Use of Artemisinin to Treat *Mycoplasma haemololamae* Infection in Llamas

Jessica Puccetti BioResource Research, Susan Tornquist DVM, PhD. Biomedical Sciences, College of Veterinary Medicine
Objective

The purpose was to determine if artemisinin would be effective in clearing *Mycoplasma haemolamae* infection in llamas.
Why is this important?

• Llama/Alpaca owners
 – Show
 – Raise
 – Business
• Affects selling and moving animals, health certificates, treatment, and insurance
• Easy answer: health of animal
Mycoplasma haemolamae

• Hemotropic bacteria
• Very small (<1 μm)
• Rod-shaped, spherical, or ring-shaped
• Infects camelids
• Infection varies from asymptomatic to severe
Mechanism of Action

- Lacks a peptidoglycan layer
 - Penicillin inhibits production of layer
- Attaches to erythrocyte plasma membrane
- Unable to culture *in vitro*
- Immune system recognizes infected cells as foreign
- Removes from circulation
Mycoplasma Species

• Formerly known as *Eperythrozoon* species
• Reclassified as hemotropic *mycoplasmas* after 16S ribosomal RNA gene sequenced
• *Mycoplasma* infects wide variety of species
• Most closely related to *M. haemosuis* (affecting swine) and *M. wenyonii* (affecting cattle)
Clinical Signs

• Anemia
• Fever
• Edema
• Mild to severe hypoglycemia
• Acute collapse
• Chronic weight loss
• Depression
• Decreased fertility and lethargy
Mode of Transmission

• Unknown
 – Believed spread through contact with infected animals blood (known as chronic carriers)
 – Lice, ticks, mosquitoes, and other vectors

• Prevention
 – New needle for each animal
 – Vaccinate and treat other diseases
 – Routine veterinary care
 – Proper husbandry
In-utero Transmission

4-day-old female alpaca:
• Born 2 weeks premature
• Within 48 hours
 – Loss of appetite
 – Inability to stand
 – Weakness
 – No longer suckled dam
• Fed 75 and 45 mL of alpaca colostrum
In-utero continued

• Cria was given IV fluid therapy, dextrose, and plasma transfusion
 – After had interest in food, responsive to external stimuli, and stand unassisted

• Couple hours later
 – Developed seizures
 – Dyspnea
 – Died
In-utero continued

• Dam was non-parasitemic
 – Ran PCR on both dam and cria found positive for *M. haemolamae*

• Suggests *M. haemolamae* was transferred in-utero from dam to cria

Current Treatment

• Tetracycline regimen reduces numbers of infecting organisms
 – Inhibit bacterial translation
 – Binds reversibly to prokaryotic 30s ribosomal subunit and blocks attachment of aminoacyl tRNA

• No known treatment that clears infection from “carrier” animals
Artemisinin

• Herbal remedy from wormwood
• Used by Chinese herbalists since 200 B.C.
• Currently used to treat malaria
• Further studies for possible cancer treatments

http://www.socbioscience.org/bioengdoc9C.jpg
Artemisinin Mechanism of Action

- Affinity for iron
- Linkage breaks creating reactive oxygen species (ROS)
- Damage to infecting organism leading to death
Tests to determine *M. haemolamae* infection

- **Packed Cell Volume (PCV)**
 - 25-45%
 - Lowered indicates anemia
- **Plasma Protein (PP)**
 - 6-7 mg/dl
 - General health status of animal
- **Body Temperature**
 - 99-101.8 °F
 - Fever—possible sign of infection
Tests to determine *M. haemolamae* infection

- Blood smear diagnosis

- Polymerase Chain Reaction (PCR) assay
 - Positive amplicons at 318 bp

PCR assay

- Sensitive test
 - Detectable by PCR <2 days before seen on blood smears
- Diagnose low numbers of hemoplasma
- Amplify 16s rRNA gene
Materials & Methods

• Six male adult llamas
 – Becker, Benito, Chestnut, Mouse, Randy, and TreBon

• Initial health screening
 – Physical exam: weighed and found 5 of 6 intact
 • Randy had heart murmur
 – Complete blood count
 – PCR for *M. haemolamae*
 • All llamas found negative
Methods continued

• Immune-suppressed donor alpaca (known chronic carrier)
• Llamas transfused with blood from infected donor
 – Mixed with sterile acid-citrate-dextrose (ACD)
Methods continued

• After first week, post-transfusion daily health checks
 – Rectal temperatures and 1 ml of EDTA blood drawn for PCR, PCV, TP, and blood smear

• Once bacteria was detected by blood smear and PCR, treatment began
 – TreBon, only llama that did not become positive
Materials & Methods

- Artemisin dosage 200 mg per 2 cc of water rectally
- Rounds of treatment: twice a day for 5 days and 5 days off
Rectal Treatment

• Drugs given orally are broken down by ruminal flora in ruminant animals

• Camelids are modified ruminants

• Given rectally, the intestinal mucosa absorbs drug rapidly
Methods continued

• One month after treatment

 – Llamas immune-suppressed
 • 2 mg/kg dexamethasone (a corticosteroid) IV
 • 3 consecutive days

 – Monitored by PCR, PCV, TP, and blood smear
Results

• All llamas were positive at least one time during treatment and one month after treatment
Llama 1 - Becker

PCR Results

Positive

Negative

Days Post Infection (DPI)
Llama 3 - Chestnut

PCR Results

Days Post Infection (DPI)
PCR Results

Positive

Llama 4 - Mouse

Negative

Days Post Infection (DPI)
Llama 2 - Benito

PCR Results

Positive

Negative

Days Post Infection (DPI)
Conclusions

• Artemisinin at a dosage of 200 mg did not clear the *M. haemolamae* infection

• Each llama was positive both during treatment and after treatment of artemisinin
Possible reasons of why it didn’t work?

• Malaria infects blood cell and consumes hemoglobin
 – Liberates free heme (iron-porphyrin complex)
 – Cascade of reactions produces ROS
 – ROS damages and kills parasite
• *M. haemolamae* may not liberate heme
• Artemisinin may not have made it past the intestinal microbes
What next?

• Pharmacokinetic testing of artemisinin on camelids

• Further studies on artemisinin
 – Use different dosage
 – Longer amount of time
 – Different administration

• Keep looking for another possible treatment
Acknowledgments

Thank you to everyone that has helped!
Dr. Susan Tornquist, Lisa Boeder, Dr. Christopher Cebra, Dr. Kate Field, Willamette Valley Llama Foundation, Wanda Crannell, Mike & Kaye Puccetti, George Potts, and everyone who gave their support and time.

• Tornquist, SJ. Willamette Valley Llama Foundation Grant Proposal Request; Use of artemisin to treat *Mycoplasma haemolamae* infection in llamas. Corvallis, OR, 2008.

Questions?

References