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Abstract  9 

There is a lack of scientific consensus about how top-down and bottom-up forces 10 

interact to structure terrestrial ecosystems.  This is especially true for systems with large 11 

carnivore and herbivore species where the effects of predation versus food limitation on 12 

herbivores are controversial.  Uncertainty exists whether top-down forces driven by large 13 

carnivores are common, and if so, how their influences vary with predator guild composition 14 

and primary productivity.  Based on data and information in 42 published studies from over a 15 

50-year time span, we analyzed the composition of large predator guilds and prey densities 16 

across a productivity gradient in boreal and temperate forests of North America and Eurasia.  17 

We found that predation by large mammalian carnivores, especially sympatric gray wolves 18 

(Canis lupus) and bears (Ursus spp.), apparently limits densities of large mammalian 19 

herbivores.  We found that cervid densities, measured in deer equivalents, averaged nearly six 20 

times greater in areas without wolves compared to areas with wolves.  In areas with wolves, 21 

herbivore density increased only slightly with increasing productivity.  These predator effects 22 

are consistent with the exploitation ecosystems hypothesis and appear to occur across a broad 23 

range of net primary productivities.  Results are also consistent with theory on trophic  24 

cascades suggesting widespread and top-down forcing by large carnivores on large herbivores 25 

in forest biomes across the northern hemisphere.  These findings have important conservation 26 

implications involving not only the management of large carnivores, but also that of large 27 

herbivores and plant communities.   28 
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Introduction 32 

Over a half century ago Hairston et al. (1960) introduced the green world hypothesis 33 

(GWH), suggesting that predators maintain global plant biomass at high levels by limiting 34 

herbivore densities.  This view of “top-down” controls upon food-web interactions 35 

contradicted the prevailing bottom-up view that food-webs are nutrient-driven, as reflected in 36 

the classic food-web theory.  Subsequently Fretwell (1977) and Oksanen et al. (1981) refined 37 

and extended the GWH to what is known as the exploitation ecosystems hypothesis (EEH).  38 

The EEH predicts stepwise trophic relationships among plants, herbivores, and predators 39 

along an increasing net primary productivity (NPP) gradient.  The EEH also suggests that 40 

herbivore biomass increases linearly with increasing NPP in unproductive ecosystems 41 

(<0.7kg/m2/yr), but remains somewhat constant in the presence of predators in productive 42 

ecosystems (>0.7kg/m2/yr).  According to the EEH, plants and carnivores in forests and other 43 

relatively productive ecosystems are resource limited, whereas herbivores are regulated by 44 

predation.  Thus, with increasing primary productivity, the EEH predicts significant increases 45 

in plant and carnivore biomass, but little increase in herbivore biomass.  Conversely, where 46 

apex predators have been functionally extirpated, herbivore irruptions (sharp increases in 47 

densities) and impacts to plant communities would be likely.  48 

Because these seminal top-down theories were advanced, questions have been raised 49 

and the importance of trophic cascades in ecosystem processes and functions remains 50 

controversial (Polis 1999; Terborgh et al. 1999; Schmitz et al. 2000).  Trophic cascades have 51 

been criticized as simplistic, only rarely relevant at the community level, and far less 52 

significant within terrestrial ecosystems than aquatic ecosystems (Halaj and Wise, 2001).  53 

Additionally, the vast majority of studies concerning trophic cascades in terrestrial ecosystems 54 



involve invertebrate communities (Borer et al. 2005).  Thus, uncertainty persists about 55 

whether terrestrial trophic cascades are common in the presence of large carnivores (Crête and 56 

Manseau 1996; Ray et al. 2005). 57 

Large mammalian carnivore species have experienced substantial range contractions 58 

throughout the world during the last two centuries (Ceballos and Ehrlich 2002; Laliberte and 59 

Ripple 2004).  Nevertheless, there have been a significant number of case studies performed in 60 

an attempt to understand the effects of wolves and other predators on prey populations in 61 

northern North America (Orians et al. 1997; Mech and Peterson  2003; citations in Appendix 62 

1).  In general, these reviews suggest that wolf predation can be a limiting factor for prey 63 

populations, especially when wolves coexist with bears, holding prey to levels well below 64 

what could be supported by the forage base.  However, Mech and Peterson (2003) state that 65 

there is “still no scientific consensus on the significance of wolf predation in prey population 66 

dynamics” because each case study has a combination of ecological factors that make it 67 

unique from the others.   68 

Since little work has been done comparing predator/prey dynamics across productivity 69 

gradients (Crête 1999), there has been a lack of literature addressing trophic level dynamics in 70 

endotherm food webs across boreal and temperate forests of the Northern hemisphere 71 

(Aunapuu et al. 2008).  Little is known, for example, about the range in cervid densities 72 

normally occurring for partial versus complete large predator guilds and how cervid densities 73 

vary with productivity (Crête and Manseau 1996).   74 

Herein we address relationships among predator guilds and cervid densities in boreal 75 

and temperate forest biomes of the northern hemisphere.  In retrospect, the extirpation of large 76 

carnivores by the 20th century in portions of the mid- and northern latitudes provided a series 77 



of natural experiments (Diamond 1983).  Thus, previously published studies allowed us to 78 

compare results from areas where carnivores remain and where they had been extirpated.  79 

Consistent with the GWH (Hairston et al. 1960) and the EEH (Oksanen 1992), we 80 

hypothesize a set of trophic interactions across a gradient of primary productivity for boreal 81 

and temperate ecosystems that are productive enough to support carnivores.  In systems with 82 

intact and ecologically effective large carnivore guilds (i.e., tri-trophic cascades, left side of 83 

Figure 1), we expect 1) carnivore densities to be resource limited and positively correlated 84 

with primary productivity and 2) herbivores mainly predator limited, such that, herbivore 85 

density increases only slightly with increasing productivity.  In this system, herbivore damage 86 

to palatable plants would be relatively low regardless of productivity.  Although not rigorously 87 

tested herein, EEH predicts that when the removal of large predators occurs (i.e., truncated 88 

trophic cascades, right side of Figure 1), herbivore density would be positively correlated with 89 

productivity and damage to palatable plants relatively high regardless of primary productivity.  90 

Understanding the effects of large predator and herbivore populations upon native 91 

plant communities has potentially important conservation implications.  If large predators 92 

reduce plant damage by altering cervid behavior and limiting their densities, the maintenance 93 

of large predators across landscapes could be a crucial option for sustaining the ecological 94 

integrity of ecosystems (Miller et al. 2001; Soulé et al. 2003; Terborgh and Estes 2010; Estes 95 

et al. 2011).  Furthermore, in areas where large predators have been displaced or locally 96 

extirpated, their reintroduction may represent a particularly effective approach for passively 97 

restoring those ecosystems.   98 

 99 

Methods 100 



Expanding on previous work by Peterson et al. (2003), we conducted a literature 101 

search to find articles that reported cervid densities [white-tail deer (Odocoileus virginianus), 102 

caribou (Rangifer tarandus), elk (Cervus elaphus), and moose (Alces alces)].  We searched the 103 

literature using electronic databases as well as reference lists from Peterson et al. (2003) and 104 

other publications.  In selecting articles, we avoided using case studies with migrating cervids, 105 

non-native cervids, and islands (e.g., Isle Royale).  Some cervids are hypothesized to migrate 106 

to avoid their predators, which can reduce the impacts of predation on their numbers.  We did 107 

not attempt to examine migratory cervids because their densities exhibit high spatial and 108 

temporal variability and are thus difficult to characterize for comparative purposes.  This 109 

criterion resulted in the exclusion of elk in the northern Rocky Mountains of North America, 110 

because elk densities in this region are highly variable as animals migrate between summer 111 

and winter ranges across an elevation gradient.  We also excluded vicinities of major human 112 

impacts such as built-up areas, agriculture, or livestock.  We excluded areas with high levels 113 

of large carnivore harvesting by humans.  For example, wolf/cervid data from Poland’s 114 

primeval forest were not included due to wolf harvesting, limited habitat, and other human 115 

disruptions there (Jȩdrzejewska and Jȩdrzejewski 1998).  We inspected each study area with 116 

remote sensing imagery and all selected study areas were composed of >90% forest/grass 117 

cover.  We did not exclude sites that contained forest harvesting.  Finally, we examined 118 

historical range maps to determine the original range of wolves and bears to determine sites 119 

where they have been extirpated.  Due to a lack of consistent information on felids, we were 120 

unable to include felid species in our analysis.   121 

For each case study, we recorded 1) an estimate of net primary productivity (NPP) 122 

from MC1, a dynamic global vegetation model, 2) the presence or absence of predators 123 



including wolves, bears, and human hunters, and 3) the density (#/km2) of the primary cervid 124 

species present.  We recorded wolf density (#/1000 km2) when available and normalized 125 

cervid densities to deer equivalent (DE) densities (DE/km2, deer = 1 DE, caribou = 2 DE, elk 126 

= 3 DE, moose = 6 DE) for comparative purposes (Peterson et al. 2003). We also recorded if 127 

the authors described cervid impacts to plants.  128 

T-tests (unequal variances) were used to test for significant (p < 0.05) differences in 129 

cervid densities for areas with versus without wolves.  Linear regression was used to 130 

determine if wolf densities or cervid densities were significantly related to NPP.  Multiple 131 

regression was used to test for significant slope differences in cervid densities in relation to 132 

NPP between sites with wolves present versus those without wolves (i.e., extirpated or rare). 133 

The dynamic global vegetation model (0.5o lat. x 0.5o long. grid cells), MC1, includes 134 

a biogeochemical module that simulates monthly carbon (C) and nutrient dynamics for a 135 

combined tree and grass ecosystem.  MC1 is a whole ecosystem model which accounts for 136 

both overstory and understory processes in detail, including plant production, soil organic 137 

matter decomposition, and water and nutrient cycling where NPP in kg of dry mass/m2/yr is a 138 

function of a maximum potential rate of plant production constrained by the effects of soil 139 

moisture, soil temperature, soil nutrients, atmospheric CO2 concentration, shading, and leaf 140 

area index (Daly et al. 2000; Bachelet et al. 2001).  Temperature, precipitation, humidity, and 141 

soil properties are basic drivers for the biogeochemical module.  See Bachelet et al. (2001), for 142 

technical documentation of the MC1 model including the biogeochemical module.  143 

 144 

Results 145 



We obtained estimates of cervid densities for 42 sites in North America and Eurasia 146 

meeting our criteria (Figure 2, Appendix 1).  Wolf densities were available for 19 of the 42 147 

sites.  Human hunting occurred at 24 of the 42 sites.  Both wolves and bears historically 148 

existed at all 42 sites, with wolves being extirpated from 16 sites and bears extirpated from 7 149 

of these 16 sites.  We found that bears were sympatric with wolves in 26 of 42 studies, while 150 

bears occurred alone in 9 of 42 studies, all of which were areas where wolves had been 151 

extirpated.  None of our 42 sites had wolves without bears.   152 

Sites without wolves (n = 16) had significantly higher average cervid densities relative 153 

to sites with wolves (n=26) (15.5 vs. 2.6 DE/km2, respectively, p < 0.001, Figure 3A).  Also at 154 

sites without wolves, 11 of 16 studies reported impacts to plants (See Appendix 1).  Cervid 155 

densities without wolves ranged from 2.8 to 32.4 DE/km2 and with wolves ranged from 0.03 156 

to 8.4 DE/km2.  While cervid densities were significantly related to productivity when wolves 157 

were absent (p = 0.035) and present (p = 0.036), densities increased with productivity at a 158 

significantly greater rate in the absence of wolves compared to when wolves were present 159 

(regression slope over 5 times steeper, p = 0.02, Figure 3B).  160 

Variance of cervid density was not constant and increased with increasing NPP, but a 161 

natural log transformation of density resolved this issue, and allowed a more direct evaluation 162 

of the effect of wolves on the relationship.  The log of cervid density was significantly related 163 

to productivity (p = 0.002), but the R2 was low, 0.22.  The addition of a categorical variable 164 

for wolf presence or absence resulted in a highly significant relationship (p < 0.001) that 165 

explained 70% of the variation in density (adjusted R2 = 0.70).  In fact, wolf presence alone, 166 

without accounting for productivity, explained 60% (R2 = 0.60) of the variation in log of 167 

cervid density.   168 



On average, we found wolf densities to be 17.8 /1000 km2 (range 2.3-40.2).  Wolf 169 

densities were positively related to increases in productivity (p = 0.008, Figure 4).  170 

Discussion 171 

Results from our analyses suggest that top down forcing may be relatively strong in 172 

systems with wolves, in that cervid densities are significantly lower than in predator guilds 173 

where wolves are absent.  These findings support research findings by others that the 174 

combined predation pressure from wolf and bear populations may limit cervid densities 175 

(Gasaway et al. 1992; Messier 1994; Orians et al. 1997; Mech and Peterson 2003).  Our results 176 

are also consistent with predictions made by Oksanen et al. (1981) for 1) the predator trophic 177 

level, because wolf density increased with increasing productivity and 2) the herbivore trophic 178 

level, because cervid densities in ecosystems with wolves remained relatively low regardless 179 

of productivity. 180 

 Other than humans, which occupy an ecological niche as top predator in many 181 

ecosystems, gray wolves, by virtue of their widespread geographic distribution, group-182 

hunting, and year-round activity, represent the most significant cervid predator in the northern 183 

hemisphere (Peterson et al. 2003).  Thus predation pressure from wolves, in combination with 184 

bears, can apparently maintain cervid populations at low densities.  An exception, perhaps, is 185 

that some migrating cervids, such as barren ground caribou herds, may not be limited by 186 

predation and often cycle over wide ranges of abundance. 187 

With both wolves and bears present, we found cervid densities to increase only slightly 188 

with increasing net primary productivity, possibly because of an evolutionary response to 189 

intense predation pressure involving anti-predator adaptations and selection for more elusive 190 

prey (Oksanen 1992).  Because predators may not completely counter anti-predator 191 



adaptations of their prey, increasing primary productivity should lead to slight increases in 192 

herbivore density (Oksanen 1992).  Costs related to antipredator behavior could be partially 193 

offset by any positive effects of increasing productivity.  In systems with high primary 194 

productivity, traits that affect prey fitness through their ability to avoid predation are prone to 195 

be under strong selection (Abrams 2000).  Like Crête (1999), we found that cervid densities 196 

increased steeply with increasing productivity for ecosystems without wolves.  The high 197 

variance in cervid densities associated with an absence of wolves may be due to unevenness in 198 

the effectiveness of partial predator guilds and human hunting as well as various bottom-up 199 

factors such as climate variability or forest conditions.   200 

Our results are consistent with a relatively extensive body of literature in that bears 201 

alone appear insufficient to preclude cervid irruptions whereas the combination of wolf and 202 

bear predation, with or without human hunting, maintains cervid densities lower than without 203 

wolves and bears (Bergerud et al. 1983; Gasaway et al. 1983; Bergerud and Elliot 1985; 204 

Ballard et al. 1987; Van Ballenberghe 1987; Fuller 1989; Messier 1994; Hayes and Harestad 205 

2000).  Because bears are opportunistic omnivores, have access to a variety of foods, and their 206 

effects appear to be secondary to wolves, an understanding of their role in trophic cascades 207 

has been elusive.  Both black (Ursus americanus) and brown (Ursus arctos) bears commonly 208 

prey on neonatal cervids, taking a large percentage of the annual offspring less than one month 209 

old (Zager and Beecham 2006).  Their role as predator appears to vary with the density of 210 

cervids and has the greatest impact when cervid densities are low rather than high (Gasaway et 211 

al. 1992).  At low cervid densities, bear predation on neonates is mostly additive rather than 212 

compensatory, thus removing young animals before they have an opportunity to reproduce 213 

(Zager and Beecham 2006).  This leads us to hypothesize that bears may provide multiple and 214 



linked positive feedback loops in their sympatric predation effects with wolves such that: 1) as 215 

wolves provide subsidies to bears through scavenging opportunities on wolf-killed carrion, 216 

higher bear densities are supported, causing more predation on neonatal cervids and lower 217 

cervid densities; and 2) when cervid densities become lower, bear predation tends to be more 218 

effective as an additive predation force further limiting cervid densities.  In the case of Isle 219 

Royale National Park where wolves exist on an island, wolves alone have been unable to 220 

consistently limit cervid densities over time possibly due to inbreeding, disease, and/or a lack 221 

of bears (Peterson et al. 2003; Peterson 2007; Wilmers et al. 2006).  222 

Hypercarnivorous felids may also have important roles in affecting cervid densities 223 

and trophic cascades. In western North America, cougars (Puma concolor) were found to limit 224 

mule deer (Odocoileus hemionus) densities releasing woody plants from browsing 225 

suppression, thus maintaining biodiverisity (Ripple and Beschta 2006; 2008). Furthermore, 226 

our two-predator results for wolves and bears in this study are similar to the findings of Melis 227 

et al. (2009) involving combined wolf and lynx (Lynx lynx) predation on roe deer (Capreolus 228 

capreolus) in Europe.  They found that roe deer densities were significantly lower in areas 229 

with sympatric wolves and lynx compared to areas with wolves alone or areas without either 230 

predator (Figure 5).  Their results indicate that top-down influences were stronger than 231 

bottom-up influences because there were no significant differences in productivity as 232 

measured by the fraction of absorbed photosynthetically active radiation (FPAR) in their areas 233 

with both wolves and lynx ( x = 56.2, 95% C.I. 4.4), wolves without lynx ( x = 54.4, 95% C.I. 234 

5.3), and neither predator present ( x =56.2, 95% C.I.=3.5). 235 

While the occurrence of human hunting and winter weather events in the presence of 236 

wolves can influence cervid populations through additive mortality (Gasaway et al. 1983; 237 



Gasaway et al. 1992; Orians et al. 1997; Mech and Peterson  2003), evidence from our 238 

analysis shows that in many cases, humans, using contemporary hunting laws and strategies, 239 

are ineffective in the absence of wolves in preventing hyper-abundant cervid densities.  240 

Similarly, Melis et al. (2009) found that human hunting in Europe had little influence on roe 241 

deer abundance.  This situation likely occurs because the interest of hunting managers is to 242 

generally maximize game meat production, not to limit cervid densities.  In addition, hunting 243 

by humans is often not functionally equivalent to predation by large, wide ranging carnivores 244 

such as wolves.  Differences include factors such as killing distance, seasonal and diurnal 245 

timing, age and sex of selected prey, as well as effects on mesopredators, intra-guild 246 

predation, and carrion-scavenger relationships (Berger 2005).  Non-lethal effects such as 247 

predation risk and the “ecology of fear” triggered by large mammalian carnivores can also 248 

influence ecosystem structure and function, but these effects may be different than any risk 249 

effects caused by human hunters (Laundré et al. 2001; Ripple and Beschta 2004; Berger 250 

2005).  251 

Although we were unable to rigorously test for trophic cascades in our dataset, below 252 

we tentatively address the plant damage portion of EEH.  In reviewing our case studies, at 253 

sites without wolves (n = 16) we found that most authors (n = 11) reported impacts to plants.  254 

In the presence of a functional large predator guild that can exert significant influence via 255 

lethal and nonlethal effects, cervids are normally unable to impact the general recruitment 256 

(i.e., growth of seedlings and sprouts into tall saplings and larger growth forms) of palatable 257 

woody species (Ripple et al. 2010).  However, where reduced lethal/nonlethal effects of large 258 

predators and higher cervid densities occur, deforestation can develop gradually as herbivory 259 

prevents tree recruitment over time (Beschta and Ripple 2009) as well as the closure of forest 260 



gaps.  Thus, over ecological time the exclusion of large carnivores from forest landscapes may 261 

lead to simplified plant communities, alternative stable states, and altered biodiversity 262 

(Terborgh et al. 2001; Côté et al. 2004; Beschta and Ripple 2009; Estes et al. 2011).  263 

Examples from the case studies we reviewed include a lack of tree regeneration for fir (Abies 264 

spp.), pine (Pinus spp.), hemlock (Tsuga spp.), and deciduous species, sometimes resulting in 265 

a conversion to less palatable spruce (Picea spp.) forests or increases in grasses (Angelstam et 266 

al. 2000; Palmer and Truscott  2003; Heuze et al. 2005).  Declines in palatable understory 267 

shrub species (Trumbull et al. 1989; Schreiner et al. 1996), as well as changes in invertebrate 268 

communities (Suominen 1999), were also identified.   269 

Cervid irruptions following wolf extirpation have been documented in diverse 270 

ecosystems of western North America (Leopold et al. 1947; Ripple and Beschta 2005).  Plant 271 

damage following cervid irruptions has also been found in regions with relatively low 272 

productivity as well as those with very high productivity (Beschta and Ripple 2009).  Changes 273 

in forest plant communities, such as a reduction in the abundance of woody browse species 274 

after wolf extirpation, can cause accelerated streambank erosion, thus leading to changes to 275 

stream morphology and fish habitat (Beschta and Ripple 2011). Loss of large carnivores may 276 

have potential implications for climate change by reducing long-term sequestration of carbon 277 

due to a lack of recruiting woody plants as well as creating simplified and novel ecosystems 278 

that may be less resilient to a changing climate.  Any reductions in intense herbivory that slow 279 

deforestation and increase forest regeneration could conserve and sequester carbon, especially 280 

in the mid- and high-latitudes where most of the world’s forest carbon is stored (Dixon et al. 281 

1994; Luyssaert et al. 2008).    282 



The analysis of published studies may contain various biases (e.g., non-randomization 283 

of study sites, continental bias, biome bias, species bias).  Our reliance on published articles 284 

resulted in the data herein being biased toward North America (n = 29) over Eurasia (n =13), 285 

and for moose (n = 26) over the other cervid (n =16) species.  There are also more study sites 286 

in the boreal than in the temperate biomes.  This is likely due to more human development and 287 

predator extirpations in temperate regions.  We were also unable to assess the potential 288 

importance of bottom-up variables, other than productivity, that could affect cervid abundance 289 

in northern latitudes (e.g., winter severity).  Results may be affected by the influence of 290 

humans upon wolves, since wolf density in southern areas may be reduced due to greater 291 

abundance of people.  However, southern sites also have less severe winters which may 292 

partially account for any increases in ungulate abundance, so results could be confounded.  293 

We also note that our estimates of potential NPP were derived from a global model with grid 294 

cells typically larger than the cervid study areas. 295 

There are other factors that can contribute to high herbivore densities in the absence of 296 

wolves, such as the creation of early seral forests by humans, which may make it difficult for 297 

predators to serve as restorative agents (Ray et al. 2005; Ritchie et al. 2012).  However, in our 298 

analysis, we consistently found relatively low cervid densities in regions that have both 299 

wolves and extensive logging, including southern Canada and northern Minnesota.  Moreover, 300 

due to the limits of human tolerance, it may not be possible for predators to achieve 301 

ecologically functional population sizes in many of the areas where cervids have become 302 

highly abundant (Beschta and Ripple 2010).  303 

 304 



Conclusions 305 

On average, we found cervid densities in systems without wolves to be approximately 306 

six times greater than that of systems with wolves (2.6 vs. 15.5 DE/km2).  Cervid densities in 307 

systems with wolves and bears ranged from 0.03 to 8.4 DE/km2 with density increasing 308 

slightly with net primary productivity.  These results could serve as benchmarks, based on the 309 

productivity of a particular region, for designing and evaluating the management of non-310 

migratory cervid populations where the goal is to emulate the range of densities typically 311 

found when wolves and bears are present in northern forests.  Additionally, the wolf densities 312 

presented herein ( x  = 17.8 /1000 km2, range 2.3-40.2) could also be used as benchmarks for 313 

assessing wolf management goals across a range of productivities.  In general, regions with 314 

higher productivity and intact habitat have the capability to support higher wolf densities than 315 

areas with lower productivity (Fig. 4). 316 

Recent research suggests that conservation programs based on the presence of apex 317 

predators may lead to broader biodiversity benefits (Sergio et al. 2008).  Thus, sites containing 318 

intact carnivore guilds and which retain ecological processes should be considered as priority 319 

areas for both research and conservation planning (Woodroffe and Ginsberg 2005).  320 

Additionally, repatriating large carnivores to portions of their former range may still be 321 

possible and could have positive ecological effects.  For example, the reintroduction or 322 

recolonization of wolves, decades after extirpation, has shown to positively affect tree and 323 

shrub recruitment at some sites on ungulate winter ranges where cervids seasonally migrate 324 

(Beschta and Ripple  2007; Ripple and Beschta  2012).  More research is needed to determine 325 

to what extent large predators structure ecosystems in areas with both migrating and 326 

nonmigrating large herbivores. The preservation or recovery of large predators may thus 327 



represent an important conservation need for helping to maintain the resiliency of northern 328 

forest ecosystems, especially in the face of a rapidly changing climate. 329 
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Figure 1.  Conceptual diagram of trophic cascades showing hypothesized predator densities, 497 

herbivore densities, and plant damage for populations across a productivity gradient in the 498 

presence (left column) and absence (right column) of large predators in productive ecosystems 499 

with NPP >0.7kg/m2/yr (based on Oksanen et al. 1981, Oksanen 1992). 500 
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 504 

Figure 2.  Locations of study sites in North America and Eurasia.  505 

 506 



 507 

Figure 3.  (A) Mean cervid densities with standard errors by predator guild [wolf + bear + 508 

human (n = 14), wolf + bear (n = 12), bear + human (n = 3), bear (n = 6), human (n = 7)] and 509 

(B) cervid densities (y) as a function of net primary productivity (x) for study sites with 510 

wolves present (y = 1.54x – 0.06; SEE  = 1.9, R2 = 0.17, p = 0.036, n = 26) and study sites 511 

where wolves are absent/rare (y = 8.64x – 0.99; SEE  = 7.0, R2 = 0.28, p = 0.035, n = 16).  SEE 512 

represents standard error of the estimate.513 



 514 

 515 

Figure 4.  Wolf densities (y) as a function of net primary productivity (x) (y = 13.08x – 3.49; 516 

SEE  = 10.0, R2 = 0.35, p = 0.008, n = 19).  SEE represents standard error of the estimate. 517 

 518 

519 



 520 

 521 

Figure 5.  Mean roe deer densities in Europe with standard errors by predator guild [wolf with 522 

lynx (n = 15), wolf without lynx (n = 21), neither wolf nor lynx (n = 36)].  Adapted from 523 

Melis et al. (2009). 524 

 525 



Appendix 1 526 

Locations, species, densities of cervids and wolves, predator present/absent, net primary productivity (NPP), and plant damage for 42 527 

sites used in analysis; and followed by full citations to table. 528 

 
Location 

 
Latitude 

 
Longitude 

Cervid 
Species 

Cervid 
Density1 

DE 
Density2 

Wolf 
Density3 

 
Human 

 
Bear 

 
NPP4 

Plant 
Damage5 

 
Ref. # 

Cent. Sweden 59.5N 12.37E moose 2.6 15.6 A P A 2.10 yes 1 
Elk Island NP6, Cent. Alberta 53.63N 112.85W moose 1.5 9 A P A 1.19 N/A 2 

Riding Mt NP, S. Manitoba 50.76N 100.24W moose 0.94 5.6 P A P 1.69 N/A 3 

Gaspesie Park, E. Quebec 48.9N 66.40W moose 1.9 11.4 A A P 2.10 no 4 

S.W. Yukon 61.25N 138.67W moose 0.17 1 P P P 1.29 N/A 5 

Denali, Cent. Alaska 63.60N 151.50W moose 0.26 1.6 5.6 A P 1.78 N/A 6,7 

E.Cent. Alaska 64N 142W moose 0.09 0.5 8 P P 0.82 no 8 

Pukaskwa NP, S.Cent. Ontario 48.25N 85.92W moose 0.3 1.8 14.9 A P 2.39 N/A 9 

S.W. Quebec (MW area) 47.1N 76.7W moose 0.27 1.6 13.8 rare P 1.60 N/A 10 

N.E. Alberta (AOSERP area) 57.19N 111.64W moose 0.26 1.6 6.6 P P 1.03 N/A 11 

E. Alaska 64.25N 148W moose 0.2 1.2 15.6 P P 0.93 N/A 12 

Papineau-Labelle, S. Quebec 46.17N 75.50W deer 3 3 28 A P 1.89 N/A 13 

E.Cent. Ontario 45.92N 78.97W deer 5.8 5.8 40.2 A P 2.44 N/A 14 

N.Cent. Minnesota 47.75N 93.25W deer 6.3 6.3 39 P P 1.83 N/A 15 

Wind Cave NP W. South Dakota 43.6N 103.45W elk 3.3 9.9 A P A 1.14 no 16 

Olympic NP, W. Washington 47.78N 123.93W elk 6.8 20.4 A A P 2.10 yes 17 

Cent. Scotland  57.13N 3.93W elk 9.3 27.9 A P A 1.66 yes 18 

N.W. Michigan 46.77N 89.75W deer 6 6 A P P 1.64 yes 19 

N. Pennsylvania 41.60N 79W deer 12.6 12.6 A P P 2.45 no/yes 20,21 

S.Cent. Sweden 60.5N 13.60E moose 1.3 7.8 A P A 1.96 yes 22 

Karelia Russia 63.50N 33.1E moose 0.25 1.5 P P P 1.56 no 22 

N. New York 44.15N 74.15W deer 12.2 12.2 A A P 2.52 yes 23 

Cent. Quebec (MCW area) 52.50N 73.00W moose 0.03 0.2 6.7 P P 1.77 N/A 10 

N.E. France 47.83N 6.97E elk 8.2 24.6 A P A 2.40 yes 24 



N.E. Wisconsin 45.87N 88.70W deer 14.5 14.5 rare P P 2.07 yes 25 

E.Cent. Sweden 61.00N 17.00E moose 3.4 20.4 A P A 1.85 yes 26 

Canaan Park , West Virginia 39.07N 79.52W deer 32.4 32.4 A A P 2.49 yes 27 

Mauricie Park, S.E. Quebec. 46.80N 78W moose 0.4 2.4 P A P 2.53 N/A 28 

Chapleau N.E. Ontario 47.90N 83.40W moose 0.35 2.1 P A P 2.40 N/A 29 

Voyageurs NP, N. Minn. 48.5N 92.9W deer 8.4 8.4 33 A P 2.15 N/A 35 

Bashkirsky, Russia 53.33N 58.00E moose 0.4 2.4 20.8 A P 0.95 N/A 30 

Darvinsky, Russia 58.74N 37.90E moose 0.3 1.8 12 A P 2.27 N/A 30 

Laplandsky, Russia 67.95N 31.87E caribou 1.4 2.8 rare A P 0.84 N/A 30 

Pechoro-Ilychsky, Russia 62.46N 58.72E moose 0.05 0.3 2.3 A P 0.85 N/A 30 

Tver Region, Russia 56.48N 32.9E moose 0.17 1 P P P 2.18 N/A 31 

Kostroma Region, Russia 58.11N 44.E moose 0.15 0.9 4.4 P P 1.19 N/A 32 

E.Cent. Finland 64.50N 29.12E moose 0.31 1.9 P P P 1.49 N/A 33 

E.Cent. Ontario 46N 80.1W deer 3.1 3.1 35.7 P P 2.22 N/A 34 

N.E. Wisconsin 45.87N 88.70W deer 20.8 20.8 rare A P 2.07 yes 25 

N.E. Minnesota 47.67N 91.56W moose 0.56 3.4 28 P P 2.01 N/A 35 

Kenai Alaska 59.78N 150.71W moose 0.8 4.8 14.2 P P 1.78 N/A 36 

N. British Columbia 59.00N 131.67W Moose 0.34 2.0 10.0 P P 1.06 N/A 37 

Footnotes to above table:  1Cervid densities are #/km2, 2deer equivalent (DE) densities are #/km2 (deer = 1 DE, caribou = 2 DE, elk = 3 DE, moose = 6 DE), 3wolf densities are #/1,000 529 

km2, P = present, A = absent, 4kg of dry mass/m2/yr, 5effects of herbivory on plants: yes = plant damage described in article; low/no = little or no plant damage described in article; 530 

N/A = herbivory effects not a subject covered in the article, 6 NP=National Park. 531 
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