pA506, a Conjugative Plasmid of the Plant Epiphyte *Pseudomonas fluorescens* A506

Virginia O. Stockwell, Edward W. Davis II, Alyssa Carey, Brenda T. Shaffer, Dmitri V. Mavrodi, Karl A. Hassan, Kevin Hockett, Linda S. Thomashow, Ian T. Pauslen, Joyce E. Loper

Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA; Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA; Department of Plant Pathology, Washington State University, Pullman, Washington, USA; Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia; Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, USA

Conjugative plasmids are known to facilitate the acquisition and dispersal of genes contributing to the fitness of *Pseudomonas* spp. Here, we report the characterization of pA506, the 57-kb conjugative plasmid of *Pseudomonas fluorescens* A506, a plant epiphyte used in the United States for the biological control of fire blight disease of pear and apple. Twenty-nine of the 67 open reading frames (ORFs) of pA506 have putative functions in conjugation, including a type IV secretion system related to that of *Erwinia amylovora*, family plasmids and a gene cluster for type IV pili. We demonstrate that pA506 is self-transmissible via conjugation between A506 and strains of *Pseudomonas* spp. or the *Enterobacteriaceae*. The origin of vegetative replication (oriV) of pA506 is typical of those in *pPT23A* family plasmids, which are present in many pathovars of *Pseudomonas syringae*, but pA506 lacks repA, a defining locus for *pPT23A* plasmids, and has a novel partitioning region. We selected a plasmid-cured derivative of A506 and compared it to the wild type to identify plasmid-encoded phenotypes. pA506 conferred UV resistance, presumably due to the plasmid-borne *rulAB* genes, but did not influence epiphytic fitness of A506 on pear or apple blossoms in the field. pA506 does not appear to confer resistance to antibiotics or other toxic elements. Based on the conjugative nature of pA506 and the large number of its genes that are shared with plasmids from diverse groups of environmental bacteria, the plasmid is likely to serve as a vehicle for genetic exchange between A506 and its coinhabitants on plant surfaces.

Pseudomonas is a diverse genus of gammaproteobacteria with more than 100 species exhibiting varied lifestyles in a wide range of environments, including soil, water, plant surfaces, and animals. Pseudomonads are well known for their ubiquity in the natural world, their capacity to utilize a striking variety of organic compounds as energy sources, and their resistance to a wide range of medically and agriculturally important antimicrobial compounds. Conjugative plasmids serve important roles in the evolution of these bacteria, facilitating the acquisition and dispersal of genes contributing to their fitness in specific environments. For example, plasmids conferring antibiotic resistance on clinical strains of *Pseudomonas aeruginosa* have been recognized for decades (1) and continue to contribute to the drug tolerance of these bacteria (2). Plasmids are common in strains of the phytopathogenic species *Pseudomonas syringae*, carrying genes for virulence, phytoalexin and phytohormone biosynthesis, UV tolerance, and resistance to copper and antibiotics used in agriculture to control diseases caused by these bacteria (3, 4). Plasmids containing genes for catabolism of pollutants are key to the capacity of certain strains of *Pseudomonas* spp. to function in bioremediation of polluted environments (5). Although plasmids are common in many species of *Pseudomonas* (3, 4), they are far from ubiquitous and appear to be present in only a fraction of strains falling into some taxa, such as the heterogenous *Pseudomonas fluorescens* group. In our recent comparative genomic analysis of 10 strains within this group (6), only one strain, *P. fluorescens* A506, harbored a plasmid.

P. fluorescens strain A506 is a plant epiphyte and a commercial biological control agent (BlightBan A506; NuFarm Americas, Burr Ridge, IL) for management of fire blight, a devastating disease of the Rosaceae caused by *Erwinia amylovora* (7–9). The primary mechanism of disease control ascribed to A506 is competitive exclusion of the pathogen from sites of colonization on the stigmas of flowers (10, 11). In addition to fire blight control, the biocontrol agent also reduces the severity of frost damage caused by ice-nucleation-active bacteria (10). Beyond its commercial applications, A506 has been used as a biosensor of the chemical nature of microbial habitats (12–15) and as a model organism for studies evaluating resource competition (16, 17), survival and growth of bacteria on aerial plant surfaces (8, 9, 18, 19), spatial patterns of bacterial cell aggregates on plants (20, 21), and the viable but nonculturable condition that can occur in bacteria (22, 23).

The goal of this study was to sequence and characterize pA506, the plasmid of strain A506. Here, we provide a comparative analysis of the sequence and describe features of the plasmid, including conjugal transfer; stability; and its role in UV tolerance, twitching motility, and epiphytic fitness of the host bacterium.

MATERIALS AND METHODS

Bacterial strains, plasmids, and general culture conditions. Bacterial strains and plasmids are listed in Table 1. All bacterial strains were stored...
TABLE 1 Bacterial strains and plasmids

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant traits</th>
<th>Source or reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa PA01</td>
<td>Isolated from wheat rhizosphere in Washington, USA; biological control of take-all of wheat; plasmidless</td>
<td>75</td>
</tr>
<tr>
<td>P. brassicaeaeorum Q8r1-96</td>
<td></td>
<td>D. Weller (76)</td>
</tr>
<tr>
<td>P. chlororaphis O6</td>
<td>Isolated from soil; biological control of multiple biotic and abiotic stresses of plants; plasmidless</td>
<td>A. Anderson (77)</td>
</tr>
<tr>
<td>P. fluorescens A506</td>
<td>Isolated from pear phyllosphere in California, USA; registered commercial biological control agent for fire blight; single plasmid, pA506; Rif Sm</td>
<td>10</td>
</tr>
<tr>
<td>P. fluorescens A506 pA506::gfp-km-gm</td>
<td>Single insertion of gfp-km-gm cassette from pTGN in pA506 in PIA506_p0022; GFP⁺; Gm Km Rif Sm</td>
<td>This study</td>
</tr>
<tr>
<td>P. fluorescens A506-ΔpA506</td>
<td>Plasmidless derivative of A506; Rif Sm</td>
<td>This study</td>
</tr>
<tr>
<td>P. fluorescens SS101</td>
<td>Isolated from wheat rhizosphere in The Netherlands; biological control of diseases caused by oomycetes, i.e., Pythium and Phytophthora species; plasmidless</td>
<td>J. Raijmakers (78)</td>
</tr>
</tbody>
</table>

Enterobacteriaceae

Escherichia coli K-12 | ATCC 15153, Sm | American Type Culture Collection |
| *E. coli* S-17 (Apr) | pro thi hsdR3M, RP4-2-Tc-Mu-Km:Tn7 Apr; Sm | 26 |
| *Pantoea vagans* C9-1 | Isolated from apple phyllosphere in Michigan USA; registered biological control agent for fire blight; three large plasmids (pPag1, pPag2, pPag3) | 79, 80 |

Plasmids

pCR2.1-TOPO | pCR2.1-TOPO cloning vector; Km | Invitrogen |
| pTGN | pBSL202 with mini-Tn5 gfp-km-gm; transposon including a promoterless gfp-Km and constitutively expressed Gm | 26 |
| pA506::gfp-km-gm | Single insertion of gfp-km-gm cassette of pTGN in PIA506_p0022 | This study |

* Gm, Km, Rif, and Sm, resistance to gentamicin, kanamycin, rifampin, and streptomycin, respectively.

at ~80°C in nutrient broth with 15% glycerol. Pseudomonads were cultured routinely on LB (24) or King’s medium B (KB) (25) at 27°C, and *Escherichia coli* and *Pantoea vagans* were cultured on LB at 37°C, unless specified otherwise. Cycloheximide, kanamycin, rifampin, and streptomycin (Sigma Chemical Co., St. Louis, MO) were each used at 50 μg/ml, unless specified otherwise, and gentamicin was used at 40 μg/ml.

Plasmid mutagenesis and eviction. A derivative of pA506 having an insertion of the gfp-km-gm mini-Tn5 (i.e., pA506::gfp-km-gm) was obtained following transposon mutagenesis of A506. A mini-Tn5 gfp-km-gm cassette on pTGN (26) was introduced into A506 by conjugative transfer. Random insertion mutants were selected on KB amended with rifampin and gentamicin. One mutant that originally exhibited the green fluorescence and gentamicin resistance conferred by gfp-km-gm mini-Tn5 subsequently lost these phenotypes following repeated transfer on KB. DNA was isolated from the original mutant and from derivatives that lost the green fluorescent protein (GFP) fluorescence and antibiotic resistance. This DNA was evaluated by gel electrophoresis, and results showed that pA506 was present in the original mutant but absent from the derivative strains (data not shown). The lack of pA506 in the derivative strains was confirmed by PCR using primers specific to plasmid-borne genes (see Table S1). The PstI ligation product contained DNA adjacent to gfp-km-gm using outward-facing, transposon-specific primers (see Table S1). The PstI ligation product contained DNA adjacent to gfp, and the NcoI ligation product contained DNA adjacent to gfp-km-gm. The PCR products were isolated and sequenced, and the sequence was compared to that of pA506. Sequence analysis of the PCR products showed that the gfp-km-gm cassette had inserted in the plasmid at locus PIA506_p0022 (A506 pA506::gfp-km-gm; Table 1). Cell morphology of 24-h and 48-h LB and KB broth cultures of A506, A506-ΔpA506, and A506 pA506::gfp-km-gm was examined with a Leica DM LS2 microscope equipped with a Leica DFC320 digital camera. Digital images were viewed on a computer screen, and cell lengths were measured. At each time point, 60 cells from three replicate cultures of each strain were measured. The experiment was repeated once. Mean cell lengths were calculated, and Fisher’s least significant difference (*P* = 0.05) was used for mean separation.

Sequencing pA506. The sequence of pA506 was obtained during a comparative genomics project of several strains of *Pseudomonas* spp. with biological control activity (6). The pseudomonads, including A506, were sequenced using a combination of Sanger sequencing (to 4× coverage of the genome) and 454 pyrosequencing technologies with paired end reads and assembled as described previously (6). Gaps were closed by merging overlapping contigs and resolving repetitive gaps and sequencing of PCR amplicons between the remaining gaps. The sequence of pA506 is available through NCBI (accession CP003042).

Bioinformatic analysis. Identification of putative genes and annotation of the plasmid were performed as previously described (6). A phylogenetic analysis of each gene was performed with a combination of position-specific iterative (PSI) BLAST search and Clustal Omega alignment (27) on the EBI website (https://www.ebi.ac.uk/Tools/msa/clustalo/). Phylogenetic trees were generated with FastTree 2 (28). Genes selected for further analysis were analyzed with a combination of a BLASTP search to identify homologous genes for use in tree construction and the L-INS-I method in MAFFT 7 (29) for alignment. Substitution models were chosen according to BIC in ProtTest 3 (30). Phylogenetic trees were constructed using RAxML 7.4.2 (31) (20-maximum-likelihood [ML] search with rapid hill-climbing and 1,000 rapid bootstraps [setting f a] and raxmlGUI (32) in some cases. MEGA 5 (33) and TreeGraph 2 (34) were used to visualize alignments and trees.

Plasmids within the MOBP6 family (35) were identified by BLASTP...
searches with relevant genes from the NCBI database. Specifically, the first 360 amino acids (aa) of the relaxase protein (PIA506_p0066) were used in a BLASTP search with the query "plasmid" as a filter. A drastic drop-off in E value was noted after 4e-43; proteins under this threshold and previously identified members of the MOBP and MOBP groups were used in construction of the relaxase tree. For analysis of oriV, oriT, and par regions, the plasmid was visualized using UGENE and searched for repeats, inverted repeats, and DNA boxes (36). oriT and oriV alignments were performed with MUSCLE (37) and examined with Jalview 2 (38).

Determining the origin of replication. Sequence analysis indicated that the origin of replication of pA506 may comprise a region near PIA506_p0001. Segments of a 2,218-nucleotide (nt) region (nt 56556 to nt 1797) spanning the predicted origin region of pA506 were amplified using primer sets in Table S1 in the supplemental material. The amplicons ranged from 440 to 2,003 nt, and each was cloned into pCR2.1-TOPO according to the manufacturer’s guidelines (Invitrogen, Grand Island, NY). The inserts in pCR2.1-TOPO ('Table 1') were confirmed by sequencing by the CGRB Core lab of Oregon State University.

The pCR2.1-TOPO constructs and the pCR2.1-TOPO vector alone were introduced into A506-ApA506 by electroporation. Electroporant competent cells of A506-ApA506 were prepared from 24-h cultures on fresh, solidified LB medium. Cells were washed three times with ice-cold 10% glycerol and kept on ice until electroporation. Forty nanograms of each plasmid was combined with electroporant competent cells in a 0.2-cm cuvette with a Bio-Rad Gene Pulser Xcell at 2,500 V, 25 μF, and 200 Ω (Bio-Rad, Hercules, CA). Cells were immediately suspended in LB broth, incubated for 2 h at 27°C with gentle shaking, and then spread on solidified LB amended with kanamycin. The maintenance of pCR2.1-TOPO constructs in A506-ApA506 was evaluated by culturing transformants in LB broth at 27°C over 100 generations and then spreading the cultures on solidified LB and LB amended with kanamycin. The presence of the pCR2.1-TOPO construct in five kanamycin-resistant colonies was confirmed with the PCR using primers targeted to the cloned region of the putative origin of replication of pA506.

Conjugal transfer of pA506 to pseudomonads and enteric bacteria. A506 (pA506::gfp-km-gm) was used as a donor to track conjugal transfer of pA506. Bacteria were grown with agitation in KB broth; gentamicin was added to cultures of the donor strain. Cells in late log phase (18 to 24 h) were harvested by gentle centrifugation and washed with KB broth. Donor and recipient strains were mixed and placed on a sterile 0.45 μm filter disc (Millipore Corporation, Bedford, MA) on a mating medium that contained (for 1 liter): 1.5 g KH2PO4, 5 g yeast extract, 10 g peptone, 5 g glucose, 2.5 g NaCl, and 15 g agar (39). After incubation at 20°C for 24 h, cells were washed from filters and cell suspensions were spread on a selective medium. For experiments evaluating pA506::gfp-km-gm transfer to Pseudomonas spp., transconjugants were selected on 925 minimal medium (40) containing 0.1% (wt/vol) sodium benzoate as the sole carbon source and gentamicin. Recipient strains P. fluorescens SS101, Pseudomonas brassicaearrum Q8r1-96, and Pseudomonas chlororaphis O6 can utilize sodium benzoate as a sole carbon source, whereas A506 cannot (6). For experiments evaluating pA506::gfp-km-gm transfer to E. coli or P. vagans, transconjugants were selected on KB amended with gentamicin incubated at 41°C (E. coli K-12) or 37°C (P. vagans C9-1), as the donor strain A506 does grow at these high temperatures. The conjugal transfer experiments were repeated four times.

Putative transconjugants were examined for GFP fluorescence with a hand-held UV lamp and tested with PCR primers designed to amplify a unique region of the chromosome of A506 (see Table S1 in the supplemental material). A modified alkaline lysis method was used to isolate plasmid DNA from putative transconjugants (24). The isolated plasmids were digested with BamHI, and fragments were examined with agarose gel electrophoresis.

Twitching motility assay. A506, A506-ApA506, and P. aeruginosa PA01 were tested for twitching motility at 27°C (41). Cells of strains were stab inoculated with a sterile toothpick onto solidified KB with 1% agar. Colony diameter was measured periodically, up to 48 h. Motility experiments were conducted four times.

Tolerance to UV irradiation. The method of Whistler et al. (42) was used to evaluate tolerance of strains to UVC irradiation. A506, A506-ApA506, P. fluorescens SS101, P. brassicaearrum Q8r1-96, and P. chlororaphis O6 were cultured in LB broth to early stationary phase, and dilutions were spread on solidified KB. Plates were immediately placed in a laminar flow hood (SterilGard III; The Baker Company, Sanford, ME) with a germicidal lamp and exposed for 0 to 100 s to UVC irradiation (λ = 254 nm) at a level of 2 J/m2 per s. After exposure, plates were incubated in darkness, to minimize photoreactivation, and after 3 days, colonies were counted. UVC tolerance experiments were repeated four times.

Epiphytic fitness of A506 and A506-ApA506 on flowers. Epiphytic fitness of strains A506 and A506-ApA506 was estimated on flowers of pear (Pyrus communis L. ‘Bartlett’) and apple (Malus domestica Borkh., ‘Gala’ and ‘Red Delicious’) in experimental orchards at the Oregon State University Botany and Plant Pathology Field Laboratory near Corvallis, OR. Weather data for field trials are summarized in Table S2 in the supplemental material. An aequorin suspension of each strain (1 × 106 CFU/ml) was sprayed at near-full bloom on blossom clusters on marked branches of four replicate trees arranged in a randomized complete block design. Within blocks, treated trees were separated by at least two nontreated trees. At each sampling date, culturable bacterial populations were estimated from 10 individual flowers harvested from each replicate tree using previously described methods (43). Flowers were washed with phosphate buffer, and washes and dilutions were spread on Pseudomonas agar F (Difco Laboratories, Detroit, MI) amended with cycloheximide and rifampin. Colonies were enumerated after 3 days. On the final sample date of each experiment, eight randomly selected colonies of A506 were tested for pA506 with a PCR assay. Mean population size of bacterial strains and standard error were calculated by averaging the logarithm (base 10) of population values. The detection limit was 1 × 102 CFU/flower.

Nucleotide sequence accession number. The sequence of pA506 is available through NCBI (accession no. CP003042).

RESULTS AND DISCUSSION
General overview of plasmid pA506. pA506 is a 56,977-bp circular plasmid with 67 predicted coding sequences (CDSs) having putative functions in plasmid replication, maintenance and stability, conjugal transfer, and epiphytic fitness (Fig. 1; see also Table S3 in the supplemental material). The average G+C content (52%) of the plasmid differs from that of the chromosome of P. fluorescens A506 (61%) (6), which is not uncommon for extrachromosomal self-replicating elements. The G+C content also varies within the plasmid (Fig. 1), and these local changes in nucleotide composition are likely to correlate with regions of sequence derived from distinct origins.

pA506 shares many genes with members of the well-characterized pPT23A plasmid family, such as pPSR1 from P. syringae pv. syringae A2 (44), pMA4326A from P. syringae pv. maculicola (4), and the small plasmid from P. syringae pv. phaseolicola 1448A (45) (Fig. 1; see also Fig. S1 in the supplemental material). Plasmids in the pPT23A family are self-transmissible and stably maintained in Pseudomonas spp. (3, 46), and so it is plausible that such plasmids could be exchanged readily among bacteria coinhabiting aerial plant surfaces, such as A506 and the pathovars of P. syringae known to harbor these plasmids. A large fraction of pA506 is similar to regions in pEU30, a plasmid found in some isolates of E. amylovora from the western United States (47), and pET49 of Erwinia tasmaniensis (48). E. amylovora causes fire blight disease of pome fruits, the target disease for biological control by A506, and inhabits floral tissues of pear, the host from which A506 was isolated. E. tasmaniensis also exists as an epiphyte on pear and...
apple but does not cause fire blight (48). Again, it is plausible that plasmids could be exchanged between these bacteria on plant surfaces. pA506 also shares a large proportion of its gene inventory with certain integrated conjugative elements (ICEs) of *Pseudomonas* spp. (49, 50); although these elements are typically associated with the bacterial chromosome, they are known to be self-transmissible elements that can replicate autonomously (50). Of the plasmid sequences currently available in NCBI, pA506 is most similar to pMP-R124, a 43,794-bp plasmid in a strain of *P. fluorescens* isolated from a cave (accession number NZ_CM001562.1). Despite its similarities to components of each of these plasmids, pA506 has a unique combination of genes and features that distinguishes it from plasmids previously described in the literature. The cargo genes of pA506 include a putative pyocin immunity protein which is unlinked to any pyocin gene and is most similar to pyocin S3 immunity protein from *P. aeruginosa PA14* (51). This immunity protein could protect A506 from pyocins produced by other bacteria in the environment. A large percentage (39%) of the predicted coding sequences on pA506 encode proteins of unknown function, many with little or no sequence identity to other proteins currently included in the NCBI database. Ten of these are flanked by integrases typically associated with phage integration but are otherwise distinct from any characterized phage genes described in the literature to date.

Plasmid replication and partitioning. A bioinformatic analysis of pA506 revealed a 191-nt sequence similar to the origin of vegetative replication (oriV) of pPSR1 and many other plasmids in the pPT23A family (44) (Fig. 2; see also Fig. S2 in the supplemental material). Plasmid oriV sequences typically include binding sites for the host chromosomal replication initiation protein DnaA, and the 191-nt sequence includes a putative DnaA box, which differs by 1 nucleotide from the consensus DnaA binding site (52). The predicted secondary structure of the 191-nt sequence contains a hairpin loop that is also present in the oriV of pPSR1 (44) and characteristic of oriV sequences of many plasmids. Despite these similarities, pA506 lacks repA, which is adjacent to oriV in all known plasmids in the pPT23A family (46) and has been shown to be required for replication of pPSR1 (44). Adjacent to oriV, however, is a gene (PflA506_p0001) that is 58% identical at the amino acid level to repB, which is required for replication of pRA2 in *Pseudomonas alcaligenes* (53). pA506 lacks other genes required for replication that are adjacent to repB in pRA2 and does not have a region similar to the described oriV of pRA2, suggesting that mechanisms of replication are not conserved between the two

FIG 1 Map of pA506. The outer circle shows predicted coding sequences color coded by putative function: dark green, plasmid replication and stability; green, UV resistance; purple, site-specific recombinases; orange, regulation; black, hypothetical proteins; gray, pyocin immunity protein; blue and turquoise, conjugation. Annotated functions or locus tags (i.e., PflA506_p0001 is shown as 1) are shown outside the circle. Intergenic regions with putative functions as the origin of transfer (oriT), origin of vegetative replication (oriV), and partitioning centromere (par) are shown in red. Circles 2 through 8 depict regions of pA506 that are conserved in seven other plasmids as determined by tBLASTn (cutoff of 1e−5). Second circle (lavender), pMP124 from *P. fluorescens*; third circle (lavender), PAPI-1 from *P. aeruginosa PA14*; fourth circle (yellow), pMA4326A from *P. syringae pv. maculicola*; fifth circle (yellow), pPSR1 from *P. syringae pv. syringae*; sixth circle (yellow), the small plasmid from *P. syringae pv. phaseolicola* 1448; seventh circle (gray), pEU30 from *E. amylovora*; eighth circle (gray), pET49 from *E. tasmanii*. Within each circle, the darkest color indicates nucleotide identity exceeding 40% whereas the lightest color represents identity exceeding 20%. Ninth circle, G+C content. Tenth circle, GC skew. Eleven circle, coordinates in kilobase pairs. The circular plasmid diagram was generated using BRIG (74).
plasmids. Homologs of PlaA506_p0001 are present in a number of plasmids in the Enterobacteriaceae and in pPT14-32 from P. syringae (see Fig. S3), but are not present in pPT23A family plasmids that have been characterized to date. To determine if the putative oriV and PlaA506_p0001 were required and sufficient for pA506 replication, we amplified and cloned DNA fragments from the region into the pCR2.1-TOPO plasmid, which did not replicate in A506-ΔpA506. The recombinant plasmids were introduced into A506-ΔpA506 through transformation (Fig. 2). A 440-nt fragment encompassing the intergenic region between PlaA506_p0001 and PlaA506_p0002 was sufficient for replication of the recombinant plasmid in A506-ΔpA506. Furthermore, the recombinant plasmid containing the 440-nt insert was maintained by A506-ΔpA506 following growth without antibiotic selection for at least 100 generations (data not shown), indicating that the plasmid was stably maintained in this bacterium. The stable maintenance of the plasmid suggests that the oriV of pA506 and pCR2.1-TOPO are compatible and that the combined replicons may constitute a framework for construction of shuttle vectors useful in the pseudomonads and Enterobacteriaceae. The 440-nt fragment did not contain PlaA506_p0001 or any other predicted CDSs, which suggests that the replicative machinery in the host bacterium was sufficient for plasmid replication. Although plasmid replication commonly requires plasmid-encoded replicases (44), this is not always the case. For example, the replicative enzyme RepA is not required for replication of the plasmid pRK2 in Pseudomonas spp. but is required for pRK2 replication in E. coli (52). pA506 also replicates in the enterobacterial species E. coli (data not shown) and P. vagans (Fig. 3), and we cannot exclude the possibility that genes or sequences outside the 440-nt region required for replication in A506-ΔpA506 are needed for replication in those bacteria. For example, the 628-nt intergenic region between nikB and PlaA506_p0001 (Fig. 1) has some characteristics of a plasmid replication origin, including A+T-rich repeats that typically serve as binding sites for host replication initiation factors, two 8- and 9-bp inverted repeats, and 16 putative DnaA boxes, which differ by 2 nucleotides from the consensus sequence (data not shown). It is possible that this intergenic region or other components of pA506 are involved in replication of the plasmid in some bacterial hosts.

Large plasmids (exceeding 30 kb in size), such as pA506, are typically maintained at low copy number in the bacterial cell (54). Such low-copy-number plasmids depend on partitioning systems to ensure their stable inheritance by daughter bacterial cells. The partitioning loci (par) typically consist of three elements: (a) a centromere-like site containing a series of small nucleotide repeats; (b) a centromere-binding factor, which forms a nucleoprotein complex with the centromere; and (c) an ATPase or GTPase that interacts with the centromere-binding factor to assemble a structure that ensures the distribution of the plasmids between dividing bacterial cells (55, 56). Typically, genes encoding the two protein components are clustered with the centromere-like site on a plasmid. Plasmid centromeres and centromere-binding factors are quite diverse, but genes encoding the ATPase/GTPase component fall into distinct groups. Most plasmid partitioning systems use ATPases in the ParA family (55, 56), and a member of this protein family, PlaA506_p0020, is present in pA506. PlaA506_p0020 is adjacent to an intergenic region having sets of repeated sequences separated by spacer sequences, which is characteristic of the centromere-like element of partitioning systems (55, 56). Within the intergenic region between PlaA506_p0020 and PlaA506_p0021 are 24 repeats with a GAATTC consensus sequence distributed over 313 nt (Fig. 4). The repeats are organized into four sets of three to nine repeats, each separated by 4- to 7-nt spacers having low (38%) G+C content. Each of the four sets is separated by 18-nt spacers. Although the number and specific
sequences of repeats in the putative par region of pA506 differ from those in known par regions, the centromere-like elements of plasmid partitioning systems are known to be diverse in sequence, with the common feature being the presence of many short nucleotide repeats that are key to the formation of secondary structures necessary for proper partitioning of the plasmid (55, 56). In pA506, there are 15 GAATTC repeats outside the intergenic par region, with one bordering the putative oriV (Fig. 2) and the other 14 in an apparently random distribution throughout the plasmid. The role, if any, of these dispersed repeats is unknown. The third element of the plasmid partitioning system of pA506 may be encoded by PflA506_p0019, although the sequence of this gene exhibits little similarity to characterized centromere-binding factors. In the large plasmid of *P. syringae* pv. phaseolicola 1448A, homologs of PflA506_p0020 and PflA506_p0021 are adjacent to one another and to a putative centromere-like region, having 16 direct repeats with a GAATTC consensus sequence and 5- to 6-nucleotide spacers (G+C content (35 to 39%) are depicted with shaded boxes. (B) The sequence motif logo was generated from the conserved six-nucleotide repeat regions depicted as pentagons in panel A (http://weblogo.berkeley.edu/).

![Diagram A](image1.png)

FIG 4 The putative partitioning region of pA506. (A) A map of the region of pA506 extending from coordinates 12602 to 14265 is shown, with coding sequences depicted as open arrows and the intergenic regions depicted as a black line. The enlargement shows 313 bp of the intergenic region between PflA506_p0020 and PflA506_p0021. Each pentagon represents one of the repeated six-nucleotide sequences (GAATTC) present in the region, which are separated by 4- to 7-bp spacer sequences with low G+C content. Three longer 18-bp spacer sequences with low G+C content (35 to 39%) are depicted with shaded boxes. (B) The sequence motif logo was generated from the conserved six-nucleotide repeat regions depicted as pentagons in panel A (http://weblogo.berkeley.edu/).

As defined above, the putative partitioning region of pA506 extends from PflA506_p0019 to PflA506_p0027 (hicB) and includes four CDSs annotated as hypothetical proteins. Two of these (PflA506_p0021 and PflA506_p0022) are also present in several of the pPT23A family plasmids, including pPSR1 and pPMA4326A (Fig. 1). PflA506_p0022 was disrupted by insertion of mini-Tn5-gfp-km-gm following random transposon mutagenesis, and we observed that the resulting plasmid (pA506:gfp-km-gm) was not stably maintained by A506. After serial passage in KB for 100 generations without selection, pA506 was retained by >95% of the cells, but only 0.1 to 0.0001% of cells of A506 pA506:gfp-km-gm were resistant to kanamycin (data not shown). The kanamycin-resistant cells had retained the marked plasmid; they were GFP+ and resistant to gentamicin, and the oriV of pA506 was detected with PCR (data not shown). Cells of A506 pA506:gfp-km-gm had an altered morphology compared to those of A506 and A506-ΔpA506 (see Fig. S6 in the supplemental material). The mean cell lengths of A506 and A506-ΔpA506 were not significantly different from one another (*P = 0.05*) in LB or KB broth culture at 24 or 48 h. In contrast, cells of A506 pA506:gfp-km-gm exhibited filamentous growth and, on average, were 4.1 times (24 h) and 4.6 times (48 h) longer (*P < 0.0001*) than those of A506 and A506-ΔpA506 in either medium. Changed cell morphology due to mutagenesis of par has been observed with other bacteria. For example, disruption of chromosomal parA or parB in *P. aeruginosa* resulted in filamentous cell morphology (59). It is possible that the transposon insertion into PflA506_p0022 had a polar effect on the downstream gene, PflA506_p0023. These data suggest that one or both of these genes, which are not closely related to any genes of known function, are involved in plasmid stability or segregation and that their disruption can alter cell morphology.

Conjugal transfer genes of pA506. Plasmid conjugation is typically mediated through a type IV secretion system composed of a channel spanning the bacterial membrane and a pilus that contacts the recipient cell (60). The conjugal transfer region of pA506, which extends from PflA506_p0036 to PflA506_p0067, has nearly all components of this type IV secretion system as well as a set of pil genes for type IV pilus biogenesis. PflA506_p0066 encodes a putative relaxase, the enzyme that catalyzes the initial cleavage of DNA at the oriT site within the origin of transfer (oriT) region of the plasmid to produce the single-stranded DNA that is transferred to the recipient cell. Due to their key role in plasmid mobility, relaxases have been used as a phylogenetic tool for classification of mobilizable and conjugative plasmids (35). Our phylogenetic analysis placed PflA506_p0066 (Fig. 5; see also Table S4 in the supplemental material) and all other genes with putative roles in type IV secretion within the MOBP6 family (data not shown), which also includes many plasmids from *P. syringae* and species of *Enterobacteriaceae*, including the plant pathogen *E. amylovora*.

Most MOBP6 family plasmids have a conserved oriT, and the nic site (61) and the typical inverted and direct repeats of the region also present in the oriT of pA506 (see Fig. S7 in the supplemental material). The MOBP6 plasmids have a VirB/VirD4 system of conjugation, whereby 10 VirB proteins (VirB2 to VirB11) form the conjugation machinery, and VirD4 acts as a type IV coupling protein (T4CP) to the relaxosome, the nucleoprotein complex composed of oriT, the relaxase, and auxiliary transfer proteins (60). The conjugal transfer region of pA506 contains putative genes for VirD4 and 8 of the 10 VirB proteins but lacks homologs of virB1, which encodes a soluble lytic transglycosylase, and virB7, an outer membrane lipoprotein. Intriguingly, the predicted amino acid sequence of an open reading frame (ORF) upstream of virB2 in pA506 has 11 residues that are identical to a conserved region of the VirB1 proteins in the pPT23A family but lacks an SLT domain present in functional transglycosylases. We speculate that this
teriaceae family plasmids are in novel MOBP6 family plasmids, as previously described (35). Relaxase sequences from known MOBP5, MOBP6, and MOBP7 family plasmids were also shown. Sequences that were significantly shorter than the 350 aa used in the BLASTP search were removed prior to alignment and tree generation. MOBP6 was used in generation of this tree. Sequences were aligned by MAFFT L-INS-I, and the LG/H11001 substitution model was identified as the best model using the BIC for RAxML with the above data as input, and the interior node values indicate the percentage of bootstraps out of 1,000. Bootstrap values below 50 are not shown. The N-terminal 350 aa from PflA506_p0066 were used to identify relaxase-based phylogeny of pA506 and other plasmids in the MOBP6 family. The pil clusters of PAPI-1, plasmid R64 (63), and the ICE PAPI-1 (50) in liquid media. The pil cluster of pA506 is identical in organization to that of PAPI-1 of P. aeruginosa PA14 (50) and P. aeruginosa Pf-5 (49); all three of these Pseudomonas pil regions lack orthologs of pilU, which encodes a peptidase required for processing the PilS prepilin. In P. aeruginosa, the chromosomally encoded prepilin peptidase PilP provides this processing function and is required for conjugal transfer of PAPI-1 in liquid media (50). pilD is also present in the chromosome of P. fluorescens A506 (6) and is likely to provide a similar essential function in processing of the PilS prepilin encoded by pA506. The similarity between the pil clusters of PAPI-1, plasmid R64, and pA506 suggests that the last encodes type IV pili involved in conjugation rather than twitching motility (64). To identify any potential role of the plasmid-borne pil genes in twitching motility, however, we compared A506 to the plasmid-cured derivative A506-ΔpA506. On KB solidified with 1% agar, A506-ΔpA506 and the positive control, P. aeruginosa PAO1, were significantly (P < 0.05) more motile than was wild-type A506, which harbors pA506 (Fig. 6; see also Table S5 in the supplemental material). These results demonstrate conclusively that the pil genes on pA506 are
not required for twitching motility. The chromosome of A506 has a full complement of pil genes, which are responsible for twitching motility of _P. aeruginosa_ (64) and probably function similarly in A506. We have not observed a growth difference between wild-type A506 and A506-ΔpA506 in liquid culture (data not shown); therefore, additional research is required to determine the mechanism by which the plasmid reduces twitching motility.

Conjugal transfer of pA506. Conjugal transfer experiments confirmed that pA506 is mobile, not only to other pseudomonads, but also to members of the _Enterobacteriaceae_. Transfer to _P. chlororaphis_ O6, _P. fluorescens_ SS101, _P. brassicacearum_ Q8r1-96, _P. vagans_ C9-1, and _E. coli_ K-12 was demonstrated using the marked plasmid pA506::gfp-km-gm. The plasmid was isolated from transconjugants of each strain, and the BamHI restriction digest pattern was identical to that of the source (Fig. 3). Furthermore, plasmid acquisition by recipients was confirmed with the PCR targeting sequences on the plasmid and also the chromosome of A506 to ensure that the putative transconjugant was not A506 (data not shown). Frequencies of pA506::gfp-km-gm transfer, which varied from 10^-6 to 10^-7 transconjugants per recipient (data not shown), may not accurately reflect the frequency of pA506 transfer because the morphological changes associated with the gfp-km-gm insertion into PflA506_p0022 (see Fig. S6 in the supplemental material) could influence conjugation frequency.

pA506 increases tolerance of A506 to UV irradiation. pA506 contains _rulAB_ (PflA506_p0003 and p0004) (Fig. 1; see also Fig. S8 in the supplemental material), which encode the error-prone DNA polymerase V that synthesizes DNA across UV irradiation-induced lesions (65). In _P. syringae_, expression of the _rulAB_ operon is controlled by the transcriptional repressor LexA, which binds to a conserved LexA box upstream of the operon (66-68). In response to DNA damage, RecA is activated and interacts with LexA, resulting in cleavage of the protein and the induction of the _rulAB_ operon. A LexA box was identified 23 nt upstream of _rulA_ on pA506. The LexA box sequence is similar to those upstream of _rulAB_ on the chromosomes of _P. fluorescens_ SS101 and _P. brassicacearum_ Q8r1-96, with a common motif of CTGT-N8-ACAG (6, 66, 68).

rulAB are known to increase the tolerance of _P. syringae_ strains to UVB and UVC irradiation, which causes DNA damage (67, 69–72), so we determined if pA506 enhanced UVC tolerance of A506, as expected due to the plasmid-borne _rulAB_ operon. To test the sensitivity of our assay, we compared UVC tolerance of A506 to those of _P. fluorescens_ SS101 and _P. brassicacearum_ Q8r1-96, which have _rulAB_, and to that of _P. chlororaphis_ O6, which lacks _rulAB_ (6). Considering all experiments, _P. fluorescens_ SS101 was significantly (P < 0.05) more tolerant of UVC than were the other strains and required an average of 55 J/m^2 to decrease the log survival ratio by 2 units (data not shown). Wild-type A506 and _P. brassicacearum_ Q8r1-96 were similar in their tolerance of UVC irradiation and required average doses of 40 J/m^2 and 41 J/m^2, respectively, to decrease the log survival ratio by 2 units (data not shown). _P. chlororaphis_ O6 was significantly (P < 0.05) more sensitive to UVC irradiation than were the other strains and required an average dose of only 21 J/m^2 to decrease the log survival ratio by 2 units (data not shown). Together, these data confirm the utility of this assay for examining UVC tolerance in pseudomonads.

The assay was used to examine the influence of pA506 on tolerance of the bacterium to UVC irradiation. In repeated assays, A506 was significantly (P < 0.05) more tolerant of UVC irradiation than was its plasmid-cured derivative at doses of ≥30 J/m^2 up to 120 J/m^2; 160 J/m^2 was a lethal dose for both the wild type and the plasmidless derivative of A506 (Fig. 7). The level of UVC tolerance of A506 is similar to those of many strains of _P. syringae_ (72), and our results are consistent with those from previous studies establishing a role for _rulAB_ in UVC tolerance of _P. syringae_ (67, 69–72).

pA506 did not influence epiphytic fitness on flowers in orchards. On flowers of pear and apple, strains A506 and A506-ΔpA506 established population sizes of ca. 5 × 10^5 CFU/flower after application (Fig. 8A to C). Environmental conditions during bloom of Bartlett pear were cool and rainy (see Table S2 in the supplemental material). Under these conditions, populations decreased 100-fold by 4 days after application to pear flowers, but thereafter, both A506 and A506-ΔpA506 increased to populations of ≥10^6 CFU/flower (Fig. 8A). Environmental conditions during bloom in both apple flower experiments were warmer and drier than those during pear bloom (see Table S2). In both apple flower experiments, A506 and A506-ΔpA506 achieved mean populations of ≥10^5 CFU/flower within 2 to 3 days after application on apple flowers (Fig. 8B and C). The presence of pA506 in cells of A506 cultured from blossom surfaces on the final sampling date of each experiment was confirmed with the PCR, establishing that the plasmid was maintained by A506 in this environment.

Considering all experiments, mean populations of the plasmidless derivative of A506 were not significantly different than those of the wild type throughout bloom. These results contrast with the results of other studies that have detected roles for plasmids in epiphytic fitness of _Pseudomonas_ spp. (69, 73). The different conclusions of these studies are likely due to the varied environmental conditions, plant tissues, plasmids, and strains evaluated. Plasmid size may be one factor. The 330-kb plasmid pQBR103 reduced the fitness of _P. fluorescens_ SBW25 in the rhizosphere of sugar beet seedlings (73), which was attributed to the metabolic load imposed by this large plasmid. As plants matured,
however, pQBR103 had a negligible influence on the population size of SBW25 on leaves and the rhizosphere (73). Those authors postulated that unidentified context-specific factors encoded by the plasmid may have accounted for the rebound in populations of SBW25 harboring pQBR103 on mature plants. pA506 is less than 20% of the size of pQBR103, and its maintenance may pose a smaller metabolic load on the host bacterium. Accordingly, we have not observed a difference in growth rate between A506 and its plasmidless derivative in culture, and pA506 was also stable in the strain over 100 generations (data not shown).

pA506 afforded greater tolerance to UV radiation than did its plasmidless derivative in vitro (Fig. 7), but the intensity of UV-B in orchards in Oregon during the spring may have been too low to injure A506-ΔpA506 and reduce growth relative to the parental strain. Environmental conditions have been shown to influence plasmid-associated fitness in other pseudomonads (69, 73). Transconjugants and wild-type strains of *P. syringae* pv. *syringae* carrying *rulAB*-bearing plasmids exhibited greater fitness on adaxial surfaces of mango leaves exposed to direct sunlight than did strains without the plasmids, whereas there was no difference in fitness of the strains on the abaxial surface or on leaves under shaded conditions (69). In that study, the presence of a plasmid with *rulAB* increased fitness of bacteria only when exposed to solar radiation on leaves. Similarly, pA506 may confer some fitness benefit to A506 on leaves under conditions of full exposure to solar radiation, but no benefit from the plasmid was observed on flowers in our study, which was done under conditions when A506 is normally deployed as a biological control agent for fire blight.

Conclusions. pA506 has many characteristic features of the pPT23A plasmid family that are widely distributed among pathovars of *P. syringae*, particularly a type IV secretion system involved in conjugative transfer and the *rulAB* genes conferring UV resistance (3). Despite these similarities, pA506 also has many features that are atypical for these plasmids; most notably, it lacks the *repA* gene, which has been considered the defining characteristic of the pPT23A plasmids (46), has atypical plasmid replication and partitioning regions, has a *pil* gene cluster encoding conjugative type IV pilus, and carries a distinct complement of cargo genes. Like pA506, other plasmids, such as the well-characterized pR64, carry two sets of conjugative transfer genes (type IV secretion and type IV pilus), which serve to expand the conditions under which the plasmids are self-transmissible (62, 63). Given the diversity of habitats occupied by *P. fluorescens*, the flexibility to transfer genetic material under a broad set of environmental conditions may be particularly important. Whereas many members of the pPT23A family confer virulence traits as well as streptomycin or copper resistance that enables the host bacterium to survive chemical control measures used for plant disease management (3, 39), pA506 does not carry known genes for virulence or antibiotic or heavy metal resistance.

The atypical G+C content of pA506 relative to the A506 chromosome suggests that the plasmid was acquired recently in the evolutionary history of the strain. Based on the phylogenetic relationships of all CDSs having a conjugative function to plasmid-borne genes in the *Enterobacteriaceae* and the average pA506 G+C content of 53%, which is similar to that of the *Enterobacteriaceae*, it is tempting to speculate that plasmids in that large group of gammaproteobacteria may be ancestral to pA506. Indeed, our relaxase-based phylogeny places the pA506 within the larger MOB_{p6} family that includes many plasmids from the *Enterobacteriaceae* (Fig. 5). In contrast, genes conferring functions in plasmid replication and partitioning may have a distinct origin, possibly a member of the alphaproteobacteria. Several other *Pseudomonas* plasmids have replication and partitioning loci similar to those in pA506, including pPT14-32, where these regions are contiguous. We speculate that these regions may have been acquired together and been separated upon the subsequent acquisition of the *rulAB* and other intervening sequences between *oriV* and the *par* region of pA506. As additional plasmid sequences become available, it is likely that a clearer picture of the evolution of pA506 will emerge, but at present, the plasmid appears to have a mosaic structure composed of blocks of genes having distinct origins.

We estimate that approximately 4 × 10^16 cells of A506 have been released into environment during bloom of apple and pear orchards in a single year based on agricultural use data for Blight-Ban A506 (7). We tested the fitness of A506 and A506-ΔpA506 on flowers because that is the tissue colonized for biological control of fire blight (7–9). We did not observe a correlation between epiphytic fitness and carriage of pA506 on flowers. While pA506 is
mobile and may be transferred and maintained in other bacteria residing in orchards, the lack of known genetic determinants for virulence, toxicity, or tolerance to antibiotics and/or copper reduces the potential impact of its transfer. If the plasmid pA506 was acquired by plant-pathogenic bacteria, it is unlikely that efficacy of current disease management practices would be diminished.

ACKNOWLEDGMENTS

We thank Jennifer Lee and Rachel Blumhagen for technical assistance, Todd Temple for selecting A506 pA506::gfp–km–gm, Steve Lindow for providing P. fluorescens A506, Anne Anderson for providing P. chlororaphis O6, Dave Weller for providing P. brassicacearum Q8r1–96, Jos Rajaimeakers for providing P. fluorescens SS101, and Carol Ishimaru for providing P. vagans C9–1.

This work was supported by grants 2008-35600-18770 and 2012-67013-19392 from the USDA National Institute of Food and Agriculture.

REFERENCES

20. Gallant CV, Daniels C, Leung JM, Ghosh AS, Young KD, Kotra LP,

