Gene-Environment Interactions In Hereditary Colorectal Cancer Risk

Fatimah Almousawi¹, Dr. Andrew Buermeyer²

BioResource Research Multidisciplinary Program¹
Department of Environmental and Molecular Toxicology²
Oregon State University,
Corvallis, Oregon

Almousawi 2013
Cancer Worldwide

- More than ADIS, tuberculosis, and malaria combined
  - Union for International Cancer Control (UICC)

- By 2030, the annual number of cancer deaths may be as high as 13.2 million people
  - National Cancer Institute (NCI), 2012

Figure Source: Executive Healthcare Management
Cancer Worldwide

In the developed world

1 in 3 people will develop cancer during their lifetimes

1 in 9 people have a risk of developing cancer again if they survived the first

2 in 9 people have an increased risk of developing a second primary cancer

Figure Source: Executive Healthcare Management

Almousawi 2013
Colorectal Cancer (CRC)

• 143,460 new colorectal cancer cases and about 51,690 deaths in the U.S. in 2012. (ACS, 2012)

• Approximately $12.2 billion is spent in the United States each year on colorectal cancer treatment (NCI, 2012)
CRC Early Detection is Vital

- Five-year survival rates may be as high as 74%, or as low as 6% (ACS, 2012)

- Effective prevention depends on full understanding of individual risk factors
Factors that increase cancer risk

• Mutations in critical genes in DNA repair pathways
  ➢ Mismatch repair (Lynch Syndrome)
  ➢ Nucleotide excision repair (XP Syndrome)

• Exposure to carcinogens
  ➢ Polycyclic aromatic hydrocarbon (PAH)

Almousawi 2013
Polycyclic aromatic hydrocarbon (PAHs)

- Ubiquitous carcinogens
- Result from the incomplete combustion of organic compounds
- Exposure: fossil fuel processing, smoking, grilling food
Benzo[a]pyrene (B[a]P)

- Classified by EPA as group 1 carcinogen
- Detected in air, water, food and soil
- World Health Organization (WHO): amounts of B[a]P should not exceed 10 ppb in foods
- Some barbecued meats have been found to contain up to 30 ppb of B[A]P.
PAH metabolites

- PAHs are metabolically activated intracellularly to reactive diol epoxides (DE)

- DE covalently binds to the DNA and forms stable adducts

- These adducts initiate mutation and eventually lead to cancer.
Mismatch Repair

- Provides several highly conserved genetic stabilization functions
- An excision/resynthesis process with 4 phases:
  - MLH1 & PMS2 (MutLa) or MSH2 and MSH6 (MutSα)

Figure source: (Laat, 1999)
Mutator Phenotype

Mutations are a driving force behind cancer development

Mutated MMR genes → Replication errors bypass defective MMR systems → Mutations inactivate tumor suppressor genes

Heterozygous and homozygous MLH1 mutant mice had reduced longevity compared to their wild-type littermates

Figure source: Edelmann, 1999

Almousawi 2013
Lynch Syndrome

- The most common form of hereditary colon cancer
- Autosomal dominant genetic condition
- Mutation in one or more of MMR genes: MLH1 & PMS2 (MutLa) or MSH2 and MSH6 (MutSa)
Nucleotide Excision Repair (NER)

- Highly versatile and sophisticated DNA damage removal pathway
- Recognize and repair DNA damages such as damage induced by PAH exposure
- “Cut and paste” process
- Excise and remove short fragments of DNA that are 24 to 32 nucleotides with the damaged base

Almousawi 2013
Nucleotide Excision Repair (NER)

- Two sub-pathways: global genome NER (GG-NER) and transcription-coupled NER (TC-NER)

**GG-NER**

**TC-NER**

Figure source: Hoeijmakers, 2011
NER Deficiencies

- Deficiencies in the NER pathway cause human autosomal recessive diseases

- Xeroderma pigmentosum (XP)
  - extreme sensitivity to sunlight and great increase in UV-induced mutation rates
NER Deficiencies

- NER deficient cells are very sensitive to killing by exposure to PAH

- Transgenic mice lacking NER exhibit dramatically elevated cancer rate

  - NER is an important pathway for protection against cancer associated with exposure to PAH
Study Overview
• Exposure to certain environmental agents, such as PAHs, can increase risk of developing cancer

• DNA repair pathways are important for protection against the toxic effects of DNA damaging agents

  ➢ deficiencies in important genes in DNA repair pathways are associated with increased risk of cancer

Almousawi 2013
• Although Lynch syndrome is associated with increase risk of colorectal cancer
  ➢ only for 3-5% of all cases of colorectal cancer

• XP cases are more rare

• The genetic factors underlying the susceptibility in the general population are unknown
Hypothesis:

Partial deficiencies in multiple DNA repair pathways (MMR and NER), would interact synergistically to increase the risk of genotoxic effects of carcinogenic exposure in the general population.
To test the hypothesis:

Create an experimental system to model the individuals who have multiple, partially deficient DNA repair pathways

Creating isogenic cell cultures with reduced gene expression for either MMR (MLH1 and MSH2) or NER (XPA)
Goals:

- Generate cells with deficiencies in both MMR and NER
- Measure the effect of the combined genetic deficiencies on PAH-induced genotoxicity

Prediction:

Cells with combined deficiencies MMR and NER would exhibit a synergistic increase protein accumulation in culture cells.
Methods
Experimental Procedure:

HeLa cells → siRNA transfection → Whole Cell Protein Lysates

PAH exposure → Immunoblot → BCA assay

Almousawi 2012
Results and Discussion
Testing the extent of inhibition of MLH1 and MSH2 protein accumulation

- Unexplained variability in band intensities in the 24hr U and N samples versus the 48hr samples
- Successful reduction in MLH1 accumulation
- Inconsistent reduction for MSH2 accumulation

The Molecular weight:
- MSH2: 104.7 kDa
- MSH6: 160 kDa
- MLH1: 84.6 kDa
In conclusion:

Initial results suggested that the siRNA successfully reduced the accumulation of MLH1 and MAH2 proteins, in particular at 48-hour post-transfection.

Questions:

• To what extent the proteins were reduced?

• The maximum degree of inhibition possible with our siRNA?

• What happen at different time points and conditions?
Analyzing the time course for MSH2 inhibition

- MLH1 bands were consistent
- No MSH2 reduction at 24hr compared by the controls
- MSH2 bands’ intensities were reduced at 48hr
- MSH2 Reduction is difficult to confirm at 96hr
Conclusion:

- The inhibition of MSH2 was most effective at 48 and 72hr post-transfection.

- These two time points would be most useful for analysis of cells with engineered MMR-deficiencies in future experiments.
Analyzing the time course for MLH1 inhibition at several different conditions (A)

- The inhibition was more significant at 48hr then 24hr
- Doubling siRNA amounts had no apparent different compared to the initial amount of siRNA used
Analyzing the time course for MLH1 inhibition at several different conditions (B)

- The increased amount of siRNA with either the same or doubled transfection reagent did not show greater MLH1 inhibition.
- MLH1 band intensities was reduced, but not as significantly as the reduction observed at 48hr and 73hr.
Conclusion:

- The increased siRNA was not more effective in inhibiting the accumulation of MLH1.
- A repeated experiment might be needed to confirm whether or not doubling the siRNA amounts lead to greater reduction of MLH1 accumulation.
- Best time course for MLH1 inhibition is between 48 and 72hr post-transfection.
Summary

• We were able to demonstrate a partial reduction in accumulation of MLH1 and MSH2 in cultured HeLa cells over multiple time points using the identified siRNA.

• The project did not progress to testing the XPA-targeting siRNA in our cells.

• Therefore, we are unable to test the effect of the combined deficiencies.
Future Investigations

• Test the efficiency of MMR pathway of the created cells to determine whether or not the degree of MLH1 and MSH2 inhibition has affected the pathway

• Create cell lines with multiple XPA deficiencies

• Ultimately, expose all of the cell lines created to PAHs to measure the effect of combined deficiencies of PAH-induced mutagenesis
Benefits of Research

Our results confirm the potential utility of specific siRNA targeting either MSH2 or MLH1, and helped establish transfection conditions for their use in cultured HeLa cells.
Acknowledgment:

Thanks due to:
Project mentor: Dr. Andrew Buermeyer
Secondary mentors: Dr. Dave Stone and Claire Colvin
Major Advisor: Wanda Crannell
HHMI Program and the HHMI advisor: Dr. Kevin Ahern

Colleagues in Buermeyer laboratory
Casey Kernan
Jacki Coburn
Kimberly Sarver
James Rekow