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The Influence of Map Complexity on Interpolation Accuracy

INTRODUCTION

For many mapping projects it is technically impossible or

prohibitively expensive to conduct an exhaustive survey of the

phenomenon being mapped. One solution to this problem is to spatially

sample the phenomenon and interpolate its distribution based upon the

location and quality of these samples. Some amount of error is

expected in maps created using the sample-interpolation procedure,

and research projects designed to identify or minimize this error are

needed.

Developing a technique which enables cartographers to

estimate the accuracy of interpolated maps must begin by identifying

potential sources of error. The number of samples collected, the

sample design, the complexity of the distribution being mapped, and

the specific interpolation model used are four factors influencing

the accuracy of interpolated maps although others may exist. Here,

the term "distribution complexity" refers to the pattern intricacy of

a phenomenon's spatial distribution. For example, an area covered by

ten soil types and arranged in small disjunct parcels has a more

complex distribution than an area of equal size composed of only two

soil types in large homogeneous parcels.

Of the four factors listed above, research directed towards

how distribution complexity influences map accuracy has not been

reported. This paper identifies distribution complexity as one aspect

of the evolving map complexity concept which has an important
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influence on the accuracy of interpolated dasymetric maps. Because

the influence of distribution complexity is affected by other

factors, notably sample size, the influences of distribution

complexity and sample size are investigated simultaneously.

Throughout this paper the complexity of the distribution

being mapped is called "map complexity" in accordance with

conventions already established in cartographic literature. The

precise relationship between distribution complexity and map

complexity is outlined below.

There are three primary research objectives in this project.

First, the relationship among map complexity, sample size, and the

accuracy of interpolated dasymetric maps is empirically investigated.

Clearly, there should be a positive relationship between sample size

and map accuracy and an inverse relationship between map complexity

and map accuracy. This paper defines these relationships more

precisely. Secondly, from data derived in the first research

objective, the relative importance of sample size and map complexity

is determined through linear multiple regression analysis. Finally,

based upon these analyses and speculation, a theoretical curve

relating these three variables is presented.

The Dasymetric Surface

Cartographers find it useful to conceive of a distribution

that varies over space as a geographical volume described by a

statistical surface (Muehrcke,1972). Many thematic maps represent a

statistical surface wherein the planimetric relations of the theme
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are portrayed using the X and Y map dimensions, and the magnitude or

Z dimension of the map theme is conveyed through the use of

appropriate map symbolism which is designed with an understanding of

the psychophysical and cognitive aspects of human perception.

Statistical surfaces may be divided into two types:

continuous and discontinuous (Peucker,1972). Continuous surfaces are

conceived as having a continuous change in slope gradient from one

point to another, with very few if any vertical slopes. In contrast,

discontinuous surfaces are conceived as areas of relative homogeneity

separated from one another by very steep or vertical slopes. The

three dimensional appearance of a discontinuous surface is step-like,

whereas a continuous surface smoothly undulates.

This study was directed specifically towards a qualitative

dasymetric surface. All dasymetric surfaces are discontinuous and

boundaries between classes represent natural divisions in map theme

(Robinson, et al.,1978). Land cover, land use, soils, and geologic

formation maps are examples of this type. It is convenient to

conceive of qualitative maps as statistical surfaces also. In this

case, change in the Z dimension represents qualitative rather than

quantitative change and the integers assigned to categories represent

class type rather than numerical value.

For this project, it was necessary to distinguish between

continuous and discontinuous surfaces because specific interpolation

models are suitable for one type or the other and are generally not

interchangeable.
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LITERATURE REVIEW

For this study a survey of literature published in

cartographic and geographic journals was undertaken with specific

objectives in mind. If similar projects had already been completed,

then this study should build upon their conclusions and avoid

duplicating their effort. Also, a review of interpolation models was

necessary for selecting the one most appropriate for use with a

qualitative dasymetric surface. Finally, in order to quantitatively

investigate the influence of "map complexity" on "map accuracy", it

was necessary to know how research cartographers have precisely

defined and measured these qualities.

Morrison's "Method-Produced Error"

An important study identifying which variables are most

significant in influencing the accuracy of interpolated maps is

Morrison's (1971) paper "Method-Produced Error in Isarithmic

Mapping". In this monograph, three variables were identified as

influencing isarithmic map accuracy: sample size, sample design, and

interpolation model. Morrison used various combinations of sample

size, sample design, and interpolation model to generate 84 different

interpolated maps from four parent surfaces. The accuracy of each

interpolated map was determined through comparison with the parent

surface. How well the interpolated map fit the parent surface from

which it was generated was measured as "the standard deviation of the

residuals that occur at a 100-point square lattice of points within
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the study area" (Morrison,1971).

Morrison used an analysis of variance approach to show that

sample design and interpolation model were the most important

variables influencing isarithmic map accuracy of those tested.

Although the influence of sample size was statistically significant,

it was small relative to the other two variables. He concluded that a

stratified random sample design was the best of the several he tested

and that a double Fourier was the optimal performing interpolation

model. Also, to accurately interpolate the surfaces a sample size of

between 44 and 100 points was found to be adequate.

The present study departs from Morrison's project in three

significant ways. Although he used four parent surfaces of different

complexity, Morrison did not investigate how increased complexity

influences map accuracy when the other variables are held constant.

This aspect is the focus of this paper. Secondly, Morrison used

continuous quantitative surfaces while in this paper discontinuous

qualitative surfaces are studied exclusively. Thirdly, the present

study holds the variables of sample design and interpolation model

constant.

Interpolation Models

Spatial interpolation is the process of inferring a complete

surface within a specified boundary from a sample of data points or

subareas of known X, Y, and Z dimensions (Lam,1983). The

interpolation is accomplished by using a rule or function which

estimates a value Z
est

at position X.Y.
1
based upon the location and

1
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quality or quantity of nearby data points or subareas. The function

used to estimate the Z
est

values is called an interpolation model.

Fundamental assumptions about the behavior of the surface

being interpolated must be made prior to selecting an interpolation

model. Deciding whether the surface is continuous or discontinuous is

one of the most important assumptions because most interpolation

models are surface specific. Figure 1 is presented as an illustration

of this point.

At the top of Figure 1 the X, Y, and Z positions of ten data

points on a hypothetical surface are shown. If the surface is assumed

to be continuous, an appropriate interpolation model is selected, and

the surface is completed. The continuous surface on the left side of

Figure 1 was interpolated using the model:

n

[

n

Zest ; WiZi / E wi
i=1

where Zest: is the interpolated value, Zi is the data value at point

and W. is the assigned weight of data point Z (Monmonier, 1982 ).

In this equation, which is based on the gravity model, the weight of

data point Zi is inversely proportional to the distance-squared

between X.Y.Z. and XiYiZ
est

. Notice that intermediate values are

inferred between data points that range widely in magnitude. This is

characteristic of interpolation models developed for use with

continuous surfaces, and it is this quality that makes them

unsuitable for discontinuous surfaces. With a discontinuous surface

there is no reason to assume intermediate values exist.

One interpolation technique suitable for use with a
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discontinuous surface is constructing Thiessen polygons. With this

method, each point with an unknown Z dimension is assigned the Z

value of the nearest data point. In this manner, the study area is

apportioned into many polygons using proximity to the nearest data

point as the only criterion. The right side of figure 1 represents a

discontinuous surface interpolated from the same ten data points.

With the Thiessen polygon interpolation model, intermediate values

are assumed not to exist, giving the surface a step-like appearence.

Notice the discrepancy in the appearence of the surfaces depending on

which interpolation model is employed.

Map Complexity Concept

The separate components of visual and intellectual map

complexity are discussed in cartographic literature. Intellectual map

complexity is associated with difficulty in interpreting intellectual

meaning from abstract cartographic symbols whereas visual map

complexity refers to the inherent intricacy of a mapped geographic

pattern (MacEachern,1982).

Distribution complexity is the focus of this paper, and this

quality is related directly to the visual map complexity concept.

Visual map complexity is simply a cartographic representation of

distribution complexity. In order to incorporate the large amount of

cartographic literature devoted to measuring and defining map

complexity, one must consider distribution complexity to be

equivalent to visual map complexity. A discipline wide-definition of

this phenomenon has not been developed and most authors offer an
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operational definition of visual map complexity, as will be done

here.

Fundamentally, visual map complexity is a multidimensional

phenomenon associated with the interconnectedness of map classes.

Muehrcke (1973) describes map complexity as the "spatial variance" in

a map pattern where spatial variance is a measure of the map's

"internal organization". Several factors contribute to a map's

spatial variance including the number of classes, the fragmentation

of these classes, and variation in the proportion of map area covered

by each map region. Also, these three factors seem to be

interrelated. Visual map complexity is defined here as being equal to

a map's spatial variance. Therefore, a measure sensitive to these

three factors must be selected in order to quantify map complexity.

Numerous measures of map complexity have been proposed by

academic cartographers (0lson,1972,1975), (Monmonier,1974),

(Muller,1976), (Brophy,1980), (MacEachern,1982). Some of these are

developed for continuous surfaces and are unsuitable for use with a

discontinuous surface. For example, Monmonier (1974) used as a

measure of map complexity the highest order polynomial equation

necessary for a "best fit" trend surface. Other methods are designed

specifically for choropleth maps and are unsuitable for dasymetric

maps without modification (Muller,1976), (MacEachern,1982).

MacEachern (1982) offers the coefficient Cm
as a measure of

choropleth map complexity. Cm is calculated by decomposing a

choropleth map into graph feature components of faces, edges, and

vertices as illustrated in Figure 2. The maximum number of faces,

edges, and vertices are counted using every enumeration unit on the
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vertices

faces

edges

Figure 2. Decomposition of a choropleth map into faces,
edges, and vertices
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map. Next, all edges separating units of the same class are ignored

and followed by a new count of observed faces, edges, and vertices.

The complexity coefficient is as follows:

observed number of (faces, edges, or vertices)
m maximum number of (faces, edges, or vertices) .

MacEachern (1982) reports redundancy (r = 0.94 to 0.97) among the

various C
m

indexes using either faces, edges, or vertices, and

suggests only one count is adequate.

Another measure of choropleth map complexity is the pattern

fragmentation index F (Monmonier,1974). F is calculated as :

F = (M-1)/(N-1)

where M is the number of map regions and N is the number of

enumeration units. Contiguous enumeration units of the same class are

considered one region. The coefficient F ranges from 0, where all

enumeration units are of the same class, to 1, where no two

contiguous units are of the same class. Since map enumeration units

and map faces are the same feature, it should be clear that Cm using

face counts and F are calculated using identical methods.

The complexity coefficients F and Cm are designed

specifically for choropleth maps in which boundaries are based on

political enumeration units rather than naturally occuring divisions

in map theme. Without modification they are unsuitable for dasymetric

maps because boundaries only separate homogeneous areas of different

classes. However, Cm and F can be adapted for use with dasymetric

maps by superimposing a rectangular grid over the map and treating

each grid cell as a hypothetical enumeration unit. One problem

introduced by this modification is the variation in F and C
m
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determined by the cell size of the superimposed grid. For any

dasymetric map, the numerator in both equations (number of map

regions) is not affected by the superimposed grid, but the

denominator (number of enumeration units) will vary depending on cell

size. This fact makes method repeatability and comparison between

maps difficult unless grids with identical cell size are used.

Inequality in the proportion of map area covered by each map

region is a dimension of map complexity to which the indices Cm and F

are not sensitive. For example, two maps with the same number of

classes and regions will have identical F or C
m

values even though

one of the maps may be dominated by a single large map region, making

this map less visually complex. Therefore, the size disparity index

S
d
is also necessary to reflect this second dimension of map

complexity (Monmonier,1974). The size disparity index is computed by

constructing a Lorenz curve (Taylor,1977) with the cumulative

proportion of map area covered by each map region on the Y-axis and

the proportion of map region area in rank order and equal increments

on the X-axis. S
d

is measured as the proportion of area between the

graph diagonal and the Lorenz curve (Monmonier,1974). Figure 3

illustrates the calculation of Sd.

Unfortunately, there is no suitable method for combining the

complexity indices F and Cm into a composite measure which is

required for this project.

From among the various spatial autocorrelation statistics is

found a measure of map complexity sensitive to the fragmentation of

map classes and to the variation in the proportion of map area

covered by each map region. Spatial autocorrelation is a general



a

a
2

0

1.0

0.59

0.35

0.21

0.08

0.03

13

Lorenz Curve

Area Proportion

Sd = 0.17

Map Regions Rank Ordered and in Equal Increments

Figure 3. Calculation of the size disparity index Sd



14

statistical and geographic concept used to describe the degree to

which a spatial pattern departs from randomness (Cliff and

Ord,1973,1981), and it has been used as a measure of map complexity

(Olson, 1972,1975). The spatial organization of a mapped geographic

pattern can be summarized by a single statistic using the correlation

coefficient r, Kendall's rank correlation coefficient tau, or the

proportion of map units with identical neighbors depending on whether

the map theme is ratio, ordinal, or nominally measured, respectively

(Olson,1975).

Additionally, spatial autocorrelation is a desirable measure

of map complexity because the computation can be performed by a

computer using digital grid cell maps. To illustrate this procedure,

consider Figure 2 wherein neighbors are defined as cells sharing an

edge. Map A is a quantitative digital map with nine cells X.., where

i represents the row number and j is the column number. Cell X
11

has

two neighbors, X
12

and X21, whereas cell X
22

has four neighbors. To

calculate the coefficient r, the value of X11 is entered into the X

column and the value of its two neighbors is entered into the Y

column. Next, the value of X
12

is entered into the X column and its

neighbors' X
11'

X
13'

and X
22

value is entered into the Y column. This

process continues as shown in Figure 4. The coefficient r is

calculated as

r

(xi- R) (yi- 7z)

i=1

1

n n1 R,2] [ v 2

i=1
\ 1 1 '.4 1

1=1 (Blalock, 1979).
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Map A Map B

3 3 8 A A D

3 4 8 A C

9 C F.

X Y X Y

3 3 A A
3 3 A A

3 3 A A
3 8 A
3 4 A

8 3 D A
8 8

3 3 A A
3 4 A C
3 4 A C

4 3 C A
4 3 C E
4 9 C A
4 8 C E

8 8 E C
8 4 E D
8 9 E E

4 3 C A
4 9

9 4 E C
9 4 E C
9 9 E C

9 9
9 8

r = 0.89 A = 0.67

Figure 4. Measuring map complexity with spatial
autocorrelation coefficients
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The value of r is interpreted in the standard fashion; large absolute

values indicate map cell values are either positively or inversely

correlated spatially, and values close to zero represent random

spatial patterns. As an indication of map complexity, the closer r is

to zero, the more complex is the map. In Figure 4, r = 0.89

indicating cell values with similar values are spatially correlated.

The coefficient r is not suitable for use with maps of a

qualitative theme. Although qualitative map classes can be abstractly

represented by a numeral, substituting these values into the

preceeding equation would be nonsense. For qualitative grid cell

maps, Olson (1975) proposes using the proportion of cells with

identical neighbors as a measure of spatial autocorrelation. With

this measure, the proportion of identical neighbors increases as map

complexity decreases. Therefore, this author suggests subtracting the

proportion of identical neighbors from 1 so that the magnitude of the

coefficient increases as map complexity increases. This coefficient

may be called "A" where

A = 1 proportion of identical neighbors .

The right side of Figure 4 illustrates the calculation of A using

qualitative Map B.

The spatial autocorrelation coefficient A appears to be the

best measure of map complexity for qualitative dasymetric maps in a

grid cell format. Figure 5 illustrates that A is sensitive to at

least two of the three dimensions of map complexity identified. The

coefficient A increases as the mapped pattern becomes more

fragmented, and A decreases when one class dominates the map. Because

of the interrelatedness of the three map complexity dimensions, the
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coefficient A may reflect the number of map classes even though it

does not in this example.

Map Accuracy

This discussion of map accuracy is restricted to qualitative

dasymetric maps such as those displaying land use, soils, and

geologic formations. For maps of this type, Hord and Brooner (1976)

have identified three types of error: polygon misclassification,

boundary line misplacement, and planimetric control point errors. Not

all of these are considered here because of the project's specific

objectives and due to limitations imposed by using maps in a digital

form. For example, in a digital grid cell map class boundaries are

forced to coincide with cell outlines which often modifies their

original planimetric positions slightly. For this project, map

accuracy is defined as the correspondence between the parent map and

the interpolated map. Therefore, map accuracy can be measured by the

coefficient of areal correspondence, formally defined in set theory

as

PMfIM
C A PM U IM

where C
A

is a measure of map accuracy, PM is the parent map, and IM

is the interpolated map. The proportion of area correctly

interpolated in IM is used as the intersection of the two maps, and

their union is always equal to 1 because both maps cover the same

area.
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RESEARCH METHODOLOGY

To investigate the influence of map complexity on map

accuracy an experiment was designed in which sample size and map

complexity were varied and the accuracy of interpolated maps

observed. For this experiment, it was necessary to select a source

map, choose a statistically unbiased method of generating point

samples of various sizes, and measure the correspondence of the

interpolated map and the parent map. In addition, this routine had to

be performed many times.

A research methodology capable of being computerized and

performed interactively was developed because of the many iterations

and large amount of computation required. The experiment design

developed and implemented is presented in Figure 6 as a flow diagram,

and the remainder of this chapter outlines its specific details.

Map Generalization

A soils map from the South Umpqua Area, Oregon Soil Survey

(U.S.D.A.,1973) was selected as the source map. The source map had to

be extremely complex because it was generalized several times . Map

generalization was accomplished through class reduction (combining

two or more similar classes into one grouping), by smoothing class

boundary outlines, and by eliminating small parcels entirely

contained within a large homogeneous parcel of another class.

Generalization was performed manually on the original polygonal maps

which were subsequently redigitized.
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The original source map from the Oregon Soil Survey (Map 1)

and its five increasingly general forms are presented in their

polygonal form in Figure 7 and in their digital form in Appendix B.

Map Digitizing

Maps 1 through 6 were manually digitized by overlaying a 5x5

inch piece of mylar grid with ten cells per inch. Each soil type was

assigned an integer between 0 and 9, and in each of the 2500 cells,

the appropriate number was entered. Each matrix of numbers

representing the digital forms of Maps 1 through 6 was entered and

stored on a computer file.

Positional modification of class boundaries is unavoidable

when converting a polygonal map into a digital grid cell map.

Therefore, the digital representation became the parent map to which

interpolated maps were compared.

Map Complexity Measurement

Once the parent maps 1 through 6 had been digitized their

spatial autocorrelation coefficient A was calculated and used as a

measure of map complexity. The coefficient A was computed by the

program AUTO which appears in Appendix A along with the other

computer programs written for this experiment.



Map 1 A=0.396
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Map 2 A=0.278

Map 3 A =0.24

Map 5 A=0.138

Map 4 A = 0.188

Figure 7. Source map (Map 1) and its five generalized
with their complexity measurements

forms
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Sample Design

A stratified random sampling was selected for the experiment

because Morrison (1971) found its performance to be the best for

accurate interpolation from among the several he tested. Each digital

map was divided into 25 square shape strata, each containing 100

cells. For a sample size of 25, one data point was selected at a

random location from within each stratum as illustrated in Figure 8.

Four data points were selected randomly within each stratum for a

sample size of 100, and so forth. The stratified random samples were

performed by program RANDOM in which random point coordinates are

produced using a system supplied intrinsic function and a user

supplied seed number. In addition, RANDOM also determines the soil

type at the selected coordinates.

Computer Interpolation and Mapping

The data point's location and soil type were used as input

for the interpolation of a new map. The interpolated map was produced

using the Proximal Map options of the SYMAP computer mapping program

(Dougennik and Sheehan,1977). The Proximal map package interpolates

unknown values by constructing Thiessen polygons around data points

supplied by the user. The Thiessen polygon interpolation model was

selected because it is a well established technique for use with

qualitative discontinuous surfaces. A typical deck set-up used to

execute the SYMAP program appears in Appendix A.

Difficulty was encountered using SYMAP because of the
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coordinate transformation of data points performed automatically to

accommodate the vertical elongation typical of computer printouts.

Through experimentation a 1:1 correspondence between data point

coordinates and SYMAP map coordinates was achieved by misleading the

program into believing the map was being printed at ten rows per

inch.

Once the interpolated map was created by SYMAP, the value

within each of its 2500 cells was written onto a permanent file using

F-MAP elective 21. Subsequent to being reformatted by progran DAVE,

the accuracy of the interpolated map was determined using this file.

Measuring Map Accuracy

To measure the accuracy of the interpolated map, the

interpolated map and the parent map from which samples were taken

were compared digitally. Their coefficient of areal correspondence CA

was calculated by counting the proportion of cells assigned the

correct soil type, that is

number of cells correctly interpolated
C
A

=
total number of cells

The coefficient C
A

was computed by program CHECK which also produces

a residual map showing which cells were assigned an incorrect soil

type. Figure 9 illustrates this procedure.

Range of Sample Sizes

Sample sizes of 5, 10, 25, 50, 75, 100, 250, 500, and 1000
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points in various combinations were used with the maps. Five

different sample sizes representing a wide range were used with each

map and replicates of each sample size were made. For example,

samples sizes of 25, 50, 100, 250, and 500 were used with Map 1.

Independent replicates of each sample size were made in order to

observe random variation in map accuracy when identical sample sizes

were used.



28

RESULTS AND DISCUSSION

Table 1 presents the results of the experiment outlined in

Figure 6 and for each map the various sample sizes and interpolated

map accuracy levels are listed. In this chapter, sample size and map

complexity are examined separately to see their individual effects on

map accuracy. Secondly, the cumulative effect of both variables is

examined to determine which has the more important influence on map

accuracy.

Map Accuracy Related to Sample Size

For all six maps there was a positive curvilinear

relationship between map accuracy and sample size. Figure 10

illustrates the curve for Map 6. Such curvilinear relationships may

be linearized by transforming one or both variables (Neter,et

al.,1983). A base ten logarithmic transformation of sample size

successfully linearizes this relationship for all six maps. Figure 11

illustrates the linearizing transformation using Map 6. Linearizing

the relationship is desirable because of the straightforward

interpretation of the slope and intercept of linear equations.

Figure 12 presents the graphs of Maps 1 through 6 plotted on

a logarithmic X-axis. Each map's least-squares fitted regression

line, equation, and R
2
value are also presented. In all cases the

regression line fits very well as indicated by the high R
2
values.

Also, there is some indication of non-constant variance in different

levels of X, that is, variation in the level of map accuracy at fixed
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Table 1. Results of Experiment

Interpolated
Map Sample Size Map Accuracy

Map 1

Map 2

Map 3

Map 4

25 0.241
25 0.272
50 0.345
50 0.318

100 0.390
100 0.388
250 0.531
250 0.500
500 0.615
500 0.602

25 0.305
25 0.305
50 0.406
50 0.399

100 0.500
100 0.499
250 0.630
250 0.626
500 0.720
500 0.721

25 0.375
25 0.428

100 0.574
100 0.554
250 0.666
250 0.678
500 0.778
500 0.754

1000 0.835
1000 0.827

25 0.500
25 0.531
100 0.634
100 0.659
250 0.723
250 0.736
500 0.816
500 0.786

1000 0.867
1000 0.869
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Table 1. Results of Experiment (cont.)

Interpolated
Map Sample Size Map Accuracy

Map 5

Map 6

25 0.568
25 0.621
50 0.671
50 0.600
75 0.702
75 0.688

250 0.807
250 0.818
500 0.855
500 0.865

5 0.604
5 0.668

10 0.665
10 0.736
25 0.781
25 0.821
50 0.852
50 0.837
75 0.874
75 0.883
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Figure 10. Scattergram showing the relationship between map
accuracy and sample size for Map 6
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Figure 11. Scattergram showing the relationship between map
accuracy and the logarithm of sample size for Map 6



1.0

0.8-

0.7-

a
0.5-

a 0.4-
16

2
0.3-

0.2-

0.1-

Map 8

32

Map 5

Map 4

Map 3

Map 2

Map 1

Map 6

Map 5

Map 4

Map 3

Map 2

Map 1

5 10 25 50 75 100

Sample Size (log scale)

y = 0.49 + 0.20x
log

y = 0.28 + 0.21x
1og

y = 0.20 + 0.21x
10 g

Y = 0.02 0.27x
log

y = - 0.14 + 0.32x
10 g

y = 0.12 + 0.26x

250 500 1000

R
2

= 0.92

R
2

= 0.95

R
2

= 0.99

R
2

= 0.99

R
2

= 0.99

R
2

= 0.98

Figure 12. Scattergram relating map accuracy to logarithm of sample

size for Maps 1 through 6. Each map's least-squares regression line,

equation, and R
2
value is also presented.
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levels of sample size decreases as larger sample sizes are

considered.

Notice how the slope of the regression equations is steeper

for the more complex maps (Maps 1, 2, and 3). This suggests that the

asymptotic leveling of map accuracy occurs at larger sample sizes as

the map becomes more complex even though a clear trend is not

apparent over the range of sample sizes considered.

Map Accuracy Related to Map Complexity

Map accuracy was inversely related to map complexity at all

sample sizes as presented in Figure 13. No linearizing transformation

was necessary . Once again the high R
2
values indicate the regression

lines fit very well, although with careful examination the data seem

to suggest a nonlinear trend with smaller sample sizes.

It is apparent that the influence of map complexity on map

accuracy is dependent on sample size. This fact is indicated in

Figure 13 by the trend of decreasing regression line slope with

increased sample size. This is logical because as sample size

approaches infinity the accuracy of an interpolated map should be

very high irregardless of complexity. When the effect of one

independent variable (map complexity) is influenced by the level of

another independent variable (sample size), the two variables are

said to "interact" (Neter,et al.,1983).
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Relative Importance of the Independent Variables

Through multiple regression analysis, the individual and

cumulative influence of the two independent variables on map

complexity and each variable's relative importance may be determined

using an analysis of variance approach (Johnson,1978), (Neter, et

al.,1983). The regression analysis of variance approach is based on

measuring the total amount of variation observed in map accuracy

during the experiment and attributing proportions of the variation to

the independent variables.

The total amount of variation (SSTO) observed in map accuracy

(Y) is measured as the sum of the squared deviations from the mean

value of Y, that is,

SSTO = (Y.- -*)2

i=1

By introducing an independent variable or variables Xn, and

developing a regression equation relating Y to Xn, a percentage of

the variation may be attributed to X
n

. The amount of variation

"explained" by the independent variable (SSR) is measured as the sum

of the squared deviations between the least-squares fitted line and

the mean value of Y, that is,

n
SSR = (Y.- "i-)2 .

i=1

The relative importance of the independent variable is measured as

the proportion of total variation explained by that variable. This

index is called R
2

where

R2 2 SSR
SSTO
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When regressing sample size and map complexity separately

against map accuracy, their R
2
values are 0.215 and 0.466,

respectively. In this experiment, map complexity is the more

important variable, accounting for 46.6% of the variation in map

accuracy while sample size accounts for only 21.5%. Clearly, neither

variable alone can explain the majority of total variation observed

in map accuracy. When the cumulative effect of sample size and map

complexity is considered, 93.1% of the variation in map accuracy can

be explained. Notice that their individual influence is not additive,

that is, 0.215 + 0.466 = 0.671 which does not equal 0.931. This

discrepancy is an expression of the interaction between the two

independent variables.
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SUMMARY AND CONCLUSIONS

The complexity of a geographic distribution, referred to as

map complexity throughout this paper, is shown to have an important

influence on the accuracy of interpolated dasymetric maps using data

derived from a, controlled experiment. Its effect on map accuracy is

influenced by other variables in the sampleinterpolation mapping

procedure such as sample size. In general, there is a positive

curvilinear relationship between sample size and map accuracy, and an

inverse linear relationship between map complexity and map accuracy.

Map complexity is shown to be the more important variable.

Based upon the results of this experiment and theoretical

assumptions, Figure 14 is presented as a summary of the theoretical

relationship among map complexity, sample size, and map accuracy. The

data show a curvilinear relationship between sample size and map

accuracy with an asymptotic leveling off at larger sample sizes.

Although the experiment did not consider extremely small sample

sizes, one can assume the existence of another horizontal asymptote

approaching a map accuracy level of O. Therefore, the theoretical

curve proposed is logistically shaped with two horizontal asymptotes

approaching map accuracy levels of 0 and 100%. Map complexity is also

important in determining map accuracy. The data suggest its influence

shifts the asymptotes towards larger sample sizes as map complexity

increases. This has the effect of reducing the slope of the linear

portion of the logistic curve.

In summary, map accuracy is proposed to be logistically

related to sample size wherein the position of the asymptotes are
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determined by the level of map complexity.

The results of this experiment can be used to develop a

multiple regression equation for application in the fields of

computer cartography and geographic information system (GIS) design.

Cartographers and GIS designers can use the regression equation as a

guideline for selecting a sufficient sample size for attaining the

level of accuracy required for the mapping project. The equation

developed is as follows:

y = 0.67 - 2.39x
1
+ 0.12x

21og
+ 0.51x

1
x
21og

where y equals map accuracy, xl is map complexity, x2 is sample size,

and x
1
x
2
is a term for the interaction between sample size and map

complexity.

For most projects the complexity of a geographic distribution

is not known until it has been mapped. Therefore, to use the

equation presented above, it is necessary to estimate the complexity

prior to mapping which may be accomplished in several ways. For

example, in some mapping projects the objective is to update an

existing map or to map an area at a larger scale. Under these

conditions the existing map's complexity may be used as an estimate

of the new map's complexity. If no previous mapping has occurred, a

phenomenon's distribution complexity may be estimated during field

reconaissance or through remote sensing techniques. In cases where

environmental phenomena are spatially associated, such as soil type

and geology or vegetation association and soil type, and one of the

phenomena has previously been mapped, the distribution complexity of

the mapped phenomenon may be used as an estimate of the other.

There are also applications of this research for archiving
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digital maps and to GIS design. A complete digital map can be

stored in a skeletal form as a sample of point coordinates and their

associated attribute codes. In small GIS's where computer memory must

be economized, the dasymetric maps in the thematic data base may be

stored in this form. Immediately prior to their use in analytical

operations, the skeletal maps can be completed through interpolation.

This procedure may conserve a significant amount of memory

particularly when used with less complex maps. Since in this

application the maps already exist, their complexity can be measured

directly rather than estimated and the regression equation can be

used for selecting an adaquate sample size.
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C * * * * * * * * * * * * * * * ** PROGRAM AUTO ***********************

C

C BRIAN K. YOUNG AUGUST, 1983
C
C********************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **

C
C THIS PROGRAM READS A MATRIX OF NUMBERS AND COUNTS THE
C NUMBER OF CELLS HAVING IDENTICAL NEIGHBORS. A NEIGHBOR
C IS DEFINED AS CELLS SHARING A COMMON EDGE. THE SPATIAL
C AUTOCORRELATION COEFFICIENT "A" IS CALCULATED AS THE
C PROPORTION OF CELLS WITH IDENTICAL NEIGHBORS.
C

C

C

C

REAL COEF,RS,RN
INTEGER X(50,50),I,J,5,N,MAXI,MAXJ
COMMON X,I,J,S,N,MAXI,MAXJ

OPEN (5,FILE='MAP8')
OPEN (10,FILE='COEF')
I=0
J=0
5 =0

N=0
COEF=0
MAXI=50
MAXJ=50

C

READ (5,25) ((X(I,J), J=1,MAXJ), I=1,MAXI)
25 FORMAT(50I1)

DO 100,I=1,MAXI
DO 50, J=1,MAXJ

C

C

C

C

C

C
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IF(I .EQ. 1 .AND. J .EQ. 1) THEN
CALL EAST
CALL SOUTH

ELSE IF (I .EQ. 1 .AND. J .NE. 1 ,AND.J .NE.MAXJ) THEN
CALL EAST
CALL SOUTH
CALL WEST

ELSE IF (J .EQ. MAXJ .AND. I .EQ. 1) THEN
CALL SOUTH
CALL WEST

ELSE IF(I .NE. MAXI .AND. I .NE. 1 .AND. J .EQ. 1) THEN
CALL NORTH

CALL EAST
CALL SOUTH

ELSE IF (I .EQ. MAXI .AND. J .EQ. 1) THEN
CALL NORTH
CALL EAST

ELSE IF (I .EQ. MAXI .AND. J .NE. 1 .AND. J .NE. MAXJ) THEN
CALL WEST
CALL NORTH
CALL EAST

ELSE IF (I .EQ. MAXI .AND. J .EQ. MAXJ) THEN
CALL WEST
CALL NORTH

Figure 15. Program AUTO



C

C

50
100
C

C
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ELSE IF (I .NE.1 .AND. I .NE. MAXI .AND. J .EQ. MAXJ) THEN
CALL SOUTH
CALL WEST
CALL NORTH

ELSE
CALL NORTH

CALL EAST
CALL SOUTH
CALL WEST

END IF

CONTINUE
CONTINUE

RS=S/2
RN=N/2

COEF=RS/(RS+RN)
WRITE (10,200) N,S,COEF

200 FORMAT('N=',I6,3X,'S=',I6,3X,'AUTO COEF=',F7.3)
CLOSE (10,STATUS='KEEP')
END

C

C

C

C

C

C

C

SUBROUTINE NORTH
INTEGER X(50,50), I, J, S, N, MAXI, MAXJ
COMMON X, I, J, S, N, MAXI, MAXJ
IF ( X( I, J) .EQ. X( I-1, J)) THEN

S= S+1
ELSE

N= N +1
END IF
RETURN
END

SUBROUTINE EAST
INTEGER X(50,50), I,J,S,N,MAXI,MAXJ
COMMON X,I,J,S,N,MAXI,MAXJ
IF(X(I,J) .EQ. X(I,J+1)) THEN

S=S+ 1
ELSE

N=N+1
END IF
RETURN
END

SUBROUTINE SOUTH
INTEGER X(50,50), I,J,S,N,MAXI,MAXJ
COMMON X,I,J,S,N,MAXI,MAXJ
IF(X(I,J) .EQ. X(I+1,J)) THEN

S=S+1
ELSE

N=N+1
END IF
RETURN
END

SUBROUTINE WEST

INTEGER X(50,50), I,J,S,N,MAXI,MAXJ
COMMON X,I,J,S,N,MAXI,MAXJ
IF(X(I,J) .EQ.X(I,J-1)) THEN

S=S+1
ELSE

N=N+1
END IF
RETURN
END

Program AUTO
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C************** PROGRAM RANDOM *****************
C
C BRIAN K. YOUNG SEPTEMBER, 1983
C
C**************** * * * * * * * * * * * * * * * * * * * * * * * ** * * * * **

C

C THIS PROGRAM PERFORMS A STRATIFIED RANDOM SAMPLE
C FROM "MAPI". THE DATA POINT COORDINATES ARE WRITTEN
C ONTO "TAPE20" AND THE DATA POINT VALUES ONTO "TAPE25",
C IN A FORMAT COMPATIBLE FOR INPUT INTO THE SYMAP PROGRAM.
C

C
C

INTEGER MAP(50,50),I,J,N,M,X,Y,XP,YP,S,T,Q
INTRINSIC RANF, IFIX
OPEN (5,FILE='MAP1')
OPEN (20,FILE='TAPE20')
OPEN (25,FILE='TAPE25')
CALL RANSET (145)
READ (5,10) ((MAP(1,J),J=1,50),I=1,50)

10 FORMAT (5011)
DO 75, Q=1,20
S=0
TO
DO 50, N=1,5
DO 25, M=1,5

X= IFIX (10*RANF () )

Y= IFIX (10*RANF )

IF (X .EQ. 0) THEN
X=10

END IF
IF (Y.EQ.0) THEN

Y=10
END IF
XP=X
YP=Y
WRITE (20,15) XP+S, YP+T

15 FORMAT (10X, I2, '.', 12X, I2, '.')
WRITE (25,20) MAP(XP+S,YP+T)

20 FORMAT (11X, 12, '.')
T=T+10

25 CONTINUE
S=S+10
T=0

50 CONTINUE
75 CONTINUE

WRITE(20,85)
85 FORMAT('99999')

WRITE(20,95)
95 FORMAT('E-VALUES X')

END

Figure 16. Program RANDOM



BRIAN.
USER,DU3IBC,JANICE.
CHARGE,848040.
TITLE./BRIAN K. YOUNG
SETTL,100.
GET,SYMAPB/UN=LIBRARY.
LOSET,PRESET=ZERO.
SYMAPB.
SAVE,TAPEB.
--E0R--
B-DATA

99999
E-VALUES

7. 18.
2. 40.

17. 7.
11. 29.
12. 41.
27. 18.
28. 37.
31. 6.
36. 23.
42. 7.
45. 24.
44. 41.

0.
1.

0.
1.

1.

O.
1.

O.
1.

3.

0.
1.

99999
F-MAP
25 SAMPLE POINTS
MAP1.1
BRIAN K. YOUNG

1 5.1
2 0.0
3 10.
4 0.0
5 9.0
7

0123456789**********

B

15
21

31
36
37

99999
999999

5.1
0.0 51.0 51.0

10. 10.

Figure 17. Sample SYMAP job stream
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C * * * * * * * * * * * * * * * * * ** PROGRAM DAVE ********************

C

C THIS PROGRAM REFORMATS THE OUTPUT OF SYMAP FMAP ELECTIVE
C 21, MAKING IT COMPATIBLE WITH PROGRAM CHECK. "DAVE" WAS
C WRITTEN BY DAVE FUHRER WHOM I WISH TO THANK.
C
C

C

INTEGER MATRIX(50,50), R,S
REAL MAP(150,150)
OPEN (15,FILE='INTMAP')
READ (8) NR,NC
DO 100 J=1,NR
READ (8) (MAP(J,K), K=1,NC)

100 CONTINUE
DO 200 J=1,50
DO 150 K=1,50

R=J
S=K
MATRIX(R,S) = MAP(J,K)

150 CONTINUE
200 CONTINUE

WRITE(15,250) ((MATRIX(R,S), S=1,50), R=1,80)
250 FORMAT(5011)

END

Figure 18. Program DAVE
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C * * * * * * * * * * * * * * * * ** PROGRAM CHECK ***********************

C

C BRIAN K. YOUNG SEPTEMBER, 1983
C

C THIS PROGRAM OVERLAYS TWO GRID CELL MAPS AND COMPARES ONE
C TO THE OTHER, CELL BY CELL, AND CALCULATES THEIR
C COEFFICIENT OF AREAL CORRESPONDENCE. FURTHER, IT PRODUCES
C A MAP OF THE RESIDUALS ON "TAPE17".
C
C
C

CHARACTER MAP(2500)
INTEGER X(50,50), Y(50,50), I, J, ROW, COL, N, S, Q, K,F,U
REAL ACC, W
OPEN (10,FILE='MAP1')
OPEN (15,FILE='INTMAP')
I=0
W=0
J=0
ROW=0
COL=0
N=0
S=0
Q=1
F=1
U=50
ACC=0
READ (10,25) ((X(I,J), J=1,50), 1=1,50)

25 FORMAT (5011)
READ (15,45) ((Y(ROW,COL), COL=1,50), ROW=1,50)

45 FORMAT (50I1)
DO 155, 1=1,50
DO 150, J=1,50
ROW=I
COL=J
IF(X(I,J) .EQ. Y(ROW,COL)) THEN

S=S+1
MAP(Q)='.'

ELSE
N=N+1

MAP(Q)='X'
END IF
Q=Q+1

150 CONTINUE
155 CONTINUE

Q=1
W=S
ACC=W/2500
WRITE (17,160) N,S,ACC

160 FORMAT('N=',I4,3X,'5=',I4,3X,'ACC=',F4.3)
DO 200, K=1,50

190 FORMAT(50A1)
WRITE(17,190) (MAP(Q), Q=F,U)
Q=Q+50
F=F+50
U=U+50

200 CONTINUE
CLOSE(17, STATUS='KEEP')
END

Figure 19. Program CHECK
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Figure 20. Digital form of Maps 1 and 2
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Figure 21. Digital form of Maps 3 and 4
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Figure 22. Digital form of Maps 5 and 6


