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Ungulate behavior has been studied extensively but direct observation of free-

ranging animals over long periods of time and large geographic areas is often 

prohibitively difficult. Improved technology, such as GPS collars fitted with motion-

sensitive activity monitors, provides researchers with a potential tool to remotely collect 

fine scale activity and location data. Activity monitors record animal movement along 

one or more axes with different amounts of motion presumably corresponding to different 

animal behaviors. Inter- and intraspecific variations in motion among behaviors 

necessitate calibration for each focal species. Calibration generally consists of making 

detailed behavioral observations of captive collared animals and then pairing observed 

behaviors with collar activity data for the same sampling interval. This process results in 

a mathematical model that can be used to classify the activity level or behavior of novel 

free-ranging animals using remotely collected collar data.  

During the calibration process, we discovered that several factors associated with 

the time-keeping mechanisms of these collars can result in mismatches between collar 
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activity monitor data and direct behavior observation. This results in inaccurate 

classification models. To correct for these timing errors, we used defined breaks in 

animal behavior to shift collar output times, improving the average correct classification 

rate up to 61.7 percentage points for specific behaviors. We also learned that timing 

errors can be minimized by activating a collar’s GPS unit, increasing the GPS fix rate, 

and using a sampling interval divisible by 8 seconds. Awareness and management of 

collar timing issues will enable managers and researchers to best classify animal behavior 

when using these collars and interpreting data from free-ranging animals. 

No activity monitor calibration had been conducted for Lotek 4400 GPS collars 

featuring dual-axis activity monitors for Rocky Mountain elk (Cervus elaphus nelsoni), 

mule deer (Odocoileus hemionus), or cattle (Bos taurus). We used discriminant function 

models to determine what behaviors can be accurately classified using these collars. 

Additionally, we constructed models using only pure intervals (sampling intervals during 

which only one behavior occurred) and applied them to datasets containing only mixed 

intervals (sampling intervals during which >1 behavior occurred) to determine the effect 

of excluding the latter from the calibration process. Final full-dataset models accurately 

classified (correct classification rates > 70%) up to 4 behavior categories for elk, 3 for 

deer, and 2 for cattle. Our results showed that classification models constructed with only 

pure intervals can result in misclassification rates of up to 61% for mixed intervals of 

some behaviors.  

When remotely collecting data, researchers must balance sampling frequency with 

the battery life of the recording device. The duration of each behavior relative to 
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sampling interval length might play an important role in activity monitor calibration. To 

date no efforts have been made to determine the optimal sampling interval duration to use 

with these sensors. Similarly, Lotek 4500 GPS collars featuring accelerometer activity 

monitors had not been calibrated for Rocky Mountain elk. We examined discriminant 

function model structures for 3 sampling interval durations (5-min, 152-sec, and 64sec) to 

determine what behaviors can be accurately classified for animals with and without 

access to supplemental feed in the form of hay. Models constructed using 5-min sampling 

intervals performed best, accurately classifying (≥ 70% classification rate) up to 5 

behaviors for animals without access to supplemental feed and 4 behavior categories for 

those with access to supplemental feed. All of our calibration models will be made 

available on-line, allowing managers and researchers to interpret data from novel free-

ranging animals for use in ongoing and future studies of ungulate ecology and 

management.   
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CHAPTER 1: GENERAL INTRODUCTION 

Knowledge of animal behavior provides information necessary for making informed 

management decisions. Although Global Positioning System (GPS) technology has 

enabled biologists to analyze animal use of space over a range of temporal and spatial 

scales, animal behavior at these locations has been unknown. Direct observation of free-

ranging animals is prohibitively difficult, especially as sample size and species-specific 

mobility increase. Direct observations of animal behavior can also be at risk of various 

kinds of observer bias (Martin and Beteson 2007). Therefore, many researchers are 

turning to collar-mounted devices to track and record behavior remotely.  

Users of early models relied on changes in the signal strength of Very High 

Frequency (VHF) collars to infer changes in activity (Roth and Meslow 1983, Carranza et 

al. 1991).  These techniques have been criticized due to the potential for substantial bias 

from signal modulation (Lindzey and Meslow 1977, Singer et al. 1981) and signal 

interference caused by the environment between the animal and the antenna (Rouys et al. 

2001).  Other investigators used the distance between successive GPS points per unit time 

to measure velocity and to infer activity (Nelson and Sargeant 2008, Proffitt et al. 2010).  

However cloud cover, vegetative cover, topography, and the orientation of the collar can 

reduce GPS fix rates by half (Hulbert and French 2001, Di Orio et al. 2003, Cain III et al. 

2005, D'Eon and Delparte 2005, Jiang et al. 2008, Mattisson et al. 2010), substantially 

affecting location accuracy and resulting in underestimates of travel in active animals and 

overestimates of travel in stationary animals (Ganskopp and Johnson 2007).  Likewise, 

because animals seldom move in straight lines for significant periods of time, distances 
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traveled between GPS locations are likely to be underestimated unless samples (i.e., 

“fixes”) are taken very frequently. High fix rates decrease the lifespan of collar batteries 

so collar users must balance location frequency with the duration of their study. Location-

dependent errors can contribute to inaccuracies when calculating energy budgets or 

estimating habitat utilization.    

Later collar designs included a single tip-switch consisting of a small metal ball in 

a metal tube with metal pins on each end. When tipped, the ball rolled to one end of the 

tube and completed the circuit between the tube and the pin. The tube was oriented such 

that a change in animal posture (e.g., head up vs. head down) would tip the switch and 

change the pulse rate emitted by the radio transmitter. Behavior was inferred from 

differences in pulse rate or from the number of changes in pulse rate per unit time. 

Inferred behaviors agreed with observed behaviors when distinguishing between active 

and inactive behaviors 98% and 96% of the time for white-tailed deer (Odocoileus 

virginianus) and 88.5% and 93.8% of the time for mountain lions (Puma concolor), 

respectively (McCullough and Beier 1988, Janis and Clark 1999). However, further 

discrimination among active behaviors was not successful. Other researchers used 

changes in pulse rate and variation in radio-signal strength to distinguish resting, feeding, 

and moving in Rocky Mountain elk (Cervus elaphus nelsoni) with 94% accuracy (Green 

and Bear 1990). Similarly, resting, feeding, and other activities of mule deer (Odocoileus 

hemionus) were correctly identified 94.5%, 96.5%, and 95% of the time, respectively 

(Kufeld et al. 1988).  
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Rather than signal strength, distance traveled, or pulse rate, the subsequent 

generation of collars functioned on the premise that different behaviors vary in how much 

movement occurs along multiple body axes.  These collars incorporated devices that 

record quantified measures of animal motion in multiple spatial planes. One type of 

motion sensing collar included 2 tip switches mounted perpendicular to one another.  

Each switch records the number of tips (0–255) that occur during a user-defined sampling 

interval. Early versions of these collars, including Lotek Model 1000 (Newmarket, 

Ontario, Canada), were used to correctly classify inactive and active behaviors up to 76% 

and 91% of the time in moose (Alces alces) and 97% and 86% of the time in red deer 

(Cervus elaphus), respectively (Moen et al. 1996, Adrados et al. 2003). Rest (84.1%), 

grazing (95.8%), and travel (78.3%) behaviors of cattle were correctly inferred when 

investigators incorporated the tip switch data with the distance traveled between 

successive GPS locations (Bos taurus, Ungar et al. 2005) sampled by Lotek model 2200 

collars. These collars were more accurate than VHF variable pulse sensor collars when 

distinguishing between periods of inactivity (92%) and activity (90.3%) in white-tailed 

deer (Coulombe et al. 2006).  Similarly, periods of inactivity and activity were correctly 

classified 87.3% and 85.4% of the time in free-ranging mouflon (Ovis melini musimon x 

Ovis spp.) and 97% and 84% of the time in roe deer (Capreolus capreolus, Bourgoin et 

al. 2008, Gottardi et al. 2010), using Lotek model 3300 collars. Another type of motion 

sensing collar included a single omnidirectional accelerometer that recorded changes in 

acceleration on multiple planes. These collars were used to classify resting, feeding, and 

travel with 88% accuracy for Rocky Mountain elk (Naylor and Kie 2004).   
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The most recent generation of collars incorporate 2 accelerometers which record 

motion via changes in acceleration such as Lotek model 4400 GPS collars. Similar collars 

have been used to infer passive, feeding plus slow locomotion, and fast locomotion for 

red deer and roe deer with >75% accuracy (Löttker et al. 2009, Heurich et al. 2012). 

Differences in motion for different behaviors within and among species necessitate that 

these types of collars be calibrated in order to determine which specific behaviors 

correspond to what range of activity monitor values (AMVs). No prior calibrations exist 

for dual-axis activity monitors for Rocky Mountain elk, mule deer, or cattle. Our goals 

were to calibrate this type of collar for these 3 species and to determine optimal sampling 

interval for use in future behavior studies.  

To build calibration models for our focal species, we needed to pair directly 

observed behaviors to AMVs recorded by collars during the same 5-min sampling 

intervals. It was during this process we noted a series of timing errors, which if not 

addressed, could lead to inaccurate classification models.  After identifying the 

mechanisms behind these timing errors, we developed a procedure to correct for these 

timing errors and created a guide to help users recognize and manage errors in their own 

data (Chapter 1). 

After applying the correction procedure, we proceeded with model building to 

classify collar data into specific behavior categories. Most previous collar calibrations 

have used datasets containing only pure intervals (sampling intervals containing only 1 

behavior) and have excluded mixed intervals (those containing > 1 behavior) from the 

calibration process. Calibrations that did include mixed intervals were for 2 tip-switch 
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collars and were only able to distinguish passive from active behaviors (Adrados et al. 

2003, Gervasi et al. 2006, Gottardi et al. 2010). Also, no quantification of the effect of 

excluding mixed intervals from the model calibration process has been conducted. Since 

datasets from free-ranging animals inherently contain mixed intervals, and because there 

is no way to distinguish which intervals are mixed and therefore no way to exclude them, 

we suspected that excluding mixed intervals from calibration could decrease 

classification accuracy. We calibrated Lotek model 4400 dual-axis accelerometer GPS 

collars for Rocky Mountain elk, mule deer, and cattle using both pure interval datasets 

and full datasets (including both pure and mixed intervals). We compared the correct 

classification rates for 4 discriminant function models to determine the number of 

behaviors that could be classified and with what accuracy. We also examined the effect 

of excluding mixed intervals from the calibration process by comparing the classification 

rates from the cross-validated pure intervals models to those obtained by applying the 

same models to datasets containing only mixed intervals (Chapter 2).  

Having calibrated the collars for our 3 focal species, we then determined the 

optimal sampling interval for these types of collars. Most previous collar calibrations 

have used 5-min sampling intervals but shorter sampling intervals might allow greater 

classification accuracy by better capturing behaviors that are typically of shorter duration. 

New models of GPS-activity monitor collars allow users numerous choices of sampling 

interval duration and other sensor settings. However, very few comparisons have been 

conducted to determine the relative merits of different sampling intervals for activity 

monitor collars. For 2 tip-switch collars, 10-min intervals allowed higher total 
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classification rate and better classification of active behaviors when compared to 5- and 

10-min intervals but 5-min intervals allowed better classification of passive behaviors 

(Adrados et al. 2003). To date, no sampling interval comparisons have been conducted 

for dual-axis accelerometer collars. We addressed this issue for elk behaviors as recorded 

by Lotek model 4500 GPS collars. To determine whether shorter sampling intervals 

would increase the number of behaviors we were able to distinguish, classification 

accuracy, or both, we compared classification performance for 5-min, 152-sec, and 64-

sec sampling intervals (Chapter 3).  
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ABSTRACT 

Direct behavior observation of multiple free-ranging animals over long periods of time 

and large geographic areas is prohibitively difficult. However, recent improvements in 

technology, such as GPS collars equipped with motion-sensitive activity monitors, create 

the potential to monitor animal behavior remotely. Activity monitors record animal 

motion along one or more axes with different amounts of motion presumably 

corresponding to different animal activities. Variations in motion among species 

necessitate calibration for each species of interest. Calibration generally involves making 

detailed behavioral observations of captive collared animals and then pairing observed 

behaviors with collar data. During the pairing process we discovered that several factors 

associated with the time-keeping mechanisms of these collars can result in mismatched 

behavior observations and collar data resulting in inaccurate classification models. We 

corrected for these timing errors using defined breaks in animal behavior to shift times 

given by collar output, improving the average correct classification rate up to 61.7 

percentage points for specific behaviors. Also, timing errors can be minimized by 

activating a collar’s GPS unit, increasing the GPS fix rate, and using a sampling interval 

divisible by 8 seconds. Awareness and management of collar timing error will enable 

users to obtain the best possible estimates of true behavior when calibrating these collars 

and interpreting data from free-ranging animals. 

KEY WORDS  

accelerometers, activity sensor, behavior, Cervus elaphus, error estimation, GPS collar, 

Rocky Mountain elk. 
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INTRODUCTION 

Global positioning system (GPS) collars equipped with motion-sensitive activity 

monitors have the potential to be an important tool for wildlife researchers and managers. 

This technology has been touted as one that will greatly expand our ability to understand 

habitat selection of free-ranging wildlife. Activity monitor collars have been used to 

study habitat utilization in red deer (Cervus elephus, Löttker et al. 2009) and activity 

patterns in Asiatic black bear (Ursus thibetanus, Hwang and Garshelis 2007), brown bear 

(U. arctos, Gervasi et al. 2006), rhesus monkeys (Macaca mulatta, Papailiou et al. 2008) 

and cattle (Bos taurus, Ungar et al. 2005). Because species vary in their motions and 

behaviors, species-specific calibration is necessary to relate numeric collar output to 

actual behaviors. Calibration is generally conducted using captive animals and results in a 

model that can be used to classify, with a given level of certainty, the behavior or activity 

level of free-ranging animals. Calibration is conducted by observing collared animals and 

then coupling the real-time observed activities to activity data recorded by the collar over 

the same sampling interval.  

One potential factor influencing the accuracy of the calibrations is time-keeping 

which is important at multiple scales when seeking to record and then accurately translate 

collar data into knowledge of animal behavior. To accurately pair observations with 

collar data, users need the accurate start time of both. Time-stamping the direct 

observations of behavior is relatively easy using electronic data loggers featuring 

satellite-corrected time. However, we discovered that establishing the true interval start 

times (ISTs) for data collected by the collars is not possible using collar outputs alone. 
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Although previous investigators noted evidence of timing errors, few have addressed 

these issues (Löttker et al. 2009). Use of data from sampling intervals within long periods 

of a single behavior while discarding the data at the beginning and end of that behavior 

avoids the problem (Löttker et al. 2009) but can result in significant data loss. This 

approach is only effective for behaviors that exceed two sampling intervals in duration. 

For many species, behaviors of interest such as running are unlikely to exceed two 

sampling intervals.  

While conducting a calibration study of Rocky Mountain elk (C. e nelsoni, 

hereafter elk), we noted discrepancies between real time and “data time” which result in 

inaccurate pairing of activity monitor values (AMVs) to observed behavior(s). This 

increased behavior classification error could hinder our ability to accurately classify 

behaviors of free-ranging animals. We created a procedure to adjust collar data ISTs for 

timing errors and determined whether correct classification rates (CCRs) differed 

between models built with raw versus time-corrected data. 

Inside activity monitors 

Recent generations of GPS collars incorporate activity monitors that measure and store 

activity data in a way that results in several potential sources of timing error (Table 2.1). 

Activity monitor components that contribute potentially to timing errors include one or 

more accelerometers, an activity microprocessor, and a main microprocessor that 

includes an internal clock.  
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Table 2.1 Sources of timing error associated with activity monitor GPS collars, specifically Lotek model 4400 dual-axis 

accelerometer GPS collars. 

Source of error Mechanism Duration of 

error  

Evidence in 

data 

Action to correct 

Internal clock Drift influenced by age of collar and air 

temperature. 

± 0.72 sec/hr Not apparent Corrected during GPS 

fix 

Activity 

microprocessor  

Drift inherent in all clocks. < 5 sec/hr Label gap or 

duplicate 

None available 

Programmed 

sampling interval 

(PSI) duration 

Difference between actual start time of a 

sampling interval and the interval start time 

(IST) dictated by the PSI. 

Depends on 

chosen PSI  

Label gap Choose PSIs divisible 

by 8 seca 

Collar activation 

offset 

Difference between microprocessor 

activation and the IST dictated by the PSI. 

Up to one 

interval 

Label gap Activate collar at IST 

a Activity microprocessor activates on an 8 second interval, therefore PSIs not divisible by 8 seconds result in an accumulation 

of timing error with each interval. 
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Accelerometers are used to measure changes in acceleration associated with 

animal motion. Currently, many collars that include activity-sensing options record 

animal movement along 2 or 3 axes, each of which is equipped with an accelerometer. 

Motion data from accelerometers is averaged over the duration of a programmed 

sampling interval (PSI) resulting in a single AMV, ranging from 0 to 255 for each axis. 

Several manufacturers allow users to set the PSI to either 5 minutes or any multiple of 8 

seconds between 64 – 896 seconds.  

The activity monitor microprocessors track and record elapsed time and store 

motion data from the accelerometers at specific intervals. Changes in acceleration are 

measured by the accelerometers four times per second. The activity microprocessor 

activates every 8 seconds, stores the accelerometer data, and tracks how many 8-second 

periods have elapsed since data were last downloaded by the main microprocessor. Once 

the activity microprocessor recognizes that enough 8-second periods have elapsed to 

cumulatively equal or exceed the PSI, it flags the data for storage by the main 

microprocessor. The main microprocessor averages the activity data for each axis over 

the duration of the PSI and stores these AMVs along with a temperature measurement. 

The main microprocessor labels these data with the date and IST that are supplied by the 

internal clock (J. Chang, Lotek Wireless, Inc., personal communication).  

Sources of error  

All timekeeping devices are subject to drift (i.e., they may run fast or slow). Time drift by 

the internal clock can vary by ± 0.72 seconds/hour and can be influenced by the age of 

the collar and by air temperature (J. Chang, Lotek Wireless, Inc., personal 
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communication). Internal clock drift results in differences between “data time”, with 

which the activity data are labeled, and the “true time” with which behavior observations 

are time-stamped. This can result in behavior observations that are not accurately 

matched to the appropriate AMVs and reduce the accuracy of classification models. Drift 

is corrected every time a GPS location fix occurs (J. Chang, Lotek Wireless, Inc., 

personal communication). Thus, user-programmed GPS fix rate will determine the 

frequency of correction and the amount of drift accumulating between corrections. 

However, cloud cover, vegetative cover, topography, and orientation of the collar can 

prevent programmed GPS fixes (Hulbert and French 2001, Di Orio et al. 2003, Cain III et 

al. 2005, D'Eon and Delparte 2005, Jiang et al. 2008, Mattisson et al. 2010).  

The activity microprocessor also produces time drift, but because it functions 

independently of the internal clock, this drift is not corrected by GPS fixes. Drift by the 

activity microprocessor results in sampling intervals that are longer or shorter than the 

PSI (J. Chang, Lotek Wireless, Inc., personal communication). Sampling intervals are not 

likely to differ from the PSI by more than a few seconds, therefore the difference in 

duration between the sampling interval and the duration of observed behaviors for a 

given PSI is negligible. However, this small difference can accumulate over time and 

result in direct behavior observations that are not accurately matched to the appropriate 

AMVs, further reducing the accuracy of the classification model. The mismatch results 

from how the main microprocessor stores and labels activity data. If the activity 

microprocessor flags activity data for storage at a time that does not match an IST, the 

activity data will be labeled by the main microprocessor with the preceding IST (J. 
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Chang, Lotek Wireless, Inc., personal communication). Once drift results in a sampling 

interval that is longer than the PSI, an IST will be skipped, resulting in a label gap. For 

example, if the PSI is set for 5 minutes, ISTs would be on the hour (e.g., 12:00:00) and at 

subsequent 5-minute intervals (e.g., 12:05:00, 12:10:00…). However if activity 

microprocessor drift results in a PSI that exceeds 300 seconds, the drift will accumulate 

such that a sampling interval ends at 12:04:59. The activity data for that sampling interval 

will be labeled with the IST 12:00:00. The next sampling interval will then end at 

12:10:01 and be labeled with 12:10:00. Although there is no gap in activity data, the 

12:05:00 IST will not be present in the collar output. Similarly, activity microprocessor 

drift that results in a sampling interval that is shorter than the PSI will result in two 

successive intervals of data that will both be labeled with the same IST. Regardless of 

whether it results in a label gap or a duplicate label, activity microprocessor drift will 

result in behavior observations that are not accurately matched to the appropriate AMVs 

if data are paired using the ISTs from the collar output alone. 

The 8-second activation interval of the activity microprocessor creates another 

source of potential timing error. The activity microprocessor only flags activity data for 

storage by the main microprocessor once enough 8-second intervals have accumulated to 

reach or exceed the PSI. However, some manufacturers offer collars with preset PSI 

options that are not divisible by 8 seconds, resulting in PSIs that cannot be equaled; only 

exceeded. For example, a common preset PSI option is 5 minutes (i.e., 300 sec). The 

activity microprocessor will not activate to flag the activity data at 300 seconds but 

instead at 304 seconds. The collar output will list activity data at 5-minute intervals 



17 

 

 

1
7

 

although the data were recorded over 304-second periods.  This 4-second difference 

results in a disparity between the actual start time of the sampling interval and the ISTs 

dictated by the PSI and tracked by the internal clock. For example, if the PSI is set for 5 

minutes, ISTs would be on the hour (e.g., 12:00:00) and at subsequent 5-minute intervals 

(e.g., 12:05:00, 12:10:00…). However because the intervals are 304 seconds long, if the 

first interval starts at 12:00:00, the second interval will start at 12:05:04 and the next at 

12:10:08 and so on. The 4-second difference will accumulate until 4n > PSI (where n = 

no. of intervals) at which time there will be a label gap. In this case, the gap will occur 

every 76 intervals (approximately 6.25 hrs.). At that time, one interval will end at 

18:14:56 (IST labeled 18:10:00) and the next interval will end at 18:20:00 (IST labeled 

18:20:00). The 18:15:00 IST will not be included in the collar output. Therefore, behavior 

observations will not be accurately matched to the appropriate AMVs if paired using the 

ISTs from the collar output. 

Finally, potential for significant timing error results from the difference between 

the time at which the activity microprocessor is activated prior to deployment (usually by 

removing a magnet) and the IST dictated by the PSI and tracked by the internal clock. As 

stated above, if the activity microprocessor flags activity data for storage at a time that 

does not match an IST, the activity data will be labeled with the preceding IST. This will 

result in activity data that occurs over the course of two IST-defined intervals. Using the 

above example, if the PSI is set for 5 minutes, ISTs would be on the hour (e.g., 12:00:00) 

and at subsequent 5-minute intervals (e.g., 12:05:00, 12:10:00…). However if the activity 

microprocessor were activated at 12:02:00, the activity data would be flagged for storage 
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at 12:07:04 (after 304 sec) and the main microprocessor will store the averaged 

accelerometer data labeled with the IST of 12:05:00. As a result, behavior observations 

will be mismatched with AMVs if paired using ISTs from the collar output. Further, the 

offset between the IST and the start of the sampling interval will not be consistent over 

time due to drift of the internal clock, internal clock correction by the GPS satellite, and 

label gaps or duplicates associated with using PSIs not divisible by 8 seconds.  

Once we understood these mechanisms and how they contribute to timing error, we 

developed a method to account for time disparities between observed behaviors and 

collar data in order to avoid data loss, minimize mismatched behavior-AMV pairings, and 

increase accuracy of our behavior classification model. We also developed a key to help 

users recognize and adjust for timing errors in data from activity sensor collars.  

STUDY AREA 

The Starkey Experimental Forest and Range (Starkey) is located in the Blue Mountains 

35 km southwest of La Grande, Oregon (45°12’N, 118°3’W) and consists of a 10,125 ha 

mosaic of grassland, regenerating forests, and older forest stands. Elevations range from 

1,122-1,500 m with varied topography. The climate is continental and characterized by 

relatively consistent mean monthly precipitation. Total annual precipitation averages 42.9 

cm with about 52.8 cm of average snow fall (Western Regional Climate Center 2010).  

Starkey is divided into 4 study areas designed to facilitate large-scale studies on 

free-ranging ungulates. Within 1 of these, the 265-ha Winter Area includes a complex of 

pens and handling facilities as well as several small pastures. We conducted our behavior 

observations in the handling pens and Wing Pasture (2.6 ha) within the Winter Area. 
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These facilities allow safe and efficient animal handling, close observation of captive 

ungulates, and addition of foods and other stimuli to the observation areas. Canopy in the 

pasture is dominated by Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus 

ponderosa). Forage species consist mainly of bluebunch wheatgrass (Pseudoregneria 

spicatum), Sandberg bluegrass (Poa secunda) and Idaho fescue (Festuca idahoensis, 

Rowland et al. 1997).   

SAMPLING DESIGN 

We calibrated Lotek Engineering Model 4400 GPS collars (Lotek Engineering, 

Newmarket, Ontario, Canada) for elk. Collars were equipped with dual-axis activity 

monitors set for a 5-minute PSI. We made detailed observations of 5 collared captive 

female elk and recorded observed behaviors using Palm (Sunnyvale, CA, USA) Tungsten 

E2 handheld PDAs equipped with Palm PDA-based software (EVENT-Palm, J. C. Ha, 

University of Washington). Field observations were conducted in accordance with 

established Institutional Animal Use and Care Committee (IACUC) protocols (USFS 

Starkey 92-F-0004). We recorded observations daily during two (morning, evening) 4-

hour sessions. We initially recorded behaviors into nine classes: bedded, bedded-

ruminating, standing, standing-ruminating, grazing, browsing, walking, trotting, and 

galloping (Table 3.1). However, we observed very little standing-ruminating so we 

excluded that class from analysis and model construction.  

Most behaviors occurred naturally but three (i.e., browsing, trotting, and 

galloping) had to be prompted. The pasture and corrals where we worked lacked browse 

species in sufficient quantities to allow us to collect data on prolonged browsing 
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behavior. To prompt this behavior, we collected branches of maple (Acer spp.), willow 

(Salix spp.), snowberry (Symphoricarpos albus), and other browse species and attached 

them to a wooden tripod and wooden fence posts at heights ranging from ground level to 

the animals’ maximum reach (approximately 3m) to simulate natural conditions. Trotting 

and galloping were prompted by trained Forest Service personnel using ATVs to chase 

individual animals for short periods (<3 min). Chasing was limited to early morning 

sessions to minimize heat stress on the animals.   

Correction procedure 

We partitioned behavior observations into 5-minute (300-sec) bouts and then paired the 

observations to the activity monitor data (n = 2,390 intervals) based on the (uncorrected) 

ISTs given by the collar output. Due to the use of a PSI not divisible by 8 seconds and 

activity microprocessor drift our collar output included both IST label duplicates and 

label gaps. For label duplicates, we corrected the labeling such that the IST sequence was 

sequential. For example, when ISTs from the collar output were 12:00:00, 12:05:00, 

12:05:00, 12:15:00…, we changed the second 12:05:00 label to 12:10:00 to facilitate 

appropriate pairing. When we encountered label gaps, we paired observed behaviors 

using the ISTs given by the collar output, resulting in one 5-minute period for which no 

behaviors were paired. 

Based on previous calibration studies (Ungar et al. 2005, Löttker et al. 2009) and 

our field observations, we expected that some behaviors would have relatively low (i.e., 

bedded, bedded-ruminating, and standing) or high (i.e., trotting and galloping) amounts 

of movement associated with them and therefore have correspondingly low or high 
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AMVs, respectively. Likewise, we expected other behaviors (i.e., grazing, browsing, and 

walking) to result in moderate amounts of motion that would be reflected by their AMVs. 

However, when we paired behavior observations to collar activity data we noticed a 

number of pure intervals (those containing a single behavior) associated with low 

amounts of movement that had inexplicably high AMVs, and vice-versa. These intervals 

represented mismatched behavior:AMV pairings. The mismatches occurred consistently 

at breaks in behavior from a low or moderate motion activity to a moderate or high 

motion activity, respectively. As such, the mismatched intervals were directly adjacent to 

intervals for which their AMV would be more appropriate.   

We calculated the number of seconds the collar output time would need to be 

shifted to achieve a logical match with the behaviors of the direct observation intervals. 

Shifts from behaviors with little motion to behaviors with relatively moderate or high 

amounts of motion were easiest to identify due to an obvious contrast between their 

expected and collar-recorded AMVs and were therefore most useful when calculating 

time shift. The necessary time shift was consistent over ≥ one, 4-hour observation 

session. The exception to this was when a label gap occurred during an observation 

session. In these cases, the amount of necessary shift before the gap was consistently 

smaller than the shift necessary after the gap. This difference is consistent with our 

understanding of how gaps occur. Collar output times were shifted accordingly and the 

behavior observations re-paired to the shifted ISTs. We then completed our originally 

planned analyses.  
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We analyzed the pure intervals (n = 1,342) using linear discriminant function 

analysis (Tabachnick and Fidell 2001) with leave-one-out cross validation in R2.11.1. To 

assess the impact of timing errors, we calculated the difference in CCRs between the 

uncorrected and time-shifted datasets and compared the misclassification rates of each for 

eight individual behaviors. We also compared classification rates achieved when we 

combined associated behaviors: passive (bedding, bedding-ruminating), feeding (graze, 

browse, and walk), and running (trot and gallop). We included walk in the feeding 

category because we observed that our study animals often walked as they fed. 

RESULTS 

We shifted ISTs from the collar output between 20 - 270 seconds per observation period 

(average = 156.9 sec, SE = ± 0.66 sec). Classification accuracy (CCR) improved for six 

of eight behaviors when we applied the time-shift procedure in our modeling of pure 

interval data (Table 2.2).  
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Table 2.2 Effect of time shift procedure on correct classification rate (CCR, %) of 

individual behaviors within pure intervals of activity data (n = 1,341). Data were 

collected for five captive female Rocky Mountain elk (Cervus elaphus nelsoni) wearing 

GPS collars equipped with dual-axis activity sensors at Starkey Experimental Forest and 

Range, USFS, Starkey, OR, Summer 2011. 

 

 

 

 

 

 

 

 

 

 

 

Behavior Improvement No change Decrease 

Bedded 2.1%   

Bedded-Ruminating 3.6%   

Stand  0.0%  

Graze 2.9%   

Browse 25.9%   

Walk   4.3% 

Trot 13.2%   

Gallop 61.7%   
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Of the eight observed behaviors, six were misclassified into fewer behavior 

categories using the time-shifted model when compared to the uncorrected model while 

two were misclassified into an equal number of categories (Table 2.3).  

 

Table 2.3 Increase (+) and decrease (-) in behavior-specific misclassification (%) after 

applying the time shift procedure to pure intervals of behavior data collected from dual-

axis activity sensor GPS collars (Lotek Model 4400) worn by five captive female Rocky 

Mountain elk (Cervus elaphus nelsoni). Data were collected at Starkey Experimental 

Forest and Range, USFS, Starkey, OR, Summer 2011. Data were analyzed using linear 

discriminant function analysis and validated using leave-one-out validation. 

 

 Predicted Behaviors 

Observed 

Behaviors 

Bedded Bedded-

ruminating 

Stand Graze Browse Walk Trot Gallop 

Bedded 0.0 -1.2 0.0 -0.6 a -0.1 0.0 0.0 0.0 

Bedded-

ruminating 

-2.4 0.0 0.0 -0.5 a -0.7 0.0 0.0 0.0 

Stand +16.7 -11.6 0.0 -13.3 a +8.3 0.0 0.0 0.0 

Graze -0.4a -2.3 0.0 0.0 -0.3 0.0 0.0 0.0 

Browse 0.0 -12.9 0.0 -3.8 0.0 -9.1 a 0.0 0.0 

Walk 0.0 0.0 0.0 +6.1 -1.8 0.0 0.0 0.0 

Trot -2.8 a 0.0 0.0 -8.5 0.0 -1.7 0.0 -0.5 

Gallop 0.0 0.0 0.0 -14.3 a 0.0 -22.3 -25.0 0.0 

a No intervals misclassified as this behavior after time shift procedure. 
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Fewer intervals of every observed behavior were misclassified as bedding-

ruminating, walk, trot, and gallop. Further, of 56 possible misclassifications, 22 behavior 

categories had fewer interval misclassifications, three had more, and 36 had an equal 

number. The percent of misclassified intervals among associated behavior categories was 

approximately the same for passive and feeding after the time shift (Table 2.4). Using the 

time-shifted dataset 2% fewer running intervals were misclassified as passive and 17.8% 

fewer were misclassified as feeding. 

 

Table 2.4 Increase (+) and decrease (-) in misclassification (%) after applying the time 

shift procedure to pure intervals of behavior data where individual behaviors were 

grouped as passive (bedded, bedded-ruminating, stand), feeding (graze, browse, walk), or 

running (trot and gallop). Data were collected from dual-axis activity sensor GPS collars 

(Lotek Model 4400) worn by five captive female Rocky Mountain elk (Cervus elaphus 

nelsoni) at Starkey Experimental Forest and Range, USFS, Starkey, OR, Summer 2011. 

Data were analyzed using linear discriminant function analysis and validated using leave-

one-out validation. 

 

 Passive  Feeding  Running  

Passive 0.0 -1.0 0.0 

Feeding +0.1 0.0 0.0 

Running  -2.0 a -17.8 0.0 

a No intervals misclassified as this behavior after time shift procedure. 

 

DISCUSSION  

Differences between CCRs using the classification models constructed using the 

uncorrected data and the shifted data were relatively small (< 5%) for behaviors that are 

typically long in duration such as bedding, bedding-ruminating, and grazing. However, 
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for behaviors that are typically shorter in duration, such as trotting and galloping, the time 

shift procedure improved CCRs by 13.2% and 61.7%, respectively. The CCR for 

browsing also improved markedly using shifted data (25.9%) but this may be due to an 

artifact of our methods. Due to the limited amount of browse we were able to present to 

the animals at any given time, bouts of browsing were likely shorter in duration than 

might be typical in the wild. Only one behavior (walk) was classified more accurately 

using the uncorrected data, although the difference was small (3.3%). Standing was not 

generally correctly classified regardless of time adjustment or lack thereof.  

Correction of timing errors reduced misclassification of individual behaviors and 

increased the precision with which most individual behaviors were classified. Notable 

difference between the two models included browse, which was misclassified as bedded-

ruminating 12.9% and as walk 9.1% less often, and gallop, which was misclassified as 

graze 14.3% and as walk 22.3% less often. Due to the latter decreases in 

misclassification, far fewer intervals of the running associated behavior group were 

misclassified into such behaviorally and energetically different groups as passive and 

feeding. Study animals were often observed engaging in either passive or feeding 

behaviors immediately prior to running. As such, intervals of the former were directly 

adjacent to the latter in the collar output accounting for the decrease in misclassification 

observed using the time-shifted model. 

When deploying collars with activity monitors, users can minimize several of the 

sources of timing error we have discussed. First, although the activity monitor can 

function without the GPS unit having been activated, to minimize internal clock drift 
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users should enable the collar GPS and increase GPS fix rate (more frequent) to increase 

frequency of internal clock correction and thus decrease accumulation of drift by the 

internal clock. Furthermore, intervals between GPS fixes shorter than the PSI of the 

activity monitor should result in negligible internal clock drift. However, increasing GPS 

fix rate will decrease the battery life of the unit. Thus, users will need to balance concerns 

for internal clock drift and battery life for long-term studies.  

Users should use PSIs divisible by 8 seconds to eliminate timing errors associated 

with activation interval of the activity microprocessor. Doing so will result in fewer label 

gaps and label duplicates. Error associated with activity microprocessor activation can be 

minimized or eliminated by timing the first activation of the activity microprocessor as 

close to a PSI-dictated IST as possible. To do this, activate the collar’s activity monitor 

for a period of time and then download activity data to determine what ISTs are for a 

chosen PSI. Before deploying the collar on an animal, the activity monitor should then be 

activated as close to an IST as possible using a satellite-corrected timekeeping device 

such as a cell phone. This will minimize or eliminate the differences between PSI-

dictated ISTs and the actual start times of intervals.    

Some of the timing errors we discovered can be minimized, but others such as 

those associated with activity microprocessor drift, cannot be minimized or corrected. 

Controlling for and correcting as many of these sources as possible will maximize 

accuracy of behavior classifications. Use of the time-shift method introduced above will 

be facilitated by accurately noting the start time of changes from behaviors with little 

motion (e.g., bedded down or standing still) to behaviors with relatively moderate (e.g., 
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grazing, browsing, or walking) or high amounts of motion (e.g., running). To assure that 

such breaks occur, it may be necessary to prompt these changes in behavior, for example 

by chasing an animal that was standing still. Similarly, when calibrating collars being 

worn by free-ranging animals, note the start time of changes in behaviors associated with 

captivity or anesthetization (e.g. standing or lying down) to those associated with release 

(i.e., running). Doing so will provide clear breaks in behavior that are relatively easy to 

recognize. These signatures in the downloaded data would then allow the investigator to 

calculate the amount of necessary time-shift for pairing observed behaviors to AMVs for 

classification modeling.  

While models calibrated using time-shifted data will classify intervals of 

unknown activity from free-ranging animals, due to the timing errors associated with 

these collars, the AMVs given by the collar output will not be labeled with their true 

ISTs.  The steps described above can minimize but not eliminate the entire difference 

between true time and “data time”. As such, users need to be cautious when attempting to 

pair AMVs, and their corresponding activity, to a time-stamped event such as a particular 

GPS location. Doing so could result in pairing an incorrect behavior with a particular 

location. 

Different collar manufacturers may use different components and settings and 

changes can be expected as newer models are released. Therefore, we recommend that 

users closely question the manufacturer of their specific collars concerning the time 

keeping mechanism(s) as well as technical operating details we have identified. 

Specifically, users should learn about the likelihood of drift, the range of that drift, and 
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how or when drift correction occurs, if any. Also, users should investigate the possibility 

of a timing offset due to activity monitor activation, and ask what label gaps or duplicates 

in their collar output will be present in those cases. 

Activity monitor collars offer users the means to record animal behavior on 

temporal and spatial scales not possible using other techniques. Better understanding of 

how these collars function and how to proactively plan for data processing will allow 

scientists and managers to improve accuracy of the use of this tool for research and 

management.  
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ABSTRACT  

Ungulate behavior has been widely studied but direct observation of free-ranging animals 

over long periods of time and large geographic areas is prohibitively difficult. Improved 

technology, such as GPS collars equipped with motion-sensitive activity monitors, 

provides researchers with a means to remotely collect activity data. Variations in motion 

among behaviors necessitate calibration for each species of interest. No calibration has 

been conducted for Lotek 4400 GPS collars featuring dual-axis activity monitors for 

Rocky Mountain elk (Cervus elaphus nelsoni), mule deer (Odocoileus hemionus), or 

cattle (Bos taurus). We made detailed behavioral observations of captive animals and 

then coupled these observations with data collected simultaneously by collars worn by 

those same animals. We partitioned observed behaviors into 5-minute bouts to match the 

sampling interval of the activity monitors and corrected timing errors based on defined 

breaks in behavior. We used discriminant function models to determine the number of 

behaviors that can be accurately classified using these collars. We also constructed 

models using only pure intervals (sampling intervals during which only one behavior 

occurred) and applied them to datasets containing only mixed intervals (sampling 

intervals during which >1 behavior occurred) to determine the effect of excluding mixed 

intervals from the calibration process. Final full-dataset models accurately classified 

(correct classification rates > 70%) up to 4 behavior categories for elk, 3 for deer, and 2 

for cattle. Our results showed that classification models that use only pure intervals can 

result in misclassification rates of up to 61% for mixed intervals of some behaviors. Our 

calibration models will be made available on-line, allowing managers and researchers to 
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interpret data from free-ranging animals for use in ongoing and future studies of ungulate 

ecology and management.    

KEY WORDS  

accelerometers, activity monitor collars, behavior classification, cattle, elk, mule deer. 

INTRODUCTION 

Direct observation of animal behavior is labor intensive, time consuming, and often 

prohibitively difficult, especially for multiple free-ranging individuals over long periods 

of time and large geographic areas. Various radio-telemetry and Global Positioning 

System (GPS) collars have reduced dependence on direct observations of animals and 

provided a promising tool for monitoring animal activity and behavior. Passive and active 

animal behaviors have been inferred using variation in the signal strength of collar-

mounted Very High Frequency (VHF) radio transmitters (Roth and Meslow 1983, 

Carranza et al. 1991), the distance between successive GPS collar derived locations 

(Nelson and Sargeant 2008, Proffitt et al. 2010), collars with a single tip switch 

(McCullough and Beier 1988, Janis and Clark 1999), and collars with 2 tip switches 

(Coulombe et al. 2006, Bourgoin et al. 2008, Gottardi et al. 2010). Rest, grazing, and 

travel have also been inferred when incorporating 2 tip switches and the distance traveled 

between successive GPS locations (Ungar et al. 2005).  

Subsequent generations of collars include activity sensor devices that record 

quantified measures of animal motion in multiple spatial planes. Due to inter- and intra-

specific variation in motion (e.g., between species or among sex and age classes, 

respectively), collar manufacturers do not provide standard calibrations for these activity 
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sensors.  Therefore researchers and managers must calibrate collars for their focal 

species, a process which consists of correlating activity monitor output to observed 

(known) animal activity for each sampling interval. This process allows the user to 

determine what activity monitor values (AMVs) correspond to which observed behaviors. 

Calibration results in a model that can be used to predict (i.e., classify) the behaviors of 

novel animals based on remotely-collected collar data. 

We worked with dual-axis accelerometer collars for which few calibrations have 

been conducted. Passive and active intervals were classified for brown bears (Ursus 

arctos) with > 90% accuracy (Gervasi et al. 2006) by investigators using Vectronic 

Aerospace (Berlin, Germany) dual-axis GPS collars. Resting, feeding plus slow 

locomotion, and fast locomotion were classified for red deer with > 75% accuracy and > 

89% accuracy for roe deer using the same collars (Löttker et al. 2009, Heurich et al. 

2012). For all species, comfort movements (e.g., adjusting position) and grooming while 

resting resulted in underrepresentation of passive behaviors, while activities with similar 

amounts of head movement (e.g., standing vs. lying down or walking vs. feeding) 

required investigators to group behaviors into broader categories in order to obtain 

accurate classification (Coulombe et al. 2006, Löttker et al. 2009).   

The relationship between the duration of a sampling interval and the duration of 

natural bouts of animal behavior is important to consider when conducting calibrations. 

Classification models predict only 1 behavior category for each sampling interval. 

Because of this, calibration is simplified considerably by the use of only pure intervals 

(those containing only 1 behavior) for model construction (e.g.,Coulombe et al. 2006, 
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Löttker et al. 2009). However, because some behaviors rarely last as long as an entire 

sampling interval (e.g., running), a given sampling interval may contain > 1 behavior 

(hereafter “mixed interval”). To include mixed intervals in model calibration, each must 

first be assigned into a single category, usually based on the behavior that temporally 

dominates the interval. Although this process is labor-intensive, the exclusion of mixed 

intervals can introduce potential sampling bias and result in significant data loss. This 

issue is especially important when working with free-ranging animals using energetically 

expensive behaviors that are typically of short duration. In these circumstances 

researchers cannot know how many behaviors are included in any given sampling 

interval. No previous calibrations of dual-axis accelerometers have included mixed-

intervals. Several calibrations of 2 tip-switch collar have used mixed intervals, but the 

final models only distinguished active from passive behaviors (Adrados et al. 2003, 

Gervasi et al. 2006, Gottardi et al. 2010). Finally, no prior work has quantified the impact 

of including mixed intervals in the calibration process.  

We calibrated Lotek model 4400 GPS collars equipped with dual axis 

accelerometers for Rocky Mountain elk, mule deer, and cattle using both pure and mixed 

sampling intervals. We determined the number of behaviors that can be accurately 

classified using these collars. We also examined the consequence of excluding mixed 

intervals from the calibration process. We chose a threshold of 70% correct classification 

rate (CCR) as the minimum acceptable classification accuracy based on consultation with 

colleagues involved in studies that employ similar collars (M. Wisdom, US Forest 

Service, personal communication). Based on preliminary observations of the motions 
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exhibited by our study species and previous calibration studies, we expected that no 

single classification model would be applicable to all three species. We anticipated that 

our final models would be able to distinguish at least 3 behavior categories for elk 

(passive, feeding plus walking, and running), 4 for deer (passive, feeding plus walking, 

running, and stotting), and 4 for cattle (passive, feeding, walking, and running) with ≥ 

70% accuracy using mixed intervals.  

STUDY AREAS 

Starkey Experimental Forest and Range 

The Starkey Experimental Forest and Range (Starkey) is located 35 km southwest of La 

Grande, OR (45°12’N, 118°3’W) in the Blue Mountains. The climate is continental and 

characterized by relatively consistent mean monthly precipitation averaging 42.9 cm 

annually (Western Regional Climate Center 2010). Vegetation of the Starkey study area 

is a 10,125 ha mosaic of grassland and coniferous forest. The research facility is divided 

into several study areas, including a 265 ha Winter Area consisting of several small 

pastures and a complex of pens and handling facilities. We conducted our behavior 

observations in the relatively flat (< 20% grade) handling pens and Wing Pasture (2.6 ha) 

within the Winter Area. Douglas fir (Pseudotsuga menziesii) and ponderosa pine (Pinus 

ponderosa) dominate the canopy and bluebunch wheatgrass (Pseudoregneria spicatum), 

Sandberg bluegrass (Poa secunda) and Idaho fescue (Festuca idahoensis) are the primary 

forage species (Rowland et al. 1997).  
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Eastern Oregon Agricultural Research Center, Hall Ranch 

The Hall Ranch of Oregon State University’s Eastern Oregon Agricultural Research 

Center is located 19.3 km southeast of Union, Oregon (43° 12' N, 117° 53’ W) and is 

comprised of 809 ha of riparian meadow and upland pine forest.  Annual precipitation 

averages 34.8 cm, with the majority falling October through June (Western Regional 

Climate Center 2010). We conducted our field observation in a 109 ha pasture 

surrounding a 2.4 km section of Milk Creek, a tributary of Catherine Creek. Topography 

here ranges from flat meadow (< 10% grade) to steep woodland (< 100% grade). The 

area is divided into 2 smaller pastures that consist of riparian meadow dominated by 

Kentucky bluegrass (Poa pratensis) and elk sedge (Carex geyeri) with dense patches of 

Douglas hawthorn (Crataegus douglasii) along the creek and upland forest dominated by 

Douglas-fir and ponderosa pine. The smaller (38 ha) southern pasture (Upper) has a 

denser canopy than the larger (71 ha) northern pasture (E-Pasture) and a higher 

percentage of shrubs consisting primarily of snowberry (Symphoricarpos albus).  

Washington State University, Wild Ungulate Facility 

The Wild Ungulate Facility (WUF) is located on the campus of Washington State 

University in Pullman, WA (46° 43’ N, 117° 9’ W). Average annual precipitation is 50.5 

cm, most of it in the form of snow (112.3 cm on average) during December and January 

(Western Regional Climate Center 2010). The WUF is a 3.2 ha double-fenced treeless 

area that includes animal handling facilities, covered feeding structures, and 5 pastures. 

The largest of these pastures is 2.2 ha of rolling hills (0 to 50% grade) and consists of a 

mix of bare soil and grasses including meadow foxtail grass (Alopecurus pratensis), red 
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fescue (Festuca rubra), bulbous bluegrass (Poa bulbosa), tall wheatgrass (Agropyron 

elongatoum), and orchardgrass (Dactylis glomerata).  

METHODS AND MATERIALS 

Study animals and animal handling 

We conducted direct behavior observations of captive Rocky Mountain elk, mule deer, 

and beef cattle from Starkey, the WSU WUF, and the Hall Ranch, respectively.  We 

conducted our elk field observations following review and approval by the Starkey 

Institutional Animal Care and Use Committee (IACUC), as required by the Animal 

Welfare Act of 1985 and its regulations.  We specifically followed protocols established 

by the Starkey IACUC for conducting elk research at Starkey Experimental Forest and 

Range (92-F-0004, Wisdom et al. 1993). Our research with mule deer and cattle was 

approved by the WSU IACUC (Protocol #3705) and OSU Hall Ranch (ACUP #3799), 

respectively.  

We collared animals with Lotek 4400 GPS collars equipped with two 

accelerometers oriented perpendicular to one another: one across the shoulder axis (X-

axis) and the other parallel to the spine (Y-axis). Each accelerometer is an electronic 

device that records the difference in acceleration between 2 consecutive measurements 4 

times/second. This value is then averaged over a user-selected sampling interval as an 

indexed value between 0–255. The resulting AMV for each axis is stored with the 

associated date, temperature, and start time of the sampling interval. It is important to 

note that collars only store averaged AMVs and not individual accelerometer 

measurements. We set the collars to record activity at 5-minute sampling intervals which 
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is a commonly used interval duration. Collars weighed 500 g (deer), 1 kg (elk), and 1.2 

kg (cattle). 

We used existing animal handling facilities and established animal handling 

procedures to collar the elk at Starkey (Wisdom et al. 1993). Experienced personnel 

separated 4 elk from the rest of the herd using ATVs and then separated the animals using 

a series of gated chutes. We used a partitioned handling chute to weigh and collar the 

animals.  During the collaring procedure we visually monitored the elk for signs of stress 

(e.g., hyperventilating) and then released the animals into a recovery pen once collared. 

We collared the elk on June 9, 2011 and removed the collars July 11, 2011. We removed 

1 animal from the study at the first sign of lameness on June 22 and replaced it with 

another animal. Elk ranged in age from 18–20 years old and weighed 246–298 kg.  

At the Hall Ranch, workers used ATVs to separate 3 Black Angus and 1 Red 

Angus cow-calf pairs from the herd. Personnel then used a series of chutes to separate 

individuals and used a mobile squeeze chute to restrain and collar each cow. During the 

procedure personnel monitored the animals for signs of stress and then released them 

back into the herd. We collared the cattle on July 19, 2011 and removed the collars 

August 26, 2011. One cow dropped its collar on August 15 and was re-collared on 

August 17. Cattle ranged from 4–5 years old and averaged 590 kg.  

 We collared mule deer at the WSU facility on October 18, 2011. We immobilized 

4 adult female mule deer in conjunction with annual medical procedures. We used 

anesthetization in the form of Xylazine (0.5-1 mLs) delivered via a CO2-powered dart 

gun. We physically restrained the animals and visually monitored them for signs of 
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stress. Once medical procedures were complete and the animal collared, we intravenously 

administered a reversal agent (Tolazoline, 2-3 mLs) and released the animal. We 

monitored each deer for signs of stress or injury for 30 minutes after release. All deer 

were 9 years old and weighed 71–92 kg. We removed the collars November 17, 2011. 

During collar removal, we immobilized 1 deer via manual injection, 1 by blow dart, and 1 

by CO2-powered dart gun. We immobilized the fourth deer using a makeshift squeeze 

chute without anesthetization. We followed the same reversal and post capture 

monitoring protocol as previously described.      

Field observations 

We observed animals daily during 4-hour morning and evening sessions.  To minimize 

observer bias, observers rotated focal animals each session. We recorded the start time 

and duration of each observed behavior using Palm Tungsten E2 handheld PDAs 

(Sunnyvale, CA, USA) equipped with Palm PDA-based software (EVENT-Palm, J. C. 

Ha, University of Washington). We initially recorded behaviors into 11 classes: bedded, 

bedded-ruminating, standing, standing-ruminating, grazing, salt-lick (cattle only), 

browsing, walking, trotting, stotting (deer only), and galloping (Table 3.1). When we lost 

sight of an animal we labeled that behavior as “unknown”. Most behaviors occurred 

naturally but several had to be prompted, including browsing for elk and deer, stotting for 

deer, and trotting and galloping for all 3 species. Our observation areas lacked browse 

material in sufficient quantities to allow prolonged browsing behavior by elk and deer. To 

prompt this behavior, we collected branches of maple (Acer spp.), willow (Salix spp.), 

snowberry, and other locally available browse species and attached them to fence posts 
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and a wooden tripod at heights ranging from ground level to the animals’ maximum reach 

(2.5 m) to simulate natural conditions. Trotting, galloping, and stotting were prompted by 

chasing individual animals for short periods (< 3 min). Trained Forest Service personnel 

briefly chased elk using an ATV. We chased cows both on foot and using an ATV and 

we chased deer on foot only. Chasing sessions were limited to early morning or late 

evening hours to minimize heat stress on the animals.   

 

Table 3.1 Behavior definitions used when calibrating Lotek 4400 GPS collars equipped 

with dual-axis accelerometers for Rocky Mountain elk, mule deer, and cattle. 

Observations were made at Starkey Experimental Forest and Range, La Grande, OR 

(elk), Washington State University Wild Ungulate Facility, Pullman, WA (deer), Eastern 

Oregon Agricultural Research Center Hall Ranch, Union, OR (cattle) during summer and 

fall, 2011. 

 

Behavior a Description May contain < 10 

sec of other 

behavior b: 

Duration defining 

pure interval d 

Bedded Animal lying on ground Bedded-ruminating 

 

300 sec 

Bedded-

ruminating 

Animal is chewing cud 

while lying 

 

Bedded 300 sec 

Standing Animal standing Standing-

ruminating, graze, 

browse, walk 

 

300 sec 

Standing-

ruminating 

Standing while animal is 

chewing cud 

Standing, graze, 

browse, walk 

 

300 sec 

Salt-lick 

(cattle only) 

Cow actively licking salt 

block 

Standing, standing-

ruminating, walk 

 

≥ 240 sec 

Graze Animal feeding on 

herbaceous vegetation   

Standing, standing-

ruminating, walk 

 

 300 sec 
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Browse Animal feeding on 

woody vegetation 

Standing, standing-

ruminating, walk 

 

300 sec (elk), ≥ 180 

sec (deer), ≥ 240 sec 

(cattle) 

 

Walk Animal walking without 

feeding 

Standing, standing-

ruminating, graze, 

browse 

 

300 sec (elk), ≥ 240 

sec (deer), ≥ 180 sec 

(cattle) 

Trot Animal running at 2-beat 

gait faster than walk but 

slower than gallop 

 

≤ 5 sec of walk ≥ 40 sec (elk and 

deer), ≥ 60 sec (cattle) 

Gallop Animal running at 3- or 

4-beat gait near or at top 

speed 

≤ 5 sec of trot ≥ 40 sec (elk and 

deer), ≥ 60 sec (cattle) 

 

Stott (mule 

deer only) 

Mule deer bounding at 2-

beat gait near or at top 

speed 

 

≤ 5 sec of gallop ≥ 40 sec  

Run c     ≥ 40 sec of trot, 

gallop, and stott (elk 

and deer), ≥ 60 sec 

(cattle) 

a All behaviors may include grooming, nursing, acts of elimination, and comfort 

movements. 

b Less than 10 seconds of one behavior preceded and followed by ≥ 10 seconds (≥ 5 sec 

for trot, gallop, and stott) of the dominant behavior. 

c Run category was created during data analysis phase to reflect sampling intervals that 

contained a mixture of fast locomotion behaviors. 

d Statistical robustness for discriminant function analysis can be expected with ≥ 20 cases 

(intervals) in the smallest group (behavior category) when using ≤ 5 predictor variables. 

To include behaviors that never lasted the entire pre-set 5-minute sampling interval in our 

pure interval analysis, we determined the duration of these behaviors that, if used to 

define a “pure” interval, would result in at least 20 pure intervals of that behavior. 

 

Data processing 

We downloaded collar data and behavioral observations into a spreadsheet in order to 

address behavior recording issues, timing errors, and to pair collar data with behavior 

observations. The behavior classes we initially used (Table 3.1) represented the most 
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detailed categorization of potential activities we expected to observe. Some behaviors, 

such as grazing, inherently contained brief bouts of related activity, such as standing and 

walking. When conducting our direct behavior observations, we recorded changes in 

activity as soon as they occurred rather than risk underestimating the duration of a 

behavior. This sometimes resulted in brief bouts of 1 activity (≤ 5 sec for running 

activities, ≤ 10 sec for non-running activities) contained within a bout of another behavior 

of greater duration (≥ 5 sec for stotting, ≥ 10 sec for all other activities, Table 3.1). In 

these instances, we coded those minor breaks to match the longer related behavior in 

which they occurred.  

To begin the model-building process it was necessary to partition the direct 

observation data into 5-minute intervals to pair with the corresponding collar data for the 

simultaneous interval. To do so accurately, it was necessary to ensure that the interval 

start times matched across datasets. We learned that the mechanics of the collar 

timekeeping system cause timing errors that can result in temporally mismatched collar 

data and behavior observations that decrease calibration and classification accuracy. We 

created a time shift procedure to align interval start times of the direct observations and 

the collar data (Chapter 1). We then used the corrected interval start times to align collar 

activity data with our direct behavior observations in preparation for model construction.  

Several behaviors never lasted the entire pre-set 5-minute sampling interval. 

Statistical robustness for discriminant function analysis can be expected with ≥ 20 cases 

(intervals) in the smallest group (behavior category) when using ≤ 5 predictor variables 

(Tabachnick and Fidell 2001). To include these behaviors in our pure interval analysis, 
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we determined the duration of these behaviors that, if used to define a “pure” interval, 

would result in at least 20 pure intervals of that behavior (see Duration defining pure 

interval, Table 3.1).  We discarded any intervals that contained “unknown” in a great 

enough duration that those unknown seconds could have been pivotal in the 

categorization of that interval for analysis. We also added an additional behavior class, 

“run”, for intervals that contained a mixture of running behaviors (i.e., trot, gallop, and 

stott) but in which no 1 of these behaviors was dominant (Table 3.1).    

Model building 

We calibrated 2 complete sets of classification models for each species. One set of 

models was calibrated on pure interval datasets and the other was calibrated on full 

dataset (both pure and mixed intervals). 

Pure interval models – Our behavior observations yielded sufficient samples of 

pure intervals for elk (n = 1,342), mule deer (n = 1,227), and cattle (n = 1,182). We 

calibrated discriminant function models (Tabachnick and Fidell 2001) using pure interval 

datasets to classify the behavior of pure intervals. We based prior probabilities of 

behavior category occurrences on activity pattern and foraging preference studies 

conducted on each species (elk: Craighead et al. 1973, Green and Bear 1990, Wichrowski 

et al 2005; cow: Ungar et al 2005, Walburger et al 2007, MacKay et al 2012, Aharoni et 

al 2009, Kilgour 2012; deer: Kuzyk and Hudson 2007, Kufelk et al 1988, Kie et al 1991; 

3 species: Findholt et al. 2005). For each species we compared model performance 

(CCRs) for 4 model structures: linear discriminant function (LDA) and quadratic 

discriminant function (QDA) using predictor variables consisting of untransformed (untr) 
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and log-transformed (log) X, Y, and X*Y axis AMVs. We used leave-one-out cross 

validation to estimate the CCRs that one would expect if models were applied to novel 

pure interval data. We considered models acceptable if the CCRs for all behaviors were ≥ 

70%. After reviewing the differing assumptions for LDA and QDA models, we chose the 

best model based on a “best-predictions” strategy, as evaluated by CCR.  From the 

acceptable models we determined the best model based on the highest total classification 

rate (the percentage of all intervals correctly classified) for all intervals, the highest 

average behavior classification rate (the average classification rate among behavior), and 

highest minimum (lowest classification rate among behaviors) behavior classification 

rate. More consideration was given to the latter 2 parameters because total classification 

rates were greatly influenced by the number of intervals within each behavior category. 

For example, our datasets were dominated by passive and grazing intervals so if the 

CCRs for those behaviors were high, the total classification rate would also be high even 

if CCRs for other behaviors (e.g. browsing and running) were low. 

Our initial models yielded CCRs < 70% for many behaviors for all 3 species. 

Therefore, we grouped 4 behaviors (bedding, bedding-ruminating, standing, and 

standing-ruminating) together as “passive” for all subsequent analyses. We also grouped 

trotting and galloping (and stotting for deer) together as “run”. Even after these 

categorizations, several cattle behaviors continued to yield CCRs < 70%, forcing us to 

attempt other behavior groupings. In our final classification of pure intervals for cattle, 

we grouped graze, browse, salt lick, walk, and run as “active”.   
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Full-dataset models – We used the behavior categories derived from our analyses 

of pure intervals to categorize the full dataset (including both pure and mixed intervals, n 

= 2,391, 3,454, and 2,382 for elk, mule deer, and cattle, respectively), based on the 

predominant behavior (greatest duration) within an interval. The exceptions were any 

intervals containing ≥ 40 seconds of run (deer and elk) or ≥ 60 seconds of run (cattle) 

which we categorized as run or active, respectively. Using the categorized full datasets, 

we calibrated the  4 discriminant function model structures and grouped behaviors based 

on cross-validated CCRs using the same criteria as those used for the pure models. We 

then identified the final, best full-dataset model for each species.  

Subsequent analysis 

To examine the consequence of excluding mixed intervals during calibration of 

classification models, we compared cross-validated CCRs from the pure interval models 

to those obtained by using those models to predict behaviors for the mixed interval 

datasets (containing only mixed intervals) for each species. The difference in CCRs for 

each behavior represents additional misclassification resulting from the use of pure 

interval models to classify mixed intervals, such as those inherently included in datasets 

from free ranging animals.  

To evaluate the ability of our models to correctly classify behaviors of novel 

animals, we first calibrated the final full-dataset models using data from 3 animals (4 for 

elk) and then applied this model to data from the remaining animal. We repeated this 

process for each animal and compared the average CCR for the group (4 for elk, 3 for 

deer and cattle) vs. the average CCR for individuals. We also examined classification 
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variability by comparing the standard deviation of the CCRs for the group vs. the 

individual for each behavior.  

RESULTS  

Rocky Mountain Elk 

Our best, final model structure for the full dataset (QDAuntr) had cross-validated CCRs ≥ 

70% for up to 4 categories (passive, graze plus walk, browse, and run, Table 3.2). The 

use of only pure intervals for calibration resulted in a model (LDAuntr) that allowed us to 

classify our pure interval dataset into 5 categories (passive, graze, browse, walk, and run). 

Application of this model to classify the mixed (only) interval dataset resulted in 

additional misclassification rates of up to 24.5% for individual behaviors (Table 3.3). 

Average CCRs for behaviors of individual elk ranged from 6.7% lower to 2.4% higher 

when compared to the 4-animal calibration dataset (Figure 3.1). Variability of CCRs (± 1 

standard deviation) ranged from 1.9 to 9.2 percentage points higher for individual elk 

behaviors than for those of the group.  

Mule Deer  

Our best, final model structure for the full dataset (LDAuntr) had cross-validated CCRs ≥ 

70% for up to 3 categories (passive, feed plus walk, and run, Table 3.2). The use of only 

pure intervals for calibration resulted in a model (QDAlog) that classified behaviors into 5 

categories (passive, graze, browse, walk, and run). Application of this model to 

classification of the mixed (only) interval dataset resulted in additional misclassification 

rates of up to 63.1% for some behaviors (Table 3.3). Average CCRs for behaviors of 

individuals ranged from 5.2% lower to 2.4% higher when compared to the 3-animal 
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calibration dataset (Figure 3.1). Variability of CCRs (standard deviation) ranged from 3.3 

to 19.7 percentage points higher for individual deer behaviors than for those of the group. 

Cattle  

Our best, final model structure for the full dataset (LDAuntr) had cross-validated CCRs ≥ 

70% for 2 categories (passive and active, Table 3.2). The use of only pure intervals for 

calibration resulted in a model (QDAuntr) that allowed us to classify behaviors into the 

same 2 categories (passive and active). Use of this model to classify our mixed interval 

dataset resulted in additional misclassification rates of up to 24.3% for individual 

behaviors (Table 3.3). Average CCRs for behaviors of individual cattle ranged from 0.3% 

lower to 0.3% higher when compared to the 3-animal calibration dataset (Figure 3.1). 

Variability of CCRs (standard deviation) ranged from 0.5 to 2.3 percentage points higher 

for individual cow behaviors than for those of the group. 
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Figure 3.1  

 
Means and standard deviations (SD) of correct classification rates (CCRs, %) for behaviors classified using 1 of 4 models 

structures: linear (LDA) or quadratic (QDA) discriminant functions on untransformed (untr) or log-transformed (log) activity 

monitor values. The best final model was calibrated to all but one animal (Group) and applied to the remaining novel animal 

(Individual). We calibrated classification models by combining directly observed behaviors of Rocky Mountain elk (QDAuntr, 

n=5), mule deer (LDAlog, n=4) and cattle (LDAuntr, n=4) with simultaneously-collected data from activity monitors housed in 

Lotek 4400 GPS collars worn by captive female animals. Observations were made at Starkey Experimental Forest and Range, 

La Grande, OR (elk), Washington State University Wild Ungulate Facility, Pullman, WA (deer), Eastern Oregon Agricultural 

Research Center Hall Ranch, Union, OR (cattle) during summer and fall, 2011. 
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Table 3.2 Correct Classification Rates (CCRs, %) for behaviors classified using final 

models calibrated with full datasets collected for Rocky Mountain elk, mule deer, and 

cattle.  We estimated CCRs using leave-one-out cross validation for our final model 

structure, either linear (LDA) or quadratic (QDA) discriminant functions on 

untransformed (untr) or log-transformed (log) activity monitor values collected using Lotek 

4400 GPS collars worn by captive female animals. Observations were made at Starkey 

Experimental Forest and Range, La Grande, OR (elk), Washington State University Wild 

Ungulate Facility, Pullman, WA (deer), Eastern Oregon Agricultural Research Center 

Hall Ranch, Union, OR (cattle) during summer and fall, 2011.  
 

  Behavior category   

Species Final 

model 

structure 

Passive Graze- 

Walk 

Feed- 

Walk 

Browse Run Active Total Average 

Elk QDAuntr 92.0 76.3  70.0 91.2  85.5 82.4 

Deer LDAlog 82.8  76.9  82.6  81.6 80.8 

Cattle LDAuntr 92.4     96.4 94.8 94.4 
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Table 3.3 Correct Classification Rates (CCRs, %) for behaviors classified using models 

calibrated with only pure intervals (pure) and then applied to datasets containing only 

mixed intervals (mixed) for Rocky Mountain elk, mule deer, and cattle.  We estimated 

CCRs for pure using leave-one-out cross validation for our final model structure, either 

linear or quadratic discriminant functions on untransformed or log-transformed activity 

monitor values collected using Lotek 4400 GPS collars worn by captive female animals. 

Observations were made at Starkey Experimental Forest and Range, La Grande, OR 

(elk), Washington State University Wild Ungulate Facility, Pullman, WA (deer), and 

Eastern Oregon Agricultural Research Center Hall Ranch, Union, OR (cattle) during 

summer and fall, 2011. 

 

  Behavior categories   

Species Dataset Passive Graze Browse Walk Run Active Total Average 

Elk Pure 96.4 89.5 94.7 70.6 80.0  94.2 86.3 

 Mixed 77.1 73.8 79.5 46.1 77.2  72.0 70.7 

Deer Pure 96.8 71.2 83.7 85.7 73.0  92.4 82.1 

 Mixed 33.7 40.2 94.3 50.7 74.4  38.6 58.7 

Cattle Pure 98.9     99.0 99.0 99.0 

 Mixed 97.1     74.7 90.9 85.9 

 

DISCUSSION   

We were able to accurately classify (≥ 70% CCRs) up to 4 behavior categories for Rocky 

Mountain elk, 3 for mule deer, and 2 for cattle. Similar to previous efforts to classify 

remotely-sensed behavior data, we were unable to discriminate among behaviors 

associated with little to no motion such as bedding, standing, or ruminating (Ungar et al. 

2005, Löttker et al. 2009). Likewise, we were unable to distinguish between feeding and 

walking activities in mule deer and cattle, likely because these behaviors are frequently 



53 

 

 

5
3

 

interspersed. We succeeded in distinguishing elk browsing, likely because the elk we 

observed often browsed by biting the base of a stem or twig and then stripping the leaves 

along its length in one motion. The cattle and deer, in contrast, bit off discrete mouthfuls 

of leaves, a motion which produced a data signature (AMVs) similar to that produced by 

grazing. While the elk and deer browsed most often on willow, maple, and cottonwood 

branches we attached to a wooden tripod, the cattle browsed exclusively on naturally 

occurring snowberry. The potential effect of browse source on calibration is unclear. 

Intervals that included ≥ 40 seconds of running behaviors resulted in AMVs consistently 

higher than those for other behaviors in deer and elk, allowing for classification rates 

exceeding 80%. Running by cattle, on the other hand, resulted in relatively low AMVs 

which overlapped significantly with those associated with feeding and walking, despite 

the higher proportion of running within each interval (≥ 60 sec). We suspect this was 

because cattle trot with relatively level backs and little neck motion compared with the 

vigorous neck motions they employ while feeding. It should be noted that although we 

categorized observed behaviors into a relatively broad spectrum, some rarely occurring 

behaviors (e.g. parturition or combat) were not observed and will be misclassified by our 

models. 

Few calibration studies have successfully discriminated among active behaviors. 

Running and feeding in cattle have been classified using models that incorporate distance 

traveled during an interval (Ungar et al. 2005). However, these analyses only involved 

pure intervals, so classification accuracy for a full (including both pure and mixed 

intervals) dataset is unknown. Similarly, the only previous effort to calibrate dual-axis 
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accelerometers succeeded in discriminating among active behaviors (Löttker et al. 2009), 

but also used only pure intervals. Further, previous studies incorporating mixed intervals 

of any kind were only successful in distinguishing between passive and active behavior 

categories (Gervasi et al. 2006, Gottardi et al. 2010). Our results show that models 

calibrated with datasets that include mixed intervals can accurately distinguish among 

active behaviors for some species. 

Our work also demonstrates that the use of pure-interval models may be 

inappropriate when classifying behavior for free-ranging ungulates. We discovered that 

use of models built solely with pure intervals can result in increased misclassifications. 

Pure-interval models applied to mixed (only) intervals resulted in CCRs up to 24.5%, 

63.1%, and 24.3%, lower than cross-validated pure-interval CCRs for elk, mule deer, and 

cattle, respectively. The impact of this difference when working with full datasets (those 

that include pure and mixed intervals) such as those from free-ranging animals, would 

depend on the proportion of mixed intervals within a dataset. For example, using a pure 

interval model to classify our full mule deer dataset (64.5% of the intervals were mixed) 

would have decreased total classification 35.8% and resulted in actual CCRs 39.8%, 

27.3%, and 21.8% lower for passive, graze, and walk behavior categories, respectively. 

Unknown to the user, these 3 behaviors would actually classify below our 70% 

acceptable CCR threshold. A user relying on pure (only) interval models could be 

classifying behaviors into an inflated number of acceptable categories and with an 

appreciably inflated estimate of accuracy. Further, both the inflated number of categories 

and decreased classification are unknown to a user basing their classification accuracy on 
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cross-validated pure interval CCRs. These unknown effects could strongly bias results 

when behavior classifications are used to explore habitat utilization or as part of energy-

budget models.  

We note that topography or conditions that affect animal motion, such as steep 

slopes or deep snow, and which differ significantly from those in our study, could affect 

classification. Also, the age and sex of an animal can affect the amount of movement 

associated with different behaviors and therefore affect AMVs (Coulombe et al. 2006, 

Gervasi et al. 2006). For example, Löttker et al. (2009) observed considerably lower 

AMVs for male red deer than for females for the same behavior categories. Additionally, 

age and sex specific differences in foraging ecology, time budgeting, alertness behaviors, 

etc. could result in differences in classification. Therefore, our classification models 

might be less accurate for juveniles or males. Additionally, despite only observing mature 

females for each species, we did find relatively high amounts of variability in 

classification rates for novel animals for some behaviors. That variability did not 

correspond to animal weight but might be due to some other variable we did not measure 

such as neck or leg length. Future calibrations that are based on greater sample sizes 

might allow investigators to identify and model the effect of such animal-specific factors 

might improve classification. The variability we observed was likely also influenced by 

the small number of individuals available for our model-building sample. However, given 

the relatively small amount of classification variability found for novel cattle, choosing 

models with fewer behavior categories (e.g. 3 categories for elk) might result in less 

classification variation. Researchers and managers will need to decide whether greater 



56 

 

 

5
6

 

precision or a greater number of behaviors is more appropriate for their study. The 

classification tools that resulted from this study allow for that flexibility.  

We constructed tools for users to classify dual-axis accelerometer data from free 

ranging elk, deer, and cattle. We offer the final full-dataset models for the highest number 

of accurately classified behavior categories (4 for elk, 3 for deer, and 2 for cattle) and 

those full-dataset models that classify fewer behavior categories (2-3 for elk and 2 for 

deer) with greater accuracy. The classification tool consists of an R workspace containing 

these models and an R script with instructions for how to format and upload data and then 

classify it using the models. This classification tool is available at 

http://fwl.oregonstate.edu/About%20Us/personnel/faculty/sanchez.html. 

MANAGEMENT IMPLICATIONS 

Activity monitors in GPS collars that feature dual-axis accelerometers allow managers 

and researchers to remotely sense, store, and download animal behavior data while 

collecting fine-scale spatial locations. The combination of these data types can allow the 

study of activity patterns, foraging behavior, and fine-scale habitat use. Once calibrated, 

these data can be used to calculate energy budgets, thus allowing researchers to explore 

animal responses to management actions, for example. Researchers and managers must 

weight demands for high classification accuracy (CCRs) against maximization of the 

number of individual behaviors a model can discern. Using sampling intervals of 

different durations might help address some of these issues (Chapter 4). Given the timing 

errors associated with these collars (Chapter 1), users must also be cautious when 

associating behaviors from specific sampling intervals with point-in-time locations 
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recorded by the collar GPS. Future calibration efforts should incorporate mixed intervals 

in their model building to avoid the high misclassification rates resulting from 

dependence on pure intervals.   
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ABSTRACT  

Dual-axis accelerometer GPS collars can be used to remotely record the activity level and 

behavior of free-ranging animals but inter- and intraspecific variations in motion among 

behaviors necessitate calibration for each species of interest. The duration of each 

behavior relative to sampling interval length could play an important role in calibration 

but to date no work had been done to determine optimal interval duration to use with 

these sensors. Similarly, no calibration had been conducted for Lotek 4500 GPS collars 

featuring accelerometer activity monitors for Rocky Mountain elk (Cervus elaphus 

nelsoni). We examined discriminant function model structures for 3 sampling interval 

durations (5-min, 152-sec, and 64-sec) to determine the number of behaviors that can be 

classified and to what level of accuracy for novel animals with and without access to 

supplemental feed. Models constructed using 5-min intervals performed best for animals 

with and without access to supplemental feed, accurately classifying (≥ 70% 

classification rate) 5 and 4 behavior categories, respectively.  

 

KEY WORDS accelerometers, activity monitors collars, behavior classification, elk, 

hay, sampling interval. 
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INTRODUCTION 

Collar-mounted activity monitors are an important tool for remotely collecting data on 

the behavior of far-roaming species. Accelerometers are electronic devices that record 

animal motion via changes in acceleration. Integration of accelerometers into Global 

Positioning System (GPS) collars offers researchers the opportunity to sample behavior 

and locations at fine temporal and geographic scales. Dual-axis accelerometer collars 

have been used to accurately classify passive and active behaviors for brown bears 

(Ursus arctos) and cattle (Gervasi et al. 2006, Chapter 2), resting, feeding plus slow 

locomotion, and fast locomotion for red deer (Cervus elaphus), roe deer (Capreolus 

capreolus), and mule deer (Odocoileus hemionus, Löttker et al. 2009, Heurich et al. 2012, 

Chapter 2), and resting, grazing plus walking, browsing, and running for Rocky Mountain 

elk (Cervus elaphus nelsoni, Chapter 2). 

Accelerometer collars require calibration for each species of interest to determine 

what behaviors correspond to what activity monitor values (AMVs). The calibration 

process consists of correlating observed animal behaviors to AMVs for each sampling 

interval and results in a mathematical model that can be used to predict (i.e., classify) the 

activity level or behavior of novel animals based on remotely-collected collar data. 

Classification models are validated by calibrating with some portion of a dataset and then 

determining the percentage of correctly classified sampling intervals for each behavior 

category when that model is applied to the remainder of the dataset.   

Construction of classification models is simplified by the exclusion of mixed 

intervals (sampling intervals containing > 1 behavior) from model calibration and 
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validation. Mixed intervals are typically categorized according to the most abundant 

behavior within an interval. Because they contain multiple behaviors with different data 

signatures, mixed intervals tend to exhibit more variable AMVs than pure intervals (those 

containing only 1 behavior). Thus, models constructed and validated using only pure 

interval datasets (i.e., pure-interval models) classify a greater number of behaviors more 

accurately than models constructed and validated using both pure and mixed intervals 

(i.e., full-dataset models). However, application of pure-interval models to mixed 

intervals can result in additional misclassification rates of ≤ 61% for some behaviors 

(Chapter 1). Because datasets from free-ranging animals inherently include mixed 

intervals and given that there is no way to distinguish pure from mixed intervals and 

therefore no way to exclude the latter, reliance on pure-interval models to classify 

behaviors of free-ranging animals should be avoided. It is possible, however, that shorter 

sampling intervals could better capture behaviors of shorter duration and result in mixed 

interval datasets with less variable AMVs that can be used to construct full-dataset 

models that classify more behaviors more accurately. 

Few researchers have explored the effect of sampling interval duration on 

accuracy of classification models. Passive behavior of red deer were classified most 

accurately using 5-min intervals, in comparison to 10- and 15-min intervals, when 

investigators used collars that incorporated 2 tip-switches (Adrados et al. 2003). 

However, the active behavior category was classified most accurately over 10-min 

intervals, which also had the highest total classification rate. At this writing, no sampling 

interval comparisons have been conducted for accelerometer-based activity monitors.  
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We calibrated Lotek model 4500 GPS collars (Newmarket, Ontario, Canada) for Rocky 

Mountain elk using 5-min, 152-sec, and 64-sec sampling intervals. We compared the 

number of behaviors that can be classified using these sampling intervals and with what 

accuracy. Consultation with colleagues using similar collars led us to choose a threshold 

of a 70% correct classification rate as the minimum acceptable rate of classification (M. 

Wisdom, US Forest Service, personal communication). Based on our previous work 

(Chapter 1) we expected that shorter sampling intervals would allow us to classify a 

greater number of behaviors with higher accuracy. We expected the greatest 

improvement in classification for behaviors that tend to be closely interspersed, such as 

walking and grazing, or of short duration, such as running. Our exploration of the effect 

of varying sampling interval lengths on classification accuracy will improve application 

of these tools in studies of animal behavior.  

In addition to exploring how to best classify natural behaviors, we felt it important 

to consider one behavior of anthropogenic origin. Supplying elk with supplemental feed 

(usually hay) to boost overwintering survival has been a common management practice in 

several western states for nearly a century (Murie 1944, Daniels 1953). However, we 

found no previous work considering potential detectability of hay-consumption using 

tools such as activity monitors. We explored whether hay feeding would affect 

classification by comparing the performance of models constructed using datasets that 

both included and excluded eating hay. 
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STUDY AREA 

Starkey Experimental Forest and Range (Starkey) is located in the Blue Mountains 35 km 

southwest of La Grande, OR (45°12’N, 118°3’W). It consists of a 10,125 ha divided into 

several study areas including a 265-ha Winter Area consisting of several small pastures 

and a complex of pens and handling facilities. We conducted our behavior observations 

in Wing pasture and the handling pens within the Winter Area. Canopy in the pasture was 

dominated pine and forage species consisted of upland grasses (Rowland et al. 1997).  

METHODS AND MATERIALS 

Study animals and animal handling 

We conducted direct observations of captive Rocky Mountain elk behavior following 

review and approval by the Starkey Institutional Animal Care and Use Committee 

(IACUC), as required by the Animal Welfare Act of 1985 and its regulations.  We 

specifically followed protocols established by the Starkey IACUC for conducting elk 

research at Starkey Experimental Forest and Range (92-F-0004, Wisdom et al. 1993). 

Experienced personnel used ATVs and gated chutes to separate 4 female elk from the rest 

of the herd. We collared, recorded body weight, and visually monitored each elk for signs 

of stress (e.g., hyperventilating) before releasing the animals into a recovery pen. Elk 

ranged in age from 18–21 years old and weighed 215–307 kg. 

We collared the elk with Lotek 4500 GPS collars (1 kg) equipped with 3 

accelerometers oriented perpendicular to one another to capture motion along 3 body 

planes: one across the animal’s shoulders (X-axis), one parallel to the animal’s spine (Y-

axis), and one oriented vertically (Z-axis). Accelerometers record the difference in 
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acceleration between 2 consecutive measurements 4 times/sec. These values are averaged 

over a user-selected sampling interval as an indexed value ranging 0–255 and are stored 

with the associated date, temperature, and start time of the sampling interval. Collars 

store AMVs averaged over the entire sampling interval and not individual accelerometer 

measurements. This collar model allows users to choose among 7 preset modes that 

record different parameters of motion over a variety of sampling intervals. We used 

modes 1, 2, and 3 which record acceleration along the X and Y axes using 5-min, 152-

sec, and 64-sec sampling intervals, respectively. To offer users the best comparison 

possible to similar collar models that incorporate 2 accelerometers, we did not use collar 

modes that incorporated the Z axis. Accelerometer collar technical details can be found in 

our previous publications (Chapter 2 and Chapter 3). We collected data during 3, 2–4 

week periods. We collected data using 152-sec intervals September 6-22, 2011, using 64-

sec intervals September 22- October 13, 2011, and using 5-min intervals April 23- May 

16, 2013. 

Field observations and data processing 

Direct field observations were conducted in accordance with Chapter 3. We used Palm 

Tungsten E2 handheld PDAs (Sunnyvale, CA, USA) equipped with Palm PDA-based 

software (EVENT-Palm, J. C. Ha, University of Washington) to record the start time and 

duration of each observed behavior. We initially recorded behaviors into 10 classes: 

bedded, bedded-ruminating, standing, standing-ruminating, grazing, eating hay, 

browsing, walking, trotting, and galloping. When we lost sight of an animal we labeled 

that time as “unknown”. Most behaviors occurred naturally but several had to be 
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prompted. We prompted browsing by providing locally gathered woody species attached 

to fencepost and a wooden tripod. We prompted eating hay by scattering hay bales on the 

ground. Trotting and galloping were prompted by trained ATV-mounted Forest Service 

personnel chasing individual animals for short periods for the 64- and 152-sec intervals. 

Due to the age and condition of our study animals, we determined that prompting trotting 

and galloping for 5-minute sampling intervals was not possible. We completed data 

processing in order to format data, correct timing errors, and pair observations to activity 

monitor data as described in Chapter 3. 

Model building 

Our direct observations of elk behavior yielded 17,359, 7,127, and 2,993 intervals for 64-

sec, 152-sec, and 5-min sampling intervals, respectively. We categorized all intervals 

based on the predominant behavior (greatest duration) within an interval. The exceptions 

were any intervals containing ≥ 40 seconds of running behaviors (trotting or galloping) 

which we classified as “run”. Several 64-sec mixed intervals for which running was 

temporally the dominant behavior (≥ 16 seconds) contained < 40 seconds of running 

behaviors. We categorized these intervals as “short runs”.  To include the same behavior 

categories in model calibration, any intervals for the 152-sec and 5-min sampling 

intervals that contained 16-39 seconds of running were also initially categorized as “short 

runs”.  During our direct observations we had noted that grazing and eating hay appeared 

to be associated with different head motions. To address the question of optimal sampling 

interval for herds with and without access to supplemental feed (i.e., hay), we compared 
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classificaiton models using intervals that included “eating hay” as well as models that 

excluded those intervals.  

We completed model construction as described in Chapter 3. We used full 

datasets (both pure and mixed intervals) to construct classification models for each 

interval duration and compared performance based on the percentage of correctly 

classified intervals (i.e., the Correct Classification Rate, CCR). For each interval type we 

compared the performance of 4 model structures: linear discriminant function (LDA) and 

quadratic discriminant function (QDA) using both untransformed (untr) and log-

transformed (log) X-axis, Y-axis, and X*Y AMVs. We estimated CCRs that would be 

expected if classification models were applied to novel datasets using leave-one-out cross 

validation. We identified the best model based on a “best-predictions” strategy, as 

evaluated by CCR, and only considered models acceptable if the CCRs for all behaviors 

were ≥ 70%.  We chose the best model from the acceptable models based on the highest 

total classification rate (the percentage of all intervals correctly classified), the highest 

average behavior classification rate (the average classification rate among behaviors), and 

highest minimum (lowest classification rate among behaviors) behavior classification 

rate. Because total classification rates were greatly influenced by the number of intervals 

within each behavior category, highest average and minimum CCRs were given greater 

consideration in this process. For example, our datasets were dominated by passive and 

grazing intervals so high CCRs for those behaviors corresponded to high total 

classification rates regardless of CCRs of the other behaviors (e.g. browsing and 

running). 
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Subsequent analysis 

To evaluate the ability of our models to correctly classify behaviors of novel animals, we 

calibrated the best model structure for each interval duration using data from 3 animals 

and then applied this model to data for the remaining animal. We repeated this process 

for each animal and compared the average CCRs for the group (3 elk) vs. the average 

CCRs for individual elk. We also compared the standard deviation of CCRs for the group 

vs. the individual for each behavior to compare classification variability.   

RESULTS  

Rocky Mountain elk behavior sampled over 64-sec intervals had cross-validated CCRs ≥ 

70% for the final, best model structure (LDAuntr) for up to 4 categories (passive, feed plus 

walk, short run, and run) using datasets that excluded (Table 4.1) and included (Table 

4.2) eating hay. The bedded behavior category was expanded to include bedded and 

bedded-ruminating because the two behaviors were indistinguishable for all interval 

durations and datasets. The “passive” behavior category included bedded and standing. 

No intervals of standing-ruminating were observed for any interval duration.  

 Neither the 152-sec nor the 5-min models were able to classify “short run” at an 

acceptable CCR, therefore we eliminated the category from further analyses of those 

datasets. The final model structure for 152-sec intervals (QDAlog) classified up to 3 

behaviors (passive, feed plus walk, and run) for both hay and no-hay datasets. Final 

model structures for 5-min interval for datasets excluding and including hay (QDAunt and 

LDAlog, respectively) classified up to 4 (bedded, graze plus walk plus stand, browse, and 
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run) and 5 behaviors (bedded, hay, graze plus walk plus stand, browse, and run), 

respectively.  

For the hay-free datasets, average CCRs for individual elk behaviors differed 

from 3-animal group averages by -18.8% to +5.2% for 64-sec intervals, -1.3% to 0.0 for 

152-sec intervals, and -9.1% to +2.7% for 5-min intervals (Figure 4.1). Variability of 

CCRs (±1 standard deviation) ranged from -0.8 to +42.5 percentage points (pps), 0.0 to 

+4.4 pps, and -4.4 pps to +15.0 pps for individual elk behaviors than for those of the 

group for 64-sec, 152-sec, and 5-min intervals, respectively. For the datasets that 

included hay, average CCRs for individual elk behaviors differed from 3 animal group 

averages by -18.8%  to +8.0% for 64-sec intervals, -1.4% to 0.0 for 152-sec intervals, and 

-8.5% to +3.3% for 5-min intervals (Figure 4.2). Variability of CCRs (±1 standard 

deviation) ranged from +1.1 to +42.5 pps, 0.0 to +5.2 pps, and +1.8 to +15.5 pps for 

individual elk behaviors than for those of the group for 64-sec, 152-sec, and 5-min 

intervals, respectively.  
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Table 4.1 Correct Classification Rates (CCRs, %) of behaviors classified over 3 different sampling intervals. Models were 

calibrated with datasets that excluded supplemental hay for Rocky Mountain elk.  We estimated CCRs using leave-one-out 

cross validation for our final model structure, either linear (LDA) or quadratic (QDA) discriminant functions on untransformed 

(untr) or log-transformed (log) activity monitor values collected using Lotek 4500 GPS collars worn by captive female animals. 

Observations were made at Starkey Experimental Forest and Range, La Grande, OR, during summer and fall, 2011 and spring, 

2013. 

 

  Behavior category   

Sampling 

interval 

Final model 

structure 

Bedded Passive Graze/Walk/ 

Stand 

Feed/ 

Walk 

Browse Short 

run 

Run Total Average 

64-sec. LDAuntr  89.5  88.4  84.9 71.4 89.2 83.6 

152-sec. QDAlog  87.0  96.7   100.0 90.4 94.6 

5-min. QDAuntr 93.9  83.2  81.0  81.0 87.7 84.9 
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Table 4.2 Correct Classification Rates (CCRs, %) of behaviors classified over 3 different sampling intervals. Models were 

calibrated with datasets that included supplemental hay for Rocky Mountain elk.  We estimated CCRs using leave-one-out 

cross validation for our final model structure, either linear (LDA) or quadratic (QDA) discriminant functions on untransformed 

(untr) or log-transformed (log) activity monitor values collected using Lotek 4500 GPS collars worn by captive female animals. 

Observations were made at Starkey Experimental Forest and Range, La Grande, OR, during summer and fall, 2011 and spring, 

2013. 

 

  Behavior category   

Sampling 

interval 

Final model 

structure 

Bedded Passive Hay Graze/Walk/ 

Stand 

Feed/ 

Walk 

Browse Short 

run 

Run Total Average 

64-sec. LDAuntr  86.4   87.1  84.9 71.4 86.7 82.5 

152-sec. QDAlog  89.9   86.1   100.0 88.4 92.0 

5-min. LDAlog 91.3  75.0 83.2  83.1  81.0 86.1 82.7 
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Figure 4.1  

 
Means and standard deviations (SD) of correct classification rates (CCRs, %) for behaviors classified using 1 of 4 models 

structures: linear (LDA) or quadratic (QDA) discriminant functions on untransformed (untr) or log-transformed (log) activity 

monitor values. The best final model was calibrated to all but one animal (Group) and applied to the remaining novel animal 

(Individual) using datasets that excluded supplemental feeding. We calibrated classification models by combining directly 

observed behaviors of Rocky Mountain elk (n=4) with simultaneously-collected data from activity monitors housed in Lotek 

4500 GPS collars worn by captive female animals and set on 64-sec (LDAuntr), 152-sec (QDAlog), and 5-min (QDAuntr) 

sampling intervals. Observations were made at Starkey Experimental Forest and Range, La Grande, OR during summer and 

fall, 2011 and spring, 2013.  
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Figure 4.2  

 
Means and standard deviations (SD) of correct classification rates (CCRs, %) for behaviors classified using 1 of 4 models 

structures: linear (LDA) or quadratic (QDA) discriminant functions on untransformed (untr) or log-transformed (log) activity 

monitor values. The best final model was calibrated to all but one animal (Group) and applied to the remaining novel animal 

(Individual) using datasets that included supplemental feeding. We calibrated classification models by combining directly 

observed behaviors of Rocky Mountain elk (n=4) with simultaneously-collected data from activity monitors housed in Lotek 

4500 GPS collars worn by captive female animals and set on 64-sec (LDAuntr), 152-sec (QDAlog), and 5-min (LDAlog) 

sampling intervals. Observations were made at Starkey Experimental Forest and Range, La Grande, OR during summer and 

fall, 2011 and spring, 2013.  
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DISCUSSION  

Classification models varied in classification accuracy, variability, and the number of 

behaviors classified among sampling interval durations and between hay and no-hay 

datasets. For collar users, sampling interval choice comes down to a decision between 

high accuracy and low variability or a greater number of classifiable behaviors. Models 

that classified fewer behaviors had higher total and average CCRs and less classification 

variability for novel animals. However, models that classify a greater number of 

categories not only distinguish among more behaviors but offer the ability to increase 

classification accuracy and decrease variability by further combining behavior categories. 

For example, 64-sec models accurately classified up to 4 behaviors (passive, feed plus 

walk, short run, and run) while 152-sec models classified only 3 (passive, feed plus walk, 

and run) but with higher accuracy and less variability. When we further combined 

behavior categories for 64-sec models (3 behaviors: passive, feed plus walk, run), 

classification accuracy and variability were comparable to those for 152-sec models. The 

flexibility between more behaviors or fewer behaviors with higher accuracy and less 

variability makes intervals that allow classification of the greatest number of categories 

the best option for accelerometer GPS collars.  Therefore, we recommend that users 

select 5-min sampling intervals when deploying their collars. 

Some of the classification variability we observed was likely due to sampling 

constraints. We were only able to observe 4 animals during each trial which resulted in 

small sample sizes when calculating classification for novel animals. This was especially 

apparent for behaviors with relatively few intervals such as run. For 64-sec models, we 
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only observed 2 intervals of running for 1 animal, both of which were misclassified into 

the short-run category (0% CCR for run for that animal). For 5-min models, we only 

observed running intervals for 3 of the 4 elk which further decreased our already small 

study animal sample size and contributed to the increased variability we observed.  

We note that the age and sex of an animal can affect the movement associated 

with different behaviors and therefore affect AMVs (Coulombe et al. 2006, Gervasi et al. 

2006). For example, considerably lower AMVs have been observed for male red deer 

than for females for the same behavior categories (Löttker et al. 2009). Additionally, sex 

and age specific differences in time budgeting, foraging ecology, alertness behaviors, etc. 

could result in different classifications. As such, our classification models might be less 

accurate for males or juveniles. Additionally, although we only observed females of 

similar age for each species, we did find relatively high amounts of CCR variability for 

novel animals for some behaviors. Variability did not correspond to animal weight but 

might be due to other variables we did not measure. Future calibrations that are based on 

greater sample sizes might allow researchers to identify and model the effect such 

animal-specific factors have on classification. The variability we observed was also likely 

affected by the limited observation animal sample size. It should also be noted that 

conditions that affect animal motion, such as deep snow or steep slopes, and which differ 

significantly from those in our study, could affect classification.  Finally, although we 

categorized behavior observations into a relatively broad spectrum, some behaviors that 

occur rarely (e.g. parturition or combat) were not observed and will be misclassified by 

our models. 
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Animal motion associated with feeding on hay was distinct enough that the 

behavior was distinguishable when using models constructed with 5-min intervals. 

Classification models for elk herds with access to hay need to include this behavior when 

calibrating their models or else risk biasing their results. Also, researchers should not use 

eating hay as a proxy for grazing when calibrating accelerometer collars because their 

motions are distinct. 

We plan to make our classification models available on-line for 5-min, 152-sec, 

and 64-sec sampling interval durations for both hay and non-hay datasets. This tool will 

include a suite of models that accurately classify the greatest number of behaviors and 

those that classify fewer (more combined) behavior categories. Users will need to decide 

what model is most appropriate for their study.  Classification models will enable users to 

derive accurate behavior categorizations from their collar data for these 3 sampling 

intervals.  
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CHAPTER 5: THESIS SUMMARY 

 

Knowledge of animal behavior is crucial for making informed management decisions and 

activity-monitor collars are increasingly the tool of choice for studying the behavior of 

free-ranging species. During our efforts to calibrate accelerometer activity-monitor 

collars, several challenges arose that we detailed in this thesis. Understanding and 

accounting for these issues will allow managers and researchers to use these tools 

properly and, through their successful use, lead to a better understanding of animal 

behavior. 

Ideally, users should familiarize themselves with the operations of any remote 

sensing or analysis tool they employ. Accelerometer activity-monitors are a critical case 

in point. Before deploying collars, users must actively engage manufacturers’ engineering 

personnel to discover and understand exactly how the sensors work. For our work, the 

relatively straightforward calibration process of pairing behavior observations to activity 

monitor values for the same sampling interval was complicated considerably by internal 

clock errors caused by multiple components within the activity sensors themselves. 

Further, these errors are largely ignored in user guides provided by collar manufacturers. 

Not recognizing or understanding these problems will result in inaccurate behavior 

classification models when calibrating activity monitor collars. Also, location errors can 

result if pairing collar derived behaviors to GPS locations based on the time given in the 

collar output. Once we understood the complete scope of the problems and devised a 

correction procedure, we developed a manuscript. We expect that the resulting 

publication will be instructive for future collar users (Chapter 2).  However, while the 
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issues addressed in that manuscript are likely to be similar for most accelerometer-

equipped collars currently being marketed, variation is likely among collars from 

different manufacturers and even among models from the same manufacturer. For 

example, the time shift procedure detailed in Chapter 2 and applied in Chapter 3 for 

Lotek 4400 GPS collars was effective for the work we did with Lotek 4500 GPS collars 

(Chapter 4) but durations of the necessary time shifts were more consistent, suggesting 

slightly different internal mechanisms between the two collar models. Users must work 

with manufacturers to assure that assumptions, sampling design, analysis, and 

conclusions align with the realities of the measurement tool (activity monitor).  

We also discovered the critical importance of using full datasets (including pure 

and mixed intervals) for calibration of activity monitors (Chapter 3). Although most 

calibrations prior to ours relied entirely on pure interval datasets, and thus excluded 

mixed intervals, our work showed the potential bias resulting from such an approach. We 

showed that reliance on calibrations built solely with pure intervals can result in 

inaccurate classification models. Furthermore, because no quantification of the effect of 

excluding mixed intervals was performed prior to our work, users of pure-interval models 

were likely unaware of this potentially significant bias. Unaware of the problem, a user 

would likely develop inflated estimates and expectations of behavior classification 

accuracy. Based on our work, conclusions resulting from studies that relied on pure-

interval classification models might need to be reexamined.  

Selection of sampling interval duration is one of many decisions a researcher 

makes prior to deployment of activity-sensor GPS collars. Collar users must balance 
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sampling frequency demands associated with specific research questions against the 

constraints of battery life. Many previous investigators and managers have selected 5-min 

sampling intervals. We explored whether use of shorter sampling intervals (64-sec and 

152-sec) would result in greater classification accuracy, greater number of detectable 

behaviors, or both when sampling elk behavior (Chapter 4).  We expected that shorter 

intervals might allow greater detection and classification of specific behaviors that are 

generally short in duration, such as running. We also explored whether supplemental 

feeding, such as when hay that is provided to some elk herds during extreme winters, 

would affect behavior of classification models. Somewhat surprisingly, models we 

constructed with data collected at 5-min intervals accurately classified a broader 

spectrum of a greater than or equal number of behaviors as 64-sec or 152-sec intervals. 

These results were consistent for datasets including and those excluding supplemental 

feeding. This work also revealed that animal motion associated with feeding on hay 

differs enough from grazing that the behaviors were distinguishable. Classification 

models constructed without the former for herds with access to hay, or using the former 

as a proxy for the latter, might need to be reexamined. 

One additional (future) investigation became obvious as I concluded my work and 

reflected on past attempts to remotely record and classify behavior of ungulates. Previous 

investigations showed that movement rate (distance traveled during elapsed time) could 

be a valuable clue to classifying behavior. For example, work incorporating distance 

traveled by cattle helped distinguish feeding from travel behaviors (Ungar et al. 2005). 

Incorporating the distance traveled between successive GPS derived locations as an 
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additional data input for our models could improve classification, especially for cattle. 

Although it is unclear whether such an approach will improve overall classification for 

elk and mule deer, I suspect it would help distinguish intervals dominated by walking 

from those dominated by feeding behaviors.  

Despite the constraints and problems we encountered during this project, the most 

important point raised by our work is that accelerometer-based activity monitors have 

strong potential to be powerful tools for studying behavior provided that users understand 

the mechanisms, procedures, and limitations associated with their use. It is my hope that 

our work will help managers and researchers better use these devices and that 

manufacturers will consider our findings when designing future generations of activity 

monitor collars. With proper consideration and use, these tools will continue to illuminate 

animal behavior and lead to improved management for these ecologically and 

economically important species.  
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APPENDIX A: FORMAL MODEL STRUCTURE 

 

Our goal was to use GPS collar mounted accelerometers that remotely quantify animal 

movement to classify animal behavior. To assign a sampling interval from a novel dataset 

to a behavior category using its associated Activity Monitor Values (AMVs), we applied 

a linear discriminant function (LDA) or quadratic discriminant function (QDA) model 

structure calibrated with paired behavior observations and activity monitor data. For each 

new observation (interval) we calculated a classification value for each behavior 

category. We then assigned the interval to the behavior category with the highest 

classification value. This assignment represents the classification model’s prediction of 

the most likely behavior category to which the new observation belongs.   

 

To calculate the classification value for each behavior category, we used the following 

procedure: 

 

Linear Discriminant Function (LDA) 

 

1) Define a 3x1 vector consisting of the AMVs for the new interval: 

 

z = [
 
 

   
]  or, if using the natural logarithm of the AMVs, z = [

    
    

         
]  

 

 

Where: X = X-axis AMV  

  Y = Y-axis AMV  

 

2) Use the linear classification function to calculate the linear classification value 

(L’i) of each behavior category (i) for a new interval (z) (Rencher 2002, equation 

9.12). 

 

Lʹi (z) = ln pi + z̄ʹi Spl
-1 

z – 
 

 
 z̄ʹi Spl

-l
 z̄i    

 

Where an apostrophe denotes transpose and:   

pi = the prior probability of a behavior category’s occurrence 

 z = vector of AMVs for the new interval (above) 

 z̄i = mean of z for behavior category i estimated from calibration 

dataset 

 Spl
-1

 = inverse of the pooled covariance matrix 
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  Where Spl is calculated using: 

 

         
 

   
∑ (    )  
 
    

 

Where:   = sample size of the i th group  

   = covariance matrix of the i th group estimated 

from the calibration dataset 

N = total number of intervals from the calibration 

dataset 

k = number of behavior categories an interval can 

be classified into 

  

3) Assign the interval to the behavior category with the highest L’i. 

 

Quadratic Discriminant Function (QDA) 

 

1) Use the quadratic classification function to calculate the quadratic classification 

value (Q’i) of each behavior category (i) for a new interval (z) (Rencher 2002, 

equation 9.14). 

 

Qʹ i (z) = ln pi – 
 

 
 ln |Si | – 

 

 
 (z – z̄i )ʹ Si

-1
 (z – z̄i ) 

 

Where: Si
-1

 = inverse of the covariance matrix for behavior category i 

 |Si | = determinant of covariance matrix for behavior category i 

  

and the other variables are defined above.  

   

2) Assign the interval to the behavior category with the highest Q’i. 
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APPENDIX B: ACTIVTY MONITOR CALIBRATION PROCESS OUTLINE 

 

To help users understand activity monitor calibration we offer the following outline of the calibration process including 

illustration using exerpts of an example dataset. We included references to locations within the thesis (chapter and page 

number) for specific details.  

Procedure 

1. Collar captive animals 

a. To minimize timing errors, activate collar GPS 

and set GPS fix rate to ≤ the duration of the 

sampling interval of the activity monitor 

(Chapter 2, p. 26) 

b. Use a 5-minute (actually 304-second) sampling 

interval (Chapter 4, p. 76)  

i. For Lotek model 4500 collars, this would 

be mode #4. 

 

Example excerpts 
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ii. To minimize timing errors, activate the 

collar at the beginning of a 5-minute 

programmed sampling interval (e.g., 

12:00:00, 12:05:00, etc., Chapter 2, p. 26) 

2. Observe animals 

a. Formulate a list of mutually-exclusive behaviors 

or activity states for initial recording of directly 

observed behaviors (Chapter 3, p. 42) 

b. Captive animals 

i. Record type, start time, and duration of 

behaviors using a satellite-corrected 

hand-held data logger or other data 

collection tool (Figure B1) 

 

 

 

 

Figure B1. 

 

 
 

An excerpt of behavior observations downloaded from a 

data logger including the date, individual animal name or 

number (Elk), end time of activity (ETOA), behavior 

(ACT), and duration of each behavior in seconds (Dur). 

 

 

Date Elk ETOA Act Dur

5/1/2013 red 16:06:05 Graze 50

5/1/2013 red 16:06:16 Stand 11

5/1/2013 red 16:06:36 Graze 20

5/1/2013 red 16:06:40 Stand 4

5/1/2013 red 16:07:19 Graze 39

5/1/2013 red 16:07:26 Walk 7

5/1/2013 red 16:08:18 Graze 52

5/1/2013 red 16:36:18 Lay 1680

5/1/2013 red 16:36:21 Stand 2

5/1/2013 red 16:38:24 Graze 124

5/1/2013 red 16:38:35 Walk 11

5/1/2013 red 16:39:12 Graze 37

5/1/2013 red 16:39:14 Walk 2

5/1/2013 red 16:39:25 Walk 11

5/1/2013 red 16:41:31 Browse 126
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1. Periodically check the accuracy of 

the handheld’s clock against an 

independent and reliable source 

such as a cell phone or the official 

US time available at 

www.time.gov 

ii. Induce behaviors of interest that do not 

occur naturally, such as running (Chapter 

3, p. 43) 

c. Free-ranging animals 

i. Record satellite-corrected time the animal 

is collared. As above (2bi), use data 

logger to record the type, start time, and 

duration of all behaviors while the animal 

is captive or immobilized 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.time.gov/
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ii. Record the time the animal is released 

1. The transition from inactive 

(captive or immobile) to active 

(running away) can be used for 

time-shift procedure (step 4c 

below) 

iii. Record the type, start time, and duration 

of all behaviors while the animal is in 

sight 

iv. If possible, track the animal to observe 

additional behaviors 

v. Future researchers should investigate the 

usefulness of video-enabled collars as a 

means of observing activity to calibrate 

collars without using captive animals 

(Beringer et al. 2004) 
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3. Remove and download collars (Figure B2) 

a. Note: some accelerometer collars are not capable 

of remote download of activity monitor data. 

Users who calibrate collars worn by free-ranging 

animals will need to use a drop-off mechanism or 

plan to recapture their animal(s) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B2. 

 

 
 

Portion of unprocessed activity monitor data downloaded 

from Lotek 4400 collar including local date (LMT_DATE), 

time (LMT_TIME), X-axis activity monitor value 

(ACTIVITY X), Y-axis activity monitor value (ACTIVITY 

Y), and temperature (TEMP) for data record using a 5-

minute sampling interval. Not shown: columns for 

Greenwich Mean Date (GMT_DATE) and Greenwich Mean 

Time (GMT_TIME). 

 

 

 

 

 

 

 

 

 

 

 

LMT_DATE LMT_TIME ACTIVITY_X ACTIVITY_Y TEMP

5/1/2013 16:10:00 19 19 16

5/1/2013 16:15:00 8 0 16

5/1/2013 16:20:00 0 0 15

5/1/2013 16:25:00 0 0 15

5/1/2013 16:30:00 0 0 15

5/1/2013 16:35:00 0 0 15

5/1/2013 16:40:00 32 29 15
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4. Data processing  

a. Correct for brief bouts of observed behavior per 

Table 3.1 “May contain < 10 sec of other 

behavior” (Chapter 3, p. 42, Figure B3) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B3. 

 

 
 

Excerpt of direct observation data (see Figure B1) after 

correction for brief bouts of activity including the condensed 

behaviors (italics), corrected end time of activity (ETOA2), 

and corrected duration of each behavior (Dur2). 

 

 

Date Elk ETOA ETOA2 Act Act2 Dur Dur2

5/1/2013 red 16:06:05 16:06:05 Graze Graze 50 50

5/1/2013 red 16:06:16 16:06:16 Stand Stand 11 11

5/1/2013 red 16:06:36 Graze 20

5/1/2013 red 16:06:40 Stand 4

5/1/2013 red 16:07:19 Graze 39

5/1/2013 red 16:07:26 Walk 7

5/1/2013 red 16:08:18 16:08:18 Graze Graze 52 122

5/1/2013 red 16:36:18 16:36:18 Lay Lay 1680 1680

5/1/2013 red 16:36:21 16:36:21 Stand Stand 2 2

5/1/2013 red 16:38:24 16:38:24 Graze Graze 124 124

5/1/2013 red 16:38:35 16:38:35 Walk Walk 11 11

5/1/2013 red 16:39:12 16:39:12 Graze Graze 37 37

5/1/2013 red 16:39:14 Walk 2

5/1/2013 red 16:39:25 16:39:25 Walk Walk 11 13

5/1/2013 red 16:41:31 16:41:31 Browse Browse 126 126
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b. Perform initial pairing of observed behaviors to 

Activity Monitor Values (AMVs) using interval 

start times given in collar output (Figure B4) 

i. Note the pure interval (300 seconds) 

of lay associated with relatively high 

AMVs (Time 16:10:00) versus the 

pure intervals of lay associated with 

low AMVs (Times 16:15:00-

16:30:00) versus the interval 

containing lay and a mix of active 

behaviors associated with low AMVs 

(Time 16:35:00). This is an example 

of mis-match due to timing errors. 

 

 

 

Figure B4. 

 

 
 

Portion of example behavior observations (see Figure B3) 

paired to collar data (see Figure B1) activity monitor values 

(X and Y) based on interval start times (Time) from collar 

output. 

 

Date Time Elk ETOA Act Dur X Y

5/1/2013 16:05:00 red 16:05:15 Stand 15 28 36

red 16:06:05 Graze 50

red 16:06:16 Stand 11

red 16:08:18 Graze 122

red 16:15:54 Lay 102

5/1/2013 16:10:00 red 16:15:54 Lay 300 19 19

5/1/2013 16:15:00 red 16:15:54 Lay 300 8 0

5/1/2013 16:20:00 red 16:15:54 Lay 300 0 0

5/1/2013 16:25:00 red 16:15:54 Lay 300 0 0

5/1/2013 16:30:00 red 16:15:54 Lay 300 0 0

5/1/2013 16:35:00 red 16:36:18 Lay 78 0 0

red 16:36:21 Stand 2

red 16:38:24 Graze 124

red 16:38:35 Walk 11

red 16:39:12 Graze 37

red 16:39:25 Walk 13

red 16:41:31 Browse 35
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c. Correct timing errors using time-shift procedure 

(Chapter 2, Figure B5) 

d. Re-pair observed behaviors and AMVs using 

shifted interval start times (Figure B5) 

i. Note the pure intervals of lay are now 

paired with very low AMVs (Time2s 

16:11:00-16:31:00) and intervals 

containing mostly active behaviors 

associated with higher AMVs 

(Time2s 16:06:00 and 16:36:00) 

 

 

 

 

 

 

Figure B5. 

 

 
 

The same data (Figure B4) after application of the time shift 

procedure including the amount of time the interval start 

times (Time) were shifted (Shift). Note the correction of 

interval start times (Time2) that allow collar data and direct 

observations to align in an intuitive fashion. 

 

 

 

Date Time Shift Time2 Elk ETOA Act Dur X Y

5/1/2013 16:10:00 0:04:00 16:06:00 red 16:06:05 Graze 5 19 19

red 16:06:16 Stand 11

red 16:08:18 Graze 122

red 16:15:54 Lay 162

5/1/2013 16:15:00 0:04:00 16:11:00 red 16:15:54 Lay 300 8 0

5/1/2013 16:20:00 0:04:00 16:16:00 red 16:30:02 Lay 300 0 0

5/1/2013 16:25:00 0:04:00 16:21:00 red 16:30:02 Lay 300 0 0

5/1/2013 16:30:00 0:04:00 16:26:00 red 16:30:02 Lay 300 0 0

5/1/2013 16:35:00 0:04:00 16:31:00 red 16:36:18 Lay 300 0 0

5/1/2013 16:40:00 0:04:00 16:36:00 red 16:36:18 Lay 18 32 29

red 16:36:21 Stand 2

red 16:38:24 Graze 124

red 16:38:35 Walk 11

red 16:39:12 Graze 37

red 16:39:25 Walk 13

red 16:41:31 Browse 95
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e. Categorize all intervals based on the predominant 

behavior (greatest duration) within each interval 

(Chapter 4, p. 68, Figure B6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B6. 

 

 
 

Portion of example calibration dataset with each sampling 

interval categorized based on the dominant behavior (Act 2), 

according to a priori rules. Italicized columns and rows are 

removed before data is uploaded into statistical software. 

 

 

 

Date Time Elk ETOA Act Act2 Dur X Y

5/1/2013 16:06:00 red 16:06:05 Graze Lay 5 19 19

red 16:06:16 Stand 11

red 16:08:18 Graze 122

red 16:15:54 Lay 162

5/1/2013 16:11:00 red 16:15:54 Lay Lay 300 8 0

5/1/2013 16:16:00 red 16:30:02 Lay Lay 300 0 0

5/1/2013 16:21:00 red 16:30:02 Lay Lay 300 0 0

5/1/2013 16:26:00 red 16:30:02 Lay Lay 300 0 0

5/1/2013 16:31:00 red 16:36:18 Lay Lay 300 0 0

5/1/2013 16:36:00 red 16:36:18 Lay Graze 18 32 29

red 16:36:21 Stand 2

red 16:38:24 Graze 124

red 16:38:35 Walk 11

red 16:39:12 Graze 37

red 16:39:25 Walk 13

red 16:41:31 Browse 95
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5. Construct classification models (Chapters 3, p. 45) 

a. Please note, a basic understanding of R statistical 

software is necessary for the remainder of this 

outline. There are many helpful free documents 

and tutorials available online. We recommend 

Quick-R at  http://www.statmethods.net/ 

b. We used the MASS package in R to construct 4 

model structures: linear (LDA) and quadratic 

discriminant function (QDA) using both 

untransformed (X and Y) and log-transformed 

(logX and logY) AMVs (Figure B7) 

(Right) R code used to build linear (LDA) and quadratic 

discriminant function (QDA) classification model structures 

using both untransformed (X and Y) and log-transformed 

(logX and logY) AMVs from the example calibration 

dataset (elk). Model accuracy is estimated using leave-one-

out cross validation (CV=TRUE) and pre-assigned prior 

probabilities (prior) derived from prior activity and foraging 

studies. 

 

Figure B7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

> elk<-read.csv("U:\\DataFolder\\Example.csv") 
> library (MASS) 
> elk $ logX <- log (elk $ X+1) 
> elk $ logY <- log (elk $ Y+1) 
> head (elk) 
    Elk           Act     X     Y            logX              logY 
1  P1     Browse 20   25   3.044522     3.258097 
2  P1     Browse 19   22   2.995732     3.135494 
3  P1     Browse 18   17   2.944439     2.890372 
4  P1     Browse 18   25   2.944439     3.  
5  P1     Browse 23  14    3.178054     2.708050 
6  P1     Browse 33  43    3.526361     3.784190 
> table (elk $ Act) 
Browse      Hay    Graze       Lay    Run   Stand   Walk  
        65      136     1018    1189       21      108     456  
# LDA on Untransformed AMVs 
> df.mod<-lda(Act~X*Y,data=elk, CV = TRUE,  
  prior = c(.12,.17,.18,.4,.02,.03,.08)) 
# LDA on log-transformed AMVs 
> df.mod<-lda(Act~lX*lY,data=elk, CV = TRUE,  
  prior = c(.12,.17,.18,.4,.02,.03,.08)) 
# QDA on untransformed AMVs 
> df.mod<-qda(Act~X*Y,data=elk, CV = TRUE,  
  prior = c(.12,.17,.18,.4,.02,.03,.08)) 
# QDA on log-transformed AMVs 
> df.mod<-qda(Act~lX*lY,data=elk, CV = TRUE,  
  prior = c(.12,.17,.18,.4,.02,.03,.08)) 

http://www.statmethods.net/
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i. We estimated the percentage of intervals 

that would be correctly classified if 

models were applied to a new dataset or 

the correct classification rates (CCRs) 

using leave-one-out cross validation 

(CV=TRUE, Figure B7) 

ii. We assigned prior probabilities (prior, 

Figure B7) of behavior category 

occurrence based on activity pattern and 

foraging preference literature available 

for each species (Chapter 3, p. 45)  
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6.Group behaviors when necessary 

(Chapter 4, p. 76, Figure B8) 

1. We used the “car” package to 

group behaviors (recode) when 

their CCRs were < 70% (out1) 

2. We considered models acceptable 

if CCRs for all behaviors were ≥ 

70% (out2) 

 

 

 

 

(Right) R code used to group behaviors (recode) with CCRs 

≤ 70% (out1) after being classified using an LDA on log-

transformed AMVs from the example calibration dataset 

(elk). Grouped behavior categories (Act 2) classify with 

CCRs ≥ 70% (out2). 

 

Figure B8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# LDA on log-transformed AMVs 
> df.mod<-lda (Act ~ logX * logY, data = elk,  CV = TRUE,  
                             prior = c(.12,.17,.18,.4,.02,.03,.08)) 
> error.matrix <- table (Act, df.mod $ class) 
# CCRs for individual behaviors 
> (out1<-diag (prop.table (error.matrix, 1))) 
   Browse      Hay     Graze       Lay       Run     Stand      Walk  
      0.831   0.735     0.661   0.921     0.667    0.000     0.603  
#Total CCR of all intervals 
> (tot<-sum(diag(prop.table(error.matrix)))) 
0.739 
# Combine Stand, Graze, and Walk 
 > library(car) 
 > elk $ Act2 <- recode (elk $ Act, 
                   "c('Stand','Graze','Walk') = 'Grazing'") 
 > table (elk $ Act2)
 Browse     Hay     Grazing       Lay     Run  
         65     136          1582    1189        21  
> # LDA on log-transformed AMVs 
> df.mod <- lda (Act2 ~ logX * logY, data=elk, CV = TRUE,  
                                prior = c(.12,.17,.29,.4,.02)) 
> error.matrix<- table(elk $ Act2, df.mod $ class) 
# CCRs for grouped behaviors 
> (out2 <-diag (prop.table (error.matrix, 1))) 
   Browse        Hay    Grazing        Lay       Run  
      0.831    0.750        0.832    0.913    0.810  
#Total CCR of all intervals 
> (tot <-sum (diag (prop.table (error.matrix)))) 
   0.861 
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ii. From the acceptable model structures 

(those which classified all behaviors 

with 70% CCRs, Figure B9)  we 

chose the best model structure (mod2) 

based on the highest total 

classification rate (the percentage of 

all intervals correctly classified, tot1), 

the highest average classification rate 

among behaviors (avg2), and highest 

minimum  classification rate among 

behaviors  (Hay, both models) 

 

 

(Right) R code showing CCRs for individual behaviors 

(out), all behaviors (tot), and average among behaviors (avg) 

used to choose the best classification model structure 

(mod2) based on the example calibration dataset (elk). 

 

Figure B9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# LDA on untransformed AMVs 
> df.mod1 <-lda (Act2 ~ X * Y, data = elk, CV = TRUE,  
                            prior = c(.12,.17,.29,.4,.02)) 
> error.matrix <- table (elk $ Act2, df.mod1 $ class) 
# CCRs for individual behaviors 
> (out1<-diag (prop.table (error.matrix, 1))) 
   Browse     Hay   Grazing       Lay         Run  
       0.754   0.750    0.817    0.964     0.762 
#Total CCR of all intervals 
> (tot1<-sum(diag(prop.table(error.matrix))))
 0.871 
# Average CCR among behaviors 
> avg1 <-mean(out1) 
 0.809 
 
# LDA on log-transformed AMVs 
> df.mod2 <-lda (Act2~logX*logY, data=elk, CV = TRUE,  
                             prior = c(.12,.17,.29,.4,.02)) 
> error.matrix <- table (elk $ Act2, df.mod2 $ class) 
# CCRs for individual behaviors 
> (out2 <-diag(prop.table (error.matrix, 1))) 
   Browse        Hay   Grazing         Lay       Run  
       0.831    0.750      0.832     0.913     0.810  
#Total CCR of all intervals 
> (tot 2<-sum (diag (prop.table (error.matrix)))) 
[1] 0.861 
# Average CCR among behaviors 
> avg2 <- mean (out2) 
 0.827 
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iii. Note, because total classification rates 

are greatly influenced by the number 

of intervals within each behavior 

category, we gave the highest average 

and minimum CCRs the greater 

weight in choosing a model structure 

6. Apply model structure to novel data (Figure B10) 

a. To apply your chosen classification model 

(model) to collar data from a new animal 

(newdata), use the predict( ) function 

b. To view the predicted behaviors (predicted) 

aligned with your dataset (newdata), create a 

new data frame using dataframe( ) 

c. To export your new data frame into an Excel 

spreadsheet (“new.collardata.csv”) for 

processing, use write.csv( ) 

 

 

 

 

 

 

Figure B10. 

 

 

 

 

R code for applying (predict) a classification model (model) 

to collar data from a new animal (newdata) and then 

aligning the predicted behavior classifications (predicted) 

with your dataset as a new data frame using dataframe( ) 

before then exporting it (write.csv) into an Excel 

spreadsheet (“new.collardata.csv”) for processing. 

.

predicted <-predict(model, newdata = data, prior=myprior) 
 
newdataframe  <- dataframe (newdata, predicted $ class) 
 

write.csv (newdataframe, file = "new.collardata.csv", 
row.names = FALSE) 
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