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Detecting the rotating quantum vacuum
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We derive conditions for rotating particle detectors to respond in a variety of bounded spacetimes and
compare the results with the folklore that particle detectors do not respond in the vacuum state appropriate to
their motion. Applications involving possible violations of the second law of thermodynamics are briefly
addressed.
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I. INTRODUCTION

The nature of the quantum vacuum continues to be
subject of surprising discoveries. One of the more curio
properties to be discussed in recent years is the predic
that an observer who accelerates in the conventional qu
tum vacuum of Minkowski space will perceive a bath o
radiation, while an inertial observer of course perceives no
ing. In the case of linear acceleration, for which there exi
an extensive literature, the response of a model particle
tector mimics the effects of its being immersed in a bath
thermal radiation~the so-called Unruh effect!. The investiga-
tion of rigid rotation, as opposed to linear acceleration
seems, however, to have been somewhat limited@1–4#, in
spite of the fact that experimental tests of the theory are m
feasible for the rotating case@5#.

The problem of rotation is a very deep one in physi
which goes back at least to Newton. Through his famo
bucket experiment, Newton sought to demonstrate that ro
tion is an absolute effect taking place in a substantival spa
later to be identified with the aether. By contrast, Mach a
gued that rotation is purely relative to the distant matter
the universe. Then with the inception of the theory of rel
tivity the aether was abandoned, but the question of whet
rotation is relative or absolute was not settled by the theo
of relativity, and the status of Mach’s principle remains co
tentious even today.

In recent years there has been an attempt to revive a t
of aether concept by appealing to the quantum vacuum@6,7#,
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and even to link this quantum vacuum with Machian effect
@8#. We might envisage the quantum vacuum playing the ro
of Newton’s substantival space. It is therefore of some inte
est to investigate the effects of rotation in quantum fiel
theory.

In what follows we attempt to progress this discussion b
investigating the properties of particle detectors moving i
circular paths. The results turn out to involve some remar
able and subtle issues, especially with regard to the definiti
of a rotating quantum vacuum state.

The paper is organized as follows. In Sec. II, we firs
review previous results about rotating particle detectors
unbounded Minkowski space. We then add a cylindrica
boundary in Sec. III, and consider compact spaces in Sec.
The possibility of violating the second law of thermodynam
ics is discussed in Sec. V, and in Sec. VI we conclude b
discussing the physical interpretation of our results. We u
units with \5c51, our metric signature convention is
(1222), and we treat massless scalar fields for simplicity

II. UNBOUNDED MINKOWSKI SPACE

We first summarize the results of Letaw and Pfautsch@1#.
Consider a DeWitt model particle detector@6# moving in a
circular path of radiusr at constant angular velocityV in the
conventional Minkowski~inertial! vacuum state. Here, and
in all the cases we shall be investigating later, the response
the detector is independent of time. According to the sta
dard theory, the probability of excitation of a detector pe
unit ~detector! proper time is given by

F ~E!

T
5E

2`

`

dDte2 iEDtG1
„x~t!,x~t8!…, ~1!

whereG1 is the positive frequency Wightman function. The
Minkowski space Wightman function in cylindrical polar co-
ordinatesx5(t,r ,u,z) is

ess:

ess:
4382 © 1996 The American Physical Society



53 4383DETECTING THE ROTATING QUANTUM VACUUM
G1~x,x8!5
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The detector’s trajectory is given byr5const, z5const,
andu5Vt, so thatG1 is a function only of the difference
Dt in proper time. The response function is then given
the Fourier transform integral

F ~Ē!

T
5

A12r 2V2

4p2 E
2`

`

dDt
e2 iĒDt

~Dt2 i e!224r 2sin2S VDt

2 D ,
~3!

whereĒ5EA12r 2V2 corresponds to the Lorentz rescalin
Dt5t2t85Dt/A12r 2V2 arising from the transformation
between proper timet and coordinate timet. This expres-
sion was evaluated numerically by Pfautsch. The fact tha
is nonzero is already an important result, analogous to
famous linear acceleration case, where the detected spec
of particles is thermal. Although Pfautsch’s spectrum is rem
niscent of a Planck spectrum, the similarity with the therm
linear case is only superficial.

The Minkowski vacuum state is defined with respect
the usual field modes based on mode solutionsuqmk of the
wave equation in inertial coordinates:

uqmk5
1

2pA2v
Jm~qr !eimueikze2 ivt, ~4!

wherev25q21k2.
The transformation from Minkowski to rotating coordi

nates appears at first sight to have only a trivial implicatio
for the modes of the quantum field: We may readily tran
form to a rotating coordinate system, by lettingû5u2Vt.
Mode solutionsûqmk of the rotating wave equation are the
found to be identical to the conventional~nonrotating!
Minkowski modes, and can be obtained, up to normalizatio
by the replacementv̂5v2mV. In particular, the Bogol-
ubov transformation between the rotating and nonrotati
modes is trivial, amounting to a simple relabeling of mode
Furthermore, since the two sets of modes are identical, th
have identical norms, so that no mixing of positive and neg
tive ‘‘frequencies’’ occurs irrespective of a possible chan
of sign betweenv and v̂. It is the norms, not the frequen-
cies, of the rotating modes which determine the commutat
relations of the associated creation and annihilation ope
tors.

If these rotating modes are used to define a rotati
vacuum state, it coincides with the conventional Minkows
vacuum. This is in contrast to the case for linear accelerat
@9#, where the so-called Rindler~Fulling! vacuum contains
Minkowski particles and vice versa. Furthermore, there is
general expectation that a family of model particle detecto
‘‘adapted’’ to the coordinate system on which the quantiz
modes are based will reveal the particle content of tho
modes. Thus, in the Rindler case, a set of uniformly accel
ating particle detectors sharing common asymptotes will g
by
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zero response in the Rindler vacuum state, and will give
consistent thermal response to the Minkowski vacuum sta
@6#. We might therefore expect a set of rotating detectors
similarly reveal the state of a rotating quantum field. This i
not the case here: Since the inertial and rotating vacuu
states are identical, the response of a rotating particle det
tor to the corotating vacuum will be the same as~3! above,
and we have the curious result that a particle detect
adapted to the rotating vacuum apparently does not beha
as if it is coupled to a vacuum state at all.

Before accepting this odd result, however, we must co
front a serious problem. For a given angular velocityV,
there will be a maximum radiusrmax51/V ~the light cylin-
der! beyond which a point at fixedr andu will be moving
faster than light, i.e., the rotating Killing vector] t2V]u
becomes spacelike. It is far from clear what to make of th
rotating field modes, or even the notion of Bogolubov trans
formation, outside this limiting light circle. This complica-
tion compromises any straightforward attempt to constru
rotating quantum states in terms of the mode solutions ju
described.

To circumvent this problem we eliminate the light cylin-
der altogether. We accomplish this in two ways: first, in Se
III, by introducing a cylindrical boundary within the light
cylinder and confining the quantum field to the bounded re
gion, and then, in Sec. IV, by making the space compact.

III. ROTATING DETECTOR IN A BOUNDED DOMAIN

The Wightman function~2! inside a cylinder of radius
a,rmax, on which the field satisfies vanishing~i.e., Dirich-
let! boundary conditions, can be written as a discrete mo
sum

G1~x,x8!5 (
m52`

`

(
n51

` E
2`

`

dk
N2

v
JmS jmnr

a D JmS jmnr 8

a D
3eim~u2u8!eik~z2z8!e2 iv~ t2t8!, ~5!

where

N5
1

2pauJm11~jmn!u
,

jmn is thenth zero of the Bessel functionJm(x), and

v5Ajmn
2

a2
1k2. ~6!

As is appropriate for the positive frequency Wightman func
tion, we assumev.0. For a particle detector moving in a
circular path of radiusr about the axis of the cylinder with
uniform angular velocityV, we setr5const, z5const, and
u5Vt. Substituting from~5! into ~1!, we obtain, for the
detector response per unit time,
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F ~E!

T
5A12r 2V2 (

m52`

`

(
n51

` E
2`

`

dk
N2

v

3Jm
2 S jmnr

a D E
2`

`

dDte2 i ~Ē1v2mV!Dt. ~7!

We may immediately perform theDt integration to obtain
the d function

2pd~Ē1v2mV![2pdS Ē1Ajmn
2

a2
1k22mV D . ~8!

Since Ē.0 andV.0 by assumption, the argument of th
d function will vanish only ifm.0. Furthermore, since the
radial modes are now discrete, for eachm there will be a
lowest value ofv, namelyjm1 /a (k is a continuous momen-
tum variable in thez direction and can be zero!. Therefore,
the detector will fail to respond unless

mVa.jm1 . ~9!

But we know from the properties of Bessel functions that t
zeros satisfy the inequality

jmn.m ~10!

which leads to the important conclusion that unlessVa.1
the rotating detector will remain inert.~The same conclusion
would hold even if we had chosen Neumann boundary co
ditions for the field.!

Physically, our result may be interpreted as follows. Ima
ine a point on the boundary atr5a, corotating with the
detector. If the point does not exceed the speed of light th
the particle detector remains unexcited; i.e., it registers
vacuum. Now we may repeat the above calculation for t
case of a vacuum state that corotates with the detector.
cause the Bogolubov transformation between the rotat
and nonrotating vacuum states is trivial, the result of t
calculation will differ only by the formal relabeling
v̂5v2mV. Thus we may conclude that, subject to th
above speed of light restriction, a rotating particle detec
corotating with a rotating vacuum state registers the abse
of quanta. This is in accord with our intuition. But the spee
of light restriction is precisely what is needed to render t
concept of a rotating vacuum unambiguous. If the bounda
lies outside the crucial light circle, then the ambiguity re
turns.

The spectrum of radiation that will be detected by a rota
ing detector above the critical rotation rate is given by inse
ing thed function ~8! into ~7!, and performing thek integra-
tion

F ~E!

T
52pA12r 2V2 (

m
(
n

N2

Jm
2 S jmnr

a D
A~mV2Ē!22

jmn
2

a2

,

~11!

where the sums inm andn run over those values in the rang
@0,̀ ) for which jmn /a,mV2Ē. We have not bothered to
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evaluate~11! numerically, but we expect on general grounds
for the spectrum to have a sawtooth form at low energie
@10#.

IV. S23R2 AND THE EINSTEIN UNIVERSE

In Sec. III, we removed the ambiguity associated with
faster-than-light rotation by confining the quantum field
within a boundary. We can also consider the case of a com
pact space, wherein the field is automatically confined. T
illustrate this possibility, we discuss two examples. For the
first example, we consider the detector to be rotating in
plane at uniform angular velocityV in the static space with
topologyS23R2 and metric

ds25dt22a2~du21sin2udf2!2dz2, ~12!

wherea is the~constant! radius of the two-sphere. The mass-
less scalar wave equation has the solutions

ulmk5
N

Av
Ylm~u,f!eikze2 ivt, ~13!

whereN is an unimportant normalization factor. The eigen-
frequencies are

v5Al ~ l11!12j

a2
1k2, ~14!

wherej is the curvature coupling, so that the corresponding
d function in place of~8! is

dS Ē1Al ~ l11!12j

a2
1k22mV D , ~15!

wherek is a continuous variable that can be zero andl ,m are
integers satisfyingl>0, umu< l . Again it is clear that the
detector will remain inert unlessm.0. The lowest value of
v for which excitation will occur is given byl51, m51.
The argument of thed function will then vanish only if

aV.H A2 ~j50!,

A 7
3 ~j5 1

6 !.
~16!

This can be translated into the condition that a rotating
detector will remain unexcited if a corotating point situated
at the ‘‘equator’’~relative to the origin of coordinates around
which the detector circulates! moves at less than the speed of
light. For the case of minimal (j50) or conformal
(j51/6) coupling, excitation occurs only if the said point
moves atA2 or A7/3 times the speed of light, respectively.
Since the detector itself must move at less than the speed
light, we see that there is a band around the equator fo
which no uniformly rotating detector responds. For minima
coupling, this band consists of all latitudes less thanp/4.
This includes geodesic detectors at the equator, which are n
accelerating, some of which respond for unphysical cou
plings j,21/2.

In our second example, the detector rotates in the Einste
static universe with metric
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ds25dt22a2@dx21sin2x~du21sin2u df2!#,

wherea is the ~constant! radius of the universe. It is unnec
essary to deal with the specific form of the field modes@11#,
as the method used in the previous examples is quite gene
and works in any stationary axisymmetric spacetime. T
only important information is that the eigenfrequencies ar

v5A~n11!216j21

a2
, ~17!

wheren,m label the eigenmodes, withn>0 andm<n.
Repeating the analogous steps leading up to~8!, we ob-

tain, on performing the time integration,

2pdS Ē1A~n11!216j21

a2
2mV D . ~18!

The lowest value ofv for which excitation will occur is
given by n51, m51. We may immediately conclude tha
the detector will remain unexcited unless

aV.H A3 ~j50!,

2 ~j5 1
6 !

~19!

@cf. ~16!# thus yielding the same type of band structure as f
S23R2.

Interestingly, for the casej51/6 the Wightman function
for the Einstein universe has been given in closed fo
@12,13#, so that we may write down an alternative expressi
for the detector’s response in terms of a Fourier transform

F ~E!

T
52

1

16p2E
2`

`

dDt
e2 iĒDt

sin2S Dt2 i e

2a D2
r 2

a2
sin2S VDt

2 D .
~20!

The integration can be performed by residues, with a cont
along the real axis closed by a semicircle in the lower h
Dt plane. Because of the presence of thei e factor in the
denominator, the poles that lie along the real axis will n
contribute. This includes a pole nearDt50. However, there
can be additional poles on the imaginary axis~and hence a
nonzero detector response! if there is a second solution
~other thanDt50) to the equation

sinhS Dt

2aD56
r

a
sinhS VDt

2 D . ~21!

Noting that r /a,1, and writingVDt5Va(Dt/a), we see
that for such a solution to exist requiresVa.1, which
agrees with our above result apart from a puzzling factor
2.

It is also of interest to note that whenr5a the
~conformally-coupled! detector is moving along a geodesi
on the equator of the three-sphere with respect to our co
dinate system. Under these circumstances there can be
solution other thant50 to ~21!. Hence the detector will
never respond, regardless of its velocity~which must be
slower than the speed of light!.
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V. NEGATIVE ENERGY AND THE SECOND LAW OF
THERMODYNAMICS

Many cases are known where the energy density of
quantum vacuum state is negative in some spacetime regi
for instance, the Casimir vacuum state between parallel co
ducting plates, the Rindler vacuum within the Rindle
wedge, the space outside a static star in the Boulwa
vacuum, and the vacuum region outside a straight cosm
string. If an observer moves through such a region, the po
sibility arises of scooping up enough negative energy to vio
late the second law of thermodynamics, or black hole cosm
censorship. For example, if the negative energy is allowed
accumulate within an opaque box containing a gas of excit
atoms at a finite temperature, the negative energy may co
the gas by deexciting the atoms.

Investigations suggest that, in the case of linear motio
either the symmetries of the problem imply that the flux o
negative energy is zero in the frame of the moving observe
or the spatial extent of the negative energy region is so c
cumscribed that the total accumulated negative energy is lim
ited by the Ford bound@14#, and can do no harm. Thus in the
Casimir case, motion parallel to the plates corresponds
zero energy flux, while motion perpendicular to the plate
will not be possible for long because the observer will co
lide with one of the plates, thereby saving the second law

However, if we allow for circular motion, the situation
appears to be different; the observer may travel through
negative energy region ad infinitum. Ford has considered t
example of geodesic observers orbiting on circular path
around Schwarzschild black holes in the Unruh vacuum sta
@14#. Between the radiir53M andr'5M the energy flux in
the frame of the observer is always negative. On the face
it, such scenarios seem to threaten the second law. Howev
if a rotating observer ‘‘sees’’ radiation, then this ‘‘rotation
radiation’’ may excite the contents of a hot box by more tha
the negative energy flux deexcites them, saving the seco
law. If this is the correct resolution of the problem for un
bounded spacetimes, then the fact that the excitation of
rotating detector can be suppressed by bounding the spac
deeply disturbing. For example, would a hot box slowly ro
tating around a cosmic string lying along the axis of a re
flecting cylinder violate the second law? The following heu
ristic argument suggests yes. The presence of a cylinder
large radius would be unlikely to have much effect on th
energy density close to the string, which is large and neg
tive. As there is no bound on how slowly the second law ma
be violated, the hot box can always rotate around the stri
slowly enough for the cylinder to suppress excitation.

VI. PHYSICAL INTERPRETATION
AND OPEN QUESTIONS

The principal result of our investigation is that, wheneve
ambiguities in the appropriate definition of a ‘‘rotating
vacuum’’ state associated with the region beyond the lig
cylinder are circumvented, the detector fails to respon
However, when the angular velocity of the detector is abov
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a certain threshold, excitation occurs. The threshold cor
sponds, within a factor of order unity, to the situation that
corotating imaginary point in the spacetime exceeds t
speed of light.

How can one interpret this response physically, in the ca
that excitation does occur? One is tempted to reason as
lows. In the rotating frame, an observer would perceive
~albeit nonthermal! bath of radiation, and the excitation o
the detector corresponds to a quantum of this bath ‘‘bei
detected.’’ In the inertial frame no such bath exists. Instea
the detector emits a quantum into the field, making an u
ward transition as a result. However, because of the boun
spatial domain, the lowest field mode has a finite energy,
that the detector will respond only when the detector is ab
to excite the lowest mode. If the angular velocity is too low
the detector is unable to overcome this threshold and em
quantum of sufficient energy to excite the field. It therefo
remains inert. Unfortunately, this simple interpretation
flawed. Consider the example of a detector moving in a c
cular path between the plates of a Casimir system, in a pl
parallel to the plates. The time integral leads in this case t
d function of the form

2pdXĒ1Aq21S pn

a D 22mVC , ~22!

where a is the plate separation. The lowest energy mo
corresponds toq50, n51 and is nonzero due to the dis
cretization of the modes in thez direction. However, because
there is no upper bound onm, the argument of thed function
can be zero for arbitrarily small values of the angular velo
ity V. This example shows that the threshold effect contr
ling when the detector responds is not simply related to t
existence of a discrete field state of lowest energy.

Therefore we are left with a number of unanswered qu
tions. When a moving detector responds, where does the
ergy of excitation ‘‘come from,’’ and what effect will the
transition have on the energy of the field? Will the field hav
more or less energy after the excitation, and will any chan
in field energy be confined to within the light cylinder? Ther
is considerable confusion in the literature about the energ
ics of detector response even in the linearly accelerating c
@15–18#, i.e., whether the quantum field gains or loses e
ergy, in what region of spacetime the quantum field ener
changes, and whether the accelerating agency supplies
energy needed to excite the detector.

The rotating case is different. When the corotatin
vacuum is unambiguous, nothing happens, and the consi
ations above presumably do not apply. The detector respo
precisely when questions arise as to what state should
defined as the corotating vacuum, making it even more d
ficult to provide a physical interpretation. It has been prev
ously proposed@2# to distinguish betweenparticle emission
~Rindler case! and radiation backreaction~rotating case!
when giving the inertial observer’s explanation of the dete
tor response. As this distinction is itself ultimately based
constructing the Bogolubov coefficients between the rotati
and inertial vacuum states, it is not yet clear whether th
argument can be applied.
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It is interesting to speculate whether it might be possib
to define some other state for which there is a space-fillin
family of rotating detectors which do not respond. Here, w
note two facts which may have some bearing on this que
tion. If the usual positive frequency Wightman function with
v.0 is replaced by one withv̂.0, then, even in unbounded
Minkowski space, the argument of thed function in ~8! is
Ē1v̂, which is always positive. This appears to describe
situation in which a corotating detector would not respond
However, the usual correspondence between Wightman fun
tions and vacuum states fails here as the ‘‘state’’ correspon
ing to this Wightman function is not in the usual Fock space
One could instead consider differentially rotating detector
which are thus in nonstationary motion. But then the obser
ers would not move along integral curves of a single Killing
vector field as required by the usual quantization procedure
If such a state were to exist, and a suitable quantization pr
cedure defined@19,20#, it would have a strong claim to be
designated as the rotating vacuum.

In some respects the light cylinder resembles the boun
ary of the Rindler system. The Rindler coordinate system
well defined within the spacetime wedge delineated by th
null raysx56t. Outside this wedge the Rindler spatial co
ordinates become timelike, i.e., Rindler observers would b
moving faster than light. Similarly, in the case of a rotating
black hole, it is well known that geodesic observers in th
region known as the ergosphere, close to the hole, are sp
around faster than light relative to unaccelerated observers
infinity. The outer boundary of the ergosphere, the so-calle
static limit surface, is reminiscent of the light cylinder for the
rotating vacuum. In this case, we would expect a partic
detector moving along a~nonrotating! Killing trajectory to
respond to particles created via the Unruh-Starobinskii effe
@21,22#. However, cases have been found, for instance a re
tivistic star @23#, for which there is an ergosphere but no
horizon, and for which the Unruh-Starobinskii effect is ab
sent. We hope to report on the response of comoving dete
tors for some of these examples in a future publication.

Note added in proof.After this work was completed, we
discovered that Levinet al. @24# had also considered the re-
sponse of a rotating detector. They computed the detail
spectrum of such a detector in 211 dimensions in the pres-
ence of a circular boundary, and showed that there is
response if the boundary is within the static limit surface
Our work can be viewed as extending this result to a mo
general setting.
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