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Detecting the rotating quantum vacuum
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We derive conditions for rotating particle detectors to respond in a variety of bounded spacetimes and
compare the results with the folklore that particle detectors do not respond in the vacuum state appropriate to
their motion. Applications involving possible violations of the second law of thermodynamics are briefly
addressed.
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[. INTRODUCTION and even to link this quantum vacuum with Machian effects
[8]. We might envisage the guantum vacuum playing the role
The nature of the quantum vacuum continues to be th€f Newton's substantival space. It is therefore of some inter-

subject of surprising discoveries. One of the more curiou$St 0 investigate the effects of rotation in quantum field
properties to be discussed in recent years is the predictioWeOW- o _
that an observer who accelerates in the conventional quan- I what follows we attempt to progress this discussion by
tum vacuum of Minkowski space will perceive a bath of Investigating the properties of partlcle_ detectors moving in
radiation, while an inertial observer of course perceives nothcircular paths. The results turn out to involve some remark-
ing. In the case of linear acceleration, for which there exist&Ple and subtle issues, especially with regard to the definition
an extensive literature, the response of a model particle d&f @ rotating quantum vacuum state. _
tector mimics the effects of its being immersed in a bath of The paper is organized as follows. In Sec. II, we first
thermal radiatior{the so-called Unruh effectThe investiga- Feview previous results about rotating particle detectors in
tion of rigid rotation, as opposed to linear acceleration, Unbounded Minkowski space. We then add a cylindrical
seems, however, to have been somewhat limjteed], in ~ boundary in Sec. Ill, and consider compact spaces in Sec. IV.
spite of the fact that experimental tests of the theory are mor&h€ possibility of violating the second law of thermodynam-
feasible for the rotating cagé]. ics is discussed in Sec. V, and in Sec. VI we conclude by
The problem of rotation is a very deep one in physicsdiscussing the physical interpretation of our results. We use
which goes back at least to Newton. Through his famougd!Nits with 2=c=1, our metric signature convention is

bucket experiment, Newton sought to demonstrate that rotd-t — — —), and we treat massless scalar fields for simplicity.
tion is an absolute effect taking place in a substantival space,
later to be identified with the aether. By contrast, Mach ar- Il. UNBOUNDED MINKOWSKI SPACE

gued t_hat rotation is purely (elativg to the distant matter in  \ve first summarize the results of Letaw and Pfaufddh

t_h(_a universe. Then with the inception of the theory of rela-consider a DeWitt model particle detec@ moving in a
tivity the aether was abandoned, but the question of whetheli e, ar path of radius at constant angular velocif} in the
rotation is relative or absolute was not settled by the theory.,entional Minkowski(inertial) vacuum state. Here, and

of relativity, and the status of Mach's principle remains con-j, 5| the cases we shall be investigating later, the response of

tentious even today. the detector is independent of time. According to the stan-

In recent years there has been an attempt to revive a tyRg, g theory, the probability of excitation of a detector per
of aether concept by appealing to the quantum vaclfji, unit (detectoy proper time is given by

F(E) o .
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The detector’s trajectory is given by=const, z=const, zero response in the Rindler vacuum state, and will give a
and 8=Qt, so thatG™ is a function only of the difference consistent thermal response to the Minkowski vacuum state
A7 in proper time. The response function is then given by[6]. We might therefore expect a set of rotating detectors to

the Fourier transform integral similarly reveal the state of a rotating quantum field. This is
B B not the case here: Since the inertial and rotating vacuum
F(E) 1-r2Q2 (= e IEAt states are identical, the response of a rotating particle detec-
= dAt
T 47? f -

QAL tor to the corotating vacuum will be the same(&@s above,
(At—ie)2—4rzsin2(—> and we have the curious result that a particle detector

2 adapted to the rotating vacuum apparently does not behave
3 as if it is coupled to a vacuum state at all.

- =2 . Before accepting this odd result, however, we must con-
whereE=E\1—-r“Q° corresponds to the Lorentz rescaling front a serious problem. For a given angular velodiy

_ _ 202 arici ; , . : . .
At=t—t'=A7/y1-r°Q° arising from the transformation there will be a maximum radius,,,=1/Q (the light cylin-
b_etween proper time and _coordmate time. This expres- den beyond which a point at fixed and @ will be moving
sion was evaluated numerically by Pfautsch. The fact that if5ster than light, i.e., the rotating Killing vectat,—Qd,
is nonzero is already an important result, analogous to thgecomes spacelike. It is far from clear what to make of the
famous linear acceleration case, where the detected SpeCtrqﬁ‘cating field modes, or even the notion of Bogolubov trans-
of particles is thermal. Although Pfautsch’s spectrum is remitormation, outside this limiting light circle. This complica-

linear case is only superficial. _ . rotating quantum states in terms of the mode solutions just
The Minkowski vacuum state is defined with respect togescribed.

the usual field modes based on mode solutiogg of the To circumvent this problem we eliminate the light cylin-

wave equation in inertial coordinates: der altogether. We accomplish this in two ways: first, in Sec.

Ill, by introducing a cylindrical boundary within the light
cylinder and confining the quantum field to the bounded re-

ikzefiwt (4) ) . .
' gion, and then, in Sec. IV, by making the space compact.

1 .
Ugmi= ———=Jm(qr)e'™%
gmk 27]_\/% m(q )

wherew?=q2+k2. lIl. ROTATING DETECTOR IN A BOUNDED DOMAIN

The transformation from Minkowski to rotating coordi-

nates appears at first sight to have only a trivial implication The Wightman function(2) inside a cylinder of radius

for the modes of the quantum field: We may readily trans-& = Tmax ON which the field satisfies vanishirige., Dirich-

. . ! let) boundary conditions, can be written as a discrete mode
form to a rotating coordinate system, by lettidg- 6— (.

Mode solutionsﬂqu of the rotating wave equation are then

found to be identical to the convention&honrotating 2 F e N2 it &t
Minkowski modes, and can be obtained, up to normalization, G*(x,x’)= 2 E dk—J,, >mn " mn
by the replacemeni=w—m{. In particular, the Bogol- m=—xn=1J-x @ a a
ubov tr_ansfo_rmation be_tween th_e rotating an_d nonrotating im(0—0") aik(z—2")amio(t—t')
modes is trivial, amounting to a simple relabeling of modes. Xe e e ' ®)
Furthermore, since the two sets of modes are identical, the\X/h
have identical norms, so that no mixing of positive and nega- ere
tive “frequencies” occurs irrespective of a possible change 1
of sign betweenv and @. It is the norms, not the frequen- N ———————
cies, of the rotating modes which determine the commutation 2ma|JIm 1(&mn)|
relations of the associated creation and annihilation opera- . .
tors. &mn is thenth zero of the Bessel functiody,(x), and
If these rotating modes are used to define a rotating ~
vacuum state, it coincides with the conventional Minkowski o= mn 4 12 6)
vacuum. This is in contrast to the case for linear acceleration a? '

[9], where the so-called RindlgFulling) vacuum contains

Minkowski particles and vice versa. Furthermore, there is as is appropriate for the positive frequency Wightman func-
general expectation that a family of model particle detectorgion, we assumev>0. For a particle detector moving in a
“adapted” to the coordinate system on which the guantizeccircular path of radius about the axis of the cylinder with
modes are based will reveal the particle content of thoseniform angular velocity), we setr =const, z=const, and
modes. Thus, in the Rindler case, a set of uniformly accelerd=Qt. Substituting from(5) into (1), we obtain, for the
ating particle detectors sharing common asymptotes will giveletector response per unit time,
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71 * 2 e 2 evaluate(11) numerically, but we expect on general grounds
F(E) s N -
=y1-r<Q 2 2 dk— for the spectrum to have a sawtooth form at low energies
T m=—o n=1 J —x w [10]
2 €mnl | (7 —i(E+w—mQ)At
XJIm| —5 | | _dAte N IV. $2x R2 AND THE EINSTEIN UNIVERSE
. ] ] ) . In Sec. lll, we removed the ambiguity associated with
We may immediately perform that integration to obtain faster-than-light rotation by confining the quantum field
the & function within a boundary. We can also consider the case of a com-

pact space, wherein the field is automatically confined. To

2 . . L .
2m8(E+w—m0) =273 E+ /%+k2—mﬂ). ®) illustrate this possibility, we discuss two examples. For the

first example, we consider the detector to be rotating in a
B plane at uniform angular veloci§) in the static space with
SinceE>0 andQ>0 by assumption, the argument of the topologyS*x R? and metric

6 function will vanish only ifm>0. Furthermore, since the 5 oo )

radial modes are now discrete, for eaththere will be a ds’=dt?—a*(d6*+sirod¢?) —dZ, (12)
lowest value ofw, namelyé,,; /a (K is a continuous momen-
tum variable in thez direction and can be zeroTherefore,
the detector will fail to respond unless

wherea is the(constanktradius of the two-sphere. The mass-
less scalar wave equation has the solutions

mQa> fml . (9) N Ylm( 0, qs)eikze—iwt' (13)

ulmk:\/_z

whereN is an unimportant normalization factor. The eigen-
frequencies are

But we know from the properties of Bessel functions that the
zeros satisfy the inequality

Emn>m (10)
which leads to the important conclusion that unléss>1 w= WJF k2, (14)
the rotating detector will remain ineifThe same conclusion a
would hold even if we had chosen Neumann boundary con- i , i
ditions for the field) where¢ is the curvature coupling, so that the corresponding

Physically, our result may be interpreted as follows. Imag-¢ function in place of(8) is

ine a point on the boundary at=a, corotating with the
detector: If the point does not exceeq the s_peeq of Iight then 5( = [1(I +1l+2§ +k2—mQ>, (15)
the particle detector remains unexcited; i.e., it registers a a

vacuum. Now we may repeat the above calculation for the

case of a vacuum state that corotates with the detector. Bétherek is a continuous variable that can be zero bmdare
cause the Bogolubov transformation between the rotatingtegers satisfyind=0, [m|<I. Again it is clear that the
and nonrotating vacuum states is trivial, the result of thedetector will remain inert unless>0. The lowest value of
calculation will differ only by the formal relabeling « for which excitation will occur is given by=1, m=1.
®=w—mf. Thus we may conclude that, subject to the The argument of thé function will then vanish only if
above speed of light restriction, a rotating particle detector

corotating with a rotating vacuum state registers the absence V2 (£=0),
of quanta. This is in accord with our intuition. But the speed aQ> JT (6=} (16)
of light restriction is precisely what is needed to render the s e

concept of a rotating vacuum unambiguous. If the boundary
lies outside the crucial light circle, then the ambiguity re-
turns.

The spectrum of radiation that will be detected by a rotat
ing detector above the critical rotation rate is given by insert
ing the § function (8) into (7), and performing thé integra-
tion

This can be translated into the condition that a rotating
detector will remain unexcited if a corotating point situated
at the “equator”(relative to the origin of coordinates around
which the detector circulatgsoves at less than the speed of
light. For the case of minimal §&=0) or conformal
(¢=1/6) coupling, excitation occurs only if the said point
moves aty2 or \7/3 times the speed of light, respectively.
Since the detector itself must move at less than the speed of
light, we see that there is a band around the equator for
which no uniformly rotating detector responds. For minimal
=, mn coupling, this band consists of all latitudes less tha.
(MQ—E)"— aZz This includes geodesic detectors at the equator, which are not
(11) accelerating, some of which respond for unphysical cou-
plings é<—1/2.
where the sums im andn run over those values in the range  In our second example, the detector rotates in the Einstein
[00) for which &,,,/a<mQ—E. We have not bothered to static universe with metric

F(E)

= =2mJ1-r202 > D, N2
m n
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d?=d2—a dy?+sirfy(d62+sir?8 d$?)], V. NEGATIVE ENERGY AND THE SECOND LAW OF
THERMODYNAMICS
wherea is the (constank radius of the universe. It is unnec-
essary to deal with the specific form of the field mofiEH|, Many cases are known where the energy density of a
as the method used in the previous examples is quite genergluantum vacuum state is negative in some spacetime region,
and works in any stationary axisymmetric spacetime. Theor instance, the Casimir vacuum state between parallel con-
only important information is that the eigenfrequencies are ducting plates, the Rindler vacuum within the Rindler
wedge, the space outside a static star in the Boulware
©= /(n+1) ’;65_1’ (17) ~ vacuum, and the vacuum region outside a straight cosmic
a string. If an observer moves through such a region, the pos-
sibility arises of scooping up enough negative energy to vio-
late the second law of thermodynamics, or black hole cosmic
censorship. For example, if the negative energy is allowed to
accumulate within an opaque box containing a gas of excited

_ (n+1)216i-1 atoms at a finite temperature, the negative energy may cool
E+ \/ > mQ)_ (18)  the gas by deexciting the atoms.

a Investigations suggest that, in the case of linear motion,
either the symmetries of the problem imply that the flux of
negative energy is zero in the frame of the moving observer,
the detector will remain unexcited unless or the spatial extent of the negative energy region is so cir-

cumscribed that the total accumulated negative energy is lim-
V3 (£€=0), ited by the Ford bounfil4], and can do no harm. Thus in the
(19 Casimir case, motion parallel to the plates corresponds to
2 (=% zero energy flux, while motion perpendicular to the plates
will not be possible for long because the observer will col-
[gf (1,?)] thus yielding the same type of band structure as foljige with one of the plates, thereby saving the second law.
STX R . i . However, if we allow for circular motion, the situation
; In;[]ereé';mgly, for the casﬁz 1/:)5 the Wightman Ifuncélofn appears to be different; the observer may travel through a
[(irz tl 3;’ solrlrsltaetlz/]veum\gr\?vente?jsowr?(;r; glltveerrr:alt?v:gf[?res;gﬂhegaﬂve energy region ad infinitum. Ford has considered the
example of geodesic observers orbiting on circular paths

for the detector’s response in terms of a Fourier transform around Schwarzschild black holes in the Unruh vacuum state

wheren,m label the eigenmodes, with=0 andm=n.
Repeating the analogous steps leading uf8jpwe ob-
tain, on performing the time integration,

276

The lowest value ofw for which excitation will occur is
given byn=1, m=1. We may immediately conclude that

aQ>

7(E) o EAL [14]. Between the radii=3M andr~5M the energy flux in
o f dAt the frame of the observer is always negative. On the face of
T 167%) - sm2<m_|€) re sz(QAt) it, such scenarios seem to threaten the second law. However,
a? 2 if a rotating observer “sees” radiation, then this “rotation

(20 radiation” may excite the contents of a hot box by more than

) ) _ _ the negative energy flux deexcites them, saving the second
The integration can be performed by residues, with a ContOL?’éw If this is the correct resolution of the problem for un-

along the real axis closed by a semicircle in the lower hal bounded spacetimes, then the fact that the ex0|tat|on of a

e o an 1o 10 detector can b suppresed by bouring th space
contribute. This includes a pole neat=0. However, there degply disturbing. For. exar_nple, WOUld a hot box .slowly ro-
can be additional poles on the imaginary aasd hence a tatmg arou.nd a cosmic string lying along the aX'S.Of are-
nonzero detector responsé there is a second solution f!eqtlng cylinder violate the second law? The followmg heu-
(other thanAt=0) to the equation ristic argl_Jment suggests yes. The presence of a cylinder of
large radius would be unlikely to have much effect on the
At r QAt energy density close to the string, which is large and nega-
sinf(E) =2 Sin?‘<7 : (21)  tive. As there is no bound on how slowly the second law may
be violated, the hot box can always rotate around the string
Noting thatr/a<1, and writingQAt=Qa(At/a), we see slowly enough for the cylinder to suppress excitation.
that for such a solution to exist requir€3a>1, which
agrees with our above result apart from a puzzling factor of
2. VI. PHYSICAL INTERPRETATION
It is also of interest to note that when=a the AND OPEN QUESTIONS
(conformally-coupledl detector is moving along a geodesic
on the equator of the three-sphere with respect to our coor- The principal result of our investigation is that, whenever
dinate system. Under these circumstances there can be ambiguities in the appropriate definition of a “rotating
solution other thart=0 to (21). Hence the detector will vacuum” state associated with the region beyond the light
never respond, regardless of its velocityhich must be cylinder are circumvented, the detector fails to respond.
slower than the speed of light However, when the angular velocity of the detector is above
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a certain threshold, excitation occurs. The threshold corre- It is interesting to speculate whether it might be possible
sponds, within a factor of order unity, to the situation that ato define some other state for which there is a space-filling
corotating imaginary point in the spacetime exceeds théamily of rotating detectors which do not respond. Here, we
speed of light. note two facts which may have some bearing on this ques-
How can one interpret this response physically, in the cas@on. If the usual positive frequency Wightman function with
that excitation does occur? One is tempted to reason as fol;> 0 is replaced by one witéh>0, then, even in unbounded

lows. In the rotating frame, an observer would perceive ajinkowski space, the argument of thfunction in (8) is

(albeit nonthermalbath of radiation, and the excitation of EJF&), which is always positive. This appears to describe a

the detector corresponds to a quantum of this bath bem%ituation in which a corotating detector would not respond.

detected.” In the inertial frame no such bath exists. lnSteadHowever the usual correspondence between Wiahtman func-
the detector emits a quantum into the field, making an up-. ' P ’ "g
ns and vacuum states fails here as the “state” correspond-

ward transition as a result. However, because of the boundé%) oo o :
spatial domain, the lowest field mode has a finite energy, sfato this nghtman funguon IS not in the usua_l Fock space.
that the detector will respond only when the detector is ablé®N€ could instead consider differentially rotating detectors,
to excite the lowest mode. If the angular velocity is too low, Which are thus in nonstationary motion. But then the observ-
the detector is unable to overcome this threshold and emit &S would not move along integral curves of a single Killing
quantum of sufficient energy to excite the field. It thereforevector field as required by the usual quantization procedures.
remains inert. Unfortunately, this simple interpretation is!f such a state were to exist, and a suitable quantization pro-
flawed. Consider the example of a detector moving in a circedure defined19,20, it would have a strong claim to be
cular path between the plates of a Casimir system, in a plandesignated as the rotating vacuum.
parallel to the plates. The time integral leads in this case to a In some respects the light cylinder resembles the bound-
S function of the form ary of the Rindler system. The Rindler coordinate system is
well defined within the spacetime wedge delineated by the
null raysx= *=t. Outside this wedge the Rindler spatial co-
mn\? ordinates become timelike, i.e., Rindler observers would be
—mQf, (22) moving faster than light. Similarly, in the case of a rotating
black hole, it is well known that geodesic observers in the
region known as the ergosphere, close to the hole, are spun
where a is the plate separation. The lowest energy modearound faster than light relative to unaccelerated observers at
corresponds t@=0, n=1 and is nonzero due to the dis- infinity. The outer boundary of the ergosphere, the so-called
cretization of the modes in thedirection. However, because static limit surface, is reminiscent of the light cylinder for the
there is no upper bound an, the argument of thé function  rotating vacuum. In this case, we would expect a particle
can be zero for arbitrarily small values of the angular veloc-detector moving along énonrotating Killing trajectory to
ity (. This example shows that the threshold effect controlrespond to particles created via the Unruh-Starobinskii effect
ling when the detector responds is not simply related to th¢21 22. However, cases have been found, for instance a rela-
existence of a discrete field state of lowest energy. tivistic star [23], for which there is an ergosphere but no
Therefore we are left with a number of unanswered queshorizon, and for which the Unruh-Starobinskii effect is ab-
tions. When a moving detector responds, where does the eBent. We hope to report on the response of comoving detec-
ergy of excitation “come from,” and what effect will the tors for some of these examples in a future publication.
transition have on the energy of the field? Will the field have  Note added in proofafter this work was completed, we
more or less energy after the excitation, and will any changgliscovered that Leviret al. [24] had also considered the re-
in field energy be confined to within the |Ight CyIinder? There sponse of a rota‘[ing detector. They Computed the detailed
is considerable confusion in the literature about the energetpectrum of such a detector in+2 dimensions in the pres-
ics of detector response even in the linearly accelerating casthce of a circular boundary, and showed that there is no
[15-18, i.e., whether the quantum field gains or loses enyesponse if the boundary is within the static limit surface.

ergy, in what region of spacetime the quantum field energ\our work can be viewed as extending this result to a more
changes, and whether the accelerating agency supplies tgeneral setting.

energy needed to excite the detector.

The rotating case is different. When the corotating
vacuum is unambiguous, nothing happens, and the consider-
ations above presumably do not apply. The detector responds
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