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ARTICLE INFO ABSTRACT

Am'df? history: FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing
Received 28 January 2015 PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following
Revised 12 May 2015 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence,
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multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp
1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of se-
lect genes in skin from DBC-treated mice 2, 4 and 8 h post-initiation. A significant reduction in levels of Cyp 1al,
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Keywords:
PA}},{MS/ Ngo1 at 8 h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was
Cyp1b1 observed in Gst al, Nqo 1 at 2 and 4 h or Akr 1¢19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The

major covalent DNA adducts, dibenzo[def,p]chrysene-(4)-11,12-dihydrodiol-cis and trans-13,14-epoxide-
deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8 h post-initiation. Loss of Cyp1 b1 expression
reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-
DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral
dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of
DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with
BaP or CTE as initiators.

Relative Potency Factor
Skin cancer
DNA adducts

© 2015 Elsevier Inc. All rights reserved.

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a class of organic

Abbreviations: Akr, aldo-keto reductase; ATSDR, Agency for Toxic Substances and
Disease Registry; BaP, benzo[a]pyrene; CTE, coal tar extract; Cyp, cytochrome P450; dA,
deoxyadenosine; DBC, dibenzo[def,p]chrysene; DBCDE-A, dibenzo[def,p|chrysene-(4)-
11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine; dG, deoxyguanosine;
DOE, Department of Energy (USA); EPA, Environmental Protection Agency (USA); GST, glu-
tathione-S-transferase; het(s), heterozygous; IARC, International Agency for Research on
Cancer; NIST, National Institute of Standards and Technology; NQO, NADPH quinone oxido-
reductase; PAH, polycyclic aromatic hydrocarbon; ROS, reactive oxygen species; SRM, stan-
dard reference material; TPA, 12-O-tetradecanoylphorbol-13-acetate; wt, wild type.
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chemicals containing two or more bonded aromatic rings. They
can be petrogenic (petroleum sources) (Richter and Howard, 2000;
Varnosfaderany et al., 2014) or pyrogenic (incomplete combustion of
organic material) (Bostrom et al., 2002; Wang et al., 2014). Typical
sources of PAHs are coal, crude and shale oil, tar, wood and tobacco
smoke, smoked or charred foods, and fruits, vegetables, dairy products
and grains through air or soil absorption (IPCS, 1998). Pyrogenic pro-
cesses are by far the greatest contributor to environmental PAHs
(Lima et al., 2005). The relative amounts of individual PAHs in a mix-
ture vary depending on what type of combustion takes place (Poster
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et al., 2000). PAHs in the environment typically occur as mixtures of
many types ranging in their number and structure of aromatic rings
and subsequent degree of toxicity, from benign to extreme carcinogens
(IARC,2010). As a result of the rapid increase in industrial development
throughout the world, PAHs have been coined one of the re-emerging
contaminants on a global scale. In light of this increased risk for poten-
tial human exposure, the Environmental Protection Agency (EPA) has
been tasked with developing a strategy for estimating the risk of expo-
sure to PAH mixtures (U.S. EPA, 2010). In order to do this it is impera-
tive that researchers produce sound mechanistic data identifying the
metabolic pathways for bioactivation of individual PAHs and mixtures
to make accurate comparisons for potential risks to human health.
Currently, EPA is evaluating a Relative Potency Factor (RPF) approach
for estimating risk of exposure to PAH mixtures. The RPF for risk assess-
ment utilizes benzo[a]pyrene (BaP) as the reference (RPF = 1), and
estimates corresponding RPFs for each PAH which has sufficient pub-
lished carcinogenicity data. BaP is one of the most studied PAHs
found in the environment and is listed as a Group 1 or known
human carcinogen by the International Agency for the Research on
Cancer (IARC, 2010). It is also listed in the top ten ATSDR list of pri-
ority pollutants (ATSDR, 2013). In addition to BaP our laboratory
and others have studied the more potent animal carcinogenic PAH,
dibenzo[def,p]chrysene (DBC), formerly labeled dibenzo[a,!/|pyrene.
Although DBC is currently classified as a 2A probable human carcin-
ogen (IARC, 2010), this is mainly due to the lack of studies related to
human exposures. When considering its potency in animal cancer
models, EPA assigns DBC an RPF of 30.

BaP was first isolated from coal tar and long recognized as one of the
drivers of mutagenesis and carcinogenesis in this PAH mixture (Cook
et al., 1933; Phillips, 1983). The National Institute of Standards and
Technology (NIST) standard reference material 1597a has a certified
BaP mass fraction of 93.50 4+ 1.40 mg/kg. DBC has been identified in
coal tar (Mumford et al., 1987) and air particulates (DeRatt et al.,
1987). It also is contained in 1597a with a certified mass fraction of
1.12 £ 0.17 mg/kg. The complete composition of PAHs (Magee and
Sager,2014) in 1597a coal tar, along with the recently revised individual
RPFs and the resulting CTE estimate, is provided in Table 1. Using the
new proposed values (Magee and Sager, 2014), the RPF for CTE is calculat-
ed as 400 mg/kg or 0.4 ug BaP.q in the 1 mg CTE dose used in this study.

The chemical structure of parent PAHs makes them lipophilic.
Therefore they are readily absorbed through biological membranes,
and bioactivated through various metabolic pathways, converting the
parent PAH to electrophilic metabolites, thus transforming inactive
compounds into carcinogenic and mutagenic species (McClean et al.,
2007; Fustinoni et al., 2010; Jacques et al., 2010; Crowell et al., 2011).
Evidence of three separate pathways of PAH metabolism have been pub-
lished in the scientific literature (reviewed in Xue and Warshawsky,
2005). The most thoroughly studied of these three entails a series of
cytochrome P450 (CYP)-dependent oxygenations. CYP 1A1 and/or CYP
1B1 mediate the first epoxygenation. Hydrolysis by epoxide hydrolase
produces two (4) BaP-7,8-dihydrodiols. A second CYP 1A1 or CYP
1B1 epoxygenation results in 4 enantiomers (=-cis/trans) of BaP
7,8-dihydrodiol-9,10-epoxide (BPDE) in the case of BaP or with DBC,
the (4-cis/trans) of DBC-11,12-dihydrodiol-13,14-epoxide (DBCDE)
(Shimada, 2006; Shou et al., 1996; Xue and Warshawsky, 2005). BaP
and DBC contain “bay” and “fjord” regions, respectively, resulting in effi-
cient covalent binding of the diol-epoxides to DNA or protein (Amin
et al., 1995a,1995b), assumed to be at least partially responsible for
their potency as mutagens and carcinogens. Cavalieri and Rogan
(1992;1995) and Cavalieri et al. (2005), described a second mechanism
involving formation of radical cations catalyzed by any number of perox-
idases (including CYP) resulting in formation of a set of quinones (for BaP,
predominantly at the 1,6-, 3,6- and 6,12-positions). Lastly, the o-quinone
pathway is described in a recent review (Penning, 2014). Members of the
aldo-keto reductase 1 (Akr 1) family mediate the formation of a catechol
from the BaP- or DBC-dihydrodiol. Formation of the catechol sets up

Table 1

Certified mass fractions for selected PAHs in SRM 1597a.

Taken from https://www-s.nist.gov/srmors/certificates/1597A.pdf? CFID=5760584&
CFTOKEN=1c554ace27253899-A2C20317-032C-6122-50A2525C1AA8AF67&jsessionid=

f030f85734e4fd42e73015e41f5c6b543118.

Mass fraction (mg/kg)?

Acenaphthene 7.63 + 0.26

Acenaphthylene 263 + 7
anthracene 107 + 33
Benz[aJanthracene (0.2)° 98.1 + 2.3

Benzo[b]chrysene 10.8 + 0.4
Benzo|a]fluoranthene 20.5 + 4.9
Benzo[b]fluoranthene (0.8) 66.1 + 4.4

Benzo[ghi]fluoranthene 13.5 £ 0.2

Benzolj]fluoranthene (0.3) 36.5 &+ 2.4

Benzo[k]fluoranthene (0.03) 41.2 + 0.40

Benzo[b]naphtho[2,1-d]thiophene 2.41 &
0.21

Benzo[b]naphtho[2,1-d]thiophene 10.1 &
042

Benzo[b]|naphtho|2,3-d]thiophene 3.68 +
0.59

Benzo[b]perylene 9.04 + 0.99

Benzo|ghi]perylene (0.009) 50.5 + 0.6

Benzo[c]phenanthrene 11.0 + 0.5

Benzo[a]pyrene (1.0) 93.5 + 14
Benzo[e]pyrene 50.4 + 1.0
Biphenyl 27.6 £+ 0.4

Chrysene (0.1) 66.2 + 5.3

Coronene 8.7 + 1.8

4H-Cyclopenta[def]phenanthrene 52.4 +
4.5 (0.3)

Cyclopenta[c,d]pyrene (0.4) 37.6 + 3.4

Dibenz[a,c]anthracene (4.0) 4.35 4+ 0.21

Dibenz[a,h]anthracene (10.0) 6.93 + 0.40

Dibenz[a,j]anthracene 6.80 + 0.46
Dibenola,k]fluoranthene 3.21 + 0.31
Dibenzo[b,e]fluoranthene 0.98 + 0.02
Dibenzo[b,k]fluoranthene 11.2 4 0.8
Dibenzol[j,/]fluoranthene 6.5 + 1.4
Dibenzo[a,e]pyrene (0.4) 9.08 + 0.39
Dibenzo[a,h]pyrene (0.9) 2.57 + 0.30
Dibenzo|a,i]pyrene 3.87 4 0.34 (0.6)
Dibenzo|a,![pyrene 1.12 4 0.17 (30)
Dibenzo[e,/|pyrene 2.72 + 0.17
Dibenzothiophene 17.7 + 0.4
2,6-Dimethylnaphthalene 5.75 + 0.63
1,7-Dimethylphenanthrene 1.43 + 0.10
1,8-Dimethylphenanthrene 0.26 4 0.05
2,6-Dimethylphenanthrene 1.06 + 0.24
2,7-Dimethylphenanthrene 0.99 + 0.23
3,9-Dimethylphenanthrene 2.51 + 0.39
Fluorene 145 + 4

Fluoranthene (0.08) 327 + 7

Indeno[1,2,3-cd]pyrene (0.07) 55.5
+0.38

2-Methylanthracene 10.4 4 0.2
3-Methylchrysene 2.57 4+ 0.03
1-Methyldibenzothiophene 0.28 +
0.04

2-Methyldibenzothiophene 1.57 +
043

3-Methyldibenzothiophene 0.94 +
0.12

4-Methyldibenzothiophene 1.37 +
0.08

8-Methylfluoranthene 6.33 4 0.78
1-Methylnaphthalene 43.9 + 1.8
2-Methylnaphthalene 95.0 4 2.9
1-Methylphenanthrene 9.230.22

2-Methylphenanthrene 19.1 + 1.1
3-Methylphenanthrene 15.8 4 0.8

4-Methylphenanthrene 1.04 + 0.13
Naphthalene 1030 + 100
Naphtho[1,2-b]fluoranthene 8.6 +
2.0

Naphtho[1,2-k]fluoranthene 10.7 +
1.2

Naphtho[2,3-b]fluoranthene 3.52 +
0.30

Naphtho[2,3-k]fluoranthene 2.07 4
0.06

Naphtho[2,1-a]pyrene 10.2 £ 0.9
Naphtho[2,3-a]pyrene 4.29 + 0.89
Naphtho[2,3-e]pyrene 4.31 4 0.44
(0.3)

Naphtho[1,2-b]thiophene 8.0 + 2.0
Naphtho[2,1-b]thiophene 6.05 +
0.21

Naphtho[2,3-b]thiophene 2.87 +
0.56

Pentaphene 4.6 & 1.5

Perylene 24.6 + 0.9

Phenanthrene 454 + 7

Picene 6.59 + 0.22

Pyrene 240 + 7

Triphenylene(g,h) 12.1 4 0.6

Total RPF = 400 mg/kg.

@ Certified values are weighted means of the results from four to six analytical methods.
The uncertainty listed with each value is an expanded uncertainty about the mean, with
coverage factor 2 (approximately 95% confidence), except for benzo[k]fluoranthene for
which a coverage factor of 8 was used, calculated by combining a between-method vari-
ance incorporating between-method bias with a pooled within-source variance following
the ISO Guide.

> EPAs Proposed Relative Potency Factors — taken from http://railtec.illinois.edu/RREC/
presentations/A/02/11_Magee.pdf. Last accessed January 27, 2015.
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redox cycling through 1-electron reactions to an o-semi-quinone and
o-quinone. This reversible cycle generates superoxide anion radical and,
in the presence of superoxide dismutase, hydrogen peroxide capable of
causing oxidative DNA damage. All three of these mechanisms are capable
of producing either stable or depurinating DNA adducts (Baird et al.,
2005; Cavalieri et al., 2005; Zhang et al., 2014; Penning, 2014).

Our laboratory, along with Cavalieri et al., have demonstrated the
marked potency of DBC, compared to that of BaP, in mouse models
with lung and liver (Amin et al.,1995a), thymus and lung (Castro
et al., 2009), breast and skin (Cavalieri et al., 1989; Gill et al., 1994;
Higginbotham et al., 1993; Marston et al., 2001; Siddens et al., 2012)
as target organs. BaP appears to be oxidized by both CYP 1A1 and CYP
1B1 whereas DBC is oxygenated by CYP 1B1 more so than by CYP1A1
(Shimada et al.,1999). Marston et al. (2001), showed that CTE, when
co-administered with BaP or DBC, decreased the skin epidermal DNA
binding and tumorigenicity compared to BaP or DBC alone. They postu-
lated this could be due to competitive binding and inhibition of en-
zymes responsible for bioactivation of BaP and DBC by components in
the complex mixture. Dermal application of DBC and DBC-11,12-
dihydrodiol produced erythema in SENCAR mice suggesting induction
of an immune hypersensitivity response that is not observed with
other PAHs (Casale et al.,1997). This response could contribute to the in-
creased carcinogenicity of DBC, relative to other PAHs, as well as relative
slow repair of DBCDE-dA adducts (Kropachev et al., 2013; Spencer et al.,
2009).

Transgenic and gene knockout animal models have become a useful
tool for investigating the role of metabolizing enzymes and their effect
on carcinogen bioactivation (Buters et al., 1999; Gonzalez, 2002). The
critical role of CYP 1B1 in DBC bioactivation has been clearly defined
using in vitro studies (Luch et al., 1998; Mahadevan et al., 2007) and
in vivo animal models for lung, ovary, lymphoid tissue, skin, and endo-
metria (Buters et al., 2002) as well as thymus, spleen, lung and liver
through transplacental exposure (Castro et al., 2008).

Previous studies from our laboratory testing BaP, DBC and CTE in the
FVB/N mouse two-stage skin tumor model, demonstrated that the pre-
viously utilized EPA RPFs under-estimated the potency of DBC and CTE
(Siddens et al., 2012). As the PAH mixture risk assessment (RPF) ap-
proach is driven by dermal exposures and there is some question from
human xenograft studies on mice (human xenografts do not develop tu-
mors following PAH exposure whereas surrounding mouse tissue is re-
sponsive), further mechanistic information was needed. In this study,
we re-examine BaP, DBC and CTE as dermal carcinogens in the FVB/N
mouse model employing animals wild-type for Cyp 1b1 (Cyp1b1™/™),
heterozygous mice (Cyp 1b1*/~) and Cyp 1b1 null mice (Cyp 1b1~/7).

Materials and methods

Caution: BaP and DBC are potent carcinogens and should be handled
in accordance with National Cancer Institute (NCI) guidelines.

Chemicals. BaP (CAS no. 50-32-8) and DBC (CAS no. 191-30-0) were
purchased from Midwest Research Institute (Kansas City, MO). Coal
tar extract (CTE, SRM 1597a) was purchased from the National Institute
of Standards & Technology (Gaithersburg, MD). Trizol®, DNase I, EDTA,
Superscript™ [II, RNase H, and Quant-iT™ Picogreen® dsDNA assay kit
were purchased from Life Technologies™ (Grand Island, NY). RNeasy
and DNeasy kits and SYBR® Green Fluor Mastermix were from Qiagen
(Alameda, CA) 12-O-tetradecanoylphorbol-13-acetate (TPA) was pur-
chased from Sigma-Aldrich (St. Louis, MO). Acetone and toluene, HPLC
grade was from Fisher Scientific (Pittsburgh, PA).

Skin tumor study. All procedures were conducted according to National
Institutes of Health guidelines and were approved by the Oregon State
University Institutional Animal Care and Use Committee. Cyp 1b1~/~
(null) mice were back-crossed from a C57B6 strain (a generous gift
from Frank Gonzalez at NCI) onto a FVB genetic background using

wild type FVB/J from Jackson Laboratories (Bar Harbor, ME). The Cyp
1b1 null animals used in this study were from offspring of the 7th back-
cross. Cyp 1b1 genotype status was confirmed with PCR as described
earlier (Castro et al., 2008). A combination of wild type litter mates
from the same breeding and wild type FVB/] mice purchased from Jack-
son Lab were used in the Cyp 1b17+/* (wild type) groups. Six week old
female mice were put on AIN93-G pelleted diet, Research Diets, Inc.
(New Brunswick, NJ) until they were twelve weeks old. At this time
they were switched to AIN93-M maintenance ration for the remainder
of the experiment. Animals were housed in micro-ventilated racks,
five animals per cage on a standard 12 h light/dark cycle, at 22 °C and
40-60% humidity. At 7.5 weeks of age, mice were shaved on their dorsal
surface and allowed to rest 48 h to confirm that animals were in the
resting phase of the hair growth cycle. DBC and BaP were solubilized
in toluene to make initiator dosing solutions. CTE (SRM 1597a) was re-
ceived from NIST as an 8 mg/mL solution in toluene. The following ini-
tiation treatments were applied to mice, n = 18-25 (vehicle controls)
and n = 30-35 (PAHs), by slowly pipetting solutions on the shaved
area; toluene vehicle control (0.125 mL), BaP 400 nmol (100 pg), DBC
4 nmol (1.2 pg), or CTE (1 mg). Mice were initiated in two different co-
horts randomly dispersed over all treatments. As PAHs (especially DBC)
are light-sensitive, in order to prevent light-dependent breakdown of
PAHs, we conducted the initiation in a darkened chemical hood. Imme-
diately after dosing, the cages with dark tops were returned to a cage
rack protected from light. Cages were not removed from those racks
for the next 24 h. Two weeks post-initiation, a 20-week promotion reg-
imen was begun, treating animals twice weekly with TPA, 6.5 nmol
(4 pg) in 0.10 mL acetone. Mice were observed and tumor incidence re-
corded weekly throughout the 20-week promotion interval. Following
promotion, all animals were euthanized and necropsied. Skin tumors
were trimmed, immediately fixed in buffered formalin, and embedded
in paraffin. Hematoxylin and eosin-stained sections were analyzed by
light-microscopy by a board-certified veterinary pathologist to confirm
tumor incidence and degree of progression from papilloma to squamous
cell carcinoma.

RNA extraction from DBC-initiated skin. Mice from each of the following
genotypes, Cyp 1b17/™ (wt), Cyp 1b17/~ (het), and Cyp 1b1~/~ (null),
were given one initiation dose of either toluene vehicle control
(0.125 mL) or DBC 4 nmol (1.2 pg) using the same technique as de-
scribed in the tumor study. Epidermis/dermis was harvested from
mice (n = 4/treatment) at 2, 4, and 8 h post-initiation, placed in Trizol
reagent, and snap-frozen in liquid N,. Harvested frozen skin was placed
in a 15-mL sterile, disposable conical homogenizer, VWR Scientific Inc.
(San Francisco, CA) and homogenized in 2 mL Trizol® reagent. RNA
was extracted according to the manufacturer's instructions followed
by a clean-up step using an RNeasy® mini kit. All samples were
quantitated with a Nanodrop spectrophotometer, Thermo Scientific
(Wilmington, DE). Acceptable Aygo/A2s0 ratios were 2.0-2.1. Sample
quality was confirmed by examining 18S and 28S peaks using an
Agilent Technologies Bioanalyzer 2100 (Santa Clara, CA). RNA relative
integrity numbers averaged 6.30 4 0.44 or greater.

mRNA expression using quantitative PCR. Expression of selected genes
over a 2-8 h post-initiation time period was measured using quantita-
tive PCR on cDNA template generated with Superscript™ III reverse
transcriptase per manufacturer's instructions. Final reactions were di-
luted 1:10 with nuclease-free water. Published primer sequences
(Table 2) were synthesized by Life Technologies Inc. (Grand Island,
NY) and used at 600 nM in a 20 pL reaction. SYBR Green Mastermix
was used on a BioRad iQ5 Thermocycler, 1 cycle at 95 °C for 5 min,
40 cycles at 95 °C for 15 s then annealed and extended 1 min, followed
by a melt curve analysis to confirm a single product. Genes of interest
were normalized to GAPDH and relative expression calculated by the
A8Ct method (Schmittgen and Livak, 2008).
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DNA extraction and hydrolysis. Mouse epidermis/dermis (300 mg) from
the same 8 h post-initiated animals as used in RNA extraction were
homogenized in lysis buffer with a Brinkman Polytron (Kinematica
AG, Luzern, Switzerland) and DNA extracted with a Qiagen Genomic
DNeasy Extraction kit. DNA was solubilized in nuclease-free water,
quality confirmed by 260/280 ratios and quantity measured with a
Nanodrop ND-1000 UV-vis spectrophotometer (Nanodrop Technol-
ogies, Wilmington, DE). DNA was prepared for UHPLC-MS/MS as de-
scribed in Ruan et al. (2006) with some modification. Samples
(100 pg in 0.45 mL water) were digested with 45 pL of 0.1 M
MgCl, and 375 U (1.3 L) DNase I for 1.5 h at 37 °C followed imme-
diately with 7.5 pL of 50 mM NaOAc, 5 mM ZnCl,, pH 5.0, containing
7 U of nuclease P1 and incubated for 1.5 h at 37 °C, and finally added
30 pL of 0.5 M Tris-HCl, 50 mM MgCl,, pH 8.5, 30 U of alkaline phos-
phatase (30 L), and incubated for 1.5 h at 37 °C. A 50 pL aliquot was
reserved for base analysis and an internal standard (40 pg '°N-
labeled (4 )-anti-cis-DBCDE-dA and (4 )-anti-trans-DBCDE-dA)
was added to the remaining portion. After addition of the internal
standard absolute ethanol (600 pL) was added, samples were incu-
bated at — 20 °C overnight and centrifuged at 14,000 g for 10 min
at 4 °C. The supernatant was transferred to a new 1.7 mL
microcentrifuge tube and evaporated to 50 pL under a nitrogen
stream. Methanol (50 pL) was added to the samples to bring the vol-
ume to 100 pL (1 pg DNA/UL). Next the samples were filtered
through a costar-X spin tube and transferred to an autosampler
vial with 100 pL insert.

UHPLC-MS/MS analysis. DBCDE-dA adducts were analyzed using a 4000
QTRAP hybrid triple quadrapole/linear ion trap LC-MS/MS system (AB
Sciex, Redwood City, CA) with a Flexar UHPLC system (Perkin-Elmer,
Waltham, MA) employing an Acuity UPLC BEH C;g 1.7 pm column (Wa-
ters, Milford, MA). Solvent A (5 mM NH40Ac + 0.1% formic acid in HPLC
grade water) and solvent B (acetonitrile) were used in a gradient with a
flow rate of 500 pL/min as follows: 1) 0.5 min 80% A and 20% B; 2) 6 min
to 10% A and 90% B; 3) 0.1 min 10% A and 90% B; and 4) 0.9 min wash out
10% A and 90% B. MS parameters were set as follows: electrospray ion-
ization — positive mode; electrospray source temperature — 600 °C;
declustering potential — 60 eV; collision energy — 30 eV; entrance po-
tential — 10 eV; cell exit potential — 10 eV; collision activated dissocia-
tion gas — high; curtain gas — 20 psi. Adducts were analyzed in multiple
reaction monitoring (MRM) mode with the following transitions 604.2/
335.0, 604.2/317.0, 604.2/289.1 (targeted adducts) and 609.2/335.0,
609.2/317.0, 609.2/289.1 (internal standards). Peak integration was
performed using Analyst 1.5.2 Software (AB Sciex, Redwood City, CA).

Table 2
Primers used in qPCR for selected PAH metabolizing enzymes.

Gene name  Sequence Source  Annealing temp. °C

Cyplal (F) 5’-cctcatgtacctggtaacca-3’ 1 60
(R) 5’-aaggatgaatgccggaaggt-3’

Cyp1bi (F) 5’-acatccccaagaatacggtc-3’ 1 60
(R) 5’-tagacagttcctcaccgatg-3’

Gstal (F) 5’-aagcccgtgcttcactacttc-3' 2 62
(R) 5’-gggcacttggtcaaacatcaaa-3’

Nqo1 (F) 5’-aggatgggaggtactcgaatc-3’ 2 62
(R) 5’-aggcgtccttecttatatgeta-3’

Akrici4 (F) 5’-tctcaagacctgcgtggttgea-3’ 3 60
(R) 5’-ggttccaaaccccagtgeaggg-3’

Akric19 (F) 5’-atgcacctgctccatttggagag-3’ 3 60
(R) 5’-gctgtgcgtagaagtcatgacaca-3’

GAPDH (F) 5’-tctcectcacaatttccateccag-3’ 4 59

(R) 5’-gggtgcagcgaactttattgatgg-3’

.Uno et al. (2008).

2. www.pga.mgh.harvard.edu/primerbank;/. Last accessed January 27, 2015.
3. Pratt-Hyatt et al. (2013).

4. Xu and Miller (2004).
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Fig. 1. Time to first tumor evaluated by cumulative tumor incidence function for each con-
dition to account for any early non-cancer related mortalities in the study. The percent
tumor bearing animals for all BaP, DBC and CTE treatments were significantly different
from genotype-matched controls (p < 5.048 x 10~°) as measured by Gray's log rank
test for equality with little effect from early mortality on incidence (p = 0.4145).

UHPLC-MS/MS calibration curves. DNA from untreated tissue was pre-
pared as described for experimental samples. One hundred pg of DNA
was spiked with either unlabeled (4 )-anti-cis-DBCDE-dA or (+)-anti-
trans-DBCDE-dA adducts (0.1, 0.3, 3.0 pg/uL), and 0.4 pg/uL
15N-labeled adducts.

HPLC base analysis. Digested DNA reserved for base analysis was ana-
lyzed using a Luna 3 pm C;g column (Phenomenex, Torrance, CA) with
an Alliance 2695 HPLC (Waters, Milford, MA) and a 2996 photodiode
array detector (PDA), Solvent A was 20 mM ammonium formate
(pH 4.5), and solvent B was acetonitrile with a flow rate of 0.4 mL per
min. The gradient used was 99% A and 1% B for 3 min, followed by a
12 minute ramp from 99% A to 60% A and 1% B to 40% B. A wavelength
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Fig. 2. Tumor multiplicity for tumor-bearing animals (TBA) by treatment and genotype.
Points represent animals with at least one tumor at the end of the 20-week promotion
period. Cyp 1b17/* (wt) are triangles and Cyp 1b1~/~ (null) are circles. Box plot shows
median with the 25th and 75th percentiles and whiskers extending 1.5*interquartile
range (75th-25th). Multiplicity in DBC-wt mice was significantly elevated compared
to DBC-null mice (adjusted p = 0.0289) or other wt treatment groups (adjusted
p <0.0062) using a generalized linear mixed model with Poisson conditional distribution
and logit link function.
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of 254 nm was chosen for sample detection. Deoxyguanosine (dG) and Statistics. Time to first tumor was evaluated by cumulative tumor inci-
deoxyadenosine (dA) standards eluted at 9.3 and 10.2 min, respectively. dence function for each condition to account for any early non-cancer
A calibration curve for each standard was constructed and sample base related mortalities in the study (Gooley et al., 1999). Cumulative inci-
levels were calculated by interpolation of the curve using Empower 2 dence functions were calculated in R using the cmprsk package and es-

software (Waters, Milford, MA). timating the probability of developing a tumor at time t, given that an
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Fig. 3. Tumor progression as a distribution of types from hyperplasia (hyp)- dysplasia (dys)- papilloma (pap)- in situ carcinoma (ISC)- to squamous cell carcinoma (SCC) in each of the
treatment groups. DBC treatment of wild type mice resulted in significantly more in situ carcinoma and squamous cell carcinoma compared to other wild type treatment groups
(p <0.004) indicated by ¥ and compared to nulls treated with DBC (p < 0.001 and p = 0.011, respectively, for each tumor type ©).
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animal has not yet developed a tumor, in the presence of competing
risks (e.g. early mortality). Statistical significance among cumulative
tumor incidence curves was determined by Gray's log rank test for
equality (Gray, 1988). A proportional hazards model, which also ac-
counts for competing risks, was utilized to calculate subdistribution
hazards ratios (Fine and Gray, 1999). Tumor multiplicity was evaluated
for conditions with more than one tumor-bearing animal, thus the con-
trol group was not included. An exact Kruskal-Wallis test was conduct-
ed to evaluate possible cohort effects, which were potentially identified
in two of three groups (p-values of 0.0514 and 0.02) and a possible cage
effect for the CTE group (p-value of 0.029). Therefore, a generalized lin-
ear mixed model with Poisson conditional distribution and logit link
function was fit to the data. The model's fixed effects included treatment
and genotype (represented as 8 conditions) with cage and cohort in-
cluded as random effects. A mixed model assuming normality using
the square root of tumor multiplicity as the response variable was also
fit and produced similar results, so the Poisson model is presented for
ease of interpretability. The Ime4 and glht packages in R were used to
fit the model and conduct pairwise comparisons, respectively. A one-
step adjusted p-value was calculated for the multiple pairwise tests
(Hothorn et al., 2008). To determine if the number of tumors per animal,
by tumor type, was different among the treatment groups, a generalized
linear mixed model with a Poisson conditional distribution and logit
link function was fit to data for each tumor type separately. The treat-
ment and genotype combination group was included as a fixed effect
and cage and cohort were included as random effects. qRTPCR data
were compared for significance using Graphpad InStat ver. 3.05
software (San Diego, CA). Relative expression data were analyzed by
comparing toluene treated with DBC treated per each genotype and
time point using a Mann-Whitney two-tailed T test. Kruskal-Wallis
with a Dunn post-test was used to separately compare variance across
genotype and time. Statistical analysis for DBCDE-dA adduct formation
was performed using one-way analysis of variance (ANOVA) with
Tukey's multiple comparisons test (Prism 6.0, Graphpad, La Jolla, CA).
A p-value of <0.05 was considered significant.

Results
Initiation and progression of tumors

Carcinogen initiation and progression were measured with several
tumor end points; timing of first tumor (latency), number of tumors
per tumor bearing animal (TBA), and tumor characterization by histo-
pathology after 20 weeks of promotion. As previously documented
(Siddens et al., 2012), DBC initiated tumors with greater efficacy,
shorter latency (Fig. 1), and higher multiplicity (Fig. 2). These tumors
also exhibited a more aggressive phenotype (greater percentage of in
situ carcinoma and squamous cell carcinoma) (Fig. 3) than mice treated
with BaP; even though the DBC dose was 100-fold lower based on molar

Table 3
Influence of Cyp1b1 genotype on tumor incidence and multiplicity.

equivalents or about 3-fold lower based on RPF. The percent tumor
bearing animals for the BaP, DBC and CTE treatments (Fig. 1) were
found to be significantly different from genotype-matched controls
(p < 5.048 x 10~ %) with little effect from early mortality on incidence
(p = 0.4145). When testing for differences in genotype for each
treatment separately, only the DBC treatment group had significant-
ly different cumulative tumor incidence functions between wt and
null (p-value = 0.0074), while all other groups had p-values greater
than 0.5 for this test (Table 3). Multiplicity in the wt mice treated
with DBC was significantly increased compared to DBC-treated
nulls (p = 0.0289) with an estimated ratio of 1.950 (Table 3,
Fig. 2). Multiplicity in DBC-treated wt mice was also increased com-
pared to all other treatments of wt mice (p < 0.0062) (Fig. 2). There
was no effect of genotype on tumor multiplicity for BaP or CTE.
There was also an effect of treatment on the distribution of tumor
types observed in the study (Fig. 3). DBC treatment of wt mice result-
ed in significantly more in situ carcinoma and squamous cell carcino-
ma compared to other wt treatment groups (p < 0.004) and
compared to nulls treated with DBC (p <0.001 and p = 0.011, re-
spectively, for each tumor type) (Fig. 4). Interestingly, the relative
yield of papillomas was lower in the present study with BaP and
DBC compared to a previous study in our laboratory (Siddens et al.,
2012) whereas squamous cell carcinomas and carcinomas in situ
were markedly higher.

Loss of Cyp 1b1 expression significantly reduced DBC dermal car-
cinogenicity when assessed by all four parameters. In contrast, loss
of Cyp 1b1 expression slightly, although not significantly, enhanced
the carcinogenicity of BaP in this model. The latency, incidence, mul-
tiplicity and phenotype of skin tumors induced by CTE was not im-
pacted by loss of Cyp 1b1 and, as previously noted (Siddens et al.,
2012), the carcinogenicity of CTE was much greater than would
have been predicted from the RPF (0.4 pg BaPeq, compared to 100
for BaP and 36 for DBC) (Table 1).

mMRNA response 2-8 h post DBC initiation in Cyp 1b17/7, Cyp 1b17/~ and
Cyp 1b1~'~ mice

In order to assess the loss of Cyp 1b1 expression on the mRNA levels
of select genes coding for Phase I (Figs. 5 and 7) and Phase II (Fig. 6) en-
zymes involved in metabolism of PAHs, levels were quantified in Cyp
1b1 wild-type mice and compared to their het and null siblings. qRTPCR
(primer sequences in Table 2) was used to compare DBC-initiated skin
to matched toluene-treated controls 2,4 and 8 h after treatment. Similar
to previous assays of mRNA levels 12 h post-initiation, Cyp 1al was not
markedly induced at the earliest time point and declined over the next
6 h. The levels of Cyp 1al mRNA were significantly (p < 0.05) lower in
the null mice at 4 and 8 h. In addition, all time points in the null groups
had significantly lower expression compared to hets as did 2 h wt versus
2 hnulls (p < 0.05) (Fig. 5, top panel). As previously observed (Siddens

Treatment Genotype Tumor incidence® Tumor multiplicity
%° p-Value® Ratio? Mean =+ SE¢ p-Value® Ratio®
BaP Cyp1b1*/* 88.89 1 1.172 3.88 + 0.67 0.495 0.682
Cyp1b1=/~ 87.50 4.89 4+ 0.77
CTE Cyp1b1™/* 86.21 1 1.017 3.96 £ 0.62 0.983 0.837
Cyp1b1=/~ 76.47 3.73 £+ 045
DBC Cyp1b1™/* 100.00 7.409 x 103 2.627 7.82 £ 1.00 0.029 1.950
Cyp1b1=/~ 72.73 3.29 £+ 041

¢ Tumor incidence evaluated by cumulative tumor incidence function to account for early non-cancer related mortalities.

b Percent tumor incidence at 20 weeks for each condition.

¢ Statistical difference in tumor incidence between wt and null animals for each treatment group calculated by Gray's log rank test for equality adjusted for FDR (Gray, 1988).

94" Hazard ratio calculated for wt compared to null in each treatment group based on the proportional hazards model for the subdistribution of developing a tumor.

¢ Tumor multiplicity calculated as the mean number of tumors per tumor-bearing animal (+ SE).

T Statistical difference in tumor multiplicity between wt and null animals for each treatment group calculated using a generalized linear model to account for cage and cohort effects.

& Estimated ratio of mean tumor multiplicity for wt compared to null.
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et al., 2012), DBC did not induce Cyp 1b1 in wt mouse skin (Fig. 5,
bottom panel). Gst al mRNA levels, appeared to decline following DBC
treatment (Fig. 6). The loss of Cyp 1b1 had no significant effect on levels
of Gst al mRNA in skin, however hets had a significant increase in Gstal at
8 h compared to4 h (p <0.05, Fig. 6, top panel). Nqo1 was not significantly
changed at any of these early time points with the one exception at 8 h in

A

the null group, where it was down-regulated by DBC treatment (p < 0.05,
Fig. 6, lower panel). Aldo-keto reductases of the 1c family were screened.
Those showing measurable levels in a cDNA pool (Akr 1c12, Akr 1¢13, Akr
1c14, Akr 1c18, Akr 1c19, Akr 1c20, and Akr 1c22) were further investi-
gated. The pattern of Akr 1c14 mRNA was similar to Cyp 1al, declining
over time following DBC treatment in wt and hets (Fig. 7, top panel).

Fig. 4. Histological appearance of skin tumors showing the progression from hyperplasia (A, B), to papilloma (C, D), in situ carcinoma (E, F), and squamous cell carcinoma (G, H). Panels on
the left provide a low-magnification view of the tumors (A, E, G at 100 x; C at 40x); panels on the right provide higher magnification views of the same tumors (B, D at 200x; F, H at 400x).
Note increased thickness of epidermis in hyperplasia in comparison to that in normal skin (A, arrow at the left margin) and the narrow base of the papilloma (C, arrows). In both hyper-
plasia (B) and papilloma (D), the physiological, gradual maturation of keratinocytes is maintained — from small basal cells in the lower half of panels B and D through the granular cell layer
to fully keratinized scales at the top (B) or right (D). Dermis in lower half is shown for orientation. While the in situ carcinoma is contained within the dermis (E, arrows) and has not
breached the basement membrane zone (F, arrows) keratinocytes show some dysplasia and obvious dyskeratosis (F, note absence of granular cell layer and formation of keratin pearls).
In contrast, the squamous cell carcinoma has deeply invaded the subcutis and is encroaching on the cutaneous muscle (G, arrows). Marked dysplasia can make it difficult to identify in-

dividual, invading neoplastic cells (H, arrows).
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Furthermore, loss of Cyp 1b1 expression in the null mice resulted in a sig-
nificant (p < 0.05) decrease of Akr 1c14 mRNA expression at all times
measured (Fig. 7, top panel). Akr 1c19 levels were significantly higher in
hets at 8 h compared to the 8 h nulls and conversely the 4 h hets were sig-
nificantly (p < 0.05) lower compared to 4 h nulls. However there were no
differences when treated were compared to controls suggesting these
genotype differences may not be treatment related (Fig. 7, lower panel).
Either no significant effects or too low of expression for reliable conclu-
sions were observed for Akrici13, Akric18, Akric20, and Akr1c22 (data
not shown.)

DNA adducts 8 h post DBC initiation

Utilizing a highly sensitive stable-isotope dilution UHPLC-MS/MS
assay (Harper et al., 2015, Fig. 8) and >N-labeled (+)-anti-cis-DBCDE-
dA and (&)-anti-trans-DBCDE-dA, standards kindly provided by Dr.
Shantu Amin (Penn State University), we assayed at 8 h DBC post-
initiation levels of the two DNA adducts thought to be the most muta-
genic and carcinogenic (Luch et al., 1999; Melendez-Colon et al.,
1999). The levels of the (4 )-anti-cis-DBCDE-dA adduct were signifi-
cantly higher than (+)-anti-trans-DBCDE-dA (Fig. 8, inset). Additional-
ly, although not statistically significant, loss of Cyp 1b1 reduced the
levels of both DBCDE-dA adducts in skin at 8 h whereas there was no
diminution in skin from the hets. These results are consistent with
the reduced potency of DBC in Cyp 1b1 null mice with respect to skin
carcinogenesis.

Discussion

DBC and PAH mixtures exhibit greater carcinogenicity in mouse skin than
predicted by their RPFs: role of Cyp 1b1

DBC in animal models is among the most potent carcinogenic PAHs
(IARC, 2010). In a mouse transplacental model DBC administered to
the dam (gestation day 17) at 15 mg/kg results in significant mortality
from a very aggressive T-cell lymphoma (Yu et al., 2006). In the same
model, BaP (50 mg/kg) and two different environmental PAH mixtures
did not produce T-ALL in offspring. Enhanced lung tumors were ob-
served at 10 months (Castro et al., 2008) though not to the degree pro-
duced by DBC. When the transplacental study was performed with
crosses of Cyp 1b1™/~ mice, no T-ALL was observed in the Cyp 1b1~/~
offspring and the hets exhibited about 50% of the mortality of the Cyp
1b17/* siblings (Castro et al., 2008). Thus, fetal expression of Cyp 1b1
was required for DBC-dependent transplacental mortality from T-ALL.
Loss of Cyp 1b1 in the same study only slightly reduced DBC lung
carcinogenicity.

In the mouse skin model (the most widely used for assessing PAH
cancer risk), DBC and CTE exhibit much greater carcinogenicity, com-
pared to BaP, than would be predicted based on the RPFs (Siddens
et al,, 2012 and current study). Loss of Cyp 1b1 increases the latency
and reduces the incidence, multiplicity and aggressiveness of skin
tumors initiated by DBC in the two-stage mouse model. In contrast,
loss of Cyp 1b1 did not significantly impact the response with BaP or
CTE (Figs. 1-3). Based on the loss of both Cyp 1b1 and the marked
reduction in skin Cyp 1al expression (Fig. 5, top panel), the lack of
decrease in BaP carcinogenesis in the Cyp 1b1~/~ mice is somewhat
surprising. With 7,12-dimethylbenz[a]anthracene as the initiator,
Cyp 1b1 nulls exhibit reduced sensitivity to cancer at most targets,
including skin (Buters et al., 1999). There was a complete elimina-
tion of skin hyperplasia in Cyp 1b1 null mice given DBC compared
to wild type mice (Buters et al., 2002). Comparison to the present
study is complicated by a different route of administration (oral)
and different genetic background (C57BI/6 and 129/Sv) in the previ-
ous studies.

Impact of loss of Cyp 1b1 expression on levels of select PAH metabolizing en-
zymes in mouse skin

The two major Cyps implicated in bioactivation of BaP and DBC
in most mammalian tissues (Nesnow et al., 1998; Shimada, 2006;
Shimada et al., 1999; Shou et al., 1996 including mouse skin (Kleiner
et al.,, 2004) are Cyp 1al and Cyp 1b1. Cyp 1b1 is expressed in human
skin (Svensson, 2009). Therefore it is not surprising that loss of global
expression of Cyp 1b1 resulted in reduced skin tumorigenesis especially
given the concordant reduction in expression of Cyp 1al in skin (Fig. 5,
top panel). A previous study employing single, double and triple knock-
outs of the Cyp 1 family demonstrated that levels of Cyp 1a1 in other tis-
sues were reduced in Cyp 1b1 null mice through some unknown
compensatory mechanism (Uno et al., 2006). In this same study, con-
trary to expectations, loss of Cyp 1a1 enhanced the toxicity of oral BaP
apparently due to a reduced ability of these mice to eliminate BaP
(steady state blood levels were 25-times higher in Cyp 1al~/~ mice
compared to wt after 5 days of feeding BaP at 125 mg/kg). Previous
studies by Dr. Baird's laboratory, utilizing microsomes from mouse epi-
dermis (Courter et al., 2007; Marston et al., 2001) or human MCF-7
breast cancer cells Mahadevan et al., 2005a; 2005b), are consistent
with the lack of induction of Cyp1al and Cyp1b1 by DBC; these studies
were conducted 12-24 h following DBC treatment.

Two key Phase Il enzymes involved in detoxication of PAHs include
Gst and Nqo 1, the former through conjugation of epoxides (Sundberg
et al., 2002) and the latter by inhibition of redox cycling of catechols
and quinones (Shen et al., 2010). There did not appear to be any compen-
satory regulation of expression of Gst a1l or Nqo 1 8 h post-initiation with
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Fig. 5. Relative mRNA expression in selected P450 Cyp I metabolizing enzymes measured
2,4, and 8 h post initiation with 0.125 mL toluene or 400 nmol DBC applied to the shaved
dorsal surface of Cyp 1b1%/* (wt), Cyp 1b1%/~ (het), and Cyp 1b1~/~ (null) mice. qPCR
using the 22Ct method of expression in treated animals relative to toluene control is
shown as mean = SE of individual 2~ (A2 values. ¥ indicates significant difference
between control and treated based on Mann Whitney two tailed test, ¢ indicates signifi-
cant difference between genotypes using Kruskal-Wallis ANOVA with Dunn's post-test
all p values < 0.05.
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Fig. 6. Relative mRNA expression in selected Phase Il metabolizing enzymes measured 2, 4,
and 8 h post initiation with 0.125 mL toluene or 400 nmol DBC applied to the shaved dor-
sal surface of Cyp 1b17/* (wt), Cyp 1b17/~ (het), and Cyp 1b1~/~ (null) mice. qPCR using
the 24Ct method of expression in treated animals relative to toluene control is shown as
mean = SE of individual 2~(*2% values. ¥ indicates significant difference between
control and treated based on Mann Whitney two tailed test, o indicates significance between
time points using Kruskal-Wallis ANOVA with Dunn's post-test all p values < 0.05.

DBC. Our recent studies comparing and contrasting BaP, DBC and CTE
demonstrated that BaP and CTE in mouse skin impacted Ahr/Arnt, Nrf 2
and Sp 1 controlled signaling pathways (Tilton et al., 2015), whereas
DBC did not.

Dihydrodiols of PAHs (7,8-DHD for BaP and 11,12-DHD for DBC)
can be converted to the corresponding catechols by AKR 1; the AKR
1C sub-family being important contributors (Quinn and Penning,
2008). Of the 7 mouse Akrlc members examined, loss of Cyp 1b1
only impacted Akr 1c14 mRNA expression 2-8 h after DBC treat-
ment (Fig. 7, top panel). The differences in Akr 1c19 across time
and genotype did not appear to be treatment related. Akr activity
could be hypothesized to either enhance (Quinn et al., 2008) or re-
press PAH carcinogenicity. Conversion of the dihydrodiol reduces
subsequent formation of the highly mutagenic and carcinogenic
dihydrodiol-epoxide. Formation of the catechol, especially under
conditions where Nqo levels are reduced, would enhance formation
of reactive oxygen species (ROS) through 1 electron redox cycling
with production of superoxide radical cation. Studies comparing
the relative carcinogenicity of DBC-11,12-dihydrodiol-13,14-
epoxide and DBC-11,12 dihydrodiol to DBC suggests that the parent
compound could be as (Gill et al., 1994; Higginbotham et al., 1993)
mutagenic/carcinogenic as these metabolites, again making conclu-
sions about the relative mutagenicity of the two pathways uncer-
tain. Unfortunately, in this study we did not assay ROS production
nor assess any biomarkers of ROS cellular damage. Extrapolation
of the importance of Akr 1c levels in mice to human risk is compli-
cated by evidence suggesting that there is little homology between
mouse and human members of the AKR 1c¢ sub-family (Velica
et al., 2009).

It should be noted that the impact of loss of Cyp1b1 expression
in mouse epidermis on expression of the various DBC-metabolizing
enzymes examined in this study, while interesting, cannot be correlated
to the final tumor response.

Levels of (+)-anti-DBCDE-dA adducts 8 h post-initiation with DBC

Employing a highly sensitive stable-isotope dilution UHPLC-MS/MS
assay (Harper et al., 2015, Fig. 8) and '°N-labeled standards, we have
quantified the cis and trans isomers of the (+)-anti-DBCDE-dA adduct,
thought to be the major mutagenic and carcinogenic bioactivation prod-
ucts of DBC (Luch et al.,, 1999; Melendez-Colon et al., 1999). Unlike pre-
vious results from other DBC targets in the mouse (lung, liver, ovary) we
found that the cis isomer predominated in skin from all three genotypes
(Cyp 1b1+/*, Cyp 117/~ and Cyp 1b1~/7). The levels of adduction
(15-20 ()-anti-DBCDE-dAs/108 dA) are in the range seen in other
studies (Harper et al,, 2015). In the Cyp 1b1 nulls, the level of adduction
was reduced by about 30% at the 8 h time point consistent with the re-
duced subsequent tumor yield in these mice. The caveat with these re-
sults is that only a single time point was examined; it may be that the
cis/trans ratio would change over time if the DBC-dA stereoisomers
had different rates of repair.

Conclusions

Consistent with previous results from our laboratory (Siddens et al.,
2012) with the two-stage skin tumor model in the FVB/N mouse, DBC
and CTE exhibit markedly greater carcinogenesis compared to BaP
than would be predicted based on their calculated RPF values. To ex-
plore mechanistic explanations for this observation, we examined the
impact of loss of Cyp 1b1, which our group and others have demonstrat-
ed is important in the carcinogenicity of a number of PAHs, including
DBC. With DBC as the initiator, loss of Cyp 1b1 expression significantly
enhanced the latency and reduced the incidence and multiplicity
while shifting the tumor type to less aggressive phenotypes. As previ-
ously observed in another strain (Uno et al., 2006), there appears to
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Fig. 7. Relative mRNA expression in selected Akr 1¢c metabolizing enzymes measured 2, 4,
and 8 h post initiation with 0.125 mL toluene or 400 nmol DBC applied to the shaved
dorsal surface of Cyp 1b1%/* (wt), Cyp 1b1+/~ (het), and Cyp 1b1~/~ (null) mice. gPCR
using the #2Ct method of expression in treated animals relative to toluene control is
shown as mean = SE of individual 2~(“2Y values. ¥ indicates significant difference be-
tween control and treated based on Mann Whitney two tailed test, ¢ indicates significant
difference between genotypes and « indicates significance between time points using
Kruskal-Wallis ANOVA with Dunn's post-test; all p values < 0.05.
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Fig. 8. Representative MRM chromatogram of DBCDE-dA adducts identified 8 h post DBC initiation. The chromatogram indicates co-elution and detection of '°N internal standards (red
peaks (m/z 609.2 — m/z 335.0)) and target (+)-anti-cis- and (4 )-anti-trans-DBCDE-dA adducts (blue peaks (m/z 604.2 — m/z 335.0)). Inset represents adduct quantitation for all 3
genotypes based on calibration curve and HPLC base analysis. One way ANOVA with Tukey's multiple comparison test indicate no significance difference in adduct formation between
genotypes. However, the (4 )-anti-cis isomer was formed at significantly greater levels than the (4 )-anti-trans isomer in each group.

be a compensatory mechanism such that Cyp 1al expression is re-
duced in the Cyp 1b1 nulls, presumably reducing PAH bioactivation.
We observed no consistent change in expression of genes which
would contribute to detoxication of PAHs (e.g., Gst al or Nqo 1).
The reduction in Akr 1c14 mRNA levels could reduce (+)-anti-
DBCDE-dA formation but enhance ROS-dependent damage. The
ratio of cis/trans isomers of (& )-anti-DBCDE-dA in skin was marked-
ly higher than seen in other tissues. Additionally, both adducts were
reduced in the Cyp 1b1 null mice.

Limitations to this study include the fact that we only measured
mRNA levels, rather than protein and utilized a limited time span. The
use of other Cyp 1 knockouts, including the double and triple knockouts,
may have shed more light on the relative contribution to skin carcinoge-
nicity resulting from exposure to BaP, DBC or CTE. Conditional knockouts
would have provided an additional advantage to the experimental design.
Finally, the contribution of ROS in PAH-dependent skin cancer in this
model was not assessed. What we can state with some certainty is that
the RPF approach to risk assessment of PAH mixtures, and even single
PAHs, is problematic. Cyp 1b1 contributes significantly to carcinogenesis
in this model perhaps not only through loss of this bioactivation pathway
but by additional alterations in expression of other PAH metabolizing en-
zymes through some, as yet, uncharacterized compensatory mechanism.
Gene pathway analysis conducted by our laboratory strongly suggests
that DBC alters a distinct set of signaling pathways compared to BaP and
CTE which themselves share some commonalities but are also distinct.
The carcinogenicity of DBC appears to be more related to its ability to
alter p53 and Myc signaling compared to BaP and CTE which alter Ahr/
Arnt, Nrf-2 and Sp1-controlled gene expression (Tilton et al., 2015). Our
studies reinforce previous observations that environmental PAH mixtures
have numerous mechanisms of action and risk assessment predictors
need to take these into account.
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