of newspaper items, show a much better agreement
with a logarithmic distribution than do numbers
from mathematical tabulation or other formal data."

1



where a1a2'...aq is a q-digit positive integer written in

customary meaning of position and order in our decimal

2

In particular, it is found that 30.6 percent of the ob-

served physical constants have 1 as their first digit.

This is in agreement with the common (base 10) logarithm of

2, 0.301 --- . Furthermore, the frequency of occurrence of

the first, most significant, digits can be closely approxi-

mated by the logarithmic density function defined by the

formula

a+1
(1.1) f(a) = log10 a = 1, 2, 9,

as observed by Benford. For example, it may be observed

that from Table I of Benford's paper 8.0 percent of the col-

lected physical constants have 5 as their first digit and

4.7 percent of the observed constants have 9 as their

6
first digit. These figures agree with log10 = 0.079.--

and log10 10= . On the base of these consisten-

cies Benford conjectured that the probability density func-

tion of the most significant digits of the set of all the

physical constants is given by the f(a) defined above,

and he deduced that the probability of a digit in the qth

position is given by

aia2....aq+1log10
a/a2....aq

(1.2) f(a ) = a1a2....aq_1+1
log10



system, and

(1.3) a16{1,2, ,9}, i=2,3,...,q.

At this point another result may be cited to substantiate

the idea that nature seems to be in favor of odd digits over

the even ones. In fact it has been found, Brown [1951],

that in the production of random digits, including zero, the

occurrence of odd digits is more favorable than that of even

digits.

After the publication of Benford's paper, various suc-

cessful papers have been published in connection with the

derivation of the distribution function of the first signi-

ficant digits of the set of all physical constants. Goudsmit

and Furry [1944] has shown that the probability density of

the first significant digits is independent of the probabi-

lity density of the set of all physical constants, and the

density obtained is the same as that of Benford's first em-

pirical formula cited above. Pinkham 119611, on the other

hand, observed that the collection of all known physical

constants changes daily. For example, the population of a

large city has a daily variation. However, he assumed that

the probability distribution of the first significant digits

is invariant under any scale change; that is, if all the

physical constants were multiplied by a fixed real, positive

number the distribution of the significant digits "would be

3
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the same as before". On the strength of this invariance

principle and the continuity condition on the distribution

function of the underlying space (the collection of all the

physical constants) Pinkham has shown that the probability
distribution of the most significant digits is given by

(1.4) D(n) = logion, n=2,3,...,10.

Here D(n) gives the probability that the first digit is

n-1 or less.

Finally, in 1966 Flehinger [1966] observed that the

smallest population which contains the set of significant

figures of all physical constants, past, present and future,

must be the set of positive integers". It is this space

the present investigation is concerned with and we shall ob-

tain a generalization of the first significant digit con-

cepts and a verification of Benford's formulas cited above.



CHAPTER II

Preliminaries

We shall state some of the well-known notions from the

mathematical literature upon which the present investigation

is based.

A probability P is a normed measure over a measurable

space (Q,3); that is, P is a real-valued function on the

sigma field 3, which assigns to every set A c 3 a real

number P(A) such that

P(A) > 0 for all A 6 3,

P(Q) = 1, and

if {An} is any denumerable sequence of disjoint

events of 3, then

CO CO

(2.1) P (L) An) = P (An) .
n=1 n n=1

If A 6 3 and B c 3 and if P(B) > 0, then the con-

ditional probability of A given B, denoted by P(A1B),

is defined by P(AB) = P(AB)/P(B), where AB E A n B.

A random variable X is a real-valued function on Q

and X is 3-measurab1e.

For convenience, whenever the meaning is clear from the

context we shall write

5



(2.2) [X < x] E QIX(W) < X},

where x is a real number.

If X is a random variable its distribution function

FX
is defined to be

(2.3) Fx(x) = P[X < x], for all X E (co, -1-c°).

X is a discrete random variable if it is a random

variable such that it assumes only a finite or countable

number of real values and, for A E B,

(2.4) P (A) = f (x (co)).
wEA

Then f is called a probability density function or dis-

tribution of X.

The notation of Theorem A.1 refers to the first

theorem in the appendix.

6



CHAPTER III

Generalization

In this chapter we shall obtain a generalization of the

distribution of the first significant digits. To begin with

we shall define a few ideas, some of which characterize the

results and the others simplify the typographical work.

Formulation of the Problem. Let Z be the set of all

positive integers, and let P be the probability measure

over the measurable space (Z ,G). The sigma field G is

taken to be the set of all subsets of Z. Also, let F

and f be the probability distribution and probability den-

sity function respectively of the random variable E on

Z, where is defined by the formula t",( ) = i, for all

i c Z . So, we have

(3.1) f(i) = 1.
iEZ

(3.2) F(x) = E f(i), 1 < x < 00,
iEZ

i<x

(3.3) F(c0) = 1, F(x) = 0, -00 < x < 1.

7

Now we may consider the following question: what is the



8

probability of observing that a positive integer has its

leftmost first d(n) digits less than or equal to n and

greater than or equal to 10d(n)-1, where n 6 Z and

d(n), as we shall see, denotes the number of digits of n.

In particular, what is the probability of observing that a

positive integer has the first four significant digits as

specified, such as 3019. If the probability density func-

tion f were known the question could be answered as

f (i)

icZ

ili2i3i4 = 3019

Here P, and hence f, is unknown as part of the condi-

tions imposed on the problem. However, from Benford's em-

pirical formula cited above, we would expect that the prob-

ability of the event could be approximated by the value of

a logarithmic function of a positive real number.

We observe that so defined is a real valued func-

tion on Z such that

(3.4) {I- C Z I (i) < {i 6 Z I (i) < [x] }

[x]

U{i},
i=1



(3.5)

(3.6)

and

(3.7)

....x y y ....V ,xlx2
=n 1 2 -n

Sd(n)= (n)-1i=l0d

An = {x e Sd(n)lx (!,1.1) nl.

9

where [ ] is the greatest integer function and tl> denotes

the null set. Consequently, 6 Z101 (i) < x} e G, for

all real numbers x. Hence, by definition, is measur-

able with respect to G.

Relation. We define a relation on a subset of Z

as follows: Let S C Z. Then, for all x,y E S, we say
P

that x is related to y of order n, denoted by x--12/y,

if and only if

where xix2....xn and y1y2.yn are the first n digits

of the positive integers x and y, respectively. Accord-

ing to the relation so defined the integers 17 and 1701

are related of order 1 and 2, but not of order 3 or

higher. A convention is in order before we proceed. For

all n Zp, d(n) is defined to be the number of digits

of n; that is, d is a real-valued function on Z . For

example, d(1234) = d(8017) = d(9999) = 4. Having these

notions we may now define

C 0



For example, if n = 1,2,....,9, then d(n) = 1 and

00

} = Z , the
An

are AvA2,....,A9 and we

observe that, in this case,
00

9

....,999, S
d(n) = L.) {i} = Zp {i}. Here the An

i=100 1=1

are Aloo, A101,...., A999, and, of course, the union of

the An
is S3.

(n
The relation d,? is an equivalence relation on

Sd(n)'
Consequently, it partitions Sd(n) into equivalence

d(n)-1 10d(n)-1
d(n)

classes {A} = 10 + 1,
n

such that the A are a non-empty, disjoint subset of Z .

Assumptions. Owing to the fact that the density func-

tion f of is unknown it is impossible to compute the

probability of every event in G , except for Z itself

and the null set (1). However, in the course of obtaining

a generalization of the distribution of the first signifi-

cant digits a fairly general assumption is needed on f.

It is stated explicitly as follows:

(i) For every countably infinite subset A of
Zp,

E f (i) > 0.
icA

The restriction imposed on f is quite weak, in that it

merely states that the occurrence of the event A is not

impossible. Next, a generalized invariance principle may

be stated as follows':

10

A. = Z For n = 100,101,
i=1

199
P

d (n) i=1
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The probability distribution of the leftmost d(n)

digits is invariant under the linear transformation

n = c(E + 1), c being a positive, real constant.

Assumption (ii) reduces to that of Pinkham if d(n) is

taken to be 1. The principle so stated in (ii) is equi-

valent as is shown later, to the following statement, which

we shall call the generalized invariance principle of the

density distribution.

The probability density distribution of the left-

most d(n) digits is invariant under the linear transforma-

tion n = c(E + 1).

This last principle is not indispensable. However,

later development reveals that the latter is more simple in

implementation. At the expenditure of these two conditions

a generalization is obtained and the continuity condition

on the probability distribution function F can be relaxed,

in contrast to Pinkham's assumption.

Main Results. In order to attain our goal it is nec-

essary to have the following facts at our disposal. The

idea used in the proof of Lemma 3.6 is similar to that em-

ployed by Shannon [1948], and the proof of Lemma 3.1 is

trivial and so will be omitted.

Lemma 3.1. Let n 6 Z.
Then

10



10d(n)-1
(3.8) Sd(n) = L_) A.,

d(n)-1 1
i=10

and the A.1
are non-empty disjoint subsets of Z.

Lemma 3.2. For every positive integer

00 (n+1)10m-1

(3.9) An = {i}
m=0 .1=n10m

(n+1)10m-1

Proof. Let x E {±}. Then for some
m=0 i=n10m

(n+1)10 o-1

m0' m0
= 0,1,2,"", x

E
al and x is a positive

0
i=n10

integer. This implies that n10m0 < x < (n+1)10mo-1, but
m m
0 1 0 1

(n+1)10 0-1 = n10 + (1 )10 and 0 <1 < 1,m
0

m _
0

10 10

1
for every mo. So x = (n + 0)100, 0 <0 < 1

10m0

It follows that

(3.10) x1x2 ....xd(n) = n'

12



d(x)-d(n)
xd(n) xd(n)+1 d(x)10

= n10d(x)-d(n)+ xd(n)+1. xd(x)10d(x)-d(n)

which implies that

(3.14) n10d(x)-d(n)< x < n10d(x)-d(n)+ 10d(x)-d(n)-1,

since the inequality

(3.15) 0 .x,a(n)+1....xd(x)lod(x)-d(n)
10d(x)-d(n)...1,

13

and, for every n e Z , 10d(n)-1< n, but x > n, so

x e Sd(n)* Consequently, x e An and

CO
(n+1) 10m-1

(3.11)
m=0

i=n10m

{i} E An.

On the other hand, suppose that x e A. Then, by

definitions, x 6
Sd(n)

and (3.10) holds. Also, x can

be written as

(3.12) x = x1
x d(x) > d(n),d(n) d(n)+1 xd(x)'

or

(3.13) x7-", x



holds for every xi i=d(n)+1,

d(n)+2,....,d(x). Furthermore, d(x)-d(n) is a non-nega-

tive integer. It follows that

(n+1)10m-1

(3.16) X E {i},
m=0

i=n10m

and the assertion of (3.9) follows.

Lemma 3.3. The probability of the set of all positive

integers having the leftmost d(n) digits equal to n,nE Z,

is given by the series

Co

(3.17) {F[(n+1)10m-1]-F(n10m -1)1,
m=0

where F is the distribution function of E.

Proof. The set of all positive integers whose leftmost

d(n) digits equal to n is A. Since P is the proba-

bility measure on the sigma field G, the power set of

Zp, the probability of An, denoted by P(An), is

(n+1)10m-1 (n+1)10m-1
Co

(3.18) P(An) = 11(L) (.) {i}) = P((){i})
m=° i=n10m m=° i=n10m

14



The last equality holds, for P is a countably additive

measure on G, and for each m the sets are disjoint.

Consider now the equality

(n+1)10m-1 nlOm-1 (n+1)10m-1

(3.19) L) {i}U(U {i}) = U {i}.
in10m i=1 i=1

=

Applying the measure P to this last equation and using the

definition of the distribution function F, we obtain

(n+1)10m- 1

(3.20) P (U {i}) = P[C<(n+1)10m-1)-PH<n1OM-11

i=n1OM

= F[(n+1)10m-1]-F(n10m-1).

We recall that R < x] E Z 1 (i) < xl. Hence, the

lemma is proved.

Lemma 3.4. Let F be the distribution of Then

the series

00

(3.21) {F(x10m-1)-F(y10m-1)}
m=0

15

converges absolutely for all positive real numbers x and y.



Proof. First we show that the series

CO

(3.22) E iF (n10m-1) -F (10m-1) }

m=0

converges absolutely for each n e Z by induction on n.

For n = 1 the series vanishes indentically. Now suppose

it is true for n = k. Consider the identity

(3.23) E {F [ (k+1) 10m-11-F (10m-1)} = [ (k+1) 10m-1 ] -F(kIfin-1)}

m=0 m=0

00

{F(k10m-1)-F(10m-1)}.
m=0

The first series on the right hand side is precisely P(Ak),

by Lemma 3.3. Also, 0 < P(Ak) < 1. The remaining series

converges by the induction hypothesis. Therefore, the last

equality holds from theorem A.1. Consequently, the series

converges for all n e Z . We note also that for each

n Z and every non-negative integer m, 10m-1 < n10m-1.

Therefore 0 < F(10m-1) < F(n10m-1). We have the absolute

convergence of the series.

Now we are in the position to prove Lemma 3.4. With-

out loss of generality let us assume that y < x. For

16
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x > 0 there exists a positive integer n such that x < n.

It follows that xl0m-1 < nlOm-1 and

(3.24) F(x10m-1) < F(n10m-1).

On the other hand, y > 0 implies either y > 1 or

0 < y < 1.

Case 1. 1 < y. Then 10m-1 < ylOm-1 and

F(10m-1) < F(y10m-1). So -F(y10m-1) < -F(10m-1). By ad-

ding this last inequality to that of (3.24) we obtain, sum-

ming over m,

CO

(3.25) 0 < {F(xl0m-1)}-F(y10m-1)
m=0

< {F(n10m-1)-F(10M-1)} < 00.

m=0

Case 2. 0 < y < 1. Then for each arbitrary but fixed

y in the open unit interval there exists a positive inte-

ger k such that 0 <1k y. It follows that
10

10m 10m
--w 1 < y10m-1 and -F(y10m-1) < -F(--F 1). Again,
10 10

using (3.24), we have



(3.26)

m
0 < IF(xl0m-1)-F(y10m-1)1< {F(n10m-1)-F(--ink - 1)1

m=0 m=0 10

co

= F(n101) + E{F(nlOk+i-1)-F(10j-1)} <

m=0 j=1

The series converges absolutely, and the assertion is

proved.

Lemma 3.5. If k 6 Z and k > 1, then for every

r Z there exists a non-negative integer s such that

(3.27) ks < 2r < ks+1

Proof. We observe that for all real numbers a > 0,

(3.28) [a] < a < [a] + 1,

where [ ] denotes the greatest integer function. It fol-

lows that, for k 6 Z and k > 1,

10m
= F (n10m-1) + E IF (n10m-1) -F (---- 1) }

m=0 m=k+1 10k

18

(3.29) k[a] < ka < k[a]+1



Now k > 1 implies that for all r c Z logk2r > O.

Setting a = 1ogk2r, we get

(3.30)

and the proof is complete.

Lemma 3.6. Let L be a strictly increasing function

on Z such that, for all m, n 6 Z

(3.31) L(mn) = L(m) + L(n).

Then, for n 6 Z,

(3.32) L(n) = c logbn, c > 0, b > 1.

Proof. By induction it is easy to show, for m c Z,

(3.33) L(m ) = k L (m) ,

for all non-negative integers k, since L(1) = L(1)+ L(1)

implies L(1) = 0.

Now we show that L(n) = c logbn for all n 6 Z.

For n = 1, L(1) = 0, and logbl = 0, if b > 1. Hence,

the conclusion holds for n = 1. Now let n be a fixed but

arbitrary integer greater than 1. Then by Lemma 3.5, for

each r e Z there is a non-negative integer s such that

[logk2r] logk2r
=

[log 2r]+1
2r < k

k
k < k 1-...

19



(3.34)

Using the strict monotonicity of L, we obtain

(3.35) s L(n) < r L(2) < (s+1) L(n),

or, equivalently,

sL(2) s+1
(3.36) F L(n) <

On the other hand, using (3.34) again we obtain

(3.37) s logbn < r logb2 < (s+l)logbn,

or

log b2 s+1
(3.38) F logbn r

It follows that

(3.39)

and

(3.40)

L(2)
L(n)

ns < 2r
s+1<n

log_ 2
lo < 1

'logbn

L(n) - L(2)log n,
logb2

20

if r is allowed to increase without limit. The assertion

follows.

Now we are in the position to prove the main results,
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but first we must discuss the following theorem:

Theorem 3.1. The following statements are equivalent:

The invariance principle, defined by (ii).

{F[(n+1)10m-1]-F(10d(n)-110m-1)}
m=0

00
10d(n)-1

m
(n+1)10m 10

= E. {F[1]-F( 1)},
c c

m=0

where c > 0, n = 10d(n)-1, 10d(n)-1

d (n)
10 - 1.

00

{F[(n+1)10m-1]-F(n10m-1)}
m=0

1]...F(n10m 1)1,{Ff(n+1)10m

m=0 c
c

where c and n are defined as in (b).

The invariance principle of the density distribu-

tion, given by (iii).

Proof. First of all, we observe that the infinite series,

by Lemma 3.4, are well-defined. Part 1. (a) implies (b).

Let n c Z . Then



(3.41)

10d
-1

Sd (n)
A.

(n)-1 1
1=10d

and the A. are disjoint, by Lemma 3.1. Lemmas 3.2 and

3.3 give

CO

(3.42) P(Ai) = E {F[(i+1)10m-11-F(il0m-1)}.
m=0

Using the fact that P has the countable additivity pro-

perty and applying Theorem A.2 we obtain

CO

P ( (3
d (n) -1

Ai) = IF[(i+1)10m-1]-F(ildri-1)1

10d(n)_1
m=0

i=10

(3.43)

= {F[(n+1)10m-1]-F(10d(n)-110m-1)},
m=0

which is the probability of the set of all positive integers

having the leftmost d(n) digits less than or equal to n

and greater than or equal to 10d(n)-1, for all n,

10d(n)-1 < n < 10d(n)-1. Hence, the last infinite series_
defines the distribution function G of the leftmost 0(n)

digits such that

22



(3.45)

co

10d(n)-1

(3.44) G(10d(n)-1) = P(u Ai) = 1 - f (i)

( )-1 ie
1=10d

Z - Sd(n)

where Z - Sd(n) denotes the complement of the set Sd(n)

with respect to the set Z. By the definition of the dis-

tribution function of a random variable and Theorem A.3

00

P Ai) = {P [_,(n+1)10M-1].-PfE<10d(n)-110m-1]}

i=1
m=0d(n)-1

d(n)-1 m 1

= fl:q+1<(n+1)10mi-PR+1<10 10 ]1.

m=0

=
Co

{Fri.1f(n+1)10m]-1(10d(n)-110m)1;
m=0

by hypothesis, namely that the probability distribution of

the leftmost d(n) digits is invariant under the linear

mapping n = c(+1), c > o,

co

P Ai) = E {Fc(E+1)[ (n+1)10111] -Fc (C-1-1)(10d(n)-110m)}

i=l0d(11)-1
m=0

23

(3.46) = E {p[c( -1-1>< (n+1)10713-P [c (+1) <10d(n)-110m] }

m=0



(3.46) continued

CO

d(n)-110m= E fF[(n+1)10m 1)-F
10 1)1.

m=0

Part 2. (b) implies (c) . For n =
d (n) -1 (b) gives

00

{F( (10d(n)-1+1)10m-11-F(10d(n)-110m-1)1
m=0

(3.47)

CO

(10d(n)-1+1)10m 10d(n)-110m
E 1)-F( 1)1.

m=0

d()-
Here we have used the fact that d(n) = d(10"). There-

fore (c) holds for n = 10d(n)-1. It remains to be shown

n
for n = 10d()-1+1, 10d(n)-1d(n)-1. For these

values of n, d(n-1) = d(n) and

E {F(niorn-i)-F(10d
(n)

-110m- 1) }

CO

m=0

(3.48)

z
m0

F (n10
co

=
c

1) F (1°
10

1).
d(n) -1 m

By Theorem A.1 subtracting the last equation from that of

(b) is permissible and the algebraic operation yields the

desired result.

24



(3.51)

Part 3. (c) implies (d). From the hypothesis and

Theorem A.3,

CO

{F[(n+1)10m-1J-F(n10m-1)1 = P(An)
m=0

(3.49)

{F1 [(n4.1)10m1-FE-F1 (n10m)/,
E+

m.0

for n = 10d(n)-1 d(n)-1. So the left side series in

(c) gives the probability of the first d(n) digits; it

defines the probability density function of the leftmost

d(n) digits. On the other hand, the remaining series can

be written as

(3.50)

By hypothesis,

m=0

CO

{Fc (C+1)
(n+1) 10m] -Fc(+1)(n10m)}.

m=0

{F Nn+1)10m)-F (n10m)}

00

. 2:
{I-,c(+1)[(n+1)10m1-Fc(+1)(n10m)}.m=0

25

Therefore, (c) asserts that the probability density function



of d (n) digits, whose values are P (An) , 10d (n)-1<n<iod(n)_i

remains unchanged under linear transformation n = c( + 1).

Part 4. (d) implies (a). The proof is immediate by

observing that the addition of n - 10d(n)-1+1 equations,

d(n)-1
at the end of Part 3, for the values 10 yields

Co

{FC+11 (n+1) 10m] -P (10d(n)-110m)}
m=0

(3.52)

=
{Fc (E+1)

[ (n+1) 10m]
-Fc (e+1)

(10c1(11)-110m)}.

m=0

We recall that the series on the left side of the last

equality is precisely

(3.53)

and the proof is complete.

The series

(3.54) {F[(n+1)10m-1]-F(10d(n)-110m-1)},
m=0

as we have seen, defines a real-valued function G on Z .

If n takes the values 10d(n)-1,'40d(n)-1, then G(n)

26

P Ai)
. d(n) -1
1=10



is the probability of the set of all positive integers hav-

ing the leftmost d(n) digits less than or equal to n and

greater than or equal to 10d(n)-1. However, the function

G so defined is neither vanishing for n = 1 nor monotone

on Z. To show the non-monotonicity we first observe that,

for each n e Z
P'

(3.55) d(n+1) =

By Theorem A.1 and Lemma 3.4 the values of G at n+1 can

be written as

G(n+1) = P An+1) + G(n)

(3.56)

-
- {F(10d(n+1) 110m -1)-F(10d(n)-110m-1)1.
m=0

For n 10d(n)-1, G(n+1) = P(An+1) + G(n) > G(n). On the

other hand, for n = 10d(n)._ 1, say n = 9,

G(1°) = P(A10) G(9) -
i=

Ai.)

= P(A10) 4- G(9) - 1 < G(9"

d(n), if n 1°d(n)-1,

d(n)+1, if n = 10d(n)-1.

27



for 0 < P(An) < 1, all n. On the contrary, the real-

valued function Q on Z,

00

(3.57) Q(n) = {p(niom-1)-F(lom-1)1,
m=0

has the desired properties.

Theorem 3.2. The function Q defined above is a

strictly increasing function on Z such that

(3.58) Q(kh) = Q (k) + Q (h)

for all k, h 6 .

Proof. Lemma 3.4 asserts that Q is well-defined for all

n e Z. To show the monotonicity consider

(3.59)

and

(3.60)

Q(n+1) = P(An) + Q(n),

P (An) = E f (i) > 0.

ieAn

28

The positivity follows from stipulation (i) above, for oh-

viously An is an infinite set. Therefore 0(n+1) > Q(n)

for all n E Z .



Finally consider

CO

Q(k) = E {F(kl0m-1)-F(10m-1)}
m=0

(3.61)

co ( k
= E E
m=0 j=2

k[00
= [F(jlom-1)-F((j-1)10m-1)] /

j=2 m=0

which follows from Theorem A.2. Now assumption (ii) and

Theorem 3.1 yield, taking c = 1/h, h EZ ,

k co

Q(k) = (F(hj10m-1)-F(h(j-1)10m-1)]
j=2 m=0

Co

= 1: {F(hk10m-1)-F(h10m-1)}
m=0

(3.62)

CO

= E {F(hk101r1-1)-F(10111-1) }
m=0

CO

- E {F (h10m-1) -F (10m-1)
m=0

= Q(hk) - Q(h).

29



This completes the proof.

Theorem 3.3. Let n Z. Then the probability of the

set of all positive integers having the leftmost d(n) di-

gits less than or equal to n and greater than or equal to

d(n)-1 .

10 is given by

where b = 10 if d(n) = 1 and, for d(n) > 2, b must

satisfy the equation

10d(n) -1_i

(3.64) logb10 +i]l f(i) = 1.

Proof. Let n 6 Z. Then 10d(n)-1<n<10d(n)-1. From the

previous discussion it suffices to show that the function

G gives the desired results.

Consider

00

G(n) = {Ff(n+1)10m-1]-F(10d(n)-110m-1)}
m=0

(3.65)

00

= E {Fr(n+1)3.0m-1i-F(lom-1)}
m=0

n+1 10d(n)-1 < n < 10d(n)-1,d(n)-1

30

(3.63) log
0



(3.65) continued

00

- E {F (10d(n)-110m-1)-F(10m-1)}
m=0

= c1logb (n+1)
c2logb2(10d(n)-1).1

Here we have used Lemmas 3.4 and 3.6 and Theorems A.1 and

3.2. The parameters, c1,c2 > 0 and b1,b2 > 1, are at

our disposal. For no particular reason other than conven-

ience we eliminate some of the parameters by choosing

(3.66)

Some manipulation reveals that

(3.67)

for all n e Z .

If d(n) = 1 then 1 < n < 9 and

(3.68)

But

(3.69)

C2 =cla

n+1
G(n) = log.

n 10d(n)-1

P()A) = G(n) = logb(n+1).
i=1

9

A. = Z
i=11

1cb > 1.
1 logs b'

31



and P(Z ) = 1 = logb10, therefore b = 10.

If d(n) > 2 then 10d(n)-1 < n < 10d(n)-1 and

10d(n)
10d (n)-i_1

-1

(3.70) Sd(n) = A. = Z {i}.
. (n)-1 1 P
I=10d

Therefore

(3.71)

since P(fil) = f(i) by definition. The theorem is proved.

Before proceeding let us observe that Theorem 3.3

yields

(3.72) G(n) = 1og10(n+1), n =

which is the distribution of the first digits as obtained

by Pinkham and the others.

Verifications. In concluding the chapter we verify

Benford's empirical formulas cited in the introduction.

For doing so the following corollary is essential!

Corollary 3.1. For any n c Z

(3.73)

i=1

(10d (n)1)+1
10d (n) -1-1

- c,

P(Sd(n)) =
4-1 10

d(n)-1
f (i),

n+1 10d(n)-1< n < 10d(n)-1,P(An) = logb -717,
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where b is defined as that of Theorem 3.3.

Proof. The proof is immediate if we observe

n-1

(3.74) AU( (_) Ai) = U A.,

" (n)-1 .

10d
(n) -1

i=l0d 1=

10d(n)-1 < n < 10d(n)-1.

By the countable additivity property of the probability

measure P,

(3.75)

(3.76)

n-1

P ) = P( U Ai)-P((J Ai).

il0d il0d(n)-1 (n)-1==
It follows that Theorem 3.3 asserts

n+1
P(An) = lock

10d(n)-1
logb

10
d(n)-1

33

Now it is a trivial matter to establish Benford's first

formula, for if in the Corollary we let n take on the

values 1,2,,9 then b = 10 by Theorem 3.3. Conse-

quently, the Corollary establishes the claim.

To verify the remaining formula let n Z such that

d(n) > 2. Then n can be written in digital form as follows:



(3.79)

having

(3.81)

9

An
= A n(L_)A

n . n n ..-n
(n) -1i).1=0 1 2

Applying Theorem A.4 we obtain

9

(3.80) P(An) = P( )A
i= n1n2nd(n)-1i)

9

P CA I UA
n .

n1 n2 .-nd(n)-1=

9

P(An1LJAi=0 nin2...nd(n)_ii)

34

as the conditional probability of An given that the com-

pound event has occurred. That is, the conditional proba-

bility gives the probability of the event that the leftmost

digits of the set of all the positive integers, d(n) in

(3.77) n = n12"d(n)-1 'd(n)

where

r116 {1,2,...,9},

(3.78)

= 2,3,,d(n).

Observe that



number, are n n1 2 ---d(n)1
n while it is known that the

events AAnin2 n1n2...nd(n)-11"

Ann
... nd(n)-19,

have occurred. A moment of consideration
1 2

reveals that the probability of the set of all positive in-

tegers having their d(n)th digits equal to nd(n), given

the first d(n)-1 digits being n_n_2nd(n)-1' is given

by the conditional probability

(3.82)
9

P(A ILJA
d(n)-1i) -n . n n n

1=0 1 2

9
nin2* nd (n) i+1

logb
i=0

n+1
logb n

--
+1

nln2nd(n)-I1°gb
nnind(n)-1

which is precisely Benford's second formula. By observing

the fact that

P (An)

logab logbx = logax, x > 0, a, b > 1,
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P( A
i)nin2 --nd(n)-1



+1n1n2 ...nd(n)-1
log10

n1n2nd(n) - 1

36

we restate the result as

Corollary 3.2. Let n c Z be n = n1n2 --nd(n) such

that d(n) > 2. Then

9

P(A IU A .)
n i=0 nin2

...nd(n)-ll

(3.88)

n1112*nd(n)+1loglo
n1n2nd(n)



CHAPTER IV

Distribution of the Leading Digits under Computation

The study of errors arising in digital computation has

been a center for investigation. This is not surprising,

for if we recall that the advancement in the development of

the high speed digital automatic computers has made it pos-

sible to carry out a long sequence of algebraic operations

which previously was not possible. However, as is well-

known, the digital automatic computers provide only a given

precision, although multiple precision is obtainable through

the use of special sub-routines. In any event, for a given

precision, standard or multiple, the computed numbers may

easily contain more digits than the given precision allows.

Consequently, an error is involved in the computed answer

due to rounding off so as to reduce the computed number back

to the permissible range of the precision. An extensive

collection of references of published results concerning

errors in digital computation can be found in Rall [1964,

1965]. In particular, a profound investigation concerning

rounding errors has been carried out by Wilkinson [1963],

whose works have influenced the frontier research along

this direction. To facilitate the discussion we cite the

following example from Wilkinson. A rigorous bound of the

cumulative effect of rounding errors is obtained on the ex-

tended product Pn
of n numbers, each of which has a t

37



(4.2)

and

(4.3)

(4.4)

Therefore

(4.5)

and

38

digit mantissa and the operation is done in a standard pre-

cision t. The product Pn is defined by

(4.1) Pn = fl(x1x2x3...xn).

A cautionisinorder.Herethex.are real numbers, not

digits. The notation signifies the floating point computa-

tion on n numbers. The algebraic operations in automatic

digital computations always proceed from left to right. The

quantities Pr
are defined by the recursion formula:

pl = x1'

P = fl(Pr_lxr) E Pr-lxr(1 + er),

ler! < 101-t, r =

Ther are rounding errors. It follows that

P = x x -.-xn(1+62)(1+e )(1+en).
n 1 2

f1(x1x2...xn) x1x2...xn(l+E)



1 1-t n-1 1 1-t,n-1
(4.6) (1 - y 10 ) < 1 E < (1 + 10 ) .

2

This is the most rigorous bound for the rounding procedure,

1 -tnamely adding T 10 to each of the normalized computed

numbers, Pr-1 xr
. It is clear that the computed result at-

tains its maximum error only where the numbers xi,x2,..-xn

must be very special quantities. So the maximum error is

not likely to occur in a given sequence of multiplication.

For this reason we shift our attention to the theory of the

most significant digit.

Hamming [1962] pointed out that in order to understand

the effect of the cumulative error in the product or quo-

tient it is necessary to investigate the distribution of the

most significant digits. For if xl and x2 are the two

numbers with errors
E1

and
E2

respectively then

(4.7)
(x1+61)

(x+6) =
x1x2

+
x162

+
x261 6162'

Hamming observed that the "leading digits in xl and x2

tend to control the roundoff propagation and, by a similar

argument, through division". However, we observe that not

only do the leading digits of xl and x2 influence the

cumulative error but also the leading digits in the products

x1E2 and x261 play an important role in the building up

39
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of the error. Therefore, it is desirable to know the dis-

tribution of the leading digits under algebraic operations,

multiplication and division. The distribution of the lead-

ing digits in the product and in the quotient of two numbers

can be found in Hamming, obtained through a "private commun-

ication" from R.C. Prim, III. We cite them as follows:

starting with the initial uniform density function of x,

defined to be

(4.8) f(x) = 1 X 6 [1,10],

the density distribution f of the product, in floating-

point form, of two numbers, selected independently from the

initialdistributionf.,is given by

10 in 10 - 9 in x
(4.9) f (x) -

P 81

and the density distribution of the quotient, in floating-

point form, of two numbers, selected independently from the

initial distribution fi, is given by

(4.10)
1 10

f (x) = (1 + -7)18
x-

x E [1,10],

x 11,10].

Also, an assertion is made that the density distribution of

"a long sequence of independent multiplications and/or di-

visions of numbers from any (reasonable) initial distributim"



has the form

(4.11)
1

f(x)s (ln 10)x '

X E [1,10].

41

For the purpose of comparing the foregoing three continuous

functions with that of Corollary 3.1, namely

1
P(An) = log10(1 + n = 1,2,...,9, we plot these four

density functions in two different graphs. One of them

shows the relative values of these functions at

n = 1,2,,9 and the other gives the comparison of the

probabilities attained by these functions at the same points.

The numerical values of each function have been carried out

to four decimal places and then rounded off to three places

1 -3by adding 7 10 to the computed values in four decimal

places. The figures are placed in the appendix.

The first figure reveals that the graphs of the density

functions at the n distinct points agree closely, except

for p = 1. However, the comparison between these three

continuous functions and a discrete function would not show

the main features possessed by the functions. On the other

hand, the comparison between two probabilities of an event

associated with the density functions provides a relative

measure of the difference in the occurrence of the leading

digits under the algebraic computation. Also, the second

figure shows that, in all four cases, the numbers having



(4.12)
xy.-.z

-
tu...v

42

smaller leading digits occur more frequently than those

possessing greater leading digits. Furthermore, the proba-

bilities of the leading digits of f5(x) coincide with

those of
P(An)

at n = The fact that these

two density functions yield the same probability is not sur-

prising. Let us first recall that our second assumption

stipulates that the probability distribution of the leftmost

d(n) digits is invariant under the linear transformation

n c(E+ 1), where c is any positive real number. Then

Theorem 3.1 asserts that this principle is equivalent to the

invariance principle of the density distribution. In parti-

cular, c, being any real number, could be of the form

where each symbol in the equation is a real number'. Thus,

the transformation 11 = c(E+ 1) has the effect of mapping

our original space Z into cZ , which is defined as

follows:

(4.13) cZ = x1xe Z and c is any fixed real number).

9 J9 J9 18 9n
For example, for c =7, 7Zp = --xixeZp

Secondly, it is now apparent that "a long sequence of

independent multiplications and/or divisions of numbers" is

precisely an element of the set
P
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APPENDIX

The following facts are well-established in the litera-

ture; for convenience we cite from Apostol [1957], Tucker

[1967] and Parzen [1960].
CO Co

Theorem A.1. Let E a and E
bn

be convergent
n=1 n n=1

series. Then for every pair of constants a and 3, the

series

converges and

converges. Then

CO

E (ac + 3bn)
n=1 n

(ac + 31n) =a Ea +3
bn.

n=1 n n=1 n n=1

Theorem A.2. Suppose f(m,n) > 0 for all m,n.

Assume that

E f(m,n)
n=1

converges for each fixed m = 1,2,, and that

CO Co

E E f(m,n)
m=1 n=1
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CO

(A.5a) f(m,n) converges for each n =
m=1

(A.5b)

00 00 00 00

f(m,n) converges and is equal to E f(m,n).
n=1 m=1 m=1 n=1

Theorem A.3. Let X be a random variable and let

a,b be any real numbers such that a > 0. Then the distri-

bution function of the random variable Y = aX + b is given

by

(A.6) FaX+b(y) = P[aX+b<y] = PIX<I:12] = F(),X a '

-m < y W.

Theorem A.4. For every n + 1 events Ao,A/,--.,An

for which P(A01...-An) > 0 we have

(A. 7) P(A0 A1 --An) = P(A)P(A1IA0n01...An- ).
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0.6

10 In10 9 In x
f (x) =

81

0.5
f (x) = (I +

18 x2

f(x) =
(In 10) x

Ir-T)P(An) = logio( I +

0.4

0.3 -

0.2

3 4 5 6 7 8 9



ni-1
f (x) dx

sn +1
f (x) dx

Jr

n+ 1
f(x) dx = P(An)

n

n=1,2,...,9
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