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Introduction 

The automobile industry desires quality vehicle performance due to customer 

demand and competition between different automobile manufacturers.  The industry 

measures vehicle performance in many categories, such as vehicle safety and handling.  

Performance in racing competitions is often measured by the time it takes for the vehicle 

to complete a given course and efficient vehicle dynamics with respect to the terrain in 

these competitions is highly desired.  A variety of traction control systems, such as the 

limited slip differential and active differential, both of which produce desirable vehicle 

dynamics, currently exist in the automobile industry.  In fact, many higher-end 

automobiles come equipped with these features for increased safety of both the driver and 

passengers. 

The SBS vehicle platform developed in this work consists of a rear-wheel open 

differential with a steering wheel position input obtained via potentiometer, and wheel 

speeds obtained via Hall effect sensors.  Unlike a locked differential, an open differential 

allows individual wheels to spinning at different rates, which leads to effective turning.  

The design of the SBS takes advantage of this kind of wheel motion by controlling the 

distribution of input drive torque via braking.  A previous OSU mini-Baja electronic 

traction control team related steering wheel angle to vehicle turning radius during 

minimal slip conditions.  This data is used to represent desired wheel speed dynamics as a 

function of steering wheel position and provides the basis for the SBS control algorithm.  

The SBS control is tested in an open differential model which is describe in the 

‘Background’ section.  It is shown that the SBS reduces undesirable drive torque 

distribution and as a result improves longitudinal vehicle acceleration and prevention of 

undesired turning dynamics. 

 

 

 

 

 

 

 



  

 

  3
 

 

Background 

Available Traction Control Systems 

A variety of automotive performance enhancing control systems have been 

modeled, developed, and implemented. The more widely used systems are the Yaw 

Stability Control (YSC), Anti-Lock Brake System (ABS), and Traction Control Systems 

(TCS). These control systems have different optimization purposes, which include 

vehicle handling, cornering performance, traction performance, and passenger safety.   

The YSC forces the vehicle to track a model vehicle with desired yaw rate states.  

Vehicle handling and passenger safety during slip situations is improved with this 

concept.  In the event a vehicle equipped with YSC would start to ‘fishtail’ or show 

undesirable yaw characteristics, the controller would apply the brakes accordingly to 

prevent ‘fishtailing’.   In the development of the YSC seen in [6], the angular rates of the 

driven wheels and the vehicle longitudinal speeds are assumed to be measured states.  

The controller structure of the YSC in [6] is based on brake pressure input to the wheels.  

Prior to the advent of the ABS, when brakes were fully applied, the wheels would 

lock and bring the car into a skid.  The traction force at the wheels is not at its optimum 

since the traction coefficient of the wheels on the surface actually decreases in a skid. 

ABS was developed to prevent the occurrence of skidding situations.  The brakes of an 

ABS are applied in a manner that keeps the traction force at the most optimum value 

possible given the vehicle speed and the wheel speeds.  Many different ABS control 

schemes have been developed.  ABS keeps the traction force at its peak value by keeping 

a parameter known as the slip ratio at ideal values.  The slip ratio is the difference 

between the angular speed of the wheel and the vehicle velocity.  The relationship 

between the slip ratio parameter and traction will be explained in the Model Derivation 

section. 

In [1] and [2], Anwar uses the Generalized Predictive Algorithm as the control 

method for developing  both a YSC and ABS system.  In [1], he develops a set of 

equations where the slip ratio is the state variable.  In [3], Buckholtz develops a Sliding 

Mode Control algorithm to reduce the error between desired slip ratio and actual slip ratio.  

In any case, the method of developing the state equations with the slip ratio as the state 

variable requires the measurement of the wheel speed and vehicle velocity.  Achieving 
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accurate measurements of vehicle velocity may be troublesome with simply a radar 

sensor, especially in cases when all the vehicle wheels are not on the ground, and at lower 

vehicle speeds.  There has been thorough work done in incorporating a combination of 

many other sensor readings to achieve more accurate vehicle velocity measurements.  In 

[5], the author develops an observer to reduce vehicle velocity reading errors to be used 

in an effective ABS scheme.  

 

Automobile differentials 

 The majority of currently manufactured vehicles are furnished with open 

differentials and have the option of being locked manually, electronically, or with some 

type of traction control applied to the open differential. Some examples of open 

differentials are the limited slip differential and active differential. An automobile 

differential will receive engine power via drive shaft and distribute engine torque to the 

driving wheels, which dictates the rotation rate of the wheel; whatever engine power is 

produced is distributed at the wheels.  The type of differential that is distributing the drive 

torque determines whether the distribution is equal or varied.  A locked differential will 

always evenly distribute drive torque and an open differential can distribute the drive 

torque unevenly which allows the  wheels to turn at different rates which is necessary for 

effective turning.  

  Since a locked differential evenly distributes engine torque to the driving wheels  

they are forced to spin at the same rate.  On loose terrain, driving wheels may slip and the 

locked differential is forced to provide engine torque evenly to both the slipping wheel 

and non-slipping wheel.  Consider the case when one driving wheel is off the ground and 

the other remain on the ground.  A locked differential will force the wheels to spin at the 

same rate and enables the vehicle to take advantage of the tractive force of the wheel on 

the ground.  However, a locked differential provides poor performance during  non-

slipping turning maneuvers. In a turning situation where the vehicle follows a circular 

path, the outer wheel travels a longer path than the inner wheel as seen in Fig.1.  
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t

 
         Figure 1: Vehicle turning geometry used in DWSR derivation. 

 

In Fig.1, the letter “o” refers the outer wheel, the letter “i” refers to the inner wheel, the 

subscripts “1” and “2” denotes start and end positions, respectively, α  is the 

displacement angle between the starting and ending positions, “r” is the turning radius 

followed by the inner wheel, “t” is the track width of the vehicle, and “s” represents the 

path lengths traveled by the wheels.  The path lengths of the inner and outer wheel, si and 

so, respectively, are given by Eqs. [1a] and [1b]: 

 

αrsi =                                                [1a] 

α)( trso +=            [1b] 

 

The wheels complete the turn in the same amount of time and are rotating at the same 

rate but the inner wheel has a shorter path.  Turning maneuvers with a locked differential 

cause the inner wheel to spin at the same rate as the outer wheel and the excess spin 

causes unnecessary damage to the tire and road surface.  Since open differentials allow 

wheels to turn at different rates, they are used in most track racing situations where there 

are many turning maneuvers performed. 

 The capability for a rear wheel drive open differential to allow for different 

turning rates can limit efficient power transfer during instances when one of the driving 

wheel’s tractive force is much less than the tractive force on the other driving wheels.  In 
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the case where one driving wheel traverses on a slippery surface and the other driving 

wheel remains on a tractive surface, the open differential provides greater drive torque to 

the wheel on the slippery surface since there is less resistance from the ground.  As a 

consequence, less drive torque will reach the wheel with greater traction thereby limiting 

its traction force and the vehicle wheel traction is limited to the traction provided by the 

slipping wheel.  A solution to this torque distribution problem is approached using 

electronically controlled wheel brake commands to distribute the engine torque in order 

to achieve desired traction performance.   

 

Development of SBS  

  The SBS control is developed using an open differential vehicle model.  The SBS 

control tracks a desired wheel speed ratio (DWSR) which is derived from a combination 

of turning characteristics based on vehicle geometry and desirable turning characteristics 

at extremes of the steering wheel positions.  SBS does not require vehicle velocity 

readings since the state variables used are the wheel rotation rates.  The main purpose of 

the SBS is to reduce unnecessary torque input to the slipping wheel and in doing so, 

provide engine torque to the non-slipping wheel. 

 

SBS platform 

The SBS system uses braking torque of one wheel to distribute drive torque via 

the open differential to the other wheel.  The model used in the design of the SBS is a 2 

input / 2 output system: a braking input for each driving wheel and two output wheel 

speed states.  An explicit model following control scheme is developed for the SBS since 

the wheel speeds were to track desired wheel speeds ratios empirically derived in 2004.   

The primary brakes of this system are a conventional setup of master and slave 

cylinders with a brake pedal that is actuated by the driver’s foot.  The conventional 

brakes are hooked up to the primary brake cylinder and the computer controlled SBS is 

connected to the auxiliary brake cylinder. This setup allows the two systems to operate 

independently.  Stepper motor linear actuators drive the master cylinder that provides the 

hydraulic force that will actuate the piston on the braking caliper.  The system uses two 
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separate motors and a master cylinder combination so that separate left and right side 

braking is achieved.   

 Two Hall effect sensors measure rear wheel speeds and a potentiometer measures 

steering wheel position.  The Hall effect sensors are located near the rear wheel brake 

calipers and use evenly spaced, drilled holes in the discs brake plates to determine wheel 

speeds; the steering wheel potentiometer is connected to the steering wheel shaft and 

turns with the steering wheel.   

 

Longitudinal vehicle  motion 

A basic dynamic system is developed and serves as a platform to develop the 

model following control scheme.  The main forces present in the overall vehicle system 

are depicted in Fig.2.   

 

 
Figure 2: Free-body diagram of the vehicle. 

 

FT,i represents the traction force at the i-th tire, and Fv the aerodynamic and other rolling 

resistant forces.  
In order to capture the dynamics between the wheels and the ground, a quarter 

model of the vehicle is used.  This quarter model is depicted in Fig.3 and is used to create 

equations of motion that incorporate the wheel speed state information.  
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Figure 3: Free-body diagram of a quarter model of the vehicle wheels. 

 
Td, i represents the driving torque applied to the i-th wheel, Tb, i  is the braking torque at 

the i-th wheel, Tb, o is the braking torque at the o-th wheel or the opposite wheel, FT,i is 

the longitudinal friction force between the i-th wheel and the terrain, Fz, i is the normal 

force from the ground, r is the effective wheel rolling radius, θ&&  is the angular 

acceleration of the wheel, and V is the vehicle longitudinal velocity.  

Equation [2] describes the overall vehicle longitudinal motion with respect to the 

ground: 

 
2

4,3,2,1, VCFFFFVm vTTTT −+++=&            [2] 

 

where, vC  is the aerodynamic drag coefficient, V  vehicle velocity, and m  is the mass of 

the vehicle.  The equation of motion for a rear-wheel drive vehicle can be written as Eq. 

[3]  since there are two driving wheels that directly affect the acceleration. 

 
2

2,1, VCFFVm vTT −+=&           [3] 

 

The traction force iTF ,  is defined as:   
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iziiT FF ,, μ= .                           [4] 

 

iμ  is called the coefficient of friction or coefficient of normalized traction force [6] and 

izF ,  is the normal force on the wheel. iμ  is a function of longitudinal wheel slip, which, 

is defined as: 

 

},max{ Vr
Vr
θ

θλ
&

& −
= .        [5] 

 

Using the definition of λ  in Eq. [5], a positive iμ value is associated with vehicle 

acceleration and a negative iμ value is associated with vehicle deceleration via braking.  

For the purposes of this paper, only the positive iμ  values will be used since the 

simulations assume there is a constant drive torque applied and the brakes simply 

distribute the drive torque to one wheel or the other. When iμ has a value of +1, the wheel 

is spinning without causing vehicle acceleration and iμ  has a zero value.  Figure 4 shows 

a simplified Pacejka magic curve traction model [6] which shows the correlation between 

iμ  and iλ  on various surfaces: 
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Figure 4:  Simplified Pacejka model showing correlation between coefficient of friction and  

longitudinal wheel slip. 
 
Notice that the peak values will be higher or lower depending on the dryness and stability 

of the road surfaces.   

 

The normal force, zF , can be defined as: 

 

mgFz 4
1

= .                   [6] 

 

Solving for  iTF ,  results in Eq.[7]: 

 

4,
mgF i

iT
μ

= .                     [7] 

 

Using Fig.3, the wheel rotational dynamics are derived as shown in Eq. [8]:  

 

iiiwiiTibid ICrFTT θθ &&& =−−− ,,,,             [8] 
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where iwC ,  represents the viscous friction acting on the i-th wheel.  

 

SBS  test environment 

The following assumptions form the environment in which the control is tested.  

During a straight line travel and no slip, the input drive torque to each wheel is kept 

constant.  In order to model the open differential, it is assumed that a change of net torque 

on one wheel will cause an equal and opposite change in torque on the other wheel.  

Equations [40a] and [40b] show the wheels are coupled through the open differential via 

the terms Lδ  and Rδ , and by adding a brake torque on one wheel while subtracting that 

same brake torque on the wheel. 

 

[ ]1,2 )()(1 xCuurFT
I

x wRLLNLRLd
L

−+−−−−= δμδ&                [9a] 

[ ]2,3 )()(1 xCuurFT
I

x wRLRNRLRd
R

−−+−−−= δμδ&                        [9b] 

 

where, LbL Tu ,= ,   RbR Tu ,=   and the state variables are defined as: 

 Lx θ&=2                                         [10a]                         

Rx θ&=3 .         [10b] 

 

 

The variable 1x  is reserved for vehicle velocity, which is not analyzed quantitatively in 

this paper. 

Equation [9a] and [9b] can be combined in matrix form as shown in Eq.[11]: 
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During non-slip situations, the input drive torque to the left and right wheels are kept 

constant ( 0=Lδ and 0=Rδ ).  During slip situations the traction coefficient μ  of the 

slipping wheel will decrease, reducing the traction force of that wheel.  The non-slipping 

wheel drive torque will decrease by the same amount slowing down the wheel and 

causing a loss in the tractive force it can provide according to the Pacekja model.  In the 

simulations μ ’s are kept constant, however, the changes in applied wheel torque caused 

by slip of traction force are represented by Lδ  and Rδ .   

 Consider the case where the left wheel slips without control and the traction force 

torque term drops by Lδ .  Note that this change in the tractive force on the left wheel will 

cause the net torque on the right wheel to decrease by Lδ .  Now consider the case where 

the left wheel slips with control; Lu  is activated, slowing down the left wheel and 

speeding up the right.  This simulation environment is suitable for testing the control 

method developed earlier. 

 

Eq.[11] has the form:  

 

)(tFBuAxx ++=&                     [12] 

 

where, x represents the system states,  A  represents the system matrix,  B  represents the 

distribution of the input brake vector   u, and  F(t)  is  the state independent time-varying 

inputs into the model which represents net torque result of drive and traction torque on 

the wheel.  During a non-slip situation the traction on each wheel is assumed to be the 

same and the components of  F(t)  are the same value. 

 

Controllability 

Before deriving a control techniques for this system, a quick check is made to 

ensure the system is indeed controllable.  By calculating the controllability matrix, C., it 

can be shown that the system states, in this case rear wheel speeds, are controllable. 

According to control theory [4], the number of states that are controllable in a system is 

the rank of the controllability matrix.   
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 C = [B   AB].            [13a] 

 

From Eq. [10b] and [10c] , C  is calculated to be: 

 

C = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

R

w

RR

L

w

LL

I
C

II

I
C

II

011

011

.     [13b] 

 

Equation [13b] shows that the rank of the matrix is 2,  which shows that the states of 

interest are controllable. 

 

Desired wheel speeds  

In 2004 the OSU mini-Baja team recorded the turning radius achieved with 

varying steering wheel positions.  This set of turning radii represents the ideal path with 

respect to the steering wheel position since the tests were done under minimal slip 

conditions.  To achieve the ideal turning radii given a steering wheel position during 

minimal slip conditions, the wheel speed of one wheel relative to another is varying.   

To form a starting point on which to define a set of desired wheel speed ratios as a 

function of steering wheel position, both vehicle geometry and collected data will be used. 

In order to derive the DWSR as a function of steering wheel position, Eqs.[1a] 

and [1b] were rewritten with α isolated: 

 

       
r
si=α            [14a] 

     
tr

so
+

=α .           [14b] 

 

Eq.[14a] and [14b] were then equated: 
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tr

s
r
s oi

+
==α .                                                      [15] 

 

Next, Eq.[15] is manipulated to form the following ratio: 

 

     
tr

r
s
s

o

i
+

= .                                                      [16a] 

 

The path lengths si and so can also be written in terms of the number of times the wheels 

have turned: 

 

 
tr

r
NR
NR

s
s

oo

ii

o

i

+
==

π
π

2
2

                      [16b] 

where Ni and No are the number of revolutions undergone by the inner and outer wheel 

respectively.  Since the wheels are identical, the Eq.[16b] can be simplified to: 

 

 
tr

r
N
N

o

i
+

= .                     [17] 

 

By differentiating the left side of the equation with respect to time Eq.[17] is written in 

terms of a speed ratio as shown in Eq.[18]: 

 

tr
rDWSR

wheelouter

wheelinner

+
==

_

_

θ

θ
&&

&
.                    [18] 

 

Equation [18] is used as a basis of deriving desired wheel speeds with respect to steering 

wheel positions.  Table I contains the steering wheel position versus turning radius test 

results collected by the 2004 OSU mini-Baja team.   
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TABLE I:  Turning radius achieved at specified steering wheel positions.  

Steering Wheel Angle, Φ  [deg] Turning Radius of inner wheel, r   [ft] 

0 0 

90 22 

120 18 

180 11 

212 9 

245 4.5 

 

At the 0°  steering wheel position indicated in the table refers to the position when 

the wheels are headed straight.  Positive angles indicate clockwise motion of the steering 

wheel from the 0° position and negative angles indicate counter-clockwise motion.  The 

245° steering wheel position is the greatest angle the wheel can turn. 

Table I data provides some insight on how to define DWSR values.  Using Eq. 

[19] and a  4.2 feet vehicle track width (tw = 4.2 feet) the DWSR values are calculated.  

Table II shows DWSR values corresponding to the recorded steering wheel angles.  The 

DWSR for the first entry at Φ  = 0° does not use the formula since Eq. [19] was derived 

from turning geometry.  Instead a unity value of DWSR at Φ=0° is entered because it is 

desired that the wheels turn at the same rate during a straight travel with minimal slip. 
 

TABLE II:   DWSR according to Eq.[19]. 

Steering Wheel Angle, Φ  [deg]  DWSR for a left turn 

0 (straight heading) 1 

90 0.84 

120 0.81 

180 0.72 

212 0.68 

245 (fully turned steering wheel) 0.51 

 

Table II contains the DWSR determined strictly according Eq.[19].  Using Table II as a 

starting point to define a set of DWSR’s and desired performance characteristics, such as  



  

 

  16
 

 

fully braking the inside wheel when the steering wheel position is at an extreme.  Table 

III contains some user-defined DWSR values. 
  

TABLE III:   DWSR according to Eq. [19] and user-defined DWSR at 0º  and 245º. 

Steering Wheel Angle [deg], Φ  DWSR  

0 (straight heading) 1 

90 0.84 

120 0.81 

180 0.72 

212 0.68 

245 (fully turned steering wheel) 0 

 

It is assumed that similar turning radius is obtained for the steering wheel angles 

in the counter-clockwise directions and that the DWSR for counter-clockwise turns will 

be the same.  Using Microsoft Excel, Φ  was plotted against DWSR and the points are 

fitted to a polynomial curve.  Figure 5 shows the left and right turn maneuvers are 

combined into one graph. 
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Figure 5: DWSR as a function of Φ .  

 
 For the curve left of the graph and right of the graph, Excel provides the following 

fitting equations, respectively: 

 

10109.0)55()89( 23
_ +Φ+Φ−+Φ−= EEDWSR turnleft                 [19a] 

10109.0)55()89( 23
_ +Φ−Φ−+Φ−−= EEDWSR turnright              [19b] 

It will be convenient to avoid excess braking control effort in actual 

implementation.  One solution to this problem would have an error buffer zone.  This 

buffer-zone would reduce the amount of control effort that would occur  for insignificant 

differences between the actual and desired wheel speeds.  Another method of reducing 

excess control effort would be to associate a range of steering wheel positions to the same 

DWSR.  This will eliminate the need for every steering wheel position to be associated 

with a slightly different DWSR. The depiction of these buffer-zones are shown in Fig.9. 
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Figure 6:  Buffered DWSR as a function of Φ . 

 

 

It is desired that the actual wheel speed ratio (AWSR) achieve the DWSR shown 

in Fig.5.  The DWSR provides a way to derive the desired wheel speeds (DWS) that will 

be compared against the actual wheel speeds (AWS) that are fed back in the control loop. 

 

The WSR is defined as: 

 

wheelouter

wheelinnerWSR
_

_

θ

θ
&&

&
= .       [20a] 

 

This definition will allow a zero value to be read during the event when the inner wheel is 

fully braked.  The variableθ&  is assumed to be the actual wheel speed state when it is 

written without the d subscript.  Following this notation the DWSR may be written as 

follows: 
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X

X
DWSR

wheelouter

wheelinner
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θ

θ ±
=  ,         [20] 

 

where, “X” is the speed change that must be made by the wheels in order to get the 

AWSR to the DWSR.  In Eq.[20] it is assumed that  braking a slipping wheel to slow it 

down by a certain amount speeds up the other wheel by the same amount via the open 

differential.  Equation [20] leads to DWS calculations for four cases.   

 

The first two cases are for a right turn maneuver :  

    1.  AWSR  < DWSR (left wheel slip), and  

    2. AWSR > DWSR.  (right wheel slip) 

 

The next two cases are for a left turn maneuver:   

    1. AWSR < DWSR,  (right wheel slip), and   

    2. AWSR > DWSR.  (left wheel slip) 

 

Consider a  turn maneuver when the AWSR is defined with the right wheel speed state in 

the numerator.  The following inequality can be written for the case where AWSR  < 

DWSR : 
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           [21] 

 

In this case, the left wheel is slipping causing the AWSR to be smaller than the desired.   

Equations [22] – [25] show how the DWS is derived for a right turn case when 

AWSR < DWSR.  First, in Eq.[21], the DWSR is defined for a right turn case when 

AWSR < DWSR  (left wheel is slipping ).   
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Note the signs on the “X” in the equation.  In order to slow down the slipping left wheel 

to the desired state it is slowed by an amount “X”, which in turn speeds up the right 

wheel by “X”.  Next, “X” is solved for in Eq.[23]: 

 

DWSR
DWSRX LR

+
+−

=
1

*θθ &&
.            [23] 

 

Substituting Eq.[23] into [22] yields Eq.[24a] and [24b] : 
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−=
1

*
,
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&& .     [24b] 

The X value is defined to be a positive value in which a wheel is desired to speed up or 

down.  The DWS for the other three cases are derived in the same fashion.  Shown in 

Table IV are the DWS for the different cases. 
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TABLE IV:   Desired wheel speed calculations.  
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Explicit model-following control method 

A general diagram of a model following control is shown in Fig.8.   

 

Rθ&,Lθ&

 
Figure 7 : Control Loop of SBS 

 

The system input is the steering wheel position, Φ ,  the control inputs are the left and 

right wheel brakes represented by the vector, U, and the outputs are  the wheel speeds 

which are fed back to compute any necessary control. The MODEL block takes in the 

reference steering wheel and outputs a desired wheel speed states.  The KZ and KL are the 

gains for the input calculated according to the model following control method. 

The state 2x and 3x  track the desired wheel speeds derived earlier using an 

explicit model follower control scheme.  A cost function that considers the error between 

a desired model and the actual system is formed in order to develop the control algorithm 

for this method.  The desired model is represented by Eq. [25]: 

 

mmm zAz =&                              [25] 

 

where, mz is a 2 x 1 vector of the desired wheel speed  states and mA  is the desired 

system matrix.  The cost function is shown in Eq. [26]:  

 

∫
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+−−=
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))()((
2
1 dtRuuzyQzyJ T

m
T

m     [26] 

where, Q  is a 2 x 2 state weighting matrix, R is a 2 x 2  control weighting matrix, y  is a 

2 x 1 output vector, u  is a 2 x 1 control input vector.  Eq. [27] through Eq. [40] describe 

the process of obtaining the explicit model following control scheme for the cost function.    
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Consider the composite state vector, β , shown in Eq.[27]: 
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The state equations can be written in terms of β  as shown in Eq. [28]: 
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From Eq. [28], the following quantities are defined:  
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Now, the difference between the actual output and the desired output is derived as 

follows: 
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where, I is the 2 x 2 identity matrix, C is a 2 x 2 output distribution matrix.  Equation 

[30] simplifies to Eq.[31]: 

 

[ ]βICzy m −=− .          [31] 
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So the first term on the right of the cost function, Eq.[26] can be written as follows: 
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and  from Eq.[32c], the following term is defined: 
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With β  and Q~ , the cost function can be rewritten as: 

   ∫
∞

+=
0

)~(
2
1 dtRuuQJ TT ββ .                   [34] 

 

This form of cost function is recognized as the optimal regulator problem to which the 

solution is readily available in [8]. 

 

βPBRu T~1−−= ,     [35] 

 

where, P  solves the algebraic Ricatti equation: 

 

0~~~~~ 1 =−++ − PBRBPQPAAP TT .                 [36] 
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P  can be partitioned as shown: 
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With P  partitioned, the control input term can be expanded as: 

 

mxz
T

xx
T zPBRxPBRu 11 −− −−= .                 [38] 

 

The gains, zK  and  xK , both 2 x 2 matrices, seen in Fig.8 are defined as: 

 

xx
T

x PBRK 1−−=     and    xz
T

z PBRK 1−−=              [39] 

 

and can be substituted into Eq. [38] to get Eq. [40]: 

  

mzx zKxKu += .       [40] 

 

MatLab functions are used to solve the required Ricatti equation and compute the gains of 

the control algorithm.  MatLab is also used to integrate the equations of motion and show 

the results graphically.  In the simulation the braking limits and actions are specified.  For 

example, when there is a driving torque input into the system, the simulation will not 

allow both brakes to activate at the same time which in the real world would cause 

damage to the transmission.  The limits of the possible brake torque in the simulation are 

approximated by the limits of the actual vehicle. 

 

Simulation of SBS in a linear vehicle model 

 The effectiveness of the SBS is observed through simulations of uncontrolled 

slipping and controlled slipping situations.  The slipping occurrences that will be 

simulated are: 
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1) Straight-line travel (Φ  = 0°) with one wheel slipping on a patch loose earth after 

both wheel reach a constant speed. 

2) Straight-line travel with slip occurring at initial acceleration. 

3) Constant turn (Φ  = constant) with one wheel slipping (i.e. a wheel coming off the 

ground, or a wheel hitting loose earth.) 

4) The occurrence of two slip events occurring: once at the start of acceleration and 

once during a right turn at Φ  = 245. 

Shown in Table V are the specifications of the vehicle used in these simulations. 

 
TABLE V: Vehicle specifications used in simulations 

Vehicle Characteristic Value Units 

Mass, m 176.9 Kg 

Wheel Radius, r 0.2032 M 

Wheel Inertia, I 0.65 kg-m2  

Coefficient of drag on 

vehicle,  vC  

0.2  

Viscous coefficient on 

wheels, wC  

0.295 N-m 

 

 The Explicit model-follower control technique was used to calculate gains that 

helped the control input bring the states to desired quantities.  The gains were then 

adjusted from the initial calculation to achieve desired performance of the brakes.  Also, 

the SBS is commanded only to apply one brake at a time according to which wheel is 

slipping.  This property was programmed into the explicit model- follower based control. 

Limits on the amount of braking torque were also set to 600 Nm. 

 

Simulation Results 

 Each of the simulations run for  t= 25 seconds and there is a constant input drive 

torque applied to the vehicle wheels which represents a throttle input.  The wheel speeds 

and the error between desired and actual wheel speed ratios will be shown for both the 
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uncontrolled and controlled situations.  The braking control effort for the control case 

will be shown for the controlled situations.   

 

 

 

Simulation Set #1 

For the first set of simulations, Fig.10a-10l, the vehicle is traveling straight  with 

the steering wheel at position Φ =0, making the DWSR =1.  Between t=10 seconds and t 

= 15 seconds the tractive of the left wheel will decrease, which represents the wheel 

slipping.    For completeness, the effect of increasing the state weighting value from  

unity to 100 will be compared in the first set of simulations.  The state weighting value 

that achieves better tracking will be used for the rest of the simulations.   

 

Simulation #1.1:  System responses during a non-slipping situation. 

Figures 10a-10c are the system responses during a non-slipping situation with the 

steering wheel at Φ  = 0°.   

 

     
Figure 10a:  Wheel speeds under no slipping.                       
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   Figure 10b: Brake response for straight travel with no slipping. 

 
 
 

      
Figure 10c: Difference between DWSR and AWSR  

  during straight line travel with no slipping. 
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Simulation #1.2:  System responses during an uncontrolled slipping situation. 

Figures 10d – 10f are the simulation results during an uncontrolled slip event, 

which happens at t = 10 seconds and ends at t = 15 seconds into the simulation.   

  

        
Figure 10d: Straight travel with slipping of the left wheel. 

 



  

 

  30
 

 

       
Figure 10e:  Braking response during an uncontrolled straight travel with slip. 

 
 
    

      
Figure 10f:  Difference between DWSR and AWSR for an  

    uncontrolled straight travel with slip. 
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Simulation  #1. 3:  System responses during a controlled slip situation with a 

unity state weighting value. 

Figures 10g-10i show the results of a controlled slip situation.  The conditions for 

slip are the same as simulation # 1-2, however, for this simulation, the control is activated 

and the DWSR is better tracked.  The calculation of the control gains uses a state 

weighting value of one.  

 

       
Figure 10g:   Wheel speeds for a controlled straight line travel  

                  with slip (State weighting of unity). 
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Figure 10h: Braking response for a controlled straight travel 

with slip (State weighting of unity). 
 

 

       
Figure 10i:  DWSR v. AWSR for a controlled straight travel 

with slip (State weighting of unity). 
 

 
 



  

 

  33
 

 

Simulation  #1. 4:  System responses during a controlled slip situation with state 

weighting given a value of 100. 

Figures 10g-10i show the results of a controlled slip situation.  The conditions for 

slip are the same as simulation # 1-2, with the calculation of the control gains done with 

state weighting value of 100. 

 

 
 

Figure 10j:  Wheel speeds for a controlled straight line travel with slip (State weighting of 100). 
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Figure 10k: Braking response for a controlled straight line travel with slip (State weighting of 100). 
 

 
 

 
 

Figure 10l: DWSR v. AWSR for a controlled straight line travel with slip (State weighting of 100). 
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Figures 10a shows the wheel velocity profile for wheels undergoing no slip while the 

steering wheel is at Φ  = 0°, which makes DWSR =1.   The left and right wheels maintain 

the same speed profile and the AWSR matches the DWSR.   Figures 10b and 10c show 

the corresponding SBS braking response and the percent difference between the desired 

and actual wheel speed ratios, respectively.   

 

Figures 10d -10f show the system response with the same conditions as simulation set 

#1.1 but with an uncontrolled slipping event at t = 10 seconds and ends at t = 15 seconds.  

Figure 10d shows the wheel velocity changes when the left wheel loses tractive force and 

causes an increase of drive torque to the left wheel and  a loss of the same drive torque 

magnitude applied to the right wheel.  The left wheel velocity increase is nearly equal to 

the decrease in right wheel velocity.  Figures 10d and 10f are the corresponding braking 

response and error between the desired and actual wheel speed ratios. 

 

Figures 10g -10i show the results of the controlled slip response with the control gains 

calculated with a unity state weighting value.  The actual wheel speed ratio more closely 

follows the desired value of one, however, there still is a little difference.  As the brake is 

applied, Fig.10h, the velocity of the left wheel due to slip is lowered.  Braking the excess 

drive torque to the left wheel due to slip forces drive torque to be transferred to the right 

wheel speeding it up as a result. 

 

Figures 10j - 10l show the results of the controlled slip response with the control gains 

calculated with a state weighting value of 100.  The actual wheel speed ratio follows the 

desired wheel speed ratio more closely than the previous case. Increasing the state 

weighting value causes a greater brake torque response to slip. 
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Simulation Set #2   

The second set of simulations, Fig. 11a – 11i, simulates an event where the right 

wheel slips at time t = 0 seconds during initial acceleration and stops slipping when it 

reaches more solid ground at t = 5 seconds.   

 

 Simulation #2.1:  System response during acceleration without slip. 

Figure 11a shows the results of a non-slip situation during initial throttle 

acceleration with a straight heading (Φ  = 0°).  The braking control effort and the 

difference between desired and actual wheel speeds are not plotted since these are 

unaffected during a non-slipping situation. 

 

       
   Figure 11a:  Straight line acceleration with no-slip at initial take off. 
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 Simulation #2.2: System responses during an uncontrolled slip of the right wheel 

at the start of acceleration. 

Figures 11b -11c show the results of the controlled slip situation during initial 

throttle acceleration.  The braking control effort is again unaffected since it is an 

uncontrolled situation and will not be plotted. 

 

       
       Figure 11b: Straight line acceleration with the right wheel slipping at start. 
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           Figure 11c: DWSR v. AWSR with uncontrolled right wheel slipping at start. 
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Simulation #2.3: System responses during a controlled acceleration with slip.  

Figures 11d - 11f  show the results of a controlled slip situation occurring during 

initial acceleration. The conditions for slip are identical to simulation #1.2, however, SBS 

control is activated. 

 

      
Figure 11d:  Wheel speeds for a controlled straight line  

    acceleration  with  slip at start. 
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  Figure 11e:  Braking response for a controlled straight line acceleration  

with slip occurring at the start. 
 

 

     
Figure 11f:  DWSR v. AWSR for a straight  line acceleration with slip  

occurring at the start. 
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Figure 11a shows the wheel velocities during acceleration without slip.  Figures 11b -11c 

show the wheel velocities for an uncontrolled right wheel slip occurring at t=0 and ending 

at t= 5 seconds.  The difference between the actual and desired wheel speed ratios 

eventually reach zero after about t = 13 seconds while the slipping wheel gradually slows 

down after regaining traction.   

 

Figure 11d shows the controlled slip wheel speeds resulting from the SBS braking 

commands shown in Fig. 11e.  The brake torque to the right wheel is increased gradually 

decreasing the error between DWSR and AWSR  The AWSR is near the DWSR when 

the slipping wheel reaches a surface with good traction and the time for AWSR to match 

the DWSR is reduced from the uncontrolled case. 
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Simulation Set #3 

The third set of simulations, Fig. 12a - 12f simulate a turning event where slipping 

occurs during a turn.  At = 10 seconds the steering wheel has turned from Φ  = 0° to Φ  = 

100° to the left and remains there for 3 seconds. 

  

Simulation #3.1:  System response to an uncontrolled slip during a turning 

maneuver with Φ  = 100° to the left. 

 The plot of the steering wheel position is provided and can be used to observe 

how it affects when the brakes are applied, or more specifically, how it changes the 

DWSR value. 

 

      
Figure 12a:  Steering wheel position for simulation set #3. 
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The rotation rates of the wheels should differ during an effective turn.  Keeping 

this in mind, Fig. 12b shows the case of a slipping situation with respect to the steering 

wheel position.  

 

       
      Figure 12b:  Wheel speeds for an uncontrolled slip during a turning 

         maneuver  (Φ =100 to left)  
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     Figure 12c:  DWSR v. AWSR for an uncontrolled slip during  

situation (Φ = 100°). 
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Simulation #3.2:  System response during an uncontrolled slip during a turning 

maneuver with Φ  = 100° to the left. 

 

       
    Figure 12d:  Wheel speeds during a controlled slip during a turning  

maneuver (Φ = 100° ). 
 

       
      Figure 12e:  Braking response during a controlled slip during a turning  

maneuver  (Φ = 100° ) . 
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Figure 12f:  DWSR v. AWSR during a controlled slip during 

a turning maneuver (Φ = 100°) 
 

 

Figure 12a shows the steering wheel positions that are under consideration for this set of 

simulations.  At about t = 10 seconds, the steering wheel is turned from 0° to  100° left or 

counter-clockwise and back to 0° at about t=13 seconds.  

 

Figure 12b - 12c show the wheel speeds and the difference between  the DWSR and 

AWSR, respectively, during an uncontrolled slip occurring during a turning maneuver.  

Fig.12b shows that at t=10 seconds, the wheel speeds remains the same or the wheel 

speed ratio is one.  When the vehicle is undergoing a turn with the steering wheel at  

Φ  = -100°, it is desired that the outer wheel turns faster than the inner wheel.  Figure 12c 

shows the difference between the actual and desired wheel speed ratios during the 

uncontrolled slip while turning. 

 

Figures 12d - 12f show the wheel speeds, braking response, and differences between 

AWSR and DWSR, respectively, during a controlled slip while turning.  When the 
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DWSR is issued by the steering wheel at about t =10 seconds, and the AWSR remains at 

one, the SBS reacts as shown in Fig. 12e.  The vehicle is turning left and the DWSR is 

such that the left wheel is to turn slower than the right.  The left wheel brake is applied  

such that the DWSR is tracked through the slipping occurrence.  The peak error between 

the uncontrolled case and controlled case is about 200% improvement as seen by Fig.12c 

and 12f.  In the error plot for the controlled case, Fig.12f, there is a second peak.  This 

reflects the DWSR changing from the value associated with Φ  = -100° to the DWSR 

value associated with Φ  = 0°.  The peaks occur because the DWSR values are changed 

instantaneously as the steering wheel positions are changed instantaneously.  The 

controlled wheels are forced to track the quickly changing DWSR which is represented 

by the peaks. 
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Simulation Set #4 

 The fourth set of simulations, Fig. 13a - 13f simulate an event with two slipping 

situations.  The first slip situation occurs when the left wheel slips at initial acceleration 

from t = 0 seconds to t = 2 seconds.  The second slip situation occurs at t = 10 seconds, 

when the steering wheel is turned  Φ  = 245° to the right.  At Φ  = 245°, the control is 

commanded to lock the inside wheel (i.e. the right wheel) and transfer the drive torque to 

the left wheel.  The turn will last from t = 10 seconds to t = 12 seconds 

 

Simulation #4.1:  System response during an uncontrolled slip situation at t=0 

and during a turning maneuver with Φ  = 245° . 

 

                
Figure 13a:  SW for simulation set #4. 
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       Figure 13b:  Wheel speeds for uncontrolled slip during initial acceleration and during a turning 

maneuver of Φ = 245° issued at t=10 seconds and ending at t =15 seconds. 
 
 
 
 

                    
Figure 13c:  DWSR v. AWSR for an uncontrolled slip during initial acceleration and during a 

turning maneuver of Φ = 245° issued at t=10 seconds and ending at t =15 seconds. 
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Simulation #4.2:  System response during a controlled slip situation at initial 

acceleration and during a turning maneuver with Φ = 245°. 

 

                   
 

      Figure 13d:  Wheel speeds during the controlled slip situations during initial acceleration and 
during a turning maneuver of Φ = 245° issued at t=10 seconds and ending at t =15 seconds. 
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 Figure 13e:  Braking response during a controlled slip situation during initial acceleration and 
during a turning maneuver of Φ = 245° issued at  t=10 seconds and ending at t =15 seconds. 

 
 
 

                   
 

            Figure 13f:  DWSR v. AWSR during a controlled slip situation during initial acceleration 
                                       and during a turning maneuver of Φ = 245° issued at  t=10 seconds and 

ending at t =15 seconds. 
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Figure 13a shows the steering wheel input used during simulation set #3.  Figure 13b 

shows the uncontrolled slip of the right wheel occurring at initial acceleration and at t=10 

seconds when the DWSR is issued to zero that is associated with Φ  = 245° to the right or 

clockwise.  The error between DWSR and AWSR are shown in Fig.13c.  The differences 

occur at initial take off and at t=10 seconds.   

 

Figure 13d - 13f show the system results of the slip situations but with SBS control.  

Figure 13e shows that the braking is applied during the slipping occurring at the initial 

acceleration and when the turning maneuver is issued at t = 10 seconds.   Figure 13f 

shows how the wheels respond and observe the decrease in error between the 

uncontrolled result in Fig.13c and controlled result in Fig.13f.  Observe that the WSR 

does not exactly match the DWSR of zero value that corresponds to Φ  = 245°.  The 

reason is due to rounding the AWSR to the nearest integer.  In this case, the ratio is 

calculated as the speed of the right wheel  (≈10 rad/s) divided by the speed of the left 

wheel (≈100 rad/s), which gives a rounded value of zero.  The spike at t=12 seconds 

occurs in Fig.13f because the steering wheel position goes from Φ  = 245° to Φ  = 0° 

instantaneously which changes the DWSR from zero to one instantaneously.   
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Discussion 

 During a straight travel, non-slipping situation, the open differential will ensure 

that both wheels receive equal amounts of input from the drive shaft as shown in Fig.14a. 

                  

                                 
Figure 14a:  Drive torque distribution to the wheels with no slip. 

 

The size of the arrows pointing to the wheels represents the magnitude of drive torque 

applied to the wheels.  During a straight line travel with no slipping, the wheels receive 

equal drive torque and the traction coefficient, ,μ  on both of the wheels are the same.  

The left and right wheel traction coefficients for the non-slipping case are located by a 

red dot on the simplified Pacejka model.   
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Figure 14b : Traction coefficient for the left and right wheel with no slip. 

 

An uncontrolled open-differential operates such that equal traction force is always 

achieved at the wheels.  When the tractive force of one wheel decreases, the tractive force 

on the other wheel will decrease to the same value.   Consider the case when the left 

wheel is traveling along on a dry road and runs into a patch of ice.  The uncontrolled 

open differential will distribute the drive torque to the slipping left wheel speeding it up 

and the right wheel will slow down because it is receiving less drive torque.   
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   Figure 15a:  Drive torque distribution to the wheels during slip. 

 

Figure 15b shows how the traction coefficients of each wheel change during the slip 

event.  μ L has decreased because it is on another surface with a lower peak tractive 

coefficient.  μ R will stay on the Pacejka curve for dry ground but the value of μ R will 

decrease since it receives less drive torque.  As the right wheel receives less drive torque, 

the wheel slows down and the corresponding λ decreases.                   
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Figure 15b : Traction coefficient for the left and right wheel during 

                                                              an uncontrolled slipping left wheel. 
 

    

By applying SBS during a slipping situation, the drive torque is transferred from the 

slipping wheel to the non-slipping wheel.  In the case where the left wheel is slipping, the 

SBS will brake the left wheel and transfer drive torque to the right wheel.  Figure 16a 

shows how the drive torque is transferred via the left brake which is represented by the 

shaded arrows.  
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Applied left brakes 

Applied drive torque 

         
Figure 16a : Traction coefficient for the left and right wheel during 

                                                              a controlled slipping left wheel. 
 

 

When the left wheel brake is applied, drive torque is transferred to the right wheel 

speeding it up.  According to the Pacejka model, when the wheel velocity is increased, 

the longitudinal slip,λ , of that wheel increases.  Thus with SBS, the wheel on dry ground 

receives drive torque and produces a greater tractive force to the ground, since μ has 

increased.  Comparison of Fig.15b and Fig.16b depicts how the traction coefficients 

improve with SBS.  
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    Figure 16b : Traction coefficient for the left and right wheel during 

                                                              a SBS controlled slipping left wheel. 
 

Recall Eq. 3, which describes the vehicle longitudinal acceleration: 

 

                           ( ) ( ) 2
21 VCFFVm vNN && −+= μμ                             

 

It is observed that by increasing the traction coefficient of the non-slipping wheel with 

SBS the longitudinal acceleration of the vehicle is improved. 

 In order to precisely measure the acceleration improvements that the SBS has  

during turns, the lateral dynamics of the vehicle must be modeled.  However, the 

improvements that SBS has on turning dynamics may be measured by comparing the 

controlled wheel speed ratios during slip to the of the pre-defined desired wheel speed 

ratios.  The pre-defined DWSR was derived under minimal wheel slip conditions and 

closely approximates ideal turning.  Therefore, when the SBS is activated during turning 

situations and the AWSR tracks the DWSR it is preventing undesired turning dynamics. 
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Conclusion and future work 

 The open differential allows for effective turning because the wheels are allowed 

to turn at different rates which is useful during cornering because the outer wheel must 

travel a further distance than the inner wheel in the same amount of time.  However, the 

uncontrolled open differential distributes drive torque such that the traction force applied 

to the ground by the wheels is always equal.  This is detrimental during a slip situation, 

since the vehicle traction force is limited to the least tractive wheel because drive torque 

to the non-slipping wheel is diverted to the slipping wheel. 

 In this paper, the SBS was developed to reduce such unwanted dynamics.  A set 

of desired wheel speed ratios were derived using vehicle geometry and  data relating 

steering wheel position to turning radii.  The DWSR is assumed to represent ideal vehicle 

dynamics.  The SBS control logic is such that brake torque is applied such that the actual 

wheel speed ratios track the desired wheel speed ratios.  The performance was evaluated 

according to how well the states track the pre-defined desired ratios. 

 Further modeling of overall vehicle dynamics, such as lateral motion, would 

provide insight on what effect the SBS has on overall vehicle performance.  Also, 

physical aspects of the brake system, such as actuator dynamics, and brake line pressure 

dynamics should be modeled to provide more insight on SBS effectiveness during slip 

situations. 
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Appendix A – SBS simulation code 
The simulation program is separated in three programs. The function ‘sbs’ runs the actual 

simulation. The function ‘diffsurf’ is where slip events are defined and where the 

equations of motion reside. The function ‘init’ initializes the system matrices and 

calculates the gains used in the SBS. 

 

Part I:  This following is the MatLab program that runs SBS. 

function sbs; 

% Description: incorporating straight travel slipping with SBS 

                            

clear all; format long; 

% calling car specs, calc gains, system matrices, damping coeffs, 

% d = damping coeff on wheels, cv = drag coeff on vehic 

% b = transfered torque amount 

 

[constval_contrl, Kx, Kz, A, B, d, cv, b] = init; 

 

m = constval_contrl(1); r = constval_contrl(2); IR = constval_contrl(3); IL = 

constval_contrl(4); 

I  = constval_contrl(5); b = constval_contrl(6); g = constval_contrl(7); 

 

 

% Initial Vehicle Wheel speeds and end time declaration 

% x1 = vehic vel, x2 = left ws, x3 = right ws 

xo = [0; 0; 0] ;  ti = 0;   tf = 25; 

 

% Event time declaration 

% t_constant = time at which engine torque input becomes constant,  

% t_slip = slipping occurence , t_regrip = when slipping wheel meets 

 

t_const = 5; t_slip = 10; t_regrip = 15; 
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% Storage arrays and ode options to be used for graphical purposes 

z = [];   SW_emp = [];  u1val = [];  u2val = []; 

simoptions=[];   

 

% some params: traction effectiveness, input torque rate 

eff_s = 0.65; eff_ns = 0.90; T = 140;  

 

% RK4 integrations and integration specifications: see help odeset and ode45 

[t, x] = ode23s(@diffsurf, [ti, tf], xo, simoptions, T, eff_s, eff_ns, t_const, t_slip , t_regrip, 

tf); 

v_val = x(:,1);, x2val = x(:,2);,   x3val = x(:,3);  

lent = length(t); 

 

% Running through logic to have u's, z's, SW's stored into a storage matrix 

% for plotting use 

 

for i = 1:1:lent, 

    if t(i) < 2 

        SW=0; 

    elseif t(i) < 10, % before slipping, set input torque at constant level and even dist to 

wheels 

        SW = 0; 

    elseif t(i) < 12, % one wheel slips, the effectiveness of force transfer of slipping wheels 

is changed 

        SW = 0; 

    elseif t(i) <= tf, % back to same surface for both wheels 

        SW = 0; 

    end 

     

    x(2) = x2val(i); 
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    x(3) = x3val(i); 

    if(x(2)==0 & x(3)==0) 

        u(1)=0; 

        u(2)=0; 

        z1 = 0; 

        z2 = 0; 

    end 

% % Left hand turn or straight path cases 

 if  ( SW <= 0 & -245 <= SW ),                                % Left hand turn cases 

        DWSR = (9*10^-8)*SW^3 + (5*10^-5)*SW^2 + 0.0109*SW + 1; 

        if (SW == -245) 

             DWSR = 0; 

        end 

        if(x(3)==0) 

            x(3)=0.001;   %zero in the denominator will cause error 

        end 

        if(x(2)==0 & x(3)>0)  

            AWSR = 0; 

        end 

        if(round(x(2))==0 & round(x(3))==0) 

            AWSR =1; 

        end 

        if(x(2)>0 & x(3)>0) 

            AWSR = x(2)/x(3); 

        end 

        if(round(AWSR*100) == round(DWSR*100)), 

            u(1)=0; u(2)=0; 

        end 

        if(round(AWSR*100) > round(DWSR*100)),                  %Left wheel is slipping 

            DELTA = (x(2) - DWSR*x(3) ) / (1 + DWSR); 

            z1 = x(2) - abs(DELTA); 
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            z2 = x(3) + abs(DELTA); 

            if(round(z1*100) < round(x(2)*100)), 

               u(1) = Kx(1,1)*x(2) + Kx(1,2)*x(3) + Kz(1,1)*z1 + Kz(1,2)*z2; 

%                  u(2)= Kx(2,1)*x(2) + Kx(2,2)*x(3) + Kz(2,1)*z1 + Kz(2,2)*z2; 

               u(2) = 0; 

                if(u(1)>=600), 

                    u(1)=600; 

                end 

                if(u(1)<=0), 

                    u(1)=0; 

                end 

            end 

            if(round(z1*100) == round(x(2)*100)), 

                u(1) = 0; u(2) = 0; 

            end 

        end  

        if(round(AWSR*100) < round(DWSR*100)),                 % Right wheel is slipping 

            DELTA = (-x(2) + DWSR*x(3) ) / (1 + DWSR); 

            z1 = x(2) + abs(DELTA); 

            z2 = x(3) - abs(DELTA); 

            if(round(z2*100) < round(x(3)*100)), 

                u(1) =0; 

%                  u(1) = Kx(1,1)*x(2) + Kx(1,2)*x(3) + Kz(1,1)*z1 + Kz(1,2)*z2; 

                u(2)= Kx(2,1)*x(2) + Kx(2,2)*x(3) + Kz(2,1)*z1 + Kz(2,2)*z2; 

                if(u(2)>=600), 

                    u(2)=600; 

                end 

                if(u(2)<=0), 

                    u(2)=0; 

                end 

            end 
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            if(round(z1*100) == round(x(2)*100)), 

                u(1) = 0; u(2) = 0; 

            end 

        end 

 end 

     

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    if(0 < SW & SW <= 245),              %Right hand turn cases 

        DWSR = (-9*10^-8)*SW^3 + (5*10^-5)*SW^2 - 0.0109*SW + 1; 

        if(SW == 245), 

            DWSR = 0; 

        end 

        if(x(2)==0) 

            x(2) = 0.001; % zero in the denominator will cause error 

        end 

        if(x(2)>0 & x(3)==0) 

            DWSR = 0; 

        end 

        if(round(x(2))==0 & round(x(3))==0) 

            AWSR =1; 

        end 

        if(x(2)>0 & x(3)>0) 

            AWSR = x(3)/x(2); 

        end     

        if(round(AWSR*100)==round(DWSR*100)), 

            u(1)=0; u(2)=0; 

        end 

        if(round(AWSR*100) < round(DWSR*100)),     % Left is slipping 

            DELTA = (-x(3) + DWSR*x(2) ) / (1 + DWSR); 

            z1 = x(2) - abs(DELTA); 

            z2 = x(3) + abs(DELTA); 
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            if(round(z1*100) < round(x(2)*100)), 

                u(1) = Kx(1,1)*x(2) + Kx(1,2)*x(3) + Kz(1,1)*z1 + Kz(1,2)*z2; 

                u(2)=0; 

                if(u(1)>=600), 

                    u(1)=600; 

                end 

                if(u(1)<=0) 

                    u(1)=0; 

                end 

            end 

            if(round(z1*100) == round(x(2)*100)) 

                u(1) = 0; u(2) = 0; 

            end 

        end 

        if(round(AWSR*100) > round(DWSR*100)),  % Right is slipping 

            DELTA = (x(3) - DWSR*x(2) ) / (1 + DWSR); 

            z1 = x(2) + abs(DELTA); 

            z2 = x(3) - abs(DELTA); 

            if(round(z2*100) < round(x(3)*100)), 

                u(1)=0; 

                u(2)= Kx(2,1)*x(2)+ Kx(2,2)*x(3) + Kz(2,1)*z1 + Kz(2,2)*z2; 

                if(u(2)>=600), 

                    u(2)=600; 

                end 

                if(u(1)<=0), 

                    u(1)=0; 

                end 

            end 

            if(round(z2*100) == round(x(3)*100)), 

                u(1)=0; u(2)=0; 

            end 
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        end 

 end 

    u1val = [u1val; u(1)]; 

    u2val = [u2val; u(2)]; 

%     u1=max(u1val); 

%     u2=max(u2val); 

    z(i,1) = z1; 

    z(i,2) = z2; 

    SW(i) = [SW_emp; SW]; 

    err1 = abs(x(i,2)-z(i,1)); 

    err2 = abs(x(i,3)-z(i,2)); 

    err(i,1) = err1; 

    err(i,2) = err2; 

    ERR_RATIO(i,1) = (abs(DWSR-AWSR)/ DWSR)*100; 

%     ERR_RATIO(i,1) = (AWSR-DWSR); 

end 

 

 

%error array 

err = []; 

for i =1:1:lent, 

    err1 = x(i,2)-z(i,1); 

    err2 = x(i,3)-z(i,2); 

    err(i,1) = err1; 

    err(i,2) = err2; 

end 

 

for i=1:9, 

    SW(i,1) = 0; 

end 

for i = 10:12, 
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    SW(i,1)=0; 

end 

for i=13:25, 

    SW(i,1)=0; 

end         

 

 

 

%Plot Steering Wheel position 

figure(1) 

plot( SW(:,1),'r'), title('Steering Wheel Position'), xlabel('Time[s]'), ylabel('Steering 

Wheel Position [degrees]'), grid on;  

  

%Control effort 

figure(2) 

subplot(2,1,1), plot(t, u1val,'r') 

title('Braking Response'), ylabel('Left Brake [Nm]'), grid on;  

subplot(2,1,2), plot(t,u2val,'r') 

ylabel('Right Brake [Nm]'), xlabel('Time[s]'), grid on; 

 

%Wheel Speeds 

figure(3) 

subplot(2,1,1),  plot(t,x(:,2), 'r'), title('Wheel Angular Velocity'),ylabel('Left Wheel [rad/s] 

'), grid on; 

axis([0 25 0 150]) 

subplot(2,1,2), plot(t,x(:,3), 'b'),ylabel('Right Wheel [rad/s]'), xlabel('Time[s]'), grid on; 

axis([0 25 0 150]) 

 

%Difference between AWSR and DWSR 

figure(4) 

plot(t, ERR_RATIO(:,1),'r'), title('Difference between DWSR and AWSR') 
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xlabel('Time[s]'), ylabel('AWSR minus DWSR'), grid on; 

 

Part II:  The following is the program where slip events are defined. 

%EOM and logic  

function dx = diffsurf(t,x,T, eff_s, eff_ns, t_const, t_slip , t_regrip, tf); 

 

format short; 

 

[constval_contrl, Kx, Kz, A, B, b, cv] = init; 

 

m = constval_contrl(1); r = constval_contrl(2); IR = constval_contrl(3); IL = 

constval_contrl(4); 

I  = constval_contrl(5); b = constval_contrl(6); g = constval_contrl(7); 

 

if t < 2,  

  SW = 0;  

elseif t < 10, % before slipping, set input torque at constant level and even dist to wheels 

  SW = 0; 

elseif t < 12, % one wheel slips, the effectiveness of force transfer of slipping wheels is 

changed 

  SW = 0; 

elseif t <= tf, % back to same surface for both wheels 

  SW = 0; 

end 

 

if(x(2)<=0) 

    x(2)=0; 

end 

if(x(3)<=0) 

    x(3)=0; 

end 
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%Controller Logic 

if  ( SW <= 0 & -245 <= SW ),                                % Left hand turn cases 

    DWSR = (9*10^-8)*SW^3 + (5*10^-5)*SW^2 + 0.0109*SW + 1; 

    if (SW == -245) 

         DWSR = 0; 

    end 

    if(x(3)==0) 

        x(3)=0.001;   %zero in the denominator will cause error 

    end 

    if(x(2)==0 & x(3)>0)  

        AWSR = 0; 

    end 

    if(round(x(2))==0 & round(x(3))==0) 

        AWSR =1; 

    end 

    if(x(2)>0 & x(3)>0) 

        AWSR = x(2)/x(3); 

    end 

    if(round(AWSR*100) == round(DWSR*100)), 

        u(1)=0; u(2)=0; 

    end 

    if(round(AWSR*100) > round(DWSR*100)),                  %Left wheel is slipping 

        DELTA = (x(2) - DWSR*x(3) ) / (1 + DWSR); 

        z1 = x(2) - abs(DELTA); 

        z2 = x(3) + abs(DELTA); 

        if(round(z1*100) < round(x(2)*100)), 

            u(1) = Kx(1,1)*x(2) + Kx(1,2)*x(3) + Kz(1,1)*z1 + Kz(1,2)*z2; 

            u(2) = 0; 

            if(u(1)>=600), 

                u(1)=600; 
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            end 

            if(u(1)<=0), 

                u(1)=0; 

            end 

        end 

        if(round(z1*100) == round(x(2)*100)), 

            u(1) = 0; u(2) = 0; 

        end 

    end  

    if(round(AWSR*100) < round(DWSR*100)),                 % Right wheel is slipping 

        DELTA = (-x(2) + DWSR*x(3) ) / (1 + DWSR); 

        z1 = x(2) + abs(DELTA); 

        z2 = x(3) - abs(DELTA); 

        if(round(z2*100) < round(x(3)*100)), 

            u(1)=0; 

            u(2)= Kx(2,1)*x(2) + Kx(2,2)*x(3) + Kz(2,1)*z1 + Kz(2,2)*z2; 

            if(u(2)>=600), 

                u(2)=600; 

            end 

            if(u(2)<=0), 

                u(2)=0; 

            end 

        end 

        if(round(z1*100) == round(x(2)*100)), 

            u(1) = 0; u(2) = 0; 

        end 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

if(0 < SW & SW <= 245),              %Right hand turn cases 
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    DWSR = (-9*10^-8)*SW^3 + (5*10^-5)*SW^2 - 0.0109*SW + 1; 

    if(SW == 245), 

        DWSR = 0; 

    end 

%     if(x(2)==0) 

%         x(2) = 0.001; % zero in the denominator will cause error 

%     end 

    if(x(2)>0 & x(3)==0) 

        AWSR = 0; 

    end 

    if(round(x(2))==0 & round(x(3))==0) 

        AWSR =1; 

    end 

    if(x(2)>0 & x(3)>0) 

        AWSR = x(3)/x(2); 

    end     

    if(round(AWSR*100)==round(DWSR*100)), 

        u(1)=0; u(2)=0; 

    end 

    if(round(AWSR*100) < round(DWSR*100)),     % Left is slipping 

        DELTA = (-x(3) + DWSR*x(2) ) / (1 + DWSR); 

        z1 = x(2) - abs(DELTA); 

        z2 = x(3) + abs(DELTA); 

        if(round(z1*100) < round(x(2)*100)), 

            u(1) = Kx(1,1)*x(2) + Kx(1,2)*x(3) + Kz(1,1)*z1 + Kz(1,2)*z2; 

            u(2)=0; 

            if(u(1)>=600), 

                u(1)=600; 

            end 

            if(u(1)<=0) 

                u(1)=0; 
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            end 

        end 

        if(round(z1*100) == round(x(2)*100)) 

            u(1) = 0; u(2) = 0; 

        end 

    end 

    if(round(AWSR*100) > round(DWSR*100)),  % Right is slipping 

        DELTA = (x(3) - DWSR*x(2) ) / (1 + DWSR); 

        z1 = x(2) + abs(DELTA); 

        z2 = x(3) - abs(DELTA); 

        if(round(z2*100) < round(x(3)*100)), 

            u(1)=0; 

            u(2)= Kx(2,1)*x(2)+ Kx(2,2)*x(3) + Kz(2,1)*z1 + Kz(2,2)*z2; 

            if(u(2)>=600), 

                u(2)=600; 

            end 

            if(u(1)<=0), 

                u(1)=0; 

            end 

        end 

        if(round(z2*100) == round(x(3)*100)), 

            u(1)=0; u(2)=0; 

        end 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%% 

% %Brake inputs 

 u(1)=0;  

 u(2)=0; 
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% %  EOM and logic  

 

if t < 5,  

        Y = 0.2; 

        fn1 = Y*m*g; 

      fn2 = Y*m*g; 

        Td1 = 0.5*T; 

        Td2 = 0.5*T; 

        mu1 = 0.7; 

        mu2 = 0.7; 

        del_L = 0; 

        del_R = 0; 

elseif t < 10, % before slipping, set input torque at constant level and even dist to wheels 

        Y = 0.2; 

        fn1 = Y*m*g; 

      fn2 = Y*m*g; 

        Td1 = 0.5*T; 

        Td2 = 0.5*T; 

        mu1 = 0.7; 

        mu2 = 0.7; 

        del_L = 0; 

        del_R = 0; 

 

elseif t < 15, % one wheel slips, the effectiveness of force transfer of slipping wheels is 

changed 

        Y = 0.2; 

        fn1 = Y*m*g; 

      fn2 = Y*m*g; 

        Td1 = 0.5*T; 

        Td2 = 0.5*T; 

        mu1 = 0.7; 
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        mu2 = 0.7; 

        del_L = 0; 

        del_R = 20; 

elseif t <= tf, % back to same surface for both wheels 

        Y = 0.2; 

        fn1 = Y*m*g; 

      fn2 = Y*m*g; 

        Td1 = 0.5*T; 

        Td2 = 0.5*T; 

        mu1 = 0.7; 

        mu2 = 0.7; 

        del_L = 0; 

        del_R = 0; 

end 

 

dx(2,1) =  (1/IL)*(Td1 - del_R - u(1) + u(2) - (mu1*fn1*r - del_L) + A(1,1)*x(2)); 

dx(3,1) =  (1/IR)*(Td2 - del_L + u(1) - u(2) - (mu2*fn2*r - del_R) + A(2,2)*x(3)); 

t 

disp('%%%%%%%%%%%%%%%%%%%%%%%%') 

 

Part III:  This program initializes the system matrices and calculates the control 

input gains. 

 

function [constval_contrl, Kx, Kz, A, B, d, cv, b] = sys_init_contrl; 

 

% Vehic specs and properties  

m = 176.9;      % kg 

r = 0.2032;     % m 

IR = 0.65;      % kg-m^2 

IL = 0.65;      % kg-m^2 

I = 0.65;       % kg-m^2 
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b = 1;          % amount transferred torque to specific wheel via opposite brake 

g = 9.81;       % kg-m/s^2 

Lam1 = -5;      %closed loop poles 

Lam2 = -5; 

 

% viscous damping - gears, etc.. 

d = -0.295; 

 

% damping coeff on vehic 

cv = 0.2; 

 

% storing constants into array 

constval_contrl = [m r IR IL I b g]'; 

 

m = constval_contrl(1); r = constval_contrl(2); IR = constval_contrl(3); IL = 

constval_contrl(4); 

I  = constval_contrl(5); b = constval_contrl(6); g = constval_contrl(7); 

 

% w/o control% 

A = [d/IL 0; 0 d/IR]; 

B = [-1/IL, b/IL; b/IR, -1/IR]; 

C = [1 0; 0 1]; 

D = [0 0; 0 0]; 

 

% w/ control or desired system 

Ad = [Lam1 0 ; 0 Lam2]; 

Bd = [-1  1 ; 1  -1]; 

Cd = [1 0; 0 1]; 

D =  [0 0; 0 0]; 

 

%system used in LQR development 
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Ahat = [A zeros(2,2) ; zeros(2,2) Ad]; 

Bhat = [B ; zeros(2,2)]; 

W_Q = 100;   %state weighting 

Q = W_Q*[1 0; 0 1]; 

W_R = 1;      %control weighting 

R = W_R*[1 0; 0 1]; 

Qhat = [C'*Q*C  -C*Q ; -Q*C  Q]; 

 

% Solving Ricatti 

[P, l, g] = care(Ahat, Bhat, Qhat, R); 

Pxx = [ P(1,1)  P(1,2) ; P(2,1)  P(2,2) ]; 

Pxz = [ P(1,3)  P(1,4) ; P(2,3)  P(2,4) ]; 

 

%calculating gains 

Kx = -inv(R)*B*Pxx; 

Kz = -inv(R)*B*Pxz;  
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