AN ABSTRACT OF THE THESIS OF

<u>Elinor S. Utevsky</u> for the degree of <u>Master of Science</u> in <u>Geology</u> presented on <u>July</u> <u>16, 2015</u>.

Title: <u>Geochemistry of Plutonic Rocks of the Western Cascades</u>, <u>Washington &</u> <u>Oregon: Relationship to Crustal Segmentation and Ore Genesis</u>

Abstract approved:

John H. Dilles

The volcanic (~45-10 Ma) and plutonic rocks (~37-12 Ma) comprising the Western Cascades extend from northernmost California to southern British Columbia and are ancestral to modern arc magmatism. The ancestral arc hosts a series of small plutons that are locally associated with porphyry (Cu-Mo) and epithermal (Au) ore deposits. Three crustal segments identified by Schmidt et al. (2008, 2013) in the modern arc are potentially reflected in the geochemistry of the ancestral Cascades as well: Paleozoic-Mesozoic accreted terranes, metamorphic rocks, and granites to the north; thin Paleocene Siletzia oceanic crust of the Columbia Embayment in the center; and Paleozoic-Mesozoic ultramafic sheets and marine arc-related volcanic and sedimentary rocks of the Klamath Terrane to the south. Therefore, the Western Cascades of Washington and Oregon provide a field laboratory to examine the chemical compositions and ages of granitoid intrusions associated with a variety of magmatic-hydrothermal ore deposits, and to compare the compositions with the along-arc variation of the age, composition and thickness of the underlying crust.

The majority of the 15 new zircon U-Pb ages reported in this study are 27 to 12 Ma with the exception of the \sim 37 Ma Snoqualmie North Fork intrusions of central WA. A total of 610 zircons were analyzed, of which 118 have ages older than the main population and are considered to be xenocrystic or inherited. The north segment contains the oldest (up to 67 Ma) and most continuous inherited population. The absence of inherited grains older than 67 Ma suggests that neither the North Fork nor White River districts overlie old crystalline crust, but instead overlie Paleocene-Eocene volcanics that are the likely source of inherited zircons. Districts of the Columbia segment have sparse inherited zircon populations (n = 38) of 350 total), ranging from 54 to 20 Ma. The dearth of inherited zircons in the center of the arc suggests limited contamination by a source no older than 55 Ma, likely the dominant Eocene sources of detrital zircon found within the Tyee Formation. Districts overlying the Klamath Terrane have slightly more substantial inherited zircon populations than districts overlying Siletzia but still decidedly few inherited grains (a total of 25 out of 85 grains analyzed, ranging from 44 to 19 Ma); these grains are likely sourced from similar contaminants to those underlying the central segment of the arc, instead of from accreted Mesozoic rocks of the Klamath Terrane.

The hypabyssal plutonic rocks represent a small area (~1%) of exposures in the Western Cascades, and range in composition from diorites to granodiorites and minor granite. Fe-Ti oxides, where preserved, include magnetite and ilmenite in proportion of ~2:1, and together with presence of hornblende and biotite are suggestive of modest oxidation states of ~ Δ NNO of 0 to 1 (Carmichael & Nicholls, 1967). Abundant hornblende is observed in 31 of 36 available petrographic sections. Ba/Nb values are not obviously correlated with SiO₂ content from any given district, but tend to increase at any given SiO₂ content from north to south. Th/Ta ratios notably increase with SiO₂, and are lowest in the mid-latitude districts (North Santiam, Detroit Dam, Quartzville, and Blue River). While increased slab fluid could increase Ba relative to Nb, the greater abundance of Ba, Th, and Th/Ta southward at given SiO₂ are more consistent with an increased role of crustal contamination. Dy/Yb ratios decrease with increasing SiO₂ contents with the exception of the North Fork District. V/Sc ratios decrease with increasing SiO_2 with the exception of samples of the Spirit Lake Pluton, and slightly increase from south to north at any given SiO_2 content.

Zircons in the Western Cascades plutonic rocks have characteristically large negative Eu anomalies (Eu/Eu* < 0.5) and small positive Ce anomalies, correlated with relatively reduced oxidation states and low water contents, even when directly associated with moderately economic porphyry Cu deposits. Although these magmas are sufficiently water-rich to abundantly crystallize and fractionate amphibole (at least 3 wt. % H₂O), it is evident that plagioclase likely crystallized early and was not suppressed by high water contents (> 3 wt. % H₂O). There is no evidence that Western Cascade magmas were strongly oxidized (> NNO +1).

Although crustal thickness is poorly constrained in the north and south segments, it is evidently variable along-arc (and may thicken slightly to the south), but is likely relatively thin. I therefore suggest that crustal thickness and lithology substantially control ore potential within the Western Cascade Arc. © Copyright by Elinor S. Utevsky July 16, 2015 All Rights Reserved Geochemistry of Plutonic Rocks of the Western Cascades, Washington & Oregon: Relationship to Crustal Segmentation and Ore Genesis

by

Elinor S. Utevsky

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Presented July 16, 2015 Commencement June 2016 <u>Master of Science</u> thesis of <u>Elinor S. Utevsky</u> presented on <u>July 16, 2015</u>

APPROVED:

Major Professor, representing Geology

Dean of the College of Earth, Ocean and Atmospheric Sciences

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request.

Elinor S. Utevsky, Author

ACKNOWLEDGEMENTS

What a whirlwind experience of education and growth. These past two years have been the most enlightening and productive time of my life and I have many people to thank for the experiences and challenges associated with this accomplishment. I have been extremely honored to work with Dr. John Dilles, who is an amazing mentor and a superb scholar. My gratitude for the time, energy, and knowledge that John has shared with me is unsurpassed and I am confident that I am a much better geologist and person after having studied with him.

I would like to thank my committee members, Anita Grunder and Adam Kent, for their contributions to this thesis; their unique outlook was critical to the production of the ideas that are described in these pages. A special thank you to the Sons of Dilles: Federico Cernuschi, Nansen Olson III, Curtis Johnson, Mike Sepp, Mike Hutchinson, Rocky Barker, and Chris Gibson – I can't believe I was so lucky to get to learn with you and I will treasure your friendship and support for the rest of my life. To Nansen and Fede especially – your knowledge and ideas are as much in here as my own and I don't think this thesis would have been possible without your guidance. Additional VIPER shout-outs to Jenny DiGiulio, Nikki Moore, Allan Lerner and Henri Sanville - thank you for the conversations, help, and serious contributions to the map, geochemistry, and broader impact of this work. Thank you to Gaylen Sinclair for assistance with figures and computer software. To Shiloh Sundstrom and Joseph Kemper of Wilk 217: I will miss our camaraderie and feel blessed to know you. Many thanks and love to my friends and family in Corvallis, the \$2 pint-night at Bombs, and the delicious noodle shop on 14th street.

This thesis would not be possible without financial support form NSF grant 61415 and GSA Graduate Research Grant. Thank you to Ed du Bray, Dave John and Rob Fleck with USGS for sharing data with me. Thank you to Weyerhaueser Inc., Alexander Iveson at WSU, and Jim Mattinson at UBC for providing samples.

I would like to express deep appreciation to my parents, sisters, and extended family for their everlasting support and pride. Thank you for the enthusiasm you have for my research and for geology in general. Aunt Ann, thank you for hosting me in Corvallis and for keeping my spirits bright. Finally, to my love and my rock, Samuel Schnake, I can't express how grateful I am to know you, to love you, to be supported by you every day. CHEERS.

-Nora Utevsky

Section	Page
Introduction	1
The Western Cascade Arc	2
Temporal-Spatial Setting of the Western Cascade Arc	5
Methods	9
Results	11
Zircon U-Pb Geochronology	11
Inherited Zircons	14
Lithology Description & Petrography	17
Whole Rock Geochemistry	20
Trace Elements in Zircon	27
Ti-in-zircon Thermometry	32
Discussion	33
U-Pb Ages & Along-Arc Magmatic History	33
Inherited Zircons & Evidence for Age of Underlying Crust	36
Petrogenesis of Western Cascade Magmas	38
Evidence for Magma Mixing	38
Assessment of Crustal Assimilation and Thickness	39
Estimation of Ore Fertility	41
Conclusion	45
References	47
Appendices	58

TABLE OF CONTENTS

LIST OF FIGURES

Figure	<u>Page</u>
Figure 1: Simplified Map of Western Cascades Region	3
Figure 2: Cathodoluminescence Image of Zircon	12
Figure 3: Age of Plutons and Ores of the Western Cascades by Latitude	13
Figure 4: Single-grain Histograms of Zircon U-Pb ages by Latitude	16
Figure 5: Petrographic Photomicrographs	19
Figure 6: AFM Diagram	22
Figure 7: Trace Element Diagrams	24
Figure 8: Ba/Nb Boxplots by Latitude	26
Figure 9: Sc, V, Sr, and Y Diagrams	
Figure 10: Rare Earth Element Diagram	29
Figure 11: Zircon Trace Element & Ti-in-Zircon Temperatures Diagrams	31

LIST OF TABLES

Table	<u>Page</u>
Table 1: Porphyry-Epithermal Mineral Districts of the Western Cascades	6
Table 2: Zircon U-Pb Ages	

LIST OF APPENDICES

<u>Appendix</u> Page
Appendix 1: Geologic Mapping in North Santiam District, Marion County, OR 59
Appendix 2: Methods
2.1: Additional Sampling Methods Information
2.2: Sample Preparation Methods62
Appendix 3: Previously Reported Ages of Plutonism & Hydrothermal Mineralization
in the Western Cascades64
Appendix 4: Petrography
Appendix 5: Zircon U-Pb Geochronology
Appendix 6: Whole Rock Geochemistry100
Appendix 7: Zircon Geochemistry110
7.1: Ti-in-zircon Thermometry (including LA-ICP-MS analyses)110

LIST OF APPENDIX FIGURES

Figure	<u>Page</u>
Appendix Figure 1: Geologic Map of North Santiam District, OR	61
Appendix Figure 2: Sample Location Map	63
Appendix Figure 3: Additional Petrographic Photomicrographs	65
Appendix Figure 4: U-Pb Ages by LA-ICP-MS Inverse Concordia Plots	86
Appendix Figure 5: Additional Whole Rock Geochemical Data	100
Appendix Figure 6: Ti-in-zircon Thermometry (all analyses)	111

LIST OF APPENDIX TABLES

Table	<u>Page</u>
Appendix Table 1: Previously Reported Ages of Plutonism & Hydrothermal	
Mineralization in the Western Cascades	64
Appendix Table 2: Western Cascades Petrography & Mineralogy Summary	66
Appendix Table 3: Zircon U-Pb Spot Analyses by LA-ICP-MS	87
Appendix Table 4: Zircon U-Pb Spot Analyses by SHRIMP-RG	
Appendix Table 5: Whole Rock XRF and ICP-MS Results from WSU	101
Appendix Table 6: Whole Rock Four-Acid ICP-MS Results from ALS	104
Appendix Table 7: Zircon Trace Elements Determined by SHRIMP-RG	112
Appendix Table 8: Zircon Trace Elements Determined by LA-ICP-MS	113

LIST OF DIGITAL APPENDICES

Digital Appendix 1: Western Cascades Petrography & Mineralogy Summary

Digital Appendix 2: U-Pb Spot Analyses by LA-ICP-MS

Digital Appendix 3: U-Pb Spot Analyses by SHRIMP-RG

Digital Appendix 4: Whole Rock XRF & ICP-MS Results from WS

Digital Appendix 5: Whole Rock Four-Acid ICP-MS from ALS

Digital Appendix 6: Zircon Trace Element Spot Analyses from SUMAC SHRIMP-RG

Digital Appendix 7: Zircon Trace Element Spot Analyses from OSU - LA-ICP-MS

INTRODUCTION

Compositional variation within subduction-related arc magmas can be attributed to distinct mantle and crustal regimes. Hildreth and Moorbath (1988) demonstrated that trace elements, alkali, and isotopic compositions in the Andes vary along arc as crustal thickness and composition changes. They proposed a relationship between the distribution of these compositions and the underlying crustal composition and thickness. Porphyry ore deposits are the most significant source of copper, gold, silver, and molybdenum, which are important resources to human civilization. The Andes arc overlies relatively thin to very thick crust (Beck et al., 1996) and hosts some of the world's largest porphyry Cu-(Mo-Au) ores.

In general, porphyry Cu-(Mo-Au) deposits form in oceanic or continental arcs above subduction zone settings. Large porphyry and epithermal deposits may require a thick, evolved crust (Kay & Mzopodis, 2001) that hosts a magma chamber with high amounts of water, oxidized conditions and potentially anomalous concentrations of metals and sulfur (Richards 2003; Wilkinson 2013; Richards in press). Porphyry Cu-Au-Mo deposits are associated with small intrusions that are emplaced several kilometers beneath the surface and carry ore-forming hydrothermal fluids. There is a consensus in economic geology (Gustafson 1979; Chambefort et al., 2008; Wilkinson 2013; Dilles et al., 2015) that sulfur-rich magmas are essential for the generation of large magmatic-hydrothermal mineral deposits. Trace element concentrations in zircons can be used to discern the oxidation state of the melt (Ballard et al., 2001; Farmer 2012), which is potentially caused by sulfur degassing (Dilles et al., 2015). Oxidized, sulfur-rich magmas may saturate in anhydrite, which breaks down during cooling once a water-rich fluid phase forms, and the sulfur is reduced from sulfate $(S^{6+}O_4)$ to sulfur dioxide $(S^{4+}O_2)$. This reduction requires the complementary oxidation of iron in an amount inversely proportional to the ratio of Fe to S.

Loucks (2014) proposed that whole rock trace element ratios are sensitive to water contents and oxidation states and can also be used to determine the potential ore fertility of a magma. High Sr/Y (> 35 at SiO₂ > 57 wt. %) is likely a product of

elevated water content at low crustal pressure (0.6-1.2 GPa) of magmas and results from partitioning and removal of early and prolific crystallization of Y-rich hornblende and delayed, minimal crystallization of Sr-rich plagioclase. High V/Sc (> 10) is potentially due to high oxidation of magmas of V from 3+ to 4+ and 5+ valence. V³⁺ is compatible in magnetite, but V⁴⁺ and V⁵⁺ are not. As the oxidation state of magma increases from Δ NNO = 0 to Δ NNO = +3, the magnetite/melt partition coefficient for vanadium drops from ~20 to ~1 (Toplis and Corgne, 2002). Therefore vanadium acts incompatibly in strongly oxidized magmas (Δ NNO> +1; Loucks, 2014). Elevated Sr/Y and V/Sc trace element ratios are typical of arc magmas parental to magmatic-hydrothermal ore deposits (Loucks 2014).

The Western Cascade Arc

The Western Cascades of Washington and Oregon (Figure 1) provide a field laboratory to examine the chemical compositions and ages of granitoid intrusions associated with a variety of magmatic-hydrothermal ore deposits, and to compare the compositions with the along-arc variation of the age, composition and thickness of the underlying crust. The volcanic (~42-10 Ma) and plutonic rocks (~37-12 Ma) comprising the Western Cascades extend from northernmost California to southern British Columbia and are ancestral to modern arc magmatism (<10 Ma).

Du Bray and John (2011) documented the temporal tectonic and geochemical evolution of the Western Cascades using major oxide, trace element, and rare earth elements (REE) geochemical data, illustrating variations in magma geochemistry that likely correspond to variations of contributions from the underlying crust as well as the subducting slab. They concluded that early (pre-40 Ma to 35 Ma), tholeiitic basaltic and basaltic andesitic volcanism was largely restricted to southern Washington corresponds to subduction of the Kula-Farallon spreading ridge and the associated slab window magmatism. Crustal thicknesses are inferred to be thin(<10 km). The next phase of magmatism was dominated by calc-alkaline compositions and began circa35 Ma after the crust evolved and thickened to~10-20 km. du Bray &

Figure 1 (Above): Map of Western Cascades region adapted from du Bray & John (2011) showing sample locations as white circles. Active Cascade Arc denoted by black triangles.

John (2011) argue these partial melts were likely generated at higher pressures beneath thicker crust in which plagioclase was unstable and garnet was stable. The last stage of Western Cascade magmatism prior to the onset of modern Cascade magmatism at ~10 Ma is characterized by more iron-rich compositions related to a decreased dip of the subducted slab (du Bray & John 2011). The concentrations of K, Rb, and Sr in Western Cascade samples suggest limited magmatic evolution. Elevated TiO₂ as well as Nb/Ta and Ba/Ta data for early volcanics (45-36 Ma) could support a slab window association (Cole & Stewart, 2009). Futhermore, Ba/Nb increase from <15 in early volcanics (45-36 Ma) to 15-140 in younger samples (25-4 Ma), and plutonic samples have significantly elevated Ba/Nb ratios compared to their 25-18 Ma extrusive equivalents. REE patterns are sub-parallel and gently negatively sloping. Higher overall REE concentrations in older Western Cascade volcanics are likely related to REE incompatibility and successive partial melting sources (du Bray & John, 2011).

Schmidt et al. (2008, 2013) noted that the modern Cascade arc volcanoes vary in chemical and isotopic composition along strike, and proposed four crustal segments (Figure 1) interpreted as the result of variations in mantle domains and melting regimes at depth along the length of the arc. The north segment, the portion of the arc north of Mount St. Helens, overlies old continental crust composed of Paleozoic-Mesozoic accreted terranes, metamorphic rocks, and granites. The Columbia segment, from southernmost Washington to central Oregon, is inferred to be built on young and thin Paleocene (<54 Ma) Siletzia oceanic crust of the Columbia Embayment (Fig. 1) possibly overlain by turbidites of the Tyee Formation (Wells et al., 2000). In this sector, the Siletzia Terrane is estimated to range in thickness from 10 to 15 km thick in southern Washington to 30 km thick in Oregon on the basis of seismic data (Stanley et al., 1990; Trehu et al., 1994; Parsons et al., 1999). In central Oregon, there is a distinct shift in ⁸⁷Sr/⁸⁶Sr ratios of basalts in the modern Cascade Arc, from 0.7028 in the segment underlain by the Columbia Embayment to 0.7034 in the segment to the south underlain by Klamath Terrane. This shift is interpreted as due to magma interactions with two crustal blocks produced by juxtaposition of two accreted terranes - Siletzia oceanic crust to the north and Klamath Mountain Terrane to the south (Schmidt et al., 2008). The south segment of the arc overlies the Klamath Terrane, which was accreted over several periods in the Jurassic and forms a thicker more complex crust containing ultramafic sheets and marine arcrelated volcanic and sedimentary rocks (Irwin 1981; Snoke and Barnes 2006). These distinct basement rocks may be reflected in the geochemistry of the Mioceneage magmatism of the ancestral Cascades as well.

The ancestral arc hosts a series of small plutons that are locally associated with porphyry (Cu-Mo) and epithermal (Au) ore deposits (du Bray & John 2011). Although the metal production is modest, moderate-sized porphyry Cu-Mo-Au ores are present at Mount Margaret (523 MT at 0.36 % Cu and 0.25 g/t Au, Lasmanis 1995) and North Fork (80.5 MT of 0.44 % Cu and 0.102 g/t Au reserve, Smithson 2004) in Washington State. In Oregon, modest-sized epithermal gold deposits are widely distributed, and the largest production is from the Bohemia district (28,285 oz. Au produced, Power 1984). The characteristics of all ten districts included in this study are summarized in Table 1.

Temporal-Spatial Setting of The Western Cascade Arc

In the late Cretaceous-Eocene prior to the onset of Western Cascade magmatism, arc magmatism in the Idaho and Colorado Batholiths and related volcanics was far to the east as a result of flat-slab subduction (Schmandt & Humphreys 2011). This subduction zone had a large embayment along the current Washington-Oregon border known as the Columbia Embayment, partially defined by the boundaries of the older Cascade Crystalline Core to the north, the Blue Mountains accreted terranes to the east, and the Klamath Terrane to the south (Christiansen & Yeats 1992; Brown & Gehrels 2007; LaMaskin et al., 2011; Schmandt & Humphreys 2011). When flat-slab subduction terminated at about 60 Ma and slab roll-back initiated north to south, magmatism migrated southwestward,

NameLocatNorth Fork47.69, 1White River47.15, 1White River47.15, 1Mount Margaret46.35, 1Mount Margaret46.35, 1Mount Margaret46.35, 1Washougal45.77, 1Washougal45.77, 1North Santiam44.85, 1Detroit Dam44.70, 1Blue River & Nimrod44.11, 1Blue River & Nimrod43.58, 1South Umboua42.75, 1	Resources and/or	ion Deposit Type Production References	21.65 Porphyry Cu-Mo 80.5 MT of 0.44 wt.% Cu, Smithson 2004 0.102 g/t Au	21.83 High-sulfidation epithermal Au-Ag with Silica production Thompson 1983; Blakely et 21.83 underlying porphyry Cu-Mo deposit al., 2007	22.11 Porphyry Cu-Au & surrounding Cu- 523 MT at 0.36 wt.% Cu, Evarts et al., 1987; Evarts & 22.11 breccia pipes & polymetallic veins 0.25 g/t Au Ashley 1993; Lasmanis 1995	22.20 Porphyry Cu-Au with tourmaline-bearing 0.058 wt.% MoS₂, 0.2 g/t Au, 1979; Power 1984; breccia pipes 8.6 g/t Ag John 2011 John 2011	Small historical Cu-(Pb-Zn) production; Bornite breccia Winters 1985; Stone et al., 22.23 Porphyry Cu & breccia pipe pipe: 2.2 MT at 2.53 wt.% Cu, 0.57 opt Ag, 0.021 opt 1994 Au Au	22.25 Not well constrained, small epithermal- No record of production Power 1984 poylmetallic veins	Small epithermal-poylmetallic veins; Produced 8557 oz. Au and Munts 1978; Nicholson 22.37 suspected hydrothermal porphyry-type 2920 oz. Ag 1988; Oregon DOGAMI system at depth in Boulder Ck area 2920 oz. Ag 1951	Small epithermal-polymetallic veins; Produced 257 lbs. Cu and Callahan & Buddington 22.63 suspected underlying porphyry Cu 17,162 oz. Ag 1928; Storch 1978; Power system 17,162 oz. Ag 1984	Intermediate-sulfidation epithermal- 22.65 polymetallic vein, possibly porphyry- 28,285 oz Au produced Schaubs 1978; Power 1984 style mineralization at depth	22.78 Not constrained, possibly porphyry-style Small silica production at Oregon DOGAMI 1951; du
North Fork North Fork White River Mount Margaret Washougal Washougal North Santiam Detroit Dam Quartzville Blue River & Nimrod Blue River & Nimrod		Location	47.69, 121.65 Porp	47.15, 121.83 High und	46.35, 122.11 Porp	45.77, 122.20 Porp	44.85, 122.23 Porp	44.70, 122.25 Not poyl	Sma 44.58, 122.37 susp syste	Sma 44.11, 122.63 susp syst	Inte 43.58, 122.65 poly style	42.75, 122.78 Not
		Name	North Fork	White River	Mount Margaret	Washougal	North Santiam	Detroit Dam	Quartzville	Blue River & Nimrod	Bohemia	South Umpaua

Table 1. Name, location, and description of porphyry-epithermal mineral districts of the Western Cascades

initiating the Lowland Creek Volcanics in the Butte-Anaconda area of Montana (52.9-48.6 Ma, Dudás et al., 2010) and Absaroka Volcanics near Yellowstone (53-43.5 Ma, Hiza 1999), the Challis Volcanics of central Idaho (51-40 Ma, Norman & Mertzman 1991) and the Clarno Volcanics of central Oregon (53-43 Ma, Robinson et al., 1990), and continued volcanics to the southwest into northeastern Nevada and Utah (Castor et al., 2003). These Eocene volcanic units form an east-west belt of magmatism and initiate approximately concurrently with the accretion of Siletzia at about 51 Ma (Christiansen & Yeats 1992; Wells et al., 2000). The docking of Siletzia caused the subduction zone to step to the west outboard of the accreted terrane, and was followed by significant and rapid deposition of Tyee Formation turbidite strata within a new forearc basin system between 49.4 and 46.5 Ma in Western Oregon (Dumitru et al., 2013). Turbidite sequences deposited concurrently to the north in Western Washington. Western Cascade magmatism initiated at approximately 42 Ma (du Bray & John, 2011), and temporally overlaps with other magmatic events in the Pacific Northwest, most notably silicic volcanism forming John Day Formation of eastern Oregon which is possibly a result of early Cascade volcanism (37-19 Ma, Robinson et al., 1984) and the initial eruption of the Columbia River Basalts (CRB) ca. 16.9 Ma and following main phase of CRB volcanism between 16 and 15.5 Ma (Barry et al., 2013). The exact age of transition from western to modern Cascade magmatism is debated and ranges from 10 to 2 Ma but is likely ca. 8-7 Ma (Priest 1990, du Bray & John 2011).

This study was designed to investigate the relationship of magma compositions and processes with mineral deposit formation by examining the along-arc variation in Western Cascade plutons. The U-Pb zircon method was used to obtain the age of plutons as well as the age of crustal contaminants via inherited grains. Zircon trace element geochemistry was used to assess temperature, oxidation state, and magmatic mineral fractionation processes (Dilles et al., 2015). These data are integrated with the whole rock major element geochemical data of Western Cascades igneous rocks compiled and discussed by du Bray and John (2011) as well as new trace element data on Western Cascade plutons to assess the relationships of underlying crustal composition and generation of hydrothermal mineral deposits.

METHODS

We collected 35 samples of plutonic rocks locally associated with porphyry (Cu-Mo) and epithermal (Au) in five districts: North Santiam, Quartzville, Blue River, and South Umpqua in the summers of 2013 and 2014 (Figure 1). Additional sampling is summarized in Appendix 2.1. Weathered or hydrothermally altered samples were systematically avoided wherever possible, but in many cases background propylitic alteration was ubiquitous and unavoidable. The 35 samples were analyzed for whole rock major and trace element compositions by X-ray Fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) at Washington State University's (WSU) Peter Hooper GeoAnalytical Lab via techniques described by Jenner et al. (1990) and Johnson et al. (1999). Sample preparation for zircon analyses is summarized in Appendix 2.2.

Thirteen U-Pb zircon ages were determined by laser ablation ICP-MS (LA-ICP-MS) at the W.M. Keck Collaboratory for Plasma Spectrometry at Oregon State University. Between 20 and 100 zircons were analyzed per sample using a DUV Excimer laser (192 nm), a spot diameter of 30-40 µm , and an ablation interval of 30 seconds. Temora-1 (Black et al., 2003) and Plešovice PL-1 (Slama et al., 2008) were analyzed approximately one standard per three unknowns during each analytical session and used for internal age standardization. Raw data from LA-ICP-MS analyses were processed at Oregon State University using LaserTRAM software as summarized by Kent et al. (2004) and Loewen (2013), and external standardization and common lead corrections were manually calculated via methods described in Olson (2015). Terra-Wasserburg Concordia diagrams and age probability plots were used to identify potentially inherited xenocrystic zircons (with ages older than main population) as well as zircons that have experienced post-crystallization Pb-loss (with ages younger than main population).

Three U-Pb zircon ages were determined by sensitive high-resolution ionmicroprobe in reverse geometry (SHRIMP-RG) at the Stanford USGS Micro Analysis Center (SUMAC) at Stanford University in February 2014. Reduction and age standardization (to Temora-1) was performed using SQUID version 2.51 (Ludwig, 2009). All zircons analyzed by LA-ICP-MS and SHRIMP-RG were also concurrently analyzed from Hf, Rare Earth Elements (REE), and Y trace element abundance. Trace element data were reduced manually. SHRIMP-RG-analyzed samples were standardized to MADDER at Stanford University; LA-ICP-MS-analyzed samples were standardized to MADDER with NIST-612 glass used as a secondary standard. NIST-612 was used as a primary standard for trace elements at or below detection limits in the MADDER trace element standard on the OSU LA-ICP-MS (e.g., La, Ce, Pr). The concentrations obtained via LA-ICP-MS were screened for anomalously high concentrations of P, La, Pr, and Nd to eliminate analyses that were potentially contaminated by fluid, melt, apatite, or other phase inclusions.

Potential crystallization temperatures of zircon were estimated using Ti-inzircon concentrations as described by Ferry & Watson (2007). Ti content of zircon was measured via SHRIMP-RG using the ⁴⁸Ti isotope (M/ Δ M = 7760; Mazdab & Wooden, 2006) and measured via LA-ICP-MS using the ⁴⁹Ti isotope. For the Ti-inzircon geothermometry we estimated a TiO₂ activity of 0.7 following previous work on arc andesite compositions (see Walker et al., 2013). If the Ti activity is estimated incorrectly the relative temperatures between zircons from the same sample should not be affected generally (Olson 2015). Additionally, underestimating the Ti activity should lead to an overestimation of the absolute temperature of no more than 50° C (Hayden and Watson, 2007).

We calculated a lower detection limit (3 σ above background) of ⁴⁹Ti via LA-ICP-MS on the standard NIST-612 glass to be approximately 9 ppm. This detection limit does not permit us to distinguish Ti-in-zircon temperatures from background at or below approximately 770° C using the Ferry & Watson (2007) method. Furthermore, the uncertainty in ⁴⁹Ti via LA-ICP-MS is ~10%. Many of the zircons analyzed via LA-ICP-MS were below the detection limit of 9 ppm. Therefore, due to the high detection limit and poor reproducibility of the standard via LA-ICP-MS these calculations are not included in our interpretation of zircon crystallization temperatures (see Appendix 7.1 for results).

RESULTS

Zircon U-Pb Geochronology

Zircons dated by LA-ICP-MS and SHRIMP-RG from Western Cascade plutons are characteristically colorless to light pink and small (30-50 by $50-150 \,\mu m$ typically). Zircons are euhedral acicular to equant in shape, commonly have irregular, potentially inherited cores and often contain small inclusions of apatite and glass (melt inclusions, Figure 2). Fractures are common in most zircons. Standard-corrected isotopic data were plotted on Terra-Wasserburg diagrams ²⁰⁷Pb/²⁰⁶Pb versus ²³⁸U/²⁰⁶Pb (Appendix Figure 4) with two standard deviations (95% confidence) percent error ellipses to identify discordant analyses (²⁰⁷Pb/²⁰⁶Pb above concordia). Ages older than the main population, which are potentially inherited xenocrystic zircons, and ages younger than the main population, a result of post-crystallization Pb-loss, were omitted. From the remaining data I calculated a weighted mean age, standard error of the mean (reported at 2σ or 95% confidence interval), and mean square weighted deviation (MSWD). This technique yielded ages that overlap in error with the majority of previous available U-Pb zircon analyses (Bohemia dike and stock, Nimrod Stock, Yellowbottom Stock, and Detroit Dam Stock; John and Fleck, pers. comm. 2013, Figure 3). Nonetheless, I obtained a mean age for the mafic latite porphyry of the North Fork that is younger than and not in agreement with the 37.1 ± 0.2 Ma U-Pb zircon TIMS age reported by Smithson (2004) from the same zircon separate of sample SMR-113. Our 33.79 ± 0.46 Ma is based on the 26 (of 45 total) youngest grains analyzed which have overlapping error ellipses on the Terra-Wasserburg Concordia, but this sample contains 19 zircons with older ages of 36 to 41 Ma. The Smithson SMR-113 data includes 5 zircon ages ranging from 37.1 ± 0.2 to 35.8 ± 0.1 Ma and these ages remain the best estimate for the emplacement of the mafic latite porphyry in the North Fork district. The majority of zircon U-Pb ages reported in this study are 27 to 12 Ma (Miocene or latest Oligocene age) with the exception of the late Eocene to early Oligocene Snoqualmie North Fork intrusions of central WA. New U-Pb ages from this study are

Figure 2: Cathodoluminescence images of zircons from White River with three LA-ICP-MS ages (1s error) that include one 40 Ma inherited grain as compared to the mean zircon age of 18.03 ± 0.46 (2s).

Figure 3 (Above): North-south variation in age of plutons and ores of the Western Cascades by Latitude including new U-Pb zircon ages (Table 2) and previously reported U-Pb zircon, ⁴⁰Ar/³⁹Ar, and K-Ar ages (Appendix 4.1) for comparison.

summarized in Table 2.

In the north segment of the arc (Figure 1), mineralization at the North Fork deposit is developed in a 37.1-36.7 Ma quartz monzodiorite as well as a 37.1 to 35.8 Ma mafic latite porphyry (Smithson 2004). A new U-Pb age for the quartz monzodiorite (37.4 \pm 1.1 Ma) reported here overlaps in error with these TIMS ages, but the new U-Pb age for the mafic latite porphyry (37.4 \pm 1.1 Ma) is likely inaccurately young. Zircons from the monzodiorite host rock of the White River deposit crystallized 18.03 \pm 0.46 Ma.

Plutonic rocks associated with deposits in the Columbia segment of the arc range from 26.49 to 12.7 Ma (Figure 2) from North to South. Three samples of the Spirit Lake Pluton, which hosts the Mt. Margaret deposit, yield ages of 25.62 ± 0.67 Ma, 22.6 ± 0.6 Ma, and 23.0 ± 0.2 Ma. Two samples from the Washougal district overlap in error at 19.9 ± 1.6 Ma and 17.9 ± 2 Ma. A porphyritic granodiorite dike from the North Santiam district yields an age of 13.05 ± 0.83 Ma, and the Detroit Dam stock immediately to the south yields 12.7 ± 1.0 Ma – the youngest age reported in this study. The Yellowbottom Granodiorite Stock and Boulder Creek granodiorite porphyry dike from the Quartzville district have ages that overlap in error at 16.3 ± 1.5 Ma and 16.4 ± 0.2 respectively. The Nimrod stock from the Blue River district is 17.36 ± 0.45 Ma.

The Central segment of the arc hosts the Bohemia mining district and South Umpqua area (Figure 1). A porphyritic quartz diorite dike from the Bohemia district has an age of 23.52 ± 0.72 Ma, and a diorite from South Umpqua is 18.2 ± 0.4 Ma.

Inherited Zircons

A total of 610 zircons were analyzed, of which 118 have ages older than the main population and are considered to be antecrystic or inherited (Table 2). Ages of inherited zircons in Western Cascade plutons range from 67.2 to 20 Ma (Figure 4). Inherited zircons are derived from the underlying crust and therefore offer a

Zircon
of
ges
Ă
d-Pb
2.1
le
Tak

Sample	Lithology	Locality	Longitude l	_atitude	Date of Analysis	Method # Gra	of 2(ains	06/238 Age	2σ Error	NSWD In	# herited⁺ I	% Inherited⁺
SRM01-113*	Mafic latite porphyry	Snoqualmie North Fork	-121.641	47.674	3/11/15	LA-ICP-MS 26 c	of 45	33.79	0.46	0.93	13	29
SRM01-108*	Qtz Monzodiorite	Snoqualmie North Fork	-121.648	47.670	3/11/15	LA-ICP-MS 25 c	of 45	37.40	1.1	1.40	17	38
WCOSWR-01	Ppy Monzodiorite	White River	-121.829	47.154	10/7/14	LA-ICP-MS 34 c	of 85	18.03	0.46	1.06	25	29
WCOS-SL-3	Ppy Granodiorite	Spirit Lake Pluton (Mt. Margaret)	-122.106	46.322	2/8/14	SHRIMP-RG 15 c	of 15	22.61	0.6	1.70	0	0
WCOS-SL-11	Ppy Granodiorite	Spirit Lake Pluton (Mt. Margaret)	-122.107	46.314	2/8/14	SHRIMP-RG 14 c	of 15	23.0	0.2	1.53	0	0
WCOS14-03	Porphyritic aplitic dike	Spirit Lake Pluton (Mt Margaret)	-122.107	46.352	3/11/15	LA-ICP-MS 26 c	of 45	25.69	0.69	1.30	11	24
WA-6	Granodiorite	Washougal (Silver Star)	-122.205	45.788	7/30/13	LA-ICP-MS 14 c	of 20	17.90	2.0	2.30	2	10
WA-11	Granodiorite	Washougal (Silver Star)	-122.040	45.779	7/30/13	LA-ICP-MS 16 c	of 20	19.90	1.6	0.85	-	ß
WCOSJD-152	Granodiorite	North Santiam	-122.245	44.840	3/11/15	LA-ICP-MS 38 c	of 45	13.05	0.83	1.90	Ŋ	11
WCOS-12	Qtz diorite	Detroit Dam	-122.250	44.701	7/30/13	LA-ICP-MS 35 c	of 40	12.70	1.0	1.30	4	10
WCOS-2	Granodiorite porphyry	Boulder Creek (Proximal to Quartzville)	-122.383	44.570	2/8/14	SHRIMP-RG 10 c	of 15	16.4	0.2	1.78	4	27
WCOS-2	Granodiorite porphyry	Boulder Creek (Proximal to Quartzville)	-122.383	44.570	7/30/13	LA-ICP-MS 13 c	of 40	18.60	0.75	0.78	7	Ŋ
WCOS-7	Qtz diorite	Yellowbottom Stock (Proximal to Quartzville)	-122.369	44.587	7/30/13	LA-ICP-MS 18 c	of 38	16.30	1.5	0.39	2	18
WCOSNU-33	Granodiorite	Nimrod Stock (Blue River)	-122.439	44.116	10/7/14	LA-ICP-MS 57 c	of 97	17.36	0.45	2.00	4	4
WCOSNU-25	Porphyry Qz Diorite	e Bohemia	-122.631	43.579	3/11/15	LA-ICP-MS 30 c	of 45	23.52	0.72	1.40	7	16
WCOSNU-11	Diorite	South Umpqua	-122.783	42.753	10/7/14	LA-ICP-MS 15 c	of 40	18.15	0.43	0.99	18	40
. *	 terror ellipse at 95% and distinct geoch Location Approxim 	o confidence of weighted m emistry. late	iean age. Adı	ditional g	Jrains were	e screened as inh	herited (on the ba	isis of po	opulation	ı probabilit	y plots

Figure 4 (Above): Single-grain Histograms and age probability plots of Zircon U-Pb ages by Latitude, compared to <100 Ma detrital zircon ages from the Tyee Formation (Dumitru et al., 2013). Inherited ages are shown in red, defined as any grain with a calculated age including error at 95% confidence that does not overlap with the 2 standard error ellipse at 95% confidence of weighted mean age. N is the total number of grains included in each plot. N₁ is the total number of grains with ages > 45 Ma.

potential opportunity to assess the age and composition of the crust beneath the Cascades. In Western Cascade plutons, inherited zircons in most cases cannot be distinguished from the main populations via distinct textures or cores observed by cathodoluminescence imaging (Figure 2).

The north segment contains the oldest inherited zircons (up to 67 Ma). Samples from White River and North Fork districts in the north segment of the arc contain the most substantial, continuous inherited grain populations and are as young as 20.3 Ma at White River and 36.0 Ma at North Fork (Mafic Latite Porphyry) up to 67.2 Ma (n=55 of 175 grains analyzed).

In districts overlying Siletzia (the Columbia Segment), a total of 38 of the 350 grains analyzed have ages older than the main population and are considered inherited. The majority of districts within the Columbia segment (Siletzia) have no inherited grains >35 Ma with the exception of samples from Washougal, North Santiam and Detroit Dam districts, which have inherited populations between 22.0 and 53.9 Ma. These districts have sparse discontinuous inherited populations (1-2 grains) up to 54 Ma.

Districts overlying the Klamath terrane have slightly more substantial inherited zircon populations than districts overlying Siletzia but still decidedly few inherited grains (a total of 25 out of 85 grains analyzed). Samples from Bohemia and South Umpqua districts have inherited zircon populations spanning from 20.8 to 55.7 Ma with the majority of inherited ages clustered and continuous between 21 and 36 Ma.

Lithology Description & Petrography

The hypabyssal plutonic rocks represent a small area ($\sim 1\%$) of exposures in the Western Cascades and range in composition from diorites to granodiorites and

lesser granite. In general, petrographic features include a hypidiomorphic-granular texture that ranges from equigranular to weakly or distinctly porphyritic and are consistent with shallow levels of emplacement (<5 km depth, e.g. Dilles 1987). True porphyries, characteristic of porphyry Cu-Mo-Au deposits, were sampled at North Fork, North Santiam, White River (Figure 5c) and Boulder Creek (Figure 5a), and are characterized by 50-70 vol% groundmass that ranges from aplitic to graphic texture and includes plagioclase, quartz, and alkali feldspar. The mineralogy of all granitoids includes plagioclase, alkali feldspar, quartz with accessory opaques, apatite, and trace amounts of zircon. Plagioclase is typically strongly zoned and intermediate in composition. It commonly displays sieved textures, melt inclusions zones, and overgrowths (Figure 5e) indicative of magma recharge and mixing, as is typical of intermediate composition arc magmas. In many intrusions, weak hydrothermal alteration has affected plagioclase by alteration to epidote, albite and local calcite (propylitic, Figure 5f) or alkali feldspar along fractures (potassic, Appendix Figure 3d), and in a few cases (Boulder Creek and Blue River) by sericite and pyrite (Figure 5a). Mafic silicates are also extensively replaced (Appendix Figure 3c) by actinolite, chlorite, and minor amounts of rutile or other TiO₂ polymorphs. Pseudomorphs of hornblende crystals are mainly actinolite (Appendix Figure 3b) with lesser magnetite and rutile, but hornblende is observed intact in rare instances (Figure 5d). Nonetheless, pyroxene and biotite are partially preserved. On the basis of replacement textures, the common primary mafic silicate assemblage was hornblende with local augite cores with minor biotite, which attests to relatively high water contents (>3 wt.%) of the magmas. Fe-Ti oxides, where preserved, include magnetite and ilmenite in proportion of approximately 2:1 (Figure 5b), and together with the presence of hornblende and biotite are suggestive of modest oxidation states of ~ Δ NNO of 0 to 1 (Carmichael & Nicholls, 1967).

Despite weak alteration that has certainly modified igneous alkali and alkali earth element contents, the more immobile elements (Si, Al, Ti, REE, Nb, Y, P, and transition metals) are likely modified little. Petrography from all samples is summarized in Appendix Table 2.

Figure 5: Photomicrographs of representative textures and mineralogy of Western Cascade plutons. Mineral phases are labeled: Actinolite - Act, Chlorite - Chl, Epidote - Ep, Feldspar - Felds, Hornblende - Hbl, Ilmenite - Ilm, Magnetite - Mag, Plagioclase - Plag, Quartz - Qtz, Sericite - Ser. Individual photomicrographs show: A) Resorbed quartz phenocrysts in porphyry dike in Boulder Creek; B) Preserved Fe-Ti-oxide pairs in Detroit Dam Stock with observed approximate magnetite: ilmenite ratio of 2:1; C) Aplitic groundmass in White River monzodiorite and a plagioclase phenocryst with small hornblende inclusion and secondary alkali-feldspar/albite veining; D) Large embayed hornblende phenocryst with magnetite inclusion in Blue River diorite porphyry; E) Heavily sieved plagioclase phenocryst in North Santiam monzodiorite porphyry; F) Representative of propylitic alteration in Western Cascades: Pervasive alteration of mafics and feldspars to actinolite + chlorite +

epidote assemblage with intact quartz. All photomicrographs are in cross-polarized light with the exception of B) which is in reflected light.

The Boulder Creek dike near Quartzville is a true granite porphyry; the texture is dominated by ~65% aplitic fine-grained groundmass that is comprised of 45% alkali feldspar, 30% quartz, 15% plagiolcase and 5% biotite. The phenocryst assemblage includes 30% plagioclase replaced by sericite (0.2-0.5 mm), 25% untwinned alkali feldspar ~75% replaced by sericite (0.1-0.5 mm), 30% anhedral biotite (0.2 mm) replaced by chlorite (80%) and sericite (20%), and 15% fresh rounded quartz with thin reaction rims (0.3-0.75 mm).

North Santiam dikes are porphyritic with 30-55% phenocrysts and range in composition from diorite to granodiorite and rare tonalite. The groundmass (45-70%) in these dikes is typically graphic and plagioclase dominated (30-65%) with alkali feldspar, quartz, mafics (typically hornblende with uncommon biotite and pyroxene) and minor opaques. The mineralogy of all granitoids in North Santiam includes plagioclase, hornblende, and alkali feldspar, and typically pyroxene and quartz with rare biotite although these phases are not ubiquitous. Mafic silicate minerals are often partially to completely replaced by actinolite + chlorite + epidote assemblages with minor local Fe-Ti oxide replacement. Plagioclase are typically intact with localized secondary epidote, albite, and alkali feldspar replacement with rare calcite – although, sieved textures, melt inclusion zones and growth rims are observed in all samples. Secondary replacement of the groundmass is typically less pervasive than that of the phenocrysts and is limited to the mafic phases.

Whole Rock Geochemistry

As noted by du Bray & John (2011), plutonic samples from the Western Cascades have a more limited geochemical compositional range and lack mafic compositions compared to the associated volcanic rocks. They are generally calcalkaline in nature (Figure 6). Most Western Cascade volcanics are calc-alkaline but tholeiitic rocks are well represented, particularly in southwestern Washington (45-36 Ma) and the southern Cascades (7-4 Ma, du Bray & John 2011). Essentially all
Western Cascade volcanic rocks and plutons are subalkaline (Irvine & Baragar 1971; du Bray & John 2011, Figure 4). With the exception of the North Fork district, all the plutons in this study are Miocene, whereas Western Cascade volcanics range from Eocene to Miocene. SiO₂ concentrations in volcanic rocks range from 47-77 wt. %, whereas most plutonic rocks have elevated SiO₂ contents (>~60 wt. %).

There is a temporal trend in Western Cascade volcanics, from mafic to diverse to mafic. Late Eocene and early Miocene volcanics (45-25 Ma) range from basalts to and esites $(47-60 \text{ wt. } \% \text{ SiO}_2)$. The earliest magmatism in the arc (45-36)Ma) is dominantly focused in southwestern Washington; the subsequent phase of magmatism, from 35 to 26 Ma, covered nearly the length of the arc, but remained primarily basaltic and andesitic with some dacitic and rhyolitic compositions in southern Oregon. Volcanics between 25-18 Ma range from 50-77 wt. % SiO₂ and cover the largest area of the arc. This phase of magmatism is considered the most compositionally diverse and spans the full length of the arc. 17-8 Ma volcanics are dominantly basaltic andesite and andesite. Finally, the youngest age group (7-4 Ma) is dominantly basalt or basaltic andesite and is mostly found in the southern Oregon and northern California portion of the arc. The majority of older samples (45-26 Ma) included in du Bray & John (2011) are relatively primitive, iron-enriched, and tholeiitic. In contrast, with the exception of the youngest age group (7-4 Ma), which is mafic, tholeiitic, the majority of younger samples (25-8 Ma) are more evolved, magnesium enriched, and calc-alkaline in nature.

Although hydrothermal alteration is widespread in all districts there is little geochemical evidence that alkali earth element concentrations were modified substantially by weathering and alteration processes. In Western Cascade magmas Ba generally acts very incompatibly and increases steadily with increasing SiO₂ content (Figure 7a). Similarly, Sr acts compatibly by decreasing with increasing SiO₂ content and is likely incorporated into plagioclase (Figure 9e). There are no apparent extreme additions or removals of Ba or Sr geochemically by hydrothermal alteration in samples from any district. Despite the presence of substantial hydrothermal alteration (Figure 5f) and weathering within the Western Cascades, these data are likely robust enough to include in geochemical interpretations. I focus

Figure 6: AFM Diagram. Samples collected by the author were analyzed via ICP-MS and XRF at WSU (Appendix 6.1), samples collected by S. Powers (1984) were analyzed in 2014 by Four-Acid ICP-MS by ALS (Appendix 6.2). Gray symbols are all volcanic samples from the du Bray & John (2011), whereas black samples are all plutonic samples.

here on relationships of Ba and Nb as mantle and slab fluid tracers, of Th and Ta as crust and mantle tracers, of Sc and V as fractionation of mafic silicates and relative oxidation states tracers, of Sr and Y as tracers of magmatic water contents, and of REEs as tracers of fractionation of various phases.

Ba and Nb both generally increase with SiO₂ in each suite. Some low values of Ba (< 200 ppm) at elevated SiO₂ are lower than expected of alkali feldspar fractionation and may potentially be affected by alteration. Ba in the south is generally slightly higher, at given SiO₂, than in the north. In contrast, Nb contents are generally lower in the south than in the north, at given SiO₂ and overall (ie., 3.4-7.05 ppm in South Umpqua samples, 8-19.74 ppm in Spirit Lake Pluton samples) (Figure 7b). Ba/Nb values are not obviously influenced by SiO₂ content from any given district (Fig. 7c) and remain stable as magmas evolve, but tend to increase at any given SiO₂ content from north to south (Figure 8).

Both Th and Ta contents increase with SiO₂ content (Figure 7d,e), with the highest Ta (up to 1.2 ppm) found in the northern districts at any given SiO₂ content. Th increases moderately with SiO₂ at more mafic compositions but shifts to a greater rate of increase around SiO₂ contents of 64 wt.%. Th/Ta ratios range from 1 to 24 and are lowest in the mid-latitude districts (North Santiam, Detroit Dam, Quartzville, and Blue River, Figure 7f). Th/Ta ratios notably increase with SiO₂ (Figure 7f). It should be noted that some Spirit Lake Pluton samples (Iveson, *pers. comm.*, 2014-15) have anomalously elevated concentrations of Nb, Th, and Sc and will not be included in petrogenetic interpretations.

Sc contents of Western Cascade plutons decrease with increasing SiO₂ content in any given district (Figure 9a) and tend to increase from north to south along the arc (Figure 9b). V also acts incompatibly and decreases from ~250 ppm to ~20 ppm with increasing SiO₂ content (Figure 9d). However, V is less variable from north to south and only increases slightly and irregularly to the north. V/Sc ratios decrease with increasing SiO₂, from between 7 and 11 at SiO₂ of 52-60 wt. % to

Figure 7 (Above): Trace Element Diagrams. A) SiO₂ vs. Ba; B) SiO₂ vs. Nb; C) SiO₂ vs. Ba/Nb; D) SiO₂ vs. Th; E) SiO₂ vs. Ta; F) SiO₂ vs. Th/Ta; G) SiO₂ vs. Dy/Yb. Data from the du Bray & John database (2011) include: White River samples from Thompson (1983) and du Bray, *unpublished* data, 2005; Spirit Lake Pluton samples from Evarts, *unpublished data*, 2005; Washougal samples from Schriener (1978), Felts (1939), USGS National Geochemical Database, 2005, Shepard (1979), Power (1984), and Evarts, *unpublished data*, 2005; North Santiam samples from Olson (1978); Detroit Dam samples from Power (1984), Curless (1991), du Bray, *unpublished data*, 2005, Lexa, *unpublished data*, 2005, and USGS National Geochemical Database, 2005; Quartzville samples from Munts (1978) and du Bray, *unpublished data*, 2005; Blue River samples from Storch (1978); Bohemia samples from Buddington & Callahan (1936), Schaubs (1978), and du Bray, *unpublished data*, 2005.

Figure 8: Ba/Nb Boxplots by Latitude. 25%, 50%, and 75% values define box units, medians shown as black dots. Whiskers are minimum and maximum with outliers >1.5 of the Quartile value are shown separately. n here is the number of combined analyses incorporated into the boxplot.

between 0 and 6 at SiO₂ of \sim 75 wt. %, with the exception of samples of the Spirit Lake Pluton (Figure 9c). In general, V/Sc values slightly increase from south to north at any given SiO₂ content.

Sr concentrations decrease smoothly with increasing SiO₂ within any given district, suggesting compatible behavior. Despite the fluid-mobile nature of Sr, these data are likely robust enough to be included in this study. We consider that extremely elevated (> ~550 ppm) and reduced (<100 ppm) Sr concentrations can be disregarded as potentially a result of alteration. Western Cascades samples display large ranges in Sr/Y values in more mafic compositions (~15-80). The Sr/Y range decreases and narrows to 1-15 in more evolved compositions (ie. 74 wt. % SiO₂, Figure 9f).

As SiO₂ contents increase in Western Cascade plutons, chondrite-normalized REE patterns steepen and transition from elevated Eu anomalies (chondritenormalized Eu/Eu* values) corresponding to small negative Eu anomalies (between 1 and 1.15 at SiO₂ between 52 and 56 wt. %) and lower light REE (LREE) contents (2.5-20 ppm in the same SiO₂ range) to larger negative Eu anomalies and higher LREE contents, with Eu/Eu* between 0.7 and 1.0 and La contents between 10 and 35 ppm at SiO₂ >73 wt. % (Figure 10, Appendix Figure 5a). Dy contents experience more variability than Yb in Western Cascade plutons and range from 1 to 5.4 ppm. In Western Cascade plutons, Dy/Yb values range from 1.44 to 2.31 and decrease with increasing SiO₂ contents with the exception of the North Fork District (Figure 7g).

<u>Trace Elements in Zircon</u>

Zircons from all 16 samples analyzed for U-Pb ages were also analyzed for Hf, Y, and REE compositions. The Eu_N/Eu_N^* chondrite-normalized ratio is a measure of the magnitude of the negative Eu anomaly in zircon REE trends calculated by the ratio of the measured Eu content to the predicted Eu content based on the adjacent REE, e.g. $Eu_N^* = (Sm_N^*Gd_N)^{0.5}$. The chondrite-normalized Ce/Nd ratio is a measure of the magnitude of the positive Ce anomaly in zircon REE trends as calculated by the ratio

Figure 9 (Above): Sc A) vs. SiO₂ (with best-fit lines for each district), and B) by Latitude (Sc at SiO₂ = 65). C) V/Sc vs. SiO₂; D) V vs. SiO₂; E) Sr vs. SiO₂, and F) Sr/Y vs. SiO₂. Data from the du Bray & John database (2011) include: White River samples from Thompson (1983) and du Bray, *unpublished* data, 2005; Spirit Lake Pluton samples from Evarts, *unpublished data*, 2005; Washougal samples from Schriener (1978), Felts (1939), USGS National Geochemical Database, 2005, Shepard (1979), Power (1984), and Evarts, *unpublished data*, 2005; North Santiam samples from Olson (1978); Detroit Dam samples from Power (1984), Curless (1991), du Bray, *unpublished data*, 2005, Lexa, *unpublished data*, 2005, and USGS National Geochemical Database, 2005; Quartzville samples from Munts (1978) and du Bray, *unpublished data*, 2005; Blue River samples from Storch (1978); Bohemia samples from Buddington & Callahan (1936), Schaubs (1978), and du Bray, *unpublished data*, 2005.

Figure 10: Rare Earth Element Diagram. Samples shown are only those from this study. Grey field represents all samples with $SiO_2 < 68$ wt. %. Blue trends are data from only two samples with $SiO_2 > 74$ wt. %: the Boulder Creek Dike near Quartzville and the Nimrod Stock near Blue River.

of measured Ce content to the measured Nd content. Zircons crystallized from oxidized magmas (>NNO +1) display small negative Eu anomalies (Eu_N/Eu_N^* values of 0.4-1.0) and large positive Ce anomalies (Ce/Nd > 30) (Ballard et al., 2002; Dilles et al., 2015; Olson 2015).

Zircons in Western Cascades plutonic rocks have characteristically large negative Eu anomalies ($Eu_N/Eu_N^* < 0.5$; Figure 11a) and small positive Ce anomalies (Ce/Nd < 30 typically; Figure 11b), even when directly associated with moderate economic porphyry Cu deposits (ie. mafic latite porphyry in North Fork district). All zircon grains analyzed from all deposits have Eu_N/Eu_N^* values between 0 and 0.5. With the exception of five grains from the Boulder Creek dike near Quartzville and two grains from the White River monzodiorite with Ce/Nd > 30, the majority of grains have Ce/Nd values between 0.1 and 30. In general, Eu_N/Eu_N^* ratios from each sample decrease systematically with increasing Hf content. In general, Ce/Nd ratios increase to higher values with increase of Hf content, which is a proxy for progressive crystallization of melt and zircon (Clairborne et al., 2010).

Th/U of zircon typically decreases with increasing Hf content in zircon and can trace differentiation or crystallization of magmas. High Th/U ratios (up to 4.5) in zircon are related to more mafic, less evolved, higher temperature melts, and low Th/U ratios (<1.5) are associated with evolved, fractionated, cooler melts (Claiborne et al., 2010). Yb/Gd ratios in zircon tend to increase with increasing Hf content (Lee 2008) likely due to fractionation of phases with high affinity for MREEs such as amphibole, pyroxene, or apatite. Yb/Gd can also be initially low due to fractionation of Yb-enriched garnet from the magma. Th/U ratios vs. Yb/Gd ratios in zircon can therefore be used to distinguish between fractionation and potential mixing trends. Low Th/U and high Yb/Gd ratios are characteristic of fractionated melts. Western Cascades plutonic zircons exhibit a typically limited range in zircon sfrom Western Cascade plutons typically range from 10 to 35 (Figure 11c).

Figure 11: Zircon Trace Element versus Hf content: A) Eu/Eu* and B) Ce/Nd. C) Th/U vs. Yb/Gd; and D) Hf vs. Ti-in-zircon in ° Celsius for SHRIMP-RG analyses only. Open symbols are zircons analyzed via SHRIMP-RG, closed symbols are analyzed via LA-ICP-MS. Eu, Eu*, Ce, Nd, Yb, and Yb values are chondrite-normalized (Anders & Grevesse, 1989). Green fields in A) & B) are interpreted from Dilles et al., 2015. Mixing and fractionation trends (black) on C) are interpreted from Lee (2008) and Claiborne et al., 2010. Ti-in-zircon temperatures calculated using Ferry & Watson method (2007) and an estimated Ti activity of 0.7.

Ti-in-Zircon and Thermometry

Ti⁴⁸ concentrations in zircons analyzed by SHRIMP-RG range from 20.2 to 39.7 in Spirit Lake Pluton samples and from 3.6 to 12.6 in the Boulder Creek dike sample. Crystallization temperatures estimated by Ti-in-zircon thermometry for Western Cascade zircon analyzed by SHRIMP-RG are between 675 and 950°C (Figure 11d). The Boulder Creek porphyry near Quartzville is a porphyry intrusion (Figure 5a, Appendix Figure 3a) and has lower estimated temperatures between 675-800 °C than the Spirit Lake Pluton hypabyssal granodiorite, which have a limited range of temperatures between 850 and 950 °C. Ti-in-zircon thermometry for LA-ICP-MS analyses are summarized in Appendix 7.1.

DISCUSSION

I compare new U-Pb zircon ages with previously reported ages of plutonism and hydrothermal mineralization in the Western Cascades (Appendix 3). I then consider the implications for the underlying crust based on inherited zircon populations before considering Western Cascades' magma genesis and ore fertility.

<u>U-Pb Ages & Along-Arc Magmatic History of the Western Cascades Plutons</u>

Du Bray & John (2011) concluded that the majority of intrusions in the Western Cascade arc were emplaced between 25 and 8 Ma, but here we have further temporally constrained the emplacement of plutons along arc. With the exception of the North Fork deposit, all plutonic rocks we sampled were emplaced between 26 and 12.7 Ma (Figure 3). The majority of plutons presented here were emplaced in a 10 m.y. span between ~26 and ~16 Ma. The youngest ages are clustered in the center of the arc, with older and more diverse ages found in the north and south segments.

In the north segment of the arc, the emplacement ages of the quartz monzodiorite and late mafic latite porphyry from the North Fork deposit support a duration of magmatism of at least one m.y. in the district. Smithson's (2004) ages for the quartz monzodiorite (37.0 ± 0.2 Ma and 37.2 ± 0.1 Ma) and the mafic latite porphyry (36.8 ± 0.2 Ma and 37.1 ± 0.2 Ma) also suggest some plutonic rocks were present in the northern portion of the arc during the earliest (44-26 Ma) phase of ancestral arc magmatism (du Bray & John 2011).

A monzodiorite from the White River deposit is approximately 15 m.y. younger and within the phase of ancestral arc magmatism when plutonic rocks were most dominant (25-18 Ma; du Bray & John, 2011). Our monzodiorite age of 18.03 ± 0.46 Ma substantially postdates ⁴⁰Ar/³⁹Ar ages on plagioclase from the Fifes Peak Formation, the older volcanic rocks of the area (21.1-20.65 Ma, Blakely et al., 2007). However, the zircon crystallization age we report only slightly postdates and nearly overlaps in error previously reported ⁴⁰Ar/³⁹Ar ages from alunite resulting from hydrothermal alteration of the Fifes Peak Formation (19.06-19.0 Ma, Blakely et al., 2007). This hydrothermal alteration could be related to emplacement of the monzodiorite. The age data also suggest 2-3 m.y. of magmatic emplacement in the White River district.

In the Columbia segment of the arc, the zircon U-Pb ages from three samples of the Spirit Lake Pluton reported here are 25.69 ± 0.69 Ma, 23.04 ± 0.2 Ma, and 22.61 ± 0.6 Ma. These ages substantially predate previously reported alteration ages, which include K-Ar analyses of secondary biotite and secondary sericite and range from 17.3 ± 0.5 Ma to 16.6 ± 0.5 Ma (Evarts et al., 1987; Evarts & Ashley 1993). The discordance between these age groups cannot be attributed solely to long-lived (approximately 9 m.y.) magmatism or analytical error. Therefore it is likely we report ages from plutonic rocks that are older and likely unrelated to porphyry Cu mineralization in the Mt. Margaret district.

Two U-Pb zircon ages of samples from the Washougal district overlap in error at ~19 Ma. Two previously reported K-Ar ages of fresh granodiorite (19.6 ± 0.7 Ma) and granodiorite completely replaced by secondary minerals (quartz + sericite + tourmaline + pyrite; K-Ar of sericite of 19.0 ± 0.7 Ma) from the Washougal district are consistent with the ages we report here, suggesting pluton emplacement and hydrothermal alteration both occurred ca. 19 Ma (Power et al., 1981).

Both the Spirit Lake and Washougal plutons predate the onset of Columbia River Basalt (CRB) volcanism, however, the North Santiam and Detroit Dam districts in the center of the arc (Figure 3) are the youngest intrusions at 13.05 ± 0.83 Ma and 12.70 ± 1.00 Ma, respectively, and the only plutons to postdate the most voluminous phase of CRB magmatism (Barry et al., 2013). A hornblende K-Ar age of 13.4 ± 0.9 Ma on fresh granodiorite from the North Santiam district is consistent with the 13.05 ± 0.83 Ma zircon U-Pb age we report here (Power et al., 1981). A previously reported K-Ar age of 10.1 ± 0.4 Ma on hydrothermal sericite from the Bornite Breccia Pipe in the North Santiam district (Winters 1985) could suggest approximately three m.y. of hydrothermal alteration associated with magmatism, or may be spuriously too young. In the Detroit Dam district, a previously reported whole-rock K-Ar age of 9.68 ± 0.18 Ma (Sutter 1978) from the same diorite for which we obtained a 12.70 ± 1 Ma age is likely too young, as whole-rock K-Ar ages would be impacted by the amount of hydrothermal alteration present.

The Yellowbottom stock and Boulder Creek porphyry of the Quartzville district were both emplaced nearly simultaneously at 16.30 ± 1.5 Ma (16.2 ± 0.3 Ma, John and Fleck, *pers. comm.* 2013) and 16.44 ± 0.20 Ma, respectively, with the onset of CRB magmatism. The Boulder Creek porphyry is associated with sericitic alteration, breccia pipes, and polymetallic Zn-Pb-Cu-bearing veins (Nicholson 1988), and therefore our new age provides evidence for porphyry style mineralization locally. No other known ages exist on hydrothermal alteration from the Quartzville district.

The Nimrod stock of the Blue River district (U-Pb zircon = 17.36 ± 0.45 Ma) overlaps in error with Quartzville samples, which suggests there was concurrent magmatism 50 km to the south. The discrepancy between our U-Pb zircon age and a previously reported whole-rock K-Ar age of 15.86 ± 0.18 Ma (Sutter 1978) on the Nimrod stock is likely due to analytical error in both dating methods. A whole-rock K-Ar on quartz diorite of the Blue River district of 13.4 ± 1.2 Ma (Power et al., 1981) and a nearly-overlapping 40 Ar/ 39 Ar adularia age of 11.16 ± 0.14 Ma from Quartz + Adularia veins (R. Fleck, *pers comm.* 2006) suggest a younger stage of magmatism and related hydrothermal alteration similar to age of magmatism in Detroit Dam and North Santiam districts discussed above.

In the southern segment, samples of a stock and two dikes from the Bohemia district yield overlapping ages of approximately 23.5 Ma, consistent with short-lived magmatism in this district (Figure 3, Fleck & du Bray, *pers. comm.*, 2013). These ages are comparable to the age of plutonism at Spirit Lake described above (25.69 Ma to 22.6 Ma), as well as the 21.6 Ma 40 Ar/ 39 Ar alunite age from Quartz Mountain ~25 km to the south (du Bray & John 2011). A whole-rock K-Ar age of 21.7 ± 0.8 Ma on porphyrtic quartz diorite from the Bohemia district (Power et al., 1981) nearly overlaps in error with the zircon U-Pb age, further extending this 26-~22 Ma interval of plutonism.

The diorite pluton we analyzed from the South Umpqua district crystallized zircon at 18.15 ± 0.43 Ma, approximately 5 m.y. after the Bohemia plutonism. No known hydrothermal ages exist for the South Umpqua area.

Plutons from White River, Washougal, Quartzville, Blue River, and South Umpqua districts were emplaced at very similar ages circa 18-16 Ma, suggesting that plutonism was very active along the entire arc at this time.

Inherited Zircons & Evidence for Age of Underlying Crust

Zircons predating the age of crystallization of a given pluton are interpreted as xenocrysts from the crust or as antecrysts derived from an earlier phase of magmatism or crystal-melt mush (Miller et al., 2007). These older zircons provide a window into the crust underlying the Western Cascade arc, and into the nature of crustal contamination required to produce evolved magma compositions in the Miocene Western Cascade arc magmas.

Inherited zircons could be sourced from older Western Cascade volcanics (~42-25 Ma) such as the Naches and Ohanapecosh Formations described below. Another potential contaminant is the Tyee Formation (~48-45 Ma), a sequence of turbiditic sandstone containing Eocene and older detrital zircons derived from sources to the east including the Challis volcanics and the Idaho Batholith (Dumitru et al., 2013). A final possibility is these inherited zircons are directly sourced from older crustal material that may underlie the arc, such as the Clarno Formation (53-43, Robinson et al., 1990). Zircon is an accessory mineral that only forms in substantial amounts when Zr occur in relatively evolved magmas of dioritic-andesitic or more silicic composition. Therefore, it is unlikely that basaltic rocks of the early Western Cascades such as the Kalama Formation of southern Washington (Evarts & Ashley, 1991) would be the source of significant zircon contamination.

In the North Segment, 55 (of 175 total, or 31%) xenocrystic zircons have inherited ages up to 67 Ma (> 20.3 Ma for White River and > 36 Ma for North Fork samples). The absence of grains older than the Cretaceous-Paleocene boundary (i.e., ~67 Ma) in samples from the North Segment suggests that neither the North Fork nor White River districts overlie old (95 Ma) crystalline crust that lies east of the Straight Creek Fault, but instead overlie Paleocene-Eocene volcanics, such as the Naches, Ohanapecosh and possibly Barlow Ridge (46-35, Tabor et al., 1988) Formations, that are likely sources of inherited zircons (Fig. 1). The Naches Formation (~43-29 Ma, Tabor et al., 1984) is exposed west of the Straight Creek Fault in central Washington and is composed of interbedded volcanic rocks, ranging from rhyolite flows to basalts, and feldspathic sandstones, and is at least 1,500 meters thick (Tabor et al., 1984). The Eocene Ohanapecosh Formation (middle to upper Eocene in age, Fiske et al., 1963) is the oldest unit exposed in Mt. Rainier National Park and its composition is dominated by volcanic debris flows but also contains mudflows, basaltic to rhyolitic lavas, and coarse tuff-breccias (Fiske et al., 1963). The North Fork and White River districts overlie the Helena-Haystack mélange and Western and Eastern Mélange Belts (Tabor 1994), which lie to the west of the Straight Creek fault and are comprised of Jurassic to Early Cretaceous metamorphic units, but we see no substantial xenocrystic zircons with these ages.

The minimal numbers of inherited zircons (n=38 of 350 total, or 11%, ranging from 54-20 Ma) in samples from the Columbia Segment of the arc are consistent with limited contamination by a source no older than 55 Ma, likely the dominant Eocene sources of detrital zircons found within the Tyee Formation (Dumitru et al., 2013). The absence of inherited grains > 54 Ma suggests this population is distinct from the detrital zircons within the Tyee Formation, which contains grains as old as Triassic. The Siletzia terrane in this segment is inferred to be thin (< 30 km) and mafic, and is therefore unlikely to contribute xenocrystic zircon to the overlying younger arc magmas. Some of these inherited zircons may be sourced directly from older volcanics such as the Clarno Formation, which could potentially underlie the arc in central Oregon.

The ages of inherited grains (n = 25 of 85 total, or 29%) from samples overlying the Klamath Terrane (i.e. Bohemia and South Umpqua) overlap with the Tyee Formation detrital zircon peak between 65 and 40 Ma (Fig 2). The lack of older inherited populations in this segment and the similarity to the Tyee Formation detrital peak suggests that no grains were inherited directly from accreted Mesozoic rocks of Klamath Terrane source, and instead these grains are sourced from similar contaminants to those underlying the central segment of the arc. These contaminants are likely older Western Cascade volcanics and older volcanics to the east (ie. Clarno Formation).

Petrogenesis of Western Cascade Magmas

This portion of the discussion is separated into three sections: A) evidence supporting magma mixing within plutons of the Western Cascades, B) an evaluation of the potential variation in crustal thickness beneath the Western Cascades, C) an examination of evidence for water-rich, oxidized magmas along the arc that would be capable of generating porphyry Cu deposits.

A. Evidence for Magma Mixing

Th/U versus Yb/Gd in zircon can be used to track fractionation and mixing trends in zircon. With pure fractionation, a melt would initially crystallize zircon with high Th/U and low Yb/Gd ratios. As the magma evolved, the Th/U ratios decreased due to the relative incompatibly of U versus Th. Fractionation of amphibole, pyroxene, or apatite would yield an increase in Yb/Gd ratios in zircon as MREE are incorporated into these phases (Claiborne et al., 2010, Lee 2008, Olson 2015). Western Cascade magmas do not have zircons with high (> 2) Th/U ratios, which are typically associated with hot, primitive magmas (Claiborne et al., 2010). Furthermore, Western Cascade zircons do not display high Yb/Gd ratios (> 35) comparative to more evolved arcs (Lee 2008, Olson 2015). The lack of evidence for more fractionated melts in zircon compositions may be a result of thin crust. Thinner crust would allow for limited fractionation of amphibole.

Variations in the least evolved Th/U and Yb/Gd ratios in zircon between different districts are likely a result of variation in initial melt composition at the time of crystallization. The discrepancy in Th/U versus Yb/Gd trends between the quartz monzonite and the mafic latite porphyry from the North Fork district could suggest a mixing trend between the initial quartz monzonite magma and a more evolved magma that is not represented in zircon compositions. Alternately, it could suggest the mafic latite porphyry zircons crystallized in a different magma with initially higher Yb/Gd and lower Th/U.

Plagioclase was an important phase in magma differentiation as indicated by the decrease in Sr with increasing SiO₂ in all suites. The plagioclase phenocrysts are complex, sieved, and have disequilibrium textures such as resorbed rims and complex zoning patterns. Sieved plagioclase and other disequilibrium textures are typically considered to be the product of magma mixing (Dungan & Rhodes, 1978). Examples of sieved, melt inclusion-rich plagioclase are common in thin sections from the sample intrusions and support magma mixing at some stage of magma gensis (Figure 5e). In the samples that show the strongest evidence for magma mixing in their zircon geochemistry - the Nimrod stock, Boulder Creek dike, and Yellowbottom Stock - sieved texture is ubiquitous in plagioclase and affect \sim 10-50% volume of plagioclase crystal. Large melt inclusions are also common. Hence, magma mixing was a significant process in pluton emplacement and it mainly predates zircon crystallization as indicated by large Eu anomalies in zircon.

B. Assessment of Crustal Assimilation and Thickness

To assess the variation in crustal thickness beneath the Western Cascades as well as the potential for crustal assimilation in Western Cascade magmas we use Ba/Nb, Th/Ta, REE patterns, Sc contents, and Yb/Gd in zircon.

Ba/Nb ratios have been used to distinguish between mantle-derived magma components and potential fluid fluxes derived from the subducting slab (Pearce & Peate, 1995). Ba contents will decrease only if alkali feldspar fractionates. Nb contents also increase with SiO₂ suggesting incompatible behavior but are more variable.

Ba/Nb may increase with differentiation (ie. increase in SiO₂ content), correlating with more substantial input of fluid from the subducting plate (Pearce 1983). In the Western Cascade magmas, Ba/Nb does not vary greatly with SiO₂ and therefore does not appear to be sensitive to differentiation (Figure 7c). However, Ba/Nb values are correlated with latitude and increase broadly from north to south (Figure 8). In addition to tracking fluid fluxes, Ba/Nb could rather track crustal contamination and potentially crustal thickness. Hildreth and Moorbath (1988) were able to show that K_2O contents at a given SiO₂ increase with crustal thickness. K and Ba are both very fluid mobile elements that should behave similarly. The observed increase in Ba/Nb southward in the Western Cascades is correlated with an increase in crustal thickness from ~10 km in southern Washington to ~30 km at the north edge of the Klamath Mountain Terrane (Trehu, *pers comm.* 2015; Trehu 2010).

Both Th and Ta are high field strength elements and relatively immobile. Th and Ta both act incompatibly and increase with increasing SiO₂. While Ta is considered an athsenospheric mantle signature due to its fluid immobility and extremely incompatible nature, Th is likely stored in the crust due to its release via metamictization of Th-rich minerals by radioactive decay (Woodhead et al., 1991). By this process Th is likely concentrated in sediments. Th/Ta increase with increasing SiO₂ for any given Western Cascade district, which suggests these magmas are assimilating Th-rich crustal material. Variation in Th/Ta ratios geographically can be attributed to the degree of crustal assimilation – lower Th/Ta ratios at any given SiO₂ in districts in the center of the arc (ie., Detroit Dam, Quartzville, and Blue River) suggests that the crust is likely thinner in this region. An alternative interpretation of low Th/Ta ratios in districts in the center of the arc might be that these magmas are assimilating crustal material that lacks Th-rich sediments.

We interpret the southward increase in Ba/Nb, Th, and Th/Ta in Western Cascade plutons to reflect an increased role of crustal contamination. While increased slab fluid flux could increase Ba relative to Nb, the greater abundance in Ba at given SiO₂ southward (Figure 7a) and of Th and Th/Ta (Figure 7d,f) are more consistent with a crustal input. We cannot exclude some increased slab fluid source of Ba to the south.

There is little evidence for garnet fractionation in Western Cascade plutons, which supports relatively thin underlying crust. Dy/Yb ratios are generally influenced by fractionation of phases with either an affinity for middle REEs (MREE) such as amphibole, apatite and titanite, or affinity for Y and heavy REEs (HREE) such as garnet. Garnet is stable in basaltic and andesitic magma compositions at > \sim 30 km depth. Dy/Yb is not largely affected by fractionation of pyroxene, which contains lower REE contents than amphibole and is a minor primary phase in the Western Cascade plutons. Dy/Yb ratios decrease with increasing SiO₂ within any given district. Similarly, HREE concentrations increase with increasing SiO₂. HREE appear to act incompatibly and are not incorporated into garnet or other phases. Kay and Mpodozis (2001) applied Sm/Yb ratios to track the increasing thickness of the Andean crust over time. Sm/Yb ratios are significantly limited in Western Cascade samples (1.25-3.25) compared to Andean samples and suggest the dominant mafic phases are pyroxene and lesser amphibole, but not garnet (Appendix Figure 5b).

Th/U versus Yb/Gd in zircon illustrate that magma mixing plays a significant role in some Western Cascade plutons (ie. North Fork and the Nimrod Stock near Blue River). Additionally, the absence of elevated Yb/Gd ratios in the majority of samples suggests that substantial fractionation of amphibole or pyroxene did not occur in these plutons concurrently with zircon crystallization. Yb/Gd highlights the degree of fractionation, which may be limited by a thin crust.

The strongly pyroxene-compatible element Sc is consistently elevated to the south at any given SiO₂ content (Figure 9a,b). Sc acts perfectly compatibly in Western Cascade magmas and is incorporated into pyroxene and amphibole. One possible inference is that there is more Sc to the south because less pyroxene fractionated. Kay & Mpodozis (2001) estimated clinopyroxene is the dominant mafic phase below depths of 35 km. Minimal pyroxene fractionation to the south compared to the north could, therefore, potentially be a product of thicker crust.

C. Estimation of Ore Fertility

Studies of large porphyry Cu-(Au-Mo) deposits worldwide (Dilles 1987; Richards 2003; Loucks 2014; Richards *in press*) have found that many ore-forming arc magmas are strongly oxidized (NNO+2) and water-rich (> 3-4 wt. %, Dilles 1987). The formation of large porphyry Cu-(Au-Mo) deposits may require elevated water contents and oxidation states of parental magmas. We can therefore assess the potential ore fertility of Western Cascade magmas by examining geochemical and petrographic tracers for high water contents and elevated oxidation states. Here we apply zircon REE geochemistry, whole-rock trace element geochemistry, and petrographic observations.

Rare Earth Element (REE) compositions of zircons record variations in the water content and oxidation state of the magma which are linked to ore-forming conditions (Ballard et al., 2002). The majority of REE (with the exception of Ce and Eu) are trivalent. Under reducing conditions, zircon REE compositions have a large negative anomaly in Eu_N/Eu_N* because Eu partitions into plagioclase most readily. Rare earth elements are primarily trivalent (III) cations excluding Eu, which is a 2⁺ cation in most magmas, but under oxidizing conditions Eu²⁺ becomes Eu³⁺ (Hoskin & Schaltegger, 2003). The oxidized Eu³⁺ is more readily incorporated into zircon crystals rather than plagioclase or other major phases, and if plagioclase crystallization is suppressed by high water content of the melt, oxidation results in small negative Eu/Eu* anomalies in zircon REE (Ballard et al., 2002). As a result, most porphyry-Cu mineralizing magmas have characteristically small negative Eu anomalies (Dilles et al., 2015).

Conversely, under oxidizing magmatic conditions a small fraction of Ce^{3+} is oxidized to Ce^{4+} , which is strongly partitioned into zircon preferentially over Ce^{3+} because its identical charge and similar atomic radius to Zr (Ballard et al., 2002). As a result, zircons forming in porphyry-Cu mineralizing magmas have characteristically large positive Ce anomalies. These anomalies are typically quanitified by Ce(III)/Ce(IV) ratios and Ce_N/Ce_N* ratios. Due to characteristically low concentrations of LREE in zircons (Ballard et al., 2002), La and Pr are often at or below the detection limit of LA-ICP-MS analyses. Here, we use Ce_N/Nd_N ratios as a proxy for quantifying the positive Ce anomaly in zircons. Ce_N/Nd_N values \geq 30 are typical of zircons crystallized in porphyry-Cu mineralizing magmas (Olson 2015).

Low Eu_N/Eu_N* in zircon (<0.5) indicate that Western Cascade magmas are relatively water-poor and crystallized abundant early plagioclase. These large negative Eu anomalies in zircon are supported by the presence of plagioclase in all samples, which together suggest that early crystallization of plagioclase occurred in all magmas studied. Early plagioclase crystallization would only be suppressed in relatively water-rich magmas (>~3 wt. %, Dilles et al., 2015). Small Ce_N/Nd_N values corresponding to small positive Ce anomalies in zircon suggest that very little Ce in Western Cascade magmas was in the trivalent state and therefore did not preferentially partition into zircon. Small positive Ce anomalies characterize the Western Cascade magmas as not strongly oxidized. These data together suggest the oxidation state of Western Cascade magmas was initially too low, or the amount of SO₂ degassed was insufficient, to oxidize Ce and Eu (cf. Dilles et al., 2015).

In addition to Ce and Eu anomalies in zircon, we can assess the oxidation state of a magma by examining whole-rock V/Sc ratios (Loucks 2014). The transition metals scandium and vanadium are both sensitive to fractionation of mafic silicates and oxides. Sc contents are generally controlled by fractionation of pyroxene or amphibole as magma differentiates. In oxidized magmas, V will be in the 4+ or 5+ state and act incompatible instead of partitioning into magnetite. V/Sc ratios are a good tool to assess the fractionation of magnetite (which incorporates V^{3+}) relative to pyroxene (pyroxene incorporates Sc, which behaves compatibly in Western Cascade plutons as we have shown). With the exception of samples from the Spirit Lake Pluton (Evarts, in du Bray & John, 2011), all Western Cascade districts included in this study have V/Sc contents that decrease with increasing SiO_2 content (Figure 9d). This observation suggests that V acted compatibly by incorporation into magnetite and mafic silicates and fractionation. Additionally, relative oxidation state can be estimated using the relative presence of Fe-oxides. In Western Cascade plutons we observe an approximate 2:1 ratio of magnetite: ilmenite where present, suggesting magmas are not strongly oxidized.

Large negative Eu anomalies support early plagioclase crystallization and therefore that Western Cascade magmas had relatively low water contents insufficient to suppress plagioclase. Early plagioclase crystallization is also supported by whole-rock REE trends because small Eu anomalies are present in all districts and increase in magnitude in more evolved plutons (Appendix Figure 5a). Additionally, Sr/Y values can be used to estimate relative magmatic water contents in unaltered samples. Sr/Y ratios decrease with increasing SiO₂ (Figure 9e), which

43

suggests that Sr was incorporated into plagioclase early and was not concentrated in the melt.

In contrast, evidence for hornblende stability suggests relatively moderate water contents of at least 3 wt. % (Burnham 1979). In the Western Cascades abundant hornblende is observed in 31 of 36 available petrographic sections; therefore water contents must be sufficient to stabilize the phase. Additionally, hornblende partitions MREEs with respect to LREE and HREEs. Therefore, hornblende fractionation can be interpreted from both Dy/Yb ratios, which decrease in any given district with differentiation (Figure 7g), and overall REE trends, which increase in concavity with increasing SiO₂ (Figure 10), correlated with depletion of MREE with respect to LREE and HREE. We can therefore infer that water must be sufficient to stabilize hornblende, >3 wt. % H₂O.

CONCLUSIONS

As recognized by Schmidt and others in the modern arc (2008, 2013), the Western Cascade arc overlies three distinct crustal blocks. Although crustal thickness is poorly constrained in the north and south segments, it is evidently variable along-arc (and may thicken slightly to the south on the basis of Ba/Nb ratios and elevated Sc content), but likely relatively thin. There is no geochemical or physical evidence for garnet fractionation in any district, so the crust is $< \sim 30$ km thick. The paucity of inherited zircon populations in samples from the Columbia segment that is underlain by Siletzia crust also is correlated with generally low Th/Ta ratios, both of which suggest that assimilation of evolved crust was limited in the center of the arc. The central Western Cascade Arc overlies the relatively thin (10-30 km, Parsons et al., 1999) Siletzia terrane, which is likely dominated by basaltic material overlain by minor Tyee turbiditic sandstone and is subsequently unlikely to be enriched in Th, nor can it serve as a source of contaminant zircon. In the north and south segments, the absence of inherited zircons older than 67 Ma suggests these areas do not overly older, evolved crust as might be expected. Where pre-Cenozoic crust is present it either was not assimilated into Western Cascade magmas, or was mafic and contained little zircon. Instead, these inherited zircons are likely derived from underlying older volcanics of the earlier part of the Western Cascade arc or detrital zircons incorporated into Tyee Formation turbidites to the west (Dumitru et al., 2013).

Although our data and observations suggest that these magmas are sufficiently water-rich to abundantly crystallize and fractionate amphibole (at least 3 wt. % H₂O), it is evident that plagioclase crystallized early and was not suppressed by high water contents (> 3 wt. % H₂O). There is no evidence from zircon and whole-rock geochemistry to suggest that Western Cascade magmas were substantially oxidized (> NNO or NNO +1), despite the presence of moderate- and small-sized porphyry Cu and epithermal Au deposits.

These data altogether suggest that crustal thickness and lithology substantially control ore potential within the Western Cascade Arc. The plutons

sampled in this study are on the cusp of ore fertility. These conclusions need to be tested with sampling of plutons associated with mineralization in both the Mount Margaret and Glacier Peak districts. More trace element data (specifically REEs) from plutonic samples, as well as more robust age constraints, could yield spatial and temporal comparisons to resolve the magmatic evolution within a given district or segment of the arc. Analysis of plagioclase anorthite content may help distinguish crystallization of early, Ca-rich plagioclase versus a later, Na-rich relative.

REFERENCES

- Anders, E., and Grevesse, N, 1989, Abundances of the elements: Meteoritic and solar: Geochimica et Cosmochimica act, v. 53, no. 1, p. 197-214.
- Ballard, J., Palin, J., Williams, I., Campbell, I., Faunes, A., 2001, Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP: Geology, v. 29 no. 5 p. 383-386.
- Ballard, J., Palin, J., and Campbell, I., 2002, Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile: Contributions to Mineralogy and Petrology, v. 144, p. 347-364.
- Barry, T.L., Kelley, S.P., Reidel, S.P., Camp, V.E., Self, S., Jarboe, N.A., Duncan, R.A.,
 Renne, P.R., 2013, Eruption chronology of the Columbia River Basalt Group:
 The Geological Society of America Special Paper 497, p. 45-66.
- Beck, S., Zandt, G., Myers, S., Wallace, T., Silver, P., and Drake, L., 1996, Crustalthickness variations in the central Andes: Geology, v. 24, no. 5, p. 407-410.
- Black, L.P., Kamo, S.J., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., and Foudoulis, C., 2003, Temora 1: A new zircon standard for Phanerozoic U-Pb geochronology: Chemical Geology, v. 200, no. 1-2, p. 155-170.
- Blakely, R.J., John, D.A., Box, S.E., Berger, B.R., Flekc, R.J., Ashley, R.P., Newport, G.R.,
 Heinmeyer, G.R., 2007, Crustal controls on magmatic-hydrothermal systems:
 A geophysical comparison of White River, Washington, with Goldfield,
 Nevada: Geosphere, v. 3, no.2, p. 91-107.
- Brown, E., and Gehrels, G., 2007, Detrital zircon constraints on terrane ages and affinities and timing of orogenic events in the San Juan Islands and North Cascades, Washington: Canada Journal of Earth Science, v. 44, p. 1375-1396.

- Burnham, C., 1979, The importance of volatile constituents, in The Evolution of the Igneous Rocks (Yoder, H.S., Ed), p. 439-482: Princeton University Press, Princeton, N.J.
- Callahan, E., and Buddington, A.F., 1938, Metalliferous mineral deposits of the Cascade Range in Oregon: U.S. Geological Society Bulletin 893, 114 p.
- Carmichael, I., and Nicholls, J., 1967, Iron-Titanium Oxides and Oxygen Fugacities in Volcanic Rocks: Journal of Geophysical Research, v. 72, no. 18, p. 4665-4687
- Castor, S., Boden, D., Henry, C., Cline, J., Hofstra, A., McIntosh, W., Tosdal, R., and
 Wooden, J., 2003, The Tuscarora Au-Ag Distict: Eocene Volcanic-Hosted
 Epitehrmal Deposits in the Carlin Gold Region, Nevada: Economic Geology, v.
 98, p. 339-366.
- Chambefort, I., Dilles, J.H., and Kent, A.J.R., 2008, Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits: Geology, v. 36, no. 9., p. 719-722.
- Christiansen, R., Yeats, R., Graham, S., Niem, W, Riem, A., and Snavely, P. Jr., 1992, Post-Laramid geology of the U.S. Cordilleran region, in The Geology of North America, v. 3, p. 261-406.
- Claiborne, L., Miller, C., Wooden, J., 2010, Trace element composition of igneous zircon: a thermal and compositional record of accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada: Contributions to Mineralogy & Petrology, v., 160: p. 511-531.
- Cole, R., and Stewart, B., 2009, Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California: Tectonophysics, v. 464, no. 1-4, p. 118-136.

- Curless, J., 1991, Geology and hydrothermal mineralization in the vicinity of Rocky Top, Marion County, Oregon [M.S. Thesis]: Oregon State University.
- Dilles, J., 1987, Petrology of the Yerington Batholith, Nevada: Evidence for Evolution of Porphyry Copper Ore Fluids: Economic Geology, v. 82, p. 1750-1789.
- Dilles, J., Kent, A., Wooden, J., Tosdal, R., Koleszar, A., Lee, R., and Farmer, L., 2015, Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas: Economic Geology, v. 110, p. 241-251.
- du Bray, E., and John, D., 2011, Petrologic, tectonic, and metallogenic evolution of the Ancestral Cascades magmatic arc, Washington, Oregon, and northern California: Geosphere, v. 7 p. 1102-1133.
- Dudás, F., Isploatov, V., Harlan, S., and Snee, L., 2010, 40Ar/39Ar Geochronology and Geochemical Reconnaissance of the Eocene Lowland Creek Volcanic Field, West-Central Montana: The Journal of Geology, v. 118, p. 295-304.
- Dumitru, T., Ernst, W., Wright, J., Wooden, J., Wells, R., Farmer, L., Kent, A., Graham, S., 2013, Eocene extension in Idaho generated massive sediment floods into the Franciscan trench and into the Tyee, Great Valley, and Green River basins: Geology, v. 41, p. 187-190.
- Evarts, R., Ashley, R., and Smith, J., 1987, Geology of the Mount St. Helens Area: Record of Discontinuous Volcanic and Plutonic Activity in the Cascade Arc of Southern Washington: Journal of Geophysical Research, v. 92, no. B10, p. 10,155-10,169.
- Evarts, R., and Ashley, R., 1991, Preliminary geologic map of the Lakeview Peak quadrangle, Cowlitz County, Washington: U.S. Geological Survey Open-File Report 91-289, scale 1:24,000, 35 p.

- Farmer, L., 2012, Trace Element Characteristics of Zircon: A Means of Assessing Mineralization Potential of Intrusions in Northern Nevada [M.S. Thesis]: Oregon State University
- Felts, W., 1939, A granodiorite stock in the Cascade Mountains of south-western Washington: Ohio Journal of Science, v. 39, no. 6, p. 297-316.
- Ferry, J.M., and Watson, E.B., 2007, New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers: Contributions to Mineralogy & Petrology, v. 154, p. 429-437.
- Fiske, R., Hopson, C., and Waters, A., 1963, Geology of Mount Rainier National Park, Washington: U.S. Geological Suvery Professional Paper 444, 93 p.
- Gustafson, L.B., 1979, Porphyry copper deposits and calc-alkaline volcanism, in Mc Elhinny, MW, The Earth: Its origin, structure, and evolution, p. 579.
- Hayden, L., and Watson, E., 2007, Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon: Earth and Planetary Science Letters, v. 258, p. 561-568.
- Hildreth, W., and Moorbath, S., 1988, Crustal contributions to arc magmatism in the Andes of Central Chile: Contributions to Mineralogy and Petrology, v. 98, p. 455-489.
- Hoskin, P., and Schaltegger, U., 2003, The composition of zircon and igneous and metamorphic petrogenesis: Reviews in Mineralogy and Geochemistry, v. 53, no. 1, p. 27-62.
- Hiza, M.M., 1999, The Geochemistry and Geochronology of the Eocene Absaroka Volcanic Province, Northern Wyoming and Southwest Montana, USA [Doctorate Thesis]: Oregon State University

- Irvine, T., and Baragar, W., 1971, A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Sciences, v. 8, p. 455-489.
- Irwin, W., 1981, Tectonic accretion of the Klamath Mountains, in The Geotectonic Development of California (Ernst, W., Ed), p. 29-49: Rubey I. Prentice Hall, New York.
- Jenner G.A., Longerich H.P., Jackson S.E., and Fryer B.J., 1990, ICP-MS A powerful tool for high-precision trace-element analysis in Earth sciences: Evidence from analysis of selected U.S.G.S. reference samples: Chemical Geology, v. 83, p. 133-148.
- Johnson, D.M., Hooper P.R., and Conrey, R.M., 1999, XRF Analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead: Advances in X-ray Analysis, v. 41, p. 843-867.
- Kent, A.J.R., Jacobsen, B., Peate, D.W., Waight, T.E., and Baker, J.A., 2004, Isotope dilution MC-ICP-MS rare earth element analysis of geochemical reference materials NIST SRM 610, NIST SRM 612, NIST SRM 614, BHVO-2G, BHVO-2, BRC-2G, JB-2, WS-E, W-2, AGV-1 and AGV-2: Geostandards Newsletter, v. 28, no. 3, p. 417–429.
- LaMaskin, T., Vervoort, J., Dorsey, R., and Wright, J., 2011, Early Mesozoic paleogeography and tectonic evolution of the western United States: Insights from detrital zircon U-Pb geochronology, Blue Mountains Province, northeastern Oregon: Geology Society of America Bulletin, v. 123, no. 9-1, p. 1939-1965.
- Lasmanis, R., 1995, Regional geological and tectonic setting of porphyry deposits in Washington State in Porphyry Deposits of the Northwestern Cordillera of North America [Schroeter, T., Ed.]: Geological Society of CIM Special Volume 46, p. 77-102.

- Lee, R., 2008, Genesis of the El Salvador Porphyry Copper Deposit, Chile and Distribution of Epithermal Alteration at Lassen Peak, California [Ph.D. Dissertation]: Oregon State University.
- Loewen, M., 2013, Volatile Mobility of Trace Metals in Volcanic Systems [Ph.D. Dissertation]: Oregon State University.
- Loucks, R., 2014, Distinctive composition of copper-ore-forming arc magmas: Australian Journal of Earth Sciences, v. 61, p. 5-16.
- Ludwig, K.R., 2009, SQUID 2: A User's Manual, rev. 12 Apr, 2009: Berkley Geochronology Center Special Publication No. 5, p. 1-110.
- Mazdab, F., and Wooden, J., 2006, Trace element analysis in zircon by ion microprobe (SHRIMP-RG): technique and applications: Geochimica et Cosmochimica Acta, v. 70, no. 18.
- Miller, J., Mtazel, J., Miller, C., Burgess, S., and Miller, R., 2007, Zircon growth and recycling during the assembly of large, composite arc plutons: Journal of Volcanology and Geothermal Research, v. 167, p. 282-299.
- Munts, S., 1978, Geology and mineral deposits of the Quartzville mining district, Linn County, Oregon [M.S. Thesis] University of Oregon.
- Nicholson, D., 1988, Geology, Geochemistry, and Mineralization of the Yellowbottom-Boulder Creek Area, Linn County, Oregon [M.S. Thesis]: Oregon State University.
- Normal, M., and Mertzman, S., 1991, Petrogenesis of Challis Volcanics from Central to Southwestern Idaho: trace element and Pb isotopic evidence: Journal of Geophysical Research, v. 96, no. B8, p. 13279-13293.
- Olson, J.P., 1978, Geology and Mineralization of the North Santiam Mining District, Marion County, Oregon [M.S. Thesis]: Oregon State University.

- Olson, N.H., 2015, The Geology, Geochronology, and Geochemistry of the Kaskanak Batholith, and other Late Cretaceous to Eocene magmatism at the Pebble Porphyry Cu-Au-Mo deposit, SW Alaska [M.S. Thesis]: Oregon State University.
- Oregon DOGAMI, 1951, Oregon Metal Mines Handbook: State of Oregon Department of Geology and Mineral Industries.
- Parsons, T., Wells, R., Fisher, M., Flueh, E., Brink, U., 1999, Three-dimensions velocity structure of Siletzia and other accreted terranes in the Cascadia forearc of Washington: Journal of Geophysical Research, v. 104, p. 18015-18039.
- Pearce, J., 1983, Role of the Sub-continental Lithosphere in Magma Genesis at Active Continental Margins, in Continental Basalts and Mantle Xenoliths (Hawkesworth, C., and Norry, M., Eds), p. 230-249: Birkhauser Boston, Inc., Cambridge, MA.
- Pearce, J., and Peate, D., 1995, Tectonic implications of the composition of volcanic arc magmas: Annual Review of Earth and Planetary Sciences, v. 23, p. 956-983.
- Power, S., Field, C.W., Armstrong, R., Harakal, J.E., 1981, K-Ar Ages of plutonism and mineralization, western Cascades, Oregon and Southern Washington: Isochron/West no. 31, p. 27-29.
- Power, S., 1984, The "Tops" of Porphyry Copper Deposits Mineralization and Plutonism in the Western Cascades, Oregon [Ph.D. Thesis]: Oregon State University.
- Priest, G., 1990, Volcanic and Tectonic Evolution of the Cascade Volcanic Arc, Central Oregon: Journal of Geophysical Reach, v. 95, no. B12, p. 19582-19599.

- Richards, J., 2003, Tectono-magmatic precursors for porphyry Cu-(Mo-Au) formation: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 98, p. 1515-1533.
- Richards, J., *in press*, The oxidation stae, and sulfur and Cu contents of arc magmas: Implications for metallogeny: Lithos.
- Robinson, P., Brem, G., and McKee, E., 1984, John Day Formation of Oregon: A distal record of early Cascade volcanism, Geology: v. 12, p. 229-232.
- Schmandt, B., and Humphreys, E., 2011, Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States: Geology, v. 39, no. 9, p. 175-178.
- Schmidt, M., Grunder, A., and Rowe, M., 2008, Segmentation of the Cascade Arc as indicated by Sr and Nd isotopic variation among diverse primitive basalts: Earth and Planetary Science Letters, v. 266, p. 166-181.
- Schmidt, M., Grunder, A., Rowe, M., and Chesley, J., 2013, Re and Os isotopes of the central Oregon Cascades and along the arc indicate variable homogenization and mafic growth in the deep crust: Geochimica et Cosmochimica Acta, v. 109, p. 345-364.
- Schriener, A., Jr., 1978, Geology and mineralization of the north part of theWashougal mining district, Skamania County, Washingtion [M.S. Thesis]:Oregon State University.
- Shepard, R., 1979, Geology and mineralization of the southern Silver Star stock, Washougal Mining District, Skamania County, Washington [M.S. Thesis]: Oregon State University.
- Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, Z., Hanchar, J.M., Horstwood, M.S.A., and Morris, G.A., 2008, Plešovice zircon A new natural reference

material for U-Pb and Hf isotopic microanalysis: Chemical Geology, v. 249, no. 1-2, p. 1-35.

- Smithson, D.M., 2004, Late Eocene tectono-magmatic evolution and genesis of reduced porphyry copper-gold mineralization at the North Fork deposit, West Central Cascade Range, Washington, U.S.A. [M.S. Thesis]: University of British Columbia.
- Snoke, A. and Barnes, C. (Eds.), 2006, Geological Studies in the Klamath Mountains Province, California and Oregon: A Volume in Honor of William P. Irwin: Spec. Pap. – Geol. Soc. Am., v. 410.
- Stanley, W., Mooney, W., Fuis, G., 1990, Deep crustal structure of the Cascade Range and surrounding regions from seismic refractions and magentotelluric data: Journal of Geophysical Research, v. 95, p. 19,419-19,438.
- Stone, B.G., 1994, The Bornite breccia pipe, Marion County, Oregon: Oregon Geology, v. 56, no. 5, p. 99-108.
- Storch, S., 1978, Geology of the Blue River mining distict, Linn and Lane Counties, Oregon [M.S. Thesis]: Oregon State University.
- Sutter, J.F., 1978, K-Ar Ages of Cenozoic Volcanic Rocks from the Oregon Cascades West of 121°30', Isochron/West, no.21, p. 15-21.
- Tabor, R., Frizzell, V. Jr., Vance, J., Naeser, C., 1984, Ages and stratigraphy of lower and middle Tertiary sedimentary and volcanic rocks of the central Cascades, Washington: Application to the tectonic history of the Straight Creek fault: Geological Society of America Bulletin, v. 95, p. 26-44.
- Tabor, R., Booth, D., Vance, J., and Ort, M., 1988, Preliminary geologic map of the Sauk River 30 x 60 minute quadrangle, Washington: U.S. Geological Survey Open-File Report 88-692.

- Tabor, R., 1994, Late Mesozoic and possible early Tertiary accretion in western
 Washington State: The Helena-Haystack mélange and the Darrington-Devils
 Mountain fault zone: Geological Society of America Bulletin, v. 106, p. 217-232.
- Thompson, M., 1983, Solidification in magmas Part 1, the magmatic history of the Tatoosh volcanic-plutonic complex, Mount Rainier National Park, part 2, numerical simulation of heat and mass transfer in solidifying magmas [M.S. Thesis]: University of Oregon.
- Toplis, M., and Corgne, A., 2002, An experimental study of element partitioning between magnetite, clinopyroxene, and iron-bearing silicate liquids with particular emphasis on vanadium: Contributions to Mineralogy & Petrology, v. 144, p. 22-37.
- Trehu, A., Asudeh, I., Brocher, T., Luetgert, J., Mooney, W., Nabelek, J., and Nakamura, Y., 1994, Crustal Architecture of the Cascadia Forearc: Science, v. 266, p. 237-243.
- Trehu, A., 2010, Plate boundary segmentation and upper/lower plate structure in Cascadia, Abstract T14B-03 presented at 2010 Fall Meeting, AGU, San Francisco, CA., 13-17 Dec.
- Walker, B., Jr., Klemetti, E., Grunder, A., Dilles, J., Tepley, F., and Giles, D., 2013,
 Crystal reaming during the assembly, maturation, and waning of an elevenmillion-year crustal magma cycle: thermobarometry of the Aucanquilcha
 Volcanic Cluster: Contributions to Mineralogy & Petrology, v. 165, p. 663-682.
- Walker, G., and Robinson, P., 1990, Paleocene(?), Eocene, and Oligocene(?) rocks of the Blue Moutains region *in* Walker, G., ed., Geology of the Blue Mountains region of Oregon, Idaho, and Washington, Censozoic geology of the Blue Mountains region: U.S. Geologic Survey Professional Paper 1437, p. 13-28.
- Wells, R., Jayko, A., Niem, A., Black, G., Wiley, T., Baldwin, E., Molenaar, K., Wheeler, K, Givler, R., and DuRoss, C., 2000, Geologic map and database of the Roseburg, Oregon 30' x 60' Quadrangle, Douglas and Coos Counties, Oregon: U.S. Geological Survey Open-File Report OF00-376, p. 55, scale 1:100,000.
- Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P, and Wooden, J., 2014, Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot: Geosphere, v. 10, no. 4, p. 1-28.
- Wilkinson, J., 2013, Triggers for the formation of porphyry ore deposits in magmatic arcs: Nature Geoscience, v. 6, p. 917-925.
- Winters, M., 1985, An Investigation of Fluid Inclusions and Geochemistry of Ore Formation in the Cedar Creek Breccia Pipe, North Santiam Mining District, Oregon [Ph.D. Dissertation]: Western Washington University.

APPENDICES

Appendix 1. Field Mapping in the North Santiam District, Marion County, OR

In addition to sample collection during the summers of 2013 and 2014, a geologic map of the North Santiam district was completed at the 1:10,000 scale, covering an area of approximately 4.5 km by 3 km during the summer of 2014. Mapping was completed on a 3 ft LiDAR map by DOGAMI, with reference to U.S. Geological Survey Topographic 7.5-minute Quadrangles of the Battle Ax Quadrangle, Detroit Quadrangle, the Elkhorn Quadrangle, and Lawhead Creek Quadrangle. Sample locations were recorded on the LiDAR map as well as by hand-held GPS.

Geologic mapping was directed towards identifying field relationships of plutonic rocks and hydrothermal mineralization. The aim was to identify the location, orientation and distribution of plutonic dikes and mineralized veins. These dikes intrude earlier Western Cascades volcanics, here identified as the Sardine Formation. The Sardine Formation is typically less resistant to weathering. This area is densely forested and outcrops along hill slopes are rare; therefore outcrop mapping focused on cliffs to the south of the map area and exposures along the Little North Santiam River, Cedar Creek, Opal Creek, and Battle Ax Creek.

Field data concludes that dikes in the North Santiam district are between 10 and 40 m wide and strike NW-SE. These dikes are porphyritic with typically graphic and rare aplitic groundmass, ranging in composition from diorite to granodiorite. Disseminated pyrite (< 2 volume %) is common. Hydrothermal alteration is somewhat widespread but concentrated near the Bornite Breccia Pipe exposure to the south and to tourmaline-bearing breccia exposure just south of the Little North Santiam River. These brecciated zones contain the dominant Cu-sulfide and oxide mineralization of the district. Chalcopyrite, pyrite, tourmaline, and minor chalcocite and glassy limonite are observed. These brecciated zones tend to be somewhat lineated in the NW-SE direction, same as the dikes. Thin (< 2 cm) quartz veins were identified near brecciated zones as well as adjacent to dike contacts with host rock. These veins are typically oriented NW-SE and are near vertical. A small subset of veins (~20% of all veins observed) dip NE-SW and are near vertical. Small, discontinuous faults were observed along the Little North Santiam River that are oriented NE-SW.

This field data is compiled on the map below. The compilation map also includes previous work by Olson (1978) and Stone (1994).

Appendix Figure 1 (Below): Geologic Interpretation of North Santiam District, Marion County. Miocene dikes and brecciated zones mapped by the author; other geologic data compiled from previous work by Olson (1978) and Stone (1994).

Appendix 2. Methods

2.1 Additional Sample Collection

Alexander Iveson provided three samples of the Spirit Lake Pluton associated with the Mt. Margaret deposit. Two additional samples collected by Sarah Power from the Washougal district were acquired (Power, 1984). A sample of monzodiorite was taken from representative skeleton drill core from the White River deposit.

2.2 Sample Preparation for Zircon Analyses

Samples were crushed, powdered, and zircon separated using pan concentration, ultrasonic bath, Frantz magnetic separation, and handpicking by binocular microscope in mineral processing facilities at Oregon State University. Selected zircon grains were placed in rows on double-sided Kapton® tape and mounted in 2.5 cm epoxy plugs, polished to expose zircon cores, imaged by polarizing light microscope to identify apatite and melt inclusion-free zones. Cathodoluminescence (CL) imaging was used to target uranium-rich zones.

<u>Appendix Figure 2</u>: Location map for samples collected and analyzed by XRF and ICP-MS at Washington State University. Made with *GeoMapApp*.

Rock Description Longitude	Latitude Meth	od Mineral	Age	Error N	ISWD References	
nonzodiorite -121.648	47.670 U/Pb T	IMS Zircon	37.00	0.2	Smithson 200	4
ic latite porphyry -121.641	47.674 U/Pb T	IMS Zircon	37.10	0.2	Smithson 200	4
monzodiorite	U/Pb T	IMS Zircon	37.20	0.1	Smithson 200	14
ic latite porphyry	U/Pb T	IMS Zircon	36.80	0.2	Smithson 200	14
ohyritic andesite	U/Pb T	IMS Zircon	38.90	0.3	Smithson 200	4
asively sericitized andesite	40 Ar/3	Ar Sericite	35.50	0.2	Smithson 200	14
ohyritic Plg-Px dacite flow -121.811	47.179 ⁴⁰ Ar/ ³	Ar Plagioclase	20.65	0.08	0.08 Blakely et al., 20	207
rsely porphyritic Plg-Px-Hbl -121.862 ite flow	47.178 ⁴⁰ Ar/ ³¹	Ar Plagioclase	20.82	0.08	0.08 Blakely et al., 20	207
ohyritic Plg-Px dacite flow -121.803	47.169 ⁴⁰ Ar/ ³	Ar Plagioclase	21.10	0.06	0.06 Blakely et al., 20	207
calunite in Qz-Alu cemented HT -121.841	47.164 ⁴⁰ Ar/ ³	Ar Alunite،	19.00	0.4	0.4 Blakely et al., 20	207
rse-grained sprays of Al in Qz- alt'n	47.134 ⁴⁰ Ar/ ³¹	Ar Alunite	19.06	0.21	0.21 Blakely et al., 20	207
sulfides in a matrix of -122.067 -Plq+Ser+Bt	46.350 K/A	r Sericite	16.60	0.6	Evarts & Ashley 1993, 1995	Lasmanis
Bt from Potassic Zone -122.067	46.350 K/A	r Biotite	17.30	0.5	Evarts et al., 19	87
Bt from Phyllic Zone -122.067	46.350 K/A	r Sericite	16.90	0.5	Evarts et al., 19	987
nodiorite completely replaced -122.205 2z+Ser+Trm+Pv	45.788 K/A	r Whole-rock	19.00	0.7	Power et al., 19	981
h Granodiorite -1 22.040	45.779 K/A	r Whole-rock	19.60	0.7	Power et al., 19	181
nite Breccia Pipe -122.245	44.840 K/A	r Sericite	10.10	0.4	Winters 1985	
h Granodiorite -1 22.249	44.833 K/A	r Hornblende	13.40	1.2	Power et al., 19	181
roit pluton (diorite) -122.250	44.718 K/A	r Whole-rock	9.68	0.18	Sutter 1978	
rite -122.250	44.701 U/Pb SHRI	MP-RG Zircon	12.3	0.8†	3.03 John & Fleck, pers. cor	<i>nm.</i> , 2013
nodiorite -122.369	44.587 U/Pb SHRI	MP-RG Zircon	16.2	0.3†	1.21 John & Fleck, pers. cor	<i>nm.</i> , 2013
Adularia Veins from Tate Mine -122.344	44.231 ⁴⁰ Ar/ ³	Ar Adularia	11.16	0.14	27.14 Fleck, pers. comm.	, 2006
Jionte	44.190 K/A 44.128 K/A	r Whole-rock r Whole-rock	13.40 15.86	1.2 0.18	Power et al., 19 Sutter 1978	181
diorite dike -122.631	43.626 U/Pb SHRI	MP-RG Zircon	23.5	0.6†	0.6 John & Fleck, pers. cor	<i>nm.</i> , 2013
diorite stock -1 22.635	43.610 U/Pb SHRI	MP-RG Zircon	23.4	0.5	1.02 John & Fleck, <i>pers. cor</i>	<i>nm.</i> , 2013
diorite ppy -122.633	43.587 K/A	r Whole-rock	21.7	0.8	Power et al., 19	181
-122.670	43.360 ⁴⁰ Ar/ ³	'Ar Alunite	21.6		du Bray & John 2	2011
ence; others unknown ted Daviation						
ence; others unknown ted Daviation						

Appendix 3. Previously Reported Ages

Appendix 4. Petrography

Appendix Figure 3: Additional photomicrographs. Mineral phases are labeled: Actinolite – Act, Chlorite - Chl, Epidote - Ep, Feldspar - Felds, Hornblende - Hbl, Plagioclase - Plag, Pyroxene - Px, Quartz - Qtz, Sericite - Ser. Individual photomicrographs show: A) Resorbed quartz phenocryst and sericitized feldspar phenocryst in porphyry dike from Boulder Creek; B) Typical alteration of Hbl completely replaced by Act with minor Chl; C) Intense Ep alteration of mafics with minor Chl and remnant Px; D) Intense replacement of Felds by Alkali Felds and Albite with remnant Plag.

Sample	District	Rock Type/ Texture	Alteration Summary	Phenocrysts	Matrix
WCOS-2: Boulder Creek	Quartzville	Strongly porphyritic granodiorite with aplitic gm	Feldspars: Plag is 100% replaced by Ser, K-spar is 75% replaced by Ser. Px: 45% by Chlor, 55% by Ser. 1 Bt: 80% to Chlor, 20% to Ser. Quartz is fresh. Mafics in GM to Chlor.	35% phenos of: Plag (30%, 0.2-0.5 mm), Quartz (15%, 0.3-0.75 mm), K-Spar (25%, 0.1-0.5 mm), Px (20%, 1-3 mm), Bt (10%, 0.2 mm)	Fine-grained; 55%; K-spar (45%) + Qtz (30%) + Plag (15%) + Biotite (5%)
WCOS-3	Quartzville	Dacite porphyry	Plag: Fluid fractures common, <5% small secondary Ep or Chlor common. Bt: Altered to microcrystals of Act (50%) + Chlor (35%). Hbl: completely replaced by Act (90%) + Chlor (10%). Matrix: Mafics to Chlor + Act (80-100%)	35% phenos of: Feldspar (40%, 1-3 mm), Bt (30%, 0.2-0.75 mm), Hbl (20%, 0.1-0.3 mm), Qtz (10%, 0.4 mm)	60%, 0.01-0.15 mm; Feldspar (40%), Bt (15%, 65% to Chlor + Act), Hbl (30%, completely replaced by Act + Chlor), Opaques (15%)
WCOS-4	Quartzville	Coarse equigranular Quartz Monzodiorite	Plag: Rims commonly altered to seriicite (5-10%). K Spar: Fluid fractures ubiquitous. Hbl: 70-95% replaced by Actinolite.	95% grains of: Plag (50%, 0.5-4 mm), Hbl (25%, 0.35-1.5 mm), Quartz (10%, 0.1-0.4 mm), K-spar (10%, 0.5-1 mm), Opaques (5%, 0.1-0.3 mm)	No matrix, equigranular intrusion
WCOS-7	Quartzville	Altered weakly porphyritic monzodiorite stock	Plag: 50-60% to Alb, Small Ep inclusions (5-10%). K- spar: Rims to Ep (5-10%), Opaque inclusions. Hbl: Completely replaced by Chlor (90-95%) with Ep rims (5-10%)	70% phenos of: Feldspar (65%, up to 6 mm), K- spar (15%, 0.2-0.75 mm) Hbl (15%, up to 2 mm), Qtz (5%, 0.1-0.2 mm)	25%, 0.01-0.1 mm: Feldspar (70%), Qtz (15%), Hbl (10%), Ep (10%), Opaques (5%)
WCOS-8	Quartzville	Weakly porphyritic andesitic dike	Plag: Ser (80%) + Ep (10-20%) + Sec Felds (0-10%). Px: Pseudomorphed by Chlor (90-100%) + minor Clays. Qtz: Rimmed in Ser. Hbl: Ep (80-100%) + Chlor (10-20%) + Ser (0-10%) + Trace Fe-Oxides	Phenocrysts (20%): Plag (60%, 0.05 mm), Px (25%) Skeletal Hbl (15%), Qtz (5%, 0.2 mm)	75%, 0.01-0.1 mm: Feldspar (55%), Hbl (25%), Px (10%), Qtz (10%)
WC05-12	Detroit Dam	Very weakly porphyritic Qtz Monzodiorite stock	Plag: Fresh. K-spar: ~50% to Alb. Px: 70% Chlor + <5% Ep. Hbl: pseudomorphed by HT Bt (> 80%). Mafics in matrix also altered, feldpsars intact.	85% phenos of: Feldspar (65%, 0.25-1.25 mm), K- Spar (10%, 1-2 mm), Qtz (5-10%, 0.1-0.5 mm), Hbl (15%, 0.05-0.1 mm), CPX (10%, 0.05-0.15 mm),	Characterized by interstitial Qtz + Kspar; (10%): Feldspars (70%) + Qtz (20%) + Opaques + Px, grains rounded and ~0.1 mm

& Mineralogy Summary
≥
Petrograph
S
Cascade
Western
ਰੇ.
(continue
2
Tablé
.≍
Appenc

Sample	Plagioclase	K-Feldspar	Pyroxene	Biotite	Quartz	Hornblende	Oxides/Sulfides
WCOS-2: Boulder Creek	Euhedral; No twinning present, completely replaced by sericite (100%).	Sub: Gray, twinless, blotchy. 75% altered to Sericite	Rounded; 100% reaplced by Chlor(45%) + Sericite (55%)	Anhedral; Replaced by Chlor (80%) + Ser (20%). Some may be hydrothermal but now completely altered	Rounded; thin reaction rims, fresh.	Not observed	Pyrite (5%, 0.05-0.2 mm), Hematite (4.5%, 0.03-0.04 mm)
WCOS-3	Euh; Twinning faint. Often resorbed. Commonly sieved with (<5%) inclusions of either Ser (20% of grains) or Ep (20% of grains). Fluid fractures common	Not observed	Not observed	Sub; bird's-eye extinction visible. Often in clumps. Altered tomicrocrystals of Act (50%) + Chlor (35%)	Rounded; thin reaction rims, fresh.	Skeletal; completely replaced by Act (90%) + Chlor (10%)	Opaques likely disseminated pyrite (5%, 0.01-0.5 mm)
WCOS-4	Euh; Twinning strong. Rims are resorbed and altered to Ser (5- 10%).	Sub; Fluid fractures common, twinning faint.	Not observed	Not observed	Anh; thin reaction rims. Filling in cracks.	Sub: Px cores common, rims or whole xtal altered to Act (70-95%), somewhat skeletal. Small (~0.01 mm) opaque inclusions common.	Opaques typically within hornblende, small.
WCOS-7	Euh; Altered to albite (50-60%), very large complete laths, small Ep replacements (5-10%), perfect twinning	Euh; rims resorbed typically to Ep (5- 10%), inclusions of opaques	Not observed	Not observed	Anh; fillin in cracks.	Euh/Sub; completely replaced by Chlor (90- 95%) and rimmed by Ep (5-10%)	Opaques as inclusion in phenos and overprinting matrix
WCOS-8	Skeletal; Typically replaced by Ser (80%) with minor Ep (10-20%) and some secondary Feldspar (0-10%)	Not observed	Sub; Pseudomorphed by Chlor (90- 100%) with minor clays	Not observed	Rounded; Rimmed in Sericite	Sub; Typically replaced by Ep (80-100%) with minor Chlor (10-20%) and Sericite (0-10%)	Opaques (likely pyrite) 5%, 0.01-0.5 mm
WCOS-12	Euh; Twinning strong, thin reaction rims common but not ubiquitous	Euh; Full of melt inclusions (too large to call sieves), possibly ~50% replaced by Albite	Sub; Replaced by Chlor (30%) + Minor Ep + Ser (<5%)	Not observed	Sub/Rounded ; strong concoidal fracture	Sub-anh; Weak Hydrothermal Bt (>80%) throughout, some remaining CPX cores. Opaque inclusions ubiquitous.	Opaques likely pyrite (%%, 0.05 mm) and Magnetite and Ilmenite pairs (1-3%, 2:1 ratio) disseminated thorughout, typically euhedral

Sample	District	Rock Type/ Texture	Alteration Summary	Phenocrysts	Matrix
WCOSNU- 01	South Umpqua	Finegrained andesite	Plagioclase 20-80% replaced by fg Chlor. Px: Intact, minor Opaque replacement.	20% phenos of: Feldspar (85%, 0.2-1 mm), Quartz (10%, 0.2-0.5 mm), Px (15%, 0.1-0.7 mm)	70%, 0.01-0.15 mm, Less altered than phenos with exception of reheated devitrified glass(?) now Hbl + Px + Chlor (20-30% matrix); Feldspar (IEu Laths, 80%), Px (Somewhat rounded; 20%)
WCOSNU- 07	South Umpqua	Flow-banded Andesite	Plag: Fresh. Px: Fractured and repl. by minor Calc (5-10%) + Opaques (5%). Matrix: Overprinting clays.	20-30% phenos of: Feldspar (75%, 0.2-1.5 mm), Py (25%, 0.2-1 mm)	65%, 0.01-0.175 mm, less altered than phenos but pervasively replaced by clays; Feldspar (80%, acicular), Qtz (10%), Px (10%)
WCOSNU- 09	South Umpqua	Porphyritic diorite	Plag: Fresh. K-spar: Sec fluid fractures + Sec Felds (10-20%). Px: Fresh. Hbl: ~50% repl. by Chlor + Minor Ep. Matrix: Mafics + Feldspars intact.	45% phenos of: Feldspar (45%, 0.5-2 mm), K-spar (15%, 0.3 mm), Px (20%, 0.2-0.6 mm), Hbl (10%, up to 0.75 mm), Minor Quartz (< 10%, 0.05-0.15 mm)	55%, 0.01-0.5 mm, Feldspar (70%), Hbl (5%), Px (10%); Qtz (15%). Mafics relatively intact.
WCOSNU- 10	South Umpqua	Porphyritic tonalite	Plag: Ep (typically in veints, 5-15%) + Sec fluid fractures (5-15%). Px: Fresh. Bt: Act (50-80%) + Ep (10-20%) + Chlor (5-10%). Hbl: Chlor (typically in core, 80-90%) + Act (5-20%) +/- Minor Ep. Matrix: Mafics to Act (80-100%)	45% phenos of: Feldspar (50%, 1-2 up to 5 mm), Qtz (15%, 0.2-0.6 mm), Hbl (15%, 0.5 mm), Bt (15%, 0.1-1mm), Px (5%, 0.1 mm)	55%, 0.05-0.1 mm; Feldspar (50%), Bt (5%), Hbl (5%), Qtz (25%), Opaques (15%)
WCOSNU- 11	South Umpqua	Strongly porphyritic diorite	Plag: Sec Phases along fractures (Act + Sec Felds + Opaques - not occuring together, up to 30%). K- spar: 30% Sec Felds + 10% HT Bt + Fluid fractures. Bt: Ep (10-15%) + Sec Felds (10%) + Opaque (10%). Px: Fresh	45% phenos of:Plagioclase (40%, 0.5-1 up to 3 mm), K-spar (20%,1-2 mm), Bt (25%, 0.5-3 mm), Px (15%, 0.5-1 mm)	55%, 0.01-0.15 mm; Felds (50%), Bt (20%), Qtz (25%), Opaques (15%)

~	
a Z	
Ē	
Ε	
Su	
≥	
8	,
ما م	
ē	
Ξ	
~	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
کے ا	
ac	
p	)
2	
٦,	
S L	
<u></u>	
ğ	
Sc	
Ü	
Ξ	
te	
es	
Š	
÷	•
a	
n	
Ę	
Ъ	
$\underline{0}$	
2	
- Hereicher	
Tab	
.≚	
- e	
ă	
<	

Sample	Plagioclase	K-Feldspar	Pyroxene	Biotite	Quartz	Hornblende	Oxides/Sulfides
WCOSNU- 01	Euh/Sub;Twinning faint or absent; 20-80% replaced by fg Chlor, appear to be infilling sieved texture in places.	Not observed	Euh commonly; Well intact with strong cleavage, some inc. of opaques.	Not observed	Not observed	Not observed	Small (0.05 m )Mag & Ilm (2:1) (1-3%?)
WCOSNU- 07	Euh with irregular rims, strong twinning, fractured and thin reaction rims.	Not observed	Euh; Strong cleavage, fractured and replaced by minor Calcite (5- 10%) + opaques (5%)	Not observed	Not observed	Not observed	Opaques (5%, 0.01-0.1 mm) rounded, in band along section with flow-banding
WCOSNU-	Euh; strong twinning, often sieved and fractured with reaction rims	Sub; typically heavily eroded by secondary fluid fractures and/or Sec Feld xtals (10- 20%) thick irregular reaction rims.	Rounded; Strong cleave, reaction rims. Fresh	Not observed	Rounded/An h; Oscillatory extinction clear. Thin reaction rims.	Sub; Heavily embayed, lots of opaque inclusions. Irregularly replaced by Chlor (~50% phenos). Minor Ep (<5%),	Opaques (5%, 0.01-0.1 mm), rounded
WCOSNU- 10	Euh; strong twinning if a bit irregular, heavily fractured. Rims resorbed to lighter, irregular rims. Large glomerocryst of feldspar. Replaced by Ep (typically in veins, 5- 15%).	Not observed	Sub; Fractured, rims typically resorbed	Euh/sub; Completely replaced by Act (50- 80%) + Ep (10-20%) + Chlor (5-10%)	Rounded; Concoidal fracture, typically clumped	Sub; Opaque inclusion (5%) intact. Replaced by Chlor (typically in cor, 80- 90%) + Act (5-20%) +/- Ep	Opaques in GM
wcosnu- 11	Euh; nicely twinned with rxn rims and secondary phases along fractures (Act + Sec Felds + Opaques - not occuring together). Some (~50%) are sieved.	Euh; All phenos 30% replaced by Sec Felds + 10% to HT Bt; Fluid fractures common.	Sub; Fractured, resorbed rims, inclusion of opaques	Sub but skeletal; Bird's eye extinction intact but fragmented; Replaced by Ep (10- 15%) + Sec Felds (10%) + Opaque (10%)	Not observed	Not observed	~1-2% disseminated Pyrite (<0.01 mm) Magnetite + Ilmenite - estimate ratio?

Sample	District	Rock Type/ Texture	Alteration Summary	Phenocrysts	Matrix
WCOSNU- 12	South Umpqua	Coarse-grained equigranular diorite	Plag: Fractures/wormy fluid paths (<20%), K-spar: 20% of phenos replaced by Sec Felds (100%), Qtz: Fresh, Hbl: Typically completely replaced by Act (90-95%) with minor Chlor (5-10%)	85% grains of: Feldspar (50%, 0.5-4 mm), Hbl (25%, 0.4-1.2 mm), K-spar (15%, 0.5-2 mm), Qtz (15%, 0.2-1.2 mm)	15%, no true groundmass but secondary phases seem to suround major phenocrysts: Acicular (0.05 mm) Chlor ± Act dominate (80%) + Opaq (15%) + Ep (5%)
wcosnu- 19	Bohemia	Weakly porphyritic monzodiorite dike	Plag: Sec Chlor + Ep + Felds in fractures (5-10%), K- spar: 10-15% of phenos full of Chlor +/- Calc (50- 70%) in cyrstal core, Px: Faintly replaced by Calc (<5%) + Chlor (5-10%), Hbl: 20% Fresh, majority replaced by Chlor (70-90%) +/- Ep (10-20%).	30% phenos of: Plag (55%, 0.1-0.5 mm), K-spar (15%, 0.5-1.2 mm), Hbl (10%, 0.5mm), Px (20%, 0.2-0.8 mm)	70%; Plag (50%, up to 0.075 mm), K-spar (20%), Qtz (5%, 0.025 mm) Mafics (10%, 0.01- 0.05 mm), Opaques (15%, 0.01-0.05mm)
wcosnu- 20	Bohemia	Andesite dike	Plag: Ep (<3%) + Calc (<5%) + Opaques (5-10%, K- spar: minor Ep (<3%) + Sec Felds (10-15%) replacement, Hbl: Act (50-70%) + Chlor (20%) + Calc (0-15%) + Ep (5-20%	45% phenos of: Plag (55%, 0.2-0.6 mm) K-spar (20%, 0.3 mm), Hbl (25%, up to 1 mm)	55%: Feldspar (50%, 0.05 mm), Mafics (30%, 0.01-0.05 mm), Opaques (0.01-0.05)
wcosnu- 21	Bohemia	Weakly porphyritic granodiorite	Plag: small (<0.1 mm) replacement of Hbl → HT Bt → Chlor & Quartz (15%). K-spar: ~ 20% replaced by Albite. Hbl: Act (5-60%) + Chlor (20-95%) + Ep (<5%). GM: Hbl replaced to same degree as phenocrysts	70% phenos of: Plag (35%, 1-4 mm), Quartz (15%, 0.2-1 mm), K-spar (25%, 1 mm), Hbl (25%, 0.5 mm)	30%, rounded, 0.05-0.1 mm; mostly Qtz (45%) + K-spar (40%)+ Minor Hbl (5%) + Opaques (10%)

Oxides/Sulfides	ally d by minor Opaques within Hbl ques	tely e (70- (10- s are opaques in GM and as incusions with hbl incusions with hbl intact.	letely -70%) Ic (0- Opaques in matrix and rix. preserved within Hbl s	ced llor Opaques within Hbl, ), and groundmass
Hornblende	Sub/skeletal: Typic. completely replace Act (90-95%) with r Act (90-95%) with r Chlor (5-10%); Opa often accumulated s around rims	Sub; Nearly comple replaced by chloriti 90%) s +/- epidote 20%). Typically rim: most intact portion interestingly, some phenos are globbe together and nearly completely fresh (2 Opaque inclusions i	Sub/Skeletal; Comp replaced by Act (50 + Chlor (20%) + Cal 15%) + Ep (5-20%), dispersing into mat dispersing outwards: Zoning outwards: chlorite → opaque:	ar Sub; Typically repla by Act (5-60%) + Ch of (20-95%) + Ep (<5% Opaques intact
e Quartz	Sub/anh; Very bright/high relifed, fluic inclusions; thin rxn rim	Not observe	Not observe	Sub; Irregul rims but otherwise intact. Lots fluid
eBiotit	Not observed	ck and Not observed te %).	Not observed	Not observed
Pyroxene	vn s Not observed ec	Euh; Rimmed a entirely in thi (~0.01 mm) reaction rim a possibly calcit (<5%); faintl replaced by chlorite (5-10	n Not observed	d / Not observed
K-Feldspar	Anh; often intergrov with Qtz. Sometime: ny (20%) replaced by St Felds (100%).	Sub; Typically thorougly sieved and full of melt inclusion some of the more alt'd feldspars I have seen – some(10-15% full of chlorite +/- calcite(50-70%) in center of xtal.	Euh; More intact that Plag; melt inclusions common and some minor Ep (<3%) + Se Felds (10-15%) replacement	Sub; Heavily resorbe rims, maybe altered Hbl to albite? (20%) Ver nice twinning with some fractures
Plagioclase	Euh; nice twinning, often surrounded by broken up Qtz. Larger laths have twinning interrupted by fractures w/ worr fluid paths and melt inclusions. Somewhat sieved.	Euh; Lots of fractures filled with secondary chlorite and others (5 10%), resorbed rims typical. Not sieved but definitely lots of melt inclusions.	Euh; Very fractured and eroded, interrupting twinning. Secondary phases include Ep (<3%) + Calc (<5%) + Opaques (5-10%). Fluid inclusions present in some, some (10%) heavily sieved.	Euh; Very fresh comparatively, small (<0.1 mm) replacement of → HT Bt → Chlor & Quartz (15%)
Sample	WCOSNU- 12	WCOSNU- 19	WCOSNU- 20	WCOSNU- 21

Sample	District	Rock Type/ Texture	Alteration Summary	Phenocrysts	Matrix
wcosnu- 23	Bohemia	Porphyritic diorite	Plag: Repl. by Ep in fractures (1-3%). Some grains (~20%) more substantially replaced by Ep (5-10%) +/- Chlor (5%). Hbl: typically Act (30-100%) + Chlor (0-30%) + Minor Ep (0-10%). Px and Qtz are fresh.	30% phenos of: Plag (55%, 0.2-0.5, up to 1 mm), Qtz (10%, 0.2 mm), CPX (10%, 0.1-0.3 mm), Hbl (25%, 0.05-1 mm)	70%; Feldspar (55%, 0.015 mm), Hbl (15%, 0.001 mm, replaced by Act + Chlor), CPX (10%, 0.001-0.005 mm), Qtz (10%, 0.005 mm), Opaques (5-10%, 0.001-0.005 mm)
WCOSNU- 24	Bohemia	Porphyritic Qtz Diorite	Plag intact. K-spar: Partially replaced by Chlor(10- 20%) + Ep (up to 30%). Px: Pseudomorphed by Ep (95%). Hbl: at least 75% replaced by Act + Minor Chlor (10-20%) + Ep (up to 20%)	50% phenos of: Plag (45%, 1.5-3 mm), Hbl (25%, 0.05-1 mm), Px (10%, 0.05 mm), K-spar (15%, 1-3 mm), Qtz (15%, 0.05 mm)	50%; Feldspars (55%, 0.01-0.2 mm), Hbl (to Act + Chlor + Ep, 15%, 0.005 mm), Qtz (10%, 0.005-0.01 mm), Opaques (10%, 0.1 mm).
WCOSNU- 25	Bohemia	Porphyritic diorite	Plag: Intact. K-spar: partially replaced by Ep (5- 10%) +/- Opaques (up to 5%). Px: Large replacements of Sec K-spar (5%) + Act (5-10%). Hbl: 20% completely replaced by Chlor, 50% completely replaced by Act, 30% a mixture of the two (typically Chlor in cores	55% phenos of: Plag (45%, up to 3 mm), Hbl (20%, 0.5 mm), Px (0.5-2.5 mm), K-spar (20%, 0.5-1.5 mm), Qtz (10%, 0.5 mm)	
WCOSNU- 28	Blue River	Porphyry diorite	Plag: Intact. K-spar: ~45% have varying replacement phases: Ser (0-15%) + Calc (0-65%) + Ep (0-10%) + Minor Iron Oxide staining. Px: Intact. Hbl: Chlor (cores, 40-90%) + Act (rims, 10-40%) + minor Ep (5-10%), often (30%) rimmed by Calcite.	40% phenos of: Plag (40%, 0.25-0.5 mm), K-spar (25%, 0.5-1.25 mm), Hbl (20%, up to 1.5 mm), Px (15%, 0.1-0.2 mm)	~20% thin section is covered in calcing bands ranging from 0.2-1mm thick! GM is 40%: Feldspar (70%, 0.1 mm), Mafics (10%, 0.05 mm), Opaques (20%, 0.02-0.05 mm)

Sample	Plagioclase	K-Feldspar	Pyroxene	Biotite	Quartz	Hornblende	Oxides/Sulfides
23	teury. Heavity resorbed rims, very fractured. Or, nice twinning in plac suggestive of replacement by albite. Secondary phases in fractures typically Ep (1-3%). Some grains (~20%) more substantially replaced by Ep (5-10%) +/- Chlor (5%)	a Not observed	Sub; Lots of inclusions opaques, slightly resorbed rims, otherwise intactt.	Not observed	Sub; Irregular rims, lots of fluid inclusions	sub: Varying degrees of alteration, typically Act (30-100%) + Chlor (0- 30%) + Minor Ep (0-10%), opaque inclusions common, structure and cleavage intact with eroded rims	Opaques in GM and as inlcusions with hbl
24	Euh; Fractured with thin reaction rims but relatively intact. Strong twinning	Sub; Weak/soft zoning or not present, full of melt inclusions and fractures. Partially replaced by Chlor(10- 20%) + Ep (up to 30%).	g Euh; completely replaced by Ep with cleavage and rims remaining (95%)	Not observed	Anh; Concoidal fracture, filling in around other phases, thin reaction rims	Sub; Typically at least 75% replaced by Act + Minor Chlor (10-20%) + Ep (up to 20%)	Opaques in GM
25	Euh; Fractured with thin reaction rims but relatively intact. Often has "sieved" texture	Euh/Sub; Albitized, commonly fractured, thin reaction rims, sometimes partially replaced by Ep (5- 10%) +/- Opaques (up to 5%)	Sub; Cleavage still present, large repl. by Sec K- spar (5%) + Act (5- 10%), reaction rims typical	Not observed	Anh; Conchoidal fracture, fluid inclusions.	Sub; 20% completely replaced by Chlor, 50% completely replaced by Act, 30% a mixture of the two (typically Chlor in cores), opaque inclusions intact.	
wcosnu- 28	Euh; Lots of fracturing, reaction rims common.	~30% heavily sieved, ~45% have varying replacement phases: Ser (0-15%) + Calc (0- 65%) + Ep (0-10%) + Minor Iron Oxide staining.	Sub; Typically rimmed with secondary Chlor	Not observed	Not observed	Sub; Typically fractured and replaced by Chlor (cores, 40-90%) + Act (rims, 10-40%) + minor (rims, 10-40%), often (30%) Ep (5-10%), often (30%)	

Sample	District	Rock Type/ Texture	Alteration Summary	Phenocrysts	Matrix
WCOSNU- 29	Blue River	Porphyritic diorite intrusion with finegrained groundmass	Feldspars are most altered (20% Sec Felds, 30% Ser, 5% Chlor, <5% Ep), Mafics relatively intact (10% Serc, 5% Chlor), GM alt'n unclear	55% phenos of: Plag (60%, 0.2-0.5 mm), Hbl (30%, 0.3-1.5 mm), Px (10%, 0.1-0.4 mm)	40%, <0.005 mm grains, too fg to identify specific phases. Grains appear somewhat rounded, with likely assemblage 30% Feldspar, 40% Sericite, 30% Mafics + Opaques w/ overprinting clays
WCOSNU- 31	Blue River	Porphyritic Qtz Diorite	Feldspars heavily altered (30-40% Sec. Felds, 30% Ser, 5% Chlr, 3-5% Ep), Hbl completely replaced (70% Act, 20% Chlor, 10% Ksp, Minor Ser + Ep), Qtz fresh; GM alt'n similar	40% phenos of: Plag (60%, 0.2-0.6 mm), Hbl (30%, 0.1-0.25 mm), Quartz (10%, 0.75 mm)	40%, Fine-grained (typically 0.02-0.05 mm), ~70% replaced. ~50 Felds repl. By Ser + Ksp (85%), ~20% Fresh Qtz, ~30% Mafics repl. By Act + Chlor (100%)
WCOSNU- 32	Blue River	Porphyritic diorite or Qtz Diorite	Hbl: some fresh but typically replaced by Chlor (5- 10%) and Ep (5%) and sometimes completely pseudomorphed. Yer: fresh but similar to Hbl. Felds: Ser veins/fluids (0-20%), localized Chlor replacement (10%), minor Ep (<5%), thin reaction rims common, or completely replaced by all. GM: less altered than phenos w/ Mafics to Chlor + Ep (20%) and Felds to Ser (15%).	40% phenos of: Plag (60%, 0.4-4.5 mm), Hbl (30%, 0.5-1.5 mm, up to 4 mm), Px (10%, 0.4-0.5 mm)	60%, Plag laths dominate (60%, up to 0.1 mm long, 15% replaced by Ser), Mafics (20%, 0.05 mm, replaced by Chlor + Ep), at leat 15% Opaques (Blocky, 0.1 mm), some anhedral Qtz (10%, 0.1-0.3 mm, fluid inclusions & reaction rims)
WCOSNU- 33	Blue River	Porphyritic granodiorite	Bt in GM: 95% repl. By radial Act (dom) +/- Chlor +/. Ep, bird's eye extinction intact - may be replacing Primary Hbl. Some K-spar may be secondary.	40% phenos of: Plag (65%, 0.3-1.5 mm), Kspar (15%, up to 0.5 mm), Qtz (20%, 0.1-0.25 mm)	60%, aplitic texture, grains typically 0.1 mm, rounded. Qtz (40%), Ksp (35%), Pyrite (10%), Bt (10%, up to 0.3 mm, subh), Plag (5%)

ĺ								
Sample	Plagioclase	K-Feldspar	Pyroxene	Biotite	Quartz	Hornblende	Oxides/Sulfides	
WCOSNU- 29	Euh; twinning destroyed by Sericite (30%) + less abundanct Chlor (5%) +Ep (-5%), some replaced by albite (15-20%) and secondary fluid pathways	Not observed	Sub/blocky; replaced by Ser (10%) + Chlor (5%) but cores intact	Not observed	Not observed	Sub; Moderately fractured with opaque inclusions, commonly rimmed in Ser. Partially replaced by Chlor (10%) but otherwise intact.		1
WCOSNU- 31	Euh; Twinning moderately defined but mostly replaced by secondary K spar (30-40%) and Ser (20-30%), some Chlor (10%), minor Ep (3-5%). Sometimes nearly completely replaced by microcrystals of K-spar	Not observed	Not observed	Not observed	Sub/anh; Thin reaction rims	Sub; Blocky shape with pronounced singular cleavage. Typically replaced by Act + Chlor + Minor K-spar +/- Ep, Sometimes completely replaced by Chlor or Act		
WCOSNU- 32	Euh; Twinning and cleavage intact although commonly sieved. Most common alteration is crossing fractures/fluid pathways of Ser (0- 20%), localized Chlor replacement (10%), small Ep replacement (<5%), Some completely replaced by sericite (95%)	Not observed	Sub; Rounded, reaction rims, relatively intact but sometimes replaced by Chlor + Ep (20%)	Not observed	Not observed	tun; the majoritey of phenos are nearly completely intact with minor/localized replacement by Chlor (5- 10%) or Ep (5%). Osme completely pseudomorphed by Chlor		
WCOSNU- 33	Euh; Weak twinning and heavily sieved texture, typically centered in core of xtal but can dominate entire xtal. Typically slightly rounded with thin reaction rims. Fluid fractures are rare.	Not observed	Not observed	Only in GM	Sub/Anh; Fresh, somewhat rounded, fluid inc. common.	Not observed	Pyrite in matrix	

Sample	District	Rock Type/ Texture	Alteration Summary	Phenocrysts	Matrix
WCOSNU- 091	North Santiam	Porphyritic andesite or fine- grained monzodiorite	Feldspars mostly intact (K-spar to secondary Ksp fluids + Minor Chlor = 20%), Hbl completely replaced (~50% Chlor, ~30% Ser, ~20% Ep)	30% phenos of: Plag (65%, 0.4-1.6 up to 5 mm), Kspar, (15%, up to 0.5 mm), Hbl (20%, 0.3-0.6 mm)	65%, dominated by Plag laths (up to 0.1 mm but typ. Smaller, 60%), minor K-spar (10%, 0.025 mm, rounded), Mafics (20%, aphanitic), Opaques (~5 µm, 10%)
WCOSNU- 119	North Santiam	Porphyritic monzodiorite	Feldspars: Mostly intact, Kspar alt'n dominated by fluid fractures (20%) and minor local Ep (5%). Hbl: mostly replaced by Chlor (45%, cores) + Act (35%, outer core/rim) + Ep (10%). GM: contains lots of chlor (difficult to ID primary phases) but likely less altered than phenos	55% phenos of: Plag (60%, 0.5-1.5, up to 3 mm), k spar (10%, up to 0.5 mm), Px (10%, 0.25-0.5 mm) Hbl (20%, 0.1-0.5 mm)	<ul> <li>Matrix very fg (&lt;0.01 mm), mineral ID</li> <li>difficult. Estimates: 55% Plag, 15% Opaques, 20% Mafics, 20% K-spar</li> </ul>
WCOSNU- 162	North Santiam	Porphyritic tonalite?	Feldspars: replaced by Ep (15%) + Calc (20%) + Sec. Felds (30%) + Act/Chlor (15%), thick reaction rims. Mafics: Nearly complete replacement by Ep (15%) + Act (25%) + Chlor (25%) + Sec. Felds (5-10%) + Opaques (10%) + Clays (5%). Quartz + Opaques relatively fresh.	35% phenos of: Plag (40%, 0.75 mm), Hbl (30%, u to 1.5 mm), Qtz (20%, 0.1 mm), Opaques (10%, 0. mm)	p 65%, 0.01-0.02 mm rounded grains. 1 Dominated by Felds + Quartz, 20-30% altered mafics, 5% opaques

Sample	Plagioclase	K-Feldspar	Pyroxene	Biotite	Quartz	Hornblende	Oxides/Sulfides
WCOSNU- 091	Euh; Strong twinning, somewhat rounded corners, fluid pathways common although not ubiquitous.	Sub; Weak irregular twinning (tartan twinning rare), distinct fluid fractures common. Reaction rims and sieved textures common.	Not observed	Not observed	Not observed	Sub/Rounded; ID'd as Hbl due to opaque inclusions and some faint twinning. Commonly replaced by Chlor (50%) rimmed by Ser (30%), sometimes more substantially replaced by Ser + Ep + minor Chlor in bands.	Opaques in matrix
WCOSNU- 119	Euh; Strong twinning, small reaction rims and fluid pathways common, sieved zone near rim somwhat common	Sub; Twinning irregular and typically faint. Irregular sieved zones, lots of fluid alt'n (pathways/fractures), rare secondary Ep	Sub; Intact, minor Chlor+Act+Ep (10%) rims and some fracturing, but cleavage and shape primary	Not observed	Not observed	Sub/Rounded; Cores are replaced by anomalous blue Chlor (45%), rims are commonly repl. By Act (35%), Minor Ep in cores (10%). Primary Hbl uncommonly remnant in cores. Opaque inclusions	Opaques in matrix
WCOSNU- 162	Sub; Twinning faintly intact in places, otherwise replaced to: Ep (15%) + Cac (20%) + Sec. Felds (30%) + Act/Chlor (15%), thick reaction rims to the point that cannot distinguish original crystal edge.	Not observed	Not observed	Not observed	Sub; Typically rounded with thin reaction rims.	Sub: Opaque inclusions, hard to ID cleavage or phase boundaries due to alteration: Ep (15%) + Act (25%) + Sec. Felds (5- 10%) + Opaques (10%) + Clays (5%)	Euh/blocky; Thin band : of Fe-oxides surrounding Opaques

mple	District	Rock Type/ Texture	Alteration Summary	Phenocrysts	Matrix
SWR- 11	White River	Porphyritic monzonite	Feldspars: Kspar +/- Qtz in fluid fractures (10-20%) + Minor local Ep replacement (5%). Bt: pseudomorphed by Ep (100%) or repl. By Chlor + Act +/- Clays (50%). Hbl: commonly pseudomorphed by Ep and Chlor+Act (up to 50%) with ligher reaction rims, sometimes (10%) replaced by Sec Bt.	60% phenos of: Plag (40%, up to 2 mm), Hbl (20%, up to 0.5 mm), K-spar (20%, 0.75 mm), Bt (10%, 0.2-0.3 mm), Qtz (10%, 0.1-0.2 mm)	40%, 0.02-0.03 mm rounded grains. K-spar (40%) + Qtz (50%), 10% mafics, Disseminated tarnished Pyrite (<5%)
- OLSC- 47	North Santiam	Quartz monzodiorite	Plag: Repl. By Ser (10-15%) + Act (5%) + K-spar (10-20%). K-spar: Twinning not intact, heavily replaced by Ser (20-30%) + Ep (10%). Px: Repl. By Ep (45%) + Chlor (35%). Hbl: near complete replacement by Act (80-100%) + minor Ep + Chlor (10-20%). Matrix: Abundant alteration to Ser (20% Plag + 20% K-spar), Act (100% Hbl + $\sim$ 60% Px), Rare Chlor + Ep replacing mafics.	30% phenos of: Plag (50%, 1-5 mm), Hbl (30%, 0.3- 1 mm), Qtz (0.4-1 mm), Cpx (10%, up to 0.5 mm), K-spar (5%, 0.2-0.5 mm), Pyrite (5%, up to 0.5 mm typically 0.2 mm)	70%, 0.04-0.1 mm grains. Rounded K-spar (20%) + Qtz (30%) + Euh Plag (40%) + Minor Mafics + Opaques. Abundant alteration to Ser (20% Plag + 20% K-spar), Act (100% Hbl + ~60% Px), Rare Chlor + Ep replacing mafics.
52	North Santiam	Porphyritic Quartz Monzodiorite	Plag: replaced by Sec K-spar via fluid pathways (20- 30%) + minor Ep + Chlor (5-10%). K-spar: replaced by secondary K-spar (40-50%, breaking up the grain) + minor Ep + Chlor (5-10%). Hbl: Some very intact with thin reaction rims, others pseudormoprhed by Act (20%), others repl. by Act (20%) + Ep (5-10%) + K-spar (5-10%) + Chlor (10%).	30% phenos of: Plag (50%, 1-5 mm), Hbl (30%, 0.3- 1 mm), Qtz (10%, 0.1-0.3 mm), K-spar (5%, up to 3 mm), Pyrite (5%, up to 0.4 or 0.5 mm)	70%, graphic and intergrown: Plag (50-60%, up to 0.08 mm) + Qtz (5-10%, round, 0.05 mm), Hbl (Repl. by Act+Opaques, 5%), K-spar (trace, 10%?), Opaques (10-15%, blocky, 0.05 mm). Plag laths are somewhat banded.

Plagioclase K-Feldspar Pyroxene	K-Feldspar Pyroxene	Pyroxene		Biotite	Quartz	Hornblende Sub; Texturally intact with big (up to 0.1 mm)	Oxides/Sulfides
g twinning, partially typically interrupted buby fluid fracture by Sec. Felds (some ps (10-20%) carrying Sec. albitic twinning Not observed in ~20% of vot observed in ~20% of thenos) replacement (10-20%), minor (up to 0.1 mm long) Ep also common (5%, <0.01 mm long) Ep also common (5-10%)	always visible, and always visible, and bu by Sec. Felds (some by Sec. Felds (some albitic twinning observed in ~20% of phenos) replacement (10-20%), minor (up to 0.1 mm long) Ep also common (5-10%)	Su Not observed by Dy Co	c T s by E p s c	b; Cleavage intact t commonly eudomorphed by (100%) or replaced Chlor + Act (50%), me clays present. in reaction rims mmon.	Rounded/An h; Fresh with thin reaction rims, lots of fluid inclusions	opaque inclusions, but strangely banded across cleavage planes that is probably a product of alteration. Commonly pseudomorphed by Ep and Chlor+Act (up to 50%). Ligher reaction rims ubuiquitous. Sometimes repaced by Sec Bt (shreddy)	Magnetite + Ilmenite - estimate ratio?
g twinning, eroded ol. By Ser (10-15%) + Act Sub; Cleavage not Sub; Cleavage par (10-20%), Sec. Felds intact, more heavily intact but repl. By Nc ghty "fuzzy" texture. Ser replaced by Ser (20- Ep (45%) + Chlor y in fluid 30%) + Ep (10%). (35%)	Sub; Cleavage not Sub; Cleavage intact, more heavily intact but repl. By Nc replaced by Ser (20- Ep (45%) + Chlor 30%) + Ep (10%). (35%)	ub; Cleavage ntact but repl. By _{Nc} :p (45%) + Chlor 35%)	Z	t observed	Anh/rounded ; Typically anh with prominent reaction rims (0.025 mm thick)	Sub; near complete replacement by Act (80- 100%) + minor Ep + Chlor (10-20%). Opaque (Mag) inclusions remain.	Pyrite: Rounded, often · surrounded by Chlor alteration but intact
Sub; Twinning intact but otherwise ning strong but replaced by secondary par via fluid pathways (20. breaking up the grain) nor Ep + Chlor (5-10%). + minor Ep + Chlor (5- 10%). One is cut by an Ep vein.	Sub; Twinning intact but otherwise replaced by secondary K-spar (40-50%, breaking up the grain) breaking up the grain) 10%). One is cut by an Ep vein.	Not observed No	e N N	t observed	Anh; thin reaction rims that are not uniform in thickness	Sub: Some very intact with thin reaction rims, others pseudormoprhed by Act (20%), others repl by Act (20%) + Ep (5- 10%) + K-spar (5-10%) + Chlor (10%). Magnetite inlcusions abundant throughout.	Pyrite: Blocky, thin iron oxide rings, fresh.

Sample	District	Rock Type/ Texture	Alteration Summary	Phenocrysts	Matrix
NSNU-2	North Santiam	Porphyritic Qtz monzodiorite	Plag: Secondary phases are uncommon and limited to Qtz + Minor Ep + Rare Sericite (10%). Hbl: Characteristically altered to anomalously dark purple and blue Chlor + Ep restricted to cores (100%), or Ep pseuodmorphs Sec Bt/Act, or intact cores with chloritized rims and minor Ep (50%).	35% phenos of: Plag (50%, 0.3-1.2 mm), K-spar (20%, 0.1-0.5 mm), Hbl (20%, 0.3-0.7 mm), Qtz (10%, 0.1-0.3 mm)	65%, Qtz (25%) + K-spar (35%) + 20% Plag (laths up to 0.1 mm) + Hbl (15%, heavily alter'd and does not retain its shape) + Opaques (10%).
E-UNSN	North Santiam	lg nimbrite	Plag: secondary Ep (20-30%). K-spar: Heavily replaced by Quartz + Chlor + Epidote + Biotite → Actinolite (70%). Px: Fresh. Hbl: Some intact (50%), some replaced by either or a combination of both Act + Ep (80%).	20% phenos of: Plag (55%, 0.5-2 mm), Hbl (25%, 0.3-0.7 mm), CPX (15%, 0.5-1 mm), K-spar (5%, 1.5 mm)	80%, very fg (<0.02 mm) and clay-rich. Plag- dominated with substantial proportions of mafics (20-30%), very tiny opaques disseminted (~10 microns)
NSNU-4	North Santiam	Porphyritic Granodiorite	Quartz + Plag intact, Hbl completely replaced by Chlor (cores - 50-70%) + Ep (outer cores to rims - 30-40%) + Clays (10%), K-spar heavily sieved and fractured with minor sec. Ep (5-10%). GM: Mafics completely replaced but K-spar intact.	45% phenos of: Plag (60%, 0.5-2 mm), Hbl (20%, 0.5-1 mm), K-spar (15%, 0.3 mm), Qtz (5%, 0.1 mm)	55%; Rounded K-spar (35%) and quartz (30%) (grains ~0.05 mm), plag laths (20%, 0.1-2 mm), minor opaques (10%, 0.05 mm), mafics <5%
NSNU-6	North Santiam	Porphyritic monzodiorite	Plag + CPX fresh. Hbl: 90% completely replaced by Act (70%) + Ep (15%) + Chlor (15%). K-spar: Minor epidote replacement (5%). Matrix: ~70% mafics replaced by Ep + Chlor + Act (dominant), clays common.	55% phenos of: Plag (60%, 0.5-2 mm), Hbl (20%, 0.15 mm), K-spar (15%, 0.3-0.6 mm), Px (5%, 1.5 mm)	50%; Grains typically 0.02 mm. 35% Mafics + 25% K-spar + Plag (20%) +20% opaques. Lots of clay and chlorite alteration, difficult to quantify.

Sample	Plagioclase	K-Feldspar	Pyroxene	Biotite	Quartz	Hornblende	Oxides/Sulfides
NSNU-2	Eufi, strong twinning, reaction rims common but not ubiquitous. Some grains have defined sieved zone near rim or closer to core, several are cut by thick (0.01-0.02 mm) Sec. Felds bands, others sieved throughout. Secondary phases are uncommon and limited to Qtz + Minor Ep + Rare Sericite (10%)	Sub; defined reaction rims ubiquitous and fractures common.	Not observed	Not observed	Sub; thin reaction rims irregular shape.	Sub; Characteristically altered to anomalously dark purple and blue Chlor + Ep restricted to , cores (100%). In some cases Ep pseuodmorphs Sec Bt/Act, some have intact cores with chloritized rims and minor Ep (50%).	Opaques in GM
E-UNSN	Euh; Twinning is weak and absolutely full of sieved texture and secondary epidote (20-30%)	Skeletal; Heavily replaced by Quartz + Chlor + Epidote + Biotite → Actinolite (70%)	Sub; Very fresh, with very thin reaction rims and some fracturing.	Not observed	Not observed	Sub: Either relatively intact with thin reaction rims and opaque inclusions OR remarkably destroyed and replaced by either or a combo of both: Actinolite and epidote (80%).	Opaques in matrix
NSNU-4	Euh; Rims are somewhat irregular, secondary fluid fracturing is common, but otherwise fresh, (+/- some clays), Twinning common and often albite.	Skeletal; Heavily sieved and fractured, twinning in place but weak, secondary epidote common (5- 10%) and some iron oxides	Not observed	Not observed	Sub; Very fresh with eroded grain boundaries	Sub; Completely replaced by chlorite (cores – 50– 70%), epidote (outer cores to rims – 30–40%), and clays (10%), no grain boundaries left.	- Minor opaques in matrix
NSNU-6	Euh; Albite twinning, Sieved zones, reaction rims, and fluid fractures common. Sieved zones may have clays +/- secondary Feldspar (10%). ~20% have oscillatory zoned with thin reaction rims.	Sub; Embayed, lots of fractures, rare (5%) epidote inclusions. Heavily sieved.	Euh; Embayed rims but otherwise fresh	Not observed	Not observed	Sub; The majority of phenos (90%) completely replaced by Act (70%) + Ep (15%) + Chlor (15%). Some (10%) are completely fresh with thin lighter reaction rims.	Opaques in matrix

Sample	District	Rock Type/ Texture	Alteration Summary	Phenocrysts	Matrix
L-UNSN	North Santiam	Porphyritic diorite	Plag + CPX fresh + Opaques. K-spar: Lots of fluid fractures, 5% epidote inlcusions. Hbl: Replaced by Act (70%) + Ep (5-10%) + Chlor (20%), Lots of opaque inclusions (up to 15-20%), Secondary feldspar near rim (<5%) common.	55% phenos of: Plag (55%, 0.3-1.5 mm), Px (20%, 1.5 mm), Hbl (15%, 0.2 mm), K-spar (5%, 0.3-0.6 mm), Opaques (<5%, 0.2 mm)	45%; Grains typically 0.01-0.02 mm. 35% Mafics +15% K-spar + Plag (25%) + 25% Opaques; Lots of clay and chlorite alteration, difficult to quantify. Mafics $\rightarrow$ Act + Chlor
NSNU-8	North Santiam	Porphyritic diorite	Plag: Rare secondary Ep (5-15%), sometimes within fractures. K-spar: Epidote inclusions common (5- 10%), ~10% completely replaced by Sec. Felds microcrystals. Px: Typically ~30% replaced by Act + Chlor + minor Ep. Hbl: Typically pseudomorphed by Act (90%) with minor Chlor near rims (10%), uncommon Ep in core. Mafics: Mafics green, alt'n unclear	30% phenos of: Plag (65%, 0.2-1.5 mm), Hbl (15% 0.1-0.4 mm), Px (10%, 0.1-0.4 mm), K-spar (5%, 0.2-0.5 mm), Opaques (5%, 0.05-0.2 mm)	70%; Plag laths (70%, 0.02 mm), Opaques (10%, <0.01 mm), Green mafics (20%, <0.01 mm)
6-UNSN	North Santiam	Porphyritic diorite	Plag: Secondary epidote (0.05 mm, 15%). K-spar: Ep + Sec Felds veins (10-20%), OR completely replaced by Sec Felds microcrystals with secondary Ep (10%). Px: Fresh. Hbl: Typically pseudomorphed by Act (100%). Some (15%) have cores filled with Sec Felds (45%) with minor Ep + Fe-oxides (10%)+ Act in thick (0.05 mm) rims (45%). Matix: Alteration unclear but at leat 20% mafics replaced by Chlor + Act.	35% phenos of:Plag (65%, up to 2 mm), Px (15%, 0.05-0.6 mm), Hbl (10%, 0.05-0.4 mm), K-spar (10%, 0.2-0.5 mm), Opaques (<5%, 0.05-0.1 mm)	65%; Feldspars (50%), Mafics (35%), Opaques (15%), grains typically 0.01-0.03 mm. Alteration unclear but at leat 20% mafics replaced by Chlor + Act.

Sample	Plagioclase	K-Feldspar	Pyroxene	Biotite	Quartz	Hornblende	Oxides/Sulfides
7-UNSN	Euh; Moderately sieved with secondary fluid fractures, reaction rims. Rare secondary Ep (5%)	Sub; Embayed, lots of fractures, rare (5%) epidote inclusions. Heavily sieved. Thick reaction rims (0.01 mm)	Euh; Embayed rims, feldspar inclusion. Otherwise intact.	Not observed	S ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	keletal; Replaced by Act 70%) + Ep (5-10%) + hlor (20%). Lots of paque inclusions (up to 5-20%). Secondary eldspar near rim (<5%) ommon.	Opaques: Sub; Typically near altered Hbl; Rounded.
8-NNSN	Euh; Moderately sieved with secondary fluid fractures, reaction rims. Rare secondary Ep (5-15%), sometimes within fractures.	Sub; Embayed, lots of fractures, common epidote inclusions (5- 10%). Heavily sieved. Thick reaction rims (0.01 mm). Sometimes completely replaced by microcrystals of secondary feldspar (10%).	Euh; Embayed, Thin reaction rims, typically ~30% replaced by Act + Chlor + minor Ep. Often associated with opaques	Not observed	S Not observed ((	keletal; Typically seudomorphed by Act 90%) with minor Chlor lear rims (10%), incommon Ep in core.	Fresh, Typically near Px and/or altered Hbl. Rounded, or anhedral. If anhedral surrounded by feldspar microcrystals.
6-UNSN	Euh; Typically heavily sieved with large melt inclusions and secondary epidote (0.05 mm, 15%). Thin reaction rims common.	Sub; Either rounded with thick (0.05 mm) reaction rims and Ep + y Sec Felds veins (10- 20%), OR completely replaced by Sec Felds microcrystals with secondary Ep (10%)	<ul> <li>Euh; Embayed,</li> <li>Thin reaction</li> <li>rims, otherwise</li> <li>intact.</li> </ul>	Not observed	Not observed	keletal; Typically iseudomorphed by Act 100%). Some (15%) ave cores filled with Sec elds (45%) with minor isp + Fe-oxides (10%)+ Act in thick (0.05 mm) ims (45%).	Rounded/Sub; Appear to have thin reaction rims.



# Appendix 5. Zircon U-Pb Geochronology

















0.20

0.16

0.12

0.08

0.04

0.00

0.20

100

566 40 32

²⁰⁷Pb/²⁰⁶Pb

**Appendix Figure 4:** Inverse concordia plots with  $2\sigma$  error ellipses for all. Samples analyzed by SHRIMP-RG (n = 3) denoted with *; all other sampes analyzed by LA-ICP-MS at OSU. All error ellipses are uncorrected for common lead. Red ellipses were included in the age calculation. Blue ellipses were excluded on the basis of inheritance, discordance, or Pb-loss. Chords are common Pb corrections to the concordia after Stacey and Kramer (1975).

										0/_
		Total		Total		7-corr		²⁰⁶ Pb/ ²³⁸ U		∕₀ Discor-
Sample Spot	Note	²³⁸ U/ ²⁰⁶ Pb	±%	²⁰⁷ Pb/ ²⁰⁶ Pb	±%	²⁰⁶ Pb/ ²³⁸ U	±%	Age	1σ	dant
SRM01-108-01	Inherited	127.0	2.8	0.05176	22.1	0.00781	5.0	50.2	2.5	0.9
SRM01-108-02	Inherited	144.0	2.8	0.07207	10.4	0.00663	4.3	42.6	1.8	4.5
SRM01-108-03	Inherited	135.1	1.5	0.05351	10.3	0.00732	2.6	47.0	1.2	1.2
SRM01-108-04		167.7	4.8	0.04869	5.3	0.00594	5.5	38.2	2.1	0.3
SRM01-108-05		153.9	4.4	0.04179	92.9	0.00656	11.8	42.2	5.0	-0.9
SRM01-108-06		155.1	5.7	0.04099	20.0	0.00652	7.6	41.9	3.2	-1.1
SRM01-108-07		177.0	4.8	0.05544	16.1	0.00556	6.7	35.8	2.4	1.6
SRM01-108-08		185.1	2.3	0.04292	9.8	0.00544	3.1	35.0	1.1	-0.7
SRM01-108-09		183.6	4.4	0.03848	37.7	0.00553	7.3	35.5	2.6	-1.5
SRM01-108-10		158.2	2.0	0.04183	20.6	0.00638	3.6	41.0	1.5	-0.9
SRM01-108-11	Inherited	145.9	4.1	0.03994	9.0	0.00694	4.9	44.6	2.2	-1.3
SRM01-108-12	Inherited	128.0	2.9	0.05257	28.7	0.00774	5.8	49.7	2.9	1.0
SRM01-108-13		194.9	7.0	0.02813	118.7	0.00530	13.8	34.1	4.7	-3.4
SRM01-108-14		157.1	3.4	0.05137	20.0	0.00631	5.5	40.6	2.2	0.8
SRM01-108-15	Inherited	120.1	3.6	0.03589	52.2	0.00849	7.1	54.5	3.9	-2.0
SRM01-108-16	Inherited	136.4	5.2	0.04124	29.5	0.00741	7.7	47.6	3.7	-1.0
SRM01-108-17	Inherited	144.2	4.4	0.04155	24.2	0.00700	6.5	45.0	2.9	-1.0
SRM01-108-18		162.0	4.3	0.05286	20.8	0.00611	6.6	39.2	2.6	1.1
SRM01-108-19	Inherited	128.1	2.9	0.04563	10.7	0.00783	3.8	50.3	1.9	-0.3
SRM01-108-20	Inherited	140.4	3.0	0.03455	24.4	0.00728	4.7	46.8	2.2	-2.3
SRM01-108-21	Inherited	97.3	7.1	0.03690	65.5	0.01047	12.1	67.2	8.1	-1.9
SRM01-108-22	Inherited	145.4	39	0.05319	72 7	0.00680	11 3	43.7	49	11
SRM01-108-23	innerneu	172.9	7.0	0.04797	50.6	0.00577	12.2	37.1	4 5	0.2
SRM01-108-24		175.0	3.0	0.04175	23.1	0.00576	4.8	37.1	1.3	-0.9
SRM01-108-25		161.2	9.5	0.04617	22.0	0.00621	12.4	39.9	5.0	-0.1
SRM01-108-26		163.5	ΔΔ	0.04787	22.0	0.00610	7.7	39.2	2.8	0.1
SRM01-108-27	Inclusion	204.7	42.0	0.07326	166.6	0.00465	111 7	29.9	33.4	4.8
SRM01-108-28	Inherited	150 1	32	0.07920	13.7	0.00405	43	23.5 43.4	1 9	-1 4
SRM01-108-29	innerneu	162.1	3.4	0.03910	32.7	0.00626	5.8	40.2	23	-1 5
SRM01-108-30		170.2	87	0.03001	28.5	0.00595	11 7	38.3	4 5	-1 3
SRM01-108-31	Inherited	108.4	2.0	0.03552	20.5	0.00933	4.2	59.8	2.5	-1.5
SRM01-108-31	innenteu	165.1	2.0	0.04134	10.3	0.00555	5.0	38.5	2.5	1.1
SRM01-108-32		173.8	5.2	0.05231	83	0.00000	5.5 6.4	36.0	2.5	1.0
SRM01-108-33		179.0	5.2	0.03587	62.2	0.00500	10.4	26.7	2.5	-1.0
SPM01-108-34		211.6	J./ 7 2	0.053067	26.2	0.00372	10.4	20.0	2.1	1.0
SUMUT-108-33	Inhoritod	120.9	6.0	0.03300	167	0.00407	10.4	50.0	5.1	1.2
SPM01-108-30	Inherited	120.8	0.0 8.6	0.03733	20.0	0.00842	11 0	16.8	5.6	-0.6
SININO1-108-37	innenteu	150.1	0.0 2 1	0.04333	167	0.00723	0.1	20.0	3.0 2 E	-0.0
SPM01-108-20		100.5	5.1 7 1	0.00049	40.7 17 /	0.00002	27	36.7	5.5 1 /	0.1
SRIVI01-108-39	Inhoritod	174.2	2.1	0.04718	27.2	0.00374	5.7	18 5	2.4	0.1
SRIVI01-108-40	imenteu	131.1	5.1 77	0.05510	57.5 10 1	0.00733	0.9	40.5 26 E	5.4 2.4	1.1
SRIVIU1-108-41	Inhoritod	1/4.0 1/2 E	7.7 A A	0.05294	10.1 25 6	0.00508	9.4	30.3 4E 0	5.4 2.0	1.1
SRIVIU1-108-42	innenteu	142.5	4.4 E 0	0.05075	25.0	0.00714	0.5	45.9	2.9	-1.9
SRIVIU1-108-43	Inhoritod	150.6	5.U	0.05010	17.9	0.00660	7.0	42.4	3.0	0.6
SRIVI01-108-44	Innented	128.8	2.5	0.04484	12.0	0.00780	3.0	50.1 22 <b>2</b>	1.8	-0.4
SRIVI01-108-45		193.7	4.2	0.04752	19.6	0.00516	6.1	33.2	2.0	0.1
SRM01-113-01	Inherited	175.6	2.8	0.03313	15.9	0.00584	3.9	37.5	1.5	-2.5
SRM01-113-02		185.2	4.9	0.04265	11.8	0.00544	6.1	35.0	2.1	-0.7
SRM01-113-03	Inherited	169.5	3.9	0.04360	14.6	0.00593	5.2	38.1	2.0	-0.6
SRM01-113-04		201.0	2.5	0.03924	5.0	0.00504	2.9	32.4	0.9	-1.3
SRM01-113-05		199.2	4.5	0.04888	23.9	0.00500	7.0	32.2	2.2	0.4
SRM01-113-06		195.8	6.3	0.04190	14.9	0.00515	7.9	33.1	2.6	-0.9

Appendix Table 3. U-Pb Spot Analyses by LA-ICP-MS

										%
		Total		Total		7-corr		²⁰⁶ Pb/ ²³⁸ U		Discor-
Sample Spot	Note	²³⁸ U/ ²⁰⁶ Pb	±%	²⁰⁷ Pb/ ²⁰⁶ Pb	±%	²⁰⁶ Pb/ ²³⁸ U	±%	Age	1σ	dant
SRM01-113-07		186.4	4.4	0.03978	14.5	0.00543	5.6	34.9	2.0	-1.3
SRM01-113-08	Inherited	151.7	6.4	0.03764	7.8	0.00670	7.3	43.1	3.2	-1.7
SRM01-113-09	Inherited	156.5	1.4	0.04346	20.3	0.00643	3.0	41.3	1.2	-0.6
SRM01-113-10		190.4	3.4	0.04678	18.9	0.00525	5.1	33.8	1.7	0.0
SRM01-113-11	Inherited	170.6	2.9	0.04316	15.3	0.00590	4.2	37.9	1.6	-0.7
SRM01-113-12		191.5	2.7	0.04269	2.0	0.00526	2.9	33.8	1.0	-0.7
SRM01-113-13		197.4	1.8	0.04123	4.5	0.00512	2.2	32.9	0.7	-1.0
SRM01-113-14		191.4	3.0	0.04486	10.1	0.00524	3.9	33.7	1.3	-0.3
SRM01-113-15		185.5	1.9	0.03587	21.8	0.00549	3.3	35.3	1.2	-2.0
SRM01-113-16	Inherited	159.9	4.7	0.05022	10.9	0.00622	6.0	39.9	2.4	0.6
SRM01-113-17		198.2	3.2	0.03976	11.2	0.00511	4.2	32.9	1.4	-1.3
SRM01-113-18		183.0	1.4	0.04546	17.7	0.00548	2.9	35.2	1.0	-0.2
SRM01-113-19	Inherited	158.5	3.6	0.04137	11.7	0.00637	4.6	41.0	1.9	-1.0
SRM01-113-20		200.0	4.1	0.04552	23.4	0.00501	6.3	32.2	2.0	-0.2
SRM01-113-21	Inherited	158.4	2.8	0.03284	16.0	0.00647	3.9	41.6	1.6	-2.5
SRM01-113-22	Inherited	179.8	0.5	0.04329	16.8	0.00560	1.8	36.0	0.7	-0.6
SRM01-113-23		186.5	2.2	0.03422	5.8	0.00548	2.6	35.3	0.9	-2.3
SRM01-113-24	Inherited	161.4	5.0	0.03206	24.7	0.00636	6.7	40.9	2.8	-2.7
SRM01-113-25	Inherited	175.0	2.3	0.03501	15.5	0.00583	3.3	37.5	1.2	-2.1
SRM01-113-26	Inherited	176 1	4.2	0.04667	3.8	0.00568	47	36.5	17	0.0
SRM01-113-27	Inherited	161 7	6.6	0.03014	19.0	0.00637	8.1	40.9	33	-3.0
SRM01-113-28	Inherited	174 9	3.0	0.03414	30.8	0.00585	5.0	37.6	19	-2.3
SRM01-113-20	Inherited	163.6	27	0.03369	28.4	0.00505	4 5	40.2	1.5	-2.5
SRM01-113-30	mineriteu	103.0	35	0.04940	16.6	0.00520	5.2	33.5	1.0	0.5
SRM01-113-31	Inherited	134.3	2.8	0.03473	17.7	0.00761	4.0	48.9	2.0	-2.2
SRM01-113-32	Inherited	151.8	2.0	0.03087	17.7 43.4	0.00701	4.0	43.6	2.0	-2.2
SRM01-113-32	mineriteu	190.0	2.4	0.03087	26.2	0.00540	4.5	34.7	1.6	-2.5
SRM01-113-33	Inherited	165.8	6.1	0.03282	8.2	0.00540	4.7 7 1	30.3	2.8	-2.5
SRM01-113-34	innenteu	202.0	2 1	0.03512	122	0.00499	2.2	22.1	2.0	-1.4
SPM01-112-26		203.9	1.6	0.03039	20.2	0.00499	2.5 2.1	22.1	1.1	-1.0
SUMU1-113-30		104.0	1.0	0.03989	10.1	0.00504	5.1	22.4	2.0	-1.2
SUMU1-112-27		194.9	4.0	0.04037	19.1	0.00515	0.0	22.0	2.2	0.0
SPM01-112-20		191.0	2.6	0.04533	75	0.00527	1.9	22 1	1.4	-0.0
SUMU1-112-22		194.9	3.0 2 E	0.04554	7.5 2E 1	0.00514	4.5 E.G	25.1	1.4 2.0	-0.2
SRIVIU1-113-40		187.9	3.5 1 E	0.03170	55.1 7 4	0.00547	5.0 2.1	55.Z	2.0	-2.7
SRIVIU1-113-41		184.0	2.1	0.04014	7.4 0.0	0.00530	2.1	24.4	1.4	-1.2
SRIVIU1-113-42	Inhoritod	169.0	5.4 1 1	0.04050	0.9 10.2	0.00535	4.Z	54.4 40.0	1.4 2.4	-1.1
SRIVIU1-113-43	innenteu	100.8	4.1	0.04674	19.2	0.00622	5.9	40.0	2.4	0.0
SRIVIU1-113-44		195.6	3.0	0.04861	9.2	0.00509	4.6	32.8	1.5	0.3
SKIVIU1-113-45		198.0	4.0	0.04236	24.3	0.00509	0.1	32.7	2.0	-0.8
WCOSW/R-01-01	Inherited	173.0	71	0.04534	38.3	0.00580	11 3	373	12	-0.3
WCOSWR-01-02	Inherited	309.1	3.9	0.05268	20.5 21 /	0.00320	6.2	20.6	13	1 1
WCOSWR-01-02	Discordant	142.2	7.9	0.2202	5 2	0.00320	1/ 0	20.0	2.4	10 5
	Discordant	142.2	7.0 0.2	0.32038	5.Z	0.00330	14.9 10 E	177	5.4 1 0	49.5
		247.2	0.5	0.03917	19.5	0.00275	10.5	107	2.5	-1.5
	Inhoritod	547.2 161 2	9.5 4 7	0.04322	40.7 22.7	0.00290	15.7	10.7	2.0	-0.0
	Dhiloss	101.3	4./ 2.C	0.04105	5∠./ ⊑ 1	0.00020	/.5	40.2	5.0	-0.9
	PDLOSS	445.9 255 0	ס.כ קו	0.05806	5.1 16.0	0.00220	4.3 6 F	14.1	0.0 1 7	2.1
	Inharitad	3,55.8 272 ₫	4./ E 0	0.05212	10.U	0.00278	0.5	17.9	1.Z	1.0
	miented	2/3.1	5.9	0.04544	39./ 10.0	0.00367	9.7	23.D	2.3	-0.2
	Discondent	330.2	3.9 6 F	0.05292	19.0	0.00294	6.U	17.9	1.1	1.2
		204.ð	0.5 7 7	0.21297	7.5	0.00264	11.2	17.0	1.9	50.1
VVCUSVVR-01-12	innerited	289.9	1.1	0.04153	31.0	0.00348	10.9	22.4	Z.4	-0.9

Appendix Table 3 (continued). U-Pb Spot Analyses by LA-ICP-MS

				_						%
		Total		Total		7-corr		206Pb/238U		Discor-
Sample Spot	Note	²³⁸ U/ ²⁰⁶ Pb	±%	²⁰⁷ Pb/ ²⁰⁶ Pb	±%	²⁰⁶ Pb/ ²³⁸ U	±%	Age	1σ	dant
WCOSWR-01-13	Inherited	292.4	2.3	0.05980	16.5	0.00334	4.2	21.5	0.9	2.4
WCOSWR-01-14	Inherited	263.5	2.5	0.04043	32.6	0.00384	5.0	24.7	1.2	-1.1
WCOSWR-01-15	Discordant	134.7	6.8	0.64266	7.0	-0.00059	-103.5	-3.8	3.9	107.9
WCOSWR-01-16		328.9	4.7	0.04825	16.1	0.00303	6.4	19.5	1.2	0.3
WCOSWR-01-17		405.3	3.9	0.05795	34.8	0.00242	7.9	15.6	1.2	2.1
WCOSWR-01-18		337.7	3.6	0.05503	36.8	0.00292	7.5	18.8	1.4	1.5
WCOSWR-01-19		333.7	4.7	0.05818	15.2	0.00293	6.6	18.9	1.3	2.1
WCOSWR-01-20	Inherited	312.3	2.9	0.04901	14.4	0.00319	4.3	20.5	0.9	0.5
WCOSWR-01-21	Inherited	271.3	1.8	0.04778	7.2	0.00368	2.4	23.7	0.6	0.2
WCOSWR-01-22		383.8	8.9	0.04543	20.1	0.00261	11.6	16.8	1.9	-0.2
WCOSWR-01-23		339.4	1.6	0.03612	45.0	0.00300	4.5	19.3	0.9	-1.9
WCOSWR-01-24	Inherited	244.0	3.4	0.04801	12.0	0.00409	4.6	26.3	1.2	0.3
WCOSWR-01-25	Inherited	295.4	2.1	0.05244	24.1	0.00335	4.5	21.6	1.0	1.1
WCOSWR-01-26	Inherited	286.7	6.8	0.03603	56.1	0.00355	11.1	22.9	2.5	-1.9
WCOSWR-01-27	Inherited	191.7	4.4	0.04827	19.9	0.00520	6.4	33.5	2.1	0.3
WCOSWR-01-28		337.8	5.9	0.04675	28.0	0.00296	8.7	19.0	1.7	0.0
WCOSWR-01-29		331.1	5.0	0.06229	21.9	0.00293	7.9	18.9	1.5	2.9
WCOSWR-01-30	Inherited	309.8	5.5	0.05478	11.2	0.00318	7.0	20.5	1.4	1.5
WCOSWR-01-31	Inherited	268.2	2.4	0.05217	21.3	0.00369	4.6	23.8	1.1	1.0
WCOSWR-01-32	Inherited	282.4	4 1	0.05464	21.8	0.00349	6.5	22.5	1 5	15
WCOSWR-01-33	innerneu	363.4	4.1	0.03404	8.2	0.00345	5.9	17.6	1.0	0.4
WCOSWR-01-34	Discordant	161.9	27	0.27111	63	0.00251	8.1	23.7	1.0	40.6
WCOSWR-01-35	Inherited	295 5	53	0.27111	6.1	0.00336	6.2	23.7	1.5	40.0 0.8
WCOSWR-01-36	Discordant	230.8	10.0	-0 18707	31.0	0.00550	2.9	39.5	1.5	-42.2
WCOSWR-01-37	Discordant	230.0	5 /	0.10707	63	0.00013	7.0	20.9	1.2	92.2
WCOSWR-01-37	Discordant	278.5	0.7	0.10073	0.5 56 /	0.00324	22 0	20.9	1.J 6.0	9.0
WCOSWR-01-30	Inherited	223.4	15	0.05765	12 /	0.00400	22.5	20.1	0.0	15
WCOSWR-01-39	innenteu	207.0	75	0.03400	12.4	0.00355	2.5	16.6	15	-1.0
WCOSWR-01-41	Inhoritod	210.7	5.0	0.05869	15.1	0.00237	75	20.2	1.5	2.0
WCOSWR-01-41	Discordant	228.6	5.4	0.03809	7 2	0.00313	11.0	20.5	1.5	2.2
	Discoluant	220.0	127	0.20003	171	0.00311	17.0	20.0	2.2	20.9
	Inhoritod	270.0	15.7 20	0.04462	10.2	0.00271	17.4 E 2	20.4	5.U 1 1	-0.5
	Inherited	200.0	3.0 1.0	0.05917	10.2 22.2	0.00316	5.5 4.2	20.4	1.1	-1.5
	Dh Loca	509.9 472 2	1.9 E 0	0.05820	10.2	0.00310	4.5	20.5	0.9	2.1
WCOSWR-01-46	PD LOSS	472.2	5.8	0.04315	18.5	0.00213	7.7	13.7	1.1	-0.0
WCOSWR-01-47	Lucha a site a si	393.9	3./	0.04529	31.2	0.00254	0.5	10.4	1.1	-0.2
WCOSWR-01-48	Innerited	268.9	7.1	0.04865	25.9	0.00370	10.0	23.8	2.4	0.4
WCOSWR-01-49		382.9	9.0	0.05500	16.3	0.00257	11.6	16.6	1.9	1.5
WCOSWR-01-50		401.6	4.3	0.05724	53.5	0.00244	10.4	15.7	1.6	2.0
WCOSWR-01-51		405.0	7.9	0.04688	15.6	0.00247	9.9	15.9	1.6	0.1
WCOSWR-01-52	Pb Loss	440.2	1.4	0.06193	8.1	0.00221	2.4	14.2	0.3	2.8
WCOSWR-01-53		341.8	4.5	0.03786	/5.9	0.00297	10.0	19.1	1.9	-1.6
WCOSWR-01-54		440.4	6.6	0.04800	9.3	0.00226	7.9	14.6	1.1	0.3
WCOSWR-01-55	Inherited	295.9	9.7	0.05938	27.0	0.00330	14.0	21.2	3.0	2.3
WCOSWR-01-56		361.6	12.6	0.03573	87.3	0.00282	20.7	18.1	3.8	-1.9
WCOSWR-01-57	Inherited	282.6	1.8	0.04634	31.4	0.00354	4.4	22.8	1.0	0.0
WCOSWR-01-58	Inherited	315.4	1.8	0.05072	21.2	0.00315	3.8	20.3	0.8	0.8
WCOSWR-01-59		365.3	7.3	0.05912	35.3	0.00268	12.0	17.2	2.1	2.3
WCOSWR-01-60	Inherited	209.7	6.1	0.05019	14.7	0.00474	7.9	30.5	2.4	0.6
WCOSWR-01-61	Inherited	253.2	9.6	0.04176	43.3	0.00398	14.1	25.6	3.6	-0.9
WCOSWR-01-62	Discordant	196.6	5.7	0.21675	13.8	0.00353	14.3	22.7	3.3	30.8
WCOSWR-01-63	Inherited	223.9	2.8	0.04214	34.3	0.00450	5.5	29.0	1.6	-0.8
WCOSWR-01-64	Inherited	296.4	7.1	0.05083	29.0	0.00335	10.5	21.5	2.3	0.8

Appendix Table 3 (continued). U-Pb Spot Analyses by LA-ICP-MS

										%
		Total		Total		7-corr		²⁰⁶ Pb/ ²³⁸ U		Discor-
Sample Spot	Note	²³⁸ U/ ²⁰⁶ Pb	±%	²⁰⁷ Pb/ ²⁰⁶ Pb	±%	²⁰⁶ Pb/ ²³⁸ U	±%	Age	1σ	dant
WCOSWR-01-65		337.1	4.3	0.05234	10.1	0.00294	5.5	18.9	1.0	1.1
WCOSWR-01-66	Inherited	265.4	4.5	0.05522	10.5	0.00371	5.9	23.9	1.4	1.6
WCOSWR-01-67		338.2	2.3	0.05284	10.3	0.00292	3.4	18.8	0.6	1.2
WCOSWR-01-68		340.8	8.4	0.07533	21.3	0.00278	12.4	17.9	2.2	5.2
WCOSWR-01-69		312.2	5.7	0.05679	14.9	0.00314	7.6	20.2	1.5	1.9
WCOSWR-01-70	Discordant	292.9	6.1	0.08705	15.9	0.00316	9.3	20.4	1.9	7.3
WCOSWR-01-71		331.6	6.3	0.04743	20.2	0.00301	8.6	19.4	1.7	0.2
WCOSWR-01-72	Inherited	289.2	1.7	0.04116	9.1	0.00349	2.4	22.5	0.5	-1.0
WCOSWR-01-73		372.5	8.3	0.06063	12.3	0.00262	10.6	16.8	1.8	2.6
WCOSWR-01-74	Inherited	302.2	3.1	0.04034	24.7	0.00335	5.0	21.5	1.1	-1.1
WCOSWR-01-75	Discordant	392.1	9.6	0.10737	18.2	0.00227	15.0	14.6	2.2	11.0
WCOSWR-01-76	Inherited	255.9	5.3	0.08565	43.8	0.00363	13.3	23.4	3.1	7.1
WCOSWR-01-77	Inherited	316.3	4.2	0.04713	23.0	0.00316	6.4	20.3	1.3	0.1
WCOSWR-01-78	Pb Loss	501.4	10.5	0.04032	39.1	0.00202	14.8	13.0	1.9	-1.1
WCOSWR-01-79		362.1	7.2	0.04979	41.7	0.00275	11.7	17.7	2.1	0.6
WCOSWR-01-80		330.5	5.8	0.04716	28.4	0.00302	8.7	19.5	1.7	0.1
WCOSWR-01-81		376.6	4.5	0.03564	16.5	0.00271	5.8	17.4	1.0	-2.0
WCOSWR-01-82	Inherited	285.4	3.2	0.05227	22.3	0.00347	5.5	22.3	1.2	1.0
WCOSWR-01-83	Inherited	293.5	3.5	0.05708	10.1	0.00334	4.7	21.5	1.0	1.9
WCOSWR-01-84		322.5	12.3	0.04685	37.0	0.00310	17.6	19.9	3.5	0.1
WCOSWR-01-85		339.1	5.2	0.04108	36.7	0.00298	8.3	19.2	1.6	-1.0
WCOS14-03-01		286.4	2.9	0.04278	29.5	0.00352	5.3	22.6	1.2	-0.7
WCOS14-03-02	Inherited	215.8	2.6	0.04689	23.2	0.00463	4.7	29.8	1.4	0.1
WCOS14-03-03		246.7	2.2	0.04593	23.8	0.00406	4.2	26.1	1.1	-0.1
WCOS14-03-04	Inherited	211.9	4.7	0.03684	41.2	0.00480	7.7	30.9	2.4	-1.8
WCOS14-03-05		267.3	2.7	0.04292	23.3	0.00377	4.6	24.2	1.1	-0.7
WCOS14-03-06		244.5	3.2	0.05279	12.2	0.00404	4.5	26.0	1.2	1.1
WCOS14-03-07		277.6	3.4	0.05604	12.5	0.00354	4.9	22.8	1.1	1.7
WCOS14-03-08	Inherited	204.3	5.2	0.05333	22.3	0.00484	7.7	31.1	2.4	1.2
WCOS14-03-09	Discordant	196.3	4.4	0.27263	12.9	0.00302	15.8	19.4	3.1	40.9
WCOS14-03-10		249.8	2.3	0.04592	11.6	0.00401	3.4	25.8	0.9	-0.1
WCOS14-03-11	Inherited	201.9	6.4	0.05562	16.9	0.00487	8.6	31.3	2.7	1.6
WCOS14-03-12		234.1	2.5	0.04778	15.7	0.00426	3.9	27.4	1.1	0.2
WCOS14-03-13	Inherited	182.2	4.8	0.05195	14.5	0.00544	6.5	35.0	2.3	0.9
WCOS14-03-14		252.6	6.9	0.05054	35.9	0.00393	10.9	25.3	2.8	0.7
WCOS14-03-15		240.5	1.9	0.04015	20.3	0.00421	3.4	27.1	0.9	-1.2
WCOS14-03-16	Inherited	171.0	2.0	0.04612	21.9	0.00585	3.9	37.6	1.5	-0.1
WCOS14-03-17	Inherited	210.3	2.0	0.03560	28.3	0.00485	3.9	31.2	1.2	-2.0
WCOS14-03-18		294.3	2.4	0.06699	38.9	0.00327	7.5	21.1	1.6	3.7
WCOS14-03-19		226.9	4.0	0.04681	46.7	0.00441	8.3	28.3	2.4	0.0
WCOS14-03-20		233.5	3.3	0.04113	64.8	0.00433	8.3	27.8	2.3	-1.0
WCOS14-03-21		252.3	3.1	0.05002	16.3	0.00394	4.7	25.3	1.2	0.6
WCOS14-03-22	Inherited	172.0	3.4	0.06645	33.3	0.00561	7.8	36.1	2.8	3.6
WCOS14-03-23		260.9	2.4	0.05395	33.2	0.00378	5.8	24.3	1.4	1.3
WCOS14-03-24		245.8	5.3	0.05063	54.0	0.00404	10.8	26.0	2.8	0.7
WCOS14-03-25		238.4	3.4	0.05377	15.4	0.00414	5.1	26.6	1.4	1.3
WCOS14-03-26		260.4	3.3	0.03914	14.9	0.00389	4.5	25.0	1.1	-1.3
WCOS14-03-27		252.2	2.6	0.04375	44.0	0.00398	6.2	25.6	1.6	-0.5
WCOS14-03-28	Inherited	225.8	2.8	0.04035	12.8	0.00448	3.8	28.8	1.1	-1.1
WCOS14-03-29		266.5	9.4	0.04460	12.8	0.00377	11.5	24.2	2.8	-0.3
WCOS14-03-30		231.9	2.0	0.04919	22.9	0.00429	4.1	27.6	1.1	0.5

Appendix Table 3 (continued). U-Pb Spot Analyses by LA-ICP-MS

										%
		Total		Total		7-corr		²⁰⁶ Pb/ ²³⁸ U		Discor-
Sample Spot	Note	²³⁸ U/ ²⁰⁶ Pb	±%	²⁰⁷ Pb/ ²⁰⁶ Pb	±%	²⁰⁶ Pb/ ²³⁸ U	±%	Age	1σ	dant
WCOS14-03-31	Inherited	234.6	1.6	0.03763	24.1	0.00433	3.3	27.9	0.9	-1.6
WCOS14-03-32	Inherited	219.0	3.8	0.05452	11.4	0.00450	5.1	29.0	1.5	1.4
WCOS14-03-33	Inherited	220.7	3.9	0.04713	21.4	0.00453	5.9	29.1	1.7	0.1
WCOS14-03-34		259.2	2.0	0.05695	15.8	0.00379	3.7	24.4	0.9	1.9
WCOS14-03-35	Inherited	206.2	3.0	0.03663	19.9	0.00494	4.4	31.8	1.4	-1.8
WCOS14-03-36		244.8	14.9	0.03641	48.3	0.00416	21.1	26.8	5.6	-1.8
WCOS14-03-37		242.5	2.0	0.03761	23.0	0.00419	3.6	27.0	1.0	-1.6
WCOS14-03-38	Inherited	219.5	2.2	0.05159	12.1	0.00451	3.4	29.0	1.0	0.9
WCOS14-03-39		261.1	3.6	0.04413	18.3	0.00385	5.2	24.7	1.3	-0.4
WCOS14-03-40		237.2	3.2	0.05613	42.6	0.00414	7.8	26.7	2.1	1.7
WCOS14-03-41	Inherited	207.8	1.7	0.03739	31.1	0.00489	3.8	31.5	1.2	-1.7
WCOS14-03-42	Inherited	198.1	2.5	0.05401	15.5	0.00498	4.2	32.0	1.3	1.3
WCOS14-03-43	Inherited	224.0	3.5	0.04815	12.8	0.00445	4.8	28.6	1.4	0.3
WCOS14-03-44	Inherited	230.6	2.6	0.03691	17.3	0.00441	3.9	28.4	1.1	-1.7
WCOS14-03-45		234.7	1.4	0.05166	19.1	0.00422	3.3	27.2	0.9	0.9
WA-6-01	Inherited	207.1	9.6	0.05665	9.9	0.00474	11.8	30.5	3.6	1.8
WA-6-02		481.3	15.4	0.07085	63.8	0.00199	28.3	12.8	3.6	4.4
WA-6-03	Inherited	262.5	1.7	0.04226	83.2	0.00384	8.1	24.7	2.0	-0.8
WA-6-04		393.0	7.0	0.03763	44.9	0.00259	10.7	16.6	1.8	-1.6
WA-6-05		321.3	14.3	0.06666	45.6	0.00300	23.3	19.3	4.5	3.6
WA-6-06		304.7	1.1	0.03630	91.0	0.00334	7.0	21.5	1.5	-1.8
WA-6-07	Inherited	179.5	20.4	0.03859	130.6	0.00565	36.7	36.3	13.3	-1.5
WA-6-08		381.7	8.5	0.05145	39.8	0.00260	13.4	16.7	2.2	0.9
WA-6-09		407.6	12.9	0.06323	17.4	0.00238	17.1	15.3	2.6	3.0
WA-6-10		378.8	10.0	0.04678	58.1	0.00264	16.5	17.0	2.8	0.1
WA-6-11		471.6	8.3	0.04955	33.9	0.00211	12.3	13.6	1.7	0.6
WA-6-12	Inherited	241.1	6.2	0.04848	76.6	0.00413	13.7	26.6	3.6	0.3
WA-6-13		288.5	4.6	0.06261	14.7	0.00337	6.6	21.7	1.4	2.9
WA-6-14	Inherited	210.2	13.3	0.04811	100.1	0.00474	25.3	30.5	7.7	0.3
WA-6-15		496.9	10.7	0.07241	66.8	0.00192	22.2	12.4	2.7	4.7
WA-6-16		377.8	12.5	0.06134	90.3	0.00258	26.0	16.6	4.3	2.7
WA-6-17		483.5	26.8	0.03136	123.1	0.00212	45.8	13.7	6.3	-2.7
WA-6-18		313.1	8.8	0.04232	12.9	0.00322	10.7	20.7	2.2	-0.8
WA-6-19	Apatite	333.1	19.2	0.05071	148.6	0.00298	40.6	19.2	7.8	0.8
WA-6-20	•	370.1	25.7	0.05079	79.4	0.00268	44.5	17.3	7.7	0.8
WA-11-21		328.2	7.2	0.03565	38.0	0.00311	10.3	20.0	2.1	-2.0
WA-11-22		355.9	23.2	0.04998	99.4	0.00279	41.9	18.0	7.5	0.6
WA-11-23		344.5	6.6	0.04971	157.7	0.00289	22.2	18.6	4.1	0.6
WA-11-24	Inherited	131.2	17.7	0.04609	108.5	0.00763	32.3	49.0	15.8	-0.2
WA-11-25		332.4	19.2	0.05497	33.8	0.00296	28.0	19.1	5.3	1.5
WA-11-26	Inherited	148.5	7.7	0.03458	210.2	0.00688	22.1	44.2	9.8	-2.2
WA-11-27		428.1	18.8	0.04077	264.8	0.00236	46.7	15.2	7.1	-1.0
WA-11-28		458.1	35.0	0.04892	285.0	0.00217	92.6	14.0	13.0	0.5
WA-11-29		293.1	9.5	0.04487	105.0	0.00342	19.8	22.0	4.4	-0.3
WA-11-30		388.4	5.8	0.05400	210.3	0.00254	28.1	16.4	4.6	1.4
WA-11-31		311.4	11.0	0.04995	277.7	0.00319	40.5	20.5	8.3	0.6
WA-11-32		292.1	17.0	0.06089	67.1	0.00333	29.5	21.5	6.3	2.6
WA-11-33		243.3	4.0	0.06688	30.2	0.00396	8.1	25.5	2.1	3.7
WA-11-34		270.8	5.2	0.06249	110.0	0.00359	18.9	23.1	4.4	2.9
WA-11-35		380.2	15.5	0.05458	66.9	0.00259	26.2	16.7	4.4	1.5

Appendix Table 3 (continued). U-Pb Spot Analyses by LA-ICP-MS

		Tatal		Total		7				%
		Iotal		Iotai		7-corr		²⁰⁶ Pb/ ²³⁸ U		Discor-
Sample Spot	Note	²³⁸ U/ ²⁰⁸ Pb	±%	²⁰⁷ Pb/ ²⁰⁶ Pb	±%	²⁰⁶ Pb/ ²³⁸ U	±%	Age	1σ	dant
WA-11-36		365.5	5.0	0.03090	45.6	0.00281	7.8	18.1	1.4	-2.8
WA-11-37	Inherited	230.7	5.2	0.05594	167.3	0.00426	23.4	27.4	6.4	1.7
WA-11-38	Inherited	184.8	6.3	0.05036	180.6	0.00538	24.2	34.6	8.4	0.7
WA-11-39	Inherited	180.0	12.0	0.06216	229.3	0.00540	43.4	34.7	15.1	2.8
WA-11-40		344.4	10.5	0.04745	60.5	0.00290	17.4	18.7	3.3	0.2
WCOSJD-152-01		387.3	6.8	0.06338	10.0	0.00250	8.5	16.1	1.4	3.1
WCOSJD-152-02	Inherited	255.5	4.8	0.04251	115.3	0.00394	14.2	25.4	3.6	-0.7
WCOSJD-152-03		358.4	7.1	0.06484	50.1	0.00270	14.1	17.4	2.5	3.3
WCOSJD-152-04		311.4	2.1	0.08625	66.7	0.00298	13.6	19.2	2.6	7.2
WCOSJD-152-05		574.3	14.2	0.05367	77.0	0.00172	25.4	11.1	2.8	1.3
WCOSJD-152-06		405.2	15.2	0.05751	84.8	0.00242	28.4	15.6	4.4	2.0
WCOSJD-152-07	Inherited	275.5	9.1	0.05201	100.1	0.00359	20.4	23.1	4.7	1.0
WCOSJD-152-08		383.2	12.9	0.05143	48.8	0.00259	20.0	16.7	3.3	0.9
WCOSJD-152-09		515.8	12.4	0.05150	204.5	0.00192	36.1	12.4	4.5	0.9
WCOSJD-152-10		591.7	1.6	0.04356	47.9	0.00170	5.5	10.9	0.6	-0.5
WCOSJD-152-11		470.5	7.6	0.05509	74.7	0.00209	16.4	13.5	2.2	1.6
WCOSJD-152-12		550.4	5.6	0.04236	19.3	0.00183	7.5	11.8	0.9	-0.7
WCOSJD-152-13		356.9	5.5	0.04695	42.0	0.00280	9.6	18.0	1.7	0.1
WCOSJD-152-14		364.1	4.4	0.04029	114.7	0.00278	13.2	17.9	2.4	-1.1
WCOSJD-152-15		482.3	9.2	0.05074	56.7	0.00206	15.8	13.2	2.1	0.8
WCOSJD-152-16		445.3	7.4	0.06385	47.4	0.00217	14.1	14.0	2.0	3.2
WCOSJD-152-17		591.7	14.6	0.03934	105.6	0.00171	25.7	11.0	2.8	-1.3
WCOSJD-152-18		418.0	5.0	0.04005	31.3	0.00242	7.6	15.6	1.2	-1.1
WCOSJD-152-19	Inherited	283.7	8.1	0.05309	41.3	0.00348	13.2	22.4	3.0	1.2
WCOSJD-152-20		376.7	10.5	0.04952	51.4	0.00264	16.9	17.0	2.9	0.6
WCOSJD-152-21		466.8	11.3	0.05075	56.8	0.00213	18.6	13.7	2.5	0.8
WCOSJD-152-22		287.4	8.1	0.08532	163.2	0.00324	38.1	20.8	7.9	7.0
WCOSJD-152-23		578.3	15.9	0.05395	82.2	0.00171	28.5	11.0	3.1	1.4
WCOSJD-152-24		518.6	6.0	0.04851	16.1	0.00192	7.9	12.4	1.0	0.4
WCOSJD-152-25	Inherited	266.9	9.2	0.07170	59.7	0.00358	19.0	23.0	4.4	4.5
WCOSJD-152-26		354.2	8.7	0.04150	172.4	0.00285	23.4	18.3	4.3	-0.9
WCOSJD-152-27		536.4	11.8	0.05422	36.0	0.00184	17.4	11.8	2.1	1.4
WCOSJD-152-28		529.1	11.2	0.04912	99.7	0.00188	22.5	12.1	2.7	0.5
WCOSJD-152-29		538.2	24.9	0.04946	100.9	0.00185	45.2	11.9	5.4	0.6
WCOSJD-152-30		512.2	14.6	0.05437	77.9	0.00192	26.1	12.4	3.2	1.5
WCOSJD-152-31		424.4	3.9	0.04973	109.4	0.00234	14.3	15.1	2.2	0.6
WCOSJD-152-32		308.8	9.6	0.06645	66.7	0.00312	19.7	20.1	4.0	3.6
WCOSJD-152-33		315.1	6.3	0.04705	9.3	0.00317	7.6	20.4	1.6	0.1
WCOSJD-152-34	Inherited	91.3	4.0	0.17707	66.6	0.00840	32.8	53.9	17.7	23.5
WCOSJD-152-35		514.3	25.3	0.06305	252.4	0.00189	73.5	12.1	8.9	3.0
WCOSJD-152-36		309.8	15.8	0.06088	110.0	0.00314	33.4	20.2	6.8	2.6
WCOSJD-152-37	Pb Loss	826.8	8.4	0.05495	113.2	0.00119	21.7	7.7	1.7	1.6
WCOSJD-152-38		324.8	8.5	0.04439	146.0	0.00309	22.0	19.9	4.4	-0.4
WCOSJD-152-39		398.5	10.4	0.04659	96.6	0.00251	20.6	16.2	3.3	0.0
WCOSJD-152-40		543.4	6.6	0.05691	51.4	0.00180	12.9	11.6	1.5	1.9

Appendix Table 3 (continued). U-Pb Spot Analyses by LA-ICP-MS
										%
		Total		Total		7-corr		²⁰⁶ Ph/ ²³⁸ U		Discor-
Sample Spot	Note	²³⁸ U/ ²⁰⁶ Pb	±%	²⁰⁷ Pb/ ²⁰⁶ Pb	±%	²⁰⁶ Pb/ ²³⁸ U	±%	Age	1σ	dant
WCOSJD-152-41		569.8	4.9	0.04687	49.3	0.00175	9.5	11.3	1.1	0.1
WCOSJD-152-42		419.5	19.8	0.03604	177.3	0.00243	38.7	15.6	6.1	-1.9
WCOSJD-152-43		622.4	12.3	0.04818	114.9	0.00160	25.4	10.3	2.6	0.4
WCOSJD-152-44		379.4	5.7	0.06571	55.2	0.00254	13.2	16.4	2.2	3.5
WCOSJD-152-45		326.6	12.4	0.04474	119.7	0.00307	25.1	19.8	5.0	-0.3
WCOS-12-01	Inherited	236.8	3.6	0.04885	41.4	0.00421	7.5	27.1	2.0	0.4
WCOS-12-02		461.2	22.0	0.07295	79.2	0.00206	42.1	13.3	5.6	4.8
WCOS-12-03		1025.5	36.7	0.05323	135.9	0.00096	78.9	6.2	4.9	1.3
WCOS-12-04		576.5	7.3	0.06419	93.1	0.00168	19.9	10.8	2.2	3.2
WCOS-12-05	Discordant	340.4	5.7	0.11656	91.1	0.00257	29.2	16.5	4.8	12.7
WCOS-12-06	Discordant	232.4	3.0	0.11362	66.0	0.00378	18.9	24.3	4.6	12.1
WCOS-12-07		546.2	30.9	0.03675	85.1	0.00186	52.8	12.0	6.3	-1.7
WCOS-12-08		501.3	34.3	0.05680	124.7	0.00196	71.8	12.6	9.1	1.9
WCOS-12-09		1110.8	35.1	0.03240	166.0	0.00092	68.7	5.9	4.1	-2.4
WCOS-12-10		335.0	5.5	0.04930	86.8	0.00297	14.0	19.1	2.7	0.5
WCOS-12-11		614.4	11.7	0.05108	33.3	0.00161	16.8	10.4	1.7	0.9
WCOS-12-12		414.1	7.1	0.05368	21.1	0.00238	9.8	15.3	1.5	1.3
WCOS-12-13		310.8	8.6	0.03876	72.3	0.00326	14.8	21.0	3.1	-1.4
WCOS-12-14		586.6	14.7	0.03664	51.8	0.00173	21.1	11.2	2.4	-1.7
WCOS-12-15		412.5	10.9	0.06262	83.1	0.00235	23.0	15.2	3.5	2.9
WCOS-12-16		652.4	16.3	0.04435	50.3	0.00154	24.3	99	24	-0.3
WCOS-12-17		483.7	17.7	0.04489	109 5	0.00207	32.2	13.4	43	-0.3
WCOS-12-18		637.8	16.7	0.04405	99	0.00152	21.5	9.8		3 1
WCOS-12-19		399.5	31.6	0.04903	44.6	0.00249	52.0	16.0	83	0.5
WCOS-12-10		310.1	5 9	0.04505	122.8	0.00243	17.1	20.8	3.6	-0.1
WCOS-12-21		820.1	18.0	0.04000	122.0	0.00118	173.0	7.6	9.0 9.1	3.2
WCOS-12-21		785.3	<del>7</del> 0.0	0.00305	7/ 2	0.00110	36.5	8.2	3.0	03
WCOS-12-22		202.2	10.0	0.04780	74.2 258 1	0.00127	17.0	16.6	9.0 8.0	_1 1
WCOS-12-23		192.5	2/ 8	0.04037	200.1	0.00238	47.9 68.0	12.0	8.0 8.0	-1.1
WCOS 12 25		400.2	24.0	0.03031	166.0	0.00203	77.0	13.1 6 0	0.9 E 2	0.7
WCOS 12 26		541.0	55.0 74.4	0.04300	100.0	0.00100	22.6	0.0	2.5	-0.1
WCOS-12-20		502.0 601.6	24.4	0.03204	10.2	0.00182	55.0 60.7	10.9	5.9 7 E	-2.5
WCOS-12-27		505.6	55.1	0.04100	101.0 62.1	0.00108	10.7	10.0	1.5	-0.8
WCOS-12-28		500.0	0.0	0.03197	63.1	0.00203	10.2	13.0	1.5	-2.0
WCOS-12-29		547.0 220.4	3.4 22 F	0.05322	62.1	0.00180	9.7	11.0	1.1	1.2
WCOS-12-30		328.4	22.5	0.03364	127.2	0.00312	33.8	20.1	0.8	-2.3
WCOS-12-31		447.0	5.4	0.04953	137.3	0.00222	18.7	14.3	2.7	0.6
WCOS-12-32		507.8	10.2	0.05667	114.3	0.00193	24.5	12.4	3.1	1.9
WCOS-12-33		384.7	10.0	0.04556	76.8	0.00260	18.1	10.0	3.0	-0.2
WCOS-12-34		660.2	27.0	0.03349	53.5	0.00155	41.4	10.0	4.1	-2.3
WCOS-12-35		487.8	7.0	0.03556	60.3	0.00209	11.7	13.5	1.6	-2.0
WCOS-12-36		633.7	20.5	0.03909	59.8	0.00160	31.0	10.3	3.2	-1.3
WCOS-12-37		357.1	29.8	0.03738	286.9	0.00285	69.3	18.3	12.7	-1.6
WCOS-12-38		477.8	19.7	0.03755	20.1	0.00213	26.2	13./	3.6	-1.6
WCOS-12-39	Inherited	146.0	8.4	0.06206	68.7	0.00666	17.8	42.8	7.6	2.7
wcos-12-40	Inherited	298.4	3.2	0.03476	47.8	0.00342	6.4	22.0	1.4	-2.1
WCOS-2-3	Inheritad	2480	2 2	0 06404	A1 C	0 00300	9 <i>C</i>	25.0	<b>っ</b> っ	3.3
WCOS-2-3	Inherited	240.7 187 8	5.5 11 2	0.00494	41.0 01 0	0.00300	0.0 25 0	23.0	2.2 8 7	3.5
	millenteu	102.0 271 F	74 O	0.00777	91.9 67 1	0.00320	25.9	55.0 17 1	0./ 7 7	5.0 1.4
		373 F	∠4.9 Ø ?	0.05421	07.1 70 7	0.00205	41.9	10.0	7.2 2 7	1.4 0.2
	ام مناطحة م	523.5 254 5	0.3	0.04776	49.7	0.00308	13./	19.9	2.7	0.2
WCO2-2-8	innerited	254.5	4.9	-0.00635	212.3	0.00430	2.8	27.7	0.8	-9.6

Appendix Table 3 (continued). U-Pb Spot Analyses by LA-ICP-MS

TotalTotal7-corr ${}^{208}Pb/^{238}U$ $Pli$ Sample SpotNote ${}^{238}U/^{206}Pb$ $t %$ ${}^{207}Pb/^{206}Pb$ $t %$ ${}^{206}Pb/^{238}U$ $t %$ Age1odateWCOS-2-9384.813.80.0476858.10.0025921.816.73.60WCOS-2-12363.83.20.0372530.70.002795.418.01.0-7WCOS-2-14Inherited278.34.00.000501631.80.003895.625.01.4-6WCOS-2-15359.85.10.0225626.40.002906.418.71.2-4WCOS-2-16Inherited257.910.30.065606.60.0037420.624.15.033WCOS-2-18Inherited272.65.10.00180142020.002901.1716.82.02.52.54.6WCOS-2-19373.88.50.0612419.70.0026011.716.82.02.94.6WCOS-2-20Discordant259.87.10.2109714.20.0027115.917.42.82.9WCOS-2-23Jiscordant354.06.60.101228.70.002558.916.41.59WCOS-2-24Jiscordant32.76.70.8016611.6-0.01185-42.2-76.832.413WCOS-2-25Discordant32.76.30.0849835.60.00211	%
Sample Spot     Note ²³⁸ U/ ²⁰⁶ Pb     ±% ²⁰⁷ Pb/ ²⁰⁶ Pb     ±% ²⁰⁶ Pb/ ²³⁸ U     ±%     Age     1σ     da       WCOS-2-9     384.8     13.8     0.04768     58.1     0.00259     21.8     16.7     3.6     0       WCOS-2-12     363.8     3.2     0.03725     30.7     0.00279     5.4     18.0     1.0     -:       WCOS-2-14     Inherited     278.3     4.0     0.00050     1631.8     0.00389     5.6     25.0     1.4     -4       WCOS-2-15     359.8     5.1     0.02256     26.4     0.00290     6.4     18.7     1.2     -4       WCOS-2-16     Inherited     257.9     10.3     0.06560     66.6     0.00374     20.6     24.1     5.0     3       WCOS-2-18     Inherited     272.6     5.1     0.00180     1420.2     0.00376     9.9     25.5     2.5     4       WCOS-2-19     373.8     8.5     0.06124     19.7     0.00260     11.7     16.8	Discor-
WCOS-2-9   384.8   13.8   0.04768   58.1   0.00259   21.8   16.7   3.6   C     WCOS-2-12   363.8   3.2   0.03725   30.7   0.00279   5.4   18.0   1.0      WCOS-2-14   Inherited   278.3   4.0   0.00050   1631.8   0.00389   5.6   25.0   1.4      WCOS-2-15   359.8   5.1   0.02256   26.4   0.00290   6.4   18.7   1.2      WCOS-2-16   Inherited   257.9   10.3   0.06560   66.6   0.00374   20.6   24.1   5.0   3     WCOS-2-17   363.8   7.4   0.01400   230.2   0.00291   13.9   18.7   2.6   -5     WCOS-2-18   Inherited   272.6   5.1   0.00180   1420.2   0.00396   9.9   25.5   2.5   2.5   4     WCOS-2-19   373.8   8.5   0.06124   19.7   0.00260   11.7   16.8   2.0   2     WCOS-2-21   Inherited   263.3   6.0   0.00872	dant
WCOS-2-12   363.8   3.2   0.03725   30.7   0.00279   5.4   18.0   1.0   -:     WCOS-2-14   Inherited   278.3   4.0   0.00050   1631.8   0.00389   5.6   25.0   1.4   -:     WCOS-2-15   359.8   5.1   0.02256   26.4   0.00290   6.4   18.7   1.2   -:     WCOS-2-16   Inherited   257.9   10.3   0.06560   66.6   0.00374   20.6   24.1   5.0   33     WCOS-2-17   363.8   7.4   0.01400   230.2   0.00291   13.9   18.7   2.6   -:     WCOS-2-18   Inherited   272.6   5.1   0.00180   1420.2   0.00396   9.9   25.5   2.5   -:   6     WCOS-2-19   373.8   8.5   0.06124   19.7   0.00260   11.7   16.8   2.0   22     WCOS-2-20   Discordant   259.8   7.1   0.21097   14.2   0.00271   15.9   17.4   2.8   29     WCOS-2-21   Inherited   263.3   6.0	0.2
WCOS-2-14   Inherited   278.3   4.0   0.00050   1631.8   0.00389   5.6   25.0   1.4   -4     WCOS-2-15   359.8   5.1   0.02256   26.4   0.00290   6.4   18.7   1.2   -4     WCOS-2-16   Inherited   257.9   10.3   0.06560   66.6   0.00374   20.6   24.1   5.0   3     WCOS-2-17   363.8   7.4   0.01400   230.2   0.00291   13.9   18.7   2.6   -5     WCOS-2-18   Inherited   272.6   5.1   0.00180   1420.2   0.00396   9.9   25.5   2.5   -5     WCOS-2-19   373.8   8.5   0.06124   19.7   0.00260   11.7   16.8   2.0   22     WCOS-2-20   Discordant   259.8   7.1   0.21097   14.2   0.00271   15.9   17.4   2.8   29     WCOS-2-21   Inherited   263.3   6.0   0.00272   307.3   0.00406   11.1   26.1   2.9   -6     WCOS-2-23   354.0   6.6   0.124	-1.7
WCOS-2-15   359.8   5.1   0.02256   26.4   0.00290   6.4   18.7   1.2   -4     WCOS-2-16   Inherited   257.9   10.3   0.06560   66.6   0.00374   20.6   24.1   5.0   3     WCOS-2-17   363.8   7.4   0.01400   230.2   0.00291   13.9   18.7   2.6   -4     WCOS-2-18   Inherited   272.6   5.1   0.00180   1420.2   0.00396   9.9   25.5   2.5   -4     WCOS-2-19   373.8   8.5   0.06124   19.7   0.00260   11.7   16.8   2.0   2     WCOS-2-20   Discordant   259.8   7.1   0.21097   14.2   0.00271   15.9   17.4   2.8   2     WCOS-2-21   Inherited   263.3   6.0   0.00872   307.3   0.00406   11.1   26.1   2.9   -6     WCOS-2-23   354.0   6.6   0.10122   8.5   0.00255   8.9   16.4   1.5   9     WCOS-2-24   303.7   5.8   0.07451   10.8	-8.3
WCOS-2-16   Inherited   257.9   10.3   0.06560   66.6   0.00374   20.6   24.1   5.0   3     WCOS-2-17   363.8   7.4   0.01400   230.2   0.00291   13.9   18.7   2.6   -5     WCOS-2-18   Inherited   272.6   5.1   0.00180   1420.2   0.00396   9.9   25.5   2.5   -5     WCOS-2-19   373.8   8.5   0.06124   19.7   0.00260   11.7   16.8   2.0   2     WCOS-2-20   Discordant   259.8   7.1   0.21097   14.2   0.00271   15.9   17.4   2.8   25     WCOS-2-21   Inherited   263.3   6.0   0.00872   307.3   0.00406   11.1   26.1   2.9   -6     WCOS-2-23   354.0   6.6   0.10122   8.5   0.00281   17.7   18.1   3.2   14     WCOS-2-24   305.4   4.6   0.12472   47.3   0.00281   17.7   18.1   3.2   14     WCOS-2-25   Discordant   32.7   6.7   0.80166	-4.3
WCOS-2-17   363.8   7.4   0.01400   230.2   0.00291   13.9   18.7   2.6   -5     WCOS-2-18   Inherited   272.6   5.1   0.00180   1420.2   0.00396   9.9   25.5   2.5   4     WCOS-2-19   373.8   8.5   0.06124   19.7   0.00260   11.7   16.8   2.0   2     WCOS-2-20   Discordant   259.8   7.1   0.21097   14.2   0.00271   15.9   17.4   2.8   2     WCOS-2-21   Inherited   263.3   6.0   0.00872   307.3   0.00406   11.1   26.1   2.9   -6     WCOS-2-23   354.0   6.6   0.10122   8.5   0.00281   17.7   18.1   3.2   14     WCOS-2-24   305.4   4.6   0.12472   47.3   0.00281   17.7   18.1   3.2   14     WCOS-2-25   Discordant   32.7   6.7   0.80166   11.6   -0.01185   -42.2   -76.8   32.4   13     WCOS-2-29   320.2   6.3   0.08498   35.6 <td>3.4</td>	3.4
WCOS-2-18   Inherited   272.6   5.1   0.00180   1420.2   0.00396   9.9   25.5   2.5   4.5     WCOS-2-19   373.8   8.5   0.06124   19.7   0.00260   11.7   16.8   2.0   2     WCOS-2-20   Discordant   259.8   7.1   0.21097   14.2   0.00271   15.9   17.4   2.8   2     WCOS-2-21   Inherited   263.3   6.0   0.00872   307.3   0.00406   11.1   26.1   2.9   -6     WCOS-2-23   354.0   6.6   0.10122   8.5   0.00281   17.7   18.1   3.2   14     WCOS-2-24   305.4   4.6   0.12472   47.3   0.00281   17.7   18.1   3.2   14     WCOS-2-25   Discordant   32.7   6.7   0.80166   11.6   -0.01185   -42.2   -76.8   32.4   13     WCOS-2-28   303.7   5.8   0.07451   10.8   0.00313   7.8   20.1   1.6   5     WCOS-2-30   363.8   9.0   -0.03285   93.4 <td>-5.9</td>	-5.9
WCOS-2-19   373.8   8.5   0.06124   19.7   0.00260   11.7   16.8   2.0   2     WCOS-2-20   Discordant   259.8   7.1   0.21097   14.2   0.00271   15.9   17.4   2.8   2     WCOS-2-21   Inherited   263.3   6.0   0.00872   307.3   0.00406   11.1   26.1   2.9   -6     WCOS-2-23   354.0   6.6   0.10122   8.5   0.00255   8.9   16.4   1.5   9     WCOS-2-24   305.4   4.6   0.12472   47.3   0.00281   17.7   18.1   3.2   14     WCOS-2-25   Discordant   32.7   6.7   0.80166   11.6   -0.01185   -42.2   -76.8   32.4   13     WCOS-2-28   303.7   5.8   0.07451   10.8   0.00313   7.8   20.1   1.6   5     WCOS-2-30   363.8   9.0   -0.03285   93.4   0.00314   4.5   20.2   0.9   -1     WCOS-2-33   Discordant   297.8   8.4   0.26458   26.2	-8.1
WCOS-2-20   Discordant   259.8   7.1   0.21097   14.2   0.00271   15.9   17.4   2.8   2.9     WCOS-2-21   Inherited   263.3   6.0   0.00872   307.3   0.00406   11.1   26.1   2.9   -6     WCOS-2-23   354.0   6.6   0.10122   8.5   0.00255   8.9   16.4   1.5   9     WCOS-2-24   305.4   4.6   0.12472   47.3   0.00281   17.7   18.1   3.2   14     WCOS-2-25   Discordant   32.7   6.7   0.80166   11.6   -0.01185   -42.2   -76.8   32.4   13     WCOS-2-28   303.7   5.8   0.07451   10.8   0.00313   7.8   20.1   1.6   5     WCOS-2-29   320.2   6.3   0.08498   35.6   0.00291   12.9   18.7   2.4   7     WCOS-2-30   363.8   9.0   -0.03285   93.4   0.00314   4.5   20.2   0.9   -1     WCOS-2-33   Discordant   297.8   8.4   0.26458   26.2	2.7
WCOS-2-21   Inherited   263.3   6.0   0.00872   307.3   0.00406   11.1   26.1   2.9   -6     WCOS-2-23   354.0   6.6   0.10122   8.5   0.00255   8.9   16.4   1.5   9     WCOS-2-24   305.4   4.6   0.12472   47.3   0.00281   17.7   18.1   3.2   14     WCOS-2-25   Discordant   32.7   6.7   0.80166   11.6   -0.01185   -42.2   -76.8   32.4   13     WCOS-2-28   303.7   5.8   0.07451   10.8   0.00313   7.8   20.1   1.6   5     WCOS-2-30   363.8   9.0   -0.03285   93.4   0.00314   4.5   20.2   0.9   -1     WCOS-2-33   Discordant   297.8   8.4   0.26458   26.2   0.00204   31.6   13.1   4.1   33     WCOS-2-37   299.5   8.1   0.07167   62.3   0.00310   17.0   20.5   2.7   4	29.7
WCOS-2-23   354.0   6.6   0.10122   8.5   0.00255   8.9   16.4   1.5   9     WCOS-2-24   305.4   4.6   0.12472   47.3   0.00281   17.7   18.1   3.2   14     WCOS-2-25   Discordant   32.7   6.7   0.80166   11.6   -0.01185   -42.2   -76.8   32.4   13     WCOS-2-28   303.7   5.8   0.07451   10.8   0.00313   7.8   20.1   1.6   5     WCOS-2-29   320.2   6.3   0.08498   35.6   0.00291   12.9   18.7   2.4   7     WCOS-2-30   363.8   9.0   -0.03285   93.4   0.00314   4.5   20.2   0.9   -1     WCOS-2-33   Discordant   297.8   8.4   0.26458   26.2   0.00204   31.6   13.1   4.1   33	-6.8
WCOS-2-24   305.4   4.6   0.12472   47.3   0.00281   17.7   18.1   3.2   1.4     WCOS-2-25   Discordant   32.7   6.7   0.80166   11.6   -0.01185   -42.2   -76.8   32.4   13     WCOS-2-28   303.7   5.8   0.07451   10.8   0.00313   7.8   20.1   1.6   5     WCOS-2-29   320.2   6.3   0.08498   35.6   0.00291   12.9   18.7   2.4   7     WCOS-2-30   363.8   9.0   -0.03285   93.4   0.00314   4.5   20.2   0.9   -1     WCOS-2-33   Discordant   297.8   8.4   0.26458   26.2   0.00204   31.6   13.1   4.1   33     WCOS-2-37   299.5   8.1   0.07167   62.3   0.00210   17.0   20.5   2.7   4	9.9
WCOS-2-25   Discordant   32.7   6.7   0.80166   11.6   -0.01185   -42.2   -76.8   32.4   13     WCOS-2-28   303.7   5.8   0.07451   10.8   0.00313   7.8   20.1   1.6   5     WCOS-2-29   320.2   6.3   0.08498   35.6   0.00291   12.9   18.7   2.4   7     WCOS-2-30   363.8   9.0   -0.03285   93.4   0.00314   4.5   20.2   0.9   -1     WCOS-2-33   Discordant   297.8   8.4   0.26458   26.2   0.00204   31.6   13.1   4.1   39     WCOS-2-37   299.5   8.1   0.07167   62.3   0.00210   17.0   20.5   2.7   4	14.1
WCOS-2-28     303.7     5.8     0.07451     10.8     0.00313     7.8     20.1     1.6     5       WCOS-2-29     320.2     6.3     0.08498     35.6     0.00291     12.9     18.7     2.4     7       WCOS-2-30     363.8     9.0     -0.03285     93.4     0.00314     4.5     20.2     0.9     -1       WCOS-2-33     Discordant     297.8     8.4     0.26458     26.2     0.00204     31.6     13.1     4.1     39       WCOS-2-37     299.5     8.1     0.07167     62.3     0.00210     17.0     20.5     2.7     4.5	137.1
WCOS-2-29     320.2     6.3     0.08498     35.6     0.00291     12.9     18.7     2.4     7       WCOS-2-30     363.8     9.0     -0.03285     93.4     0.00314     4.5     20.2     0.9     -1       WCOS-2-33     Discordant     297.8     8.4     0.26458     26.2     0.00204     31.6     13.1     4.1     39       WCOS-2-37     209.5     8.1     0.07167     62.3     0.00210     17.0     20.5     2.7     4	5.1
WCOS-2-30     363.8     9.0     -0.03285     93.4     0.00314     4.5     20.2     0.9     -1       WCOS-2-33     Discordant     297.8     8.4     0.26458     26.2     0.00204     31.6     13.1     4.1     39       WCOS-2-37     299.5     8.1     0.07167     62.3     0.00210     17.0     20.5     2.7     4	7.0
WCOS-2-33 Discordant 297.8 8.4 0.26458 26.2 0.00204 31.6 13.1 4.1 39	-14.3
WCOS_2.37 200 5 8.1 0.07167 63.2 0.00210 17.0 20.5 2.7 4	39.4
	4.5
WCOS-2-38 392.9 12.9 0.02946 180.0 0.00262 25.4 16.9 4.3 -	-3.1
WCOS-2-39 Discordant 271.0 4.5 0.18537 17.5 0.00277 12.9 17.8 2.3 2	25.1
WCOS-2-40 Inherited 314.7 3.7 0.00226 240.8 0.00343 4.8 22.1 1.1 -{	-8.0
WCOS-7-01 Inherited 207.1 9.5 0.08119 81.4 0.00453 24.5 29.1 7.1 6	6.3
WCOS-7-02 453.3 11.7 0.03507 131.2 0.00225 22.4 14.5 3.2 -2	-2.0
WCOS-7-03 315.5 15.8 0.07075 62.3 0.00303 28.7 19.5 5.6 4	4.4
WCOS-7-04 Inherited 299.4 13.9 0.06950 77.4 0.00320 27.9 20.6 5.7 4	4.2
WCOS-7-05 Inherited 304.1 16.9 0.05411 86.6 0.00324 30.5 20.9 6.4 1	1.4
WCOS-7-06 Inherited 303.6 4.5 0.06498 25.7 0.00318 7.9 20.5 1.6 3	3.3
WCOS-7-07 379.8 11.3 0.08324 50.8 0.00246 22.0 15.8 3.5 6	6.7
WCOS-7-08 466.5 27.8 0.04572 113.0 0.00215 51.4 13.8 7.1 -(	-0.1
WCOS-7-09 365.9 13.0 0.02504 18.4 0.00284 15.9 18.3 2.9 -	-3.9
WCOS-7-10 Inherited 243.9 33.2 0.04513 89.9 0.00411 60.3 26.5 16.0 -0	-0.3
WCOS-7-11 Inherited 235.1 18.0 0.05905 58.9 0.00416 29.7 26.7 8.0 2	2.3
WCOS-7-12 Inherited 265.4 5.9 0.05476 140.3 0.00371 21.1 23.9 5.0 1	1.5
WCOS-7-13 341.1 22.7 0.03992 150.7 0.00297 43.2 19.1 8.2 -1	-1.2
WCOS-7-14 Inherited 260.4 22.2 0.06797 57.3 0.00369 37.8 23.8 9.0 3	3.9
WCOS-7-15 630.9 58.6 0.04051 862.0 0.00160 290.8 10.3 30.0 -1	-1.0
WCOS-7-16 597.4 21.1 0.02753 182.0 0.00173 37.8 11.1 4.2 -	-3.4
WCOS-7-17 432.0 4.5 0.04774 141.7 0.00231 17.4 14.9 2.6 0	0.2
WCOS-7-18 315.8 9.4 0.06083 69.4 0.00308 18.9 19.9 3.8 2	2.6
WCOS-7-19 Discordant 366.3 10.2 -0.19977 40.3 0.00394 0.1 25.4 0.0 -4	-44.5
WCOS-7-20 Inherited 253.1 12.9 0.05093 341.5 0.00392 50.8 25.2 12.8 0	0.8
WCOS-7-21 373.8 20.5 0.05483 133.2 0.00263 42.5 17.0 7.2 1	1.5
WCOS-7-22 Discordant 246.7 2.6 0.20887 39.8 0.00287 24.4 18.5 4.5 29	29.3
WCOS-7-23 Inherited 306.4 6.1 0.02841 193.9 0.00337 16.7 21.7 3.6 -	-3.3
WCOS-7-24 Inherited 276.6 9.1 0.04077 138.9 0.00365 21.1 23.5 5.0 -4	-1.0
WCQS-7-25 323.1 5.6 0.14288 33.4 0.00256 16.9 16.5 2.8 1	17.4
WCQS-7-26 Inherited 277.5 9.9 0.08202 37.2 0.00237 17.5 21.7 3.8 F	64
WCQS-7-27 472.0 17.8 0.04450 127.9 0.00257 17.5 21.7 3.8 0	-0 २
WCOS-7-28 243.5 3.8 0.1/150 23.0 0.00213 34.0 15.7 4.7 -0	17.2
WCOS-7-29 322 4 81 0 07022 31 8 0 00297 13 4 19 1 26 A	43
WCOS-7-30 Inherited 323.0 2.4 0.03592 75.8 0.00316 7.3 20.3 1.5 -	-1 9

Appendix Table 3 (continued). U-Pb Spot Analyses by LA-ICP-MS

TotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotalTotal											0/
Sample Spot     Note     29U/078/D     240     29P/078U     240     Age     10     datat       WC05-731     Inherited     321.6     7.5     0.02157     169.7     0.00325     1.4.9     20.9     2.2     0.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     2.2     7.6.3     2.2     7.6.3     2.2     7.6.3     2.2     7.6.3     2.2     7.6.3     2.2     7.6.3     2.2     7.6.3     2.2     7.6.3     2.2     7.6.3     2.2     7.8     2.2     7.8     2.2     7.8     2.2     7.8     2.0     2.00308     1.3     1.8.0     2.2     7.8     2.2     7.8     2.2     7.8     2			Total		Total		7-corr		²⁰⁶ Ph/ ²³⁸ II		70 Discor-
WCOS-7-32     Inherited     321.6     7.5     0.02157     169.7     0.00325     14.9     20.9     3.1     4.5       WCOS-7-32     Discordant     344.7     6.4     -0.06867     53.3     0.00350     1.0     22.5     2.02     2.08       WCOS-7.35     Discordant     339.0     5.9     0.22407     19.7     0.00201     18.7     12.9     2.4     32.1       WCOS-7.35     Discordant     339.0     5.9     0.22407     19.7     0.00268     8.4     16.6     1.4     2.2       WCOS-7.39     Inherited     312.6     5.6     0.01170     301.6     0.00264     15.6     17.0     2.7     14.3       WCOSNU-33-01     370.2     7.8     0.005457     60.6     0.00266     15.0     17.1     2.6     1.5       WCOSNU-33-03     326.6     6.0     0.04719     13.6     0.00266     16.3     18.7     0.5     1.5       WCOSNU-33-06     Discordant     15.7     1.0     12.2     0.0228	Sample Spot	Note	²³⁸ U/ ²⁰⁶ Pb	±%	²⁰⁷ Pb/ ²⁰⁶ Pb	±%	²⁰⁶ Pb/ ²³⁸ U	±%	Age	1σ	dant
WCOS-7-32     Discordant     344.7     6.4     -0.06867     53.3     0.00350     1.0     22.5     0.2     -0.08       WCOS-7-34     Inherited     344.2     2.9     0.01105     99.2     0.00309     4.9     19.9     1.0     6.4       WCOS-7-37     379.1     2.2     0.05866     55.7     0.00258     8.4     1.6.6     1.4     2.2       WCOS-7-38     Inherited     312.6     5.6     0.01105     0.00264     15.6     17.0     2.7     4.2       WCOS-7-40     29.97     3.7     0.06863     41.2     0.00306     1.6     1.7.1     2.6     1.5       WCOSNU-33-02     352.4     3.5     0.04556     7.6     0.00261     1.6     1.7     1.5     0.1       WCOSNU-33-01     361.1     2.2     0.03796     5.5     0.00281     2.6     1.8.1     1.6     1.5       WCOSNU-33-05     Discordant     19.7     3.8     0.31866     6.6     0.00300     1.1.7     19.3     3.4 <th>WCOS-7-31</th> <th>Inherited</th> <th>321.6</th> <th>7.5</th> <th>0.02157</th> <th>169.7</th> <th>0.00325</th> <th>14.9</th> <th>20.9</th> <th>3.1</th> <th>-4.5</th>	WCOS-7-31	Inherited	321.6	7.5	0.02157	169.7	0.00325	14.9	20.9	3.1	-4.5
WCOS-7-34     Inherited     344.2     2.9     0.01105     99.2     0.00309     4.9     19.9     1.0     6.4       WCOS-7-35     Discordant     339.0     5.9     0.22407     19.7     0.00201     18.7     12.9     4.2     4.2     4.21       WCOS-7-35     Inherited     312.6     5.6     0.01170     0.06     0.00364     15.6     17.0     2.7     14.2       WCOS-7-40     29.7     3.7     0.08963     41.2     0.00308     11.3     19.8     2.2     7.8       WCOSNU-33-02     352.4     3.5     0.04556     7.8     0.00284     4.3     18.8     0.0     1.1     1.98     2.2     7.8       WCOSNU-33-02     326.6     6.0     0.04719     13.6     0.00281     1.6.1     1.81     0.5     1.5     0.11     WCOSNU-33-0     1.6.1     1.8.1     0.5     1.5     0.12     WCOSNU-33-0     1.4.1     3.9     2.3     49.2       WCOSNU-33-0     Discordant     1.69.7     3.7 </td <td>WCOS-7-32</td> <td>Discordant</td> <td>344.7</td> <td>6.4</td> <td>-0.06867</td> <td>53.3</td> <td>0.00350</td> <td>1.0</td> <td>22.5</td> <td>0.2</td> <td>-20.8</td>	WCOS-7-32	Discordant	344.7	6.4	-0.06867	53.3	0.00350	1.0	22.5	0.2	-20.8
WCOS 7-35     Discordant     339.0     5.9     0.22407     19.7     0.00201     18.7     12.9     2.4     32.1       WCOS 7-37     379.1     2.2     0.05866     55.7     0.00258     8.4     16.6     1.4     2.2       WCOS 7-39     325.3     9.5     0.12497     17.6     0.00264     15.6     17.0     2.7     14.2       WCOS 7-40     299.7     3.7     0.08963     41.2     0.00306     15.0     17.1     2.6     1.5       WCOSNU-33-01     370.2     7.8     0.04547     67.6     0.00266     15.0     1.7     1.5     0.1       WCOSNU-33-03     326.6     6.0     0.04719     13.6     0.00306     7.6     18.7     3.0     1.4       WCOSNU-33-04     361.0     9.4     0.05427     5.4     0.00201     1.3     1.8.7     3.0     1.4       WCOSNU-33-00     Discordant     217.8     5.1     0.57367     3.7     0.00229     0.8     1.4     1.3     9.5 <td>WCOS-7-34</td> <td>Inherited</td> <td>344.2</td> <td>29</td> <td>0.01105</td> <td>99.2</td> <td>0.00309</td> <td>49</td> <td>19.9</td> <td>1.0</td> <td>-6.4</td>	WCOS-7-34	Inherited	344.2	29	0.01105	99.2	0.00309	49	19.9	1.0	-6.4
WCOS-7-37     Nordential     379.1     2.2     0.05866     55.7     0.00258     8.4     16.6     1.4     2.2       WCOS-7-38     Inherited     312.6     5.6     0.01170     301.6     0.00244     15.6     1.7.0     2.7     7.6.3       WCOS-7-40     299.7     3.7     0.08963     41.2     0.00264     15.6     1.7.0     2.7     14.2       WCOSNU-33-02     352.4     3.5     0.04556     7.8     0.00266     15.0     1.7.1     2.6     1.5       WCOSNU-33-02     322.6     6.0     0.04791     13.6     0.00306     7.6     19.7     1.5     0.1       WCOSNU-33-03     326.6     0.004791     13.6     0.00300     11.7     19.3     2.3     49.2       WCOSNU-33-04     166.7     3.8     0.31866     6.6     0.00300     1.7     1.9.3     2.3     49.2       WCOSNU-33-04     Discordant     169.7     3.8     0.31877     7.1     0.00228     1.7     1.6     0.4 <td< td=""><td>WCOS-7-35</td><td>Discordant</td><td>339.0</td><td>5.9</td><td>0 22407</td><td>19.7</td><td>0.00201</td><td>18.7</td><td>12.9</td><td>2.0</td><td>32.1</td></td<>	WCOS-7-35	Discordant	339.0	5.9	0 22407	19.7	0.00201	18.7	12.9	2.0	32.1
NCOS 13     Inherited     312.6     L.     0.00300     0.00340     1.2     2.1     2.7     6.3       WCOS 7-39     325.3     9.5     0.12497     17.6     0.00240     12.6     1.0     2.7     1.4.2       WCOS 7-40     299.7     3.7     0.08963     41.2     0.00308     11.3     19.8     2.2     7.8       WCOSNU-33-01     370.2     7.8     0.05457     60.6     0.00266     15.0     17.1     2.6     1.5       WCOSNU-33-03     326.6     6.0     0.04719     13.6     0.00281     2.6     18.1     0.5     -1.5       WCOSNU-33-06     Discordant     16.7     3.8     0.31866     6.6     0.00300     11.7     19.3     2.3     49.2       WCOSNU-33-06     Discordant     16.7     3.8     0.31866     6.4     0.00300     18.1     4.1     3.5.3       WCOSNU-33-01     Discordant     10.2     7.8     0.00247     3.7     0.00364     1.8.1     2.5.6     4.6     1.	WCOS-7-37	Discordant	335.0	2.2	0.22407	55.7	0.00251	8.4	16.6	14	22.1
NCOS N-30     Interited     325.3     9.5     0.1249     17.6     0.00264     15.6     17.0     2.7     14.2       WCOS N-30     299.7     3.7     0.08963     41.2     0.00264     15.6     17.0     2.7     14.2       WCOSNU-33-01     370.2     7.8     0.04556     7.8     0.00264     15.6     17.0     2.7     14.2       WCOSNU-33-02     352.4     3.5     0.04556     7.8     0.00264     15.6     17.0     2.7     16.3     18.7     10.1     2.6     18.1     0.5     1.5     WCOSNU-33-04     361.1     2.2     0.00306     7.6     19.7     1.5     0.1       WCOSNU-33-07     Discordant     169.7     3.8     0.3186     6.6     0.00300     11.7     19.3     2.3     49.2       WCOSNU-33-07     Discordant     254.1     0.2     0.72702     3.3     0.00229     0.1     1.7     1.6     2.2       WCOSNU-33-10     Discordant     254.1     0.77901     3.3     0.0	WCOS-7-38	Inherited	312.6	5.6	0.01170	301.6	0.00340	12.3	21.0	2.7	-6.3
NCCS 1-30     12.9     12.3     0.0.201     11.3     0.00028     11.3     19.8     2.7     7.8       WCCSN-40     299.7     3.7     0.058457     60.6     0.00286     15.0     17.1     2.6     1.5       WCCSNU-33-02     352.4     3.5     0.04556     7.8     0.00281     4.6     18.3     0.8     -0.2       WCCSNU-33-03     326.6     6.0     0.04719     13.6     0.00281     2.6     18.1     0.5     -1.5       WCCSNU-33-04     361.1     2.7     3.8     0.31866     6.6     0.00290     16.3     18.7     3.0     1.4       WCCSNU-33-05     340.0     9.4     0.05421     5.4     0.00229     6.0     14.7     0.9     42.0       WCCSNU-33-07     Discordant     10.2     9.7     0.81434     6.9     -0.00229     6.0     14.7     0.9     42.0       WCCSNU-33-10     Discordant     10.2     9.7     0.81434     6.9     -0.00367     7.5     19.1     1.4	WCOS-7-39	milented	325.3	9.5	0 12497	17.6	0.00340	15.6	17.0	2.7	14.2
MCOS NU-33-01   370   27.8   0.05050   11.2   0.05050   11.2   17.0   17.1   2.6   1.5     WCOSNU-33-01   326.6   6.0   0.04719   13.6   0.00284   4.3   18.1   0.5   0.1     WCOSNU-33-03   326.6   6.0   0.04719   13.6   0.00281   2.6   18.1   0.5   1.5   0.1     WCOSNU-33-04   361.1   2.2   0.03796   5.5   0.00221   2.6   18.1   0.5   -1.5     WCOSNU-33-07   Discordant   169.7   3.8   0.31866   6.6   0.00300   11.7   19.3   2.3   49.2     WCOSNU-33-09   Discordant   254.1   3.0   0.27902   3.3   0.00229   6.0   14.7   0.9   42.0     WCOSNU-33-12   Inherited   290.1   2.4   0.04115   17.7   0.00348   3.8   2.4   0.9   1.0     WCOSNU-33-12   Inherited   290.1   2.4   0.04115   17.7   0.00348   3.8   2.4   0.9   1.0     WCOSNU-33-13   Discor	WCOS-7-40		200 7	3.5	0.12457	11.0	0.00204	11 3	10.8	2.7	7.8
WCOSNU-33-01     370.2     7.8     0.05457     60.6     0.00266     15.0     17.1     2.6     1.5       WCOSNU-33-02     326.6     0.04756     7.8     0.00284     4.3     18.3     0.8     -0.2       WCOSNU-33-03     326.6     0.00379     5.5     0.00281     2.6     18.1     0.5     1.5       WCOSNU-33-05     340.0     9.4     0.05421     5.4     0.00201     16.3     18.7     3.0     1.4       WCOSNU-33-06     Discordant     167.7     3.8     0.3166     6.6     0.00300     11.7     19.3     2.3     49.2       WCOSNU-33-07     Discordant     20.7     0.81434     6.9     -0.00326     0.1     1.7     1.6     2.2       WCOSNU-33-10     Discordant     100.2     9.7     0.81434     6.9     -0.00348     3.8     2.4     9.1     1.4     5.7       WCOSNU-33-11     Discordant     20.1     2.4     0.0113     1.2     1.2     1.2     1.2     1.2     1.2<	WC03-7-40		255.7	5.7	0.08505	41.2	0.00500	11.5	15.0	2.2	7.0
WCOSNU-33-02     352.4     3.5     0.04556     7.8     0.00284     4.3     18.3     0.8     -0.2       WCOSNU-33-03     36.1     2.2     0.0379     5.5     0.00281     2.6     18.1     0.0     1.5     0.1       WCOSNU-33-05     36.0     0.5221     5.4     0.00281     1.63     18.7     3.0     1.4       WCOSNU-33-07     Discordant     16.7     3.8     0.31866     6.6     0.00220     0.68     1.4     1.95     2.2       WCOSNU-33-07     Discordant     21.7     3.5     0.027902     3.3     0.00229     6.0     1.4     1.7     1.6     2.2       WCOSNU-33-10     Discordant     10.2     7.7     0.01343     2.4     0.7     1.4     5.7     0.01343     3.8     2.4     0.9     1.1.4     5.7       WCOSNU-33-14     Discordant     46.6     5.7     0.11499     16.2     0.00137     8.3     1.6     1.5     1.2     2.1     1.4     5.7       WCOS	WCOSNU-33-01		370.2	7.8	0.05457	60.6	0.00266	15.0	17.1	2.6	1.5
WCOSNU-33-03     326.6     6.0     0.04719     13.6     0.00306     7.6     19.7     1.5     0.11       WCOSNU-33-04     340.0     9.4     0.05241     5.4     0.00201     1.5.     1.6.1     1.5.     0.14       WCOSNU-33-06     Discordant     16.97     3.8     0.3186     6.6     0.00300     11.7     19.3     2.3     49.2       WCOSNU-33-07     Discordant     21.7.8     5.1     0.57367     3.7     0.0022     9.0.8     1.4     1.3     9.3       WCOSNU-33-09     Discordant     10.2     9.7     0.8134     6.9     -0.0396     -1.4     7.5     1.1     1.4     1.3       WCOSNU-33-10     Discordant     29.1     2.4     0.04115     1.7.7     0.0348     3.8     2.4     0.9     -1.1       WCOSNU-33-11     Discordant     463.6     5.7     0.07691     1.49     0.0244     7.4     1.57     1.2     1.4     4.5       WCOSNU-33-15     Discordant     83.0     5.4	WCOSNU-33-02		352.4	3.5	0.04556	7.8	0.00284	4.3	18.3	0.8	-0.2
WCOSNU-33-04     361.1     2.2     0.03796     5.5     0.00281     2.6     18.1     0.5     1.4       WCOSNU-33-05     Discordant     16.97     3.8     0.05421     5.4.4     0.00229     16.3     18.7     3.0     1.4     1.3     95.3       WCOSNU-33-07     Discordant     21.7     3.8     0.0022     3.3     0.00229     6.0     1.47     0.9     42.0       WCOSNU-33-08     Discordant     100.2     9.7     0.81434     6.9     -0.00396     -1.8.1     -2.5.6     4.6     139.1       WCOSNU-33-10     Discordant     209.3     7.8     0.44299     5.2     0.0037     8.3     2.4     0.9     -1.0       WCOSNU-33-14     Discordant     463.6     5.7     0.1149     16.2     0.0037     8.3     16.4     3.0     1.6     1.5       WCOSNU-33-14     Discordant     33.3     5.4     0.0554     16.9     0.00275     18.3     16.4     3.0     1.6     1.5     1.6     1.5	WCOSNU-33-03		326.6	6.0	0.04719	13.6	0.00306	7.6	19.7	1.5	0.1
WCOSNU-33-05     340.0     9.4     0.05421     54.4     0.00290     16.3     18.7     3.0     1.4       WCOSNU-33-06     Discordant     16.97     3.8     0.31866     6.6     0.00300     11.7     1.3.3     2.3     49.2       WCOSNU-33-08     Discordant     254.1     3.0     0.27902     3.3     0.00229     6.0     1.4.7     0.9     4.2.0       WCOSNU-33-10     Discordant     29.7     0.81434     6.9     -0.00366     -18.1     -25.6     4.6     1.9.1     1.4     5.7       WCOSNU-33-11     Discordant     29.1     2.4     0.04135     1.7.2     0.00348     3.8     2.4     0.9     -1.0       WCOSNU-33-12     Inherited     29.1     2.4     0.04219     5.2     0.0013     1.01     1.2.2     1.2     1.2       WCOSNU-33-15     J30.3     5.4     0.03813     16.1     0.00207     7.5     1.9.1     1.4     5.7       WCOSNU-33-15     J30.3     5.4     0.03811     1.6.9	WCOSNU-33-04		361.1	2.2	0.03796	5.5	0.00281	2.6	18.1	0.5	-1.5
WCOSNU-33-06     Discordant     169.7     3.8     0.31866     6.6     0.00300     11.7     19.3     2.3     49.2       WCOSNU-33-07     Discordant     217.8     5.1     0.57367     3.7     0.00022     9.08     1.4     1.3     95.3       WCOSNU-33-09     Discordant     254.1     3.0     0.0229     6.0     18.1     -25.6     4.6     139.1       WCOSNU-33-10     Discordant     100.2     9.7     0.81434     6.9     -0.00366     -18.1     -25.6     4.6     139.1       WCOSNU-33-11     Discordant     209.1     2.4     0.04115     17.7     0.00348     3.8     22.4     0.9     -1.0       WCOSNU-33-14     Discordant     463.6     5.7     0.1499     16.2     0.00137     8.3     18.4     6.1     5.       WCOSNU-33-14     Discordant     385.5     5.4     0.05546     116.9     0.00255     18.3     16.4     3.0     1.6     1.5       WCOSNU-33-17     WCOSNU-33-20     Discordant </td <td>WCOSNU-33-05</td> <td></td> <td>340.0</td> <td>9.4</td> <td>0.05421</td> <td>54.4</td> <td>0.00290</td> <td>16.3</td> <td>18.7</td> <td>3.0</td> <td>1.4</td>	WCOSNU-33-05		340.0	9.4	0.05421	54.4	0.00290	16.3	18.7	3.0	1.4
WCOSNU-33-07     Discordant     217.8     5.1     0.57367     3.7     0.00022     90.8     1.4     1.3     95.3       WCOSNU-33-08     Discordant     254.1     3.0     0.27902     3.3     0.00229     6.0     14.7     0.9     42.0       WCOSNU-33-09     Discordant     100.2     9.7     0.81434     6.9     -0.0036     1.8.1     -25.6     4.6     139.1       WCOSNU-33-11     Discordant     209.3     7.8     0.44299     5.2     0.00135     24.6     8.7     2.1     7.18       WCOSNU-33-11     Inherited     290.1     2.4     0.0780     17.7     0.00348     3.8     2.4     0.9     -1.0       WCOSNU-33-13     Inherited     290.1     2.4     0.0780     1.3     1.6     -1.5       WCOSNU-33-16     Biscordant     463.6     5.7     0.1489     1.6     0.00247     7.6     21.7     1.6     0.4       WCOSNU-33-19     Discordant     13.5     4.0     0.00270     -3.3 <td< td=""><td>WCOSNU-33-06</td><td>Discordant</td><td>169.7</td><td>3.8</td><td>0.31866</td><td>6.6</td><td>0.00300</td><td>11.7</td><td>19.3</td><td>2.3</td><td>49.2</td></td<>	WCOSNU-33-06	Discordant	169.7	3.8	0.31866	6.6	0.00300	11.7	19.3	2.3	49.2
WCOSNU-33-08     365.6     6.4     0.05837     21.2     0.00268     9.2     17.2     1.6     2.2       WCOSNU-33.09     Discordant     254.1     3.0     0.27902     3.3     0.00229     6.0     14.7     0.9     42.0       WCOSNU-33-11     Discordant     200.3     7.8     0.44299     5.2     0.00318     3.8     22.4     0.9     -1.0       WCOSNU-33-12     Inherited     290.1     2.4     0.04115     17.7     0.00297     7.5     19.1     1.4     5.7       WCOSNU-33-14     Discordant     463.6     5.7     0.11499     16.2     0.00189     10.11     12.2     1.2     1.2.4       WCOSNU-33-16     330.3     5.4     0.05812     14.9     0.00255     18.3     1.6     -1.5       WCOSNU-33-16     193.9     4.8     0.43578     5.2     0.00131     19.5     9.9     1.9     70.5       WCOSNU-33-21     Discordant     18.8     8.0     0.361     0.000291     3.5     1.8.8 </td <td>WCOSNU-33-07</td> <td>Discordant</td> <td>217.8</td> <td>5.1</td> <td>0.57367</td> <td>3.7</td> <td>0.00022</td> <td>90.8</td> <td>1.4</td> <td>1.3</td> <td>95.3</td>	WCOSNU-33-07	Discordant	217.8	5.1	0.57367	3.7	0.00022	90.8	1.4	1.3	95.3
WCOSNU-33-09     Discordant     254.1     3.0     0.27902     3.3     0.00229     6.0     14.7     0.9     42.0       WCOSNU-33-10     Discordant     100.2     9.7     0.81434     6.9     -0.0396     -18.1     -25.6     4.6     139.1       WCOSNU-33-11     Discordant     209.1     2.4     0.04115     17.7     0.00287     7.5     19.1     1.4     5.7       WCOSNU-33-13     Discordant     463.6     5.7     0.1199     16.2     0.00189     10.1     12.2     1.2     1.2.4       WCOSNU-33-16     383.5     5.4     0.0381     36.1     0.00255     18.3     16.4     3.0     1.6       WCOSNU-33-16     10herited     296.0     3.6     0.04854     4.2     0.00337     7.6     21.7     1.6     0.4       WCOSNU-33-19     Discordant     13.8     8.0     0.93840     4.0     -0.00770     -3.3     -49.9     1.6     161.8       WCOSNU-33-20     Discordant     8.18     8.0     <	WCOSNU-33-08		365.6	6.4	0.05837	21.2	0.00268	9.2	17.2	1.6	2.2
WCOSNU-33-10     Discordant     100.2     9.7     0.81434     6.9     -0.00396     -18.1     -25.6     4.6     139.1       WCOSNU-33-11     Discordant     209.3     7.8     0.4429     5.2     0.00135     24.6     8.7     2.1     71.8       WCOSNU-33-12     Inherited     290.1     2.4     0.04115     17.7     0.00348     3.8     22.4     0.9     -1.0       WCOSNU-33-14     Discordant     463.6     5.7     0.11499     16.2     0.00137     8.3     19.8     1.6     -1.5       WCOSNU-33-16     385.5     5.4     0.05812     14.9     0.00244     7.4     15.7     2     2.1       WCOSNU-33-17     401.3     5.4     0.04854     4.2     0.00317     7.6     21.7     1.6     0.4       WCOSNU-33-19     Discordant     19.9     4.8     0.43578     5.2     0.00153     19.5     9.9     1.9     7.0.5       WCOSNU-33-20     Discordant     81.8     8.0     0.3840     4.0 <td>WCOSNU-33-09</td> <td>Discordant</td> <td>254.1</td> <td>3.0</td> <td>0.27902</td> <td>3.3</td> <td>0.00229</td> <td>6.0</td> <td>14.7</td> <td>0.9</td> <td>42.0</td>	WCOSNU-33-09	Discordant	254.1	3.0	0.27902	3.3	0.00229	6.0	14.7	0.9	42.0
WCOSNU-33-11     Discordant     209.3     7.8     0.44299     5.2     0.00135     24.6     8.7     2.1     71.8       WCOSNU-33-12     Inherited     290.1     2.4     0.04115     17.7     0.00348     3.8     22.4     0.9     -1.0       WCOSNU-33-13     317.3     4.5     0.07803     17.9     0.00297     7.5     19.1     1.4     5.7       WCOSNU-33-15     330.3     5.4     0.03813     36.1     0.00307     8.3     19.8     1.6     -1.5       WCOSNU-33-16     385.5     5.4     0.05812     14.9     0.00224     7.4     15.7     1.2     2.1       WCOSNU-33-17     Horited     29.0     3.6     0.04454     42.2     0.00337     7.6     21.7     1.6     0.4       WCOSNU-33-20     Discordant     81.8     8.0     0.93840     4.0     -0.00770     -3.3     49.9     1.6     16.18       WCOSNU-33-21     316.4     2.1     0.04459     16.8     0.00272     4.7	WCOSNU-33-10	Discordant	100.2	9.7	0.81434	6.9	-0.00396	-18.1	-25.6	4.6	139.1
WCOSNU-33-12     Inherited     290.1     2.4     0.04115     17.7     0.00348     3.8     22.4     0.9     -1.0       WCOSNU-33-13     J17.3     4.5     0.07803     17.9     0.00297     7.5     19.1     1.4     5.7       WCOSNU-33-14     Discordant     463.6     5.7     0.11499     16.2     0.00189     10.1     12.2     1.2     12.4       WCOSNU-33-16     385.5     5.4     0.05812     14.9     0.00255     18.3     16.4     3.0     1.6       WCOSNU-33-17     401.3     5.4     0.05812     14.9     0.00244     7.4     15.7     1.2     2.1       WCOSNU-33-19     Discordant     18.8     8.0     0.93840     4.0     -0.00770     -3.3     49.9     1.6     16.18       WCOSNU-33-20     Discordant     81.8     8.0     0.3091     58.2     0.00770     -3.3     49.9     1.6     16.18       WCOSNU-33-23     32.2     0.42     0.04959     16.8     0.00224     4.7	WCOSNU-33-11	Discordant	209.3	7.8	0.44299	5.2	0.00135	24.6	8.7	2.1	71.8
WCOSNU-33-13   317.3   4.5   0.07803   17.9   0.00297   7.5   19.1   1.4   5.7     WCOSNU-33-14   Discordant   463.6   5.7   0.11499   16.2   0.00189   10.1   12.2   1.2   12.4     WCOSNU-33-15   330.3   5.4   0.03516   116.9   0.00255   18.3   16.4   3.0   1.6     WCOSNU-33-16   385.5   5.4   0.05542   14.9   0.00255   18.3   16.4   3.0   1.6     WCOSNU-33-18   Inherited   296.0   3.6   0.04854   42.2   0.00337   7.6   21.7   1.6   0.4     WCOSNU-33-20   Discordant   81.8   8.0   0.93840   4.0   -0.00770   -3.3   -49.9   1.6   16.18     WCOSNU-33-21   322.8   6.2   0.03191   5.8   0.00272   4.7   1.7.5   0.8   -0.1     WCOSNU-33-24   392.3   4.2   0.04981   1.8   0.00249   5.8   16.0   0.9   2.4     WCOSNU-33-25   311.2   3.2   0.04083 <td< td=""><td>WCOSNU-33-12</td><td>Inherited</td><td>290.1</td><td>2.4</td><td>0.04115</td><td>17.7</td><td>0.00348</td><td>3.8</td><td>22.4</td><td>0.9</td><td>-1.0</td></td<>	WCOSNU-33-12	Inherited	290.1	2.4	0.04115	17.7	0.00348	3.8	22.4	0.9	-1.0
WCOSNU-33-14   Discordant   463.6   5.7   0.11499   16.2   0.00189   10.1   12.2   1.2   12.4     WCOSNU-33-15   330.3   5.4   0.03813   36.1   0.00307   8.3   19.8   1.6   -1.5     WCOSNU-33-16   385.5   5.4   0.05546   116.9   0.002255   18.3   16.4   3.0   1.6     WCOSNU-33-17   401.3   5.4   0.05844   42.2   0.00337   7.6   21.7   1.6   0.4     WCOSNU-33-19   Discordant   193.9   4.8   0.43578   5.2   0.00153   19.5   9.9   1.9   70.5     WCOSNU-33-20   Discordant   81.8   8.0   0.93840   4.0   -0.00770   -3.3   -49.9   1.6   161.8     WCOSNU-33-21   322.8   6.2   0.0391   58.2   0.00153   19.5   9.9   1.9   7.5     WCOSNU-33-24   392.3   4.2   0.05977   11.9   0.00249   5.8   16.0   0.9   2.4     WCOSNU-33-25   311.2   3.2   0.04068 <t< td=""><td>WCOSNU-33-13</td><td></td><td>317.3</td><td>4.5</td><td>0.07803</td><td>17.9</td><td>0.00297</td><td>7.5</td><td>19.1</td><td>1.4</td><td>5.7</td></t<>	WCOSNU-33-13		317.3	4.5	0.07803	17.9	0.00297	7.5	19.1	1.4	5.7
WCOSNU-33-15   330.3   5.4   0.03813   36.1   0.00307   8.3   19.8   1.6   -1.5     WCOSNU-33-16   385.5   5.4   0.05546   116.9   0.00255   18.3   16.4   3.0   1.6     WCOSNU-33-17   401.3   5.4   0.05812   14.9   0.00244   7.4   15.7   1.2   2.1     WCOSNU-33-19   Discordant   193.9   4.8   0.43578   5.2   0.00133   19.5   9.9   1.9   70.5     WCOSNU-33-20   Discordant   18.8   8.0   0.93840   4.0   -0.00770   -3.3   -49.9   1.6   16.18.8     WCOSNU-33-21   322.8   6.2   0.0301   58.2   0.00319   9.9   20.5   2.0   -2.8     WCOSNU-33-23   368.1   3.1   0.04599   16.8   0.00272   4.7   17.5   0.8   -0.1     WCOSNU-33-24   392.3   4.2   0.05977   1.9   0.00249   5.8   16.0   0.9   2.4     WCOSNU-33-27   Inherited   219.7   4.3   0.05729 <td< td=""><td>WCOSNU-33-14</td><td>Discordant</td><td>463.6</td><td>5.7</td><td>0.11499</td><td>16.2</td><td>0.00189</td><td>10.1</td><td>12.2</td><td>1.2</td><td>12.4</td></td<>	WCOSNU-33-14	Discordant	463.6	5.7	0.11499	16.2	0.00189	10.1	12.2	1.2	12.4
WCOSNU-33-16   385.5   5.4   0.05546   116.9   0.00255   18.3   16.4   3.0   1.6     WCOSNU-33-17   401.3   5.4   0.05542   14.9   0.00244   7.4   15.7   1.2   2.1     WCOSNU-33-18   Inherited   296.0   3.6   0.04854   42.2   0.00337   7.6   21.7   1.6   0.4     WCOSNU-33-19   Discordant   193.9   4.8   0.43578   5.2   0.00153   19.5   9.9   1.9   70.5     WCOSNU-33-20   Discordant   81.8   8.0   0.93840   4.0   -0.00770   -3.3   -49.9   1.6   161.8     WCOSNU-33-21   322.8   6.2   0.03091   58.2   0.00319   9.9   2.0.5   2.0   -2.8     WCOSNU-33-22   341.6   2.2   0.04811   13.9   0.00222   3.5   18.8   0.7   0.3     WCOSNU-33-24   392.3   4.2   0.05977   1.9   0.00249   5.8   16.0   0.6     WCOSNU-33-27   Inherited   219.7   4.3   0.05767	WCOSNU-33-15		330.3	5.4	0.03813	36.1	0.00307	8.3	19.8	1.6	-1.5
WCOSNU-33-17   401.3   5.4   0.05812   14.9   0.00244   7.4   15.7   1.2   2.1     WCOSNU-33-18   Inherited   296.0   3.6   0.04854   42.2   0.00337   7.6   21.7   1.6   0.4     WCOSNU-33-19   Discordant   193.9   4.8   0.43578   5.2   0.00153   19.5   9.9   1.9   70.5     WCOSNU-33-20   Discordant   81.8   8.0   0.93840   4.0   -0.00770   -3.3   -49.9   1.6   161.8     WCOSNU-33-21   322.8   6.2   0.03091   58.2   0.00219   3.5   18.8   0.7   0.3     WCOSNU-33-22   341.6   2.2   0.04811   13.9   0.00249   5.8   16.0   0.9   2.4     WCOSNU-33-24   392.3   4.2   0.05977   11.9   0.00249   5.8   16.0   0.6   0.02   2.4     WCOSNU-33-27   Inherited   219.7   4.3   0.05779   23.8   0.00467   7.1   28.7   2.0   1.0     WCOSNU-33-27   Inherited   <	WCOSNU-33-16		385.5	5.4	0.05546	116.9	0.00255	18.3	16.4	3.0	1.6
WCOSNU-33-18   Inherited   296.0   3.6   0.04854   42.2   0.00337   7.6   21.7   1.6   0.4     WCOSNU-33-19   Discordant   193.9   4.8   0.43578   5.2   0.00153   19.5   9.9   1.9   70.5     WCOSNU-33-20   Discordant   81.8   8.0   0.93840   4.0   -0.00770   -3.3   -49.9   1.6   161.8     WCOSNU-33-21   322.8   6.2   0.03091   58.2   0.00319   9.9   20.5   2.0   -2.8     WCOSNU-33-21   341.6   2.2   0.04811   13.9   0.00292   3.5   18.8   0.7   0.3     WCOSNU-33-23   368.1   3.1   0.04599   16.8   0.00272   4.7   17.5   0.8   -0.1     WCOSNU-33-25   311.2   3.2   0.04688   16.8   0.00320   4.9   20.6   1.0   0.6     WCOSNU-33-27   Inherited   219.7   4.3   0.05729   23.8   0.00474   13.4   17.6   2.4   2.1     WCOSNU-33-29   325.0   2.9 <td< td=""><td>WCOSNU-33-17</td><td></td><td>401 3</td><td>5.4</td><td>0.05812</td><td>14.9</td><td>0.00244</td><td>74</td><td>15.7</td><td>12</td><td>2.1</td></td<>	WCOSNU-33-17		401 3	5.4	0.05812	14.9	0.00244	74	15.7	12	2.1
NCOSNU-33-19   Discordant   193.9   4.8   0.043578   1.12   0.00153   1.95   9.9   1.9   70.5     WCOSNU-33-20   Discordant   81.8   8.0   0.93840   4.0   -0.00770   -3.3   -49.9   1.6   161.8     WCOSNU-33-21   322.8   6.2   0.03091   58.2   0.00319   9.9   20.5   2.0   -2.8     WCOSNU-33-22   341.6   2.2   0.04811   13.9   0.00292   3.5   18.8   0.7   0.3     WCOSNU-33-23   368.1   3.1   0.04599   16.8   0.00272   4.7   17.5   0.8   -0.1     WCOSNU-33-25   311.2   3.2   0.04968   16.8   0.00295   10.7   19.0   2.0   -1.0     WCOSNU-33-26   342.6   7.0   0.04083   40.7   0.00295   10.7   19.0   2.0   -1.0     WCOSNU-33-27   Inherited   219.7   4.3   0.05779   24.4   0.00274   13.4   17.6   2.4   2.1     WCOSNU-33-28   357.6   9.5   0.05767	WCOSNU-33-18	Inherited	296.0	3.6	0.04854	42.2	0.00337	7.6	21.7	1.6	0.4
MCOSNU-33-20   Discordant   81.8   8.0   0.93840   4.0   -0.00770   -3.3   -49.9   1.6   161.8     WCOSNU-33-21   322.8   6.2   0.03091   58.2   0.00319   9.9   20.5   2.0   -2.8     WCOSNU-33-22   341.6   2.2   0.04811   13.9   0.00222   3.5   18.8   0.7   0.3     WCOSNU-33-23   368.1   3.1   0.04599   16.8   0.00272   4.7   17.5   0.8   -0.1     WCOSNU-33-24   392.3   4.2   0.05977   11.9   0.00295   10.7   19.0   2.0   -1.0     WCOSNU-33-25   311.2   3.2   0.0468   16.8   0.00274   1.4   1.0   0.6     WCOSNU-33-26   342.6   7.0   0.04083   4.07   0.00295   10.7   19.0   2.0   -1.0     WCOSNU-33-28   357.6   9.5   0.05773   24.4   0.00274   13.4   17.6   2.4   2.1     WCOSNU-33-30   373.7   8.7   0.05767   7.1   0.00262   12.6   16.9 <td>WCOSNU-33-19</td> <td>Discordant</td> <td>193.9</td> <td>4.8</td> <td>0 43578</td> <td>5.2</td> <td>0.00153</td> <td>19.5</td> <td>99</td> <td>1.0</td> <td>70 5</td>	WCOSNU-33-19	Discordant	193.9	4.8	0 43578	5.2	0.00153	19.5	99	1.0	70 5
WCOSNU-33-21   322.8   6.2   0.03091   8.2   0.00319   9.9   20.5   2.0   -2.8     WCOSNU-33-22   341.6   2.2   0.04811   13.9   0.00292   3.5   18.8   0.7   0.3     WCOSNU-33-23   368.1   3.1   0.04599   16.8   0.00272   4.7   17.5   0.8   -0.1     WCOSNU-33-24   392.3   4.2   0.05977   11.9   0.00295   10.7   19.0   2.0   -1.0     WCOSNU-33-25   311.2   3.2   0.04068   16.8   0.00320   4.9   2.06   1.0   0.6     WCOSNU-33-27   Inherited   219.7   4.3   0.05729   23.8   0.00446   7.1   28.7   2.0   1.9     WCOSNU-33-28   357.6   9.5   0.05737   24.4   0.00274   13.4   17.6   2.4   2.1     WCOSNU-33-30   373.7   8.7   0.05767   27.1   0.00262   12.6   16.9   2.1   2.0     WCOSNU-33-31   Discordant   192.1   4.5   0.35814   10.5   0.00228<	WCOSNU-33-20	Discordant	81.8	8.0	0.93840	4.0	-0.00770	-3.3	-49 9	1.5	161.8
WCOSNU-33-22   341.6   2.2   0.04811   13.9   0.00292   3.5   18.8   0.7   0.3     WCOSNU-33-23   368.1   3.1   0.04899   16.8   0.00272   4.7   17.5   0.8   -0.1     WCOSNU-33-24   392.3   4.2   0.05977   11.9   0.00249   5.8   16.0   0.9   2.4     WCOSNU-33-25   311.2   3.2   0.04968   16.8   0.00205   10.7   19.0   2.0   -1.0     WCOSNU-33-26   342.6   7.0   0.04083   40.7   0.00295   10.7   19.0   2.0   -1.0     WCOSNU-33-28   357.6   9.5   0.05793   24.4   0.00274   13.4   17.6   2.4   2.1     WCOSNU-33-29   325.0   2.9   0.04768   22.0   0.00307   4.9   19.8   1.0   0.2     WCOSNU-33-30   373.7   8.7   0.05767   27.1   0.00262   12.6   16.9   2.1   2.0     WCOSNU-33-31   Discordant   192.1   4.5   0.35814   10.5   0.00228   21.0 <td>WCOSNU-33-21</td> <td>Discordant</td> <td>322.8</td> <td>6.2</td> <td>0.03091</td> <td>58.2</td> <td>0.00319</td> <td>9,9</td> <td>20.5</td> <td>2.0</td> <td>-2.8</td>	WCOSNU-33-21	Discordant	322.8	6.2	0.03091	58.2	0.00319	9,9	20.5	2.0	-2.8
WCOSNU-33-23   368.1   3.1   0.04599   16.8   0.00272   4.7   17.5   0.8   -0.1     WCOSNU-33-24   392.3   4.2   0.05977   11.9   0.00249   5.8   16.0   0.9   2.4     WCOSNU-33-25   311.2   3.2   0.04968   16.8   0.0320   4.9   20.6   1.0   0.6     WCOSNU-33-26   342.6   7.0   0.04083   40.7   0.00249   5.8   16.0   0.9   2.4     WCOSNU-33-27   Inherited   219.7   4.3   0.05729   23.8   0.00446   7.1   28.7   2.0   1.9     WCOSNU-33-28   357.6   9.5   0.05793   24.4   0.00274   13.4   17.6   2.4   2.1     WCOSNU-33-29   325.0   2.9   0.04768   2.0   0.00307   4.9   19.8   1.0   0.2     WCOSNU-33-30   373.7   8.7   0.05767   27.1   0.00262   12.6   16.9   2.1   2.0     WCOSNU-33-31   Discordant   192.1   4.5   0.35814   10.5   0.00228	WCOSNU-33-22		341.6	2.2	0.03031	13.9	0.00292	3.5	18.8	0.7	03
WCOSNU-33-24   392.3   4.2   0.05977   11.9   0.00249   5.8   16.0   0.9   2.4     WCOSNU-33-25   311.2   3.2   0.04968   16.8   0.00320   4.9   20.6   1.0   0.6     WCOSNU-33-26   342.6   7.0   0.044083   40.7   0.00295   10.7   19.0   2.0   -1.0     WCOSNU-33-27   Inherited   219.7   4.3   0.05729   23.8   0.04466   7.1   28.7   2.0   1.9     WCOSNU-33-28   357.6   9.5   0.05793   24.4   0.00274   13.4   17.6   2.4   2.1     WCOSNU-33-30   373.7   8.7   0.05767   27.1   0.00262   12.6   16.9   2.1   2.0     WCOSNU-33-31   Discordant   192.1   4.5   0.35814   10.5   0.00228   21.0   14.7   3.1   56.4     WCOSNU-33-33   Discordant   244.6   2.4   0.24933   16.8   0.00259   14.7   16.7   2.4   36.7     WCOSNU-33-34   Inherited   291.7   3.3	WCOSNU-33-23		368.1	3.1	0.04599	16.8	0.00232	47	17.5	0.8	-0.1
WCOSNU-33-24   311.2   3.2   0.04968   16.8   0.00320   4.9   20.6   1.0   0.6     WCOSNU-33-26   342.6   7.0   0.04083   40.7   0.00295   10.7   19.0   2.0   -1.0     WCOSNU-33-27   Inherited   219.7   4.3   0.05729   23.8   0.00446   7.1   28.7   2.0   1.9     WCOSNU-33-28   357.6   9.5   0.05793   24.4   0.00274   13.4   17.6   2.4   2.1     WCOSNU-33-29   325.0   2.9   0.04768   2.0   0.00307   4.9   19.8   1.0   0.2     WCOSNU-33-30   373.7   8.7   0.05767   27.1   0.00228   21.0   14.7   3.1   56.4     WCOSNU-33-31   Discordant   192.1   4.5   0.35814   10.5   0.00228   21.0   14.7   3.1   56.4     WCOSNU-33-31   Discordant   244.6   2.4   0.24933   16.8   0.00259   14.7   16.7   2.4   36.7     WCOSNU-33-35   Discordant   311.4   4.1	WCOSNU-33-24		392.3	4.2	0.05977	11.9	0.00249	5.8	16.0	0.0	2.4
WCOSNU-33-26   342.6   7.0   0.04083   40.7   0.00295   10.7   19.0   2.0   -1.0     WCOSNU-33-27   Inherited   219.7   4.3   0.05729   23.8   0.00446   7.1   28.7   2.0   1.9     WCOSNU-33-28   357.6   9.5   0.05793   24.4   0.00274   13.4   17.6   2.4   2.1     WCOSNU-33-29   325.0   2.9   0.04768   22.0   0.00307   4.9   19.8   1.0   0.2     WCOSNU-33-30   373.7   8.7   0.05767   27.1   0.00262   12.6   16.9   2.1   2.0     WCOSNU-33-31   Discordant   192.1   4.5   0.35814   10.5   0.00260   8.7   16.8   1.5   2.0     WCOSNU-33-31   Discordant   291.7   3.3   0.05647   13.5   0.00260   8.7   16.8   1.5   2.0     WCOSNU-33-34   Inherited   291.7   3.3   0.05647   13.5   0.00337   4.9   21.7   1.1   1.8     WCOSNU-33-35   Discordant   311.4	WCOSNU-33-25		311.2	3.2	0.03977	16.8	0.00245	4 9	20.6	1.0	0.6
WCOSNU-33-27   Inherited   219.7   4.3   0.05729   23.8   0.00446   7.1   28.7   2.0   1.9     WCOSNU-33-28   357.6   9.5   0.05793   24.4   0.00274   13.4   17.6   2.4   2.1     WCOSNU-33-29   325.0   2.9   0.04768   22.0   0.00307   4.9   19.8   1.0   0.2     WCOSNU-33-30   373.7   8.7   0.05767   27.1   0.00262   12.6   16.9   2.1   2.0     WCOSNU-33-31   Discordant   192.1   4.5   0.35814   10.5   0.00260   8.7   16.8   1.5   2.0     WCOSNU-33-32   376.4   6.9   0.05736   10.6   0.00260   8.7   16.8   1.5   2.0     WCOSNU-33-33   Discordant   244.6   2.4   0.24933   16.8   0.00259   14.7   16.7   2.4   36.7     WCOSNU-33-34   Inherited   291.7   3.3   0.05647   13.5   0.00329   6.7   21.2   1.4   2.3     WCOSNU-33-35   Discordant   311.4	WCOSNU-33-26		342.6	7.0	0.04083	40.7	0.00295	10.7	19.0	2.0	-1.0
WCOSNU-33-28   357.6   9.5   0.05793   24.4   0.00274   13.4   17.6   2.4   2.1     WCOSNU-33-29   325.0   2.9   0.04768   22.0   0.00307   4.9   19.8   1.0   0.2     WCOSNU-33-30   373.7   8.7   0.05767   27.1   0.00262   12.6   16.9   2.1   2.0     WCOSNU-33-31   Discordant   192.1   4.5   0.35814   10.5   0.00228   21.0   14.7   3.1   56.4     WCOSNU-33-32   376.4   6.9   0.05736   10.6   0.00260   8.7   16.8   1.5   2.0     WCOSNU-33-33   Discordant   244.6   2.4   0.24933   16.8   0.00259   14.7   16.7   2.4   36.7     WCOSNU-33-34   Inherited   291.7   3.3   0.05647   13.5   0.00337   4.9   21.7   1.1   1.8     WCOSNU-33-35   Discordant   311.4   4.1   0.17840   5.2   0.00245   6.5   15.8   1.0   23.8     WCOSNU-33-37   Inherited   272.0	WCOSNU-33-27	Inherited	219.7	43	0.05729	23.8	0.00446	7 1	28.7	2.0	1.0
WCOSNU-33-29   325.0   2.9   0.04768   22.0   0.00307   4.9   19.8   1.0   0.2     WCOSNU-33-30   373.7   8.7   0.05767   27.1   0.00262   12.6   16.9   2.1   2.0     WCOSNU-33-31   Discordant   192.1   4.5   0.35814   10.5   0.00262   12.6   16.9   2.1   2.0     WCOSNU-33-31   Discordant   192.1   4.5   0.35814   10.5   0.00260   8.7   16.8   1.5   2.0     WCOSNU-33-32   376.4   6.9   0.05736   10.6   0.00260   8.7   16.8   1.5   2.0     WCOSNU-33-33   Discordant   244.6   2.4   0.24933   16.8   0.00259   14.7   16.7   2.4   36.7     WCOSNU-33-34   Inherited   291.7   3.3   0.05647   13.5   0.00337   4.9   21.7   1.1   1.8     WCOSNU-33-35   Discordant   311.4   4.1   0.17840   5.2   0.00245   6.5   15.8   1.0   23.8     WCOSNU-33-37   Inherited	WCOSNU-33-28	innenteu	357.6	95	0.05723	20.0	0.00274	13.4	17.6	2.0	2.1
WCOSNU-33-30   373.7   8.7   0.05767   27.1   0.00262   12.6   16.9   2.1   2.0     WCOSNU-33-31   Discordant   192.1   4.5   0.35814   10.5   0.00262   12.6   16.9   2.1   2.0     WCOSNU-33-31   Discordant   192.1   4.5   0.35814   10.5   0.00262   21.0   14.7   3.1   56.4     WCOSNU-33-32   376.4   6.9   0.05736   10.6   0.00260   8.7   16.8   1.5   2.0     WCOSNU-33-33   Discordant   244.6   2.4   0.24933   16.8   0.00259   14.7   16.7   2.4   36.7     WCOSNU-33-34   Inherited   291.7   3.3   0.05647   13.5   0.00337   4.9   21.7   1.1   1.8     WCOSNU-33-35   Discordant   311.4   4.1   0.17840   5.2   0.00245   6.5   15.8   1.0   23.8     WCOSNU-33-36   296.6   4.5   0.05933   17.8   0.00371   6.4   23.9   1.5   -1.0     WCOSNU-33-37   Inherited </td <td>WCOSNU-33-29</td> <td></td> <td>325.0</td> <td>29</td> <td>0.04768</td> <td>22.0</td> <td>0.00307</td> <td>49</td> <td>19.8</td> <td>1.0</td> <td>0.2</td>	WCOSNU-33-29		325.0	29	0.04768	22.0	0.00307	49	19.8	1.0	0.2
WCOSNU-33-31   Discordant   192.1   4.5   0.35814   10.5   0.00228   21.0   14.7   3.1   56.4     WCOSNU-33-32   376.4   6.9   0.05736   10.6   0.00260   8.7   16.8   1.5   2.0     WCOSNU-33-32   376.4   6.9   0.05736   10.6   0.00260   8.7   16.8   1.5   2.0     WCOSNU-33-33   Discordant   244.6   2.4   0.24933   16.8   0.00259   14.7   16.7   2.4   36.7     WCOSNU-33-34   Inherited   291.7   3.3   0.05647   13.5   0.00337   4.9   21.7   1.1   1.8     WCOSNU-33-35   Discordant   311.4   4.1   0.17840   5.2   0.00245   6.5   15.8   1.0   23.8     WCOSNU-33-36   296.6   4.5   0.05933   17.8   0.00329   6.7   21.2   1.4   2.3     WCOSNU-33-37   Inherited   272.0   3.4   0.04072   38.1   0.00371   6.4   23.9   1.5   -1.0     WCOSNU-33-38   Discordant <td>WCOSNU-33-30</td> <td></td> <td>373 7</td> <td>87</td> <td>0.05767</td> <td>27.1</td> <td>0.00262</td> <td>12.6</td> <td>16.9</td> <td>2.1</td> <td>2.0</td>	WCOSNU-33-30		373 7	87	0.05767	27.1	0.00262	12.6	16.9	2.1	2.0
WCOSNU-33-32   376.4   6.9   0.05736   10.6   0.00260   8.7   16.8   1.5   2.0     WCOSNU-33-33   Discordant   244.6   2.4   0.24933   16.8   0.00259   14.7   16.7   2.4   36.7     WCOSNU-33-34   Inherited   291.7   3.3   0.05647   13.5   0.00337   4.9   21.7   1.1   1.8     WCOSNU-33-35   Discordant   311.4   4.1   0.17840   5.2   0.00245   6.5   15.8   1.0   23.8     WCOSNU-33-36   296.6   4.5   0.05933   17.8   0.00329   6.7   21.2   1.4   2.3     WCOSNU-33-37   Inherited   272.0   3.4   0.04072   38.1   0.00371   6.4   23.9   1.5   -1.0     WCOSNU-33-38   Discordant   124.3   6.1   0.62931   3.9   -0.00044   -81.2   -2.8   2.3   105.4     WCOSNU-33-39   347.8   4.4   0.04472   19.2   0.00288   6.2   18.6   1.1   -0.3     WCOSNU-33-40   Discordant<	WCOSNU-33-31	Discordant	192.1	45	0 35814	10.5	0.00228	21.0	14.7	3.1	56.4
WCOSNU-33-33Discordant244.62.40.2493316.80.0025914.716.72.436.7WCOSNU-33-34Inherited291.73.30.0564713.50.003374.921.71.11.8WCOSNU-33-35Discordant311.44.10.178405.20.002456.515.81.023.8WCOSNU-33-36296.64.50.0593317.80.003296.721.21.42.3WCOSNU-33-37Inherited272.03.40.0407238.10.003716.423.91.5-1.0WCOSNU-33-38Discordant124.36.10.629313.9-0.00044-81.2-2.82.3105.4WCOSNU-33-39347.84.40.0447219.20.002886.218.61.1-0.3WCOSNU-33-40Discordant67.35.40.655865.7-0.00157-63.5-10.16.4110.4WCOSNU-33-43345.19.10.0570441.00.0028414.718.32.71.9	WCOSNU-33-32	Discordant	376.4	6.9	0.05736	10.5	0.00260	87	16.8	15	2.0
WCOSNU-33-34   Inherited   291.7   3.3   0.05647   13.5   0.00337   4.9   21.7   1.1   1.8     WCOSNU-33-35   Discordant   311.4   4.1   0.17840   5.2   0.00245   6.5   15.8   1.0   23.8     WCOSNU-33-35   Discordant   311.4   4.1   0.17840   5.2   0.00245   6.5   15.8   1.0   23.8     WCOSNU-33-36   296.6   4.5   0.05933   17.8   0.00329   6.7   21.2   1.4   2.3     WCOSNU-33-37   Inherited   272.0   3.4   0.04072   38.1   0.00371   6.4   23.9   1.5   -1.0     WCOSNU-33-38   Discordant   124.3   6.1   0.62931   3.9   -0.00044   -81.2   -2.8   2.3   105.4     WCOSNU-33-39   347.8   4.4   0.04472   19.2   0.00288   6.2   18.6   1.1   -0.3     WCOSNU-33-40   Discordant   67.3   5.4   0.65586   5.7   -0.00157   -63.5   -10.1   6.4   110.4     WCOSNU-33-4	WCOSNU-33-33	Discordant	244.6	2.4	0 24933	16.8	0.00259	14.7	16.7	2.0	36.7
WCOSNU-33-35   Discordant   311.4   4.1   0.17840   5.2   0.00245   6.5   15.8   1.0   23.8     WCOSNU-33-35   Discordant   311.4   4.1   0.17840   5.2   0.00245   6.5   15.8   1.0   23.8     WCOSNU-33-36   296.6   4.5   0.05933   17.8   0.00329   6.7   21.2   1.4   2.3     WCOSNU-33-37   Inherited   272.0   3.4   0.04072   38.1   0.00371   6.4   23.9   1.5   -1.0     WCOSNU-33-38   Discordant   124.3   6.1   0.62931   3.9   -0.00044   -81.2   -2.8   2.3   105.4     WCOSNU-33-39   347.8   4.4   0.04472   19.2   0.00288   6.2   18.6   1.1   -0.3     WCOSNU-33-40   Discordant   67.3   5.4   0.65586   5.7   -0.00157   -63.5   -10.1   6.4   110.4     WCOSNU-33-42   393.1   6.7   0.04303   19.6   0.00256   8.8   16.5   1.5   -0.6     WCOSNU-33-43   345.1 </td <td>WCOSNU-33-34</td> <td>Inherited</td> <td>244.0</td> <td>2.7</td> <td>0.24555</td> <td>13.5</td> <td>0.00233</td> <td>۲., ۱۵</td> <td>21.7</td> <td>1 1</td> <td>1.8</td>	WCOSNU-33-34	Inherited	244.0	2.7	0.24555	13.5	0.00233	۲., ۱۵	21.7	1 1	1.8
WCOSNU-33-36296.64.50.0593317.80.003296.721.21.42.3WCOSNU-33-37Inherited272.03.40.0407238.10.003716.423.91.5-1.0WCOSNU-33-38Discordant124.36.10.629313.9-0.00044-81.2-2.82.3105.4WCOSNU-33-39347.84.40.0447219.20.002886.218.61.1-0.3WCOSNU-33-40Discordant67.35.40.655865.7-0.00157-63.5-10.16.4110.4WCOSNU-33-42393.16.70.0430319.60.002568.816.51.5-0.6WCOSNU-33-43345.19.10.0570441.00.0028414.718.32.71.9	WCOSNU-33-35	Discordant	311 4	4 1	0.03047	5.2	0.00245	65	15.8	1.1	23.8
WCOSNU-33-37   Inherited   272.0   3.4   0.04072   38.1   0.00371   6.4   23.9   1.5   -1.0     WCOSNU-33-37   Inherited   272.0   3.4   0.04072   38.1   0.00371   6.4   23.9   1.5   -1.0     WCOSNU-33-38   Discordant   124.3   6.1   0.62931   3.9   -0.00044   -81.2   -2.8   2.3   105.4     WCOSNU-33-39   347.8   4.4   0.04472   19.2   0.00288   6.2   18.6   1.1   -0.3     WCOSNU-33-40   Discordant   67.3   5.4   0.65586   5.7   -0.00157   -63.5   -10.1   6.4   110.4     WCOSNU-33-42   393.1   6.7   0.04303   19.6   0.00256   8.8   16.5   1.5   -0.6     WCOSNU-33-43   345.1   9.1   0.05704   41.0   0.00284   14.7   18.3   2.7   1.9	WCOSNU-33-36	Discordant	296.6	15	0.17040	17.8	0.00249	6.7	21.0	1.0	23.0
WCOSNU-33-38   Discordant   124.3   6.1   0.62931   3.9   -0.00044   -81.2   -2.8   2.3   105.4     WCOSNU-33-39   347.8   4.4   0.04472   19.2   0.00288   6.2   18.6   1.1   -0.3     WCOSNU-33-40   Discordant   67.3   5.4   0.65586   5.7   -0.00157   -63.5   -10.1   6.4   110.4     WCOSNU-33-42   393.1   6.7   0.04303   19.6   0.00256   8.8   16.5   1.5   -0.6     WCOSNU-33-43   345.1   9.1   0.05704   41.0   0.00284   14.7   18.3   2.7   1.9	WCOSNU-33-37	Inherited	272.0	3.4	0.03555	38.1	0.00323	6.4	21.2	15	-1.0
WCOSNU-33-39   347.8   4.4   0.04472   19.2   0.00288   6.2   18.6   1.1   -0.3     WCOSNU-33-40   Discordant   67.3   5.4   0.65586   5.7   -0.00157   -63.5   -10.1   6.4   110.4     WCOSNU-33-42   393.1   6.7   0.04303   19.6   0.00256   8.8   16.5   1.5   -0.6     WCOSNU-33-43   345.1   9.1   0.05704   41.0   0.00284   14.7   18.3   2.7   1.9	WCOSNU-33-37	Discordant	124 3	6.1	0 62921	39	-0 00044	-81 2	-7 8	2.3	105 4
WCOSNU-33-40   Discordant   67.3   5.4   0.65586   5.7   -0.00157   -63.5   -10.1   6.4   110.4     WCOSNU-33-42   393.1   6.7   0.04303   19.6   0.00256   8.8   16.5   1.5   -0.6     WCOSNU-33-43   345.1   9.1   0.05704   41.0   0.00284   14.7   18.3   2.7   1.9	WCOSNI 1-33-30	Discordant	347 8	Δ <i>Λ</i>	0.02331	19.5	0 00288	6.2	18.6	2.5 1 1	-0 3
WCOSNU-33-42     393.1     6.7     0.04303     19.6     0.00256     8.8     16.5     1.5     -0.6       WCOSNU-33-43     345.1     9.1     0.05704     41.0     0.00284     14.7     18.3     2.7     1.9	WCOSNU-33-39	Discordant	67 2	+ 5 /	0.04472	57	-0 00157	-63 5	-10.0	6.4	-0.5 110 /
WCOSNU-33-43     345.1     9.1     0.05704     41.0     0.00284     14.7     18.3     2.7     1.9	WCOSNI 1-22-40	Discordant	202 1	67	0.03300	10 A	0.00157	55.5 Q Q	16 5	1 5	-0.6
WCOSING 35 TS 5TS.1 5.1 5.1 0.05704 41.0 0.00204 14.7 10.5 2.7 1.7	WCOSNU-33-42		333.1	0.7 Q 1	0.04303	1J.0 41 0	0.00230	0.0 1/1 7	18 3	2.5	1 Q
WCOSNU-33-44 Discordant 78.5 7.9 0.96250 4.7 -0.00860 -4.7 -55.7 2.6 166.1	WCOSNU-33-44	Discordant	78.5	7,9	0.96250	4.7	-0.00860	-4.7	-55.7	2.6	166.1

Appendix Table 3 (continued). U-Pb Spot Analyses by LA-ICP-MS

										0/.
		Total		Total		7-corr		²⁰⁶ Pb/ ²³⁸ U		^{/0} Discor-
Sample Spot	Note	²³⁸ U/ ²⁰⁶ Pb	±%	²⁰⁷ Pb/ ²⁰⁶ Pb	±%	²⁰⁶ Pb/ ²³⁸ U	±%	Age	1σ	dant
WCOSNU-33-45		391.2	2.7	0.04807	21.5	0.00255	4.7	16.4	0.8	0.3
WCOSNU-33-46		354.5	10.9	0.01260	135.0	0.00299	15.5	19.3	3.0	-6.1
WCOSNU-33-47	Pb Loss	514.3	12.4	0.05424	57.5	0.00192	20.7	12.3	2.6	1.4
WCOSNU-33-48	Inherited	233.5	7.4	0.04446	30.3	0.00430	10.6	27.7	2.9	-0.4
WCOSNU-33-49		336.9	5.5	0.05666	22.7	0.00291	8.3	18.8	1.6	1.8
WCOSNU-33-50		325.9	5.2	0.04373	51.7	0.00308	9.8	19.8	1.9	-0.5
WCOSNU-33-52	Inherited	292.0	5.3	0.05744	39.1	0.00336	9.9	21.6	2.1	2.0
WCOSNU-33-53	Inherited	278.6	6.3	0.04452	91.0	0.00360	14.5	23.2	3.4	-0.4
WCOSNU-33-54	Inherited	296.6	6.3	0.04897	49.8	0.00336	11.5	21.6	2.5	0.4
WCOSNU-33-55		466.6	31.7	0.04858	151.3	0.00213	65.9	13.7	9.1	0.4
WCOSNU-33-56		417.5	8.2	0.05694	67.3	0.00235	16.6	15.1	2.5	1.9
WCOSNU-33-57		373.4	7.0	0.05732	12.2	0.00263	8.8	16.9	1.5	2.0
WCOSNU-33-58		425.2	7.6	0.05122	39.9	0.00233	12.2	15.0	1.8	0.9
WCOSNU-33-59	Pb Loss	566.8	6.3	0.04611	25.0	0.00176	8.9	11.4	1.0	0.0
WCOSNU-33-60		443.2	8.2	0.05357	18.2	0.00223	10.8	14.3	1.6	1.3
WCOSNU-33-61	Inherited	205.6	5.0	0.06689	16.8	0.00469	7.4	30.1	2.2	3.7
WCOSNU-33-62	innented	449.4	4.9	0.05554	11.7	0.00219	6.4	14.1	0.9	1.7
WCOSNU-33-63		389.2	17.0	0.04128	88.7	0.00259	28.4	16.7	47	-0.9
WCOSNU-33-64		474 1	7.6	0.03548	103.8	0.00240	15.3	15.5	24	-2.0
WCOSNU-33-65	Phloss	470.6	57	0.05318	14.8	0.00208	77	13.4	1.0	2.0
WCOSNU-33-66	Ph Loss	506.5	6.1	0.05758	14.0	0.00200	83	12.4	1.0	3.2
WCOSNU-33-67	10 2033	301.3	73	0.00408	95.8	0.00151	18.0	16.1	3.0	5.2 2.1
WCOSNU-33-68		271.9	6.4	0.03031	33.8 11 /	0.00230	10.5	17.5	12	-12
WCOSNUL33-69		1/8 8	6.4	0.03552	13.7	0.00272	9.7 8.0	1/.5	1.5	0.4
WCOSNU-33-05	Inhoritod	201 0	6.6	0.04850	20.1	0.00222	11 1	14.J 21.Q	2.4	1 2
WCOSNUL22-72	Discordant	291.9	0.0 8.6	0.05300	22.1	0.00339	16.2	14.7	2.4	1/2
	Discordant	171 /	0.0	0.12525	23.5	0.00228	E1 2	0 1	2.4 1 1	171.2
	Discordant	171.4 E06 E	0.9 76 1	0.71049	9.1 26 E	-0.00125	-31.2	-0.1	4.1	121.5
	Discordant	200.2 205.4	20.1	0.20005	20.5	0.00118	04.5 14 E	7.0	4.9	40.2
	Discordant	205.4	7.Z	0.13403	21.9	0.00410	14.5	20.4	5.0 1.4	15.9
	Discordont	390.4 345 0	24.0	0.00147	20.0	0.00249	0.7	10.0	11.4	2.7
	Discordant	545.U	54.0 E C	0.20529	39.0 10.0	0.00176	100.0	11.4	11.4	39.Z
	Dhlocc	421.4 E61.4	5.0 1 E 0	0.05556	10.0	0.00233	7.1	15.0	1.1	1.7
	PD LOSS	301.4	10.0	0.05025	20.5	0.00177	21.0	11.4	2.5	0.7
		445.7 27C F	11.5	0.06562	05.1	0.00217	22.0	13.9	3.1 1 1	3.5
		3/0.5	5.1	0.05979	11.9	0.00259	0.8	10.7	1.1	2.4
	Discondent	417.3 225.5	8.0	0.05746	13.8	0.00235	11.0	15.1	1.7	2.0
	Discordant	335.5	4.9	0.09913	7.8	0.00270	0.8	17.4	1.2	9.5
WCOSNU-33-84		377.5	5.8	0.06984	38.7	0.00254	11.5	16.3	1.9	4.2
WCOSNU-33-86	Discondont	419.2	5.1	0.05784	20.3	0.00234	7.6	15.0	1.1	2.1
WCOSNU-33-87	Discordant	197.1	7.3	0.31561	10.0	0.00261	19.9	16.8	3.3	48.7
WCOSNU-33-88		424.1	6.3	0.05217	30.4	0.00233	9.8	15.0	1.5	1.0
WCOSNU-33-89		352.0	14.6	0.06117	87.9	0.00277	28.7	17.8	5.1	2.7
WCOSNU-33-90		360.1	10.2	0.05746	83.6	0.00272	21.1	17.5	3.7	2.0
WCOSNU-33-91		485.9	8.8	0.03648	167.5	0.00209	21.6	13.5	2.9	-1.8
WCOSNU-33-92		423.2	11.7	0.04994	87.2	0.00235	22.2	15.1	3.4	0.6
WCOSNU-33-93	Pb Loss	533.6	5.7	0.04927	14.6	0.00186	7.4	12.0	0.9	0.5
WCOSNU-33-94		344.5	9.5	0.04914	98.0	0.00289	20.1	18.6	3.7	0.5
WCOSNU-33-95		389.4	2.8	0.05506	15.9	0.00253	4.5	16.3	0.7	1.6
WCOSNU-33-96		348.3	3.1	0.07001	11.0	0.00275	4.7	17.7	0.8	4.3
WCOSNU-33-97		423.1	4.8	0.04404	14.2	0.00237	6.2	15.3	1.0	-0.4
WCOSNU-33-98		317.4	4.7	0.04929	14.7	0.00313	6.3	20.2	1.3	0.5
WCOSNU-33-99	Discordant	379.2	7.4	0.12556	11.1	0.00226	11.1	14.6	1.6	14.3

Appendix Table 3 (continued). U-Pb Spot Analyses by LA-ICP-MS

										%
		Total		Total		7-corr		²⁰⁶ Pb/ ²³⁸ U		Discor-
Sample Spot	Note	²³⁸ U/ ²⁰⁶ Pb	±%	²⁰⁷ Pb/ ²⁰⁶ Pb	±%	²⁰⁶ Pb/ ²³⁸ U	±%	Age	1σ	dant
WCOSNU-33-100		367.3	1.6	0.03735	16.1	0.00277	2.7	17.8	0.5	-1.6
WCOSNU-25-01		247.5	2.0	0.03958	17.5	0.00409	3.3	26.3	0.9	-1.3
WCOSNU-25-02		249.1	5.3	0.04820	61.6	0.00400	11.2	25.8	2.9	0.3
WCOSNU-25-03		371.2	9.7	0.05306	46.0	0.00266	15.6	17.1	2.7	1.2
WCOSNU-25-04		257.4	4.8	0.04617	10.3	0.00389	6.0	25.0	1.5	-0.1
WCOSNU-25-05	Inherited	242.9	6.1	0.03277	26.8	0.00422	8.1	27.1	2.2	-2.5
WCOSNU-25-06	Inherited	158.5	4.0	0.04604	30.0	0.00632	6.7	40.6	2.7	-0.2
WCOSNU-25-07		259.9	4.5	0.04155	48.1	0.00388	8.4	25.0	2.1	-0.9
WCOSNU-25-08		262.7	9.9	0.03860	29.9	0.00386	13.2	24.8	3.3	-1.4
WCOSNU-25-09		263.5	2.2	0.07510	22.6	0.00360	5.6	23.2	1.3	5.2
WCOSNU-25-10	Inherited	159.8	6.4	0.05737	61.7	0.00614	13.7	39.5	5.4	1.9
WCOSNU-25-11		259.4	2.6	0.05648	22.2	0.00379	5.0	24.4	1.2	1.8
WCOSNU-25-12		302.8	6.7	0.04842	37.9	0.00329	10.7	21.2	2.3	0.3
WCOSNU-25-13	Inherited	155.2	2.7	0.04850	56.0	0.00643	7.8	41.3	3.2	0.3
WCOSNU-25-14	Inherited	234.5	10.4	0.14313	15.8	0.00352	17.1	22.7	3.9	17.5
WCOSNU-25-15		277.9	2.8	0.04541	14.4	0.00361	4.1	23.2	0.9	-0.2
WCOSNU-25-16	Inherited	240.9	3.6	0.04247	74.5	0.00418	9.6	26.9	2.6	-0.7
WCOSNU-25-17		273.6	4.4	0.04465	42.7	0.00367	8.2	23.6	1.9	-0.3
WCOSNU-25-18	Inherited	188.6	6.6	0.05093	75.3	0.00526	14.5	33.8	4.9	0.8
WCOSNU-25-19	Inherited	211.0	3.3	0.05674	22.9	0.00465	5.8	29.9	1.7	1.8
WCOSNU-25-20		244.8	2.2	0.05633	60.6	0.00401	8.7	25.8	2.2	1.8
WCOSNU-25-21	Inherited	221.6	7.6	0.04903	17.5	0.00449	9.9	28.9	2.9	0.4
WCOSNU-25-22		299.6	7.9	0.05834	63.4	0.00327	16.0	21.0	3.4	2.1
WCOSNU-25-23		300.4	5.2	0.03905	21.6	0.00337	7.0	21.7	1.5	-1.3
WCOSNU-25-24		256.0	7.8	0.06095	38.2	0.00380	13.1	24.5	3.2	2.6
WCOSNU-25-25	Pb Loss	443.0	19.9	0.07318	90.1	0.00215	40.4	13.8	5.6	4.8
WCOSNU-25-26		288.3	5.6	0.04350	27.6	0.00349	8.2	22.4	1.8	-0.5
WCOSNU-25-27		264.1	0.5	0.05383	26.7	0.00374	3.1	24.1	0.7	1.3
WCOSNU-25-28	Philoss	390.6	27.2	0.04722	125.8	0.00256	52.0	16.5	8.6	0.1
WCOSNU-25-29		335.5	8.0	0.05594	19.9	0.00293	10.9	18.9	2.1	1.7
WCOSNU-25-30		271.6	5.6	0.05511	46.2	0.00362	10.9	23.3	2.5	1.6
WCOSNU-25-31	Inherited	202.3	6.2	0.04353	76.6	0.00497	12.9	32.0	4.1	-0.6
WCOSNU-25-32	innented	275.7	4.1	0.06070	32.1	0.00353	8.1	22.7	1.8	2.6
WCOSNU-25-33		282.4	5.8	0.04157	45.6	0.00357	9.7	23.0	2.2	-0.9
WCOSNU-25-34	Inherited	243.1	0.6	0.03922	58.1	0.00417	4.7	26.8	1.3	-1.3
WCOSNU-25-35	innented	265.7	6.0	0.04090	123.1	0.00380	15.9	24.5	3.9	-1.0
WCOSNU-25-36		283.9	2.8	0.05507	42.6	0.00347	7.2	22.3	1.6	1.5
WCOSNU-25-37		281.1	3.3	0.05941	36.6	0.00348	7.5	22.4	1.7	2.3
WCOSNU-25-38		268.3	2.4	0.05315	78.5	0.00368	10.3	23.7	2.4	1.2
WCOSNU-25-39		313.8	5.6	0.06133	38.5	0.00310	10.5	20.0	2.1	2.7
WCOSNU-25-40		258.7	4.4	0.04801	62.7	0.00386	10.3	24.8	2.5	0.3
WCOSNU-25-41		301.7	9.8	0.05750	139.4	0.00325	27.1	20.9	5.7	2.0
WCOSNU-25-42		318.7	53	0.03842	19.8	0.00318	7.0	20.5	14	-1 5
WCOSNU-25-43	Phloss	379.4	7.8	0.07514	125.9	0.00250	27 Q	16 1	45	5.2
WCOSNU-25-44	2000	229.4	4.0	0.08118	34.5	0.00409	97	26.3	2.6	6.3
WCOSNU-25-45	Inherited	208.9	37	0 05822	43 5	0.00469	9.7 8.6	30.2	2.0	2.5 7 1
	interted	200.0	5.7	0.00022	-J.J	0.00405	0.0	50.2	2.0	2.1
WCOSNU-11-01	Inherited	302.5	4.3	0.05768	20.6	0.00324	6.7	20.9	1.4	2.0
WCOSNU-11-02		337.7	1.5	0.06036	13.6	0.00289	3.1	18.6	0.6	2.5
WCOSNU-11-03	Inherited	240.4	1.4	0.04780	9.9	0.00415	2.3	26.7	0.6	0.2
WCOSNU-11-04		316.2	3.9	0.06014	16.6	0.00308	6.0	19.9	1.2	2.5

Appendix Table 3 (continued). U-Pb Spot Analyses by LA-ICP-MS

		Total		Total		7 corr				%
		10tai		10tai		7-COIT		²⁰⁶ Pb/ ²³⁸ U	_	Discor-
Sample Spot	Note	²³⁸ U/ ²⁰⁸ Pb	±%	²⁰⁷ Pb/ ²⁰⁸ Pb	±%	²⁰⁶ Pb/ ²³⁶ U	±%	Age	1σ	dant
WCOSNU-11-05	Inherited	304.5	1.7	0.05184	9.5	0.00325	2.7	20.9	0.6	1.0
WCOSNU-11-06	Inherited	276.0	4.0	0.05023	7.1	0.00360	4.9	23.2	1.1	0.7
WCOSNU-11-07	Inherited	265.1	3.0	0.05280	45.5	0.00373	7.6	24.0	1.8	1.1
WCOSNU-11-08	Inherited	278.4	4.1	0.04709	23.5	0.00359	6.4	23.1	1.5	0.1
WCOSNU-11-09	Inherited	281.5	5.2	0.04709	55.0	0.00355	10.4	22.8	2.4	0.1
WCOSNU-11-10	Inherited	295.5	4.0	0.05616	7.0	0.00332	4.9	21.4	1.1	1.7
WCOSNU-11-11		383.0	4.4	0.05363	15.1	0.00258	6.2	16.6	1.0	1.3
WCOSNU-11-12	Inherited	237.7	7.9	0.04708	28.7	0.00420	11.3	27.0	3.0	0.1
WCOSNU-11-13		320.7	5.1	0.03888	14.6	0.00316	6.5	20.3	1.3	-1.4
WCOSNU-11-14	Inherited	241.1	2.1	0.05994	30.5	0.00405	5.6	26.0	1.5	2.4
WCOSNU-11-15	Inherited	300.0	7.4	0.05405	29.8	0.00329	11.2	21.2	2.4	1.4
WCOSNU-11-16		360.8	1.4	0.05551	17.1	0.00273	3.2	17.6	0.6	1.6
WCOSNU-11-17	Pb Loss	438.9	4.7	0.04921	11.6	0.00227	6.0	14.6	0.9	0.5
WCOSNU-11-18	Pb Loss	480.7	16.2	0.04310	17.5	0.00209	21.0	13.5	2.8	-0.6
WCOSNU-11-19	Inherited	266.3	3.0	0.04385	10.9	0.00377	4.0	24.3	1.0	-0.5
WCOSNU-11-20		331.6	3.3	0.05914	7.9	0.00295	4.3	19.0	0.8	2.3
WCOSNU-11-21	Inherited	259.8	2.0	0.05034	20.8	0.00382	3.9	24.6	1.0	0.7
WCOSNU-11-22	Inherited	307.8	2.1	0.05045	22.3	0.00323	4.2	20.8	0.9	0.7
WCOSNU-11-23		379.8	7.9	0.05994	14.4	0.00257	10.3	16.5	1.7	2.4
WCOSNU-11-24	Inherited	286.2	3.0	0.04070	14.5	0.00353	4.2	22.7	1.0	-1.1
WCOSNU-11-25	Inherited	237.7	1.3	0.05764	26.3	0.00412	4.1	26.5	1.1	2.0
WCOSNU-11-26	Inherited	248.2	2.8	0.04929	16.9	0.00401	4.4	25.8	1.1	0.5
WCOSNU-11-27		364.6	2.6	0.06109	20.0	0.00267	5.0	17.2	0.9	2.6
WCOSNU-11-28	Inherited	267.8	1.9	0.04725	13.7	0.00373	3.1	24.0	0.7	0.1
WCOSNU-11-29		331.7	5.4	0.05544	7.5	0.00297	6.5	19.1	1.2	1.6
WCOSNU-11-30	Inherited	114.0	1.2	0.05327	93.4	0.00867	10.3	55.7	5.7	1.1
WCOSNU-11-31		359.7	5.2	0.06153	6.8	0.00270	6.3	17.4	1.1	2.7
WCOSNU-11-32		343.8	3.0	0.04502	14.1	0.00292	4.2	18.8	0.8	-0.3
WCOSNU-11-33		367.1	2.7	0.04822	21.1	0.00272	4.7	17.5	0.8	0.3
WCOSNU-11-34		351.9	2.2	0.05795	7.4	0.00278	3.1	17.9	0.6	2.1
WCOSNU-11-35		337.3	3.1	0.05783	12.8	0.00290	4.6	18.7	0.9	2.1
WCOSNU-11-36	Inherited	175.6	7.9	0.05427	10.8	0.00562	9.7	36.1	3.5	1.4
WCOSNU-11-37		345.5	7.7	0.05246	44.5	0.00286	12.9	18.4	2.4	1.1
WCOSNU-11-38	Inherited	262.9	5.8	0.04380	14.7	0.00382	7.3	24.6	1.8	-0.5
WCOSNU-11-39	Inherited	252.6	5.3	0.04707	42.7	0.00395	9.4	25.4	2.4	0.1
WCOSNU-11-40	Inherited	245.7	10.2	0.05062	37.5	0.00404	15.2	26.0	3.9	0.7

Appendix Table 3 (continued). U-Pb Spot Analyses by LA-ICP-MS

										²⁰⁶ Pb/ ²³⁸	
				Total		Total		7-corr		U	
Sample Spot ID	Note	U (ppm)	Th (ppm)	²³⁸ U/ ²⁰⁶ Pb	±%	²⁰⁷ Pb/ ²⁰⁶ Pb	±%	²⁰⁶ Pb/ ²³⁸ U	±%	Age	1σ
WCOS-2-1.1		1706.87	1009.92	381.2	1.8	0.04240	4.3	0.00264	0.6	17.0	0.3
WCOS-2-10.1		129.82	47.27	341.7	3.5	0.11859	20.7	0.00266	1.6	17.1	0.8
WCOS-2-11.1		707.91	654.42	398.8	2.3	0.06085	7.2	0.00246	0.8	15.8	0.4
WCOS-2-12.1	Inherited	258.14	113.95	369.7	1.8	0.04403	13.0	0.00271	0.6	17.5	0.3
WCOS-2-13.1		531.15	210.08	381.9	2.1	0.08443	5.9	0.00249	0.7	16.0	0.4
WCOS-2-14.1	Inherited	2448.16	1674.92	365.0	1.7	0.04808	3.6	0.00273	0.6	17.6	0.3
WCOS-2-15.1		105.02	41.71	341.8	6.4	0.17097	8.8	0.00246	2.2	15.9	1.1
WCOS-2-2.1	Pb Loss	416.68	364.30	417.1	1.7	0.05714	8.4	0.00236	0.6	15.2	0.3
WCOS-2-3.1		322.57	197.44	391.9	1.5	0.05780	9.1	0.00251	0.5	16.2	0.3
WCOS-2-4.1		487.89	254.88	387.1	2.3	0.04339	8.9	0.00259	0.8	16.7	0.4
WCOS-2-5.1		587.54	268.16	387.9	1.9	0.05266	7.4	0.00256	0.6	16.5	0.3
WCOS-2-6.1		546.10	255.65	384.9	0.7	0.04551	15.8	0.00260	0.4	16.7	0.2
WCOS-2-7.1	Inherited	2002.82	1877.30	364.0	0.7	0.04567	6.8	0.00275	0.2	17.7	0.1
WCOS-2-8.1	Inherited	247.72	105.56	342.2	0.8	0.10268	8.0	0.00271	0.4	17.5	0.2
WCOS-2-9.1		333.21	132.48	410.7	2.4	0.05081	12.0	0.00242	0.8	15.6	0.4
WCOS-SL3-1.1		86.79	42.51	296.6	1.6	0.07414	15.6	0.00325	0.7	20.9	0.5
WCOS-SL3-10.1		306.20	237.30	284.9	1.2	0.04925	9.1	0.00350	0.4	22.5	0.3
WCOS-SL3-11.1		320.08	228.51	284.9	0.7	0.04806	8.9	0.00350	0.3	22.5	0.2
WCOS-SL3-12.1		84.80	41.33	283.9	2.6	0.06913	14.5	0.00342	0.9	22.0	0.6
WCOS-SL3-13.1		101.27	61.71	284.6	5.0	0.06366	14.7	0.00344	1.6	22.1	1.1
WCOS-SL3-14.1		373.60	290.38	282.9	0.7	0.05236	8.0	0.00351	0.3	22.6	0.2
WCOS-SL3-15.1		207.07	140.81	277.8	0.9	0.03976	12.1	0.00363	0.3	23.4	0.2
WCOS-SL3-2.1		256.15	179.41	286.0	0.7	0.04995	10.6	0.00348	0.3	22.4	0.2
WCOS-SL3-3.1		72.52	29.90	313.7	2.3	0.06256	18.1	0.00312	0.9	20.1	0.5
WCOS-SL3-4.1		103.04	59.54	311.1	1.1	0.04276	19.4	0.00323	0.5	20.8	0.3
WCOS-SL3-5.1		95.02	48.63	298.4	2.2	0.03889	17.9	0.00338	0.7	21.8	0.5
WCOS-SL3-6.1		458.73	432.23	276.2	2.5	0.04227	8.0	0.00364	0.8	23.4	0.6
WCOS-SL3-7.1		232.43	180.02	281.8	2.1	0.04257	11.5	0.00357	0.7	22.9	0.5
WCOS-SL3-8.1		97.43	49.85	273.6	4.3	0.06049	14.6	0.00359	1.4	23.1	1.0
WCOS-SL3-9.1		637.96	627.29	289.5	1.3	0.04640	6.6	0.00345	0.4	22.2	0.3
WCOS-SI 11-1 1		198 11	148 71	296.2	23	0 03967	11 8	0 00340	07	21 9	05
WCOS-SI 11-10.1		188.31	122.39	286.2	2.1	0.03652	13.4	0.00354	0.7	22.8	0.5
WCOS-SI 11-11 1		141 05	95.93	282.3	3.6	0.04410	14.2	0.00355	1.7	22.0	0.8
WCOS-SI 11-12 1		98 44	46.07	275 5	11	0.05768	14.8	0.00358	0.5	23.0	0.4
WCOS-SI 11-13 1		364 92	284 75	271.1	1.1	0.04657	87	0.00369	0.5	23.0	0.4
WCOS-SI 11-14 1		103.82	46 50	276 5	3.1	0.04950	15.4	0.00360	1.0	23.2	0.7
WCOS-SI 11-15 1		139.00	80.41	270.5	0.9	0.03985	15 1	0.00363	0.4	23.4	0.7
WCOS-SI 11-2 1		97 10	56.89	251.4	1 1	0 14497	86	0.00348	0.7	23.4 22.4	0.5
WCOS-SI 11-3 1		220.08	157.67	291.4	2.6	0.1445	10.5	0.00340	0.7	22.4	0.5
WCOS-SI 11-4 1		220.00	207 21	291.7	2.0	0.05427	9.0	0.00342	0.5	22.0	0.5
WCOS-SI 11-4 2		203.10	153.24	201.1	1.6	0.03427	11 5	0.00352	0.7	22.7	0.5
WCOS-SI 11-6 1	Phloss	163.45	121 60	205.5	0.9	0.04442	11.5	0.00331	0.5	22.0	0.4
WCOS-SI 11-7 1	10 2033	103.04	382 03	277.1	17	0.00230	x 1	0.00320	0.4 0 6	21.1	0.5
WCOS-SI 11-8 1		94 67	18 QQ	272.1	10	0.04373	17.2	0.00360	0.0	23.7	0.4
WCOS-SI 11-9 1		177 21	12/ 07	276.0	2.0	0.044.04	13.7	0.00365	0. <del>4</del> 0.8	23.2	0.5
		177.21	124.07	270.0	2.4	0.04049	10.7	0.00303	0.0	20.0	0.0
WCOSNU-11-1		529.98	382.04	268.2	1.8	0.04719	7.0	0.00373	0.6	24.0	0.4

Appendix Table 4. U-Pb Spot Analyses by SHRIMP-RG



## Appendix 6. Whole Rock Geochemistry

<u>Appendix Figure 5</u>: A) SiO₂ vs. Eu_N/Eu_N*; B) Sm/Yb vs. La/Yb after Kay & Mpodozis (2001).

Appendix Table 5. Whole Rock XRF & ICP-MS Results from WSU

			, hbbc			WHOIC	NOCK /			Regult	5 11 0111	1130		
Sample ID:	WCOSN U-01	WCOSN U-07	WCOSN U-09	WCOSN U-10	WCOSN U-11	WCOSN U-12	WCOSN U-19	WCOSN U-20	WCOSN U-21	WCOSN U-23	WCOSN U-24	WCOSN U-25	WCOSN U-28	WCOSN U-29
Location ¹ :	SU	SU	SU	SU	SU	SU	BOH	BOH	BOH	BOH	BOH	BOH	BR	BR
Rock Type [*]	And	And	Diorite	Ton	Diorite	Diorite	Mnzd	And	Grnd	Diorite	Qz Dior	Diorite	Diorite	Diorite
Latitude	43.27	42.73	42.70	42.74	42.75	42.75	43.63	43.64	43.64	43.58	43.58	43.58	44.22	44.23
Longitude	-122.52	-122.67	-122.74	-122.78	-122.78	-122.78	-122.66	-122.64	-122.63	-122.64	-122.63	-122.63	-122.34	-122.34
(t. 0(														
(Wt.% oxides)	F 4 1 7	CA 44	57 52	FC 77	CO 15	F7 42	F2 24	40.02	CC 42	56.02		F0 1F	FC C0	F1 F2
	54.17	04.44	57.52	50.77	0.15	57.43	53.24	49.92	00.42	50.03	58.50	58.15	50.00	1.06
	16.33	14.46	15.02	16.60	15 77	16.25	1.45	10.20	14.64	16.42	16 19	16 56	16.67	19 53
	10.23	5 21	6 57	7 1 2	6.73	7 / 3	0 17	10.39	14.04	7.07	6 50	10.30	6.38	6 00
MnO	0.15	0.13	0.10	0.12	0.73	0.13	0.17	0.11	0.06	0.13	0.33	0.12	0.38	0.33
MgO	3.98	1.69	3.43	3.53	3.37	3.85	3.53	5.15	1.96	4.57	4.02	3.78	3.88	3.94
CaO	6.42	3.93	6.61	7.18	6.78	7.71	8.71	10.10	4.46	7.04	5.99	6.92	6.10	7.32
Na₂O	3.28	3.96	2.99	2.81	3.03	3.19	3.27	2.36	3.35	2.92	3.37	3.19	4.01	3.81
K ₂ O	1.05	1.70	1.53	1.22	1.62	1.05	0.69	0.78	2.47	1.49	1.48	1.30	0.89	0.96
P ₂ O5	0.30	0.27	0.14	0.19	0.16	0.19	0.27	0.16	0.14	0.17	0.16	0.16	0.18	0.19
Sum	94.64	96.84	95.59	96.54	98.59	98.22	98.15	96.08	98.74	96.75	97.28	98.30	95.75	94.44
LOI %	4.26	2.48	3.73	2.86	0.62	0.91	1.26	3.14	0.86	2.19	2.17	1.63	3.21	4.91
(ppm)														
Cs ²	0.29	0.77	0.33	1.09	4.21	0.78	0.68	0.73	0.33	1.62	4.46	0.90	0.31	2.14
Ba ²	297.51	520.10	390.57	387.61	469.79	199.30	231.16	126.52	781.58	403.18	367.70	351.61	234.48	190.41
Rb ²	19.61	40.52	31.21	28.81	48.32	24.09	11.89	19.15	31.69	36.35	41.35	31.37	13.69	19.80
Sr ²	497.84	313.37	437.06	503.50	372.73	441.15	439.85	471.87	383.08	482.62	382.27	400.34	535.63	786.23
NI	9.60	1.41	12.54	6.43	19.70	16.68	9.55	23.52	16.27	14.27	27.94	24.72	21.41	20.10
V	207.66	5.02 61 71	54.05 169 35	54.57 171.05	190.45	45.02 215.87	246.43	221.80	25.45	207.43	55.47 158 39	27.04	156 78	52.20 191.85
Sc ²	23.41	17.35	22.68	23.98	22.73	213.07	29.19	27.41	15.07	25.91	19.61	20.80	21.72	25.67
Cu	36.87	7.34	44.87	43.11	84.62	68.94	57.08	5.53	3.92	33.67	55.98	38.39	65.93	55.78
Zn	90.80	102.71	67.16	120.50	80.00	80.30	96.08	28.44	14.27	73.26	413.96	76.78	68.74	64.82
Ga	19.39	16.78	16.42	18.49	17.39	17.29	20.50	16.88	15.98	17.39	17.19	17.69	18.89	17.39
Pb ²	5.45	10.95	6.63	28.40	10.17	8.09	4.22	2.60	3.12	6.98	11.84	6.42	5.40	2.34
Zr ²	129.13	159.83	127.62	104.43	141.28	99.86	92.70	59.40	235.91	111.72	134.90	133.71	112.59	68.77
Hf ²	3.43	4.48	3.51	2.99	4.02	2.83	2.50	1.59	6.46	3.18	3.67	3.68	2.98	1.88
Nb ²	6.15	7.05	4.56	4.38	4.87	3.40	5.71	3.61	7.90	4.56	5.75	5.63	3.95	2.86
	0.41	0.50	0.34	0.31	0.38	0.26	0.40	0.26	0.68	0.37	0.44	0.43	0.46	0.35
	3.00	4.81	3.83	2.98	4.81	3.01	1.41	0.99	8.05	4.58	4.42	4.26	1.42	0.83
0 v ²	21.25	28 47	1.57	1.05	10.76	18.02	20.52	12 52	23 74	1.02	20.57	20.38	18 11	1/ /8
	15 74	20.47	12 //	12 20	13.00	11 30	10.19	12.35	11 02	14 28	12 77	12 00	0.01	7 02
Ce ²	35.03	40.16	28.54	26.09	29.85	24.91	22.88	26.40	25.04	30.01	29.01	28.06	22.79	15.60
Pr ²	4.76	5.49	3.74	3.66	4.03	3.34	3.24	3.39	3.49	3.93	3.80	3.68	3.11	2.24
Nd ²	20.30	22.89	15.49	15.34	16.62	14.48	14.61	13.65	15.08	16.35	15.87	15.24	13.72	10.34
Sm ²	4.69	5.48	3.66	3.76	3.85	3.52	3.78	2.92	4.08	3.72	3.74	3.68	3.50	2.65
Eu ²	1.58	1.64	0.98	1.06	0.96	1.00	1.45	0.95	1.10	1.19	1.12	1.10	1.23	1.04
Gd ²	4.52	5.64	3.48	3.67	3.85	3.55	4.07	2.89	4.12	3.63	3.71	3.64	3.56	2.87
Tb ²	0.71	0.90	0.55	0.60	0.62	0.56	0.65	0.43	0.70	0.56	0.61	0.62	0.58	0.47
Dy ²	4.27	5.40	3.45	3.60	3.68	3.44	4.02	2.59	4.43	3.65	3.92	3.88	3.48	2.89
Ho ²	0.84	1.07	0.68	0.73	0.74	0.70	0.80	0.52	0.89	0.70	0.77	0.77	0.72	0.59
Er ²	2.23	2.94	1.94	1.97	2.04	1.86	2.18	1.38	2.59	1.96	2.07	2.18	1.91	1.49
Tm ²	0.32	0.42	0.28	0.28	0.29	0.26	0.30	0.19	0.37	0.28	0.30	0.31	0.28	0.21
Yb ²	1.98	2.54	1.75	1.72	1.78	1.64	1.87	1.20	2.37	1.75	1.93	2.00	1.71	1.29
Luť	0.30	0.38	0.28	0.27	0.28	0.25	0.29	0.18	0.38	0.28	0.30	0.30	0.26	0.21

¹ - Location Codes: SU - South Umpqua, BOH - Bohemia, BR - Blue River, NS - North Santiam, WR - White River, QTZ -

Ouartzville. DD - Detroit Dam ² - Determined by ICP-MS at Washington State University (WSU). All other oxides and trace elements determines by XRF at WSU.

* - Rock Type Code: And - Andesite, Grnd - Granodiorite, Ign - Ignimbrite, Mnzn - Monzonite, Mnzd - Monzodiorite, Qz Dior - Quartz Diorite, Qz Mzd - Quartz Monzodiorite, Ton - Tonalite

Appendix Table 5 (continued). Whole Rock XRF & ICP-MS Results from WSU

Sample ID:	WCOSN U-31	WCOSN U-32	WCOSN U-33	WCOSN U-91	WCOSN U-119	WCOS WR-01	WCOSJ D-147	WCOSJ D-152	WCOS- 2	WCOS- 3	WCOS- 4	WCOS- 7	WCOS- 8	WCOS- 12
Location ¹ :	BR	BR	BR	NS	NS	WR	NS	NS	QTZ	QTZ	QTZ	QTZ	QTZ	DD
Rock Type [*]	Qz Dior	Qz Dior	Grnd	Mnzd	Mnzd	Mnzn	Mnzd	Qz Mzd	Grnd	Dacite	Qz Mzd	Mnzd	And	Qz Mzd
Latitude	44.23	44.23	44.12	44.83	44.84	47.15	44.85	44.84	44.56	44.56	44.57	44.59	44.59	44.70
Longitude	-122.35	-122.33	-122.44	-122.23	-122.23	-121.83	-122.23	-122.25	-122.38	-122.38	-122.38	-122.37	-122.37	-122.25
(wt.% oxides)														
SiO ₂	53.36	54.58	73.98	61.04	56.74	65.86	60.15	61.72	72.63	56.90	55.94	64.36	55.40	61.63
TiO ₂	0.92	0.95	0.31	0.82	0.95	0.56	0.70	0.79	0.29	0.93	1.15	0.77	0.92	0.84
Al ₂ O ₂	16.60	16.90	12.75	16.05	17.14	15.33	17.01	16.30	13.43	17.68	17.08	15.13	16.72	15.95
FeO*	5.82	6.63	2.42	5.10	6.41	3.69	6.56	4.58	1.85	6.45	7.33	4.77	6.50	5.71
MnO	0.08	0.12	0.01	0.09	0.14	0.07	0.09	0.12	0.20	0.12	0.14	0.08	0.12	0.10
MgO	3.12	4.09	0.28	2.80	3.98	2.06	3.38	2.88	0.60	4.06	4.42	2.51	3.70	3.81
CaO	8.38	6.26	1.60	5.40	7.38	4.49	5.52	5.06	0.21	6.52	6.87	4.07	4.81	5.69
Na ₂ O	2.80	3.53	4.41	2.96	3.28	3.76	1.91	3.59	1.09	3.29	3.92	3.85	4.51	3.83
K ₂ O	1.13	1.61	2.05	2.43	0.98	2.31	0.39	0.92	7.49	0.72	1.06	1.35	2.36	1.04
P ₂ O5	0.16	0.17	0.04	0.15	0.17	0.10	0.12	0.14	0.07	0.18	0.23	0.14	0.21	0.16
Sum	92.37	94.85	97.85	96.84	97.15	98.22	95.84	96.10	97.86	96.86	98.14	97.03	95.25	98.77
LOI %	7.43	4.40	1.68	2.70	2.32	1.20	3.22	3.15	2.15	2.30	1.73	2.50	4.60	1.03
<i>,</i> , ,														
(ppm)	4.07	4.62	0.00	0.70	0.27	2.40	4 4 2	0.22	2.70	4 22	0.50	0.02	0.00	2 22
CS	4.97	4.62	0.89	0.79	0.27	3.10	1.12	0.23	3.76	1.22	0.59	0.82	0.90	2.23
Bd Dh ²	340.60	357.23	20 50	422.06	293.52	588.95	180.47	222.85	905.97	177.23	262.30	381.62	/3/./9	292.05
KD Sr ²	617.05	57.40	39.59	43.41	10.35	209 45	9.00	10.58	106.05	17.81	20.99	27.00	50.07	20.22
SI Ni	18 01	24.38	219.75	405.41 2/ 02	400.00	18 70	455.54	4/1.1/	100.05	30.35	450.01 51.06	278.00	16.88	404.57
Cr	69 55	46.07	3.02	40.30	55 52	30.15	23.33	23.45	5.23	70 15	78.89	18 54	27.24	9/ 87
V	129.34	156.02	24.22	122.61	160.39	81.10	111.25	116.78	24.22	150.65	170.75	100.20	148.54	127.43
Sc ²	15.98	20.31	4.06	15.47	19.23	10.48	14.66	14.15	3.87	19.92	20.39	13.37	19.78	16.38
Cu	31.96	61.79	4.82	19.40	166.36	39.09	191.75	148.04	23.72	55.07	47.54	24.42	58.89	7.64
Zn	58.79	66.86	15.28	67.54	96.12	28.54	60.90	98.49	787.32	151.65	169.44	67.44	78.09	36.08
Ga	18.89	18.11	13.37	17.59	17.71	18.09	19.20	18.29	14.97	20.00	19.50	17.39	18.19	17.59
Pb ²	5.69	4.11	6.97	7.99	4.73	8.70	3.03	31.53	319.37	7.44	5.66	10.50	5.59	3.22
Zr ²	146.06	137.33	221.54	205.66	137.90	181.86	108.47	196.82	149.83	133.78	145.92	239.75	158.48	193.86
Hf ²	3.97	3.70	6.39	5.45	3.72	5.08	3.06	5.40	4.26	3.38	3.75	6.29	3.84	5.14
Nb ²	5.19	4.83	6.29	6.96	5.59	7.53	4.65	6.97	8.71	6.71	7.70	9.10	8.56	7.56
Ta	0.55	0.47	0.89	0.69	0.56	0.82	0.56	0.68	1.09	0.62	0.67	0.84	0.75	0.77
Th	3.24	2.03	13.39	5.84	3.24	8.78	3.65	5.63	14.98	2.94	2.74	7.25	2.77	4.67
U ²	1.11	0.78	3.00	1.94	1.02	2.98	1.14	1.91	4.74	1.00	0.95	2.47	0.88	1.33
Y-	18.53	19.27	15.01	21.72	18.03	17.49	15.60	20.97	16.49	20.95	26.28	20.58	18.92	21.97
La	12.58	11.64	29.94	17.83	13.41	19.34	12.74	17.38	26.67	14.54	15.55	20.11	19.79	16.16
Ce ⁻	27.25	26.36	58.25	37.81	29.41	39.30	25.79	37.50	49.85	30.30	31.20	44.25	40.03	35.76
Pr ⁻	3.60	3.63	6.39	4.94	3.86	4.60	3.23	4.79	5.45	3.95	4.40	5.29	4.92	4.65
NO Curr ²	15.09	15.46	22.41	20.32	16.34	17.20	13.14	19.38	18.69	16.46	18.81	20.77	19.35	19.37
Sm Fu ²	3.64	3.88	4.00	4.66	3.90	3.57	3.13	4.47	3.59	3.82	4.52	4.62	4.27	4.52
Eu Gd ²	1.20	1.20	0.74	1.14	2.17	0.84	1.23	1.22	0.76	1.2/	1.3/	1.10	1.4/	1.18
GU Th ²	3.00	3.82	2.80	4.37	3.77	3.27	3.00	4.28	2.88	3.84	4.76	4.13	3.99	4.30
$Dv^2$	0.00	0.02 2 0 0	0.42	0.71	0.00	0.52	0.50	0.08 1.26	0.49 2.02	2 74	0.74	0.07 2.00	5ס.ט רד כ	1.72
Uy Ho ²	5.0Z	5.03 0.75	2.55	4.17	3.39 0.72	3.17	2.94	4.20	2.93	5.74 0.75	4.49	5.99	5.72	4.28
Fr ²	1 04	2.75	1 54	0.05	1 00	1 77	1 60	0.01	1 60	1 00	0.09 7.24	0.02	1 00	0.05
Tm ²	1.50 0.27	0.201	1.34 0.25	2.21	1.50	0.26	1.00	5.T2	1.09	1.59	2.30	U 33 7.10	1.09	033
Vh ²	1 92	1 92	1 72	1 06	1 66	1 72	1 50	1 0.52	1 72	1 72	1 07	2 10	1 72	1 00
Lu ²	0.28	0.28	0.29	0.32	0.26	0.26	0.22	0.30	0.29	0.28	0.31	0.31	0.26	0.30

¹ - Location Codes: SU - South Umpqua, BOH - Bohemia, BR - Blue River, NS - North Santiam, WR - White River, QTZ - Ouartzville. DD - Detroit Dam

² - Determined by ICP-MS at Washington State University (WSU). All other oxides and trace elements determines by XRF at

WSI J * - Rock Type Code: And - Andesite, Grnd - Granodiorite, Ign - Ignimbrite, Mnzn - Monzonite, Mnzd - Monzodiorite, Qz Dior - Quartz Diorite, Qz Mzd - Quartz Monzodiorite, Ton - Tonalite

Sample ID:	NSNU- 02	NSNU- 03	NSNU- 04	NSNU- 06	NSNU- 07	NSNU- 08	NSNU- 09
Location ¹ :	NS	NS	NS	NS	NS	NS	NS
Rock Type [*]	Qz Mzd	lgn	Grnd	Mnzd	Diorite	Diorite	Diorite
Latitude	44.83	44.84	44.84	44.84	44.84	44.86	44.86
Longitude	-122.25	-122.25	-122.25	-122.22	-122.22	-122.28	-122.28
(wt.% oxides)							
SiO	62.70	60.90	64.84	55.56	55.92	61.56	59.80
TiO	0.61	0.79	0.56	1 15	1 17	0.79	0.81
	10.01	10.75	10.00	17 54	17.04	10.75	10.01
	10.08	10.51	10.02	17.54	17.64	10.00	10.09
FeO	7.27	4.94	4.39	7.25	7.61	5.23	4.90
NinO Mao	0.04	0.10	0.05	0.13	0.13	0.10	0.10
IVIgU	2.76	3.06	2.43	3.68	3.88	2.91	2.98
	4.71	5.75	4.29	7.50	7.70	2.40	0.11
Na ₂ O	3.05	4.03	2.64	3.31	3.36	3.37	4.09
K ₂ O	0.19	1.03	2.19	0.79	0.82	2.17	0.80
P ₂ 05	0.13	0.18	0.11	0.21	0.21	0.18	0.19
Sum	97.55	97.26	97.52	97.11	98.43	98.40	96.46
LOI %	2.01	2.44	2.67	1.47	1.49	1.46	2.66
(ppm)							
$Cs^2$	0.81	0.79	1.80	0.20	0.17	0.54	1.02
Ba ²	140.64	285 92	931.06	311 28	303 90	371.86	201 11
Ph ²	2 0 0	10 12	20 21	12 50	12 64	26.01	12 02
κυ ε. ²	3.02 435 07	672.60	402 72	15.55	13.04	50.01	13.0Z
51 NI:	423.07	24.07	492.75	434.10	447.24	343.09	24.27
	19.60	34.97	25.01	24.20	23.22	14 02	34.37
CI V	02.67	40.05	76 59	170.00	10/ 72	102 02	40.93
v Sc ²	12.61	33.07 14.1E	10.00	21.60	22.04	14 74	14 47
SU	12.01	14.15	10.02	21.00	15 50	14.74	127.64
Cu Zn	407.12	56.59	110 10	29.45	76.00	47.04	61 41
62	17.00	10.05	17 90	10.52	20.30	10 50	100.41
	17.09	10.35	12 50	19.40	20.10	10.00	10.09
PU 72	0.54	0.00	12.59	0.10	0.50	10.00	1.12
Zr	124.50	1/1./5	137.11	142.50	142.10	1/0.8/	1/4.00
HT ⁻	3.24	4.58	3.87	3.74	3.82	4.56	4.61
Nb ²	5.10	7.00	5.33	6.66	6.62	6.95	7.14
Ta	0.62	0.72	0.69	0.66	0.66	0.75	0.72
Th	3.74	4.46	5.76	2.65	2.60	4.46	4.36
U ²	1.18	1.50	1.96	0.99	0.97	1.50	1.46
Y ²	13.83	20.57	13.24	22.51	22.24	19.35	21.27
La ²	6.72	17.56	16.07	13.54	13.58	16.54	18.09
Ce ²	13.34	37.70	33.30	30.34	30.30	36.79	38.20
Pr ²	1.69	4.94	4.01	4.10	4.15	4.60	5.10
Nd ²	6.87	19.98	15.32	18.08	17.79	18.82	20.80
Sm ²	1.77	4.49	3.23	4.37	4.34	4.13	4.53
Eu ²	0.86	1.31	0.99	1.45	1.43	1.29	1.41
Gd ²	2.05	4.22	2.90	4.35	4.39	4.01	4.37
Tb ²	0.37	0.66	0.43	0.70	0.73	0.65	0.67
$Dv^2$	2 45	3 92	2 46	Δ Δ7	Δ Δ?	3.05	3 93
-7	0.52	0.80	0.40	0.80	0.87	0.76	0.70
Fr ²	1 /0	2 1 2	1 2/	2 2 5	5.07 7.21	2 01	2.07
Tm ²	1.49	2.13	1.54	2.33	2.51	2.01	2.07
vh ²	0.22	1.01	1.20	0.54	0.34	0.50	0.50
TU 1 ²	1.46	1.91	1.23	2.03	2.06	1.84	1.89
LU	0.24	0.29	0.20	0.31	0.34	0.28	0.30

¹ - Location Codes: SU - South Umpqua, BOH - Bohemia, BR - Blue River, NS - North Santiam, WR - White River, QTZ - Ouartzville. DD - Detroit Dam

² - Determined by ICP-MS at Washington State University (WSU). All other oxides and trace elements determines by XRF at

WCII * - Rock Type Code: And - Andesite, Grnd - Granodiorite, Ign - Ignimbrite, Mnzn - Monzonite, Mnzd - Monzodiorite, Qz Dior -Quartz Diorite, Qz Mzd - Quartz Monzodiorite, Ton - Tonalite

Sample ID:	DD-116	DD-75	DD-53	DD-48	WA-2	WA-3	WA-8	WA-9	NR-1	BR -3	BR-5	SU-18	SS-3-A
	Basaltic												
	andesit		Dacite		Quartz		Granodi	Quartz		Silicic		Quartz	Andesit
Rock Name	e	Andesite	dike	Dacite	diorite	Diorite	orite	diorite	Granite	dike	Diorite	diorite	e
Longitude	-122.24	-122.25	-122.25	-122.25	-122.24	-122.20	-122.19	-122.17	-122.44	-122.32	-122.35	-122.79	-122.28
Latitude	44.72	44.69	44.70	44.71	45.83	45.80	45.79	45.79	44.42	44.23	44.24	43.04	44.86
(wt.% oxides)													
SiO ₂	57.65	62.90	66.10	68.55	51.80	52.83	64.14	57.16	75.47	66.71	58.98	54.35	58.98
TiO ₂	1.04	0.75	0.71	1.00	0.88	1.57	0.49	0.89	0.21	1.07	1.07	0.84	1.14
Al ₂ O ₃	14.85	13.08	14.25	14.62	17.21	16.15	13.85	17.06	12.28	13.28	15.89	17.80	16.12
FeO*	7.26	5.67	5.45	6.10	7.35	10.37	3.87	7.20	1.67	5.67	7.01	7.20	6.65
MnO	0.12	0.10	0.09	0.09	0.13	0.23	0.08	0.14	0.02	0.10	0.11	0.13	0.14
MgO	5.07	2.89	2.75	1.48	3.81	5.06	1.66	3.63	0.46	1.46	3.80	2.67	2.16
CaO	7.95	6.34	4.27	4.04	10.62	8.55	4.17	6.62	1.36	3.85	5.74	9.11	4.49
Na ₂ O	3.38	3.25	3.64	3.83	2.78	2.64	3.61	4.64	4.08	3.86	3.90	2.95	2.16
K ₂ O	0.66	0.53	1.73	2.04	0.52	0.30	1.86	1.28	3.30	2.26	0.57	0.72	0.93
P ₂ 05	0.20	0.12	0.16	0.25	0.07	0.09	0.10	0.15	0.05	0.31	0.24	0.12	0.21
total_l	98.18	95.62	99.16	101.99	95.16	97.79	93.83	98.77	98.91	98.58	97.30	95.91	92.96
(ppm)													
Ва	410	250	400	580	140	120	570	290	760	500	320	250	340
La	9.00	6.70	11.20	21.20	3.60	7.00	19.10	9.10	33.80	21.70	18.10	8.10	22.40
Ce	20.20	16.10	25.70	45.20	8.57	17.30	35.80	22.20	69.20	49.70	40.00	19.60	50.90
Rb	2.20	2.40	25.70	44.50	4.00	5.60	19.20	23.10	69.40	38.80	9.90	11.10	26.80
SI V	15 50	200 8 80	452	24 80	404 0 30	329 20 70	410	4/3	30 30	450 30 70	22 30	438 17 QO	395 25.20
7r	112.00	14.70	43.70	190.50	40.10	6.70	2.50	4.30	3.40	186.50	148.50	7.80	70.40
Nb	4.50	4.10	6.70	10.60	3.00	4.30	6.70	6.20	5.20	100.50	7.40	4.00	8.50
Co	28.30	18.90	17.10	12.30	36.60	16.20	8.00	20.30	1.90	10.70	22.00	18.00	17.40
Cr	83.00	41.00	54.00	20.00	53.00	74.00	35.00	61.00	100.00	19.00	70.00	29.00	47.00
Ni	46.80	27.60	30.50	12.10	24.80	30.60	19.30	19.10	4.40	3.00	30.90	10.80	27.90
Sc	21.40	12.00	13.20	15.00	22.00	36.10	8.40	14.40	4.60	17.30	22.60	24.70	23.70
V	185	120	104	109	224	409	69	142	20	83	161	224	130
Ag	76 50	27.00	0.09 42.10	26.40	0.05	0.07	7.50	121.00	12 50	70.50	0.03	0.03	0.43
Mo	0.78	2.43	1.32	3.92	3.04	0.77	1.03	4.23	2.75	0.82	0.33	4.54	0.59
Pb	5.10	20.30	6.90	13.90	4.40	11.80	7.10	20.70	7.70	16.30	5.70	4.00	23.70
Zn	74.00	80.00	68.00	76.00	62.00	128.00	35.00	117.00	17.00	89.00	73.00	59.00	117.00
As	0.80	3.50	6.90	5.00	7.80	45.30	7.90	3.40	3.50	4.60	4.00	26.10	11.20
Be	0.75	0.76	0.89	1.26	1.08	0.71	1.13	1.02	1.72	1.54	1.16	0.70	1.37
Bi	0.03	0.08	0.05	0.09	0.03	0.61	0.10	0.31	0.57	0.09	0.07	0.25	0.13
Cd	0.07	0.17	0.09	0.13	0.14	0.23	0.07	0.24	0.04	0.07	0.07	0.04	0.35
CS Ga	<0.05	18 55	18 20	10.01	10.70	0.4Z	0.40	20 70	1.22	18.85	4.32 10 /0	3.30 21.80	4.09 21.10
Ge	0.13	0.09	0.11	0.14	0.08	0.12	0.13	20.70	0.15	0.17	0.17	0.12	0.16
Hf	2.70	0.60	1.50	5.20	1.30	0.60	0.10	0.20	0.20	5.90	4.10	0.40	2.20
In	0.05	0.05	0.05	0.05	0.06	0.27	0.04	0.08	0.03	0.07	0.09	0.08	0.08
Li	11.60	19.50	17.80	16.40	11.10	2.70	6.50	13.50	9.50	16.60	46.20	8.60	27.00
Mn	904	798	723	686	972	1780	633	1120	117	796	879	1020	1060
Re	<0.002	<0.002	< 0.002	0.00	< 0.002	< 0.002	< 0.002	0.01	< 0.002	< 0.002	< 0.002	0.00	<0.002
S	<0.01	0.01	0.03	0.01	0.01	0.05	< 0.01	0.02	0.27	0.01	< 0.01	0.23	0.03
So So	0.16	0.89	1.11	0.80	1.00	1.90	0.86	1.00	0.60	1.6/	0.58	3.13	1.46
Sn	1.00	1 30	1.00	2.00 1 80	1 40	2 60	1.00	2 90	1.00	5 20	1.00	1 40	2.00 1 40
Та	0.27	0.31	0.47	0.75	0.22	0.28	0.49	0.42	0.42	0.69	0.47	0.27	0.53
Те	<0.05	<0.05	<0.05	<0.05	<0.05	0.11	<0.05	<0.05	<0.05	<0.05	<0.05	0.12	<0.05
Th	1.40	1.40	2.40	5.60	0.60	2.10	4.80	1.70	10.00	2.40	2.80	1.70	2.70
ТΙ	0.07	0.13	0.39	0.33	0.10	0.14	0.21	0.27	0.47	0.27	0.10	0.11	0.29
U	0.60	0.30	0.70	1.90	3.20	0.60	1.00	0.50	1.60	1.00	1.40	0.40	0.90
W	0.10	0.40	0.40	0.70	0.80	0.40	0.30	1.30	0.90	0.40	0.30	0.70	0.40

Appendix Table 6. Whole Rock Four-Acid ICP-MS from ALS

Sample ID:	SS-7	TB-1	RD-1	\$78-30	\$78-73b	32.24	28.29	21.7	5.2	X7	X2	X3	1328
				Basaltic	Basaltic	Basaltic	Basaltic	Basaltic					
	Andesit	Andesit	Rhyolit	andesit	andesit	andesit	andesit	andesit				Andesit	Andesit
Rock Name	e 122.20	e 122.22	e	e	e 122.24	e 122.25	e	e 122.24	Dacite	Basalt	Dacite	e 122.20	e
Longitude	-122.29	-122.23	-122.19	-122.18	-122.24	-122.35	-122.33	-122.34	-122.36	-122.36	-122.28	-122.28	-122.30
Latitude	44.05	44.05	44.05	45.72	45.75	44.21	44.24	44.23	44.21	44.50	44.01	44.01	44.50
(wt.% oxides)	)												
SiO ₂	61.14	63.07	78.49	56.81	55.14	53.86	54.77	57.40	61.60	53.41	70.47	58.93	54.76
TiO ₂	1.09	0.93	0.14	1.23	1.11	1.04	1.04	0.84	1.31	1.02	0.34	1.08	0.98
$AI_2O_3$	15.81	15.63	10.09	15.25	17.02	16.06	16.72	15.68	13.85	16.02	13.42	15.87	15.81
FeO*	7.91	5.74	1.70	7.59	9.06	6.93	6.84	6.14	6.83	6.86	2.83	6.32	7.14
MnO	0.17	0.13	0.13	0.12	0.14	0.14	0.10	0.11	0.12	0.10	0.06	0.10	0.12
MgO	2.17	3.48	0.25	3.76	5.16	4.29	4.18	3.52	1.94	4.33	0.25	2.57	5.16
CaU N= O	2.20	1.47	2.21	7.81	10.05	8.86	8.70	7.93	4.27	9.85	1.08	6.65	8.90
Na ₂ O	1.43	0.40	0.20	2.84	2.66	3.55	2.74	3.21	3.92	2.70	4.87	3.37	3.05
	1.52	1.84	3.10	0.54	0.40	0.40	0.15	0.37	2.01	0.64	2.98	0.46	1.63
P ₂ U5	0.25	0.13	0.02	0.23	100.00	0.20	0.17	0.17	06.30	0.20	0.00	0.22	0.34
total_i	95.70	92.62	90.55	90.19	100.89	95.55	95.42	95.57	90.21	95.19	90.55	95.57	97.00
(ppm)													
Ba	430	390	550	210	160	200	60	170	480	360	720	270	580
La	19.20	44.70	12.80	19.70	7.20	8.80	3.90	5.30	24.70	21.10	23.20	11.30	35.30
Ce	43.50	86.40	33.60	43.20	17.55	22.80	10.15	12.30	52.00	46.40	49.20	29.20	81.20
Rb	43.90	45.00	78.40	6.20	3.20	1.50	0.50	1.30	41.50	4.70	57.20	3.30	24.40
Sr	238	133	10 70	545 20 60	422	949	/14	6/6 10.60	349	826	125	15 40	1090
f 7r	19.20 64.40	24.40	9 10	134.00	14.60 80.20	69.20	60.10	68 50	169.00	88.60	307.00	15.40 84 50	140.00
Nb	7.40	10.00	8.80	10,00	5.00	3.50	2.30	2.80	105.00	4.00	10.90	7.30	5.90
Со	22.30	16.40	2.00	27.10	30.40	25.80	24.10	19.40	15.40	26.00	28.10	24.10	32.10
Cr	65.00	34.00	9.00	57.00	75.00	69.00	69.00	70.00	37.00	60.00	2.00	23.00	106.00
Ni	30.30	45.60	4.20	46.60	38.10	45.50	32.10	21.30	9.80	34.70	1.60	30.80	45.00
Sc	17.40	16.00	1.90	21.30	27.90	20.10	19.70	19.80	22.10	26.70	7.00	16.80	26.70
V	143	140	27	179	209	181	170	174	149	193	10	155	188
Ag	73 30	59.50	1.15	115 50	128 50	50.70	41 50	42 70	76.90	0.05 73 10	27.80	17 20	73 50
Mo	2.00	1.96	7.29	1.93	1.54	0.56	0.33	0.62	1.23	0.83	1.42	0.73	0.81
Pb	78.80	3.00	273.00	9.20	8.60	6.00	2.20	3.30	14.40	5.50	8.60	5.40	7.90
Zn	185.00	105.00	795.00	90.00	88.00	89.00	70.00	71.00	113.00	72.00	65.00	81.00	85.00
As	21.70	222.00	2.20	9.70	4.30	9.10	2.90	1.20	3.90	2.80	1.70	2.90	2.70
Be	1.29	1.03	1.15	1.20	0.69	0.77	0.46	0.64	1.41	0.83	1.79	0.97	1.21
Bi	0.85	0.25	0.91	0.05	0.03	0.06	0.02	0.03	0.05	0.16	0.10	0.04	0.05
Cu	5.25	2 80	3.22	0.13	0.09	0.11	0.07	0.06	0.13	0.11	0.08	0.07	0.14
Ga	18.85	21.40	15.20	21.70	19.70	20.80	18.75	19.50	19.80	20.10	16.80	21.00	20.50
Ge	0.13	0.16	0.16	0.14	0.11	0.12	0.10	0.10	0.14	0.14	0.19	0.10	0.13
Hf	1.70	0.30	0.50	4.20	2.30	2.00	1.70	2.00	4.90	2.80	7.80	2.60	4.10
In	0.08	0.30	0.04	0.06	0.06	0.05	0.04	0.04	0.07	0.06	0.06	0.05	0.05
Li	24.20	21.40	19.60	5.30	5.50	13.40	32.80	7.30	20.90	21.10	19.50	38.00	14.70
Mn	1340	1020	1030	942	1090	1060	811	835	930	802	470	785	922
Re	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
S Sh	1 72	13 50	0.13	0.01	<0.01 0.25	0.01	1 25	0.01	0.01	0.01	0.01	0.01	0.01
Se	4.00	1.00	1.00	1.00	1.00	<1	1.00	1.00	1.00	1.00	1.00	<1	1.00
Sn	1.30	21.40	2.00	1.70	1.00	1.30	0.80	0.90	5.20	0.90	1.80	0.90	2.20
Та	0.47	0.57	0.80	0.62	0.31	0.23	0.15	0.18	0.68	0.27	0.83	0.51	0.54
Те	0.86	<0.05	0.11	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Th	2.80	8.40	2.10	5.20	1.10	0.90	0.40	0.70	2.60	3.30	5.50	1.10	4.40
	0.57	0.99	0.82	0.10	0.14	0.06	0.04	0.05	0.26	0.08	0.32	0.07	0.26
W	0.80	0.90 / 00	0.70	1.90	0.50	3.6U	0.70	1.00 0.10	9.10	0.80 16 80	2.00	10.50	1.3U 50 10
vv	0.00	4.00	0.40	0.70	0.50	0.20	0.10	0.10	0.50	10.00	45.10	15.40	55.40

Appendix Table 6 (continued). Whole Rock Four-Acid ICP-MS from ALS

Sample ID:	A1501	1245	WA-1	WA-4	WA-5	WA-7	WA-10	WA-11	WA-6	WA-20	WA-19	NS-2	NS-4
	Andesit	Andesit	Quartz	Quartz	Quartz			Granodi	Granodi			Granodi	Granodi
Rock Name	e	e	diorite	diorite	diorite	Aplite	Diorite	orite	orite	Aplite	Diorite	orite	orite
Longitude	-122.30	-122.32	-122.15	-122.17	-122.20	-122.20	-122.16	-122.04	-122.21	-122.22	-122.19	-122.25	-122.21
Latitude	44.60	44.57	45.85	45.80	45.79	45.79	45.79	45.78	45.79	45.716	45.723	44.873	44.851
(wt.% oxides)													
SiO ₂	57.25	65.10	59.64	56.27	58.62	76.32	53.31	65.31	67.73	68.84	60.17	66.06	64.40
TiO ₂	1.00	0.92	0.87	0.92	0.80	0.24	1.33	0.63	0.47	0.51	1.09	0.58	0.58
Al ₂ O ₃	15.63	13.94	15.78	18.82	16.44	12.09	16.99	14.38	13.34	14.42	16.08	14.23	14.70
FeO*	5.84	5.44	7.18	6.72	6.43	2.01	8.54	5.66	4.14	4.09	6.87	4.40	4.66
MnO	0.10	0.12	0.11	0.11	0.14	0.08	0.17	0.18	0.18	0.04	0.11	0.08	0.26
MgO	2.94	2.11	3.22	2.75	3.76	0.48	5.44	2.54	1.97	1.77	3.66	1.94	2.26
CaO	7.44	1.05	5.71	8.45	6.69	1.61	8.79	4.73	3.79	4.17	7.35	4.04	5.02
Na₂O	3.30	5.85	3.68	4.02	3.92	3.32	3.50	3.95	3.55	3.73	3.22	3.88	3.26
K ₂ O	0.35	0.37	1.01	0.63	1.06	4.34	0.58	2.36	3.02	2.48	1.34	2.31	1.08
P ₂ O5	0.21	0.29	0.17	0.14	0.13	0.03	0.16	0.19	0.15	0.09	0.22	0.11	0.12
total_I	94.06	95.19	97.36	98.82	98.00	100.51	98.81	99.94	98.35	100.15	100.10	97.64	96.34
(ppm)	220	420	200	270	420		200	100	520	460	200	400	250
ва	230	130	200	270	420	580	200	480	17.20	460	380	480	350
La	24.80	20.90	26.20	16 55	9.00	20.00	26.10	19.20	29.60	21.90	17.90	20.30	22 20
Rh	24.80	30.80 4 30	22 50	5 30	10.20	99.40	20.10	40.90 56.70	60 10	40.70 51 50	43.90	50.90	22.50
Sr	639	366	369	556	493	155	506	30.70	327	367	495	363	538
Y	15.30	16.80	17.20	12.00	13.10	12.50	17.80	22.60	14.20	13.70	21.90	16.60	11.50
Zr	92.80	80.90	6.60	11.60	5.70	5.90	115.50	4.10	4.70	3.90	148.50	23.80	16.90
Nb	6.20	7.80	8.00	4.30	5.40	7.40	7.40	8.40	7.60	8.20	9.00	7.90	5.90
Со	25.70	15.20	23.30	22.20	22.70	4.10	33.50	14.20	10.60	13.90	25.90	12.30	14.20
Cr	25.00	19.00	45.00	29.00	73.00	17.00	94.00	57.00	48.00	27.00	65.00	37.00	29.00
Ni	44.70	9.20	32.30	27.70	42.30	7.30	63.60	30.40	25.20	23.10	42.70	26.20	20.50
Sc	16.50	17.30	16.60	18.80	17.00	4.00	27.60	13.50	9.40	9.50	19.70	11.20	12.00
V	154	98	129	170	142	20	218	99	62	73	157	77	87
Ag	0.06	0.04	0.02	0.05	0.05	0.06	0.07	0.10	0.10	0.04	0.07	0.05	0.48
Cu	17.70	33.20	50.10	91.10	/1.30	37.80	55.00	220.00	133.50	83.80	94.90	37.50	50.00
Ph	7.80	16.40	2.55	5.00	6.20	2.10	3 80	5.24 10.00	2.70	1.00 6.00	2.55	2.52 5.70	2.54
7 b 7 n	83.00	83.00	30.00	85.00	60.00	18.00	96.00	47.00	28.00	21.00	88.00	62.00	820.00
As	4.10	2.10	15.70	15.70	9.10	6.20	4.80	19.40	9.20	7.20	12.50	4.00	15.30
Be	0.89	1.29	1.28	0.91	1.07	1.20	0.91	1.29	1.22	1.54	1.17	1.20	0.99
Bi	0.05	0.05	0.14	0.08	0.11	0.15	0.04	0.12	0.05	0.05	0.07	0.05	0.79
Cd	0.17	0.40	0.03	0.12	0.09	0.04	0.09	0.04	0.07	0.03	0.14	0.13	3.52
Cs	2.49	0.62	1.12	0.65	0.59	1.65	1.89	2.44	1.03	1.00	0.42	0.66	1.36
Ga	22.60	16.75	20.50	22.90	19.65	14.75	21.60	19.50	18.05	18.65	20.90	18.85	19.10
Ge	0.09	0.10	0.11	0.10	0.10	0.14	0.10	0.13	0.13	0.13	0.12	0.12	0.12
Hf	2.80	2.50	0.30	0.50	0.30	0.30	3.10	0.20	0.20	0.20	4.10	1.00	0.70
ln 	0.04	0.06	0.09	0.05	0.09	0.03	0.06	0.04	0.04	0.04	0.06	0.04	0.05
Li	39.90	20.70	3.60	15.20	9.10	6.70	8.00	12.20	14.00	12.00	8.10	10.10	18.30
IVIN	804	947	842	881	1080	639	1340	1420	1360	316	815	609	2020
s s	<0.002	<0.002	<0.002 0.03	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
S Sh	1 10	1 40	1.05	0.04	1 37	0.01	0.04	0.01	0.02	0.02	0.01	0.01	4 37
Se	1.00	1.00	1.00	1.00	1.00	<1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Sn	0.80	1.80	1.80	1.70	1.40	1.30	1.00	3.30	2.50	1.30	1.20	1.30	0.90
Та	0.48	0.51	0.51	0.28	0.38	0.69	0.48	0.57	0.62	0.70	0.58	0.59	0.46
Те	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.17
Th	1.20	1.40	3.90	0.90	2.50	13.10	1.40	7.70	10.00	7.90	5.30	4.40	3.30
TI	0.07	0.11	0.39	0.06	0.35	0.38	0.09	0.33	0.27	0.25	0.44	0.30	0.34
U	0.40	0.60	0.60	0.50	0.80	1.80	0.50	2.50	2.80	2.90	3.10	1.10	1.10
W	26.90	16.00	0.40	0.70	0.30	0.50	0.20	1.00	0.90	0.40	0.70	0.40	0.40

Appendix Table 6 (continued). Whole Rock Four-Acid ICP-MS from ALS

Appendix Table 6	(continued).	Whole Rock	Four-Acid ICP-MS	from ALS
	(001101000)			

Sample ID:	NS-5	NS-6	NS-7	NS-10	BO-1	QV-3	QV-6	QV-7	QV-8	BR-1	BR-2	BR-4	BO-3
					Quartz								
	Granodi				monzon			Granodi			Granodi	Granodi	Quartz
Rock Name	orite	Diorite	Diorite	Diorite	ite	Diorite	Diorite	orite	Granite	Diorite	orite	orite	diorite
Latitude	-122.19	44.858	44.854	44.844	43.597	44.601	-122.5	-122.20	44,519	44.246	44.235	44.23	43.609
Latitude	11.05	11.050	11.051	11.011	13.337	11.001	11.551	11.502	11.515	11.210	11.255	11.25	13.005
(wt.% oxides)													
SiO ₂	65.04	54.93	55.11	54.83	66.81	53.30	61.26	63.16	70.09	62.05	69.48	65.98	56.08
TiO ₂	0.59	0.91	1.13	1.02	0.67	0.85	0.88	0.74	0.54	0.74	0.44	0.74	0.79
$AI_2O_3$	14.04	15.51	15.64	16.61	13.55	15.76	15.59	14.44	12.60	14.87	13.77	14.23	15.23
FeO*	4.79	7.85	7.41	7.46	4.40	6.75	5.44	5.42	3.05	5.06	3.11	4.25	7.04
MnO	0.08	0.12	0.13	0.17	0.10	0.14	0.09	0.09	0.06	0.10	0.07	0.07	0.16
MgO	1.46	3.37	3.33	4.18	1.64	5.32	2.17	3.23	0.90	3.05	1.29	1.86	4.26
	2.82	0.07	0.17	7.81	4.28	7.58	4.05	4.83	2.28	3.25	3.00	3.72	2.20
	1.50	0.16	0.67	0.26	3.07	1 5 2 4	4.13	5.41 2.10	2.03	1.60	2.54	3.30	1 17
	1.05	0.10	0.07	0.50	2.20	1.52	1.04	2.10	5.29	0.16	2.57	2.77	1.17
r ₂ 05	96.90	0.10	03.68	96.00	97.46	0.14 Q/ 50	96.26	0.19	96.73	96.58	0.10	0.15	0.14
total_i	90.90	92.78	55.08	90.00	97.40	54.55	90.20	97.08	90.73	90.38	97.18	97.27	55.55
(ppm)													
Ва	550	100	320	220	600	120	370	400	710	360	540	590	340
La	20.10	9.20	6.20	9.20	18.70	5.60	13.30	14.50	26.30	10.20	13.90	14.00	8.50
Ce	40.60	23.00	17.40	24.60	43.80	14.55	32.30	36.70	61.30	27.40	33.90	36.80	23.20
Rb	31.00	0.80	3.60	1.60	56.40	18.50	32.40	42.50	79.90	23.20	57.60	52.20	16.60
Sr	386	618	4/4	12.00	314	615	510	412	222	555	440	494	426
f 7r	25 10	8.70 11 30	15.40	13.00	25.20	10.90 65.20	158.00	103.00	27.10	14.20 0/ 10	12.70 98.70	25 30	7 20
Nb	7.50	5.70	5.70	5.40	8.40	3.30	6.20	9.10	11.30	5.40	6.80	7.60	5.30
Co	10.30	24.30	22.00	24.40	11.30	33.10	19.20	33.90	23.90	16.70	8.00	15.10	24.10
Cr	19.00	50.00	41.00	40.00	131.00	85.00	15.00	57.00	10.00	69.00	30.00	86.00	86.00
Ni	12.70	36.60	16.60	22.80	10.20	61.50	6.70	37.20	7.40	28.20	8.60	28.90	37.30
Sc	13.50	16.40	18.80	22.20	14.20	22.50	18.70	16.30	8.50	16.00	7.50	13.60	24.70
V	102	135	138	187	91	189	124	106	45	121	54	106	173
Ag	0.05	0.22	0.21	0.20	0.11	0.97	0.07	0.17	20.20	0.05	12 20	0.06	0.11
Mo	22.40	591.00 2 37	147.50	1 82	5 25	90.90	55.60 0.75	0.83	20.50	44.90	15.20	00.50 1.46	40.40
Pb	9.90	6.70	5.30	14.80	20.30	13.40	7.10	10.10	10.30	6.40	7.40	4.90	21.30
Zn	62.00	145.00	96.00	370.00	81.00	149.00	68.00	91.00	31.00	68.00	46.00	41.00	111.00
As	7.30	9.60	9.90	4.80	7.80	40.20	12.10	7.80	2.50	4.90	4.40	7.20	18.70
Be	0.97	0.84	0.84	0.76	1.13	0.69	1.22	1.27	1.59	1.00	1.19	1.03	0.80
Bi	0.03	0.06	0.04	0.15	0.19	0.03	0.03	0.02	0.07	0.01	0.04	0.09	0.04
Cd	0.26	0.08	0.09	0.60	0.06	0.56	0.37	1.12	0.70	0.12	0.04	0.09	0.13
Cs Ga	10.30	20.00	21 50	22.00	2.79	2.20	21.79	20.20	1.80	3.10	1.10	17.25	19 60
Ge	0.11	20.00	0.09	0.09	0.12	19.13	21.00	20.30	0.14	19.80	0.13	0.13	0.11
Hf	0.80	1.30	0.70	0.60	0.90	1.90	4.40	3.10	0.50	2.80	3.00	1.00	0.40
In	0.03	0.12	0.06	0.16	0.04	0.04	0.05	0.05	0.04	0.04	0.02	0.07	0.06
Li	11.90	19.90	16.50	8.90	7.90	32.30	34.20	30.50	11.70	18.00	30.80	20.70	10.40
Mn	593	953	972	1320	797	1070	659	723	447	796	521	518	1270
Re	< 0.002	< 0.002	0.00	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	<0.002	0.00	< 0.002
S	0.01	< 0.01	0.07	0.01	0.01	0.02	0.03	0.21	0.04	< 0.01	<0.01	< 0.01	< 0.01
So So	1.68	0.84	0.57	1.69	0.97	5.61	0.87	1.5/	1.00	1.1/	1.55	1.14	1.12
Sn	1.00	1 10	1 10	1.00 0 80	×۲ ۲ ۲ ۲	2 50	1 20	7 QO	1.00	1.00	1 00	1.00	1 40
Та	0.61	0.36	0.35	0.35	0.61	0.35	0.60	1.06	1.26	0.36	0.55	0.52	0.36
Te	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Th	7.40	0.80	0.50	1.20	6.70	0.60	4.10	3.10	8.60	1.50	4.60	2.20	2.10
TI	0.28	0.03	0.13	0.09	0.29	0.61	0.26	0.43	0.34	0.40	0.55	0.45	0.29
U	1.80	1.30	0.60	0.60	1.60	0.30	1.50	0.90	1.80	1.30	1.70	1.20	0.60
W	0.40	0.20	0.20	0.30	1.30	41.90	42.20	129.00	115.50	0.60	0.40	0.40	0.40

Sample ID:	BO-4	BO-5	BO-6	BO-8	BO-9	BO-10	BO-11	BO-12	BO-13	BO-14	BO-15	BO-16	BO-17
Rock Name Longitude Latitude	Granodi orite -122.63 43.604	Quartz diorite -122.64 43.593	Quartz diorite -122.63 43.588	Quartz diorite -122.64 43.584	Quartz diorite -122.63 43.581	Quartz diorite -122.63 43.58	Quartz diorite -122.63 43.58	Quartz diorite -122.64 43.579	Quartz diorite -122.64 43.58	Quartz diorite -122.64 43.577	Quartz diorite -122.65 43.576	Quartz diorite -122.65 43.574	Quartz diorite -122.64 43.573
(wt.% oxides)	=4.00			<i></i>	~~~~~		~~~~~		<u> </u>	<i></i>			60 0 <b>7</b>
SIO ₂	/1.33	61.92	64.21	61.51	63.98	64.85	63.69	60.91	65.17	61.35	61.51	66.57	60.35
	0.50	0.70	0.71	0.83	0.74	0.76	0.80	0.87	0.63	0.78	0.74	0.64	0.81
	13.34	13.72	13.81	14.28	14.49	14.66	14.96	14.36	13.15	13.68	14.19	13.38	14.21
FeO*	3.62	5.87	5.16	0.24	5.62	5.25	5.76	0.40	4.80	5.93	5.54	4.84	0.20
MgO	0.96	3.76	2.42	2.97	2.65	2.24	2.57	3.40	2.17	3.28	2.98	1.96	3.88
CaO	4.09	5.41	4.81	4.72	4.18	4.62	5.19	5.53	3.61	5.12	4.70	3.67	4.41
Na ₂ O	3.17	2.80	2.94	3.11	3.02	3.81	3.76	3.34	3.29	2.49	3.13	3.26	2.93
K ₂ O	1.04	1.59	1.65	2.76	1.99	2.24	1.95	1.66	2.40	2.47	2.13	2.61	1.70
P ₂ 05	0.19	0.15	0.14	0.17	0.15	0.17	0.17	0.20	0.14	0.16	0.14	0.13	0.14
total_I	98.25	96.03	95.96	96.85	96.93	98.70	98.98	96.84	95.48	95.50	95.19	97.12	94.69
(ppm)													
Ва	200	540	590	680	600	590	520	470	550	630	490	540	210
La	13.30	12.00	15.00	12.40	14.90	17.10	13.60	12.70	16.30	13.30	12.50	17.50	10.30
Ce	41.50	32.00	38.00	31.80	35.30	41.00	35.00	33.40	35.40	30.00	29.20	38.10	24.70
Rb	29.40	21.90	25.60	57.90	35.70	52.10	37.20	23.70	54.20	40.60	43.20	60.40	29.50
Sr v	337	439	20 00	401	20 30	21 20	10 60	483	10 307	343 17 60	400	20 30	371
7r	20.40	16.60	10.70	44.20	40.90	21.30	24.70	48.20	40.10	36.30	36.90	45.90	39.70
Nb	5.80	5.90	7.40	6.30	6.90	7.70	7.10	6.60	6.70	6.00	5.80	7.10	5.20
Со	5.70	18.50	15.40	19.60	16.70	15.90	16.30	18.30	14.80	18.90	18.20	10.30	20.60
Cr	79.00	186.00	82.00	61.00	71.00	71.00	87.00	80.00	66.00	78.00	58.00	79.00	68.00
Ni	4.30	54.00	15.30	15.00	18.10	13.50	15.70	12.40	17.30	17.00	23.30	14.70	32.10
Sc	12.10	19.10	17.00	19.30	18.40	15.70	16.90	23.00	13.80	20.70	16.30	13.20	18.50
V	60	136	120	153	127	111	135	171	101	157	129	97	157
Ag	0.06	0.04	0.02	0.32	0.06	0.03	0.13	0.10	0.05	0.10	0.07	0.06	0.03
Mo	159.00	20.00	21.50	50.50 1 14	29.00	27.00	52.10	25.90	12.90	22.50	52.00 0.59	25.00	0.65
Pb	15.30	21.80	7.00	45.50	7.20	6.40	22.20	7.90	10.50	91.40	6.30	8.20	4.20
Zn	67.00	79.00	73.00	189.00	143.00	45.00	97.00	71.00	92.00	343.00	62.00	41.00	24.00
As	4.20	19.20	13.20	30.00	16.10	21.10	15.90	8.30	12.30	52.00	43.60	29.00	40.50
Be	1.20	0.78	0.98	0.96	1.00	0.97	1.03	0.99	1.00	0.88	0.92	1.02	0.90
Bi	0.29	0.42	0.13	0.13	0.05	0.11	0.03	0.02	0.10	0.05	0.35	0.34	0.02
Cd	0.29	0.29	0.16	0.38	0.59	0.15	0.18	0.07	0.19	1.19	0.03	0.08	0.04
Cs Ga	1.30	17 20	19 20	2.42	1.72	1.81	0.96	1.48	1.08	0.73	1.18	1.10	6.84 17.05
Ge	0.13	0.11	18.20	0.12	18.30	0.12	0.11	19.00	10.33	0.13	0.40	0.13	0.11
Hf	0.10	0.60	0.00	1.60	1.40	1.00	1.10	1.60	1.50	1.60	1.30	1.70	1.40
In	0.09	0.12	0.09	0.05	0.08	0.06	0.05	0.05	0.07	0.05	0.08	0.09	0.15
Li	15.30	33.00	11.80	26.90	29.90	16.80	20.90	26.70	24.80	31.10	18.10	21.50	40.30
Mn	142	862	832	1930	769	718	903	867	971	1780	887	587	474
Re	0.11	<0.002	<0.002	<0.002	<0.002	0.00	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
S	0.90	< 0.01	0.01	<0.01	< 0.01	0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01
50	1.41	12.05	1.82	3.44	2.02	2.32	0.49	0.95	4.93	9.78	2.53	4.56	7.30
se Sn	2 00	1.00	1.00	<⊥ 1 /∩	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Та	0.42	0.42	0.53	0.43	0.50	0.55	0.51	0.44	0.51	0.42	0.43	0.54	0.37
Те	<0.05	<0.05	<0.05	0.09	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Th	6.90	3.80	4.20	3.40	4.10	4.80	4.80	3.20	5.10	3.80	3.50	5.80	2.50
TI	0.48	0.54	0.56	0.96	0.44	0.43	0.32	0.38	0.63	0.80	0.35	0.55	0.35
U	1.40	0.90	1.00	1.20	1.30	1.30	1.30	1.00	1.40	1.20	1.00	1.70	0.80
W	1.20	1.00	0.70	0.70	0.70	0.80	0.70	0.50	0.70	0.90	0.60	0.80	0.50

Appendix Table 6 (continued). Whole Rock Four-Acid ICP-MS from ALS

Sample ID:	BO-18	BO-20	BO-21
	Quartz	Quartz	Quartz
Rock Name	diorite	diorite	diorite
Longitude	-122.65	-122 63	-122.62
Latitude	43 572	43 586	43 586
Lutitude	+3.372	45.500	43.300
(wt % oxides)			
(WEI/E OXIGES)	E2 04	62.02	EQ 13
3102	52.04	03.95	30.13
1102	1.12	0.75	0.82
$AI_2O_3$	16.27	13.59	14.81
FeO*	8.36	5.20	6.68
MnO	0.15	0.10	0.12
MgO	4.58	2.01	3.98
CaO	8.76	4.60	6.30
Na₂O	2.95	3.65	3.32
K₂O	0.90	1.64	1.14
P ₂ O5	0.22	0.17	0.14
total I	95.35	95.63	95.45
coca	50.00	55.05	55115
(ppm)			
Ba	340	430	330
la	11.50	17.50	8.40
Ce	27.20	36 50	20.20
Rh	5 30	35.30	16.40
Sr	814	33.40	505
v	14 70	21 40	13 50
7r	65.20	49.60	42 20
Nh	3 70	7.40	4 40
Co	26.20	13 70	23 10
Cr	52.00	62.00	80.00
Ni	5 60	11 20	23.90
Sc	28.60	15.60	23.50
SC V	20.00	13.00	175
۷ ۸a	0.05	0.00	0.05
	21 /0	27.00	63.40
Mo	21.40	27.00	05.40
Ph	7 10	0.0J 0.10	8 20
7b 7n	97.10	78.00	78.00
Δ11	7 90	16.60	8 70
Ro Bo	0.86	10.00	0.70
Bi	0.00	0.50	0.05
Cd	0.02	0.02	0.02
C	0.13	0.05	2.12
63	20.20	17.45	16.20
Ge	20.30	0.12	0.20
UE	2 00	1 80	1 70
In	2.00	0.05	0.04
11	20.00	20.80	13.00
Mn	1180	20.80	950
Re	<0 002	<0.002	<0.002
s	<0.002	<0.002	<0.002
Sh	-0.01 0 QC	2 16	νο.στ 0 77
50	1 00	3.40 1 00	1.00
Se Sn	1.00	1.00	1.00
To	1.00	1.40	1.20
То	U.22	U.53	U.33
ie Th	~U.U5	~0.05	1 70
111 TI	2.70	3.80	1.70
	0.16	1.43	0.22
0	0.90	1.30	0.70
vv	0.20	0.80	0.40

## **Appendix 7. Zircon Geochemistry**

## 7.1 Ti-in-zircon Thermometry (for all analyses) Related to Petrogenesis

Variations in Ti-in-zircon temperatures also help us distinguish unique characteristics of the Western Cascade magmas. Temperatures range from 675 to 950 °C. There are no obvious trends in temperature with respect to Hf. We would expect to see temperatures decrease with increasing Hf, which is a proxy for magma differentiation (Claiborne et al., 2010; Lee 2008). The lack of trends is likely due to the lack of precision and accuracy in measuring Ti by laser ablation, but could also be related to magma chamber processes.

Within each sample, the range of temperatures calculated by Ti concentrations tend to be approximately 100° C with the exception of the Spirit Lake Pluton sample analyzed by LA-ICP-MS, the Washougal district samples, and the Nimrod Stock, suggesting that generally zircon crystallization is restricted to small temperature ranges within a given magma chamber. It is possible that zircon crystallization is short-lived, or controversially, these magmas cool slowly and linger at temperatures ideal for zircon crystallization for longer periods of time. Possibly the Nimrod Stock and the Spirit Lake Pluton have longer-lived zircon crystallization histories or have inherited zircons with Ti concentrations distinct from the rest of their zircon populations. Zircons from samples with the samples with porphyry textures as demonstrated by phenocrysts set in a fine-grained (<0.2 mm) aplitic to microgranitic groundmass (the North Fork mafic latite porphyry, the North Santiam dikes and the Boulder Creek dike from Quartzville) are restricted to the lowest Ti-in-zircon temperatures (< 800° C), which suggest that these porphyries are the lowest temperature magmas in the Western Cascades.





**<u>Appendix Figure 6</u>**: All Ti-in-zircon temperatures displayed for Washington (top) and Oregon (bottom) districts.

Appendix Table 7. Zircon Trace Element Spot Analyses from SUMAC SHRIMP-RG

	, .p.p.c.		40.0														
		Ti	Ti	Fe	V (89)	La	Ce	Nd	Sm	Eu	Gd	Dy	Er	Yb	Hf	U	Th
Spot ID	Note	(48)	(49)	(56)	nnm	(139)	(140)	(146)	(147)	(153)	(155)	(179)	(182)	(188)	(194)	(254)	(248)
		ppm	ppm	ppm	phin	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
WCOS-SL11-6.1		37.15	36.84	0.18	1683	0.047	11.64	2.88	5.67	1.28	48.5	181	288	446	11,138	164	122
WCOS-SL11-1.1		31.43	31.69	0.13	1836	0.105	12.35	3.22	5.97	1.24	51.2	190	307	476	10.326	198	149
WCOS-SL11-3.1		28.79	29.37	0.36	1792	0.090	13.37	3.51	6.21	1.31	48.7	185	308	472	9.830	220	158
WCOS-SL11-2.1		24.42	24.81	32.56	837	0.062	9.29	0.86	2.55	0.57	23.0	88	146	239	10.517	97	57
WCOS-SI 11-4.2		23.29	23.54	0.20	1837	0.045	13.21	3.25	6.29	1.37	55.5	198	314	483	10,431	213	153
WCOS-SI 11-4.1		22.48	23.14	0.56	2 058	0.060	15.24	3.30	6.41	1.22	55.1	212	349	541	10,855	283	207
WCOS-SI 11-10.1		28.18	28.37	0.29	1,524	0.078	12.95	3.42	6.05	1.23	44.6	158	262	410	11.013	188	122
WCOS-SI 11-11.1		24.30	24.20	0.11	1,183	0.014	12.39	1.35	3.26	0.76	32.0	126	199	304	11 465	141	96
WCOS-SI 11-12 1		26.51	25.97	8.07	570	0.014	9.83	0.34	1 22	0.76	12.3	55	99	182	11 676	98	46
WCOS-SI 11-14 1		20.01	25.37	0.07	616	0.010	8 59	0.34	1 37	0.20	13.5	59	107	101	10 117	104	40
WCOS-SI 11-8 1		24.50	29.52	0.13	6010	0.004	0.55 Q /Q	0.40	1.57	0.33	16.8	68	120	200	10,117	05	10
WCOS-SL11-8.1		20.32	20.70	0.12	1 1 2 6	0.020	0.40	1.05	2 / 2	0.41	22.2	120	120	205	10,177	120	80
WCOS SI 11 0 1		20.23	20.37	0.13	1 5 0 /	0.011	11 50	2 5 2	6.27	1.22	16 1	120	269	421	10,552	177	124
WCOS SI 11 7 1		35.54 3E 03	26 57	0.12	2 1 6 4	0.032	16.00	1.06	7 /1	1.22	40.4 70 E	217	200 E 21	700	10,795	122	202
WCOS-3L11-7.1		35.05	30.37	0.54	3,104	0.109	10.99	4.00	6.06	1.00	70.5	257	122	642	10,202	452	202
WCO3-3L11-13.1		25.04	20.15	0.14	2,521	0.074	12.92	3.03	0.90	1.49	07.7	257	455	045	10,057	305	265
WCOS-SL3-3.1		25.76	26.10	0.31	449	0.009	6.65	0.29	0.83	0.27	9.1	42	80	143	11,005	73	30
WCOS-SL3-4.1		26.66	27.36	0.36	930	0.014	7.33	0.78	2.40	0.65	24.4	98	157	247	10.390	103	60
WCOS-SL3-1.1		24.37	24.80	2.84	675	0.072	6.47	0.67	2.07	0.48	17.7	69	116	192	10.721	87	43
WCOS-SL3-5.1		24.69	24.59	0.34	730	0.012	6.95	0.41	1.53	0.38	17.1	71	129	216	11.294	95	49
WCOS-SI 3-12.1		32.37	32.53	1.54	490	0.018	8.09	0.56	1.27	0.28	11.5	47	86	144	10.257	85	41
WCOS-SI 3-13 1		29 72	29.84	0.42	978	0.020	7 45	1 72	4 01	0.96	32.8	106	166	256	10 034	101	62
WCOS-SI 3-9 1		34 72	35 16	0.57	3 951	0.020	22 52	4 31	11 08	2.96	116 5	422	661	996	10,034	638	627
WCOS-SI 3-2 1		28 93	29 32	0.28	1 603	0.120	11 01	2.62	5 1/	1 24	16.8	168	273	109	10,337	256	179
WCOS-SI 3-10 1		20.55	23.02	2 11	2 030	0.045	18 90	3 22	6 69	1 21	54.2	208	337	512	11 337	306	237
WCOS-SI 3-11 1		20.69	20.03	0.26	1 901	0.066	20.26	3 / 9	6 75	1.04	51.6	189	309	169	11 283	320	220
WCOS-SI 3-1/ 1		37.09	37.04	1 1/	2 861	0.000	1/ 90	1 82	8.64	2.28	84.6	315	/191	746	11 365	374	220
WCOS-SI 3-7 1		26.01	27.27	1 0 2	1 736	0.115	15.65	3 50	6.85	1 20	520	197	280	/30	10 521	222	180
WCOS-SL3-7.1		20.91	27.32	0.88	788	0.047	6 55	0.61	1 80	0.52	20.0	70	125	430	10,551	232	50
WCOS SL3-6.1		24.10	22.30	1 20	1 7 2 4	0.010	10.00	2 07	1.05 6 9E	1 20	20.0 E2.6	101	207	751	10,721	207	141
WCOS-3L3-13.1		34.33	40.00	1.20	1,724	0.129	10.02	3.07	0.65	1.50	02.0	191	297	431	10,333	207	141
WCO3-3L3-0.1		39.72	40.00	0.80	3,320	0.105	12.90	4.08	7.41	1.00	02.5	332	549	801	10,117	459	432
WCOS-2-2.1	Inclusion	5.06	4.78	14.24	1,966	11.412	56.79	9.27	9.13	1.96	61.4	202	333	568	8,146	417	364
WCOS-2-9.1		5.74	5.76	4.33	1,030	0.070	19.21	0.48	1.44	0.29	16.2	85	192	411	10,748	333	132
WCOS-2-11.1	Inclusion	9.10	9.13	11.98	2,386	4.133	55.16	4.31	6.83	1.27	57.8	229	414	717	9,348	708	654
WCOS-2-15.1	Inclusion	8.63	8.66	6.65	659	3.476	12.58	1.70	1.36	0.39	12.8	60	120	232	8,598	105	42
WCOS-2-13.1		3.61	3.55	3.51	1,145	0.073	25.47	0.54	1.58	0.27	16.4	93	216	456	10,391	531	210
WCOS-2-3.1		5.80	5.84	0.93	1,653	0.238	21.40	1.85	4.53	1.08	39.7	161	296	525	9,647	323	197
WCOS-2-5.1		4.14	4.18	5.98	1,252	0.021	34.11	0.57	1.80	0.33	19.1	107	237	491	13,265	588	268
WCOS-2-4.1		6.98	6.99	0.39	1,529	0.024	32.58	0.83	2.11	0.52	25.6	134	287	587	12,810	488	255
WCOS-2-6.1		6.36	6.31	12.68	1,317	0.304	31.30	0.62	1.80	0.35	20.6	113	252	517	13,217	546	256
WCOS-2-1.1		5.42	5.52	0.80	2,846	0.048	79.51	1.50	4.79	0.40	49.8	254	513	1,007	12,375	1,707	1,010
WCOS-2-10.1		10.54	10.77	8.01	791	0.592	11.73	0.82	1.23	0.40	14.1	71	148	301	10,908	130	47
WCOS-2-12.1	Inherited	5.83	5.84	2.43	993	0.039	17.48	0.51	1.49	0.35	16.7	85	184	369	12,467	258	114
WCOS-2-8.1	Inherited	6.86	6.78	0.92	918	0.102	16.70	0.53	1.48	0.39	16.1	80	170	346	10,884	248	106
WCOS-2-14.1	Inherited	12.58	12.46	25.02	4,767	0.803	100.87	3.46	7.67	0.43	83.9	423	845	1,640	11,636	2,448	1,675
WCOS-2-7.1	Inherited	7.36	7.30	0.33	3,169	0.021	103.11	1.94	6.45	1.11	65.9	302	567	1,070	12,845	2,003	1,877
WCOSNU-11-1		18.24	18.53	0.19	3,335	0.108	17.94	4.29	9.68	1.92	94.4	347	568	861	10,316	530	382

									2					, ,	)						
Spot ID	Note	P (31) ppm	γ (89) mdd	dN (93) ppm	La (139) ppm	Ce (140) ppm	Pr (141) ppm	Nd (146) ppm	Sm (147) ppm	Eu (153) ppm	Gd (157) ppm	Tb (159) ppm	Dy (163) ( ppm	Ho (165) ( ppm	Er 166) ppm	Тт (169) ррт	Yb (172) ppm	Lu (175) ppm	Нf (179) ррт	Th (232) ppm	U (238) ppm
WCOS-2-1		248	2571	4.0	0.40	17.2	0.23	0.97	3.08	0.59	30	11.2	151	65	361	71	549	135	12,962	246	325
WCOS-2-2	Inclusion	700	802.2	3.1	9.00	26.5	2.54	7.03	2.74	0.37	15	4.1	55	24	110	27	248	43	7,581	50	163
WCOS-2-3	Inclusion	1238	1550	5.9	14.42	46.9	4.54	7.35	4.47	0.58	24	7.9	112	43	212	51	504	74	9,430	230	457
WCOS-2-4	Inherited	491	1151	2.8	0.76	12.8	0.19	1.74	1.58	0.42	16	6.9	72	31	163	37	356	54	8,284	75	247
WCOS-2-5	Inclusion	4366	1421	8.2	60.43	136.7	17.19	36.29	10.92	0.90	34	8.7	103	42	206	47	400	74	10,279	308	540
WCOS-2-6		273	1,329	4.4	0.17	17.0	0.06	0.39	1.61	0.35	16	6.5	06	35	178	43	388	76	10,685	153	363
WCOS-2-7	Inclusion	981	1,607	6.1	9.23	37.9	2.14	5.67	2.64	0.45	24	9.7	113	46	250	59	490	87	10,284	239	484
WCOS-2-8	Inherited	429	4,074	7.5	No_Data	44.1	0.20	2.58	6.93	0.82	64	22.8	268	102	534	112	886	165	12,969	561	795
WCOS-2-9	Inherited	308	2,056	5.0	0.43	22.2	0.24	1.15	3.13	0.42	29	10.8	144	51	293	61	500	88	10,908	290	427
WCOS-2-10	Inclusion	758	3,230	5.2	7.12	36.6	1.44	4.41	4.53	0.84	46	14.6	216	90	486	96	769	203	19,858	427	521
WCOS-2-11	Inclusion	1375	1,698	8.2	14.73	54.5	5.32	11.17	5.57	0.47	29	7.5	97	41	236	50	436	76	11,545	358	691
WCOS-2-12		566	1,921	19.0	2.45	33.7	0.65	2.59	4.05	0.49	28	10.7	130	52	251	54	491	87	8,885	455	554
WCOS-2-13	Inclusion	2221	1,188	3.1	34.92	117.2	8.42	20.79	6.80	1.21	28	9.8	88	34	163	34	304	56	8,187	79	150
WCOS-2-14		453	1,648	7.2	2.58	28.6	0.80	1.76	2.93	0.43	29	8.2	128	45	279	54	511	87	11,436	347	516
WCOS-2-15		205	1,273	2.8	No_Data	12.0	No_Data	0.09	1.49	0.49	18	7.4	97	34	176	40	371	67	10,947	152	232
WCOS-2-16		548	1,941	3.3	3.69	33.7	1.33	6.20	7.90	1.80	51	15.1	178	60	259	53	448	63	9,432	139	172
WCOS-2-17		264	1,259	2.4	No_Data	10.2	0.02	0.48	1.80	0.63	20	7.3	85	37	174	45	400	69	9,758	87	198
WCOS-2-18		310	4,017	4.7	No_Data	25.4	No_Data	2.90	10.06	3.30	87	27.9	305	110	530	108	840	146	8,287	326	291
WCOS-2-19	Inclusion	5242	1,570	2.7	92.43	180.4	26.41	58.52	15.21	1.50	43	12.0	114	45	219	45	349	72	10,821	102	144
WCOS-2-20		515	2,327	7.7	5.24	26.9	1.41	3.42	5.47	1.28	40	12.7	164	99	308	68	552	97	9,260	202	260
WCOS-2-21	Inherited	352	1,816	2.4	06.0	13.6	0.48	1.80	4.35	1.07	37	13.0	141	54	257	55	405	80	11,417	117	167
WCOS-2-22		842	1,769	3.8	10.27	38.0	1.92	5.44	3.98	0.72	28	10.3	119	47	239	54	426	87	11,817	183	280
WCOS-2-23		309	2,221	6.6	No_Data	30.1	0.07	1.57	4.67	1.30	39	14.9	165	61	289	99	536	95	9,653	566	364
WCOS-2-24		193	1,102	2.1	No_Data	8.0	No_Data	0.36	1.51	0.52	16	5.6	72	29	153	36	293	59	9,685	50	101
WCOS-2-25	Inclusion	182	1,353	1.8	0.63	8.6	0.14	1.24	2.28	1.09	30	9.9	114	41	196	41	354	60	9,749	60	117
WCOS-2-26	Inclusion	4893	1,698	3.3	57.82	143.8	17.43	43.45	13.19	1.49	44	14.2	135	51	239	50	443	83	10,285	141	291
WCOS-2-27	Inclusion	5442	2,057	7.3	120.18	279.1	31.53	77.71	21.30	2.05	56	14.7	150	60	275	52	542	82	10,695	1079	822
WCOS-2-28		351	2,058	7.6	3.23	29.2	0.90	3.10	2.74	0.51	29	11.6	139	57	289	60	536	105	11,237	242	380
WCOS-2-29		253	1,285	3.4	No_Data	14.0	0.04	0.53	1.92	0.38	19	7.3	82	37	190	39	368	99	11,799	149	237
WCOS-2-30		294	968	2.9	0.98	15.3	0.18	0.75	1.34	0.22	13	5.3	74	29	141	32	255	52	11,854	115	234
WCOS-2-31	Inclusion	1775	7,897	7.7	19.11	82.5	5.41	17.55	24.44	6.47	171	53.7	592	229	1075	227	1681	335	9,350	1466	1633
WCOS-2-32		341	3,159	16.7	No_Data	37.8	No_Data	BDL	6.50	1.81	57	19.4	252	104	454	101	919	140	9,581	466	936
WCOS-2-33		287	3,619	8.2	No_Data	27.5	No_Data	BDL	6.71	3.18	70	24.0	276	109	494	102	853	160	9,987	384	616

4	Appe	ndix T	able	8 (contir	(pənu	. Zircor	ו Trac	e Elei	ment	Spot	Ana	yses i	from	OSU	- LA-I	CP-M	S			
	P (31 ppm	(89) Y ( ррт	иb (93)	La (139) ppm	Ce (140)	Pr (141) ppm	Nd (146)	Sm (147)	Eu (153)	Gd (157)	Tb (159)	Dy (163)	Но (165)	Er (166)	Tm (169)	Yb (172)	Lu (175)	Hf (179)	Th (232)	U (238)
	:	:	bpm	:	bpm		bpm	bpm	bpm	bpm	bpm	bpm	ррт	bpm	bpm	ррт	bpm	bpm	ррт	bpm
sion	2039	5,192	18.9	21.61	124.4	6.66	19.15	15.31	1.83	113	34.3	395	148	679	134	1029	184	10,314	1138	991
	525	1,225	2.2	5.77	17.3	1.22	3.31	3.08	0.71	23	7.4	93	32	160	38	284	55	9,732	70	144
	97	1,974	4.1	No_Data	8.2	No_Data	BDL	4.75	1.42	42	13.6	170	64	314	73	685	112	10,320	259	443
	326	2,376	5.1	No_Data	15.0	No_Data	1.14	3.73	1.05	40	13.0	162	72	307	73	608	101	8,894	220	292
	302	1,573	2.1	No_Data	11.3	0.06	0.73	2.42	0.57	26	9.5	122	49	221	54	403	75	12,040	115	220
sion	858	1,746	6.8	14.47	53.2	3.66	8.15	5.16	0.68	33	12.2	143	56	280	56	575	82	10,881	223	422
	246	1,295	4.9	No_Data	14.4	0.05	0.48	1.67	0.38	18	7.1	95	37	199	45	404	75	10,825	108	244
	416	5,603	4.0	No_Data	25.0	0.55	5.47	12.82	2.79	148	40.6	476	169	703	140	939	187	11,233	436	247
	309	6,032	2.5	No_Data	18.3	0.46	4.13	10.45	3.02	133	39.0	481	176	850	138	955	197	9,052	416	234
rited	350	4,709	3.3	No_Data	17.1	0.29	4.05	9.73	2.57	112	36.2	407	150	601	120	855	148	9,579	365	254
	149	1,590	1.4	No_Data	10.6	0.06	0.77	3.04	0.75	25	11.1	147	52	216	52	333	69	15,026	87	83
	230	1,596	1.1	No_Data	11.1	0.36	2.85	5.19	1.50	44	14.4	163	56	216	45	359	59	9,914	67	104
	314	4,326	2.4	0.31	21.8	0.31	4.64	11.76	2.05	104	30.3	370	132	529	110	653	151	8,941	227	165
	250	2,834	1.6	No_Data	13.7	0.18	2.36	7.43	1.38	65	21.5	244	85	370	68	437	95	10,796	138	114
	202	1,949	1.1	No_Data	10.9	0.20	2.25	5.97	1.26	50	15.9	164	60	241	48	356	99	8,495	111	66
	286	3,611	2.0	No_Data	19.1	0.45	3.43	8.18	2.30	86	26.2	304	109	455	86	587	124	12,935	194	128
	406	5,798	3.9	No_Data	19.1	0.44	3.81	11.76	2.71	140	45.2	486	174	745	131	929	186	10,348	396	237
	332	3,851	3.4	0.02	21.7	0.44	3.71	12.94	3.26	112	40.3	412	128	596	114	856	134	7,207	328	349
	362	5,676	2.9	0.07	20.0	0.54	4.11	10.07	2.81	132	37.6	466	159	660	123	844	179	10,017	380	244
	383	6,003	2.4	No_Data	19.8	0.39	4.87	12.73	2.85	131	41.2	478	168	790	140	939	203	10,418	384	247
	317	3,999	2.9	No_Data	14.7	0.42	3.96	9.31	1.74	90	28.4	352	128	525	96	678	136	7,762	304	254
	329	3,770	2.6	No_Data	17.0	0:30	4.09	9.22	2.25	95	27.9	321	114	538	97	730	121	8,708	230	207
	380	4,628	3.1	No_Data	17.2	0.45	3.90	11.03	2.17	112	35.3	348	127	566	112	732	130	8,977	290	269
	272	2,223	2.0	No_Data	12.2	0.14	2.30	4.98	1.14	53	17.4	205	74	321	62	440	86	9,495	165	139
	329	3,841	2.0	No_Data	15.0	0.49	3.68	9.74	2.22	94	31.0	343	125	540	102	658	125	8,513	252	196
	180	1,990	1.4	No_Data	10.4	0.14	2.18	6.16	1.31	48	16.3	180	63	276	51	395	74	10,622	79	92
	435	6,317	3.6	0.07	24.8	0.49	4.92	13.06	2.68	137	44.0	512	181	779	151	949	193	11,291	440	258
	171	1,802	0.9	No_Data	9.3	0.14	2.17	5.10	1.13	47	14.5	167	59	244	50	362	69	9,837	81	81
rited	293	2,741	1.4	No_Data	11.3	0.20	2.56	7.64	1.58	65	22.2	260	84	328	68	518	82	7,066	146	155
erited	246	2,373	1.0	No_Data	11.4	0.32	3.17	8.42	1.68	61	21.7	222	76	334	64	504	78	8,098	124	134
	292	2,194	2.2	No_Data	18.2	0.32	2.40	7.55	1.26	55	20.0	206	79	292	59	527	74	7,658	175	155
	149	1,146	0.5	No_Data	9.9	0.16	2.17	4.11	0.82	28	9.2	107	37	160	32	253	42	9,149	50	61

ģ ů Ц Ļ , , 7 ÷ c _

OSH - LA-ICP-MS å ū Ц Ļ ň Ę ÷ 0/0 Tablo

	C	222			1 / collect	, קרק קרק		5			227		7.75			5	5	2			
		110/0	100/ 7	Νb	1001/01	Ce	1111	pN	Sm	Eu	Gd	Tb	Dγ	Но	Er	Tm	γb	Lu	Ηf	Th	∍
Spot ID	Note	(TC) J	(60) 1	(63)	Lect) but	(140)	LT (141)	(146)	(147)	(153)	(157)	(159)	(163)	(165)	(166)	(169)	(172)	(175)	(179)	(232)	(238)
		22		bpm		bpm		mdd	mdd	mdd	mdd	mdd	mdd	bpm	mdd	bpm	mdd	mdd	bpm	bpm	bpm
WCOS-7-18		189	1,489	1.1	No_Data	9.5	0.43	3.25	5.49	1.20	37	12.4	137	47	235	46	333	70	10,807	85	105
WCOS-7-19	Inherited	343	2,602	1.4	No_Data	13.1	0.42	3.92	7.96	1.87	56	21.1	230	89	395	71	527	107	10,421	165	147
WCOS-7-20	Inherited	110	346	0.4	0.07	6.3	No_Data	0.08	0.55	0.23	4	2.7	30	10	54	13	105	20	10,234	18	40
WCOS-7-21	Inherited	152	985	0.6	No_Data	7.1	0.02	0.87	2.26	0.59	20	7.3	77	32	132	28	218	46	11,608	44	59
WCOS-7-22		161	1,077	0.9	No_Data	9.2	0.13	1.11	2.90	0.76	22	8.0	92	34	156	32	240	48	10,847	57	82
WCOS-7-23	Inherited	315	1,554	2.2	1.83	14.1	0.47	3.07	3.85	0.82	26	13.1	102	45	261	48	362	64	14,180	88	109
WCOS-7-24	Inherited	227	955	1.1	1.15	9.7	0.43	1.52	2.28	0.53	20	7.5	72	30	146	30	241	50	10,866	48	77
WCOS-7-25		226	2,118	1.3	No_Data	11.6	0.36	3.00	6.09	1.48	49	18.5	203	75	299	60	457	94	9,368	123	136
WCOS-7-26	Inherited	457	3,058	4.2	No_Data	25.7	0.12	2.20	6.26	1.64	58	23.8	253	106	502	06	644	151	15,612	364	273
WCOS-7-27	Inherited	287	3,300	2.3	0.04	13.6	0.43	3.71	6.57	1.78	65	25.1	294	116	508	98	701	151	9,535	289	250
WCOS-7-28		301	3,124	1.6	No_Data	13.4	0.38	3.44	8.08	1.91	65	21.8	267	105	456	83	597	124	10,171	235	203
WCOS-7-29		296	3,082	2.1	No_Data	14.4	0.42	4.17	9.46	2.64	86	27.2	303	108	492	06	687	137	11,000	208	211
WCOS-7-30	Inherited	363	2,456	1.6	1.37	16.9	0.52	3.18	5.79	1.39	42	18.2	197	79	381	71	463	129	12,726	166	145
WCOS-7-31	Inherited	340	3,745	3.5	0.16	18.3	0.44	4.47	8.32	2.20	71	26.6	323	114	584	97	824	170	10,948	353	294
WCOS-7-32	Inherited	243	1,915	1.6	0.00	12.6	0.35	2.23	4.10	1.18	46	13.9	169	63	296	55	428	85	10,503	158	140
WCOS-7-33	Inclusion	937	1,280	1.8	9.80	26.9	3.82	12.60	4.27	1.14	26	10.0	96	42	184	39	344	63	9,465	78	124
WCOS-7-34		395	1,689	4.3	4.52	26.9	1.39	4.41	2.89	0.66	24	10.8	103	50	270	60	530	106	13,675	276	373
WCOS-7-35		452	1,025	2.7	5.47	24.1	1.93	4.50	2.18	0.31	17	6.7	69	34	160	33	259	67	11,093	134	182
WCOS-7-36		223	1,160	2.3	No_Data	14.1	0.19	0.72	2.13	0.56	23	7.7	106	42	202	46	408	75	9,331	145	358
WCOS-7-37		259	1,934	1.7	No_Data	11.7	0.47	3.14	6.31	1.53	52	17.6	193	71	308	61	491	88	9,583	136	154
WCOS-7-38	Inherited	219	2,177	1.4	No_Data	10.9	0.33	3.33	5.98	1.53	51	17.6	200	75	318	69	525	92	11,071	132	127
WCOS-7-39		220	1,459	1.1	No_Data	11.2	0.25	2.46	5.47	1.28	38	15.7	156	52	241	48	363	63	9,031	86	118
WCOS-7-40		270	2,370	2.0	No_Data	12.9	0.42	3.16	6.06	1.71	58	20.3	227	97	366	70	589	102	10,080	162	182
WA-6-1	Inherited	205	1,384	0.8	0.67	11.9	0.35	1.14	2.54	0.93	26	9.2	102	36	164	33	258	51	11,834	71	100
WA-6-2		143	1,274	0.6	No_Data	11.0	0.08	1.05	3.09	0.95	27	9.3	97	38	170	34	315	49	11,624	65	117
WA-6-3	Inherited	122	1,394	0.7	No_Data	11.0	0.12	1.49	3.27	1.17	38	10.4	109	39	182	36	274	51	11,143	86	112
WA-6-4		191	1,359	1.0	No_Data	14.8	0.13	1.41	2.84	0.88	26	10.1	66	32	168	36	275	51	10,165	66	171
WA-6-5		191	1,566	1.3	No_Data	11.7	0.23	2.21	4.03	1.41	36	11.5	130	49	218	44	341	58	8,316	103	181
WA-6-6		192	1,606	1.1	No_Data	10.8	0.10	1.86	3.76	1.02	32	10.7	113	44	205	39	292	61	10,297	97	127
WA-6-7		131	546	0.7	No_Data	6.6	0.03	0.19	0.75	0.28	10	3.7	42	15	74	15	128	24	11,381	24	58
WA-6-8		142	863	1.7	No_Data	10.5	0.04	0.49	1.22	0.47	14	5.1	61	23	119	25	192	41	12,014	69	112
WA-6-9		163	1,033	1.1	No_Data	8.5	0.05	0.93	1.66	0.60	20	6.5	65	27	133	26	235	51	9,725	56	109

	U ) (238) ppm	161 217	169	757	199	93	87	117	121	97	121	238	176	69	119	173	59	88	80	138	199	83	155	278	172	144	146	105	95	96	
	Th (232) ppm	55 144	133	304	164	62	41	67	76	57	53	125	75	22	43	167	31	38	29	71	118	42	97	65	102	80	108	40	50	47	
	Нf (179) ррт	9,165 7,302	9,385	9,414	17,121	12,157	9,643	12,093	7,305	11,982	9,455	11,288	10,027	8,492	11,902	12,391	8,589	7,797	8,807	12,987	10,018	8,482	14,332	11,555	8,317	7,491	6,869	7,688	8,008	8,854	;
IS	Lu (175) ppm	68 70	2. []	126	118	44	34	50	42	39	37	88	82	25	34	113	23	26	25	60	64	43	73	60	65	61	62	35	39	38	
CP-N	Yb (172) ррт	318 387	395	699	432	230	160	245	244	192	216	470	441	157	155	576	124	156	159	312	403	231	312	265	378	376	421	209	254	286	
- LA-I	Тт (169) ррт	36 46	48	92	61	27	20	26	27	23	26	56	48	15	19	99	13	17	18	42	44	26	44	30	50	42	48	22	30	32	
OSU	Er (166) ppm	153 247	271	420	391	141	101	156	140	114	139	256	233	77	94	375	64	87	81	203	239	128	223	140	231	211	244	122	139	153	
rom	Но (165) ррт	32 59	62	87	72	31	20	35	30	23	29	55	45	16	20	80	11	15	16	44	51	29	49	33	50	43	53	33	30	32	
yses f	Dy (163) ppm	72 184	174	285	191	68	54	87	71	58	72	146	113	43	49	207	37	45	46	120	142	76	130	99	127	116	150	80	96	94	•
Analy	Tb (159) ( ppm	5.8 17.5	16.4	28.3	16.0	6.1	5.4	7.2	7.9	4.4	8.4	13.9	8.7	4.3	3.9	21.2	3.1	3.6	3.5	10.3	15.5	6.3	13.2	7.2	12.7	12.0	14.6	6.5	9.2	83	5
Spot	Gd (157) - ppm	18 52	51	84	55	20	13	24	26	13	16	37	26	14	11	57	7	11	12	32	48	21	50	18	37	30	43	17	25	26	2
nent	Eu (153) ppm	0.70	1.80	4.19	1.67	0.58	0.42	0.58	0.75	0.34	0.74	1.69	0.86	0.43	0.23	1.82	0.43	0.34	0.33	1.01	1.38	0.72	1.21	0.60	1.44	1.03	1.85	0.68	1.12	1.03	
e Eler	Sm (147) ppm	1.51 6.25	5.31	9.00	5.56	2.53	0.97	2.11	2.24	1.12	1.86	4.20	2.64	1.03	1.06	6.75	0.64	1.60	1.08	3.30	3.57	2.20	12.45	1.87	4.08	2.87	5.35	2.84	3.26	2.85	5
Trac(	Nd (146) ppm	0.44 3.49	3.80	7.24	6.42	5.44	BDL	1.07	1.37	0.68	1.10	2.15	1.32	0.49	0.47	5.64	0.26	0.28	1.54	1.35	2.47	1.51	59.39	0.82	2.59	1.58	3.58	1.24	1.87	1.90	
Zircon	Pr (141) ppm	0.06	0.19	0.56	1.98	1.80	Vo_Data	0.22	0.14	Vo_Data	0.07	0.20	0.13	0.02	0.05	1.34	Vo_Data	Vo_Data	0.16	0.11	0.75	0.06	21.54	0.07	0.21	0.17	0.40	0.09	0.12	0.17	
ued).	Ce 140) ppm	10.7 14.0	11.9	26.4	22.5	20.1	4.8	9.7	9.3	10.1	10.4	20.6	10.1	5.4	7.6	19.1	8.4	7.2	10.1	10.2	21.1	6.7	.36.3	10.1	12.1	8.4	11.5	7.0	8.0	6.5	
(contin	a (139) ( ppm	o_Data 0_Data	o_Data	o_Data	4.98	4.75	o_Data	0.42	o_Data	0.08	o_Data	o Data	o_Data	o_Data	0.20	3.23	o_Data	0.06	1.36	0.01	1.93	o_Data	35.97 1	o_Data	0.53	o_Data	o_Data	o_Data	o_Data	o Data	
ole 8	Nb L 93) L pm	3.2 N 1.7 N	1.5 N	4.9 N	1.6	1.3	0.8 N	1.7	N 0.0	1.5	1.1 N	2.6 N	2.9 N	0.7 N	1.0	2.0	1.2 N	0.6	1.3	1.0	1.2	1.0 N	0.9	1.1 N	1.8	1.5 N	N 0.0	1.0 N	0.7 N	1.3 N	
ix Tak	, (68) (	202 945	108	274	416	044	60	163	039	67	057	981	654	73	96	931	38	06	32	492	744	63	823	122	621	502	683	60	065	083	
pend	(31) Y pm p	27 1, 60 1.	83 2, 1	93 3,	23 2,	67 1,	54 7	50 1,	43 1,	19 8	55 1,	27 1,	73 1,	40 5	55 6	45 2,	81 4	52 5	60	21 1,	98 1,	07 9	l41 1,	88 1,	17 1,	15 1,	83 1,	28 9	71 1,	45 1.	
Ap	e P(	2 Ped 1		1	ted 5	on 6	ted (	1	÷,	1	1	2	2	L,	ted 1	4	ted 1	1	2	2	4	2	on 31	1	ŝ	2	1	2	1	2	
	Not	Inheri			Inheri	Inclusi	Inheri								Inheri		Inheri						Inclusi								
	Spot ID	WA-6-10 WA-6-11	WA-6-12	WA-6-13	WA-6-14	WA-6-15	WA-6-16	WA-6-17	WA-6-18	WA-6-19	WA-6-20	WA-11-21	WA-11-22	WA-11-23	WA-11-24	WA-11-25	WA-11-26	WA-11-27	WA-11-28	WA-11-29	WA-11-30	WA-11-31	WA-11-32	WA-11-33	WA-11-34	WA-11-35	WA-11-36	WA-11-37	WA-11-38	WA-11-39	

	-	5000	ייי		1001	( <b>N</b> ) <b>N</b>					2000				222	2					
		(10) 0	100/ 7	dN	10017	e	0- (1 1 1)	pN	Sm	Eu	дd	Tb	Ą	РH	Er -	Ē	۲b	Lu	Ηf	Th	∍
Spot ID	Note	r (31)	(69) Y	(63)	Ld (139)	(140)	PT (141)	(146) (	(147)	(153) (	157) (	159) (	163) (	165) (:	166) (1	.69) (1	72) (1	175) (	179) (	232) (	238)
		Inda	Inda	mdd		bpm		bpm	bpm	bpm	d mdd	bpm	bpm p	d mdo	d md	d md	d mq	md	bpm	шdd	bpm
WCOSNU-33-01		319	1,269		0.21	23.2	0.18	1.00	2.19	0.55	17	8.9	105		231	<b>, ,</b>	35	94 1	1,291	157	240
WCOSNU-33-02		384	1,841		0.74	22.2	0.38	1.80	3.99	0.93	36	12.5	157	(.)	320	U	27 1	118 1(	0,797	178	188
WCOSNU-33-03		343	1,292		0.27	21.6	0.12	0.79	2.66	0.54	22	9.7	116		215	ч	04	74 9	,553	137	193
WCOSNU-33-04		756	1,723		3.61	32.2	1.14	3.66	4.27	1.09	33	13.3	161		296	U)	95 1	107 9	,660	223	310
WCOSNU-33-05		305	1,631		0.51	31.9	0.28	1.44	2.59	0.60	26	11.4	137		292	ц)	1 00	114 13	3,372	359	494
WCOSNU-33-06		374	2,168		0.49	25.1	0.25	1.39	3.54	0.96	38	13.2	180	,	369	Û	48 1	143 1	1,418	233	254
WCOSNU-33-07		231	745		0.72	21.0	0.30	0.78	1.49	0.21	11	4.3	55		136	~	64	609	,935	177	258
WCOSNU-33-08		362	1,710		0.22	27.4	0.20	1.38	3.86	0.96	36	13.8	176	(.,	309	U)	82 1	124 1(	0,442	304	257
WCOSNU-33-09		387	1,007		1.72	23.3	0.46	1.36	2.09	0.57	19	7.3	93		198	(7)	1	73 1:	1,703	151	183
WCOSNU-33-10		649	1,572		6.24	36.1	1.59	4.60	4.02	0.80	26	11.5	123		242	ч	94	83 1(	0,203	190	203
WCOSNU-33-11		600	1,379		3.21	28.3	0.76	2.54	3.73	0.89	33	12.9	137		278	L')	36	92 7	,298	237	345
WCOSNU-33-12	Inclusion	616	1,743		12.08	50.7	3.28	8.79	5.78	0.77	40	13.7	178	,	333	U)	85 1	115 1(	0,066	340	370
WCOSNU-33-13	Inclusion	2039	1,561		25.82	87.4	6.69	16.29	6.20	1.30	32	11.3	146		268	U)	28 1	103 8	3,256	273	263
WCOSNU-33-14		344	1,435		4.46	34.2	0.85	2.87	3.22	0.82	28	10.9	129		249	ч	30	93 1(	0,094	326	259
WCOSNU-33-15		682	1,982		5.67	47.2	1.57	4.58	3.90	0.72	35	13.5	161	(,,	343	L')	89 1	117 1(	0,872	357	317
WCOSNU-33-16		348	1,163		0.31	24.4	0.24	1.13	2.56	0.61	23	7.5	115		234	Ч	92	83 8	3,108	158	328
WCOSNU-33-17		266	1,040	-	No_Data	26.2	0.06	0.83	2.54	0.43	21	8.0	96		198	(7)	23	72 1(	0,205	273	226
WCOSNU-33-18	Inclusion	2649	1,847		33.24	90.6	9.40	21.99	9.83	1.81	49	15.0	174	,	319	U)	70	114 9	9,828	196	194
WCOSNU-33-19		504	1,496		0.57	28.4	0.26	1.48	2.83	0.71	25	10.7	133		266	U)	30 1	100 1(	0,256	331	423
WCOSNU-33-20		485	1,193		2.34	25.4	1.08	3.95	4.09	0.72	22	8.8	104		206	ч	-00	84 9	,585	147	197
WCOSNU-33-21	Inclusion	1295	1,598		24.51	70.4	5.04	12.23	5.48	0.96	29	10.7	129		259	Ч	53 1	104 1	1,768	238	270
WCOSNU-33-22		656	2,078		3.17	35.9	1.13	4.55	5.57	1.18	43	17.7	214	(,)	371	U	25 1	133 1.	1,085	257	296
WCOSNU-33-23		479	1,888		1.03	28.9	0.50	1.83	3.13	0.73	31	13.0	157	(.)	357	U	23 1	127 1(	0,370	211	294
WCOSNU-33-24		325	1,496		0.13	24.2	0.11	1.07	2.46	0.63	23	9.8	129		261	ч	84 1	105 1	1,225	182	227
WCOSNU-33-25	Inclusion	1778	1,604		30.52	93.1	8.11	20.31	7.07	1.24	35	12.5	140		288	ч	89 1	106 1	1,204	180	209
WCOSNU-33-26		423	1,162		0.36	24.4	0.17	1.26	2.42	0.74	20	7.4	100		203	ч	. 16	77 9	,987	188	352
WCOSNU-33-27	Inclusion	6731	1,726		15.36	83.9	7.62	18.91	11.69	1.83	46	14.3	163	(.,	308	U)	03	101 9	,579	257	264
WCOSNU-33-28	Inclusion	833	1,571		6.00	37.7	1.81	4.89	4.99	1.08	32	12.0	135		255	ч	98	88 1(	0,710	189	251
WCOSNU-33-29	Inclusion	3316	1,588		21.54	85.3	6.25	14.29	6.19	0.94	36	10.3	151		277	ц)	23 1	104 1(	0,479	214	349
WCOSNU-33-30		315	932		0.08	21.1	0.11	0.66	2.12	0.58	20	7.8	110		226	4	57	668	,956	148	330
WCOSNU-33-31		448	3,541		0.14	54.0	1.27	10.20	18.98	6.54	120	39.6	426	U	535	Ē	005 1	169 8	3,963	316	225
WCOSNU-33-32		547	2,062		3.35	34.2	1.01	3.91	4.91	0.93	40	15.6	185	(.,	344	U	36 1	130 1	2,237	278	274
WCOSNU-33-33		301	1,729		0.39	22.7	0.26	1.39	3.73	0.82	28	12.5	143		272	U)	80 1	101 1	2,299	193	237

		222			1	1000		5			2000				5	5	211			
		(10) 0	100/ 7	ЧN	1001/0	Ce	1111	рŊ	Sm	Eu	Gd	Tb	- A	우	T.	۲ ۲	D Lu	Ηf	τh	∍
Spot ID	Note	(TC) 1	(co) i	(63)	(פכד) PJ	(140)	ги (144.1) рот	(146)	(147)	(153) (	(157) (	159) (	163) (1	.65) (1	66) (16	9) (17	2) (175	5) (179)	(232)	(238)
				mdd		bpm	- - -	mdd	mdd	mdd	mdd	mdo	d mqq	d md	dd mc	dd m	udd m	mqq n	mdd	bpm
WCOSNU-33-34	Inherited	326	1,204		0.34	22.3	0.12	0.76	2.00	0.63	20	8.4	107	2	02	37	3 77	10,15	6 180	227
WCOSNU-33-35		274	1,352		0.79	18.2	0.37	1.69	3.09	0.73	33	11.2	138	7	68	42	9 95	10,47	4 144	129
WCOSNU-33-36		393	1,264		1.88	28.5	0.52	1.70	2.24	0.54	19	8.5	103	Ч	95	41	5 83	9,871	. 176	226
WCOSNU-33-37	Inherited	567	1,881		1.66	32.1	0.86	2.78	4.09	0.95	31	13.6	154	e	18	57	2 116	5 12,31	2 303	257
WCOSNU-33-38		636	1,087		2.60	26.5	0.95	2.26	2.50	0.55	20	7.6	66	7	02	36	4 72	10,91	8 167	173
WCOSNU-33-39		475	1,964		1.39	26.0	0.51	2.59	4.63	1.18	43	15.2	197	ŝ	65	68	1 118	3 10,81	6 223	259
WCOSNU-33-40	Inclusion	####	1,430		307.79	584.4	55.63	####	34.91	2.13	80	17.8	156	7	49	39	2 82	11,41	6 260	207
WCOSNU-33-41		382	1,349	-	No_Data	22.1	No_DataJ	o_Dat	1.91	0.07	26	10.5	132	7	54	56	0 84	9,825	241	487
WCOSNU-33-42		371	1,765	_	No_Data	20.3	0.31	1.93	4.15	1.06	39	14.1	152	ŝ	27	58	8 115	5 10,82	5 178	254
WCOSNU-33-43		343	1,422	-	No_Data	25.2	0.07	0.70	2.30	0.60	23	10.4	136	e	11	52	3 100	0 11,37	4 206	214
WCOSNU-33-44		753	1,503		1.51	34.8	0.52	2.48	3.46	1.05	35	14.6	139	e	28	65	7 129	9 9,297	265	389
WCOSNU-33-45		378	1,539		0.11	23.2	0.22	1.72	4.42	0.80	31	13.3	160	7	77	62	9 105	5 10,84	8 185	364
WCOSNU-33-46		435	2,388		1.62	31.9	0.49	2.04	4.16	0.88	37	13.2	205	4	40	68	0 180	0 11,32	3 206	181
WCOSNU-33-47		287	2,510	-	No_Data	22.1	0.19	1.43	4.70	1.00	41	16.2	200	4	38	58	3 169	9 9,321	. 185	146
WCOSNU-33-48	Inclusion	3658	1,713		51.42	127.8	12.48	25.90	9.22	1.33	36	12.8	152	7	95	54	7 112	2 10,51	3 227	183
WCOSNU-33-49		498	1,899		6.69	47.1	1.46	3.50	3.34	0.59	28	11.9	165	m	66	63	2 143	3 13,65	5 253	274
WCOSNU-33-50		402	1,902		3.76	37.3	1.06	3.37	4.08	1.01	39	13.7	200	e	57	68	6 132	2 11,80	0 323	258
WCOSNU-33-51	Inclusion	993	1,310		20.01	48.1	5.69	11.34	6.25	4.22	28	9.2	113	7	31	36	2 84	11,68	1 695	133
WCOSNU-33-52	Inherited	341	1,079		1.23	23.0	0.37	1.42	1.97	0.48	19	7.5	91	2	24	40	3 73	10,17	7 133	215
WCOSNU-33-53	Inherited	309	2,109		0.37	23.5	0.16	1.17	3.30	0.81	31	12.4	180	e	80	56	5 149	9 14,34	8 208	203
WCOSNU-33-54	Inherited	287	2,191	-	No_Data	30.3	No_Data	0.76	3.65	0.67	34	13.1	171	e	82	63	3 154	4 12,28	7 289	243
WCOSNU-33-55	Inclusion	2988	1,027		32.91	85.7	8.99	18.70	6.49	0.89	24	8.0	92	Ч	73	31	9 71	9,585	86	116
WCOSNU-33-56		399	2,312		1.58	31.1	0.53	2.89	8.22	1.60	50	18.5	230	4	01	78	3 130	0 11,63	8 255	294
WCOSNU-33-57		349	1,524		2.55	31.1	0.79	2.18	3.06	0.59	26	10.0	118	2	61	49	5 99	11,81	5 201	215
WCOSNU-33-58		520	1,468		2.61	33.9	0.92	2.60	3.46	0.87	25	10.4	122	7	64	51	6 102	2 11,09	0 238	320
WCOSNU-33-59		448	1,722		2.33	47.7	0.58	2.26	3.43	0.58	32	11.2	145	7	82	49	7 108	3 11,61	8 597	400
WCOSNU-33-60		1010	1,018		0.20	17.7	0.23	0.51	1.50	0.31	15	5.6	76	Ч	84	34	6 75	10,97	1 224	559
WCOSNU-33-61		358	2,395		2.46	30.2	0.76	2.95	4.45	0.89	38	13.7	180	ς.	66	57	8 157	7 9,436	5 203	160
WCOSNU-33-62		684	1,875		3.56	35.4	1.20	3.12	3.95	1.16	34	13.6	182	m	74	68	8 141	1 11,60	8 233	272
WCOSNU-33-63		345	1,488		0.32	26.0	0.16	0.99	3.23	0.78	25	10.0	107	7	54	46	4 96	11,08	6 222	290
WCOSNU-33-64		505	1,378		3.31	30.2	06.0	2.88	3.37	0.76	26	9.7	119	2	55	44	3 86	8,437	191	298
WCOSNU-33-65		273	1,910		0.06	27.1	0.19	1.39	4.32	1.14	41	15.8	190	m	66	65	1 123	2 10,65	2 259	293
WCOSNU-33-66		498	1,932		1.50	29.3	0.50	1.90	3.57	06.0	32	11.3	148	e	26	59	5 119	9 11,21	6 297	322

	Ĺ	הקקי			1000	'noni	. 211 001				JUCI				2	Ĵ		_			
		(16) 0	100/ 7	ЧN	1001/0	Ce	0~ (1 / 1 /	рŊ	Sm	Eu	Gd	Tb	δ	PH	E 1	Ē	۲b	Lu	Hf	Th	∍
Spot ID	Note		(69) 1 MUU	(63)	Ld (139)	(140)	LT (141)	(146)	(147)	(153)	(157) (	(159)	(163) (2	165) (1	166) (1	69) (1	.72) (1	175) (.	179) (	232) (	238)
				bpm		bpm		mdd	mdd	mdd	bpm	bpm	ppm p	d mda	d md	bm pl	d md	1 mq	1 mdo	mdc	mdc
WCOSNU-33-67		632	1,347		7.84	35.1	2.10	4.68	2.70	0.56	20	7.4	66		38	Υ.	82 1	02 1	2,787	137	132
WCOSNU-33-68		326	921		0.24	26.2	0.15	0.72	1.86	0.41	16	5.8	75	<b>τ</b> η	165	ŝ	91	58 6	,957	146	243
WCOSNU-33-69		561	2,652		0.68	57.5	0.49	2.95	6.40	0.92	58	23.3	278	.,	534	ŋ	94 1	<u>191</u> 9	,957	503	578
WCOSNU-33-70		798	991		4.03	26.6	1.49	3.33	2.70	0.52	18	6.0	86	~7	177	ŝ	23	70 8	,373	85	150
WCOSNU-33-71	Inherited	369	1,381		2.94	26.8	0.75	1.99	2.82	0.62	25	9.2	117		272	ŝ	95 1	03 1	3,388	211	147
WCOSNU-33-72	Inclusion	766	2,259		13.99	56.0	3.58	8.38	4.74	0.86	35	12.9	179	7	125	ŋ	95 1	68 1	3,419	281	204
WCOSNU-33-73		393	1,132		0.57	24.1	0.25	1.26	2.58	0.66	21	7.7	91	. 1	216	4	86	83 9	,477	168	423
WCOSNU-33-74		342	1,560		1.38	32.4	0.49	1.86	3.37	0.83	27	9.7	133	. 1	171	S	47 1	114 8	,522	212	299
WCOSNU-33-75	Inherited	267	2,318		0.12	36.0	0.17	1.85	4.87	1.05	39	13.7	208	7	138	9	73 1	171 9	,905	318	192
WCOSNU-33-76		375	1,891		2.86	41.1	0.91	2.23	4.38	0.75	35	12.8	162	(1)	366	~	36 1	138 1	3,638	315	524
WCOSNU-33-77		366	2,838		0.61	34.4	0.47	1.36	3.30	0.54	32	14.1	173	7	661	7	55 2	208 1	3,474	569	790
WCOSNU-33-78		461	1,425		0.48	29.6	0.41	1.40	2.68	0.74	28	11.0	147	. 1	569	S	66 1	02 9	,592	231	321
WCOSNU-33-79		324	2,183		0.04	36.7	0.22	1.65	4.68	1.00	35	14.0	185	(1)	389	~	12 1	146 12	2,044	331	356
WCOSNU-33-80		518	3,195		0.59	97.0	0.56	2.99	8.90	0.78	20	22.7	296	<b>(</b> ل	580	8	54 1	1:89	2,425 1	200	579
WCOSNU-33-81	Inclusion	1269	1,329		24.07	93.1	7.61	12.07	5.80	0.60	26	9.9	122	. 1	241	4	41	91 1:	1,511	290	262
WCOSNU-33-82	Inclusion	1457	1,214		35.17	96.9	8.10	19.02	6.82	0.62	26	8.8	101		197	ŝ	10	78 1:	1,455	219	299
WCOSNU-33-83	Inclusion	1801	1,435		22.67	71.7	5.53	10.73	5.79	0.91	30	10.6	121	. 1	251	4	128	95 1(	0,525	181	278
WCOSNU-33-84		445	1,182		0.06	26.7	0.13	0.74	2.40	0.31	19	7.4	89	*7	182	ŝ		74 8	,413	183	364
WCOSNU-33-85	Inclusion	412	1,351		48.02	107.8	10.86	22.87	8.89	3.07	27	9.9	116	*7	197	4	11	77 1(	0,703	350	150
WCOSNU-33-86		392	1,423		1.57	37.1	0.42	1.74	2.54	0.40	23	9.0	119	. 1	246	4	164	96 1.	2,519	278	334
WCOSNU-33-87		301	2,096		0.27	24.3	0.27	1.65	4.38	1.05	43	16.3	187	(1)	387	S	94 1	145 12	2,019	224	163
WCOSNU-33-88	Inclusion	2453	1,361		40.41	112.3	10.52	22.42	8.02	1.04	31	8.9	109	. 1	19	ĉ	82	80 1.	2,283	321	306
WCOSNU-33-89		309	1,089		2.08	21.1	0.39	1.52	2.11	0.52	19	7.2	87		204	£	362	80 9	,857	156	329
WCOSNU-33-90		475	4,613		0.89	90.9	0.89	5.33	14.45	2.25	96	35.0	453	~	307	1	302 2	.66 8	,940	458	1195
WCOSNU-33-91		418	998		0.06	21.1	0.13	0.70	2.29	0.47	21	7.1	97	<b>,</b> 7	174	ŝ		74 9	666'(	173	456
WCOSNU-33-92		292	800		0.05	16.3	0.07	0.52	1.45	0.35	14	5.9	69		152	2	61	58 1:	1,083	96	167
WCOSNU-33-93	Inclusion	1337	1,347		13.42	56.6	3.39	8.85	4.24	0.77	27	10.1	122	. N	34	4	69	91 1:	1,926	216	272
WCOSNU-33-94		394	879		1.69	22.2	0.63	1.69	2.49	0.42	16	6.3	80	~7	168	ŝ	45	66 1(	0,576	137	228
WCOSNU-33-95	Inclusion	4735	1,862		60.77	170.3	16.68	39.46	13.50	1.93	53	15.6	195	(1)	337	9	30 1	121 1:	1,363	258	307
WCOSNU-33-96		427	1,122		0.59	21.7	0.25	1.15	2.92	0.58	25	9.0	100	. 1	205	ŝ	96	80 1.	1,608	120	169
WCOSNU-33-97		509	2,384		0.02	29.6	0.23	2.32	6.12	1.70	55	20.5	238	7	901	~	72 1	52 8	,554	250	309
WCOSNU-33-98		455	5,303		0.13	60.1	0.50	5.69	17.92	4.42	137	42.1	520	~	368	11	573 3	314 1(	0,459	657	395
WCOSNU-33-99		303	1,352		0.11	18.4	0.15	1.61	3.55	0.96	29	11.4	123	. 1	29	ŝ	66	83 1.	1,338	119	143

	A	<b>\pper</b>	ndix Ta	ble 8	(contii	nued).	. Zircor	n Trac	e Eler	nent	Spot	Anal	yses f	rom O	<u> - L/</u>	A-ICP-	MS			
Spot ID	Note	P (31) ppm	γ (89) mdd	Nb (93) ppm	La (139) ppm	Ce (140) ppm	Pr (141) ppm	Nd (146) ppm	Sm (147) ppm	Eu (153) ( ppm	Gd (157) ppm	Tb (159) ppm	Dy (163) ( ppm	Ho   (165) (1 ppm p;	Er Tr 66) (16 pm ppr	л Yb 9) (172 п ррп	Lu (175) (.	Hf (179) ppm	Th (232) ppm	U (238) ppm
WCOSNU-33-100		674	1,323		4.76	27.3	1.31	3.93	2.93	0.65	25	6.6	122	2	33	431	82	10,358	119	191
WCOSWR-01-01	Inherited	342	1,223		1.66	18.8	0.54	2.54	4.25	1.23	34	10.6	131	2	00	352	59	9,310	130	165
WCOSWR-01-02	Inherited	246	415		0.08	10.6	0.13	0.38	1.10	0.26	6	3.3	38	£	58	140	22	9,128	39	72
WCOSWR-01-03	Inherited	271	1,011		0.29	13.1	0.20	1.65	3.39	0.96	29	9.3	107	1	71	291	48	9,335	92	129
WCOSWR-01-04		160	822	_	No_Data	11.8	0.07	0.92	2.68	0.69	21	7.1	75	1	24	249	40	8,485	62	109
WCOSWR-01-05		186	651	_	No_Data	14.7	0.06	0.48	1.47	0.39	15	4.6	64	1	16	205	37	12,346	122	106
WCOSWR-01-06	Inherited	213	805		No_Data	9.8	0.16	1.24	2.81	0.79	24	7.4	86	Ļ	41	242	41	8,916	59	109
WCOSWR-01-07		214	784	_	No_Data	9.9	0.13	1.23	3.12	0.83	22	7.2	71	1	24	214	32	7,515	54	106
WCOSWR-01-08		215	523	_	No_Data	7.8	0.08	0.40	1.47	0.43	15	4.3	99	-	60	194	32	10,336	43	98
WCOSWR-01-09	Inherited	174	475	_	No_Data	10.4	0.04	0.26	06.0	0.25	6	3.7	42		77	142	26	10,351	41	77
WCOSWR-01-10		133	702		0.12	10.5	0.06	0.50	1.93	0.48	16	5.8	70	1	15	218	35	10,742	46	70
WCOSWR-01-11		189	455	_	No_Data	10.3	0.04	0.36	1.11	0.30	10	3.5	45	3	37	149	29	10,601	48	82
WCOSWR-01-12	Inherited	201	610		0.05	11.3	0.06	0.45	1.56	0.42	14	4.9	58	Ē	01	177	32	9,428	59	100
WCOSWR-01-13	Inherited	260	612		0.05	10.6	0.07	0.48	1.61	0.39	13	5.2	61	Ē	05	223	37	10,374	47	109
WCOSWR-01-14	Inherited	182	440	-	No_Data	9.7	0.03	0.26	0.93	0.24	6	3.2	40		74	128	25	10,193	39	71
WCOSWR-01-15		188	1,083	_	No_Data	12.4	0.14	1.51	4.19	0.97	32	10.8	116	1	87	276	48	10,104	84	109
WCOSWR-01-16		230	1,807	_	No_Data	15.6	0.29	2.57	6.34	1.57	46	15.6	152	2	86	523	69	9,126	161	203
WCOSWR-01-17		126	524		0.06	9.0	0.06	0.45	1.64	0.45	14	5.0	54	5	91	176	26	9,563	40	64
WCOSWR-01-18		153	444		0.11	10.0	0.04	0.24	0.89	0.21	7	3.2	41		70	146	24	9,941	34	84
WCOSWR-01-19		578	740		0.84	13.4	0.31	1.32	2.16	0.52	17	5.5	63	1	11	229	44	9,020	69	112
WCOSWR-01-20	Inclusion	1689	800		9.33	35.7	2.73	5.93	3.20	0.57	17	5.6	71	1	37	230	46	11,138	74	120
WCOSWR-01-21	Inherited	255	983		0.07	12.5	0.15	1.37	3.28	0.75	22	7.6	89	1	56	285	51	9,347	71	135
WCOSWR-01-22		189	1,049	_	No_Data	13.1	0.18	1.54	3.61	1.03	27	9.8	108	1	76	283	51	9,793	88	122
WCOSWR-01-23		193	918	_	No_Data	11.2	0.15	1.10	2.65	0.62	21	7.4	89	1	61	245	53	11,049	86	115
WCOSWR-01-24	Inherited	170	600		0.07	14.7	0.06	0.44	1.29	0.30	13	4.7	55	Ē	02	178	33	10,996	80	109
WCOSWR-01-25	Inherited	513	911		2.66	15.2	0.65	2.62	2.96	0.83	22	7.3	86	1	53	257	46	8,766	71	106
WCOSWR-01-26	Inherited	193	1,192	_	No_Data	13.3	0.23	1.87	4.59	1.05	34	12.1	134	2	19	353	64	9,768	123	141
WCOSWR-01-27	Inherited	362	985		0.55	17.6	0.27	1.34	2.53	0.58	27	9.0	98	1	71	296	53	12,611	102	154
WCOSWR-01-28		186	485		0.03	10.3	0.06	0.59	1.52	0.33	12	4.6	51	0,	06	173	26	7,194	47	101
WCOSWR-01-29		216	716		0.07	12.0	0.07	0.77	2.09	0.60	15	6.0	61	1	14	190	38	10,174	72	100
WCOSWR-01-30	Inherited	196	829		0.07	10.8	0.12	0.87	2.61	0.58	23	7.9	84	1	52	236	40	10,681	64	95
WCOSWR-01-31	Inherited	279	612		0.53	12.0	0.15	0.73	1.26	0.31	13	5.1	57	H	60	191	39	10,538	54	95

	•	222		) ) ) )		5000					202	<b>`</b>		)	i )	; -	)			
Spot ID	Note	P (31) ppm	γ (89) mdq	Nb (93) ppm	La (139) ppm	Ce (140) ppm	Pr (141) ppm	Nd (146) ( ppm	Sm (147) ( ppm	Eu (153) ( ppm p	Gd 157) (: 3pm p	Tb 159) ( 170 1	Dy + 163) (1 opm pi	Ho E 65) (16 pm pp	r Tn 36) (16 m ppr	л Yb 9) (172 т ррп	Lu (175) (1 ppm	Hf (179) ppm	Th (232) ppm	U (238) ppm
WCOSWR-01-32 In	herited	193	1,130		0.15	70.2	0.10	0.72	1.68	0.31	16	7.1	93	21	16	545	5 115	13,852	1341	2443
WCOSWR-01-33 In	clusion	1516	1,462		18.26	51.3	4.72	12.58	7.92	1.95	49	13.6	152	23	6	371	99	10,098	149	152
WCOSWR-01-34 In	herited	244	1,156		0.01	12.7	0.18	1.47	3.39	0.83	28	9.7	113	18	88	316	90 90	9,336	89	124
WCOSWR-01-35 In	herited	133	781		0.05	12.4	0.03	0.64	1.64	0.42	20	7.2	74	14	12	197	7 48	12,305	53	74
WCOSWR-01-36 In	herited	174	536		No_Data	10.6	0.04	0.48	1.16	0.29	11	3.9	51	ō	6	176	34	11,606	44	79
WCOSWR-01-37 In	Inclusion	618	641		4.51	18.2	1.45	2.70	2.17	0.52	16	4.7	66	10	6(	176	34	10,473	47	70
WCOSWR-01-38 In	herited	232	910		No_Data	9.0	0.14	1.04	2.95	0.68	23	7.8	94	15	51	231	43	9,612	99	91
WCOSWR-01-39 In	herited	365	1,154		1.44	18.1	0.52	1.99	3.10	0.61	29	9.0	110	15	<u>)</u> 5	311	L 55	10,799	111	111
WCOSWR-01-40		194	747		No_Data	10.1	0.11	0.76	2.19	0.54	18	6.7	73	12	7	206	39	10,069	60	84
WCOSWR-01-41 In	herited	188	650		0.07	11.6	0.08	0.43	1.72	0.44	12	5.3	64	10	80	197	7 31	8,891	50	129
WCOSWR-01-42		233	430		No_Data	8.8	0.02	0.34	1.07	0.36	10	3.8	50	6	7	196	36	8,887	44	98
WCOSWR-01-43		249	1,638		0.07	13.9	0.32	2.67	5.73	1.57	50 1	15.2	188	25	76	440	) 74	9,295	169	176
WCOSWR-01-44 In	herited	180	404		No_Data	10.7	0.01	0.17	0.84	0.21	∞	3.2	41	7.	1	139	) 25	9,980	43	82
WCOSWR-01-45 In	herited	263	892		No_Data	10.1	0.12	0.92	2.20	0.59	22	7.2	93	15	33	283	54	12,497	60	96
WCOSWR-01-46		170	545		No_Data	10.1	0.04	0.43	1.27	0.31	12	4.5	56	6	2	143	32	11,304	45	65
WCOSWR-01-47		137	499		No_Data	12.0	0.04	0.27	0.82	0.21	10	4.2	48	9	1	161	31	13,638	54	94
WCOSWR-01-48 In	herited	258	1,430		0.05	13.5	0.19	2.15	4.19	0.92	43 1	12.4	151	23	37	342	t 73	11,989	117	117
WCOSWR-01-49		193	826		0.17	10.9	0.11	0.92	2.01	0.50	19	6.1	75	13	38	243	3 48	11,481	72	94
WCOSWR-01-50		296	1,162		No_Data	12.6	0.13	0.83	2.18	0.55	23	8.0	101	20	14	324	1 67	11,945	83	147
WCOSWR-01-51		183	962		0.04	11.7	0.11	0.90	3.09	0.62	29	9.0	111	18	37	277	58	13,199	86	66
WCOSWR-01-52		288	1,111		No_Data	15.2	0.10	1.20	3.02	0.71	27	9.6	113	2C	5	311	71	11,337	130	156
WCOSWR-01-53		185	1,100		0.06	14.0	0.10	1.09	2.75	0.62	27	9.0	107	15	95	290	09 (	11,957	06	119
WCOSWR-01-54		213	760		No_Data	13.1	0.08	0.54	1.63	0.50	17	5.7	71	12	28	236	50	12,724	67	106
WCOSWR-01-55 In	herited	133	870		No_Data	10.7	0.07	0.90	2.30	0.58	24	7.6	83	14	14	22(	) 45	13,337	50	69
WCOSWR-01-56		126	455		No_Data	8.8	0.05	0.33	0.92	0.23	10	3.6	43	7	6	155	; 29	12,429	31	61
WCOSWR-01-57 In	herited	247	1,377		No_Data	14.3	0.18	1.62	4.45	1.19	40 1	13.1	144	24	01	385	8 64	12,300	129	147
WCOSWR-01-58 In	herited	214	1,527		0.13	13.0	0.19	2.19	4.29	06.0	36 1	13.0	144	25	56	382	62 1	9,505	124	128
WCOSWR-01-59		226	1,017		0.71	11.9	0.28	1.37	3.01	0.89	31 1	10.2	106	17	75	279	9 50	9,043	112	111
WCOSWR-01-60 In	herited	171	556		No_Data	9.0	0.06	0.55	1.53	0.31	13	4.1	51	6	0	169	9 33	10,315	40	65
WCOSWR-01-61 In	herited	193	1,049		0.13	11.6	0.17	1.29	2.99	0.80	28 1	10.1	98	17	72	267	, 61	12,836	70	67
WCOSWR-01-62 In	herited	116	781		No_Data	10.1	0.10	0.68	2.12	0.44	21	6.9	78	13	38	218	3 44	11,361	72	85
WCOSWR-01-63 In	herited	156	359		No_Data	8.4	0.02	0.21	0.64	0.19	7	2.7	32	e	7	115	5 23	12,924	29	51
WCOSWR-01-64 In	herited	229	1,968		No_Data	13.6	0.29	2.47	5.41	1.35	48 3	17.1	186	30	90	477	97	10,757	180	175

	A	ppen	idix Ta	ble 8	(contir	(panu	. Zircon	Trac	e Eler	nent	Spot	Anal	lyses f	rom C	I - USU	A-ICF.	-MS				
		P (31)	γ (89)	qN	La (139)	Ce (1,10)	Pr (141)	Nd Nd	Sm	Eu	Gd	Tb (1EO)	Dy 1221	Ho 1 CEV 11	Er Ti		b L	u H 717	lf 1	с/ \сс	
		mdd	mdd	mdd	mdd	bpm (0+1)	mdd	bpm (071	mdd	udd (cct)	udd	mdd	udd		bm pp			dd uu			loc.
WCOSWR-01-65		297	1,774		0.32	15.4	0.51	3.41	6.18	1.45	52	18.6	191	(m	22	4	87 9	1 11,	380 1	85 1	70
WCOSWR-01-66	nherited	289	1,110		No_Data	12.0	0.16	1.37	3.08	0.79	28	9.5	114	1	81	25	92 6	1 11,:	150 9	3 1	-24
WCOSWR-01-67		257	929		0.20	12.4	0.19	1.03	2.38	0.48	22	7.5	88	1	68	25	97 6	0 12,	467 (	1	.10
WCOSWR-01-68		104	562		No_Data	8.5	0.03	0.38	1.32	0.31	12	5.2	56	5,	76	1(	50 3	0 11,	418	~	58
WCOSWR-01-69		383	611		2.32	20.0	0.75	2.04	1.61	0.34	13	4.8	55	1	08	1{	38 3	8 13,	435 7	4 1	-06
WCOSWR-01-70	nherited	340	1,115		0.05	11.4	0.11	1.49	3.32	0.70	32	9.1	106	1	91	25	9 96	1 10,	542 9	1	.13
WCOSWR-01-71		187	956		0.04	12.4	0.13	1.22	2.97	0.78	26	8.8	102	1	71	25	95 5	5 11,(	065 9	6 1	11
WCOSWR-01-72	nherited	229	573		No_Data	9.3	0.05	0.47	1.55	0.37	15	4.1	56	1	06	1{	85 3	9 11,	737 4		75
WCOSWR-01-73		176	352		No_Data	9.5	0.03	0.28	0.87	0.23	∞	3.4	42	÷	57	1,	49 2	1 8,7	88	7	60
WCOSWR-01-74	nclusion	750	893		5.94	26.0	1.50	3.93	2.29	0.39	17	6.1	69	1	54	1{	89 6	11,8	834	4	.15
WCOSWR-01-75		143	454		No_Data	6.9	0.01	0.28	0.82	0.21	6	3.8	47	5,	66	1,	44 3	1 14,0	662 2	ء و	47
WCOSWR-01-76	nherited	218	989		0.01	11.1	0.09	1.46	3.45	0.95	28	10.4	120	1	63	3(	J2 4	8 10,	749 (	9	.05
WCOSWR-01-77	nherited	279	2,354		0.03	25.8	0.41	3.52	8.03	1.90	73	23.3	253	ŝ	82	.9	11 9	9 12,	446 3	38 2	89
WCOSWR-01-78		256	1,827		0.12	15.2	0.30	2.62	5.87	1.51	52	17.7	196	ŝ	:05	4	74 8	8 10,	733 1	78 1	-86
WCOSWR-01-79		176	1,098		No_Data	13.4	0.11	1.27	3.66	0.84	32	10.1	120	1	78	25	97 6	2 13,	167 9	1	.04
WCOSWR-01-80		377	1,086		1.01	18.8	0.53	1.45	2.77	0.57	25	7.7	94	1	69	2.	75 5	8 12,	110 1	04	48
WCOSWR-01-81		197	588		No_Data	10.9	0.01	0.38	1.30	0.32	12	4.2	57	1	03	1.	78 3	9 13,	375 5	9	92
WCOSWR-01-82	nherited	390	1,200		1.98	16.4	0.80	3.15	4.11	0.80	32	11.2	127	1	66	3	40 6	0 11,	566 1	04	.21
WCOSWR-01-83	nherited	495	5,945		0.27	58.1	0.69	7.22	20.81	3.70	170	56.2	608	6	·65	11	44 29	92 12,	543 7	94 4	114
WCOSWR-01-84		174	1,056		No_Data	11.5	0.20	1.19	2.85	0.84	25	8.0	102	1	81	25	90 5	7 11,	145 8	1	.14
WCOSWR-01-85		27	163		No_Data	1.8	0.00	0.18	0.44	0.13	4	1.2	16		28	4	ក	9 1,7	21	ς. Ω	18
WCOSNU-11-01	nherited	224	1,705		No_Data	11.9	0.23	2.50	5.39	1.20	51	16.1	179	2	66	45	36 8	8 9,3	1 138	03 1	.27
WCOSNU-11-02		253	2,108		0.04	13.4	0.35	3.14	6.66	1.55	59	18.3	235	ŝ	13	6	20 1(	38 9,6	344 1	1 00	-61
WCOSNU-11-03	nherited	321	4,244		0.01	21.4	0.58	4.65	11.16	1.86	92	33.7	440	8	00	11	15 2.	20 14,(	060 3	19 2	:65
WCOSNU-11-04		153	508		No_Data	7.3	0.02	0.33	1.20	0.24	12	4.0	48		34	1(	51 2	7 8,6	522 2	Ŀ.	71
WCOSNU-11-05	nherited	207	1,237		0.03	13.2	0.10	1.32	4.03	0.64	32	10.5	124	1	97	3	46 5	8 10,6	601 7	5	34
WCOSNU-11-06	nherited	257	1,845		0.02	12.4	0.22	2.63	5.78	1.14	51	16.6	218	ŝ	42	. <u>0</u>	12 9	0 10,	417 1	37 1	74
WCOSNU-11-07	nherited	174	902		1.64	11.8	0.28	1.20	1.52	0.31	18	5.2	73	1	49	5	11 5	3 12,8	885	9	58
WCOSNU-11-08	nherited	231	1,046		No_Data	10.5	0.23	1.88	3.54	0.78	31	9.7	110	1	83	č	18 5	2 11,(	093 (	5	83
WCOSNU-11-09	nherited	201	1,013		0.02	9.2	0.06	1.03	2.31	0.47	25	8.2	103	1	93	2	52 6	7 13,	735 (		58
WCOSNU-11-10	nherited	441	3,779		0.14	25.1	0.67	5.47	11.31	2.10	110	35.3	417	9	88	6	44 18	80 12,	713 4	30 2	95
WCOSNU-11-11	nclusion	334	3,344		0.07	19.6	0.38	3.27	9.56	1.77	89	32.0	373	S	72	òó	18 1	55 10,	384 2	56 3	148

LA-ICP-MS
- USO
from
lyses
ot Ana
nt Spc
Eleme
race [
. Zircon J
nued).
(conti
Table 8
Appendix ⁻

Ш

с Г	I		÷		¢	~			~		~	<u></u>		~					~	~	~	~			~	~						
U (238 ppn	81	115	149	59	219	258	76	84	153	98	138	124	96	103	115	76	89	335	148	140	288	177	306	43	353	207	166	64	75	171	261	í
Th (232) ppm	87	105	261	77	125	200	41	53	127	80	93	79	65	71	101	41	63	308	121	119	232	127	192	39	571	180	179	38	39	215	294	1
Hf (179) ppm	13,349	12,415	10,311	10,783	11,313	10,741	11,772	7,237	11,187	12,501	13,617	8,357	10,470	9,805	14,132	12,704	12,939	9,222	9,057	9,102	10,641	10,598	9,858	11,232	12,218	12,072	10,738	11,651	10,480	10,305	9.171	
Lu (175) ppm	112	105	196	108	100	119	38	45	108	63	73	63	54	71	122	38	59	154	88	65	127	75	117	59	324	135	104	41	31	273	337	
Yb (172) ppm	453	516	751	391	516	653	238	279	526	368	356	332	298	390	544	197	304	885	475	342	722	419	648	209	1254	650	559	204	171	1014	1363	
Тт (169) ррт																																
Er (166) ppm	298	376	684	329	342	427	130	159	387	210	242	217	174	216	408	113	190	518	283	234	440	258	426	172	1119	455	373	136	102	842	1120	
Ho (165) ppm																																
Dy (163) ppm	136	205	383	193	191	243	71	66	224	144	148	145	121	137	237	62	111	345	178	147	299	177	250	89	662	244	234	82	56	531	704	
Tb (159) ppm	10.9	15.6	31.9	15.5	16.5	18.4	6.8	9.2	20.3	12.2	13.4	12.0	11.8	12.1	18.4	4.8	9.3	27.4	13.8	12.7	22.5	15.4	19.6	6.9	58.4	21.5	21.4	7.1	4.4	47.7	70.0	
Gd (157) ppm	34	50	66	46	49	53	19	30	62	42	39	39	36	34	59	12	28	83	46	40	68	44	61	16	184	60	63	21	14	131	198	
Eu (153) ppm	0.97	1.35	1.72	0.85	1.06	1.09	0.33	0.89	1.82	1.23	0.74	0.72	0.75	0.78	1.13	0.24	0.54	1.95	1.13	0.89	1.35	0.98	1.22	0.37	2.76	1.11	1.45	0.36	0.30	4.99	6.49	
Sm (147) ppm	3.36	5.93	8.93	4.86	6.02	5.87	1.93	3.17	7.58	5.37	3.89	4.12	3.86	3.83	6.44	1.20	2.76	8.96	5.76	4.32	7.60	5.17	6.31	1.67	17.68	7.57	7.44	2.38	1.55	14.65	20.28	
Nd (146) ppm	1.44	2.70	4.06	1.78	2.52	2.62	0.61	1.25	2.90	2.52	1.45	1.51	1.49	1.34	1.99	0.35	1.23	3.57	2.36	2.16	3.03	2.83	2.86	0.65	6.66	3.39	3.12	0.72	0.37	4.83	7.69	
Pr (141) ppm	0.19	0.26	0.50	0.15	0.35	0.26	0.04	0.12	0.29	0.34	0.20	0.17	0.13	0.14	0.18	0.02	0.11	0.42	0.33	0.29	0.38	0.23	0.30	0.05	0.99	0.38	0.42	0.05	0.04	0.34	0.83	
Ce (140) ppm	13.2	11.1	15.1	9.8	13.8	14.3	8.8	9.1	13.6	10.4	14.9	10.8	8.6	9.8	12.1	9.1	8.8	17.9	12.6	10.6	13.9	10.7	14.1	6.7	27.7	15.9	12.1	7.4	7.7	22.6	30.0	
La (139) ppm	0.07	0.10	0.13	0.02	0.06	No_Data	No_Data	No_Data	No_Data	0.12	No_Data	No_Data	No_Data	0.02	0.04	No_Data	0.02	0.04	0.35	0.02	0.01	No_Data	0.02	No_Data	0.69	0.02	0.02	No_Data	No_Data	60.0	0.22	
Nb (93) ppm																																
γ (89) ppm	1,672	1,859	3,925	1,997	1,816	2,293	731	1,016	2,020	1,296	1,539	1,394	1,138	1,186	2,256	657	1,114	3,126	1,601	1,365	2,645	1,518	2,342	1,088	6,310	2,617	2,193	812	550	6,900	9.204	
P (31) ppm	189	215	282	168	284	228	135	153	228	188	262	188	229	205	182	197	187	351	258	261	376	275	369	137	489	270	282	190	225	171	184	
Note	Inherited		Inherited	Inherited				Inherited		Inherited	Inherited		Inherited	Inherited	Inherited		Inherited		Inherited						Inherited		Inherited	Inherited	Inherited	Inherited	Inherited	
Spot ID	WCOSNU-11-12	WCOSNU-11-13	WCOSNU-11-14	WCOSNU-11-15	WCOSNU-11-16	WCOSNU-11-17	WCOSNU-11-18	WCOSNU-11-19	WCOSNU-11-20	WCOSNU-11-21	WCOSNU-11-22	WCOSNU-11-23	WCOSNU-11-24	WCOSNU-11-25	WCOSNU-11-26	WCOSNU-11-27	WCOSNU-11-28	WCOSNU-11-29	WCOSNU-11-30	WCOSNU-11-31	WCOSNU-11-32	WCOSNU-11-33	WCOSNU-11-34	WCOSNU-11-35	WCOSNU-11-36	WCOSNU-11-37	WCOSNU-11-38	WCOSNU-11-39	WCOSNU-11-40	SRM01-108-01	SRM01-108-02	

				-											i					
		P (31)	V (89)	qN	(139)	Ge	Pr (141)	pN	Sm	Eu	Gd	Tb	Ъ	o Er	Tm	٩Y	Lu	Ħ	Ę	∍
Spot ID	Note	udd	mdd	(93) ppm	bpm	(140) ppm	(T L T)	(146) ( ppm	(147) ( ppm	153) ( ppm p	157) (. 	159) ( ppm þ	163) (1( )pm pp	55) (16( im ppn	5) (169) n ppm	(172) ppm	(175) ppm	(179) ppm	(232) ppm	(238) ppm
SRM01-108-04		164	4,289		0.11	21.7	0.59	4.76 1	13.62	5.72	92	36.4	363	574	-	1053	149	10,029	159	212
SRM01-108-05		149	5,355		0.86	22.5	0.59	4.22 1	11.07	4.15	111 3	39.0	396	67(	C	939	202	12,507	260	543
SRM01-108-06		60	2,140		0.01	8.1	0.15	1.52	5.09	1.68	40	12.1	159	243	~	393	72	7,219	49	96
SRM01-108-07		157	2,926	-	No_Data	17.2	0.32	3.93 1	10.35	3.75	73 2	25.2	249	346		562	91	5,297	102	203
SRM01-108-08		210	3,726	_	No_Data	28.5	0.09	1.66	5.69	2.20	52	20.4	273	431		773	110	5,145	194	348
SRM01-108-09		115	1,523	-	No_Data	8.7	0.19	1.65	3.55	1.34	29	10.2	116	187	7	350	47	5,341	42	119
SRM01-108-10		171	5,005		0.04	28.2	0.52	5.72 2	21.36	7.36	124 4	4.7	468	65(	<u> </u>	1252	165	9,200	175	233
SRM01-108-11	Inherited	120	3,867	-	No_Data	16.4	0.34	3.27 1	10.16	3.71	86	33.1	345	541		838	149	11,532	144	148
SRM01-108-12	Inherited	134	3,950		0.06	12.7	0.23	2.78	7.90	2.49	75 2	29.3	289	491		609	168	12,180	101	88
SRM01-108-13		208	9,256		0.18	39.3	1.07	9.28 2	27.04	8.75	224 8	33.0	810	114	3	1546	331	9,264	317	241
SRM01-108-14		133	3,052	-	No_Data	16.2	0.14	1.44	4.39	1.50	39	15.0	192	375	~	681	132	8,577	105	136
SRM01-108-15	Inherited	107	3,907		0.58	12.4	0.30	2.82	6.42	2.15	62	22.6	233	461		573	154	9,722	108	86
SRM01-108-16	Inherited	146	4,840	_	No_Data	17.7	0.50	4.51 1	12.00	4.20	108	36.5	423	632	<b>c</b> '	950	198	8,916	138	135
SRM01-108-17	Inherited	193	7,010		0.14	32.5	0.71	6.86 2	20.92	7.46	181 (	50.2	594	957	2	1329	230	6,703	252	222
SRM01-108-18		125	3,078		0.10	15.5	0.43	3.65	9.21	3.37	70	24.1	261	376		675	104	6,620	105	172
SRM01-108-19	Inherited	91	2,575	_	No_Data	15.8	0.34	2.47 (	6.96	2.46	47 3	16.6	179	331		710	100	9,922	92	168
SRM01-108-20	Inherited	148	3,481	-	No_Data	17.8	0.37	3.03 1	10.73	3.58	70	27.8	295	438	~	801	127	7,298	135	220
SRM01-108-21	Inherited	126	3,162		0.09	12.2	0.25	2.40	7.53	2.42	59	19.5	222	405	10	660	101	8,286	69	119
SRM01-108-22	Inherited	80	1,184	-	No_Data	6.6	0.16	0.98	2.69	0.88	20	8.0	81	125	~	269	34	7,028	30	126
SRM01-108-23		207	5,827		0.25	31.7	0.66	7.00 1	19.28	6.52	136 4	45.4	531	787	7	1184	188	7,687	250	303
SRM01-108-24		181	4,587		0.06	25.4	0.68	5.64 1	15.30	5.43	117 3	36.3	397	54(	~	1050	138	7,827	187	250
SRM01-108-25		110	1,929	-	No_Data	11.2	0.29	2.07	6.05	2.08	44	15.3	158	225	¢	498	65	6,137	79	172
SRM01-108-26		119	3,873		0.04	15.4	0.52	2.99	8.56	2.97	82 2	29.6	324	41	<b>+</b>	724	129	11,056	116	134
SRM01-108-27	Inclusion	124	2,168		0.07	14.2	0.26	2.18	4.84	2.04	44	14.5	144	251		563	78	6,393	104	527
SRM01-108-28	Inherited	109	3,435	-	No_Data	14.3	0.34	3.19	7.62	2.63	62 2	23.8	235	406		649	116	9,293	126	181
SRM01-108-29		126	3,899		0.09	15.0	0.45	3.58	9.90	3.19	79 2	27.9	321	51(	<u> </u>	745	169	10,954	152	194
SRM01-108-30		83	1,502		0.28	8.8	0.19	1.59 4	4.12	1.60	32 1	11.3	123	185	~	359	52	6,117	55	340
SRM01-108-31	Inherited	113	1,187	-	No_Data	14.0	0.10	0.66	2.06	0.82	17	6.9	79	152	c'	352	51	5,898	106	265
SRM01-108-32		194	5,997		0.11	33.4	0.86	6.77 1	19.93	6.62	160 4	19.4	549	787	2	1339	220	7,879	262	310
SRM01-108-33		111	2,156		0.06	12.6	0.25	2.20	4.83	1.92	36 1	13.1	145	265	¢	602	88	8,410	98	224
SRM01-108-34		118	2,499		0.14	12.1	0.24	2.06 (	6.29	2.70	54	18.8	189	285	~	542	81	6,416	82	156
SRM01-108-35		168	4,442		0.08	21.9	0.51	4.46 1	13.38	4.74	112 🤅	35.9	378	553	~	996	159	9,049	172	219
SRM01-108-36	Inherited	158	7,069		0.07	30.4	0.75	7.04 2	21.65	7.00	157 4	19.6	578	829	6	1197	218	7,337	207	206

	ς	200			10001	מרמן	100 117 .				2000					5					
Spot ID	Note	P (31) ppm	ү (89) ррт	dN (93) ppm	La (139) ppm	Се (140) ррт	Pr (141) ppm	Nd (146) ppm	Sm (147) ppm	Eu (153) ( ppm	Gd (157) ppm	Tb (159) ppm	Dy (163) (. ppm p	Ho 165) (: 3pm p	Er 166) (:	Тт 169) (: рт р	Yb 172) (: ppm_p	Lu 175) 3pm	Hf (179) ppm	Th (232) ppm	U (238) ppm
SRM01-108-37	Inherited	200	6,497		0.18	26.9	0.66	6.06	19.32	6.42	151	55.8	593		917		388	236	8,180	218	237
SRM01-108-38		159	3,182		0.62	19.4	0.44	3.36	10.13	3.71	82	29.1	296		377	-	644	68	5,467	139	171
SRM01-108-39		159	3,046		0.08	19.0	0.38	4.23	13.95	4.66	86	26.0	313	7	429	•	741	94	6,744	122	202
SRM01-108-40	Inherited	169	5,463	-	No_Data	20.8	0.33	3.50	10.97	4.54	106	34.1	426	_,	596		859	183 1	10,742	155	149
SRM01-108-41		103	1,157		0.03	9.5	0.05	0.51	1.55	0.73	17	6.2	81	. 7	144	,	322	48	4,624	33	107
SRM01-108-42	Inherited	138	6,189	-	No_Data	20.9	0.41	4.49	10.68	2.99	101	37.2	435		728		885	236 1	14,045	206	218
SRM01-108-43		177	4,402		0.08	23.4	0.52	5.61	15.34	5.46	101	39.3	392	_,	575	5,	991	141 8	8,042	161	201
SRM01-108-44	Inherited	124	3,065		0.18	16.8	0.37	3.76	9.01	3.37	76	26.9	228		380	-	652	103	6,204	127	152
SRM01-108-45		178	3,996	_	No_Data	24.2	0.54	5.48	15.14	5.56	91	39.3	346	7	499	-,	929	134 (	6,825	141	229
SRM01-113-01	Inherited	132	2,828		0.07	28.8	0.11	1.16	3.55	0.70	34	13.7	166	(1)	370		720	159 1	10,789	315	451
SRM01-113-02		103	2,022		0.08	20.5	0.14	0.87	2.50	0.80	29	11.6	119	. 1	247	-,	517	60	8,044	117	290
SRM01-113-03	Inherited	114	1,806		0.02	12.4	0.07	0.54	1.87	0.32	17	8.2	97	. 1	226	,	467	98	9,935	80	246
SRM01-113-04		120	1,996	-	No_Data	19.5	0.05	0.84	2.57	0.64	27	10.5	118	. •	245	,	495	94	8,802	244	404
SRM01-113-05		116	1,778		0.09	13.8	0.10	0.65	2.13	0.51	24	9.5	101	. 4	217	~	478	06	9,948	127	284
SRM01-113-06	Inclusion	332	2,340		15.90	58.7	3.91	6.84	5.20	1.22	32	12.7	149		288	-	619	117 1	10,815	424	511
SRM01-113-07		93	2,879		No_Data	15.8	0.21	1.58	3.98	1.11	37	13.9	159		346	-	639	140 1	10,494	166	283
SRM01-113-08	Inherited	96	2,159		0.15	13.6	0.18	0.65	1.93	0.47	22	10.0	113		265	_,	501	152 1	12,334	126	177
SRM01-113-09	Inherited	105	2,146		0.10	17.6	0.17	1.10	3.08	0.79	33	11.6	138		281	_,	565	110 1	11,129	131	256
SRM01-113-10		102	2,228		0.02	9.9	0.16	1.15	3.43	1.18	32	12.4	131	. 4	259	_,	516	102 1	11,769	91	189
SRM01-113-11	Inherited	60	1,545		0.06	11.3	0.08	0.74	2.28	0.51	18	8.6	93	. 1	184		376	75	9,668	85	214
SRM01-113-12		110	1,857	-	No_Data	16.4	0.07	0.54	1.94	0.35	22	10.3	107	. 4	217	7	428	88 1	12,151	178	357
SRM01-113-13	Inclusion	172	2,381		7.28	35.5	1.40	3.20	3.50	0.48	27	11.8	134		277	_,	548	113 1	13,333	283	431
SRM01-113-14		126	2,800		1.52	26.3	0.41	1.23	3.31	0.68	29	14.5	170		344	-	653	135 1	11,608	413	540
SRM01-113-15		123	2,137	-	No_Data	12.1	0.19	1.17	3.60	0.83	32	12.5	135		257	*	498	95 1	12,058	125	295
SRM01-113-16	Inclusion	868	3,038		79.25	122.9	16.59	31.73	11.23	1.22	49	16.7	194	7	424		730	156 1	14,496	440	525
SRM01-113-17		153	2,388		3.18	23.4	0.61	2.08	4.39	0.73	33	13.3	173		298	•	703	103	9,350	385	645
SRM01-113-18		136	2,283		4.04	22.8	06.0	2.31	3.16	0.61	25	11.7	139		284	-	607	117 1	11,089	201	376
SRM01-113-19	Inherited	118	2,449		0.02	16.3	0.07	0.82	2.73	0.62	27	10.9	133		307	•	200	128 1	14,004	135	296
SRM01-113-20		101	2,049		No_Data	10.5	0.06	0.98	3.17	0.70	28	10.8	122		249	-	452	95 1	11,941	06	193
SRM01-113-21	Inherited	90	1,358	-	No_Data	12.4	0.03	0.37	1.56	0.20	14	5.8	80	. 1	180		362	75 1	12,571	92	238
SRM01-113-22	Inherited	86	1,886		No_Data	14.1	0.12	0.69	2.56	0.53	22	10.4	124		253	_,	504	100 1	12,718	124	215
SRM01-113-23		179	2,451		5.39	22.8	1.28	3.19	4.11	0.77	30	11.1	143		300	_,	596	118 1	11,798	134	351

	-	522	5		1	(n) n		5			200	λ In In		)	2	5	212			
			1007 11	qN	(007) -	e	(111)	рŊ	Sm	Eu	Gd	Tb	DV	Но Н	r Tm	٩٨ ١	Ľ	Ŧ	тh	⊃
Spot ID	Note	P (31)	(89) nnm	(63)	La (139) nnm	(140)	Pr (141) nnm	(146)	(147) (	(153) (:	157) (:	159) (.	163) (	165) (16	6) (165	(172) (ε)	(175)	(179)	(232)	(238)
		IIIdd		bpm		bpm		bpm	mdd	ppm þ	pm p	1 mda	d mdc	dd mdc	udd m	mqq n	mdd	bpm	mdd	bpm
SRM01-113-24	Inclusion	1149	2,295		87.90	141.2	19.45	32.46	10.52	1.62	34 1	11.0	126	26	5	511	108	11,730	173	357
SRM01-113-25	Inherited	117	2,145		0.02	10.0	0.16	1.00	3.71	0.78	28 1	12.4	131	25	1	498	98	12,514	114	280
SRM01-113-26	Inherited	74	1,270	_	No_Data	10.7	0.07	0.46	1.25	0.24	13	5.8	68	15	80	367	69	12,328	65	188
SRM01-113-27	Inherited	110	3,056		0.06	24.9	0.27	2.10	5.63	2.26	44	16.7	167	32	4	724	132	8,092	231	329
SRM01-113-28	Inherited	83	1,690		0.10	16.0	0.06	0.56	2.01	0.48	16	7.1	93	15	6	441	91	12,829	151	285
SRM01-113-29	Inherited	90	2,873		0.05	15.7	0.17	0.96	3.28	0.60	32 1	14.0	162	35	5	649	139	13,232	142	273
SRM01-113-30		91	1,717	-	No_Data	15.5	0.12	0.73	2.41	0.62	23 1	10.1	112	2C	6	459	83	10,259	06	191
SRM01-113-31	Inherited	93	3,644	_	No_Data	20.8	0.08	0.74	3.19	0.63	33 1	13.3	167	36	12	617	193	10,421	188	256
SRM01-113-32	Inherited	123	4,325	-	No_Data	38.7	0.12	1.74	5.61	1.81	49 2	2.3	288	62	9	962	229	12,055	364	380
SRM01-113-33		94	1,823	_	No_Data	15.1	0.10	0.66	1.99	0.50	20	8.4	66	22	2	479	102	10,247	103	251
SRM01-113-34	Inherited	87	2,208		0.10	15.7	0.03	0.45	1.89	0.68	24 1	10.4	100	26	1	513	126	14,065	211	249
SRM01-113-35		231	2,491		8.21	23.3	1.86	3.48	3.62	0.40	29 1	11.9	151	31	6	579	110	10,490	160	441
SRM01-113-36		105	2,664	_	No_Data	27.6	0.11	1.02	4.10	0.71	34 1	14.6	162	32	9	642	119	966'6	304	484
SRM01-113-37		82	1,697	-	No_Data	10.0	0.03	0.65	2.57	0.47	22	7.6	103	21	∞.	431	84	10,413	75	197
SRM01-113-38		89	1,555	_	No_Data	16.5	0.10	0.48	2.76	0.46	19	9.2	107	2C	6	476	80	10,272	83	331
SRM01-113-39		87	1,667	_	No_Data	16.3	0.09	0.60	1.71	0.45	16	8.2	95	2C	6	416	83	12,686	226	330
SRM01-113-40		81	1,502	_	No_Data	10.2	0.07	0.98	2.83	0.58	24 1	10.2	98	15	9	433	74	8,809	74	234
SRM01-113-41		80	2,117	_	No_Data	16.8	0.08	0.64	2.42	0.69	24	9.9	119	25	9	530	106	10,664	112	286
SRM01-113-42		134	2,064		4.63	27.6	1.38	2.21	2.69	0.74	20 1	10.5	117	24	9	560	105	13,127	240	318
SRM01-113-43	Inherited	106	2,923		0.14	24.9	0.08	0.65	2.79	0.49	29 1	13.2	147	35	9	656	161	13,943	407	409
SRM01-113-44		93	2,356		0.08	27.7	0.06	0.94	2.94	0.87	28 1	11.8	144	31	0.	649	121	10,876	360	517
SRM01-113-45		80	1,418		No_Data	8.8	0.03	0.67	1.82	0.48	15	6.6	78	17	6	378	99	8,681	63	212
WCOS14-03-01		177	3,001		0.21	20.8	0.46	3.17	9.60	1.77	75 2	3.5	269	35	2	590	95	7,164	573	1012
WCOS14-03-02	Inherited	147	1,912		0.89	29.5	0.26	2.80	5.02	0.87	37 1	4.4	162	24	9	426	64	8,237	562	803
WCOS14-03-03		205	1,998		4.58	24.4	1.43	5.26	5.39	0.83	39 1	12.6	142	24	5	412	64	9,766	344	685
WCOS14-03-04	Inherited	157	1,907	-	No_Data	23.1	0.19	2.06	5.85	0.74	35 1	13.1	156	25	1	508	71	10,623	477	748
WCOS14-03-05		132	1,793	_	No_Data	25.0	0.12	1.24	3.30	0.67	31 1	10.7	135	22	5	426	69	8,756	460	779
WCOS14-03-06		230	4,489		0.09	66.2	0.60	4.28	13.42	2.09	112 3	39.3	437	63	2	893	152	9,348	1895	1913
WCOS14-03-07	Inclusion	523	1,443		22.80	62.9	6.48	16.63	6.99	0.80	31 1	10.2	125	17	2	378	51	7,372	268	649
WCOS14-03-08	Inherited	178	1,549		4.18	30.9	1.61	5.93	4.51	0.56	30 1	10.3	127	20	14	409	62	10,505	319	604
WCOS14-03-09		176	3,227		0.04	32.0	0.31	2.43	7.29	1.00	56 2	20.1	243	4C	12	655	110	13,392	915	1204
WCOS14-03-10		125	1,738		No_Data	14.2	0.21	1.62	4.47	0.80	32 1	10.2	121	2C	11	376	53	7,254	265	594

		22				1505		5	i						, i	5				
Spot ID	Note	P (31)	Y (89)	dN (93)	La (139)	Ce (140)	Pr (141)	Nd (146)	Sm (147)	Eu (153) (	Gd 157) (	Tb 159)	Dy Н 163) (16	o Er 55) (16	Tm 5) (169)	Yb (172)	Lu (175)	Hf (179)	Th (232)	U (238)
		mdd	шdd	mdd	mdd	bpm	mdd	bpm	bpm	bpm	mdd	mdd	dd mdd	m ppr	u ppm	bpm	mdd	bpm	bpm	bpm
WCOS14-03-11	Inherited	144	3,117		No_Data	25.5	0.24	2.16	6.46	0.95	53	18.7	262	39	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	582	126	12,946	785	719
WCOS14-03-12		220	2,889		3.19	47.0	1.41	5.80	8.68	1.43	64	20.3	235	37	2	629	90	9,075	1057	1184
WCOS14-03-13	Inherited	108	3,214		No_Data	29.1	0.19	2.35	6.43	1.09	60	18.8	229	38.	0	571	130	11,150	533	538
WCOS14-03-14		150	4,740		0.22	36.8	0.56	3.97	11.37	2.08	100	31.1	417	61	.0	834	190	12,504	820	831
WCOS14-03-15		199	2,172		2.02	26.4	0.42	2.58	4.53	0.82	44	15.4	174	26	~	523	76	11,152	529	821
WCOS14-03-16	Inherited	137	3,334		No_Data	20.3	No_Data	2.38	7.82	1.30	65	23.0	253	39	~	608	104	9,635	608	794
WCOS14-03-17	Inclusion	282	1,791		9.50	33.1	1.96	6.24	4.90	0.54	36	12.1	141	20	m	398	67	11,183	414	599
WCOS14-03-18		228	1,356		1.59	16.7	0.70	2.16	3.04	0.63	25	7.5	115	16	2	359	57	8,358	465	594
WCOS14-03-19		114	2,020		0.11	19.0	0.20	1.97	5.17	0.85	40	14.5	171	26	~	455	70	11,122	352	584
WCOS14-03-20		199	4,520		1.05	33.4	0.64	6.37	12.13	2.13	95	29.7	376	56	0	821	142	11,080	1224	1110
WCOS14-03-21	Inclusion	475	2,449		19.28	62.2	6.40	17.00	9.90	1.13	56	16.6	202	29	0	473	81	9,775	626	785
WCOS14-03-22	Inherited	119	2,305		0.05	20.1	0.14	1.25	3.89	0.47	31	12.1	147	275	6	348	108	13,027	502	506
WCOS14-03-23		131	1,732		No_Data	12.9	0.13	1.58	4.07	0.71	36	10.9	144	213	~	367	55	8,630	237	531
WCOS14-03-24		200	3,253		3.16	37.1	1.49	6.20	9.55	1.48	64	19.5	282	41	_	685	105	8,837	640	1336
WCOS14-03-25		134	1,595		No_Data	21.1	0.11	0.84	3.22	0.53	28	9.9	125	19(	.0	340	54	8,532	555	1004
WCOS14-03-26		123	1,442		No_Data	16.4	0.10	0.91	2.93	0.48	26	8.8	106	17	2	329	59	7,598	327	752
WCOS14-03-27		209	2,793		1.85	36.1	0.88	3.34	6.68	0.82	51	19.9	224	33	~	586	66	11,677	780	959
WCOS14-03-28		178	3,249		No_Data	33.2	0.37	2.24	8.50	1.35	60	20.9	243	38.	0	583	105	11,810	847	1025
WCOS14-03-29		133	1,741		0.10	22.6	0.15	0.92	3.46	0.56	33	11.3	132	22	0	356	99	10,707	463	627
WCOS14-03-30		130	2,404		No_Data	28.6	0.22	2.01	4.83	0.90	50	16.5	206	29	_	480	87	11,600	581	670
WCOS14-03-31	Inherited	140	1,988		2.31	26.6	0.70	3.11	4.83	0.75	36	12.7	157	23.	2	417	70	9,969	447	657
WCOS14-03-32	Inherited	215	4,658		3.63	56.1	1.55	6.52	9.94	1.54	96	28.2	411	61	~	820	160	14,027	1620	1109
WCOS14-03-33	Inherited	116	2,171		No_Data	26.7	0.20	2.01	5.59	0.63	49	14.9	178	26	•	469	62	5,454	539	1026
WCOS14-03-34		173	3,448		0.31	37.6	0.32	2.96	7.52	1.15	70	22.1	281	41	~	644	114	10,331	1278	1167
WCOS14-03-35	Inherited	142	2,261		1.70	30.1	0.56	2.39	5.05	0.58	38	14.0	192	31(	.0	464	96	14,104	687	638
WCOS14-03-36	Inclusion	1657	#####		10.92	49.8	11.42	68.75 #	+#####	48.50	912 2	72.4	2275	139	7	1249	142	9,174	1465	814
WCOS14-03-37		143	1,392		No_Data	13.7	0.08	1.20	3.37	0.79	29	9.5	114	19	0	389	52	7,535	242	562
WCOS14-03-38	Inherited	153	4,295		0.66	58.4	0.72	4.73	10.58	1.37	96	29.3	397	51(	.0	765	133	9,417	1750	1336
WCOS14-03-39		154	2,125		0.07	22.3	0.18	1.99	4.75	0.96	36	13.5	172	25	~	452	75	8,044	541	905
WCOS14-03-40		209	1,744		0.85	21.4	0.56	2.25	3.77	0.53	31	11.3	134	24(	0	360	64	11,961	395	502
WCOS14-03-41	Inherited	151	2,232		0.41	25.4	0.24	1.37	3.88	0.67	35	13.2	163	26	6	441	79	10,587	491	715
WCOS14-03-42	Inherited	166	3,280		0.71	32.7	0.51	3.14	6.03	0.89	23	20.8	248	43	6	582	146	12,794	904	829
WCOS14-03-43	Inherited	124	1,810		No_Data	18.7	0.04	1.75	4.16	0.66	32	10.4	139	218	~	442	71	8,690	360	646
	22.		222		500		>	ן ב ר		2020			)	i	5	2				
----------------	-------	-----------	-------------	----------	--------------	----------	--------------	--------------	----------------	---------------	---------------	---------------	--------------------	------------------	----------------	----------------	--------------	--------------	--------------	
:	P (3	1) Y (89)	dN (00)	La (139)	Ce	Pr (141)	pN	Sm	Eu	Gd	Tb	δ	Ho	TT	dY 2	Lu	Ξ	μŢ	D g	
Note	ıdd	mdd r	(93) ppm	mdd	(140) ppm	mdd	(146) ppm	(147) ppm	(153) ( ppm	157) ( ppm	159) ( opm	163) ( ppm	165) (16 opm pp	6) (169 m ppm	) (172) Ppm	) (175) ppm	(179) ppm	(232) ppm	(238) ppm	
-44 Inherite	ed 13	7 2,510		0.24	25.2	0.28	2.18	6.00	0.97	52	16.7	198	25	1	478	79	10,388	721	840	
-45	10	8 1,373		0.14	17.1	0.05	0.92	2.73	0.46	24	8.2	97	17	ø	307	51	9,175	362	539	
2-01	10	7 1,129		No_Data	10.5	0.06	0.49	1.74	0.60	15	5.5	73	13	œ	316	59	7,125	69	159	
2-02 Inherite	sd 84	t 621		No_Data	5.4	0.01	0.30	1.17	0.30	10	3.9	44	7	10	142	25	8,431	26	65	
2-03	11	5 905		No_Data	8.4	0.03	0.66	1.92	0.46	14	5.0	65	10	6	214	40	9,586	39	111	
2-04	10	3 842		0.11	4.8	0.14	0.78	2.09	0.57	15	6.5	63	10	9	195	33	6,927	33	59	
2-05	11.	2 1,959		No_Data	9.4	0.30	2.31	5.52	1.25	35	15.2	171	22	9	415	80	10,073	121	138	
52-06	94	i 1,333		0.15	7.9	0.11	1.52	3.33	0.75	28	9.6	100	15	ø	272	45	8,748	57	98	
52-07 Inherite	5d 91	611		No_Data	5.3	0.03	0.32	1.04	0.34	10	3.9	46	7	7	149	26	8,148	25	55	
52-08	95	674		No_Data	5.6	0.03	0.47	0.99	0.34	11	3.1	47	7	.0	151	27	8,150	28	73	
52-09	11.	3 773		0.81	9.4	0.27	1.10	1.66	0.45	12	4.4	55	6	~	195	33	9,032	38	92	
52-10	95	1,471		0.04	8.1	0.18	1.09	3.43	1.08	30	10.5	108	19	0	331	55	7,102	110	188	
52-11	10	1 1,314		No_Data	6.2	0.14	1.14	3.22	0.87	22	9.3	93	16	80	276	57	8,806	48	74	
52-12	11.	2 1,414		0.41	9.2	0.26	1.59	4.45	0.82	25	11.2	101	18	4	379	56	7,467	79	167	
52-13	96	887		No_Data	6.0	0.08	0.59	1.78	0.49	15	6.1	60	10	2	198	36	7,805	38	94	
52-14	87	843		No_Data	6.5	0.08	0.60	1.83	0.45	16	5.9	68	12	4	219	40	8,672	54	101	
2-15	12	9 2,347		0.29	9.2	0.43	2.44	5.98	1.50	46	14.6	169	27	0	442	76	8,648	100	166	
2-16	94	1,155		No_Data	7.1	0.02	0.92	2.45	0.81	21	7.1	81	14	4	290	46	8,724	56	144	
52-17	73	641		No_Data	5.7	0.04	0.42	06.0	0.30	11	3.5	47	7.	10	150	27	9,538	27	59	
52-18	91	1,104		No_Data	5.7	0.05	0.99	2.46	0.69	20	7.3	84	12	80	250	42	8,338	41	81	
52-19 Inherite	sd 86	1,060		No_Data	5.4	0.12	0.77	2.11	0.60	19	7.1	71	12	2	219	36	8,471	35	64	
52-20	92	1,963		No_Data	8.0	0.23	2.28	4.25	1.04	34	13.6	137	22	4	358	68	8,649	105	129	
52-21	83	1,419		0.18	10.2	0.25	1.82	4.06	0.94	32	10.0	125	19	0	282	53	9,335	103	111	
52-22	80	) 636		0.27	6.6	0.21	0.65	1.13	0.32	10	4.1	45	8	1	140	28	8,720	26	46	
52-23	77	, 639		0.11	5.7	0.03	0.34	0.93	0.29	6	3.5	42	7	10	133	25	8,324	28	51	
52-24	10	9 1,179		0.21	7.7	0.25	1.59	4.22	0.81	23	8.7	103	15	ŋ	297	48	7,503	54	138	
52-25 Inherite	sd 81	960		No_Data	6.0	0.06	0.69	1.99	0.57	16	6.3	68	11	7	206	33	8,480	41	99	
52-26	10	5 843		0.85	9.5	0.40	1.29	1.83	0.47	14	4.8	57	10	0	200	34	9,328	36	69	
52-27	67	, 643		No_Data	5.4	No_Data	0.38	1.19	0.39	6	3.9	47	7	6	160	28	7,611	27	91	
52-28	36	1,293		0.06	8.6	0.17	1.17	3.59	0.83	27	9.4	97	15	ŋ	287	48	5,530	83	168	
52-29	19.	2 1,314		4.01	14.2	1.15	3.85	2.58	0.62	19	7.4	91	16	4	223	61	12,670	57	79	
52-30	76	1,060		No_Data	5.7	0.10	0.98	2.22	0.51	18	6.9	79	12	7	211	38	8,617	45	83	

Appendix Table 8 (continued). Zircon Trace Element Spot Analyses from OSU - LA-ICP-MS

129

	A	pper	ndix Ta	ble 8 8	(contin	ued).	Zircon	Trace	e Elen	nent ;	Spot ,	Analy	ses fro	m OSL	J - LA-	ICP-N	IS			
Spot ID	Note	P (31) ppm	γ (89) ppm	Nb (93) ppm	La (139) ppm	Ce (140) ppm	Pr (141) ppm	Nd (146) ppm	Sm (147) ppm	Eu (153) ( ppm 1	Gd 157) ( ppm p	Tb 159) ( 3pm p	Dy Hc 163) (16: 3pm ppr	o Er 5) (166) n ppm	Tm ) (169) ppm	Yb (172) ррт	Lu (175) ppm	Нf (179) ррт	Th (232) ppm	U (238) ppm
WCOSID-152-31		83 80	1,114 1 301		No_Data	6.4 6 3	0.13	0.91 1 5.1	2.81 3 89	0.80 0.95	24 25	8.1 0.6	83 07	144 163		216 282	42 18	9,439 8 773	47 52	82 83
WCOSJD-152-33	Inherited	76	-020 670		0.10	5.7	0.04	0.43	1.38	0.27	11	4.1	49	93		165	26	7,166	31	66 66
WCOSJD-152-34	Inherited	76	912		No_Data	5.1	0.07	1.02	2.08	0.67	18	6.6	69	110		209	33	7,170	34	61
WCOSJD-152-35		80	707		No_Data	6.8	0.07	0.56	2.14	0.52	14	5.3	55	85		214	27	5,789	38	122
WCOSJD-152-36		80	1,530		No_Data	7.6	0.16	1.51	3.90	0.87	28	8.6	110	165		308	58	10,515	60	89
WCOSJD-152-37	Pb Loss	70	964		No_Data	5.2	0.10	0.76	2.01	0.55	17	6.0	68	117		185	38	8,267	37	60
WCOSJD-152-38		75	786		No_Data	5.2	0.04	0.67	1.58	0.48	13	4.8	62	92		178	35	7,763	28	60
WCOSJD-152-39		106	866		No_Data	8.0	0.04	0.77	1.85	0.52	14	6.0	63	105		213	34	9,762	41	92
WCOSJD-152-40		80	652		No_Data	4.8	0.01	0.42	1.28	0.36	12	3.5	44	80		164	28	7,790	24	54
WCOSJD-152-41		67	633		No_Data	6.0	0.03	0.34	1.19	0.37	11	3.7	43	79		158	25	7,486	34	75
WCOSJD-152-42		85	1,374		No_Data	6.8	0.16	1.15	3.59	0.76	31	9.9	101	166		268	45	9,171	65	102
WCOSJD-152-43		59	737		No_Data	4.8	0.04	0.47	1.29	0.42	14	4.4	52	92		171	27	8,776	25	45
WCOSJD-152-44		71	670		No_Data	5.5	0.04	0.37	1.04	0.36	12	4.0	47	83		170	36	8,391	29	66
WCOSJD-152-45		84	707		No_Data	5.0	0.02	0.38	1.28	0.35	13	4.7	59	88		179	28	8,811	28	60
WCOSNU-25-01		373	2,765		12.93	51.7	4.19	11.35	7.15	0.85	52	17.1	213	394		674	116	11,555	455	531
WCOSNU-25-02		214	1,795		3.35	15.9	0.96	3.56	3.62	0.80	33	10.6	131	210		372	75	10,902	124	171
WCOSNU-25-03	Inclusion	296	1,023		9.05	21.7	2.60	7.09	3.19	0.48	18	6.1	72	133		250	51	11,898	61	117
WCOSNU-25-04		82	1,470		No_Data	7.5	0.29	1.64	4.01	1.03	28	11.3	113	190		328	59	7,489	75	126
WCOSNU-25-05	Inherited	87	1,203		No_Data	7.5	0.08	1.04	2.18	0.56	22	6.2	83	143		275	49	9,691	67	155
WCOSNU-25-06	Inherited	86	2,906		No_Data	10.7	0.30	2.67	6.99	2.27	58	21.0	226	345		530	103	9,139	84	116
WCOSNU-25-07		103	1,109		No_Data	6.9	0.06	1.06	2.52	0.53	19	5.7	84	158		280	51	10,130	46	139
WCOSNU-25-08		84	1,525		No_Data	9.1	0.12	1.10	3.62	0.64	32	10.2	113	202		349	65	12,124	86	200
WCOSNU-25-09		187	1,191		3.98	13.3	1.14	3.57	2.52	0.52	21	6.8	06	154		293	53	11,489	52	101
WCOSNU-25-10	Inherited	154	787		5.03	15.4	1.40	3.39	2.18	0.30	12	4.9	55	66		181	41	11,051	64	120
WCOSNU-25-11		101	1,461		No_Data	16.0	0.07	0.57	2.25	0.36	24	7.9	107	196		311	64	12,747	302	294
WCOSNU-25-12	Inclusion	1192	1,004		63.53	113.9	17.97	45.35	14.47	1.39	35	7.3	71	131		232	42	13,346	55	123
WCOSNU-25-13	Inherited	68	798		0.05	6.8	0.05	0.38	0.99	0.22	11	4.1	50	107		195	38	11,223	41	88
WCOSNU-25-14		60	867		0.07	7.8	0.03	0.61	1.13	0.33	12	4.7	73	124		234	43	12,561	49	102
WCOSNU-25-15		166	3,700		No_Data	33.7	0.15	1.48	4.27	0.99	46	17.1	239	509		949	177	9,586	346	747
WCOSNU-25-16	Inherited	75	673		0.12	5.6	0.05	0.25	0.91	0.22	11	3.2	46	93		158	34	11,114	39	70
WCOSNU-25-17		86	666		No_Data	9.9	0.01	0.46	1.23	0.29	14	5.0	60	114		222	44	11,647	47	89

S
Ş
Ġ
<u> </u>
4
<u>'</u>
ร
0
ы
fr
es
ΥS
Jal
Ā
б
Sp
Ę
Ŀ
E
Ē
g
ra
Ē
0
i.
Ν.
(p
ne
ti
Ē
Ŭ
∞
le
ac C
×
di
en
dd
٩

Spot ID	Note	P (31) ppm	γ (89) ppm	Nb (93) ppm	La (139) ppm	Ce (140) ppm	Pr (141) ppm	Nd (146) ppm	Sm (147) ppm	Eu (153) ppm	Gd (157) ppm	Tb (159) ppm	Dy (163) (1 ррт р	Ho E 165) (1 10m pp	Er Tn 66) (16 3m ppr	л Yb 9) (172 п ррт	Lu (175) (. 175)	Hf ) (179) ppm	Th (232) ppm	U (238) ppm
WCOSNU-25-18	Inherited	85	1,277		No_Data	7.5	No_Data	0.74	2.07	0.55	19	7.7	84	1	69	281	59	11,584	85	132
WCOSNU-25-19	Inherited	200	1,237		6.02	17.9	1.83	4.76	2.85	0.42	20	7.1	82	ij	58	247	52	12,001	69	112
WCOSNU-25-20		77	1,510		No_Data	7.1	0.13	1.13	2.51	0.57	25	8.0	107	Ţ	81	313	61	11,609	65	98
WCOSNU-25-21	Inherited	74	799		No_Data	7.4	0.03	0.52	1.28	0.35	12	4.6	61	H	16	198	36	11,069	38	87
WCOSNU-25-22		78	902		No_Data	7.6	0.03	0.43	1.08	0.30	14	5.3	59	Ħ	28	231	49	13,161	59	66
WCOSNU-25-23		101	1,212		No_Data	7.8	0.15	0.83	2.74	0.53	21	6.5	06	ij	50	328	51	8,044	74	192
WCOSNU-25-24		86	963		0.13	8.9	0.20	0.50	1.49	0.40	15	5.6	71	1	31	263	46	9,819	62	156
WCOSNU-25-25		74	529		0.02	5.9	0.01	0.24	0.96	0.18	∞	3.0	36		1	141	30	9,780	30	73
WCOSNU-25-26	Inclusion	278	2,092		7.46	30.0	2.63	7.13	5.59	0.71	39	13.4	145	2	67	422	77	10,917	250	311
WCOSNU-25-27		92	666		No_Data	7.7	0.07	0.36	1.46	0.33	15	5.8	72	Ĥ	30	219	48	11,375	57	107
WCOSNU-25-28		70	872		No_Data	6.8	0.01	0.46	1.09	0.33	14	4.5	59	Ĥ	29	225	39	12,666	45	71
WCOSNU-25-29	Inclusion	525	1,265		23.35	46.9	6.95	18.43	6.86	1.11	27	8.2	101	ī	67	300	57	10,806	61	112
WCOSNU-25-30		67	720		No_Data	7.2	No_Data	0.39	1.07	0.28	11	4.4	53	5	14	188	34	9,780	43	109
WCOSNU-25-31	Inherited	80	668		0.47	7.2	0.10	0.49	1.33	0.29	10	4.3	44	o	1	218	35	8,583	49	131
WCOSNU-25-32		79	1,205		No_Data	6.6	0.04	0.78	2.43	0.51	20	7.6	84	1	46	295	46	9,414	52	118
WCOSNU-25-33		69	548		No_Data	7.5	No_Data	0.25	0.79	0.17	10	2.8	41		7	166	29	10,435	33	120
WCOSNU-25-34	Inherited	79	874		0.04	8.1	0.02	0.36	1.66	0.36	13	5.1	67	H	38	252	41	10,248	61	118
WCOSNU-25-35		124	993		2.55	11.1	0.65	1.55	1.75	0.38	13	5.5	66	Ħ	33	235	50	11,049	48	94
WCOSNU-25-36		149	1,216		3.42	14.2	0.89	2.32	2.44	0.47	23	8.1	93	. <del>Г</del>	70	286	59	12,131	69	97
WCOSNU-25-37		85	621		No_Data	6.6	No_Data	0.32	0.69	0.26	∞	3.8	41	00	6	170	33	11,754	46	114
WCOSNU-25-38		192	1,433		4.87	16.4	1.68	4.88	4.31	06.0	27	10.3	111	1	86	299	59	9,310	62	113
WCOSNU-25-39		118	1,189		0.39	6.9	0.24	1.05	2.16	0.48	20	7.1	76	÷	50	263	54	10,716	57	115
WCOSNU-25-40		87	1,472		No_Data	8.1	0.09	0.79	2.06	0.50	22	7.0	92	1	96	267	99	13,840	84	94
WCOSNU-25-41		166	874		3.33	12.3	0.85	2.11	2.26	0.41	13	5.3	60	1	26	263	42	8,885	49	135
WCOSNU-25-42		99	976		No_Data	7.2	0.06	0.68	2.16	0.52	20	7.1	73	1	22	259	45	11,204	46	93
WCOSNU-25-43	Inclusion	1654	1,184		49.90	98.9	15.00	34.53	11.46	1.33	32	8.5	89	1	45	244	52	8,894	69	130
WCOSNU-25-44		136	954		2.49	10.7	0.78	1.73	2.00	0.38	16	5.8	62	Ĥ	30	229	45	10,960	48	89
WCOSNU-25-45	Inherited	95	1,180		No_Data	9.4	0.05	0.52	1.75	0.37	17	5.4	85	ij	52	301	55	13,034	73	150
laharitad	Grain who		ton sed (	t heen	included in	ream r	, waighter			ered ac		olo olo	her than	u ujem	onulation	ontar.	metic o		,ctir	
Pb Loss	Grain who	se age	i has not	t been	included ir	יששרות ה השפת ר	י weighted ו	l age cõ	alculation	on beca	use ag	e was	inaccura	itely vou	unger tha	an main	popula	ition due	to Pb lo	SS
Inclusion	Interprete	e as a	fluid, m	elt, ap	atite, or ot	her ph	ase inclus	ion, ba:	sed off	anoma	ously l	high cc	ncentra	tions of	P, La, Pr	, and No				