
Geophys. J. Int. (2012) 189, 400–413 doi: 10.1111/j.1365-246X.2012.05351.x

G
JI

G
ra

vi
ty

,
ge

o
de

sy
an

d
ti
de

s

Fortnightly Earth rotation, ocean tides and mantle anelasticity

Richard D. Ray1 and Gary D. Egbert2
1NASA Goddard Space Flight Center, Greenbelt, MD, USA. E-mail: richard.ray@nasa.gov
2College of Oceanic & Atmospheric Sciences, Oregon State University, Corvallis, OR, USA

Accepted 2011 December 16. Received 2011 December 16; in original form 2011 May 9

S U M M A R Y
This study of the fortnightly Mf tide comprises three main topics: (1) a new determination
of the fortnightly component of polar motion and length of day (LOD) from a multidecade
time-series of observed space-geodetic data; (2) the use of the polar motion determination
as one constraint in the development of a hydrodynamic ocean model of the Mf tide and (3)
the use of these results to place new constraints on mantle anelasticity at the Mf tidal period.
Our model of the Mf ocean tide assimilates more than 14 years of altimeter data from the
Topex/Poseidon and Jason-1 satellites. Because the Mf altimetric signal-to-noise ratio is very
small, it is critical that altimeter data not be overweighted. The polar motion data, plus tide-
gauge data and independent altimeter data, give useful additional information, with only the
polar motion putting constraints on tidal current velocities. The resulting ocean-tide model,
plus the dominant elastic body tide, leaves a small residual in observed LOD caused by mantle
anelasticity. The inferred effective tidal Q of the anelastic body tide is 90 and is in line with a
ωα frequency dependence with α in the range 0.2–0.3.
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1 I N T RO D U C T I O N

The near-fortnightly tide Mf, of period 13.66 d, is the largest of
the zonally symmetric, long-period tides. Like all the long-period
lunar tides, it may be thought of as a time-varying modulation of
the Earth’s permanent tide M0. In the case of Mf, the modulation
arises from the twice monthly excursion of the moon off the Earth’s
equator. The Mf time dependence is cos 2s, where s is the mean
longitude of the moon relative to the equinox.

At the Earth’s surface, the Mf tidal potential is given by
(Cartwright & Tayler 1971)

�(θ, t) = √
(5/16π ) (1 − 3 cos2 θ ) V0 cos 2s, (1)

where θ is colatitude and the amplitude V 0 is 0.65258 m2 s−2

(Table A1). The zonal symmetry of (1) induces a body tide that
modulates the Earth’s flattening, producing relatively large varia-
tions in length of day (LOD), with amplitude of order 0.4 ms.

To the extent that the Earth’s response to the potential (1) is
homogeneous there can be no Mf excitation of polar motion. The
Earth’s response, however, is not perfectly homogeneous, the largest
inhomogeneity in this case being caused by the ocean. On theoretical
grounds, one therefore expects that the Mf ocean tide induces a small
variation in polar motion at 13.66 d. The first observational evidence
of this was reported by Chao (1994) and Gross et al. (1996). The
most complete analysis to date is by Gross (2009). The signal-
to-noise ratio is small. We are motivated to re-examine the topic
by some technical analysis details and also by the availability of
newly released, consistent models of non-tidal angular momentum

corrections (Dobslaw et al. 2010). These topics are addressed in
Section 2.

One potentially important application of a refined estimate of
fortnightly polar motion is that it provides a globally integrated
constraint on models of the fortnightly ocean tide. This application
may seem surprising in an age of satellite altimetry, in which de-
terminations of all tides, including Mf (Egbert & Ray 2003), have
markedly grown ever more accurate (e.g. Le Provost 2001). Yet
while tidal elevations are well constrained by the near-global al-
timeter data, there are hardly any useful constraints on global tidal
currents. For barotropic models of the short-period tides the lack
of accurate tidal current measurements, while unfortunate, may not
be critical; recent models, constrained only by altimetry, agree well
with precise acoustic-tomographic measurements of currents (e.g.
Dushaw et al. 1997; Ray 2001). The situation with long-period
tides is quite different. Because of their low frequencies (relative
to the sidereal frequency), long-period tides tend to be dominated
by vorticity modes that are not well constrained by elevation mea-
surements. Global angular momentum may therefore be a valuable
model constraint. In Section 4, we develop a series of Mf ocean-tide
solutions by assimilating over 14 years of Topex/Poseidon (T/P) and
Jason-1 data into a global barotropic model, and we consider what
constraints are imposed by the polar motion data.

An important application of a refined model of the fortnightly
ocean tide is, in turn, that it provides a crucial correction when
inferring mantle anelasticity from measurements of LOD. Tidal
variations in LOD are one of the few mechanisms for probing
the solid Earth at frequencies outside the seismic band, but the

400 C© 2012 The Authors

Geophysical Journal International C© 2012 RAS

Geophysical Journal International



Mf tides and anelasticity 401

ocean-tide and elastic body-tide effects on LOD dominate the
anelastic effect. Estimates of fortnightly variations in LOD have
existed for some time (e.g. Guinot 1970; Yoder et al. 1981; Hefty &
Capitaine 1990; Robertson et al. 1994; Chao et al. 1995). We update
and compare these estimates in Section 3. Implications regarding
anelastic effects in the Earth’s body tide are explored in Section 5.

In each section, we arrive at new estimates of some fundamental
quantity related to the Mf tide. All quoted uncertainties throughout
this paper correspond to one standard error.

2 F O RT N I G H T LY P O L A R M O T I O N

This section concentrates on the determination of 13.66-d term in
the Earth’s polar motion.

Throughout this section, we routinely convert back and forth
between polar motion and polar motion excitation. The former is
denoted by the complex number p = p1 + ip2, where p1 and p2

mark the location of the celestial ephemeris pole with respect to a
body-fixed rotating frame, with p1 the distance along the Greenwich
meridian and p2 along 90◦E, and similarly for excitation χ = χ 1 +
iχ 2. For motions significantly longer than a day, p and χ are related
by (e.g. Gross 2007)

p(t) + i

σc

dp(t)

dt
= χ (t), (2)

where σ c is the complex frequency of the Chandler Wobble, which
we take as 2π f c(1 + i/2Qc) where f c is 1 cycle per 434 d and Qc is
50 (Furuya & Chao 1996). The frequency-domain analogue of (2)
is

p̃(ω)

(
1 − ω

σc

)
= χ̃ (ω). (3)

In practice, one must relax (3) at high frequencies to avoid undue
noise magnification; a well-behaved digital filter is given by Wilson
(1985). At the frequency ω of the Mf tide, the quantity in parentheses
in (3) is very roughly 31, so a quick rule of thumb for converting
the Mf excitation magnitude in mas to polar motion magnitude in
µas is to multiply χ by 30.

2.1 Polar motion data

The polar motion data used in this study are the SPACE2008 time-
series produced by Ratcliff & Gross (2010) from various space-
geodetic Earth orientation measurements. The method employs a
specially designed Kalman filter (Gross et al. 1998) to combine the
disparate types of measurements and to produce a time-series with
daily sampling interval; see also Morabito et al. (1988) and Gross
(2000). The time-series extends from 1976 until middle 2009.

Fig. 1 shows the estimated standard errors in the daily
x-component of polar motion. There is a clear and impressive error
reduction over the course of the space-geodetic series, with errors
dropping below 1 mas after 1983 and below 0.1 mas after about
1993. The present-day noise floor is roughly 0.04 mas in both x and
y-components.

The degree of smoothing performed by the Kalman filter depends
on the accuracy and sampling interval of the original space-geodetic
data (Morabito et al. 1988). The filter effect and its possible atten-
uation of signal in certain frequency bands is most clearly brought
out by comparing the spectrum of polar motion excitation over dif-
ferent time intervals. Such comparison is shown in Fig. 2. For the
frequency band that includes the Mf tide (frequency 26.74 cpy),

Figure 1. Standard errors in the SPACE2008 daily estimates of the p1

component of polar motion, after Ratcliff & Gross (2010). The p2 component
is similar.

Figure 2. Spectra of SPACE2008 (Ratcliff & Gross 2010) polar motion
excitation χ during successive 4-yr intervals. Negative frequencies refer to
retrograde polar motion; positive to prograde. Vertical dotted lines denote
the frequencies of the prograde and retrograde Mf tide. Older data from the
SPACE2008 time-series are evidently strongly smoothed at high frequencies
by the Kalman filter used to generate the data. Data after 1992 rely on daily
space-geodetic polar motion measurements and are evidently minimally
smoothed. Data between 1988 and 1991 are dampened at high frequencies
but are apparently adequate at the Mf frequencies. Data before 1988 are
suspect at the Mf frequencies.

all SPACE2008 data before 1988 are evidently prone to signal at-
tenuation, severely so for the oldest data. The period 1988–1991
is marginal in this regard—its dampening appears to occur just
above the Mf frequency—yet it is also the time period that displays
the most conspicuous peak at Mf, possibly owing to the enhanced
tide that occurred around 1988 from the Mf nodal modulation (see
Fig. A1). All data after 1992 appear about equally smoothed at all
frequencies, presumably owing to the routine availability of daily
polar motion measurements after 1991 August. Based on Fig. 2, we
are led to discard the polar motion data older than 1988 for any at-
tempts at extracting the Mf tidal signal. [Incidentally, the C04 Earth
rotation time-series described by Gambis (2004), which is available
from the International Earth Rotation and Reference Systems Ser-
vice (IERS), is also filtered in a way quite similar to that shown in
Fig. 2.]
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2.2 Correction for non-tidal effects

Because of the relatively small Mf signal, it is crucial to remove from
the polar motion data as many non-tidal contributions as possible.
As Ponte et al. (1998) and Gross et al. (2003) have shown, a large
percentage of the non-tidal polar motion variance can be explained,
and partially removed, by numerical models of the atmosphere and
ocean. In this work, we experimented with two different sources for
the required models; the following discussion applies equally to our
LOD analysis in Section 3 later.

2.2.1 National Center for Environmental Prediction
(NCEP)–Estimating the Circulation and Climate of the Ocean
(ECCO) models

One of our selected set of models is consistent with those recently
used by Gross (2009) for the same purpose. The effect of atmo-
spheric angular momentum (AAM) is determined from the Reanal-
ysis solutions of the NCEP and the National Center for Atmospheric
Research (NCAR)—see Kalnay et al. (1996) for a discussion of the
reanalysis products and their accuracies. The implied AAM esti-
mates are readily available in the form of excitation functions from
the IERS Special Bureau for Atmospheres (Salstein et al. 1993;
Zhou et al. 2006). The component of AAM arising from relative
motion is accounted for by analysed winds from the surface to the
10 hPa level; AAM from inertia is accounted for by barometric
surface pressures, with an assumed isostatic inverted-barometer re-
sponse over the oceans. At the period of the Mf tide, an isostatic
ocean response to pressure loading appears to be a fairly accu-
rate picture (Wunsch 1972; Ponte 1992), at least for the dominate
wavenumbers associated with barometric surface pressure; at the
gravest wavenumbers, such as those of the Mf tide itself, there is
a small, but very clear, dynamic response (Egbert & Ray 2003),
which is also evident in Fig. 5 later.

The corresponding oceanic angular momentum (OAM) was ob-
tained from the IERS Special Bureau for the Oceans and is based
on products of the ECCO consortium (Stammer et al. 2002). Two
model time-series outputs were used here, both from the ECCO cen-
tre at the Jet Propulsion Laboratory and both based on the numerical
circulation model of Marshall et al. (1997), which was forced by
12-hourly NCEP reanalysis winds and daily buoyancy fluxes (but
not by pressure loading, which is thus consistent with our use of an
inverted barometer for the AAM correction). The two ECCO runs
are denoted c20010701 and kf066a2, for which OAM were com-
puted only for the periods 1980–2002 and 1993–2008, respectively.
The calculation of OAM for this ocean model is discussed in detail
by Gross et al. (2003). The model did not assimilate oceanographic
data nor was it forced by the gravitational tidal potential, so it is
therefore properly non-tidal as required for present use.

We spliced together the two ECCO OAM series by using a
weighted average over their period of overlap (after deleting the
final 100 d of c20010701, which appear anomalous). The lack of
pre-1980 data is of no concern because of limitations in the polar
motion data themselves, as noted earlier. Our Earth rotation data
after 2008 were retained without OAM corrections.

2.2.2 European Centre for Medium-Range Weather Forecasting
(ECMWF)–GeoForschungsZentrum (GFZ) models

A second set of models employed here is based on work at the
GFZ in Potsdam (Dobslaw et al. 2010). Models of the atmo-
sphere, ocean and continental hydrosphere have been developed in a

consistent fashion, each influencing or compensating the other to
ensure consistent fluxes (e.g. of freshwater) and global mass con-
servation. The atmospheric component is one of several analysis or
reanalysis products of the ECMWF. For the time-period of interest,
here, we are able to use almost exclusively the ERA-Interim reanal-
ysis (Simmons et al. 2006). Relative to earlier reanalyses widely
available, ERA-Interim benefits from improved model physics,
more sophisticated assimilation methods and improved resolution.
Especially important for χ3 angular momentum, wind data are pro-
vided up to the 0.1 hPa level.

The ocean and hydrosphere components of the GFZ model are
supplied by the Ocean Model for Circulation and Tides (OMCT)
and the Land Surface Discharge Model (LSDM) (Dill 2009), re-
spectively. OMCT is forced by ECMWF winds, surface pressures
and other relevant fluxes, and therefore no inverted barometer as-
sumption need be adopted when computing the AAM. For further
details of the models, see Dobslaw et al. (2010).

2.2.3 Model comparison

We have employed both sets of angular momentum corrections
with the SPACE2008 time-series. Because we are primarily inter-
ested here in the long-period tidal band, we have computed the
residual variance in the (10–70 cpy) frequency band for the period
1988–2009, after estimating and removing the tidal peaks. Table 1
lists these variances for all three components of angular momentum
excitation. The first row is for no corrections, and subsequent rows
show the effects of correcting for AAM, AAM+OAM, and finally
the GFZ corrections.

It is evident that the GFZ corrections yield the lowest variances
in the residual series. The reduction in variance of χ3 is especially
marked. Given the importance of atmospheric winds to the fluctua-
tions of χ 3, we surmise that the more modern ERA-Interim product
is responsible for this improvement. Because of the lower variances
with the GFZ corrections, our preferred tidal solutions throughout
this paper will be based on these, and other corrections are used
only to examine sensitivity to these corrections.

The effect of the GFZ-based angular momentum corrections on
the polar motion excitation spectrum is shown in Fig. 3. The im-
portance of these corrections for isolating the Mf peaks from back-
ground noise is clearly evident in this figure. Note that before tidal
analysis the data have also been high-pass filtered to remove the rel-
atively large non-tidal energy evident in Fig. 3 at low frequencies.

2.3 Polar motion tidal estimates

The amplitudes and phases of the Mf tide were estimated from the
corrected and filtered polar motion excitation data available over the

Table 1. Integrated residual variance of SPACE2008 in tidal band
(10–70 cpy) after removal of models for atmospheric, oceanic and
hydrologic angular momentum.

AAM OAM HAM χ1 χ2 χ3

Source corr. corr. corr. (µas2) (µas2) (µs2)

– none none none 378 777 6240
IERS NCEP none none 153 284 1087
IERS NCEP ECCO none 94 197 873
GFZ ECMWF OMCT LSDM 92 146 549

Notes: NCEP denotes Reanalysis-1.
ECMWF denotes primarily ERA-Interim reanalysis.
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Figure 3. Spectrum of polar motion excitation before (black) and after (red)
removal of non-tidal effects based on the GFZ models (Dobslaw et al. 2010)
of atmospheric, oceanic and hydrologic angular momentum. Dotted vertical
lines denote frequencies corresponding to the Mf tide. The polar motion Mf
peaks are clearly more pronounced after adjustment.

time span 1988–2009. Some discussion of the method and estimated
uncertainties is warranted.

Given the large variation in polar motion measurement error evi-
dent in Fig. 1, one might presume that weighted least squares should
be employed for tidal estimation. This, however, is not the case, be-
cause the estimation of the Mf tidal parameters is limited by the
noise of unmodelled (or mismodelled) non-tidal polar motion, not
by the inherent measurement errors of polar motion. If measure-
ment error is even roughly white, then a measurement error of, say,
0.1 mas, which is characteristic of post-1993 data, generates a noise
spectrum of order

(0.1 mas)2per 183 cpy ∼ 10−4 mas2 cpy−1 ∼ 102 μas2 cpy−1,

which at the Mf frequency is equivalent to a noise spectrum in χ of
order 10−1 mas2 cpy−1, between one and two orders of magnitude
smaller than the observed spectrum around Mf. Similarly, the poorer
1985 measurement error corresponds to a white-noise floor of order
1 mas2 cpy−1 in excitation, which is still considerably larger than
the noise levels near Mf for the entire corrected SPACE2008 time-
series (red curve in Fig. 3). We conclude that sources other than
measurement error limits the delineation of the Mf peaks. Lacking
other criteria, we therefore weighted the entire 1988–2009 time span
of data equally in the least-squares tidal estimation.

As developed more fully in the Appendix, the Mf tidal constituent
undergoes a relatively large (of order 40 per cent) modulation in
amplitude, induced mainly by the regression of the moon’s orbital
node. Although this can be accounted for by independently estimat-
ing tidal parameters for the several spectral lines comprising Mf,
such a course is not recommended when noise sources are large,
which is here the case. We therefore estimate a single amplitude
and phase for Mf, with nodal variation modelled by the classical
f , u parameters as given in the Appendix. This implies a constant
tidal admittance across the small band of frequencies comprising

Table A1, which is eminently reasonable. It is true that in a few
isolated cases fortnightly tides in shallow waters can violate the
smooth-admittance assumption because of non-linear interactions
between the diurnal O1 and K1 tides (the difference in their two
frequencies is identical to the frequency of Mf), but these localized
interactions do not appear to affect the global integral for polar
motion (see later).

In addition to the Mf constituent, we estimated simultaneously
tidal parameters for the MSm, Mm, MSf, Mt, and Mq constituents,
for general noise reduction and correlation monitoring. The standard
errors of these other tides are rather large relative to their amplitudes
and they are not discussed further in this paper.

The standard errors of Mf have been estimated from the least-
squares covariance, scaled by the spectral density of the time-series
residuals near the Mf frequency. These standard errors have been
checked in two ways: (1) Three false tides surrounding Mf have
been simultaneously estimated and the rms of their in-phase and
quadrature χ components is found to be 0.30 mas, which is consis-
tent with our stated Mf standard errors. (2) The time-series has been
partitioned into yearly segments, each subjected to tidal analysis,
and the resulting scatter in the yearly Mf estimates is also found to
be consistent with the stated Mf errors.

The least-squares estimates are given in Table 2 in terms of both
excitation χ and polar motion p. The phase conventions used for
the latter follow Munk & MacDonald (1960, eq. 6.7.5), defined by
writing

p(t) = A+ei(ωt+α+) + A−e−i(ωt−α−),

where ωt = 2s.
The Mf standard error in χ 1 tends to be smaller than in χ 2,

evidently because the overall variance in the χ 2 residual time-series
is greater; when converted to prograde and retrograde polar motion
the standard errors in each component are comparable—about 10
µas for the GFZ-corrected data.

The first line in Table 2 is our primary solution; the other lines
summarize various sensitivity tests. Of these tests, the one with the
largest effect on Mf is that made without correcting for the OAM. In
that case, the least-squares residuals are considerably larger, which
is reflected in the larger standard errors. The largest discrepancy
appears to be in the amplitude of χ 2, but its larger standard error is
consistent with this discrepancy.

It is of interest to compare these polar motion estimates with
similar recent results obtained by Gross (2009), who used slightly
different methods on a space-geodetic time-series equivalent to our
IERS-corrected data, for the period 1980–2006. Gross obtained:
(A+, α+) = (69, 254◦) and (A−, α−) = (89, 40◦) with standard
errors of about 3 µas. Our standard errors are about three or four
times larger, which we are inclined to argue are more realistic in
light of the above-mentioned tests. Owing to our larger uncertain-
ties, our estimates and Gross’s are consistent, although both of his
amplitudes are smaller than ours, possibly owing to his use of the
pre-1988 data (note lower pre-1988 amplitudes shown in his fig. 2).

Table 2. Fortnightly polar motion estimates from space-geodetic data, 1988–2009.

χ1 χ2 Prograde PM Retrograde PM
AAM/OAM A, mas G A, mas G A+, µas α+ A−, µas α−

GFZ 2.94 ± 0.31 359◦ ± 6◦ 4.83 ± 0.34 337◦ ± 4◦ 76 ± 10 257◦ ± 7◦ 99 ± 10 43◦ ± 5◦
IERS 2.92 ± 0.31 352◦ ± 6◦ 4.71 ± 0.45 334◦ ± 6◦ 76 ± 13 261◦ ± 9◦ 96 ± 13 38◦ ± 7◦

IERS-A 2.85 ± 0.46 350◦ ± 9◦ 5.38 ± 0.60 339◦ ± 6◦ 91 ± 17 261◦ ± 10◦ 100 ± 17 44◦ ± 9◦

Notes: IERS-A denotes IERS AAM only (no OAM).
Amplitude A and Greenwich phase lag G as in Appendix.
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Table 3. Fortnightly Mf rotation rate estimates from space-geodetic data, 1985–2009.

AAM/OAM 	
 	UT Response coefficient
A, µs G A, µs G |κ| arg κ

GFZ 358.0 ± 0.6 3.53◦ ± 0.09◦ 778.4 ± 1.3 273.53◦ ± 0.09◦ 0.3131 ± 0.0005 −3.53◦ ± 0.09◦
IERS 359.2 ± 0.9 3.63◦ ± 0.13◦ 780.9 ± 2.0 273.63◦ ± 0.13◦ 0.3141 ± 0.0008 −3.63◦ ± 0.13◦

IERS-A 358.7 ± 1.1 3.77◦ ± 0.16◦ 779.9 ± 2.4 273.77◦ ± 0.16◦ 0.3137 ± 0.0010 −3.77◦ ± 0.16◦

Note: Amplitude A and Greenwich phase lag G as in Appendix.

As an aside, some readers may be interested in a test of the
constant-admittance assumption for the lines within Mf. We there-
fore computed a least-squares solution for a set of completely inde-
pendent spectral lines. The large Mf nodal line, with Doodson num-
ber (0 2 0 0 1 0), obtained (1.28 ± 0.31 mas, 339◦ ± 14◦) for χ 1, and
(1.99 ± 0.33 mas, 343◦ ± 9◦) for χ 2. Predicted constant-admittance
estimates for that line are (1.22 ± 0.14 mas, 359◦ ± 6◦) for χ 1, and
(2.00 ± 0.15 mas, 337◦ ± 4◦) for χ 2. The admittances at the two Mf
lines are therefore in agreement, although the phases of χ1 differ
by about 1.4 times the standard error.

3 F O RT N I G H T LY VA R I AT I O N S I N L O D

Unlike polar motion, where the signal of the Mf tide is fairly subtle
and difficult to extract from background noise, the Earth’s rotation
rate exhibits an extraordinarily large Mf signal, first detected more
than 50 years ago. The signal is dominated by large changes in the
moment of inertia stemming from the Earth’s body tide.

Tidal perturbations in rotation rate may be variously described in
terms of excess LOD 	
, variations in Universal Time 	UT1 rel-
ative to international atomic time TAI, or as a generalized response
coefficient κ (Agnew & Farrell 1978). For any variation, the first
two are related by

	UT = −
−1
0

∫
	
 dt,

where 
0 is the nominal LOD (86 400 s). Taking now a general tidal
variation of frequency ω and converting to complex notation, we
have the following relationships between the three LOD variables:

	UT = i(ω
0)−1	


and

	
 = κ∗
0
R3

3GC

(
5

π

)1/2

V0,

where R is the mean earth radius, G the Newtonian constant, C the
polar moment of inertia and V 0 is the potential amplitude as in eq.
(1) with normalization (following Agnew & Farrell) as in Munk &
Cartwright (1966).

As with polar motion, we used the SPACE2008 time-series of
Ratcliff & Gross (2010) for estimating the Mf variation in LOD.
Computed spectra of 4-yr segments of the SPACE2008 LOD series
(not shown) are similar to the results for polar motion as presented
in Fig. 2, except that the data in the 1984–1987 window appear
satisfactory and only the pre-1984 data are obviously oversmoothed
in the Mf band. Our Mf rotation rate estimates are therefore based
on the series from 1985 to 2009.

AAM and OAM (and potentially hydrologic angular momentum)
corrections were applied to the LOD data, analogous to the correc-
tions described earlier for the polar motion data. Each correction
results in reduced variance in the residuals (which is also implied
from the detailed discussion of Gross et al. 2004), and hence in
reduced Mf standard errors.

The estimated Mf parameters for rotation rate are tabulated in
Table 3. As in Table 2, the preferred solution is listed first; the other
lines summarize various sensitivity tests, including the effect of the
correction for non-tidal ocean angular momentum. The latter has
a much smaller influence on LOD than was seen for polar motion,
which is not unexpected given the large LOD signals arising from
other sources. However, its quoted uncertainties are considerably
larger, obviously reflecting the larger residual variances noted in
Table 1.

There is an important difference to note that occurs in the
Ratcliff–Gross processing of LOD data compared with their po-
lar motion data. In processing of the LOD measurements, they used
a prior model of the long-period tides to remove the dominant tidal
effects, then applied their Kalman filter to the residuals and added
back the prior model. This is standard procedure for handling deter-
ministic signals and minimizing the effects of smoothing. However,
to the extent that the Kalman filter may have removed energy near
the Mf frequency, the final series could be more or less simply the
prior model of Mf. Whereas the LOD spectra (corresponding to
Fig. 2) suggest that the Kalman filter may not have removed energy
near the Mf band (after 1984), we were sufficiently concerned by
this possibility that we obtained an independent LOD series from
colleagues at Goddard Space Flight Center (GSFC; David Gordan,
personal communication, 2011), which is based completely on Very
Long Baseline Interferometry (VLBI) measurements and used no
prior model of long-period tides in its derivation. Specifically, we
obtained the series gsf2010a.eops, which in fact was one of the
fundamental geodetic time-series used as input to the SPACE2008
processing. The GSFC series comprises daily averages of LOD with
an uneven sampling corresponding to the availability of VLBI net-
works; on average, there is a measurement two or three times per
week. We adjusted these data with the IERS AAM and OAM cor-
rections, rejected about 3 per cent of the data as anomalous, and
estimated tidal coefficients. For 	
, we obtained 359.1 ± 2.7 µs
amplitude and 4.1◦ ± 0.4◦ phase lag. The standard errors are large
relative to our primary solution from SPACE2008, owing to the re-
duced number of data. The results are nonetheless quite consistent,
suggesting that the use of a prior when deriving SPACE2008 does
not unduly influence the final Mf signal.

Table 4 compares some previously published Mf LOD estimates.
The majority of these date from the mid-1990s, and they should
be less precise than ours simply owing to the much extended time-
series now at our disposal. All estimates shown in Table 4 use
corrections for AAM, although the corrections may derive from
different meteorological centres. The Englich et al. result is a recent
VLBI estimate which agrees well with ours in amplitude (again
suggesting that the SPACE2008 prior did no significant harm). The
result from Benjamin et al. (2006) is essentially identical to our
methods used for line 2 of Table 3 except that we now have a longer
time-series.

Given the stated uncertainties in Table 4, the various estimates
of κ are not completely consistent, especially in phase. (Note that
a 1◦ discrepancy in the phase of Mf corresponds very nearly to
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Table 4. Selected published estimates of Mf response coefficient from ob-
served rotation rates.

Authors Time span |κ| arg κ

Merriam (1984) 1978–1982 0.317 ± 0.013 −5.8◦ ± 2.2◦
McCarthy & Luzum 1984–1991 0.306 ± 0.001 −1.38◦ ± 0.24◦
(1993)
Robertson et al. (1994) 1984–1993 0.3128 ± 0.0013 −3.55◦ ± 0.24◦
Chao et al. (1995) 1980–1992 0.3106 ± 0.0020 −2.7◦ ± 0.4◦
Dickman & Nam (1995) 1985–1993 0.306 ± 0.010 −2.7◦ ± 0.7◦
Benjamin et al. (2006) 1985–2003 0.3139 ± 0.0009 −3.50◦ ± 0.18◦
Englich et al. (2009) 1984–2008 0.3129 ± 0.0008 −3.98◦ ± 0.15◦
This paper 1985–2009 0.3131 ± 0.0005 −3.53◦ ± 0.09◦

1 hr in time.) Of the older tabulated estimates, our results agree
most closely with those of Robertson et al. (1994). The early work
of Merriam (1984), within its understandably large uncertainties
owing to the shortness of his time-series, is also consistent.

4 G E N E R A L I Z E D I N V E R S I O N F O R T H E
F O RT N I G H T LY O C E A N T I D E

The goal of this section is to describe the development of a new
numerical model of the Mf ocean tide and to examine whether the
above polar motion determination adds any useful constraints in the
modelling process. The new Mf model in turn is used in Section 5
to remove the ocean-tide component from the LOD data.

Our approach to forward and inverse ocean-tide modelling fol-
lows Egbert et al. (1994) and Egbert & Erofeeva (2002). Forward
modelling provides a necessary prior for the inversion step, and
it may well yield the only satisfactory solution if inadequate data
are lacking for assimilation—such, in fact, is likely the case for
all long-period tidal constituents other than Mf and perhaps Mm.
This point provides sufficient motivation to improve the realism of
forward models of long-period tides to the greatest extent possible.
One of our early forward models of Mf appeared in the work of
Egbert & Ray (2003), and a considerably improved version was
used by Benjamin et al. (2006).

4.1 Forward modelling

We adopt a direct, frequency-domain, factorization approach to
solving the linearized shallow-water equations Egbert & Erofeeva
(2002). One particular factorization solution was checked with a
non-linear, time stepping approach and was found to produce very
similar results; this justifies use of the linear solver for most of
our computations. The system was solved on a global 1/4◦ finite-
difference grid. Inclusion of the Arctic Ocean, which is essential for
models of long-period tides, was accomplished by using a rotated
coordinate system with the north pole over Greenland. Forcing from
self-attraction and crustal loading effects should normally be com-
puted through an iterative procedure, with initial elevations fed into
relevant integrals to recompute the forcing and the procedure iter-
ated until convergence. Since all long-period tides are fairly close to
equilibrium, however, it here suffices to use a single prior elevation
model to compute these effects.

One outstanding question is the extent to which non-linear inter-
actions of short-period tides affect the tidal angular momentum—
see, in particular, the discussion by Cartwright (1997) concerning
the MSf constituent. In the case of Mf, the relevant interactions are
between the diurnal tides O1 and K1. As a test of the importance of

this interaction, we used an efficient linearized modelling approach
(Egbert et al. 2010) which employs accurate altimeter-based mod-
els of the two diurnal constituents to compute forcing at the Mf
frequency. The shallow-water equations were then solved with the
astronomical forcing for Mf alone and with the additional K1–O1

interaction added. The addition of the non-linear terms is found
to have negligible impact on the global integrals of tidal angular
momentum—the largest impact is in the prograde component of
polar motion where the amplitude is affected by about 0.6 per cent.
Much larger perturbations can result from different (and uncertain)
parametrizations of tidal friction in the numerical model, as noted
below.

4.2 Inverse modelling

A series of data assimilation experiments using T/P and Jason-1
satellite altimeter data were conducted with several goals in mind:
(1) to provide an estimate of the likely magnitude of errors in polar
motion and UT1 computed from a purely numerical forward, (2) to
clarify how tightly the altimeter data should be fit in an inversion
and (3) ultimately to obtain the best estimates of the Mf ocean tide’s
contribution to Earth rotation.

In the linearized approach employed here, the tidal solution is
controlled essentially by two parameters: (1) f v , a ‘friction velocity’
which linearizes the standard quadratic bottom friction dissipation
with f v replacing |v| in cD|v|v/H , where H is water depth and
cD = 0.0025 (Egbert & Erofeeva 2002), and (2) σ e, a trade-off
parameter used to scale the assumed data error covariance and thus
to control the degree of fit to the altimeter data. Each parameter is
limited to a certain range, either by physical arguments or by error-
covariance arguments, but within these ranges there is some degree
of flexibility. In our most recent work, we varied the strength of f v

both for the prior model and for the inversion; values of 0.3, 1, 3 and
10 m s−1 were tried. These apparently large values for f v cover the
range we have found appropriate for linear tide modelling. For Mf,
we get the best agreement of the prior solution with validation data
for f v = 1 and the worst for f v = 0.3. Our inversion experiments
thus used only the three largest values of f v .

The assimilated altimeter data consist of Mf harmonic constants
deduced along satellite ground-tracks from 531 repeat cycles (each
of 9.9 d duration) of T/P and Jason-1 altimetry. Before tidal analy-
sis, considerable effort was expended to ensure consistency between
the two satellite missions, including new satellite ephemerides com-
puted in a consistent terrestrial reference frame and also employ-
ment of the most up-to-date radiometer calibrations (Beckley et al.
2004, 2010). In addition, and for consistency with the above rotation
estimations, the altimetric heights have been corrected for non-tidal
variability by using the ECCO kf066a2 modelling outputs. (We em-
phasize again that kf066a2 did not assimilate altimetry nor did it
include gravitational tidal forces.)

The impact of varying the trade-off parameter and the different
friction velocities is shown in Fig. 4 in terms of calculated polar mo-
tion (details later). For the inertia components (arising from ocean
tidal heights) all levels of fit tried produce similar polar motion; for
the prograde component, especially, all the inverse solutions differ
significantly from the priors, which are already quite variable. For
the motion components (arising from ocean tidal currents), there
is larger scatter and a more continuous change as σ e is reduced
and the fit to the altimetry is improved. The primary impact of our
uncertainty in how well data should be fit arises from the motion
terms.
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Figure 4. Inertia and relative motion terms for prograde and retrograde polar motion according to a large suite of ocean-tide inversions. The three colours of
symbols correspond to different prior models, using different friction velocities, with red, blue and green corresponding to 1, 3 and 10 m s−1, respectively. The
plus symbols give polar motion for the three priors; other symbols correspond to increasingly better fit to altimeter data, with circles fitting most tightly.

The larger sensitivity of the motion terms is consistent with
changes to the inverse solutions as σ e is varied. Very subtle, and
rather small scale, altimeter signals are fit when σ e is small, re-
sulting in very substantial increases in (small scale) currents, even
while elevations are relatively unaffected; see Fig. 5 where inverse
solutions for two values of σ e are shown.

4.3 Comparisons with independent data

In this section, the ocean-tide solutions are compared with three
types of independent data: altimetry, tide gauges and the above polar
motion estimates. These critical tests allow us to delimit the free
parameters of the inversion and to arrive at a preferred ocean-tide
solution.

4.3.1 Comparisons with independent altimetry

Given the paucity of reliable Mf harmonic constants (but see later),
we primarily used unassimilated altimeter data to calibrate the opti-
mal level of data fit for the inverse solution. For this, we used along-
track Mf harmonic constants calculated from 114 cycles (about
3 yr) of T/P altimetry data from its interleaved orbit; rms differ-
ences for inverse solutions computed for a range of values of σ e,
and with prior solutions computed with the three values of f v are
plotted in Fig. 6. The individual along-track harmonic constants are
very noisy, and none of the inverse solutions explains a large frac-
tion of the observed variance. Nonetheless, averaged over the global
ocean, there is a very clear reduction in rms for all of the inverse

solutions, with a minimum at σ e = 100 or so—corresponding to
fitting the altimeter data only weakly. Fig. 6 also suggests that the
smallest value for friction velocity (f v = 1) is the best choice. The
Mf inverse solution corresponding to f v = 1, σ e = 100 is plotted
in the right column of Fig. 5. Note that relaxing the fit further (i.e.
taking σ e = 300) increases the rms difference with the altimeter
validation data only slightly.

4.3.2 Tide gauge comparison

To our knowledge, the best compilation of Mf harmonic constants
derived from open-ocean tide gauges stems from some older work
by Prof. Doug Luther, eventually published as appendix A of Miller
et al. (1993). From his 24 stations—all small islands in the Pacific
Ocean—we rejected any Mf estimate with standard error exceeding
3 mm and we rejected station Apia, noted by Luther as suspect
because of an anomalously large MSf, suggestive of non-linear
influences. This left 19 sets of Mf harmonic constants.

Statistics summarizing the observed differences between these
island data and our f v = 1 assimilation solutions are tabulated
in Table 5. The variation among the solutions is small and is not
statistically significant, at least according to a Snedecor test of the
ratio of tabulated rms values. Nonetheless, we show the results
because they are consistent with those seen in our above altimeter
tests: The assimilation of altimetry results in a more accurate Mf
solution than the hydrodynamic prior, so long as the altimetry is not
overweighted. The trade-off parameter σ e should be no less than
about 100.
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Figure 5. Inverse solutions of the Mf ocean tide, for two values of the trade-off parameter that controls fitting the altimeter data. Left column is better fitting
(σ e = 1), right column has relaxed data fit (σ e = 100). Top to bottom: amplitude, phase lag, north–south and east–west volume transports (real parts only).
Note the relatively large changes in currents associated with only very subtle elevation changes. The right column gives the preferred solution, as discussed in
the text. The elevations clearly display some large-scale, non-equilibrium features, with the low-latitude Pacific tide being smaller and lagging the low-latitude
Atlantic tide; for further details, see Egbert & Ray (2003).

4.3.3 Polar motion comparison

Mf polar motion has been computed from the elevations and current
velocities for all our prior and inverse ocean-tide solutions. The
calculation of polar motion from these data uses a generalization
of (2) that accounts for the resonance near the nearly diurnal free
wobble (e.g. Gross 1993), although that adjustment is very small

for motion at the Mf period. The components of these computed
polar motions stemming from either tidal heights or currents were
shown earlier as Fig. 4. Ocean tidal heights and currents are seen to
contribute about equally to polar motion.

The sum totals of polar motion are shown in Fig. 7, again for
three different prior models and for a range of trade-off parameters.
The circles in Fig. 7 correspond to the observed Mf polar motion,
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Figure 6. rms differences between various Mf ocean-tide assimilation so-
lutions and an independent set of Mf solutions computed empirically from
T/P altimeter data along its interleaved track. Colours denote different fric-
tion velocities, and σ e is the trade-off parameter between fitting altimeter
data versus the hydrodynamic model. Far right points correspond to prior
models, before assimilation.

Table 5. Tide-gauge tests of weights for ocean-tide inversions.

σ e rms (mm) MAD (mm)

∞ 0.84 0.55
300 0.80 0.45
100 0.81 0.48

30 0.84 0.51
10 0.88 0.57

MAD, median absolute difference.
Note: σ e = ∞ refers to prior (solution with no altimetry).

Figure 7. Total prograde (lower left cluster) and retrograde (upper right)
polar motion computed from a suite of ocean-tide inversions, with three
different priors and a range of trade-off parameters. Colours and symbols
are as in Fig. 4. The large open circles are centred on our observed Mf
polar motion (Table 2), with radius corresponding to one standard error. Our
preferred ocean-tide solution is denoted by the red star.

according to the first line of Table 2. The results for the prior, purely
numerical model are in reasonable agreement with the independent
geodetic estimates. The best agreeing prior (red plus) is obtained
with the f v = 1 m s−1 friction velocity. Fitting the altimetry gener-
ally moves the computed polar motion towards, and then past, the
geodetic estimates, with parameters for all priors converging to a
common value.

Comparison with observed prograde polar motion suggests that
inversions strongly fitting the altimeter data are not to be preferred,
which is consistent with the other tests above. It also suggests that
weakly fitting the altimetry is beneficial, especially if the prior
model employed one of the larger values for friction. Overall, the
best agreements in Fig. 7 are seen to be the red plus, the red star (both
with f v = 1) and the blue star, which all agree about equally with
observed polar motion. Although polar motion provides our only
test dependent on tidal current velocities, it is in the end consistent
with the other tests on elevations alone.

4.4 Preferred ocean solution

The earlier tests suggest the preferred ocean-tide inversion is the
one having the weakest fit to the altimeter data (σ e = 300) and the
smallest linear friction coefficient (f v = 1). (This solution is denoted
by the red star in the previous figures.) For reference, the computed
Earth rotation parameters for this model are tabulated in Table 6.
The conversion of tidal angular momentum to LOD here follows
eq. (46) of Gross (2007), which depends on the adoption of a number
of geophysical constants, notably the loading Love number k ′

2 and a
parameter α3 that scales k ′

2 to account for core decoupling. Owing
to the high precision required for 	UT in Section 5, it is important
to establish its sensitivity to our adopted constants, including the
possibility that k ′

2 has a small imaginary component. It appears
that uncertainty in these constants leads to uncertainty in 	UT of
roughly 1 per cent. Coincidentally, the adopted constants used to
compute polar motion (including the Chandler Wobble frequency)
are of far less concern because of the fairly large scatter from our
tidal inversions and because subsequent analysis below does not
depend on these precise values.

According to Table 6, for LOD, the inertia terms of the Mf tide
dominate; the relative angular momentum of the tidal currents con-
tribute only about 10 per cent to the total variations. This is the
opposite of short-period tides where the currents tend to dominate
the axial angular momentum budget (Baader et al. 1983; Ray et al.
1994). The phase of the inertia term lags a purely equilibrium model
by 16◦, a not insignificant amount, which probably reflects the no-
table phase lag associated with the tidal elevations of the Pacific
Ocean; see Fig. 5.

The 	UT results for all our various tide inversions are shown in
Fig. 8. The scatter in 	UT gives useful information towards assign-
ing a reasonable uncertainty to the ocean tide’s contribution; note
that our preferred tide solution is seen to fall in the middle of the
scatter. The two low-friction priors (red and blue pluses) sit off to
the side somewhat separated, but while these two priors give ac-
ceptable polar motion, our other tests suggest they are less accurate
than the preferred solution. Defining the ocean-tide uncertainty in
terms of the scatter of the better solutions shown in Fig. 8 could
be overly optimistic, of course, if some unrecognized systematic
error affects all solutions. We have endeavoured to eliminate such
problems to the extent possible. For example, all solutions include
the Arctic Ocean; failure to do so can easily result in UT errors of
order 10 µs. We also account rigorously for tidal self-attraction and
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Table 6. Earth rotation effects of the Mf ocean tide.

Prograde PM Retrograde PM 	
 	UT
A+, µas α+ A−, µas α− Amp. (µs) Phase Amp. (µs) Phase

Tidal heights 30.6 335.2◦ 45.5 80.3◦ 47.8 16.36◦ 103.9 286.36◦
Tidal currents 64.3 240.1◦ 69.5 6.9◦ 5.0 84.25◦ 10.8 354.25◦
Total 68.8 266.5◦ 93.3 34.8◦ 49.9 21.65◦ 108.5 291.65◦

Figure 8. As in Fig. 7 but for 	UT rotation rate variations. Our preferred
ocean-tide inversion is denoted by the red star, which happens to sit near
the middle of the shown cluster. For comparison, the Mf model of Kantha
et al. 1998) is (48.5, −104.2) µs, and of Dickman (discussed by Dickman
& Gross 2010) is (23, −107) µs.

use a fairly high-resolution global grid; both aspects are critical for
physical realism (e.g. Arbic et al. 2004).

Based on the scatter in Fig. 8 and particularly in the spread
between the solutions favoured by our various tests, our preferred
UT ocean-tide components (in-phase and quadrature) are: 40.0 ± 2
and −100.8 ± 3 µs, respectively. The uncertainties cover the roughly
1 per cent uncertainty arising from various adopted geophysical
constants noted earlier.

5 C O N S T R A I N T S O N M A N T L E
A N E L A S T I C I T Y

We are finally in a position to bring together the various strands of
this paper to form a consistent interpretation of fortnightly Earth ro-
tation. The observational space-geodetic data, corrected via models
for non-tidal angular momentum, yield fairly precise estimates of
Mf LOD or 	UT. The components of the Earth system that account
for the Mf oscillations are laid out in Fig. 9. The elastic response of
the body tide dominates, as is well known.

The residual in Fig. 9 may be attributed to several causes: the
quoted uncertainties in the elastic body tide and/or ocean-tide con-
tributions may be too optimistic; there may be residual coupling be-
tween the mantle and core; anelasticity in the body tide may modify
the magnitude of the elastic tide and introduce a small phase lag.
The latter effect is certainly expected (e.g. Wahr & Bergen 1986).

It has been realized since the early 1980s that the Earth’s core
is unlikely to participate in such rapid spin variations (Merriam
1980; Wahr et al. 1981; Yoder et al. 1981). Clearly, from Fig. 9,
were the core and mantle fully coupled, the models would diverge
from the observed 	UT even though coupling would slightly re-
duce the ocean-tide effect through changes in the loading factor α3

(Merriam 1982). Could there be some small residual coupling?
Calculations based on viscous coupling (Wahr et al. 1981) and

Figure 9. Decomposition of Mf variations in UT1 in terms of an elastic
mantle, an ocean tide and an inferred mantle anelasticity. Observed value
is shown by the blue dot. Error ellipse on the model sum represents the
combined uncertainties of the elastic mantle and the ocean tide. Because
UT1 represents an integration in time of 	
, its in-phase (cos 2s) and
quadrature (sin 2s) components are flipped relative to components of the
tide-generating potential; the large component from the elastic response of
the mantle, which dominates the figure, is thus in the quadrature component.
The model vectors would be poorly aligned with the observed value if the
core were not taken as decoupled from the mantle. Note the zoomed scale
relative to figure origin.

topographic coupling (Wu & Wahr 1997) suggest extremely small
contributions to 	UT, but electromagnetic coupling (e.g. Koot et al.
2010) may not be so easily dismissed, partly owing to poorly known
material properties near the core–mantle boundary. Nonetheless,
for the following discussion, we follow most previous authors by
assuming perfectly uncoupled core and mantle, allowing us to at-
tribute the residual in Fig. 9 to mantle anelasticity.

The effect of a purely elastic mantle has been computed by sev-
eral authors and they agree at about the 1 per cent level. Some
are reviewed by Defraigne & Smits (1999). The differences arise
primarily from differences in adopted earth models. We follow
Benjamin et al. (2006) and adopt the value 	UT = 656 µs based
on the PREM earth model. Defraigne & Smits obtained 654 µs,
whereas Wahr et al. (1981) obtained 663 µs based on the earlier
1066A earth model.
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Figure 10. Contribution to 	UT caused by anelasticity of the mantle as
estimated in this paper (blue dot with 1σ error uncertainties). The lower
black dot is ‘Model B’ and the upper is ‘Model QMU’ of Wahr & Bergen
(1986); the grey shading depicts approximately the Wahr–Bergen upper and
lower bounds.

Based on all the above estimates, the Mf 	UT budget is as follows
(in sine and cosine components, units of µs):

Observed −776.9 ± 1.3 47.9 ± 1.3
Elastic body −656 ± 6 0
Ocean tide −100.8 ± 3 40.0 ± 2
Residual −20 ± 7 7.9 ± 2.4

Fig. 10 compares this residual with theoretical estimates of the
effect of mantle anelasticity calculated by Wahr & Bergen (1986).
Their estimates rely on analysis of the mantle’s specific dissipation
Q−1 obtained by Smith & Dahlen (1981), and they also give upper
and lower bounds, where the lower bound assumes the Q at the Mf
period is the same as the Q at seismic periods and the upper bound
assumes the Q at Mf is the same as the Chandler Wobble Q (based on
a ca. 1986 estimate). Our results fall well within the Wahr–Bergen
limits, although larger values for the component out-of-phase with
the elastic tide appear to be preferred.

Defraigne & Smits (1999) also calculated the anelastic compo-
nent in-phase with the elastic tide, and they obtained values between
−15.6 and −19.7 µs, which agrees well with our −20 ± 7 µs.

For the Mf body tide as a whole, the above estimates imply a
phase lag relative to the tidal potential of 0.67◦ ± 0.21◦, for an
effective tidal Q of about 90 with 1σ bounds of about 65–135. This
Q falls between an estimated value of 280 for the M2 tide (Ray
et al. 2001) and a value of 50 for the Chandler Wobble (Furuya
& Chao 1996), although the Chandler Wobble Q has a wide range
of other published estimates, some higher than 90, which warrants
re-examination and clarification.

It is of interest to place these Mf estimates into the context of
the even larger range of frequencies analysed by Benjamin et al.
(2006). To do this, we follow their lead and express the Earth’s

Figure 11. Observational estimates of (top panel) f r and (bottom panel) f i

with analytical predictions for three anelastic models which intersect both
error bars, following Benjamin et al. (2006).

shear modulus µ in the form

μ(ω) = μ0 + μ0

Q0
[ fr (ω) + i fi (ω), ]

where µ0 is the shear modulus at some reference frequency ω0.
This expression defines two functions, f r and f i, which represent
the anelastic effects of dispersion and dissipation, respectively. Our
estimates of the Mf 	UT anelastic components correspond to the
f r, f i shown in Fig. 11—see Benjamin et al. for details on how
this correspondence is done. Also shown in Fig. 11 are several
theoretical models of f r, f i based on different dependences of Q on
frequency, all assumed to be in the simplified form

Q(ω) = Q0(ω/ω0)α ω < ωm,

where ωm is some transition frequency marking the band above
which Q is constant. Benjamin et al. examine a wide range of such
models, over a large frequency interval and with transition periods
Tm = 1/ωm either 54 min or 200 s, but we show here in Fig. 11 only
a few curves that intersect both error bars of our f r, f i estimates.
Together, our estimates are seen to favour an α in the range 0.2–0.3.
This result is consistent with the findings obtained by Benjamin
et al. (2006) for Tm of 54 min. Their results for Tm = 200 s allows
slightly smaller α, but it gives a poorer fit at the M2 frequency.

It is perhaps surprising that the largest contributor to the for-
mal uncertainties in the present Mf estimates now arises from the
model of the elastic body tide. An uncertainty of ±6 µs is possi-
bly pessimistic since it is primarily based on differences with some
obsolete earth models, but we are not in a position at this point to
clarify the issue. It would be of interest to examine more compre-
hensive models of the sort recently used by Latychev et al. (2009)
to compute Earth-tide displacements.
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6 C O N C LU D I N G R E M A R K S

The LOD effects of mantle anelasticity are not only clearly de-
tectable in these Mf tidal data (Fig. 9), but they are of a precision to
begin to place valuable new constraints on anelastic models. This
improved precision results from efforts on several fronts. Improved
models of AAM and OAM (Dobslaw et al. 2010) have resulted
in reduced non-tidal variance in the long-period tidal band, which
allows better estimates of the observed LOD—compare the various
uncertainties given in Table 3. Similarly, the LOD effects induced
by ocean tides have been refined. This is the result of a large num-
ber of modelling improvements made over a number of years which
have enhanced the physical realism of the numerical models—see,
for example, discussions by Egbert et al. (2004) and Arbic et al.
(2004), which are focused on the M2 tide but which also apply to
some extent to Mf. The ocean models for Mf have improved to the
point where we find that the assimilation of altimeter data adjusts
the numerical priors by only small amounts. Of course, this is partly
the result of the very small signal-to-noise ratio in Mf sea level data;
in contrast, assimilation of altimetry is still critical for producing
accurate models of short-period tides.

The fact that altimetry must be downweighted in our Mf solutions
does imply that its use may be even more marginal for other long-
period constituents where signal-to-noise ratios are even smaller.
For these cases, with the possible exception of Mm, results must
rely upon purely numerical models. We are therefore encouraged
by the closeness of our prior models to the observed polar motion,
which does allow some inference about errors when extrapolating
to other frequencies.

The present results for the effect of anelasticity on LOD are close
to theoretical expectations (Wahr & Bergen 1986), with a slight
preference towards larger values of the component out-of-phase
with the elastic tide, thus hinting towards larger values of dissipation
with an effective Q near 90. Uncertainties are nonetheless relatively
large (Fig. 10). That the largest source of uncertainty in our analysis
arises from the elastic response of the mantle suggests a rather
obvious next step for improving these estimates.
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A P P E N D I X : S P E C T R A L D E F I N I T I O N
O F M f

Recall that the classical definition of a tidal ‘constituent’ is a clus-
ter of tidal spectral lines whose first three Doodson numbers are
identical (Munk & Cartwright 1966). For the Mf tidal constituent,
the first three Doodson numbers are (0 2 0). The largest such lines
are listed in Table A1. The amplitudes are taken from the tables of
Hartmann & Wenzel (1995) in a normalization consistent with eq.
(1) and for times appropriate to the present era. Other lines within
the Mf constituent are more than an order of magnitude smaller than
those listed.

The two largest Mf lines differ in their fifth index by 1, and
hence differ in frequency by 1 cycle in 18.6 yr. This is the dominant
‘nodal modulation’ of Mf, induced by the large variation in the
moon’s declination (from 18◦ to 28◦) over the course of the 18.6-yr
precession of the moon’s orbit plane. This modulation also has a
significant second harmonic. The fourth major line (0 2 0 −2 0 0)
differs from the main Mf line by twice the lunar perigee frequency,
or 1 cycle in 4.42 yr.

Table A1. Spectral lines of the Mf tidal constituent.

Doodson argument
τ s h p N ′ p′ ω (◦ h−1) V 0 (m2 s−2)

0 2 0 −2 0 0 1.088749 0.02825
0 2 0 0 0 0 1.098033 0.65258
0 2 0 0 1 0 1.100239 0.27058
0 2 0 0 2 0 1.102446 0.02531

Notes: Doodson numbers give integral coefficients in the
tidal arguments for the following astronomical variables: τ ,
mean lunar time (in angular units); s, mean longitude of
moon; h, mean longitude of sun; p, mean longitude of lunar
perigee; N ′, negative of mean longitude N of lunar node; p′,
mean longitude of solar perigee.
For consistency with the Agnew–Farrell definition of κ , the
Hartmann–Wenzel V 0 values have been scaled by √(4π ).
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Figure A1. Nodal (and perigee) correction factors f (t), u(t) for the Mf tide. Dotted line shows the regressing mean longitude N of the lunar node. During the
Topex/Poseidon primary mission (1992–2002), the Mf signal strength was weaker than average, that is, f < 1. During the Jason-1 mission (2002–2008) it was
stronger. The small higher frequency components in f , u arise from the first spectral line in Table A1, which brings in the second harmonic of the lunar perigee
frequency.

In a tidal analysis of many years of data, as in our LOD analysis
earlier, one may estimate all these lines individually. But in a shorter
time-series, or even in a long time-series with significant noise, a
combined analysis is recommended. The traditional method for a
combined analysis (Doodson & Warburg 1941) exploits the fact
that the tidal response at such close frequencies must have nearly
identical admittances, that is, equal phases and amplitudes in the
ratios of the potential in Table A1. The tidal oscillation of any
constituent with amplitude A and phase lag G may then be written

f A cos(ωt + u − G) (A1)

with amplitude modulation f and phase modulation u varying slowly
relative to the tidal period 2π /ω, where ω is the frequency of the
fundamental line. Doodson & Warburg (1941) tabulate formulae
for evaluating f , u for the major lunar constituents, and for Mf they
give

f = 1.043 + 0.414 cos N ,

u = −23.7◦ sin N + 2.7◦ sin 2N − 0.4◦ sin 3N ,
(A2)

where N is the mean longitude of the moon’s node (N = −N ′ of
Table A1). These expressions are usefully employed in many tidal
analysis packages, but the extremely high precisions of the LOD
tidal measurements warrant higher accuracy.

An oscillation of the Mf constituent can be written explicitly in
terms of the four lines of Table A1 as

A1 cos(2s − G) + A2 cos(2s − 2p − G) + A3 cos(2s + N ′ − G)

+ A4 cos(2s + 2N ′ − G),

where the individual amplitudes An are assumed to be in the same
ratios as the amplitudes V 0 of Table A1. By simple trigonometry,
these four terms may be written in the form of eq. (A1) by solving
the system

f cos u = 1 + 0.0432 cos 2p + 0.4145 cos N + 0.0387 cos 2N

f sin u = −0.0432 sin 2p − 0.4145 sin N − 0.0387 sin 2N
(A3)

for variables f , u.
To examine the benefit of the above formulae, we have par-

titioned the 1985–2003 LOD time-series into yearly subsets and
subjected each year to independent tidal analysis. With the orig-
inal Doodson–Warburg formula (A2), the scatter in the yearly
Mf estimates has a standard deviation of 10.4 µs. Employ-
ing the system (A3) reduces the standard deviation to 4.0 µs.
Such marked improvement is evident only because of the high
precision of the LOD data. Formula (A2) is generally more
than adequate for tidal analysis of noisier data, such as sea
level.

The f , u variables for Mf are shown in Fig. A1 for the period
1975–2012. During the mid-1990s, we see that f < 1. During that
period the two largest lines of Mf were out-of-phase, generating
an Mf signal in tidal measurements which was smaller than aver-
age. In noisy measurements, such as those of sea level, the signal
would have been more difficult to extract from background. For
the 2003–2011 period, we have benefited from a stronger than av-
erage signal, allowing for more robust estimates of the fortnightly
tide.
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