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The radiation of wind-generated inertial currents from the mixed-layer in the

form of near-inertial internal waves is the subject of this study. Particular attention

is paid to the time scales characteristic of the energy exchange between mixed-layer

and pycnocline. For this purpose, a three-dimensional, 13-plane, linear model is

developed. The numerical results are interpreted using analytical tools. The model

is initialized by mixed-layer inertial oscillations set by a propagating atmospheric

front. We demonstrate the importance of the propagation direction of the front in

determining the decay of the mixed-layer inertial currents. The exchange of energy

between mixed-layer and pycnocline is found to be due to modal interference and

modal departure.

The model is assessed by comparison to observations of near-inertial

oscillations from the OCEAN-STORMS experiment. A slab mixed-layer model,

forced by a local wind time-series, is used to isolate three events of local generation

for detailed analysis. The transfer of energy from the mixed-layer to the pycnocline

occurs approximately at times predicted by analytical theory. However, while the

observed waves propagate vertically as "beams", the modeled waves remain at the

top of the pycnocline. The frequency of the modeled currents is similar to the

observed, ranging from slightly subinertial to 1.05! with the phase propagating

upwards.
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Assuming linear dynamics we develop a time-dependent body friction

coefficient simulating the loss of mixed-layer inertial energy to near-inertial internal

gravity waves, for use in the traditional slab mixed-layer model. The new decay

coefficient is a function of latitude, stratification, and horizontal wavenumber of

forcing. Comparison of the slab model results with OCEAN-STORMS observations

reveals a better agreement using the new parameterization, than the traditional

method. This result suggests that the dominant sink of mixed-layer inertial energy

during the experiment was inertial pumping, and that the horizontal scales of the

forcing were large.
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ON TFIE PROPAGATION OF NEAR-INERTIAL MOTION FROM THE

OCEANIC MIXED LAYER

I. GENERAL INTRODUCTION

This work is not a product of independent thinking. It all started when Isaac Newton

restated what Galileo had first discovered, the principle of inertia: "That every body

perseveres in its state of resting, or of moving uniformly in a right line, as far as it is not

compelled to change that state by external forces impressed upon it" (Newton, 1776). If the

above-mentioned object is a piece of ocean, an observer bound on the rotating surface of the

Earth will describe the water's motion as circular, completing two rotations within one period

of his own motion. Motions of water of this kind are commonly observed by oceanographers

and have been baptized near-inertial motions, or near-inertial oscillations.

Current measurements in the surface mixed layer of the ocean very often reveal the

presence of near-inertial oscillations: rotary currents on the horizontal plane, with frequency

very near the local inertial frequency f (wheref = sin(latitude) / 12 hours). Their magnitudes

are very intermittent; however, they often persist for several inertial cycles. Mixed-layer

inertial currents have been commonly observed to occur after the passage of atmospheric

fronts (Day and Webster, 1965; Saelen, 1963; Hunkins, 1967), with coherence scales of tens

of kilometers in the horizontal direction (Webster, 1968; Gonella, 1972).

Near inertial currents have also been observed in the pycnocline and the deeper ocean,

propagating as internal waves. Measurements from the upper ocean often reveal upward

phase propagation, suggesting downward propagation of energy (Learnan, 1975; Leaman and

Sanford, 1975; Sanford, 1975; D'Asaro, 1984). The waves' horizontal scales are tens of

kilometers; the vertical coherence is only tens of meters (Webster, 1968; Fu, 1981).

The interest of the scientific community in mixed layer and pycnocline near-inertial

currents is well justified: they may play an important role in the energy balance of the ocean,

transferring energy from the atmosphere to the internal wave continuum. D'Asaro (1985),

assuming generation by the wind, estimated an annual average energy flux of 1.4 mW m2 to

mixed-layer inertial oscillations, a significant part of the 7 mW m2 of dissipation it would
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take to damp the global internal wave field in a week (Garrett and Munk, 1979; Munk, 1981).

Inertial currents may play an important role in mixing and the erosion of a pycnocline, as low

Richardson numbers and high vertical shears associated with their high vertical wavenumbers

have been reported by observations and models (D'Asaro, l985b; Marmorino et al., 1987;

Eriksen, 1991; Krauss, 1981). As to the role inertial waves play in the internal wave energy

balance, there is evidence from a number of modeling efforts that the high frequencies tend to

extract energy from the near-inertial field (Flatté et al., 1986; Henyey et al., 1986; Broutman

et al., 1986)

Numerous modeling efforts have been used to understand the generation (Pollard and

Millard, 1970; Paduan et al., 1989) and propagation in the open ocean (Anderson and Gill,

1983; Pollard, 1970; Gill, 1984; Rubenstein, 1983; Price, 1983; Greatbatch, 1983, 1984;

Kundu and Thompson, 1985; Kundu, 1986; Shay and Elsberry, 1987; Shay et al., 1989).

There was a leap in the understanding of the wave-field evolution when DAsaro (1989)

showed the importance of the variation of the Coriolis parameterf with latitude on the

radiation of near-inertial kinetic energy downwards from the mixed-layer (inertial pumping).

The purpose of this study is to improve the understanding of the characteristics of

near-inertial wave evolution. For that reason, we improve existing numerical models, assess

the models using observations collected during the OCEAN-STORMS experiment, and use

linear wave theory to analyze and describe the observations and the model results. Special

attention is paid to the rates of energy exchange between the mixed-layer and the pycnocline,

as the waves propagate downward.

The thesis is structured into three distinct (but closely related) parts:

In Chapter II, titled 'Near Inertial Energy Exchange between the Mixed-Layer and

Pycnocline", we develop a semi-spectral numerical model describing the propagation of near-

inertial waves generated by the propagation of an idealized atmospheric front over the
13-

plane. Also, we develop an analytical tool for making predictions about the characteristic

time-scales of the wavefields evolution based on the initial mixed-layer inertial horizontal

structure and the oceanic background conditions. Finally, we introduce criteria that have to

be met in order to use a two-dimensional model to approximate the evolution of a near-

inertial wavefield.
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In Chapter IIH, titled "Near Inertial Wave Propagation into the Pycnocline during

OCEAN STORMS: Observations and Model Comparison, we analyze data collected during

the OCEAN-STORMS experiment, and compare them with results from the model developed

in chapter II. Wind-speed measurements were used to isolate events of local generation of

near-inertial currents. Three major events are isolated, analyzed, and compared with

corresponding model runs.

In Chapter IV, titled "Parameterizing the Decay of Mixed-Layer Inertial Oscillations

generated by the Wind: A Modification of the Slab Model, we use conclusions drawn from

chapter H to modify the slab model (Pollard and Millard, 1970). The constant body-friction

coefficient used in the model to dissipate kinetic energy is replaced by a time-dependent

coefficient, so that the rate of decay of mixed-layer kinetic energy is consistent with inertial

pumping theory.

AU the above chapters are composed as manuscripts and are being submitted for

publication. My major professor, Dr. Murray Levine, is co-author in all of them.



II. NEAR-INERTIAL ENERGY EXCHANGE BETWEEN THE

MIXED-LAYER AND PYCNOCLINE



ILl. Abstract

The radiation of wind-generated inertial currents away from the mixed-layer

in the form of low-frequency internal gravity waves is the subject of this paper.

Particular attention is paid to the energy exchange between the mixed-layer and the

pycnocline, and the time-scales characteristic of the waves' evolution. For that

purpose, a three-dimensional, n-plane, linear model is developed, making use of

baroclinic modes to describe the velocity field. The numerical results are interpreted

using analytical tools. The model is initialized by mixed-layer inertial oscillations

set by a propagating atmospheric front. We demonstrate the importance of the

propagation direction of the front in determining the decay of inertial currents from

the mixed-layer. The exchange of energy between mixed-layer and pycnocline is

found to be due to modal interference and modal departure. We analyze the effects

of the initial structure of the mixed-layer as well as the background oceanic

environment and make predictions about the wave field evolution at various

latitudes.



11.2. Intmduction

Near-inertial oscillations in the mixed layer are a commonly observed feature

in the worldts oceans. Nearly circular motions in a horizontal plane with a

frequency nearf (the local Coriolis parameter) are commonly observed after the

passing of atmospheric fronts or hurricanes. Their generation has been quite

successfully explained by simple models based on treating the mixed layer as a solid

slab (e.g. Pollard and Millard, 1970; Kundu, 1976; DAsaro, 1985; Paduan et aL,

1989), where the velocity is uniform throughout the mixed layer. However, the

decay of near-inertial energy in the mixed layer is not understood as well as the

generation. Possible mechanisms responsible for the decrease in mixed-layer energy

include turbulent dissipation and linear/nonlinear transfer of energy to the ocean

below.

This paper focuses on the decay of mixed-layer near-inertial energy due to

the radiation of linear, near-inertial waves. These internal gravity waves are

generated by horizontal convergences and divergences in the mixed layer that force

the fluid below--a process that is known as inertial pumping. Inertial pumping

results from horizontal gradients in the mixed layer.

Theoretical considerations show that on an f-plane the horizontal gradients in

the mixed layer are created by the nature of the wind stress forcing. Gill (1982)

showed that a moving atmospheric front will generate inertial oscillations in its

wake. The horizontal scale is a function of the speed of the front and its horizontal

structure. A one-dimensional front moving at a speed C forces the mixed layer

currents at a horizontal wavenumber of i = f/C. Linear models developed by

Pollard (1970) and Kundu (1985) used analytical forms of the wind stress and

examined the internal waves created in the wake of the wind. Gill (1984) used

another approach to force the waves; the model was solved as an initial-value

problem. The mixed layer is initialized with inertial oscillations and the model

tracks the subsequent wave propagation.
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Other modeling efforts include models by Price (1983) (multi-layered in the

vertical, hurricane scales), Rubenstein (1983) (multi-layered, eddy diffusivity and

bottom porosity), Greatbatch (1983, 1984) (multi-level ocean, including non-

linearities and entrainment), Kundu (1986) (vertical modes with eddy diffusivity),

Shay and Elsberry (1987) (hurricane scales, use of vertical modes on a level or

sloping bottom). In all cases, the models were two-dimensional and run on an f-

plane. One common characteristic of the models is that the predicted time-scale for

mixed-layer current decay agrees with observations at small horizontal scales

(hurricanes), but not at large scales (atmospheric fronts and propagating storms).

For large-scale forcing events the predicted decay time-scale is larger than observed.

D'Asaro (1989) demonstrated that the p-effect causes a reduction of

horizontal scales in time, thus accelerating the rate of inertial pumping of energy out

of the mixed-layer. He showed that the magnitude of the meridional wavenumber of

the inertial currents will vary as 1 = 1 [3t, where 1 <0 denotes propagation to the

south, and 3 is the rate of change of Coriolis parameter with latitude. As a result,

the radiation of energy from the mixed layer increases the pycnocline horizontal

kinetic energy (HKE) as t6 compared with t2 on an f-plane. Although some of the

numerical experiments performed by Gill (1984) were on a 3-plane, more attention

was paid to the southward wave propagation than the significance of the effect of

the waves on inertial pumping.

The purpose of this paper is to explore how the wind-generated energy

radiates from the mixed layer by the vertical and horizontal propagation of near-

inertial waves. Of particular interest is the time-scale of the decay of mixed layer

energy and the magnitude of the energy transfers to the ocean below. Specifically

we want to understand and quantify the energy transfer from the mixed layer as a

function of the following initial conditions and background properties:

initial horizontal wavenumber in the mixed layer (magnitude and

direction),

horizontal extent of the storm



mixed layer depth (seasonal stratification), and

deep stratification.

To study the radiation of energy from the mixed layer we use a linear, numerical

model on a f3-plane. The solution is analytical in depth using vertical modes and in

x (zonal) using Fourier transforms; and numerical in y (meridional) and time. The

results of the model are interpreted in terms of linear wave theory. This comparison

of the numerical model with wave theory will permit us to use analytical expressions

to predict the time scale and magnitude of the energy leaving the mixed layer as a

function of the initial conditions and background properties. Hence the energy

exchange between mixed layer and pycnocline can be described without having to

run the numerical model.

We consider our analysis as revisiting the landmark study by Gill (1984;

hereafter referred to as G84). As in G84, we distribute the inertial energy, initially

concentrated within the mixed layer, into vertical modes, and then let the modes

propagate horizontally as free waves. Phase-differences between the modes develop

as each mode oscillates at a discrete frequency. The wavefield, which is the sum of

all the modes, evolves from the initial condition and develops non-zero velocities

below the mixed-layer. As a result, we have propagation of energy with depth. The

horizontal propagation of each mode is treated numerically in the meridional

direction and spectrally in the zonal.

The model in G84 has been modified in order to determine the effect of the

initial conditions and background properties on the wave propagation. We have

added the zonal dimension to the model and determined under what conditions this

dimension is important. The initial condition of mixed-layer velocity has been

altered to represent a velocity field consistent with a propagating front; the G84

initial conditions are not compatible with this forcing. The effect of different north-

south extents of the forcing has been addressed explicitly in the numerical model.



The numerical model is presented in section 2. Linear wave dynamics are

discussed in section 3 to provide a basis for interpreting the model results. The

model results are shown in section 4 demonstrating the dependence of the decay

time scale on the initial conditions and background properties; comparison is made

with the behavior of analytical wave theory. A summary and conclusions are given

in section 5.
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H.3. Model Fonnulation

The model of near-inertial waves is patterned after the model developed by

G84 with some important differences. The model is based on the momentum

equations for a linear, inviscid, Boussinesq ocean given by:

(1)
at ax

av ap+fi4=-- (2)
ay

O=-.-g-- (3)
az p0

where x, y, z denote the zonal, meridional and vertical axes, increasing to the north,

east and upwards from the ocean bottom respectively; u, v, w are the components of

the particle velocity in the x,y,z directions. f is the latitude-dependent Coriolis

parameter, and the density has been decomposed into a constant Po' a depth

dependent component p1(z), and a perturbation density p(x,y,z,t). The pressure p has

been normalized by p0. consistent with G84. The hydrostatic approximation has

been adopted in the vertical momentum balance. The ocean is assumed

incompressible

au äv äw++---=o (4)
aay az



and mass continuity is given by:

11

N2w = 0 (5)
0

at

where N is the buoyancy frequency defined by N2 = -g/p0(dp1/dz), where g the

acceleration of gravity.

Eliminating p' and w by substituting (3) and (5) into (4), we retrieve a

system of three variables, u, v, p and three first order in time differential equations.

The initial condition of the model is assumed to be a current restricted in the

mixed layer:

[u (x,y,z,t),v (x,y,z,t)] = Eu z(x,y),vi(x,y)} S(z)
(6)

[p(x,y,z,t)], =p (x,y) S(z)

where S(z) is defined to limit the initial currents to the mixed layer

S(z)
{

1, HHmix<Z<H (7)

0, O<Z<H_Hmix

whereHm is the mixed layer depth, z = 0 at the bottom of the ocean, and z = H at

the surface. The above formulation assumes that the mixed layer depth is a constant

and the effect of the wind does not extend below the mixed layer.

The vertical dependence of u, v, w, and p is represented by an expansion into

vertical modes:

4(z) (8)

n=O
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w = (9)

where the wave functions ii and 4 are eigenfunctions of

d 1 +c=O (10)
dzN2(z) dz

J

d2ilr N2(z)11,
= 0 (11)

CR

and c2 are the eigenvalues; a rigid lid boundary condition {'qi(0) = 0, llJ(H) = 01 is

assumed. We will refer to c as modal eigenspeeds, as they are not phase speeds.

The eigenspeeds have units of velocity, are a function of stratification and ocean

depth only, and define the minimum phase speed and maximum horizontal group

speed of each vertical normal mode (Kundu, 1992).

For convenience we keep the normalization as in G84, so that

4(H) = 1, (12)

and the weights are defined by the modal expansion of S(z):

S(z) = a4(z) (13)
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Then, denotes the contribution of each mode to the initial velocity in the mixed

layer, while the horizontal and temporal variation of the wavefield is controlled by

the modal coefficients ü, i7,,, p,,, and iv,,, which are functions of x, y and t. It is

convenient to represent the zonal variations (x-dependence) of ü,,, ç and 5 by

a Fourier transform:

= (14)

where the identifier denotes functions of (k, y, t). After substituting the modal

expansions (8) and (9) into (1-5), Fourier transforming in x (14), and eliminating

and 5,,, we retrieve two coupled equations that govern the horizontal propagation of

mode n

2 2 ic2k-3 (15)n ,. n-j-.- = -ck u

2'n . 2jn (16)__! +f-_--- = +c + ic
at2 at

Having reduced the system variables from three, (u, v, p), to just two, (u, v),

and converted to a fourth order system, we need to express the initial conditions (6)

as a function only of (u, v) and their first order time derivatives. Applying the

initial condition values (u', v1, pt) to the two horizontal momentum equations, we can

estimate the cuffent accelerations at time 0. The corresponding initial conditions (6)

become:
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=

(17)

= I edx
at

at0
at

at0

Note that these initial conditions are the same for each mode.

It is assumed that the horizontal structure of the initial condition is

determined by the speed and direction of the atmospheric front; the model then

tracks the oceanic response after the wind has imparted a velocity field into the

mixed layer. The form of the initial condition is based on results from previous

analyses of the mixed-layer response to an infinite front moving with a finite speed

(e.g. Gill, 1982; Kundu and Thomson, 1985). The solution can be described for

each baroclinic mode in terms of the advection speed C of the storm and the

eigenspeed c of the mode. When C <ci,, the equation governing the horizontal

radiation of the mode is elliptical, and the solution decays exponentially from the

center of the storm. When the storm is fast, C > c,, the equation is hyperbolic, and

the solution is a wake of near-inertial oscillations propagating behind the forcing. In

the latter case, the mixed layer inertial oscillations develop a horizontal wavenumber

K = fjC, where f0 is the local inertial frequency. The quantity 27t1K is called the

"inertial wavelength" by Kundu (1985), and D'Asaro (1989) calls 1/K the "advection

scale" of the storm. We assume that the storm is fast relative to c1, and since c1 >

c,,, the storm is faster than all modes. Therefore we choose the initial mixed-layer

cunents to have the form of pure inertial oscillations with horizontal wavenumber

(k0, l) given by



{u1,v1I1..o = U0L(y) [cos(k+10y-f0t),sin(/ç.,x±l0y-f0t)]0

1au äv1
= fU0L(y) [-sin(k0r+lç,y -f0t),cos(k+l0y-f0t)]

15

(18)

where (k0, 1) is in the direction of C and K (k02 + l2) 1/2 The function L(y) is a

smooth, slowly-varying function that limits the north-south extent of the initial

disturbance (Fig. 11.1). This function models either the weakening of a propagating

front or the finite area of the ocean basin. No limit is yet specified in the east-west

direction. The amplitude U0 is left arbitrary at this point.

Equations (18) are equivalent to setting the pressure initial condition to

zero, consistently with a perfect inertial oscillation (no vertical displacement).

Note that the initial condition introduced above is considerably different than

the one used by G84:

[u (y),v (y)] = U0L(y) [sin(10y),O]

= [0,0]
at at j=

(19)

In this formulation k0 = 0, but the fundamental difference is that this initial

condition is not consistent with inertial currents generated by a moving front. This

velocity field has the structure of two waves: one propagating northward, one

southward, i.e. a standing wave. Also, G84 adopted two values of horizontal

extent: L(y) = oo, and L(y) = 27t10' (one wavelength). In the present study L(y) is a

parameter independent of 10.



16

Using (18), the Fourier transformed initial conditions for mode n (17) will

U0L(y)

2
{[ô(k-k0)o(k+1c)]cos(l0y-f0t)

+ i [o(k-k0) ö(kk0)]sin(10y -f)} I=

U0L(y)
VflJ

2
{[ô(k-k0)+ô(k+k0)]sin(10y-f0t)

i [o(k-k,) -o(k+k0)]cos(l0y-f0t)}I

(20)

a12, fU0L(y)
{[o(k-k0) +ö(k+k0)]sin(10y-f0t)

2

+ i [8(k-k,,)

-fU0L(y)
{[ô(k-kG) + ö(k+k)}cos(10y -f0t)

2

i [ô(k-k0) -o(k+k,)]sin(l0y--f0t)}

become:where 6(k) is the Kronecker delta.

Equations (15) and (16) with the initial conditions (20) are solved

numerically in y and r using finite-differences. The spatial resolution was 10 km

and the time step was 10 minutes; typically 30 modes were used. The domain

extended 2500 km north and south of the central latitude (y = 0). The extent to the

north provides ample space for the initially northwards going waves to reach their

turning latitude and turn to the south (Anderson and Gill, 1979); thus, no special

boundary condition was needed on the northern limit of the domain. At the southern

boundary, we incorporated a sponge layer; a body friction term was added to (15)

and (16) with a friction coefficient r0(y) increasing linearly from 0 at y = -2000 km

to a value determined by trial and error, at y = 2500 km. The slope dr/dy was

determined by minimizing the waves reflected back from the southern boundary.
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Without a sponge layer at the southern boundary Anderson and Gill (1979)

demonstrated clearly that waves are reflected northward and create interference

patterns with the southward propagating waves. The optimal solution would be the

adoption of an absorbing boundary condition instead of a sponge layer. Such a

condition has been proposed by Higdon (1992) for a wave equation similar to (15)-

(16), however it requires an estimate of the phase speed of the waves. In the

present case, the phase speed is time-varying and mode dependent, so the phase

speed would have to be estimated at every time-step and for each mode, which

could be quite complicated and computationally expensive.



II

11.4. Theoretical Considemtions

Before solving the initial-value problem numerically, it is useful to consider

the basic concepts of horizontal and vertical wave propagation expressed as a sum of

vertical modes. These ideas will be valuable in interpreting the numerical solutions

and will provide insight into the dependence of the evolution of the wavefield on the

initial conditions (wavenumber and horizontal extent) and the background properties

(mixed-layer depth and stratification).

H.4.a. Dispersion relation.

We can anticipate the numerical model results, by using ray theory to track

the horizontal propagation of vertical modes. To apply ray theory we assume that

the horizontal dependence of the amplitude of a mode can be expressed in the form

exp[i(kx+ly-0t)]; i.e. each mode can be expressed as a horizontally-propagating

plane wave with slowly varying wavenumbers and frequency. Substitution into (15)

and (16) yields a fourth order polynomial for the frequency o; one root, w=O, is

artificial, introduced by the rise of the system to fourth-order; the second root

describes the vortical mode on an f-plane, or a Rossby planetary wave on a n-plane.

the two remaining roots of the characteristic polynomial are the solutions to the

dispersion relation for each mode

2 2 2
(a) =f + c(k2±l2) (21)

The near-inertial internal gravity waves following (21), will have a much stronger

response to the initial conditions (18), than the Rossby wave solution.



It proves convenient to define at this point a dimensionless parameter c by

C,(k+1)

f2
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(22)

It can be shown that e is equivalent to the square of the ratio of the Rossby radius

to the horizontal scale (1/ic) of the waves when the Rossby radius is defined by the

minimum phase speed, c , over f (Gill, 1984). Although is time and mode-

dependent, it is in general less than 0.05 for typical mid-latitude conditions. Note

that c increases toward the equator.

Using the dispersion relation (21), the ray equations become (e.g.

Lighthill, 1978):

(Cx)
dt 8k

(EC3')
dt 8t

Cl

(23)

(24)
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dk
-

__;- (25)

dl

-5;- (26)

= p(1+Eyh/2

where
13

df/dy. These equations define the ray path along which the energy in

each mode propagates as well as the wavenumber changes along that ray. Since the

dispersion relation is not a function of t or x, then o and k are invariant along a ray.

Due to the
13

effect the north-south wavenumber varies as the wave propagates along

the ray for small E (26) as:

1(t) 10-13t (27)

For an initial wavenumber l < 0 (southward propagation), the magnitude of 1

increases linearly in time; for 10 > 0 (northward propagation), the magnitude initially

decreases, goes through zero, and finally increases, linearly in time. As a result of

the time dependence of the meridional wavenumber, the rays are curved (Fig. 11.2).

A northward ray eventually reaches its turning latitude and turns to the south (Fig.

11.2a), while a southward ray keeps turning more southward until it crosses the

equator (Fig. 11.2b).

Note that for small ., the components of the group velocity, CgnX and Cg are

functions only of the wavenumber component that is in the same direction, k and 1,

respectively. Hence, for small , the meridional wavenumber does not have any

effect on the zonal propagation of the waves, and vice versa. Also, for small values

of , the dispersion relation can be written approximately in simpler form:
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= 1++...ICi)

f( 2)
(28)

c (k2+12)
=1 2f

ll.4.b. Modal inteiference (beating).

G84 explains in detail how the vertical propagation of near-inertial energy is

expressed as a sum of vertical modes. Initially the sum of the modes matches the

function S(z); a constant value in the mixed-layer and zero below. In this problem

all modes have the same initial horizontal wavenumber (k0, la). Also for all modes,

k = k0 is constant in time; 1 changes in time as given in (27) but the change is the

same for all modes. Since c1>c2>c3>..., the lower the mode the higher its frequency

(21). The frequency of the high modes is veiy nearly f0 because c, goes to 0 as

noo. Since each mode oscillates at a slightly different frequency, their relative

phase is constantly changing in time. G84 defines as t the time when mode n will

become out of phase with the high modes at frequencies near

t It
(o,-f0)

(29)

At time t1, mode 1 will add destructively to the other modes in the mixed layer, and

the sum of the modes below the mixed layer will no longer be zero. Thus, we will

observe some vertical propagation of energy from the mixed layer into the

pycnocline. At time t2 mode 2 will be out of phase with the high modes and more

energy will have propagated into the pycnocline. However, this reasoning is

oversimplified, since by time t2 mode 1 may again be enforcing the mixed layer

currents again. Thus, energy exchanges between the mixed layer and the

pycnocline, called inertial beating, can be explained as a result of the interference of
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vertical modes, and the time scales for these exchanges are determined by the

frequency differences between the modes. On an f-plane the time scale t is easily

calculated since c0 is constant.

Here, we modify the formulation defining t to incorporate 3-plane geometly;

t from (29) is more complicated since o is a function of time:

()
c,[k + (lo t)2]

2f0

(30)

Note that this frequency, observed at y = 0, changes in time, while the frequency

following a ray is constant. This is because the waves observed at y = 0 continually

come from different ray paths. For an Eulerian observer, f = f0 (a constant) and o

varies; for an observer moving along a ray,f f(y) and w. is a constant. In the

present context we analyze the model results from an Eulerian viewpoint, and thus

we use f0 in (21) and equations derived from it. Substituting (30) into (29), we get a

cubic equation for t:

2 2

3 02 k +10 2f0t
= (31)

2
tn___j_n

132 cf3

which has three roots. The smallest, positive, real root defines the t of interest, i.e.

the first time at which mode n will be out of phase with f0. Fig. ll.3a shows values

for t1 and t2 as a function of k0 and 1 using c, = 2.8 m s' and c2 = 1.9 m s', for

typical mid-latitude stratification and Hm = 150 m. Note that the largest value of t1

- 20 days, are found at k0 = 0, 1 1.5x105 m', which correspond to a northward

moving storm. Also note that at high wavenumbers the asymmetly between north

and south-going waves due to the 13-effect tends to decrease.
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ll.4.c. Modal departure due to north-south propagation.

Ray theory can be used to understand the effect of a finite north-south extent

of the initial disturbance. The energy of each mode propagates meridionally at the

group velocity given by:

2
cn1cy=

Sn

(32)

c(l0-f3t)

fo

for small . The group velocity can be used to compute the time it takes for the

energy in a mode to propagate meridionally between two points. The time 'r it

takes for a mode to travel from y = y to y = 0 is given by the integral

y0=-!'C dt (33)
J Sn
0

Substituting (32) into (33) , we can solve explicitly for 'r:

=0 (34)
13

2
cn 13

In the case of initially south-going waves (1 < 0) there is one positive root for

y0> 0; there are no real roots for y0 < 0, as the wave never reaches y = 0 (Fig.

ll.2b). For north-going waves (l > 0) there are 2 positive roots when

22
cl0 (35)y0> -d -____
2f013
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(where is the northward distance a ray travels before turning) representing the 2

times the ray crosses y = 0 (Fig. 11.2a). At the first crossing the wave is going

northward and at the second it is going southward after reflecting at the turning

latitude. Waves starting at Yo < never reach y = 0. Based on the above modal

propagation estimates, we can determine the duration for which a mode will be

present at y = 0. We define Ns as the time when all the energy at mode n initially

to the north or south of y = 0 will have propagated away and will no longer

contribute to the wave field at y = 0. Fig. 11.2 clearly demonstrates that it is always

the ray that starts from the northernmost point that is the last to leave the point y =

0, independent of the propagation direction of the initial wave. By replacing Yo by

LN in (34), we can calculate the time tNS after which all the energy of mode n will

have propagated away from y = 0, never to return.

Clearly, t is a function of 10 and the northern extent LN. As an example,

the time NS is contoured in units of days as a function of initial wavenumber 10 and

northern extent LN for typical mid-latitude stratification with Hm = 150 m and k0 =

0 (Fig. 11.3b). The shadowed areas in the same figure represent the parameter range

where t > tNS there, the evolution of the wave field is detennined by modal

departures rather than modal interference.

11.4.d. Modal departure due to east-west propagation.

The effect of an initial finite east-west extent is simpler than considering

north-south propagation, since C is constant in time for small e. Let the initial

east-west extent from x = 0 be LE and L respectively. For an eastward propagating

wave (k0> 0), the propagation time ¶' for a mode to go from x = L to x = 0 is

given by:
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c
(36)

f0L
2

c k0

After time ;EW mode n will no longer contribute to the solution at x = 0. For a

westward propagating wave, stEW is also given by (36) after replacing L by L5.

H.4.e. Comparing the time scales.

The time scales of inertial beating t and the time scales of propagation t

and ; are useful concepts that help in understanding the results of the numerical

model. Both of these time scales are functions of the modal eigenspeed c that

depends on the stratification and ocean depth. If NS or are smaller than r,

then mode n will have propagated away horizontally before the effect of inertial

beating involving that mode would be observed. The darkened areas of Fig. 11.3b

represent the initial condition parameter range where tNS .<

To summarize the meridional propagation of the modes and their relative

phase difference, we introduce Fig. 11.4. The phase difference (A, = (wi, f) t)
between the seven lowest modes and a perfect inertial current, representative of high

modes, is plotted as a function of time. Solid horizontal lines are drawn at it and 3it

where the low modes add destructively to the high modes; a dashed line is drawn at

2it and 4ic, where the modes interfere constructively. The times when the phase line

of each mode intersects the line i.4= it define t. Superimposed on the phase plots,

are the estimated times t where all the energy of a mode will have departed, for

various values of LN. All the estimates were made for 1 = 2x106m' and k0= 0. For

example for a small northern extent of 250 km, we expect that the first two modes

will propagate away before they beat with f0, while the third mode will barely have
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time to beat before leaving. On the contraty, for a large northern extent of 1500 km,

the time at which mode I leaves the area t1l9.5 days is greater than t110.5

days--thus, the first mode will "beat" before leaving. In fact since mode 1 is still

present near day 17, both mode 1 and 2 will again be in phase, i.e. A 3it and

it. Hence, the first 2 modes will add constructively and interfere destructively

with the other modes; so, we expect much of the energy to have propagated into the

pycnocline.
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11.5. Model Results

The numerical model was run to determine the radiation of near-inertial

motion from the mixed layer for a range of values of the initial conditions

(horizontal wavenumber, north-south extent) of the wavefield, and background

properties (stratification, mixed-layer depth). The effect of one factor on the near-

inertial propagation is not independent of the others; however some idea of the

model behavior can be obtained from a small number of model runs. The model

results are interpreted with the aid of the wave concepts discussed in section 3. This

promotes a physical understanding of the model and will permit us to predict model

results without actually running the numerical model.

We chose a stratification profile used in G84 given by

I

N(z) H+H-z Z<HHmjx

1
o Z11'j

where s = 2.5 ms', and H= s/N0 H,,,11. This profile has a peak N0 at the base

of the mixed layer, and s0 is chosen to fit a typical ocean profile. This idealized

N(z) is compared with historical data from the Pacific and Atlantic Oceans in Fig.

11.5. Profiles of the idealized N(z) for a variety of mixed layer depths are shown in

Fig. 11.6 with the corresponding values of and c,,. The dependence of the wave

propagation on the seasonal (mixed-layer depth) and deep stratification are

considered below.

u.S.a. Model runs: f versus f3-plane.

Sample results of model runs on an f-plane and 3-plane are shown in Fig.

11.7. In these runs L = 3000 km and H,,,11 = 100 m. The initial wavenumber is

consistent with a storm front moving southward at 20 mIs, that is 10 -5xl0 m' =



(-200 km)', and k0 = 0. At y = 0, the vertically-integrated horizontal kinetic energy

(HKE) over the entire depth E (0 to 4000 m), the mixed layer EML (0 to Hm,) and

the pycnocline E to Hmix+200 m) are shown in the upper panels (Fig. 11.7).

The middle panels display the u component of velocity in the mixed layer as a

function of latitude and time. The modeled currents were complex-demodulated

around f0, using a boxcar window four inertial periods long. The phase was

backrotated in time at the local inertial frequency f0.

On an f-plane, the initial wavenumber 1 is too small for effective inertial

pumping (Fig. 11.7a). Hence EML decreases slowly during the first 30 days while 1

remains constant. The decrease in EML is primarily due to the vertical propagation

into the pycnocline as ET remains relatively constant. The theoretical time scale t1 =

35 days for inertial beating is consistent with the numerical model decrease in EML.

The fact that the north-south extent is finite is not important in this case as t1NS is

much greater than t1--the waves propagate southward, but very slowly.

On the -p1ane (Fig. 11.7b) smaller scales develop in time as suggested by

theory (27). Note that inertial pumping increases as the horizontal scale decreases.

By day 10 the horizontal scale has decreased to 100 km (wavelength of 600 km) and

much of the energy has left the mixed layer. This decrease in EML occurs at time t1

and can be explained by the beating (destructive interference) of mode 1 with the

other modes. By day 13 EML increases; at this time mode 1 is again in-phase with

most of the other modes. Er remains about the same until day 17; the decrease in

ET occurs at time t1NS when mode 1 has propagated away from y 0, never to

return.

The bottom panels of Fig. 11.7 display the inertial currents at y = 0 (50°N) as

they evolve with depth and time; contours of amplitude are superimposed on the

current vectors at selected depths, backrotated at f0. Although the currents propagate

vertically from the mixed-layer downwards, E is concentrated within the top 40

meters of the pycnocline (100-140 m) in both the f and 3-planes. However, in the

3-pIane a larger fraction of the HKE penetrates into the deep ocean by day 30. In
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fact at times when EML 0, the HKE is approximately equally divided between E

and the deep water.

As the current vectors have been inertially backrotated, a change in slope

denotes a frequency different from f0. On an f-plane at a constant depth, the current

vectors rotate very slowly and monotonically clockwise in time, which indicates that

the frequency is slightly superinertial. However, on a p-plane the current vectors

rotate faster (mostly clockwise), denoting a higher frequency. The current in the

mixed-layer is homogeneous; there is a significant phase jump across the base of the

mixed-layer. At times when the amplitude is a minimum in the mixed-layer, sub-

inertial frequencies can be identified for a couple of inertial periods. In the p-plane

the currents between 140 and 1000 m depth are mostly in phase, while the phase

seems to change sign below 2000 m; this pattern suggests the dominance of the first

mode in determining the deep wave-field.

11.5.b. Understanding the model results: comparison with analytical predictions.

The model results of vertically integrated HKE as a function of depth and

time for LN = 250, 500 and 1000 km and Hm, of 25, 50, 100 and 150 m are shown

in Fig. 11.8. The initial HKE in J m2 per meter of mixed layer is the same for each

value of Hm. The initial wavenumber in the top four rows is consistent with a

storm front moving southward at 15 m s (k0 = 0, l= -0.75 x iO m'. In the last

row, the initial wavenumber is set by a storm propagating northward at the same

speed (k0 = 0, 10 = +0.75x i0 m2). The corresponding relative phases, backrotated

at frequency f0 are shown as a function of time at various depths (Fig. 11.9).

The decrease in Er can be attributed to horizontal propagation (Fig. 11.8).

The larger the northern extent LN, the longer the time a given mode will contribute

at y = 0. The analytical predictions of time-scales t as calculated from (34) are

also indicated in Fig. 11.8. For a given Hm the decay of the total HKE is faster

when the northern extent LN is smaller. The first decrease in E is coincident with

t1 this is consistent with the idea that mode I has left y 0 heading south. For
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the smaller extents mode 2 may also leave within the first 30 days causing an

additional decrease in E,. Note that the waves initially going northward (last row,

Fig. 11.8) persist for a longer time before finally propagating away to the south.

The decrease in EML that is in excess of the decrease in Eç is the result of

vertical propagation. Hence, E increases as EML decreases. The time scale of this

vertical propagation is denoted by the inertial beating time t. For the case of LN=

1000 km the effect of inertial beating is clearly evident for mode 1 at t1 and mode 2

at t2. When LN= 250 km the time scale t1 is not relevant as < t1 --hence mode

1 has left and therefore cannot beat with other modes. However, there is still

vertical propagation of energy, but it cannot be explained by beating. In this case

the vertical propagation can be understood in terms of the sum of modes. Initially,

the sum of modes below the mixed layer was zero. After mode 1 leaves, the sum

cannot be zero any more. In the mixed layer the amplitude of the inertial oscillation

was due to the sum of modes, all in phase. When a mode leaves, the sum has to be

smaller. Thus, the departure of the low modes results in a downward propagation of

energy. For southward going initial conditions, the analytically predicted values of

t, and NS are in good agreement with the changes of HKE due to vertical and

horizontal propagation respectively. This fact suggests that the plane wave arguments

(section 3) can be used for making predictions about the evolution of the HKE in

near-inertial wavefields. Similar time-scale arguments for northward propagating

initial conditions are reasonable, but t and Ns seem to be underestimated by a few

days. This could be because 1 reaches 1 = 0 before turning negative, a region where

ray theory does not apply.

The detailed phase structure is quite complicated (Fig. 11.9). The slope of

each phase line defines the local frequency at a certain depth; as the currents are

backrotated by f0, horizontal lines denote perfectly inertial currents. Positive slopes

represent super-inertial frequencies, while negative slopes correspond to sub-inertial

currents. The distance between phase lines denotes the phase difference with depth,

a quantity related to vertical wavenumber; the temporal change of phase difference
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between two depths reveals the change of vertical structure in time.

The overall frequency changes in time can be understood somewhat by

examining the frequency changes of each mode. However, the frequency is the

complicated result of adding the contribution from each mode and depends on both

the frequency and magnitude of each mode. The frequency of mode n is given by

(21) or (30)--at a fixed location y=O the frequency increases in time. High modes

are initially at a lower frequency than low modes. Also the rate of change of

frequency at higher modes is slower; this is because the rate of change of frequency

is proportional to c2. In general the mixed layer frequency is about 1.005 f0, and

the frequency increases with increasing depth, resulting in significant phase changes

with depth.

11.5.c. Effects of mixed-layer depth on the evolution of the wavefield.

The quantitative changes in HKE that are associated with the time scales t

and ¶NS depend on the modal decomposition of the initial condition, that is upon

o. The values of and c for the cases shown in Fig. 11.5 are presented in Table

11.1 for the five lowest modes.

The fraction of energy initially in mode 1, that is y1, increases dramatically

with mixed layer depth. This fact can explain much of the model dependence on

Hm As was seen in Fig. 11.8, at time 'tNS, mode 1 energy leaves y = 0 causing a

decrease in E. The magnitude of the decrease is expected to be related to cy.

Specifically from Table 11.1 for Hm, 25 m, it is expected that E would decrease

by 7% by ¶NS1; for Hm = 150 m the decrease would be a substantial 42%. These

expectations are verified in Fig. 11.8.

The magnitude of the decrease in EML due to inertial beating can also be

anticipated from the values. By time t1 when mode 1 is out of phase with nearly

all other modes (destructive interference), it is anticipated that the current speed in

the mixed layer would be reduced by very significantly reducing EML. Hence,

this beating effect is expected to be more dramatic for larger Hm as can be seen in
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Fig. 11.8. The beating effect is almost absent in the cases of small LN where tN <

mode 1 has left before significant beating occurred.

Note that while changes in the seasonal stratification have a profound effect

on o, the effect on c, is rather small (Fig. 11.6, Table 11.1). Mixed layer variation

from 25 to 150 m results in changes of c1 of 20% and less than 5% for higher

modes. This is a significant result because it means that the time-scale of the wave

evolution is not a strong function of mixed layer depth, while the magnitude of the

decrease is. As a corollaiy, one can use historical hydrographic data to make a first

estimate for energy propagation time-scales.

Investigating the phase structure of the modelled currents (Fig. 11.9), we

observe the largest variations in frequency for the case where Hm = 150 and LN =

1000 km. These changes, occurring at times t1 and t2, are the result of the inertial

beating of first mode 1 and then mode 2 with the other modes. When the beating is

most significant the amplitude is small and the phase jumps. By 25 m below the

mixed layer the currents are nearly 180° out of phase with the mixed layer currents.

In general the frequency increases with depth. The amount of increase is determined

by the dominance of the low modes at that depth. Hence when Hm is large and the

low modes dominate the solution, the frequency increase with depth is great. When

Hm = 25 m, the modal distribution is more uniform, and the frequency change with

depth is weaker.

11.5.d. Effects of deep stratification on the wave evolution.

In addition to the mixed layer depth (seasonal stratification) the variations in

the deep stratification affect wave propagation. Since we have found that many of

the features of the numerical model results can be explained by analytical wave

propagation, we will assess the role of deep stratification without explicitly solving

the numerical model.
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Vertical profiles of zonally-averaged temperature and salinity for the Atlantic

and Pacific Oceans were obtained from Levitus (1982). Assuming a 50 m mixed

layer in all cases, N(z) was calculated and values of c and o, were estimated by

modal decomposition for various latitude bands (Table 11.2 and 11.3, Fig. 11.10).

In most of these profiles has a maximum at a mode greater than 1. At

47.5° N in the Atlantic modes 4 & 5 are more energetic than modes 1, 2 and 3

combined. This behavior of cr,, is not found in the idealized N(z) profile (35). A

different idealized profile might model this feature of the stratification better, but

this is not critical to the present discussion. For waves propagating in these average

stratifications, the model will behave as discussed above, but mode 1 will have

proportionately less impact on the solution than with the idealized N(z), since the

relative importance of each mode is given by c.

The values of c also vary with stratification. The weaker deep stratification

toward the poles leads to lower values of c. However, the dependence of c on

mode remains nearly proportional to n'.

Both the frequency and the group velocity of the waves are functions of

c,,2 f. At high latitudes, weaker stratification and high 10 cause the vertical and

horizontal propagation of energy to be much slower than the idealized mid-latitude

case examined above. This is seen in the estimates of t1 and 'r1"s (Fig. 11.1 la). In

contrast at low latitudes, stronger stratification and smaller f0 result in faster wave

propagation and shorter time scales (Fig. 11.1 lb). Estimating the time-scales t,, and

tNS for the idealized profile at high and low latitudes, we arrived at the conclusion

that, in general, both stratification and latitude can be equally responsible in

determining the evolution time-scales of the wavefield.
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ll.5.e. Conditions for a two-dimensional approximation.

It has been a common practice in past modelling efforts to consider only

two-dimensions: depth and one horizontal dimension. The reasons for using a two-

dimensional model are obvious: both the analytical and the numerical relations are

simpler and the numerical schemes are easier to run. Price (1983) and Kundu

(1985) used f-planes, and aligned the x-axis with the direction of propagation of the

atmospheric front. This simplification is always possible and exact in an f-plane.

In a n-plane the 2-dimensional assumption is made by neglecting the zonal

component of the wavenumber (k) (G84; D'Asaro, 1989). This is often reasonable

since k0 is often small and k is constant in time. In contrast 1 increases as J3t; so no

matter how small 10, 1 will eventually be large enough to generate significant

vertical propagation.

To determine the conditions for which k can be neglected we first consider

the effect of k on the frequency given by the dispersion relation (21). We compare

the frequency co0 for k = 0, with the frequency 0nk for k = k0. These two

frequencies will be considered to be sufficiently close for times less than 7, , where

t is defined when the phase difference between the two frequencies reaches itI4,

that is, where (o Oflk) 1,, = rc/4. Since we are in the parameter range where k is

small, we assume C is small and use (30) to estimate explicitly as:

n

n

(38)

Note that t, is independent of 10, and depends only on k0, stratification and f0. If we

consider the full dispersion relation (21) (e 0), varies slowly with 10. Since

mode 1 always has the highest frequency, for a given k0, the zonal dependence can

be neglected in the model for times less than t1. Fig. 11.12 shows as a function

of k0 for the idealized N(z) profile at mid-latitudes (50°N), as well as the extreme

cases of zonal averages of N(z) at low-latitudes (27.5° N) and high latitudes (67.5°
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S). To verify that E small is a reasonable approximation, estimates of t1 were made

using the full dispersion relation for 10 = 0 and for 10 = ±i0 m1. For the mid-

latitude case, at k0 = i05 m1 (a scale of 100 km), = 3 days, while for larger scale

k0 = 0.5x105 m' (scale of 200 km), t1 = 10 days.

11.5.f. Conditions for neglecting 13.

For sufficiently small times the 13
effect will not be important and an f-plane

model can be used. We can determine this time scale, in analogy with the previous

section, by considering the effect of 13
on the frequency. Let be the frequency

for 13 = 0 and w be the frequency including 13.
These two frequencies will be

considered to be sufficiently close for times less than I, where (Of o) I = itI4.
Again, we only need to estimate I, since it is shorter than all other I. For the case

of small E, I is independent of k0 and is a function of 10, stratification and latitude

given by

13_12_ 0 (39)
1 p1 22

c1 13

For significant c, I becomes a slowly-varying function of k0. Fig. 11.13 shows I,, as

calculated by assuming small E and the full dispersion relation. For a given k0 and

1, the 13-effect can be neglected in the model for times less than I.
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11.6. Swnmary and Conclusions

Time-varying wind stress generates near-inertial oscillations in the upper

ocean. Significant generation often occurs after the passing of a storm, and locally

lasts for a few hours; over large areas, the generation lasts for a few days, the time

it takes for an atmospheric front to travel over the ocean. After the storm event, the

disturbance created in the upper ocean radiates vertically and horizontally as near-

inertial gravity waves.

In this paper we consider the radiation of the wavefield that is consistent

with linear, inviscid dynamics on a J3-plane (section 2). The wave evolution is

calculated using a numerical model patterned after the initial-value problem

introduced by GM. The numerical model differs from the one developed in G84 by:

adding the third spatial dimension, permitting zonal gradients,

limiting the horizontal extent of the storm to an arbitrary scale, and

setting the initial condition in the mixed layer to be consistent with the

passing of a fast moving front.

The model results are interpreted in the framework of analytical linear wave theory

(section 3) on a n-plane. The association of the numerical model and analytical

theory permits predictions of many features of the wave evolution without the need

to run the numerical model. Based on the agreement of numerical and analytical

results, we also develop a set of criteria enabling the reduction of the geometry of

the problem to two dimensions (sections 4e, 1).

The horizontal propagation of modes at distinct speeds causes vertical

propagation of energy through two mechanisms: Modal interference and modal

departure.

When the initial mixed-layer currents have a large horizontal extent (LN>

500 km), the vertical propagation of energy is caused by the interference of modes

characterized by different frequencies (inertial beating). The time scale t is the time
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of inertial beating of mode n, and the beating of mode 1 at t1 marks the first time of

effective vertical propagation of energy. The value of t depends greatly on the

initial wavenumber of the currents in the mixed layer. The 13-effect causes a great

difference in t between an initially northward or southward propagating front--

inertial beating occurs sooner for a southward going front (Fig. ll.3a).

For initial conditions of short horizontal extent (LN < 250 km), the dominant

cause of vertical propagation of energy is the successive departure of modes from

the generation area. To describe this process, we have defined the time scales tNs

and EW representing the times when mode n leaves y = 0 due to horizontal

propagation. These time scales are a function of the horizontal extent of the storm

as well as the initial wavenumber (Fig. ll.3b).

Beside the initial wavenumber all the time scales are affected by the modal

eigenspeeds c, and the value of f0. Hence, variations in stratification and latitude

will affect the absolute time scale. We estimated that the evolution of the near-

inertial waves varies from a few days at low latitudes to several weeks at high (Fig.

11.11).

In addition to the time scales the modal decomposition of the wavefield is

needed to determine the quantitative effect of the inertial beating and horizontal

propagation. For example, if mode 1 is a large fraction of the total energy (cy1

large), then the vertical propagation at t1 will be significant. The modal

composition is set by the stratification. The deeper the mixed layer the larger the

mode 1 contribution. Hence the energy transfers at times t1 and 1NS are more

dramatic for deeper mixed layer (Fig. 11.8).

From the two processes described by the model, it is modal interference that

can be associated with the frequently observed intermittency of the near-inertial

waves. When the modal departure is the dominant mechanism of downward

propagation of enegry, there is no intermittency ("beating") observed (Fig. 11.8).

The intermittency can also be traced in the currents' phase, as short periods of sub-

inertial frequencies, coincident with amplitude minima (Fig. 11.9).



The three-dimensional model developed in this chapter provided us with

confidence on the ability of analytical theoiy to describe the evolution of the inertial

wavefield generated by a large, fast storm propagating at any direction. However, in

order to assess the validity of either model or theory, a comparison with oceanic

observations is needed. The validity of the present analysis can also be tested by

the development of a simple model forced by wind-stress, where the decay of the

mixed-layer oscillations is consistent with the predictions developed here. Chapters

ifi and IV of this thesis are both steps to that direction.
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The panels on the left display the ray-paths of the lowest four modes, starting at y =

0, as a function of latitude and longitude. Paths are plotted for no more than 30

days; a mark is plotted on the ray every two days. Note that the very low modes

travel very fast and soon leave generation area; the higher modes effectively remain

where they were forced. The right panels display the ray paths on a latitude-time

plane of a single mode (the lowest one) that starts from different values of y. Note

that it is always the northernmost ray that is the last to leave the observation point y

= 0 (in this case, 50°N).
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Fig. 11.8. liKE as a function of time for various model runs at y = 0. Shown

are E1. (heavy line), EML (light line) and E (dotted line). The initial wavenumber

(k A,) in the top four rows was (0, -0.75x105 m') (southward going) and in the

bottom row was (0, +O.75x105 m') (northward going). The value of Hm varies for

each row from 25 to 150 m; the northern extent LN,varies for each column from 250

to 1000 km. The time-scales and .r1IS (section 3) are shown for modes 1 and 2.

(Note the superscript "NS" has been dropped for clarity.)
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Fig. 1L9. Backrotated relative phases at selected depths, computed from the

same model-runs displayed in Fig. 118, shown in the same order. The mixed-layer

phase is shown with a solid line, and the phase at regular intervals below the mixed-

layer is shown by different symbols. Displayed are estimates of the current vector's

phase at the mixed layer (solid line), and approximately 10 meters (+), 20 meters

(&), and 50 meters (e) below the base of the mixed-layer. A horizontal line denotes a

perfectly inertial frequency, a positive slope denotes superinertial frequency. A key

for the frequencies is provided on the bottom left corner.
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of the stratification--high stratification results in high eigenspeeds.
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Table 11.1. Values of eigenspeed c, and modal coefficient of the first five modes, calculated for the idealized

stratification profiles shown in Fig. 11.6

Hmix = 25 m Hmix = 50 m Hmix = 100 m Hmix = 150 m

Mode c(ms') ;(ms') c(ms') c(ms') cy

1 2.35 0.07 2.45 0.15 2.63 0.30 2.82 0.42

2 1.28 0.08 1.34 0.15 1.42 0.21 1.47 0.21

3 0.87 0.08 0.90 0.12 0.94 0.12 0.95 0.10

4 0.66 0.07 0.67 0.09 0.69 0.07 0.70 0.06

5 0.53 0.06 0.54 0.07 0.54 0.05 0.55 0.03



Table 11.2. Values of eigenspeed and modal coefficient of the first five modes, calculated for the a number of

zonally averaged stratification profiles from the Atlantic Ocean.

Lat. 47.5°N 27.5°N 32.5°S 67.5°S

Mode c(ms') c(ms') c(ms') c(ms)

1 2.79 0.07 3.78 0.09 3.61 0.07 1,02 0.05

2 1.40 0.05 1.65 0.11 1.76 0.08 0.53 0.26

3 0.92 0.08 1.20 0.17 1.19 0.07 0.30 0.14

4 0.68 0.12 0.94 0.12 0.93 0.13 0.24 0.04

5 0.56 0.13 0.74 0.06 0.75 0.11 0.20 0.06



Table 11.3. Values of eigenspeed C,, and modal coefficient a,, of the first five modes, calculated for the a number of

zonally averaged stratification profiles from the Pacific Ocean.

47.5°N 27.5°N 32.5°S 57.5°S

Mode c,,(ms') a c,,(ms') a,, c(ms') a,, c,,(ms') a,,

1 2.94 0.09 4.11 0.11 3.66 0.08 2.56 0.06

2 1.52 0.14 1.98 0.11 1.80 0.14 1.26 0.04

3 1.05 0.14 1.34 0.12 1.26 0.06 0.84 0.06

4 0.80 0.08 1.01 0.09 0.93 0.06 0.64 0.06

5 0.63 0.04 0.81 0.07 0.75 0.09 0.51 0.08
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ifi. NEAR-INERTIAL WAVE PROPAGATION INTO THE

PYCNOCLINE DURING OCEAN STORMS:

OBSERVATIONS AND MODEL COMPARISON
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ffl.1. Abstract

Observations of near-inertial oscillations collected during the OCEAN-

STORMS experiment, are compared with results from a three-dimensional, linear

model (developed in chapter H). A slab mixed-layer model, forced by a local wind

time-series, is used to isolate events of local generation; the events of October 4,

1987, January 13, 1988, and March 1988 are selected for analysis. Climatological

storm-track maps are used to determine the initial horizonal wavenumbers. The

comparison of the observed and current data reveals some agreement in the coarser

features of the wave fields; the transfer of energy from the mixed-layer to the

pycnocline occurs at time scales predicted by analytical theory. However, the

amount of energy exchanged between mixed-layer and pycnocline at the predicted

times is different between model and data. As for the vertical and temporal

structure of the wavefields, the observed waves propagate vertically as "beams",

while the modeled waves remain at the top of the pycnocline. The frequency of the

modeled currents is in general the same as observed, ranging from slightly

subinertial to 1.05 f, and the phase propagates upwards, but more detailed

comparison reveals disagreements between model and data. The results are

discussed in respect with the failures of the model.



ffl.2. Intro ducion

Near-inertial oscillations, characterized by circular hodographs on the

horizontal plane, are a common feature in observations of horizontal velocity in the

mixed layer with amplitudes that sometimes exceed 1 m s'. They commonly occur

after the passage of a storm or hurricane, a fact suggesting they are wind generated.

The transfer function between wind-stress and mixed-layer velocity peaks at the

inertial frequency (Pollard and Millard, 1970, Paduan et al., 1989); this explains

their frequent occurrence as well as their high amplitudes. Their wind generation

can be successfully modeled by assuming that the mixed-layer responds to wind-

stress as a solid slab (Pollard and Millard, 1970). Since the pycnocline appears to

be the most probable sink of their energy, mixed-layer inertial currents may

constitute a major link of kinetic energy and momentum transfer from the

atmosphere to the deeper ocean. However, their generation is better understood than

their decay.

After a storm, the mixed-layer inertial currents decay over a period ranging

from days to weeks. There are a number of processes that have been proposed as

sinks of their energy. Near-inertial waves can generate high vertical shear, thus

generating turbulence that could be a major factor in dissipating the wavefield

(Eriksen, 1991, Hebert and Mourn, 1993). Broutman and Young (1986) and Henyey

et al. (1986) have shown that high-frequency internal waves can extract energy from

near-inertial waves. Bell (1978), proposed a process of generation of high

frequency, high wavenumber internal gravity waves where mixed-layer currents

advect undulations of the base of the mixed-layer over a stratified ocean. The

mixed-layer base undulations are assumed to be created by vertical advection

processes, such as turbulent eddies or Langmuir circulation.
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However, most investigations have focused on the generation and radiation of

near-inertial internal gravity waves as the primary process for extracting energy from

the mixed-layer oscillations; a process called inertia! pumping. A finite horizontal

structure is necessary for efficient inertial pumping to occur. Horizontal gradients of

the mixed-layer currents cause convergences and divergences in the mixed-layer

vertically displacing its base; the resulting pressure gradients generate internal

waves in a process that might be described as time-dependent Ekman pumping. A

multitude of models have been used to describe the process. Pollard (1970) and

Kundu and Thomson (1985) have advected idealized wind-stress distributions over

the surface of the ocean and assumed linear dynamics; the above models made use

of vertical normal modes. Gill (1984) also used vertical modes to describe the

response of the ocean to mixed-layer currents; Rubenstein (1983) used a multi-

layered model, with eddy diffusivity and bottom porosity; Price (1983) also used a

multi-layered ocean, and looked at the response to hurricanes; Greatbatch (1983,

1984) included non-linear dynamics and investigated the effect of entrainment;

Kundu (1986) included the presence of a coast, using vertical modes with vertical

eddy diffusivity; Shay and Elsberry (1987) and Shay et al., 1989) concentrated on

oceanic response to hurricanes. In a comprehensive analysis of his linear, two

dimensional model, Gill (1984) showed that the energy transfer from the mixed-

layer to the pycnocline is dependent on the horizontal wavenumber of the wind-

forced mixed-layer oscillations.

Inconsistencies between the observed time scales for mixed layer inertial

oscillation decay and the expected ones based on the scales of the atmospheric

forcing, were resolved by consideration of meridional variation of the Coriolis

parameter f due to the Earth's curvature (D' Asaro, 1989). In the previous chapter,

we have modified Gill's model to incorporate a three-dimensional, 3-p1ane geometry

and initial conditions consistent with mixed layer inertial oscillations as set by a

travelling atmospheric disturbance (Gill, 1982; Price, 1983; Kundu and Thomson,

1985). The model describes the generation and propagation of near-inertial internal



gravity waves from an initial condition of mixed-layer inertial oscillations. In a

careful analysis of the model results, we showed that the evolution of the near-

inertial currents, as measured by an Eulerian observer, can be predicted knowing the

initial horizontal structure of the inertial oscillations and making use of the

dispersion relation governing the propagation of each mode horizontally (chapter H).

There have been few comparisons between open ocean inertial currents and

model results. Price (1983) compared observations of inertial currents in the wake

of Hurricane Eloise with model results on a constant f-plane and found very good

agreement. Other comparisons of model results with data at hurricane scales (Shay

and Elsberry, 1987; Shay et al., 1989) were also quite satisfactory. There have been

fewer model and data comparisons for cases forced by the advection of large

atmospheric fronts (Krauss, 1981, Millot and Crépon, 1981, De Young and Tang,

1990) and many of them were near a coast. However, while hurricane scales are

small enough to force effective inertial pumping; at large scales, associated with

large fronts and storms, the f3-effect is predicted to be the essential factor in

generating small enough scales (IYAsaro, 1989). Comparisons at all scales seem to

converge to the conclusion that while models predict reasonably well the mixed-

layer inertial oscillations, they underestimate the amplitude of the pycnocline inertial

waves. Is this due to the f-plane assumption of the older modelling efforts, which

leads to an overestimation of the horizontal scales and inhibits pumping, or to some

other physical process not well understood?

In this chapter we compare results from the p-plane model developed in

chapter II, with observations of near-inertial waves collected in the North-East

Pacific through 1987-1988 as part of the OCEAN-STORMS experiment. We

evaluate the model's performance in explaining the observations. When there are

discrepancies, we suggest other physical mechanisms that should be included in the

model for a better reproduction of the observed wave-fields.
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The OCEAN-STORMS observations and their analysis are described in

section 2 of this paper. Section 3 describes the wind-forced model of slab-mixed-

layer, that was used to identify strong inertial events of local generation. Estimates

of the horizontal structure of the inertial oscillations set up by the selected events are

presented in section 4. A short description of the model we are using is presented at

section 5, and the comparison of the OCEAN-STORMS observation with the model

results is made in section 6. We summarize and conclude in section 7.
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ffl.3. Observations

ffi.3.a The Cl mooring

The following analysis is based primarily on data collected from a single

mooring deployed in the NE Pacific from August 1987 to June 1988 as a part of the

OCEAN-STORMS experiment. The mooring was positioned at 470 25.4 N, 1390

17.8'W, in a total water depth of 4225 m in an area chosen specifically to be far

from major topographic features; the bathymetry can be considered flat for all

practical purposes. The mooring contained 7 Vector Measuring Current Meters

(VMCM; Inter-Ocean) in the upper ocean at 60, 80, 100, 120, 140, 160 and 195 m

and 5 Aanderaa RCM-5 current meters in the deep ocean at 500, 1000, 2000, 3000

and 4000 m. The sampling rate was 15 minutes for the VMCMs and 1 hour for the

Aanderaas. Besides current speed and direction the current meters recorded

temperature. Five Seacats (Sea-Bird Electronics) measured temperature and

conductivity at 70, 89, 109, 128 and 150 m. The two shallowest Seacats were also

equipped with Digiquartz pressure sensors (Paroscientific). Three Aanderaa TR-1

thermistor chains covering the depths 206-236, 250-260, and 375-425 meters,

sampled every two hours.

ffl.3.b. Supporting measurements

Other relevant meteorological and oceanographic measurements were made

near the mooring by other investigators. A time-series of wind velocity was

recorded at the CO mooring (47.3°N, 139.1°W; near 18 km northwest of Cl)

deployed by R. Davis (Scripps Institution of Oceanography) and was kindly shared

with us. The anemometer was located at a height of 4 meters, and the wind stress at

the sea surface was estimated assuming a neutrally-stratified atmosphere (Smith,

1983) (Fig. ffl.la).
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Additional meteorological observations from ships of opportunity, the P-3

Orion aircraft, permanent buoys, other OCEAN-STORMS moorings, and ARGUS-

tracked surface drifters, were compiled and combined with synoptic weather maps

by Lindsay (1988). The most intense sampling was in the period from September to

December 1987.

The evolution of the mixed-layer depth was tracked with an Aanderaa TR-1

thermistor chain that was attached on the W mooring located 50 km to the west of

Cl (Fig. ffl.lc). The chain consisted of thermistors at 10 meter intervals between 9

and 109 meters from the surface. We used the temperature measured at W because

the shallowest sensor on Cl was located at 60 meters, which remained below the

mixed-layer until mid-November. After November an intercomparison reveals that

the base of the mixed-layer was at the same depth at W and Cl (Levine et al.,

1990).

Profiles of buoyancy frequency, N, were calculated for the top 500 meters

using CTD casts from two cruises of the RIV Parizeau during September 22 to

October 16, and November 24 to December 9, 1987 (Tabata, 1988). The N profiles

were extended to the ocean bottom using historical data (Levitus, 1982). To

approximate the time-varying stratification, the mixed-layer depth estimates at W

were incorporated into the N profiles.

ffl.3.c. Complex Demodulation

The technique of complex demodulation (Perkins, 1970) was used to isolate the

near-inertial signal in the velocity data. This method was combined with rotary

decomposition (Gonella, 1972), to separate near-inertial signal IL (clockwise-rotating

component ) from the noise (J (counterclockwise rotating component). If u(t) and

v(t) are the zonal and meridional components of velocity respectively, then:

t+2T

U(t) = [u(t)+iv(t)} e dr (1)

t-2T



t+2T

U_(t) [u(t)+iv(t)] e dt (2)

t-2T

Both U and U are vectors, having both amplitude and phase information. We use a

boxcar window (T=64 h) to separate the local inertial peak (at 0.06 14 cph) from the

peak in the semidiurnal tidal band (0.08 to 0.083 cph). Since the local inertial

period is not an even multiple of the sampling intervals of the current meters, we

chose a demodulation frequency oc = 0.0625 cph that is very near the inertial

frequency. The width of the main lobe of the response of the filter (0.0312 cph) is

sufficient to include the local inertial frequency without significant loss of spectral

power (Fig. ffl.2). The demodulation was applied every 32 hours, so every other

record of the demodulated time-series is independent.

The frequency can be estimated from the slope in time of the demodulated

phase. This is most clearly seen if the phase is first backrotated in time at the

frequency difference between the demodulation and local inertial frequency, o

and then plotted with time. The phase of a perfectly inertial current would result in

a line parallel to the time axis; a frequency higher than f would have a positive

slope.

The analysis of near-inertial frequencies requires resolving frequency

differences of 0.01 f. To achieve such high resolutions, conventional Fourier

transform analysis would require very long record lengths, on the order of ten

months. Then all the information about individual events would be lost. But

complex demodulation allows us to trace these frequencies using record lengths of

only a few inertial periods. None of the principles of time-series analysis is

violated; the frequency resolution is the same for both a complex demodulation filter

and a conventional Fourier transform. However, by assuming that each spectral

band represents a single wave, complex demodulation can be used to estimate the

time-varying amplitude and phase of the wave. The change of the phase with time
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would accurately estimate the frequency of the wave under the single wave

assumption. For example, assume a wave with a frequency w = 1.01 f. Actual

resolution of the w and f0 peaks would demand a record length of at least 200 hours.

But if we assume that there is only one wave in that band, we can determine its

exact frequency by demodulating with a record length of only 4 hours.

ffl.3.d. Near-inertial currents

The observed amplitude of the near-inertial currents ( IUJ) in the upper ocean

from 60 to 195 m depth is plotted in Fig. ffl.lf. A general trend readily obvious

from the data is that the currents decrease in magnitude as they propagate

downwards, a trend suggesting generation at the surface. The vertical propagation

of waves is evident through a number of events. Note (Fig. ifi. 1 c) that no

instruments were in the mixed-layer until mid-November. At each event, the mixed-

layer, near-inertial currents have the largest amplitudes and are vertically

homogeneous; through stratified water, the waves propagate downwards slowly as

"packets" on timescales of days. In April and May, although the temperature data

show clear signs of restratification, the observed currents seem to be homogeneous

over the top 100 m.



ffl.4. The slab mixed-layer model

The near-inertial wave field observed in the ocean is a sum of waves

generated locally and waves that have radiated from distant sources. In the analysis

of observations at OCEAN STORMS it is important to distinguish between the two.

The slab mixed-layer model (Pollard and Millard, 1970) provides a valuable tool for

that purpose. It requires only a time series of wind stress and mixed-layer depth

Hm to provide a first order description of the local mixed-layer inertial response to

wind forcing. The model assumes that the wind-stress is distributed uniformly over

a horizontally-infinite, homogeneous surface layer of constant thickness Hm Since

the mixed-layer is assumed to be unstratified, the only natural frequency of the

system is the local value off. Having assumed horizontal homogeneity, there are no

horizontal pressure gradients that cause inertial pumping which would lead to the

vertical propagation of energy out of the mixed-layer. Hence, except for destructive

interference by other storm events, there is no mechanism for the decay of the

inertial oscillations. To compensate for that, Pollard and Millard (1970) introduced

a body (Rayleigh) friction term, so that the oscillations are damped exponentially in

time; a typical e-folding time of 4 days is used here. Since its introduction, the

model has been used by many investigators attempting to simulate the mixed-layer's

near-inertial response to local wind forcing (e.g. Paduan et al., 1988; D' Asaro,

1989).

The results of the slab model using the wind-stress and Hm observed at

OCEAN STORMS are shown in Fig. ifi. 1. The modeled speed of the inertial

response in the mixed-layer is shown in Fig. ffl.lb; the energy flux into the mixed-

layer and its integral with time were also calculated (Figs. ifi. 1 d, 1 e).

The model predicts several strong generation events, especially the three

starting on October 4, January 13 and March 5, that will be the focus of this paper.

Each of these events is also displayed on an expanded scale in Figs. ffl.3, 4, and 5.

The model shows that the strong (0.8 N m2), sudden wind event of 4



October forced large inertial oscillations in the mixed-layer increasing the energy

abruptly by 5000 J m2 (Fig. ffi.3d). This event seems to be an ideal candidate for

study as no additional significant forcing occurred for 25 days.

The strong currents expected in December by the slab model are just an

artifact of the numerical method. To produce figure ifi. 1, we used a numerical

method of solving the traditional slab model, introduced by D' Asaro (1985). One

of the assumptions of the method is that the mixed layer depth varies much slower

than the wind. On December 4 there is a spike on the estimate of Hm, possibly due

to a brief restratification period. Comparing Fig. ifi. 1 to Fig. IV.4a (where we have

not used the D'Asaro 1985 method) reveals that the strong December currents are

just an artifact of the integration method.

The event beginning on 12 January is not as isolated as the October storm

(Fig. ffl.4). From January 12 through 26 and then again starting on February 4 there

were a series of forcing events which affected the mixed-layer oscillations. Looking

in detail at the slab model, the January 12-13 storm infused about 5000 J m2 of

kinetic energy into the mixed-layer (Fig. ffl.4d). Then the series of storms from

January 17 to 24 slowly added another 5000 J m2 into the mixed-layer. The

observations agree with the model, showing an increase of the amplitude of the

mixed-layer oscillations between January 18 and 21 from 28 cm s to 40 cm s,

corresponding to a jump in vertically integrated mixed-layer kinetic energy by 4000

J m2 (Fig. ffl.4e).

However, the slab model results after the 13th of January cannot be totally

trusted. The slab model solution is constructed by adding the response of each

successive event. Hence, slight variations in the phase of pre-existing oscillations

will significantly affect how the energy is added--constructively or destructively.

The slab model assumes the frequency at a fixed location does not vary in time, but

on a more realistic n-plane the frequency will vary. To determine which of the

multiple forcings after 13 January significantly changed the mixed-layer energy, we

examine the current meters in the mixed-layer (60 and 80 m) (Fig. ffl.4e). We



observe a decay of inertial oscillation amplitude by -8 cm s (the corresponding

mixed-layer HKE decrease is 3000 J m2) on the 15 to 17 of January, followed by

an amplitude increase of -13 cm s' (an HKE increase by 5000 J m2 over the next

few days). Inspection of the corresponding mixed-layer phase observations (shown

in next section) does not reveal any significant phase jump, so the additional forcing

on those days was either in or out of phase. Thus, modeling the January event

might only need the superposition of the solution of the two additional events,

assuming linear dynamics; however, we will only model the response to a single

forcing event of January 13.

Although March 1988 was quite a windy month, the slab model indicates that

only the event of March 5 generated considerable inertial oscillations (Fig. ffl.5).

The model indicates that about 4000 J m2 was added to the mixed-layer. Another,

weaker event on March 18 injected less than 1000 J m2 additional energy into the

mixed-layer. The event of March 24 is of small magnitude and does not seem to

have an effect on the mixed-layer currents. It should be noted that the decay of the

slab model energy is not expected to accurately follow the observations.

Finally, on April 2, there is a packet of inertial currents, homogeneous over

60 to 100 meters. A mixed-layer response is also predicted by the slab model.

Since Hma is very variable and often less than 60 m in April (restratification period),

we cannot directly compare the modeled mixed-layer currents with the currents

observed at 60 m. The model also predicts accurately the generation of inertial

currents on May 1st, but not on May 18. Note however that on May 1 the observed

mixed-layer depth is 40-60 meters, while the current meter response suggests a

mixed-layer depth of more than 100 meters. Lacking any information on the actual

stratification profiles, we will defer modeling the April and May events.

The near-inertial response observed during OCEAN STORMS were

compared with the 10-year climatological data analyzed by D'Asaro (1985) at Ocean

Weather Station P (50° N, 145° W). Both the October and March events can be

considered typical of North Pacific fronts, each injecting about 5000 J m of kinetic



energy into the mixed-layer, with impulses of energy fluxes of the order of 100 mW

m2. The January forcing event, being a series of forcings injecting a total of 10000

J m2 into the mixed-layer is stronger than average. The fall period (October-Dec

1987) had an average kinetic energy flux of 0.95 mW m2--less than the

climatological average at station P of about 3 mW m2. The winter period (January-

March 1988) was more active than average with an observed flux of 2.2 mW m2 in

contrast to the climatological average of about 1.8 mW m2. Overall the observed

average inertial kinetic energy flux from September to May (Fig. ifi. 1) was 1.9 mW

m2. D'Asaro (1985) estimated the average flux from September to March to be

2.0-2.5 mW m2. So, the OCEAN STORMS experiment appears to have occurred

during a year in which the near-inertial forcing was typical.
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ffl.5. Numezical Model

ffl.5.a. Description

The observed propagation of near-inertial energy at OCEAN STORMS is

studied in the context of the model developed by in chapter II. This model,

patterned after Gill (1984), is not directly forced by the wind stress, but is set in

motion by the initial conditions. The model then tracks the horizontal and vertical

propagation of near-inertia! waves that result from the initial disturbance.

The model uses linear dynamics on a 3-plane. The solution is analytical in

depth, using vertical modes, and in x (zonal), using Fourier transfonns. The

propagation of each mode is solved numerically using finite differences in both y

(meridional) and time. Velocity profiles are constructed by adding all the modes

used, typically 20.

We assume the initial condition in the mixed-layer is set by the passage of a

fast-moving atmospheric front; below the mixed-layer there is no motion initially.

The oceanic response to a moving front can be described separately for each vertical

mode as a function of the advection speed C of the front and the eigenspeed c of

the mode (Gill, 1982; ch. 9.11). When C <c,,, the equation governing the horizontal

radiation of the mode is elliptical, and the solution decays exponentially from the

center of the storm. When C > c,,, the equation is hyperbolic, and the solution is a

wake of near-inertial oscillations propagating behind the forcing. In this analysis we

assume that C > c1, and hence the equation is hyperbolic for all the modes, since c1

> ; for all n> 1. The mixed-layer response occurs at a horizontal wavenumber K =

f/C and is consistent with a near-inertial wave propagating in the direction of the

storm track. Note that the quantity 27t/K is called the "inertial wavelength" by

Kundu (1985), while D' Asaro (1989) calls 1/K the "advection scale" of the storm.
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The model behavior is determined by the initial conditions. We consider an

initial disturbance dominated by a single horizontal wavenumber of finite horizontal

extent (Fig. 11.1). The horizontal pattern of the initial currents is consistent with a

fast moving front, which differs from the initial condition used by Gill (1984). A

thorough discussion of the model as a function of initial conditions is presented in

chapter 11--some of the results of this study are summarized below.

The initial vertical structure, that is, constant velocity in the mixed-layer and

zero velocity below, is satisfied by the summation of vertical modes. Therefore, the

percent contribution of each mode to the initial velocity profile, , depends on N(z).

It can be shown that also represents the percent contribution of each mode to the

kinetic energy of the whole water column (Gill, 1984). The various N(z) profiles

we used to calculate the mode shapes are shown in Fig. ffl.6a. The modal

coefficients , and the modal eigenspeeds c are shown as function of mode

numbers in Fig. ffl.6b and 6c respectively. Note that the shallow mixed layer in

October (solid line) results in smaller relative weights c for the low modes, and

larger weights for the high modes, than the January and March profiles (dashed

lines). The eigenspeeds of the modes however do not exhibit significant differences

among the various profiles.

After t = 0, each mode begins to oscillate at a different frequency, with the

lower modes having higher frequencies. The modes also begin to propagate

horizontally. To a reasonable approximation, the meridional wavenumber varies in

time as

1(t) = 10-f3t (3)

due to the 3-effect. For small enough initial wavenumber l (reflecting large fronts

propagating fast), the term 13t soon becomes larger and Il(t)I starts growing.

Therefore, due to the dispersion relation (equation 21 in chapter 11), locally the

frequency of each mode increases in time.
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ffl.5 .b. Modal interference (beating)

Vertical propagation of energy in the model can be explained by the

differential frequency of each mode (Gill, 1984). Since each mode oscillates at a

different frequency, their sum will no longer be zero below the mixed-layer after t =

0--hence, vertical propagation of energy. We define the "beating" time scale t when

mode n will become out of phase with the high modes at frequencies near f by

(o,J) (4)

At this time mode n will contribute to the energy below the mixed-layer. Although

the details of the energy exchange cannot be explained by this simple argument, it

provides a framework for interpreting the model results.

The parameters that affect these time scales are fully explored in chapter II; a

few of the most relevant results are presented here. The adoption of a f3-plane

makes the eigenfrequency o of each mode a function of time. Then, as we have

describe in chapter II, the time-scales t become dependent on the initial

wavenumbers. Smaller scale disturbances (high wavenumbers) propagate faster

vertically. In an initially southward-going storm, 1 < 0 the local magnitude of (1)

increases rapidly in time and results in a smaller t than for an initial northward-

going storm (la> 0) whose local Ill goes through zero before finally increasing.

Hence, the timing of vertical propagation is a strong function of initial wavenumber

and is an important point to consider in comparing model and observations.

Ill.5.c. Horizontal departure of modes.

After t=0 the modes propagate horizontally. If the initial condition is of

finite horizontal extent, the modes will eventually propagate out of the region; lower

modes propagating faster. Initially northward-going waves will refract at the turning

latitude and propagate southward before leaving the area. Locally we define the

time scales for mode n to leave due to meridional or zonal propagation by t and

tEW respectively.
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The propagation time scales t and 't" are a strong function of the initial

north-south and east-west extents respectively. In general the smaller the extent of

the storm, the faster the modes leave. When mode 1 leaves, the energy in the

mixed-layer will decrease; the amount of the decay depends on the stratification.

On the other hand the energy below the mixed-layer will often increase, as the

contribution from mode 1 that was needed to set the initial velocity below the

mixed-layer to zero will be absent.

llI.5.d. Initial conditions at Ocean Storms

The initial horizontal wavenumbers generated in the mixed-layer during

OCEAN STORMS were estimated from the advection velocity of the atmospheric

fronts. The speed C and direction i of the storm were estimated from plots of

storm tracks showing the daily position of each front (Lindsay, 1988). Crude

estimates of the initial wavenumber vector (k0,10) were made for each of the 3 storm

events, where k0 = (f IC) cos i, l = (f IC) sin i (Table ifi. 1). In all 3 events the

storms were propagating to the NE with speeds exceeding 10 m s, resulting in

initial wavelengths significantly larger than 500 km. Two additional storm tracks

from the series of storms from January 15 to 19 indicated fast fronts moving at 20

and 35 rn/s to the NE with a corresponding small horizontal wavenumber.

Other estimates of horizontal wavenumber were made for the OCEAN-

STORMS experiment. D' Asaro (1993) used surface drifter data to estimate the

horizontal structure of the mixed-layer near-inertial currents throughout the October

event. His estimates of both k0 and 10 ranged near 0.0025 km', both positive,

suggesting northeast propagation of the generating storm. Qi et al. (1993) combined

mooring data with a ray-tracing method to estimate wavenumber. Our estimates are

consistent with those of the above investigators. The initial amplitude of the

currents in the mixed-layer was set in the model to fit the observations.
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111.6. Observations and Model Companson

We compare the observations with the modeled response for a variety of

initial conditions. All 3 events are shown together to emphasize differences and

similarities. To be consistent in comparing the model results with the observations,

the model was sampled at 4750 N at the same depths where the current meters were

positioned. The modeled data underwent exactly the same analysis as the moored

observations. First we present a general picture of the response by looking at the

temporal change of the vertically integrated energy in the mixed-layer, pycnocline

and deep ocean. This permits an overall comparison of observations with the model

and clearly demonstrates the effect of different initial conditions on the model

behavior. Next the detailed vertical structure is examined; at each depth the

amplitude and phase of the observations and model are compared.

ffl.6.a. Energy Comparison

The observed horizontal kinetic energy (HKE) is shown in the top panels of

Fig. ffl.7 for the 3 events. The HKE of the whole water column (E,), of the mixed-

layer (EMI), and of the pycnocline (E) are plotted. Here the pycnocline is defined

as the layer from below the mixed-layer to 500 m for all events. This definition is

based primarily on availability of observations. The mixed-layer energy is estimated

assuming a constant velocity throughout the mixed-layer. The October estimate of

E from the surface to 35 m is based on nearby surface drifters (D' Asaro, 1993) as

there were no current meters in the mixed-layer at this time. In January and March

the mixed-layer extended to 95 and 110 m respectively and contained at least 2

current meters.

After the storm of 4 October the mixed-layer energy began to decrease very

soon, at least by 8 October when the first mixed-layer data are available (Fig.

ffl.7a). The decrease was steady until 22 October when virtually no energy
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remained. Coincident with this decrease was an increase in the E that began to

rise almost immediately after the storm, reaching a peak on 18 October before

decreasing to very low levels by 30 October. In estimating E we did not include

the current meter at 60 m; the near inertial oscillations at that depth could be

contaminated by vertical advection of the wavefield by the internal tide.

The multiple forcing event of the January storm resulted in a more

complicated mixed-layer response. EML increased initially due to the 12 January

event (Fig. ffl.7b1). The rapid decay on 15-16 January was due to additional forcing

that added destructively to the existing currents. The large increase during the

following few days was apparently due to a forcing event that was in phase with

existing currents and added constructively. Unlike the October event, E did not

increase initially; it took about 7 days before the increase began and 8 more days

until reaching its maximum value. The variability of Er after January 13 follows

very closely the variability of EML.

After the March 5 event, EML remained constant for about 7 days before

beginning to decrease (Fig. ffl.c1). Similar to the January response the increase in

E is coincident with the decrease of EML. E peaks 16 days after the event,

reaching a maximum of 2500 Jm'2, which is 50-60% of the initial EML injected by

the wind. Er on the other hand, remains constant until March 20, and then decays

progressively to reach background levels by the end of the month.

During the January and March events, Er is approximately equal to the sum

of EML and E, since nearly all the energy is concentrated in the upper ocean. In

contrast, in October there is a significant amount of energy below the pycnocline

even before the wind-event (Fig. ffl.7a).

The model results for the 3 events are also shown in Fig. ffl.7. The initial

horizontal wavenumber of the mixed-layer currents was determined from the storm

front velocity as presented in Table ifi. 1. The horizontal extent of the storm was

assumed to be infinite in east-west extent and extend 500 km to the north; there was

no straightforward way to determine these parameters a priori from observations.
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The main features of the model results are similar for the 3 events, since all

events were forced by fronts propagating to the NE. However, the magnitude of the

responses differed in proportion to the forcing of each event. The mixed-layer

energy remained relatively constant for about 8 days before decreasing. The

decrease can be explained by the "beating" of modes 1 (highest frequency) and 2

with the other modes closer to f. The time scale characterizing the first significant

exchange of energy between mixed-layer and pycnocline is t1; however, a greater

change occurs when mode 2 beats at time t2 (Fig. ffl.7.a11,b11,c11).

The magnitude of the decrease of EML in the model at time t, depends on the

relative contribution of mode n to the total solution. At time t1, EML will decrease

to (1_2o.)2 of its initial value (Gill, 1984). The contribution of mode I to the initial

mixed-layer velocity is c10 % for October, compared to 20% for January and

March (Fig. ffi.6). The difference is due to differences in N(z); there was a

shallower mixed-layer in October. Thus, we expect EML to decay by 36% at time t1

during the October event, and by 64% for the other two events, a prediction certified

by the model runs (Fig. ffl.7a1,b11,c11). However, the maximum increase of E and

decrease of E occurs after time t2, since mode 2 is more energetic than mode 1 for

all three stratification profiles (2 )(Fig. ffl.6).

The 7-day delay for the coincident EML decrease and E increase observed

during the January and March events is reproduced by the model, discounting the

more complicated forcing in January. The timing of the October response clearly

does not follow the model, with the observed energy propagating from the mixed-

layer into the pycnocline almost immediately after the forcing event. However, the

energy levels predicted for E are in general similar to the observed for all three

events, including October. Furthermore, the analytically estimated time scales t1 and

t2 seem to characterize the propagation of energy from the mixed-layer to the

pycnocline, for all three events. The observed decrease in Er, occurs at time-scales

predicted by the model, but the magnitude of the decreases are larger in the

observations.
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To explore possible reasons for the differences between the modelled results

and observations, a series of additional model runs were made to examine the effect

of initial wavenumbers and horizontal extent on the solution. The time scales t1 and

t2 are sensitive to the initial meridional wavenumber l; smaller scale disturbances

propagate faster in the vertical resulting in smaller t1 and t2. To examine the effect

of the initial wavenumber on the model results, the sign of l was reversed--

mimicking a storm front propagating to the SE (Fig. ffl.7, In these cases

the time scale of the "beating" t1 is much reduced, resulting in faster propagation

from the mixed-layer into the pycnocline. This is because the magnitude of 1

increases faster if l is negative (1). Clearly the modeled October storm now looks

more like the observations. However, SE propagation is not consistent with realistic

initial conditions (D'Asaro, 1993, Qi, 1993, section 5b of this chapter). The timing

of the observed energy exchange between mixed layer and pycnocline for the

January and March events is consistent with storms propagating to the NE (cases b11,

c11).

The effect of a finite north-south extent used in these model runs is to reduce

the total energy in the water column as modes propagate away. Model runs with

northern extents of LN = 250, 500 and 1000 km are displayed in Fig. ffl.8. The

results are as expected from chapter II. Note that the time-scales t1 and t are not

functions of extent, and only the time scale 1NS grows with increasing extent. The

mixed-layer decays smoothly for LN = 250, the lower modes propagating away

before beating with the high modes. For LN = 1000 km. the beating at t1 is more

pronounced than for LN 500 km. and the time-scale t1NS seems to be longer than

the observed by the decay of the total kinetic energy E, (Fig. ffl.8a,b1,c1). If we

assume that the first major decrease in the observed E occurs at t115 the second

decrease at t2NS etc., then we can treat the northern extent as a parameter and find a

value that is consistent with the observations. For both October and March events,

the decay of ET seem to take place in two stages. The observed decay time scales

suggest that the directly wind-forced mixed-layer oscillations extended between 500



and 1000 km to the north of Cl. The January picture is not so clear, due to the

multiple forcing of the mixed layer; however, a northern extent of 250 km is in the

range of possibilities.

These estimates of LN are based only on comparing the time-scales of the

observed Er decay to the model predictions. However, considering the amount of Er

decay reveals discrepancies between the model and the data. The observed E,. decay

is much greater than would be expected if the decay were attributed to horizontal

propagation of modes away from the area. The modelled Er decays by c3 when

mode n leaves. The observed large decays in all three events, suggests that we

underestimated the magnitude of the low modes in the solution.

A finite zonal extent will also affect the solution. For the NE moving front

in the 3 events examined here a finite western extent L of greater than 900 km

would hardly affect the solution at all during the first 30 days. If a smaller extent

were used, then mode 1, the fastest, would leave sooner and reduce the total energy

Er. The absence of mode 1 would also result in reapportioning the energy--

decreasing EML while increasing E. The model was run for various values of L.

The results, in terms of energy radiated into the pycnocline, look very much like

Fig. ffl.8a1,b1, C11: E never increases enough to improve the agreement with the

observations. The reason is that since the low modes leave early, they never come

into constructive interference with the higher modes into the pycnocline, so as to

produce high E values. Quantitatively, we show in appendix I that while the

decrease of EML associated with mode I beating is by a factor of (l-21)2, the EML

decrease associated with mode 1 departing is only 1-(2-) (we follow the

convention of chapter II where o is the percent contribution of mode 1 to the initial

mixed-layer velocity). As a result, we don't expect finite extent to be the reason for

the fast pumping observed during the October event. The magnitude of modeled E

suggests that modal interference and not departure is the major mechanism of

vertical propagation of energy for the January and March events also.
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ffl.6.b. Possible scenarios

In the previous section the comparison between the observed and modelled

HKE revealed some similarities and differences in the three events. The observed

time-scales characterizing the evolution of the wave fields agree with the analytically

estimated t1 and t2, based on estimates of the initial wavenumber. The events of

Januaty and March show considerable agreement between model and data, although

the model slightly underestimates E at t1 and overestimates it at t2 . Also, the

amount of decay of Er is underestimated by the model. The October event offers

the major discrepancy between model and data, as the inertial pumping seems to

begin too quickly and E peaks too soon. Assuming the relative weighing of the

modes in the model is correct and linear dynamics dominate, southward initial

propagation seem to explain better the observed evolution for October.

However,other investigations (Qi, 1993; D'Asaro, 1993), as well as our estimation of

10,, suggest northward propagation. We explored several hypotheses to determine the

reason for the difference observed between data and model for the October event.

One possibility is the effect of the mesoscale horizontal shear on the near-

inertial wavefield. Investigating that possibility, D' Asaro et al. (1993) compared the

spatial scales of the near-inertial field with the low-frequency relative vorticity field,

both derived from surface drifter observations. The vertical component of relative

vorticity has an order of magnitude of 0.02 f, high enough to affect the horizontal

propagation of the near-inertial waves (Kunze,1985) and inertial pumping

(Wang,1991). However, D'Asaro et al. (1993) argues that since the near-inertial

wave field does not have same spatial scales as , the evolution of the waves was

not dominated by the relative vorticity field. Thus, the interactions of the near-

inertial field with the background mean flow does not appear to explain the

discrepancy between observations and model in the timing of the inertial pumping.
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Another possibility is that the model underestimates the relative weight of the

first and second modes. For both the January and March events, the observed

energy pumped into the pycnocline peaks at time t1 and is larger than predicted by

the model. The modeled E does not reach the observed levels until time t2. The

fact that the model peak at t1 is not as large as observed suggests that the model

underestimates the contribution of mode 1, i.e. , to the wavefield. This

hypothesis is further enforced by the large decrease of Er (Fig. ffl.c1) at time t1

during the March event (Fig. The underestimation of , may also explain

the discrepancy observed in October. Note that the peak in the observed E as well

as the decay of EML (Fig. ffl.7a) take place at time t1 rather than t2, as predicted by

the model for a NE propagating front (Fig. ffl.7a1, 7aj. Also, the observed total

energy Er decays near time; by 20-30% of the initial value. Hence, the

discrepancy between model and observations for all three events might be explained

if mode 1 were 2-3 times more heavily weighted.

What would affect the relative weight of mode 1? The value of y1 is

determined by assuming that the initial condition is a current confined in the mixed

layer. If the stress penetrates into the pycnocline, the initial current would extend

below the mixed-layer and might increase a. We performed numerical experiments

extending the initial condition below the mixed-layer, but in all of them mode 2 was

still more heavily weighted than mode 1, and hence the resulting modelled wave-

field still looked more like Fig. ffl.7a than the observations (Fig. ffl.7a).

Furthermore, the observed E just before the October 4 storm was very near zero,

so the directly forced inertial waves did not extent deeper than 60 m. It is

interesting to notice that the observed Er in the beginning of the October event is

significantly larger than the observed E, a situation that is not repeated in the

January and March events. Pre-existing, small amplitude inertial waves between 500

and 4000 meters during the October event may have affected the relative weighing

of the vertical modes resulting in a very strong first mode. For the January and

March events the observed near-inertial currents were indeed limited to the mixed
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layer as assumed by the model. This may explain the better agreement between

model and data for these events, as the relative weight of mode 1 would not be

much different between observations and model. We performed some numerical

experiments adding deep ocean background inertial currents below the mixed layer

to the initial condition in order to further enhance , but without dramatic effects.

An increase of o to 17% caused by quite strong initial pre-existing currents in the

water column generated a significant E peak at time t1 as expected, but not high

enough to explain the observations. We could not get further increase of o without

using unrealistic initial velocity profile.

ffl.6.c. Detailed comparison

The integrated energy provides a useful overall measure to compare model

and observations; we now present the complete depth dependence of the

observations and model. The detailed observations of the near-inertial response to

the 3 events are shown in Figs. ffl.lOa, 1 la, 12a. Vectors indicate amplitude

(length) and phase (angle) of the near-inertial oscillations relative to local f0;

contours of amplitude are also drawn. An estimate of the wave frequency at each

instrument was obtained from the change of phase of U.. in time; constant phase

indicates a pure inertial frequency f0. The absolute value of phase is of no

importance; however, vertical phase differences are significant.

The vertical propagation of energy from the October event (Fig. ifi. 1 Oa)

appears as a well-defined beam of energy that radiates into the pycnocline. As seen

in the integrated HKE, the increase of E begins immediately after the storm (Fig.

ifi. 7a). During the first 10 days the energy increases throughout the pycnocline--

after 14 October the energy begins to decrease in the upper pycnocline creating an

energy maximum at 100 m. The maximum weakens as it deepens to 140 m by early

November. The wave amplitude does not appear to be modulated by the

stratification, as would be expected if the WKB approximation were valid in the

vertical. The near-inertial signature of the event is traceable down to at least 1000



meters. The observed frequencies are between 1.02-1.05 f0 (Fig. Ill.9a1) with short

periods (2-5 days) of sub-inertial frequencies. The average frequency increases

slowly with depth, resulting in a phase difference between 60 and 195 meters that

grows in time as the beam propagates deeper. After the amplitude at the beam

maximum begins to decrease after October 17, the currents at 60 and 195 meters

have a phase difference of about 120 0

Both the January and March responses appear qualitatively different from the

October beam. In contrast to October the energy generated by the storms did not

penetrate into the pycnocline for 7-8 days. When finally entering the pycnocline,

the near-inertial energy did not appear as a well-defined beam; that is, there was no

pronounced energy maximum with depth as was found in October.

In both January and March the observed mixed-layer frequency remained

quite close to inertial, 1.00-1.01 f0 most of the time (Fig. ffl.9). The vertical

structure of the observed phase is consistent with the downward propagation of

energy -- constant values of phase propagating upwards with time. The phase

difference between 195 m and the mixed-layer varied from 90° to 150°, with a rather

constant increase of phase with depth in-between. In both events there are short

periods of sub-inertial frequency followed by periods of high-frequency currents

(1.03-1.05 f0) in the mixed-layer. The frequency of the pycnocline currents is high,

near 1.05 f0 when the amplitude is increasing (compare Fig. ifi. 11, top panel, and

Fig. ffl.8). When the amplitude stops increasing the frequency drops to 1.00-1.01 f0.

The phase difference between the mixed-layer and the 195 meter currents after the

beam's evolution is around 1200.

The detailed vertical structure of the model for the 3 storm events is shown

in Fig. ffl.lOb, 1 lb. 12b. Since all 3 storms were propagating to the NE, the

modeled responses bear many similarities. One characteristic common to all model

runs is that the peak of the wave amplitude propagates very slowly vertically. The

energy appears to "stick" to the top of the pycnocline. The modeled phases for each

event are shown if Fig. ffl.9. The waves have increasing frequencies with increasing



depth in the upper pycnocline, resulting in phase differences increasing with time

between depths. Both frequency and vertical phase differences are comparable to the

observations. Again, the October event is an exception: the modelled waves at 160

and 195 meters have exceptionally high frequency of 1.05 f0 and so in a month they

develop 3600 phase difference from 60 meters, while the observed phase difference

after the beam passes is near 1500.

ffl.6.d. Modal elimination

The failure of the model to form a downwards propagating beam of waves, is

attributed to the high modes: The low modes, having higher group velocities, soon

propagate southward and leave (Fig. 11.2). The velocity profile then is determined

by the remaining higher modes, whose shapes have maxima below the mixed layer,

and strong vertical shears (Fig. ffl.13).

The observed currents propagate vertically as a beam, and don't stick below

the mixed-layer. Thus, either the high modes have smaller magnitudes, or they lose

strength by some dissipative process. The magnitude of each mode is definitely

determined by the initial condition; lower coefficients for the high modes do not

give satisfactoiy initial profiles. We made some numerical experiments gradually

reducing the coefficients of the high modes, with encouraging results, as the waves

had a tendency to form a beam of downward propagation (Fig. ffl.14). A method of

eliminating the higher modes would be consistent with results by Fjeldstad (1963),

McCreary (1981) and Kundu (1984): They showed that the computation of vertical

modes is possible for an eddy viscocity coefficient v that is inversely proportional to

N2(z). Then, the equations describing the horizontal propagation of each mode are

similar to (15)-(16) in chapter 11, but also have a body friction-like term with a

friction coefficient inversely proportional to the square of the modal eigenspeed, c,2.

For a viscocity like this, the higher modes would soon be dissipated, having higher

friction coefficients, with the life time of each mode increasing with decreasing n.



ffl.7. Summary and conclusions

This paper compares three relatively distinct events of inertial current

generation during the OCEAN-STORMS experiment with results from a linear

numerical model. We focused our attention on the characteristic time-scales of

energy exchange between the mixed-layer and the pycnocline.

A slab model, forced by a local wind time-series, was used to isolate the

wind forcing events of local generation. Three events of strong local forcing were

selected for analysis: October 4, 1987, JanuaTy 13, 1988, and March 5, 1988.

Current meter data were complex demodulated to isolate the near-inertial

response. The observations from each of the selected events were described in terms

of energy exchange between mixed-layer, pycnocline and deeper ocean, as well as in

terms of temporal and vertical structure of the waves.

The three-dimensional, linear model developed in chapter II, was run for

each of the three selected events. To that purpose, the model's stratification and

mixed-layer depths were adjusted to fit the conditions during the events; the

amplitude and horizontal structure of the mixed-layer oscillations immediately after

the forcing had also to be determined as initial conditions. The modeled amplitude

of the initial mixed-layer currents was set to fit observations; the horizontal

wavenumbers were estimated using monthly North Pacific storm-track maps. We

also used initial wavenumbers of different directions, as well as a range of

horizontal extents of the initial conditions, in order to built a framework for

assessing the model's ability to reproduce observed features of the wavefields.

The modeled currents were processed and analyzed exactly like the

observations. We compared model and data in terms of energy exchange between

mixed-layer and pycnocline, as well as structure of the wavefields.

Finally, we proposed physical processes not described by the model that

could be responsible for the areas of failure of the model, to accurately reproduce

the observed wave field.



The observed near-inertial response of the ocean demonstrated some

characteristics common to all cases, and some differences among them:

The time-scale for the energy propagation from the mixed-layer to the

pycnocline, defined as the time for E to reach its maximum, was 13-15

days for all three events. However, the increase started immediately after

the October event, while it was delayed by about a week in the other two

events.

The time for E to return to background levels was 13-15 days for the

October and March events. The decay of E was not clearly defined

during January, due to the multiple atmospheric forcing.

The observed mixed-layer frequencies were 1.00-1.0 1 f0 for 14-20 days,

then fluctuated between 0.0810 and 1.03 f (January, March) (Fig.

ffl.9a1,b1,c1). No estimates of frequency were available for the mixed-layer

in October.

The waves propagated into the pycnocline as a beam (Fig. ffl.lOa, 1 la,

12a). The beam maximum propagated vertically from 60 to 100 m in a

week (October); the distance between 100 and 195 m depth was covered

by the beam maximum in 11 days in Januaiy and 6 days in March.

The frequencies recorded in the pycnocline are higher inside the "beam',

ranging from 1.03 to 1.05 f0, at all events. After the beam is gone, the

frequencies fall to 1.00-1.02 f0. The higher frequencies are associated with

the vertical propagation of the beam.



In all three events, the near-inertial waves of the pycnocline develop

higher frequencies than the mixed layer currents during the passage of the

beam; as a result, vertical phase differences develop that increase in time

as the beam propagates vertically. The resulting phase difference after the

propagation of the beam between 60 and 195 meters is usually 120±300.

The phase propagates upward, consistent with downward propagation of

energy.

We compared the observations with both the numerical model and the

analytical predictions based on linear theory, developed in chapter Il. The main

conclusions from the comparison were:

The overall amount of energy observed radiating from the mixed-layer to

the pycnocline, is reproduced by the model. The magnitude of the

pycnocline energy, E, of the modeled currents, is comparable to the

observed E, for all three events.

The changes of the observed pycnocline energy E occur near the

analytically predicted times t1 and t2 (beating of modes 1 and 2

respectively), calculated using our initial wavenumber estimates for each

event.

There is a trend of the model to slightly underestimate the peak of E at

t7 and overestimate it at t2 for the January and March events. This

disagreement is greatest during the October event; while the model shows

E peaking at time t2 , the observed peaks at t1..



The features of the energy exchange between mixed-layer and pycnocline

for the October and March events suggest that the pumping is due to

modal interference and not due to modal departure. Modal departure may

be important during January.

The detailed vertical structure of the observed currents is different than the

modeled. The modeled currents do not propagate vertically as a beam, but

rather stick to the top 40-50 m of the pycnocline.

The modeled currents have frequencies ranging from slightly sub-inertial

to 1.05 f, and their phase propagates upward, both characteristics of the

observed currents. However, the model fails to reproduce the detailed

temporal and spatial structure of the phase of the observed currents.

We propose some possible explanations for the areas of disagreement

between the model and the data:

The different E values at the predicted time-scales t1 and t2 could be

explained by reapportioning energy to the vertical modes. All events seem

to suggest that the model either greatly (October event) or slightly

(January and March events) underestimates the weight of the first mode.

A more heavily weighted first mode would cause more energy to

propagate to the pycnocline at time t1 . Experiments, like extending the

initial currents below the mixed-layer, or introducing some pre-existing

currents throughout the water column, gave encouraging results,

strengthening mode 1 and enhancing the peak of E at t1, but none

reproduced as high a peak as observed during the October event.



The relative vorticity field of the background currents could also be a

factor of causing the faster-than-expected inertial pumping observed during

the October event.

A method of gradual elimination of the higher modes would generate a

more beam-like vertical propagation of waves. The modal elimination

method is based on dissipating the modes by a body friction caused by

vertical eddy diffusivity.

In this chapter we exhausted the possibilities of a linear model to explain the

structure of the near-inertial waves in the upper ocean. The various numerical

experiments we performed suggested possible explanations for the areas of

disagreement between model and data. The faster-than-predicted inertial pumping in

October might be explained by a very heavily weighted first mode; although we

could not account for such a mode 1 using realistic initial conditions, we cannot

exclude this possibility. Also, a beam-like wave propagation could be reproduced

by a method of gradually eliminating modes. Such a method is consistent with eddy

diffusion dissipating the higher modes; however, further investigation of such

questions would require use of a more flexible model, one that could include non-

linear terms and incorporate mixing.
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Table ffl.1. Horizontal wavenumbers of the directly wind-forced mixed-layer inertial oscillations, forced by the three

selected wind events. The speed and bearing of the fronts have been computed from monthly storm-track maps.

Event Bearing Speed

(ms)
k0'

(km)

1'
(km)

k0

(km)

10

(km)'

October 4 300 16 290 165 0.003 0.006

January 12 450 10 126 122 0.008 0.008

March 3 60° 15 161 262 0.006 0.004

C
a'
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IV. PARAMETERIZING THE DECAY OF MIXED-LAYER

INERTIAL OSCILLATIONS GENERATED BY THE WIND:

A MODIFICATION OF THE SLAB MODEL.
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LV.1. Abstract

Modeling the near-inertial response of the mixed layer to variable wind-

speeds as a solid slab over time-scales of about an inertial period has been a quite

successful way to simulate the generation of mixed-layer inertial oscillations.

However, the method that the model uses to damp the inertial oscillations (a

constant body friction term) does not necessarily represent the dominant process of

extracting kinetic energy from the mixed-layer. In this paper we modify the

parameterization of inertial oscillations' decay by assuming that inertial pumping is

the dominant mechanism of energy transfer from the mixed-layer to the pycnocline.

The new, decay coefficient, r, is found to be a function of latitude, stratification,

mixed-layer depth and horizontal wavenumber of forcing, and to increase

quadratically in time, as opposed to the previous estimates of r' - 4 days, a

constant. Comparison of the slab model results with OCEAN-STORMS

observations reveals a better agreement when using the new parameterization than

the traditional method. This result suggests that the dominant sink of mixed-layer

inertial energy during the OCEAN-STORMS experiment was provided by inertial

pumping, and that the horizontal scales of the forcing were large.



112

P1.2. Introduction

Mixed-layer inertial oscillations are veiy commonly observed in the ocean

(Day and Webster, 1964; Webster, 1968; Lacombe and Gonella, 1964; Hunkins,

1967, and many others). They are usually observed after the passage of a front, a

storm or a hurricane, and they can be very energetic, with amplitudes exceeding 1

m s'. The hodograph of their velocity vector is nearly a circle on the horizontal

plane, and their frequency is very near the local inertial f0. The generation of inertial

currents by the wind, clearly implied by the observations, has been successfully

modelled by Pollard and Millard (1970) and other investigators (e.g. Kundu, 1976;

Pollard, 1980; D'Asaro, 1985; Paduan et aL, 1989). The basic assumptions of the

Pollard-Millard model are: the mixed-layer responds to the wind-stress as a solid,

horizontally homogeneous "slab" over time scales comparable to one inertial period

and longer, and the stress is zero below the mixed-layer. This assumption is

supported both by the very high vertical coherence of the observed mixed-layer

currents, as well as the observed vertical wavenumber spectrum at the low frequency

bands of the Garrett-Munk spectrum (Eriksen, 1988). The slab model (as it is known

in the oceanographic community) has been proven successful in predicting the

generation of mixed-layer inertial oscillations by variations in the wind-stress with

time. We made use of the traditional slab model in chapter ifi.

The decay of the mixed-layer inertial oscillations has been modeled by

Pollard and Millard (1970) (and all the investigators who made use of the slab

model after them) with a body (or Rayleigh) friction, that damps the inertial

oscillations. Since the slab model is inviscid and horizontally homogeneous, the

added friction is the only way to extract energy from the slab, other than the

occasional negative feedback by the wind. Other processes, possible candidates for

sinks of mixed layer energy, like the generation of near-inertial internal gravity

waves, known as inertial pumping (Pollard, 1970; Price, 1983; Gill, 1984; Kundu,

1985, 1986; others) or of high frequency waves (Bell, 1978) are not accounted for
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by the slab model. The result of the body friction damping term is an exponential

decay in time of the horizontal kinetic energy of the inertial oscillations. A constant

decay coefficient r has been used by all investigators, with values for r' usually

ranging from 2 to 8 days, with more common r' = 4 days.

In this note, we modify the decay parameterization of the slab model that

models the energy loss in the mixed layer due to the generation of near-inertial

internal gravity waves by inertial pumping. Appealing to the numerical model of

near-inertial wave generation (chapter II), we propose a new friction coefficient r(t)

that, contrary to the constant r, is compatible with inertial pumping. The quantity

r'(t) is a function of latitude and stratification, and does not require ad hoc tuning.

A short description of the traditional slab model is presented in section 2.

Section 3 provides some insights to the background theory of linear inertial

pumping. Based on those insights, we define a new decay coefficient for the slab

model in section 4, and compare the impulse response of model using the new

coefficient with the old one in section 5. Section 6 compares the impulse response

of the modified slab model to results from a full water column numerical model.

Comparison with mixed-layer current observations are made in section 7. We

summarize our results and conclude in section 8.
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1V.3. The Slab Model

JV.3.a. Dynamics

The slab model is derived from the linear horizontal momentum equations on

a rotating earth:

du 1at
(1)

dv 1&r- +f0u = _- (2)

where (u,v) are the zonal and meridional components of current velocity; ('t',t") are

the zonal and meridional components of stress, Po the seawater density, and f0 is the

constant Coriolis parameter. Horizontal homogeneity has been assumed --- hence,

there are no horizontal gradients and vertical particle velocity w=O. Assuming that

the mixed-layer responds as a slab, and that the stress at the base of the mixed-layer

is a Rayleigh body friction with friction coefficient r, we can integrate (1) and (2)

over the mixed-layer depth Hm. Dividing by Hm yields:

1 x

dt
f0v -ru (3)

p0H,

dv 1 t-rv (4)

dt
f0u

where (t' ,

Y) is the wind stress at the surface.
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Defining Z = u + iv, U) = r + if0, and T = Po' + i't'), we then write (3)

and (4) in one equation:

dZ T
(5)

dt

The solution of (5) is given by:

C

r T(t')
Z(t) = Z(0)et+ edt' (6)

H (ti)
0 mix

where the first term is the solution to the homogeneous equation and the second

term is the particular solution, expressed as a convolution of the impulse response

with the forcing. The above solution includes the directly forced currents and the

generation of inertial oscillations. The constant part of the directly forced current is

the Ekman transport. The free near-inertial response can be isolated by subtracting

the directly forced currents from (5) (D'Asaro, 1985; Paduan et al., 1989):

dL-)
L+(,)Z- _

H) (7)

dt dt

The total solution can then be written

Z(t) = Z(0)et+f-L( T(t')

0
H(t')

Je -(t-t')' (8)
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IIV.3.b. Energetics

The conservation of kinetic energy is obtained by multiplying (3) by p0u and

(4) by p0v and adding:

-
ts2rE

at

where E the horizontal kinetic energy density. The first term on the right hand side

represents the energy flux into the mixed-layer by the wind, and the second term

represents the energy dissipation due to friction. In the absence of wind stress

( = 0) the mixed layer energy decays exponentially in time with a characteristic

time-scale of (2r)'. Based on comparisons with observations, investigators have

estimated (1 to be between 2 and 8 days, with a most common estimate of 4 days

(Pollard and Millard, 1970; D'Asaro, 1985; Paduan, 1989).
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1V.4. Inertial pumping theoiy

Most investigators do not describe the physical process that the Rayleigh

body friction represents in the slab model. D'Asaro (1985) proceeds to explicitly call

r "an artificial damping constant that parameterizes the transfer of energy from the

mixed-layer to the deeper ocean". One could argue that body friction term as used

in the traditional slab model is a crude parameterization for drag acting on the base

of the mixed-layer by turbulent mixing. In this section, we replace r by a time-

dependent r(t), defined to describe the loss of mixed-layer energy by the radiation

of near-inertial waves through the process of inertial pumping. We base the form of

r' on analytical predictions about the evolution of mixed-layer kinetic energy based

on linear internal wave theory, developed in chapter II. The analytical predictions

were tested by comparing with results from a numerical model that describes the

near-inertial waves' propagation over the whole water column.

A short description of the analytical and numerical model developed in

chapter II will help us understand the theoretical framework which will serve as a

basis for modifying the slab model to describe inertial pumping. Both the numerical

model and the analytical predictions are descendants of work done by Gill (1984).

In a comprehensive analysis of the stratified ocean's response to mixed-layer

currents, Gill showed that for the process of inertial pumping to efficiently extract

energy from the mixed-layer, the horizontal scales of the wavefield should be

comparable to the baroclinic Rossby radius. In that analysis, the energy of the

initial mixed layer velocity field is distributed into vertical normal modes. AU

modes initially start rn-phase in the mixed-layer and their sum is zero in the

pycnocline. Thus initially there are currents only in the mixed-layer. Each vertical

normal mode is characterized by an eigenspeed c. The relative contribution, o, of

each mode to the initial mixed-layer velocity is determined by the assumption that

the initial currents are restricted to the mixed-layer.



Then, using Gill's normalization, we get:

f4(z)dz
a=

fct(z)dz
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(10)

where H is the ocean depth, and (z) is the non-dimensional eigenfunction defining

the shape of each mode. For constant N, 1
2 Hm / H. For a more typical,

exponential-like stratification profile, we can approximate by o (10 / H.

For a typical H = 4000 m, may vary from 0.05 to 0.37. Gill has showed that

represents not only the relative contribution of each mode to the initial mixed-layer

velocity, but also the fraction of the mode's contribution to the energy of the whole

water column. It can also be shown that the contribution of each mode to the

energy of the mixed-layer is

Gill's model is two-dimensional (depth and meridional), but here we will

include the zonal direction following the analysis in chapter II. Each baroclinic

mode follows the dispersion relation

(i) Jc(k2l2) (11)

where o the frequency of each mode, and k, I the zonal and meridional

wavenumbers respectively. The lower the baroclinic mode, the higher its eigenspeed

c and frequency.

As each mode has a different frequency and all modes start in phase in the

mixed-layer, eventually the first mode will become out-of-phase with the higher

modes (which rotate very near f0) in the mixed-layer, and in-phase in the pycnocline.

The frequency of the first mode is greater than the very high modes by
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c(k2+l2) (12)

(01-f0

and a phase difference of it in the mixed-layer develops in time

=
2itf0

1

c,(k2+l2)

(13)

Hence, in time t1 mode 1 interferes destructively with the other modes in the mixed-

layer, reducing the velocity by a factor of l-2, and the energy by (12)2 of the

initial value (Gill, 1984). So, for H = 4000 m, and Hmu, = 20 to 150 m, the mixed-

layer energy will decay from 0.81 to 0.07 of its initial value in t1.

One drawback of this analysis by Gill (1984) is that the atmospheric scales

are generally many times larger than the baroclinic Rossby radius. The horizontal

scales of observed near-inertial waves are often many times smaller than the scales

of the forcing. To explain this behavior, D'Asaro (1989) showed that on a 13-plane

the meridional wavenumber of a freely propagating near-inertial wave will follow

I = 10
(14)

where 1 the initial wavenumber set by the atmospheric forcing and 13 df/dy, the

rate of change of the Coriolis parameter with latitude. The above relation can be

easily derived by ray theoiy (see chapter H) and explains the equatorward refraction

and increase of wavenumber displayed by near-inertial waves (Anderson and Gill,

1983). In chapter II, we incorporated (13) in our analysis of a three-dimensional,

13-plane model, and showed that it can be used reliably in (12) to estimate time-

scales of energy exchange between the mixed-layer and the pycnocline. Therefore,

the time-scale for mixed-layer energy decay due to the first mode can be written

from (12) and (13) as:



tl =
2if0

c[k + (l -t1)2]

120

(15)

As showed in chapter H, the smallest positive real root of (14) defines the time-scale

for the first energy exchange between mixed-layer and pycnocline due to the

interference of mode 1 with high modes.



121 

IV.5. Modification of the fnclion coefficient 

Since mode 1 often makes a dominant contribution to the mixed-layer 

velocity, we choose t1 to parameterize the decay time scale. We modify the constant 

friction coefficient r of the slab model to produce a decay time scale compatible 

with predictions on a -p1ane for energy flux to the deep ocean and pycnocline by 

near-inertial internal gravity waves. To make the decay time scale in the slab model 

(f') comparable to the time-scale for inertial pumping t1 on a f-plane (14) 
, we 

simply replace r by r', defined by 

r'(t) 
2. 

c[k+(10_pt)2} (16) 

2rtj 

Note that r' as defined by (15), is no longer constant, but rather a quadratic function 

of time. Assuming no energy flux from the wind, the energy equation (9) becomes 

which has the solution 

By defining 

2r'(t)E (17) 

dt 

_2fr'(t)dt' (18) 
E(t) = E(0)e 

t 

R(t) fr'(t')dt' (19) 

0 
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(20)

(21)

It is useful to define a complex phase (t) r(t) + if0t. The solution (6)

then becomes

r

T(t')
(22)

Z(t) = Z(0)e° + I e_t_t')dt
H (t)

0 mix'

We can easily retrieve the Pollard-Millard solution by replacing (t) by et =

(r+if0)t, where r, f0 are constants. Because the newly defined (t) is a complicated

function of time, it is not possible to retrieve separate analytic expressions for

directly forced and near-inertial waves, as was done in (8).



123

LV.6. Comparison of impulse responses of r and r'(t)

The decay of mixed-layer energy generated by an impulse wind is shown in

Fig. IV. 1. The decay has been calculated for a constant r = (4 days)' and r'(t) for 10

+0.005 km', 0 km, -0.005 km'. All calculations involving r(t) were done

using k0 = 0 and c1 = 2.6 m s' at a latitude of 500. The value of c1 is typical for

open ocean mid-latitude stratification profiles (see chapter II).

The decay based on r'(t) is no longer exponential, but has a bell-like shape.

The energy remains in the mixed-layer longer if the propagation of the initial

oscillations were northward, shorter if the propagation were southward. The effect

of the new response function can affect not only to the decay of mixed-layer

oscillations, but also to their generation; this can be deduced by (9) by assuming

subsequent wind-forcings in shorter time than 10 days. If the additional forcing

induces oscillations in-phase with the pre-existing, we have increased energy flux

into the mixed-layer by (9). If the opposite happens, the wind can extract energy

from the mixed-layer. An exponential decay of the mixed-layer energy would

greatly reduce the effect of consecutive forcings, by underestimating the amplitude

of the pre-existing mixed-layer currents.
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1V.7. Compaiison with a numencal model on a n-plane

IV.7.a. Comparison utilizing (15)

In order to assess the performance of our parameterization (20) and its use in

a slab model (21), we compare the mixed layer's energy decay expected by (19)

with the decay predicted by a numerical model that accurately describes linear

inertial pumping, developed in chapter II. We compare the decay expected by the

slab-model with the full water column model runs, for various mixed-layer depths

and northern extents LN of the initial conditions (Fig. P1.2). Note that r'(t), as

defined by (15), is not an explicit function of Hm, or the horizontal northern extent

LN of the initial conditions. There is only a very small variation of c, from 2.3 to

2.8 m s' for the shallowest to the deepest mixed-layer cases respectively. Thus, in

Fig. P1.2, the decay of the mixed-layer energy based on the slab model is essentially

the same for all cases. For both slab and numerical model we have used k0 l = 0

at a latitude of 50°, for all cases. As a sensitivity test, slab-model predictions for

an r reduced by a factor of (2it)' are also shown.

Figure P1.2 shows some variation of the numerical model results for different

values of LN. We showed that the phenomenon of inertial beating (section 3;

chapter 11.3) will occur when the northern extent L of the initial conditions is so

large that the low modes propagating from high latitudes, develop a phase difference

of it with the native high modes before they have propagated away. If LN is too

small, the process that dominates the transfer of energy vertically is not modal

interference, but rather horizontal departure of the modes. Note that for the

parameters used in Fig. P1.2, LN shorter than 250 km would result in faster decay of.

mixed-layer energy. However, in that case, an initial wavenumber 10 0 would not

be appropriate, and an equivalent higher wavenumber should be used to describe the

fast change of initial conditions with latitude. A high, southward meridional

wavenumber would also cause the slab model prediction to be shorter (Fig. P1.1).
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Fig. IV.2 also reveals that the evolution of the mixed-layer energy decay in

the numerical model is sensitive to Hm This is due to the differences in the

relative contribution of each mode a (section 3); the propagation speeds and

frequencies of the modes are only slightly affected (chapter ll.4c). In deep mixed-

layer cases, modes 1 and 2 contain as much as 60 % of the velocity field, while for

shallow mixed-layers the contribution may be only 25 %.

Hence the differences between slab and numerical models are not sensitive to

LN variations, but are dependent on Hm. The slab-model predictions underestimate

the energy decay for deep mixed layers, while slightly overestimate it for shallow

mixed-layers. For a 50 m mixed layer, the slab-model agrees well with predictions

for all northern extents LN > 250 km.

IV.7.b. Accounting for the effect of mixed-layer depth

To account for variations in Hm, we fine-tune the parameter r'(t).

Although the time-scale t1 is not very different for varying Hm, the amount of

energy that leaves the mixed-layer at that time is larger for deep mixed layers.

Hence, we modify the decay time-scale in order to account for the relative

magnitude of the low modes, specifically a. Note that the expected change in f(t)

over the range of Hm, will be a factor of 10 at most (Fig. IV.2), with the agreement

seeming the best near Hm = 50 m. We chose to normalize r'(t) by the ratio Hmü/50

m. The effect would be delaying the decay for shallower mixed-layers and

accelerating it for deeper mixed-layers; thus, a new parameterization for r' will be:

(

H77) C [(k(l0_pt)2] (23)r(t)
50m 2'tf0

The energy decay estimated using the new parameterization (23) is compared

with the numerical model in Fig. IV.3; the dependence on mixed-layer depth has

been successfully modeled.
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IV.8. Companson with observations

In order to further assess the performance of the proposed parameterization

of r'(t), we compare simulated currents with observations. The OCEAN-STORMS

experiment was held in the N.E. Pacific Ocean from August 1987 to July 1988.

Observations of the oceanic response to strong atmospheric forcing was made with a

variety of instruments. A subsurface mooring was deployed at 47° 25.4' N, 139°

17.8' W, with a series of current meters extending from 60 to 4000 m depth. Of

special interest to this paper is the current meter located at 60 m, that recorded the

mixed-layer oscillations from mid-November 1987 to the beginning of May of 1988,

when the mixed-layer extended deeper than 60 m. An Aanderaa TR-1 thermistor

chain, located on a mooring about 55 km to the west, provided hourly measurements

of temperature between the depths of 9 and 109 m, at intervals of 10 m. We used

the thermistor chain measurements to monitor the mixed-layer depth as it evolved in

time. A time-series of wind speed at a height of 4 m was recorded by an

anemometer positioned on a surface mooring 17 kin to the north. The wind speed

was converted to surface wind-stress assuming neutral stratification for the lower

part of the atmosphere (Smith, 1988).

The observed and modeled near-inertial mixed-layer currents are shown in

Fig. IV.4. Both observed and modeled time-series were complex demodulated

around a frequency of 0.0625 cph using a boxcar window. The phase estimates

were backrotated so that constant phase in time suggests a perfect inertial oscillation.

The slab model (21) was forced by the observed time series of wind-stress

and mixed layer depth. The modeled response for two values of r = constant of (

4 days )' and (15 days )' is shown in Fig. IV.4a. The response of the model using

the new time-dependent parameterizations, with and without the Hm dependence is

shown in Fig. IV.4.b. In the time-dependent r'(t) cases, we assumed k0(t), 10(t) = 0.
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The currents modeled using the new pararneterizations are in a much better

agreement with the observed current at 60 m than the current modeled using a

constant friction parameter r. This can be seen especially immediately after a major

forcing event, such as December 3, January 15, March 5; the modeled magnitudes

for r constant are significantly lower than the observed (Fig. IV.4a). We attribute

the improvement to the better agreement of the mixed-layer kinetic energy decay

using r'(t) with inertial pumping theoiy (Fig. IV.2). Equation (9) shows that the

energy flux from the wind to the mixed-layer is given by I1, where CT is the

preexisting mixed-layer current from all earlier forcings. For a constant r

coefficient, the pre-existing currents have been decaying exponentially in time; for

the time-varying r, the decay is bell-shaped (Fig. IV. 1). The result of the

exponential decay of ii for constant r, is that the time that , can resonate with large

it values is greatly shortened, thus underestimating the energy flux into the ocean.

There is no significant difference between the runs of the new

parameterization with and without Hm; the model does not seem to be very

sensitive to the fine-tuning we performed in (23).

We used complex correlations (Kundu, 1976) to quantify the agreement

between observations and modelled data. The correlations were calculated on hourly

data; we also estimated the correlation on the demodulated estimates. The complex

correlation of the unfiltered series gave a coefficient of 0.79 for the model results

using r(t), with a phase of -15°; the corresponding results for both the constant r

runs displayed in Fig. IV.4a were 0.72-0.73 and 12-19°. The correlation of the

filtered series was improved: the correlation coefficient had a 0.88 amplitude and --

160 phase for the model runs using r'(t) and r(t, Hm), while the respective values

were -0.81 and from 130 to 210 for the constant r model runs. The phase signifies

the counterclockwise angle that the modeled data lead observations. The higher

correlation of the filtered data can be attributed to the extraction of non-inertial

motions from the current-meter record. The correlation phase of near 150 is

consistent with the rotation of an inertial oscillation in about 40 minutes.
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IV.9. Summary and Discussion

We replaced the constant Rayleigh friction coefficient used in the traditional

slab models with a time-dependent one. The modification was based on the

assumption that inertial pumping is the main contributor to the decay of mixed-layer

near-inertial kinetic energy.

The modification was tested and fine-tuned by comparison to a numerical

model, describing the inertial pumping process. The new parameterization agrees

with the numerical model for various wavenumbers and horizontal extents of the

initial mixed-layer inertial oscillations, and can be fine-tuned to account for varying

mixed-layer depths.

We assessed the new parameterization by comparing slab-model runs with

data from the OCEAN-STORMS experiment. The agreement was very good; the

success of the new parameterization is enhanced by the fact that, contrary to the

constant body friction coefficient method, it does not require any kind of tuning or

fitting with data. Fine-tuning to account for varying Hm requires some amount of

fitting, but the first order estimate of rdoes not.

The better agreement using the new parameterization suggests that the major

mechanism responsible for the decay of mixed-layer horizontal kinetic energy during

the OCEAN-STORMS experiment was inertial pumping.

The fact that the model runs with Ic0 = 1 0 suggest that the majority of the

forcing fronts during the experiment were of large horizontal scale, or that the model

is not very sensitive to small horizontal wavenumber variations.

The new parameterization describes one possible process of extracting near-

inertial kinetic energy from the mixed-layer, the process of inertial pumping. The

traditional, constant r parameterization is more compatible with another possible sink

of energy, that is through turbulent stresses at the base of the mixed-layer. We ran

the slab-model with both parameterizations to propose that inertial pumping probable

the dominant process of mixed layer kinetic energy decay. Similar use of the model
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in other data sets could reveal otherwise. One possible area that we don't expect

inertial pumping to be the dominant mechanism of mixed-layer inertial oscillations

decay is the high latitudes. In chapter II we showed that the expected time-scales of

decay due to inertial pumping grow very large near the arctic circles. That could

leave other candidates for effective sinks of mixed-layer energy: Besides the

mechanisms already described above, there are non-linear transfers of energy to

higher internal wave frequency bands (Broutman and Young, 1986, Flatté et al.,

1985, Henyey et al., 1986) as well as linear forcing of high-frequency and

wavenumber internal waves (Bell, 1978). A possible different parameterization of

the slab model for every process might provide a tool for diagnosing the dominant

processes of mixed-layer inertial kinetic energy at various circumstances and areas

of the world ocean.



10 20 30

Days

Fig. IV.1 : Comparison of mixed-layer near-inertial horizontal kinetic energy decay

using r = (4 days)4 (dotted line, o); r (t, 1 = (+0.005 km)1 ) (light line);

r'(t; 1 = 0 km' ) (heavy line) and r(t, 10 = (-0.005 km)' ) (dashed line). All

calculations involving r'(t) were done using k0 = 0 and c1 = 2.6 m s' at a latitude

of 500.
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Fig. P/.2 : Comparison of slab-model runs for r'(t) defined by (16) (dotted line, o

o o o), an r'(t) smaller than (20) by 2it (dotted line, v v v v), r = (4 days)'

(dashed line), and full water column model runs (heavy line). In the full model runs,

we vary northern extent LN (by column, left to right, 1000, 500, and 250 1cm) and

mixed-layer depth H, (by row, top to bottom 150, 100, 50 and 25 m). For both

models, we have used k0 = '0 = 0.
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in the same way as in Fig. P7.2. For both models, we have used k0 = 1 = 0.
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V. GENERAL CONCLUSIONS
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In chapter II of this study we address the problem of vertical and horizontal

radiation of near-inertial internal gravity waves from the mixed-layer. We assume

that the initial currents are concentrated in the mixed-layer and have a horizontal

structure set by the horizontal advection of a large atmospheric front over the ocean

surface. The radiation of the wavefield is assumed consistent with linear, inviscid

dynamics on a -p1ane (section 11.2). The wave evolution is calculated using a

numerical model. The main conclusions from this chapter are:

The model results agree with predictions based on analytical linear wave theory

on a p-plane. The association of the numerical model and analytical theory

permits predictions of many features of the wave evolution without the need to

run the numerical model.

The horizontal propagation of modes at distinct speeds causes vertical

propagation of energy through two mechanisms: Modal interference and modal

departure.

When the initial mixed-layer currents have a large horizontal extent (LN> 500

km), the vertical propagation of energy is caused by the interference of modes

characterized by different frequencies (inertial beating). if t represents the time

of inertial beating of mode n, the beating of mode 1 at t1 marks the first time of

effective vertical propagation of energy. The value of t depends greatly on the

initial wavenumber of the currents in the mixed layer. The p-effect causes a

great difference in t between an initially northward or southward propagating

front--inertial beating occurs sooner for a southward going front (Fig. 11.3a).

For initial conditions of short horizontal extent (LN < 250 km), the dominant

cause of vertical propagation of energy is the successive departure of modes

from the generation area. To characterize the time scales of this process, we

have defined Ns and tEW to represent the times when mode n leaves y = 0

due to horizontal propagation. These time scales are a function of the
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horizontal extent of the storm as well as the initial wavenumber (Fig. II.3b).

Beside the initial wavenumber all the time scales are affected by the modal

eigenspeeds c,, and the value of f0 which are functions of stratification and

latitude. We estimated that the evolution of the near-inertial waves varies from

a few days at low latitudes to several weeks at high (Fig. 11.11).

In addition to the time scales the modal decomposition of the wavefield is

needed to determine the quantitative effect of the inertial beating and horizontal

propagation. For example, if mode 1 is a large fraction of the total energy (

large), then the vertical propagation at t1 will be significant. The modal

composition is set by the stratification. The deeper the mixed layer the larger

the mode 1 contribution. Hence the energy transfers at times t1 and 1NS are

more dramatic for deeper mixed layer (Fig. 11.8).

From the two processes described by the model, it is modal interference that

can be associated with the frequently observed intermittency of the near-inertial

waves. When the modal departure is the dominant mechanism of downward

propagation of energy, there is no intermittency ("beating") observed (Fig. 11.8).

The interrnittency can also be traced in the currents' phase, as short periods of

sub-inertial frequencies, coincident with amplitude minima (Fig. 11.9).

The three-dimensional model developed in this chapter provided us with

confidence of the ability of analytical theory to describe the evolution of the inertial

wavefield generated by a large, fast storm propagating at any direction. However, in

order to assess the validity of either model or theory, a comparison with oceanic

observations is needed. The validity of the present analysis can also be tested by

the development of a simple model forced by wind-stress, where the decay of the

mixed-layer oscillations is consistent with the predictions developed here. Chapters

ifi and IV of this thesis were both steps to that direction.

In Chapter ifi we compared three relatively distinct events of inertial current
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generation during the OCEAN-STORMS experiment with results from a linear

numerical model. We focused our attention on the characteristic time-scales of

energy exchange between the mixed-layer and the pycnocline.

The observed near-inertial response of the ocean demonstrated some

characteristics common to all cases, and some differences among them:

The time-scale for the energy propagation from the mixed-layer to the

pycnocline, defined as the time for E to reach its maximum, was 13-15 days

for all three events. However, the increase started immediately after the

October event, while it was delayed by about a week in the other two events.

The time for E to return to background levels was 13-15 days for the October

and March events. The decay of E was not clearly defined during Januaiy,

due to the multiple atmospheric forcing.

The observed mixed-layer frequencies were 1.00-1.0 1 f0 for 14-20 days, then

fluctuated between 0.08 f0 and 1.03 f0 (January, March) (Fig. ffl.9a,b1,c1). No

estimates of frequency were available for the mixed-layer in October.

The waves propagated into the pycnocline as a beam (Fig. ffl.lOa, 1 la, 12a).

The beam maximum propagated vertically from 60 to 100 m in a week

(October); the distance between 100 and 195 m depth was covered by the beam

maximum in 11 days in January and 6 days in March.

The frequencies recorded in the pycnocline are higher inside the 'beam', ranging

from 1.03 to 1.05 f0, at all events. After the beam is gone, the frequencies fall

to 1.00-1.02 f0. The higher frequencies are associated with the vertical

propagation of the beam.

In all three events, the near-inertial waves of the pycnocline develop higher

frequencies than the mixed layer currents during the passage of the beam; as a

result, vertical phase differences develop that increase in time as the beam

propagates vertically. The resulting phase difference after the propagation of

the beam between 60 and 195 meters is usually 120±30°. The phase propagates
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upward, consistent with downward propagation of energy.

We compared the observations with both the numerical model and the

analytical predictions based on linear theoiy, developed in chapter II. The main

conclusions from the comparison were:

The overall amount of energy observed radiating from the mixed-layer to the

pycnocline, is reproduced by the model. The magnitude of the pycnocline

energy, E, of the modeled currents, is comparable to the observed E, for all

three events.

The changes of the observed pycnocline energy E occur near the analytically

predicted times t1 and t2 (beating of modes 1 and 2 respectively), calculated

using our initial wavenumber estimates for each event.

There is a trend of the model to slightly underestimate the peak of E at t1 and

overestimate it at t2 for the January and March events. This disagreement is

greatest during the October event; while the model shows E peaking at time

t2, the observed peaks at t1..

The features of the energy exchange between mixed-layer and pycnocline for

the October and March events suggest that the pumping is due to modal

interference and not due to modal departure. Modal departure may be important

during January.

The detailed vertical structure of the'observed currents is different than the

modeled. The modeled currents do not propagate vertically as a beam, but

rather stick to the top 40-50 m of the pycnocline.

The modeled currents have frequencies ranging from slightly sub-inertial to

1.05 f,
and their phase propagates upward, both characteristics of the observed

currents. However, the model fails to reproduce the detailed temporal and

spatial structure of the phase of the observed currents.
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From chapter ifi, we have learned that while linear dynamics is adequate to

estimate characteristic time scales and coarse features of near-inertial waves, we

need to include more complicated dynamics to explain the detailed structure of the

wave fields.

Finally, in chapter IV, we modified the slab model of generation of mixed-

layer inertial oscillations by the wind to account for decay due to inertial pumping

on a f3-plane. The constant Rayleigh friction coefficient of the traditional slab

models was replaced with a time-dependent coefficient, parameterizing internal wave

radiation to the pycnocline.. The main conclusions from this chapter are:

The new parameterization was assessed by comparing slab-model runs with

data from the OCEAN-STORMS experiment. The agreement was very good;

the success of the new parameterization is enhanced by the fact that, contrary to

the constant body friction coefficient method, it does not require any kind of

tuning or fitting with data. Fine-tuning to account for varying Hm, requires

some amount of fitting, but a first-order estimate does not.

The better agreement using the new parameterization suggests that the major

mechanism responsible for the decay of mixed-layer horizontal kinetic energy

during the OCEAN-STORMS experiment was inertial pumping.

The fact that the runs were performed with k0 10 = 0 suggest that the majority

of the forcing fronts during the experiment were of large horizontal scale, or

that the model is not very sensitive to small horizontal wavenumber variations.

We believe it is possible to employ the slab model in different areas of the world

ocean to identify dominant mechanisms of mixed-layer near-inertial energy decay.
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Orthogonality and energetics for the modes.

From equations (10) and (11) of chapter II, we can retrieve the orthogonality

conditions for the vertical modes of the horizontal and vertical components of

velocity respectively. For the horizontal component modes , we get

= 0

while, for the vertical velocity modes ii we get

I N2(Z)lIIn(Z)*m(Z)dZ =

Using the orthogonality conditions for the horizontal velocity, and the initial velocity

profile (13) from chapter II, we can retrieve the formula describing the contribution

of each mode to the initial velocity profile:

on

fS(z)4(z)dz
mix

f4(z)dz f(z)dz

G84 has showed that also describes the contribution of each mode to the energy

of the whole water column. The contribution of each mode to the mixed-layer

initial energy however, is given by
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['
o4(z)J

{'
a(z)oU_n)]

1_{E
ajö_n)f = a(2-o)

j=1

since (z) = 1, for Hm <z < 0. These estimates allow us to calculate the decay

of mixed-layer energy due to modal "beating" and compare it to the decay due to

modal "departure".

For example, when mode 1 "beats" with the high modes at time t1, the

normalized velocity amplitude in the mixed-layer is 1-2, and the mixed-layer

energy is (12)2 (Gill, 1984). On the contrary, if at time 1Ns or t1EW mode 1

leaves the area before beating, the mixed-layer energy becomes l-(2-). Note

that the mixed-layer energy decays faster due to modal interference than due to

modal departure.




