Intense turquoise colors of apatite-type compounds with Mn$^{5+}$ in tetrahedral coordination

Elena A. Medinaa, Jun Lia,*, Judith K. Stalickb, M.A. Subramaniana

a Department of Chemistry, Oregon State University, Corvallis, OR 97331, United States
b NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, United States

A R T I C L E I N F O

Article history:
Received 4 October 2015
Received in revised form 22 November 2015
Accepted 1 December 2015
Available online 11 December 2015

Keywords:
Inorganic pigments
Apatite-type structure
Synthesis
Neutron diffraction
Optical properties
Magnetism

A B S T R A C T

The solid solutions of chlorapatite compounds Ba$_3$Mn$_3$–xNa$_x$O$_{12}$Cl ($x = 0$–3.0) and Ba$_3$Mn$_3$–xP$_x$O$_{12}$Cl ($x = 0$–3.0) have been synthesized through solid state reaction or sol–gel methods using citric acid. The colors of the samples change from white ($x = 3.0$) through turquoise ($x = 1.5$) to dark green ($x = 0$) with increasing amount of manganese. Optical measurements reveal that the origin of the color is presumably a combination of d–d transitions of Mn$^{5+}$ and cation-anion charge transfer from transition metals to oxgens. Near IR reflectance measurements indicate that synthesized compounds are promising materials for “cool pigments” applications. Magnetic measurements verify that manganese has two unpaired electrons and exhibits 5$^+$ oxidation state. The IR spectra change systematically with sample compositions and the fingerprint region (700 cm$^{-1}$ to 1100 cm$^{-1}$) indicates characteristic bands belonging to (MnO$_4$)$^{5-}$, (VO$_4$)$^{3-}$ and (PO$_4$)$^{3-}$ functional groups. Structure refinements using neutron data confirm that Mn$^{5+}$, V$^{5+}$ and P$^{5+}$ cations occupy the tetrahedral sites in the apatite structure.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The search for new, cheap, enduring and environmentally friendly inorganic pigments is a challenging task of materials science. It was discovered recently that hexagonal YIn$_{1-x}$Mn$_x$O$_3$ solid solution with Mn$^{3+}$ in trigonal bipyramidal coordination gives a brilliant blue color and exhibits excellent near-infrared reflectance [1]. The new blue pigments are easy to make, heat- and acid-resistant and nontoxic with great potential for cool pigment applications where heating is not desirable (e.g., roofing materials). The cost of indium-based pigments however is an obstacle for practical applications. New inexpensive blue pigments with similar optical properties are needed.

Many Mn-containing compounds have been reported with vivid colors. Brownmillerite-type Ba$_2$In$_2$–xMn$_x$O$_5$–x produces a green color with Mn$^{5+}$ in tetrahedral coordination [2]. A minimum in the visible absorption at 500 nm is responsible for the color of these compounds. The Apatite-type structure A$^+$_2(MO$_4$)$_3$X ($A = Ca^{2+}$, Sr$^{2+}$, Ba$^{2+}$, Pb$^{2+}$, $M = P^{2+}$, Mn$^{5+}$, Cr$^{3+}$, V$^{3+}$; $X = F^-$, Cl$^-$, OH$^-$) [3–12] gives a great possibility to combine different A, M and X sites elements and synthesize compounds with a wide range of useful properties. A great number of compounds with the Apatite related structure occur in nature and form minerals belonging to the apatite (A$^{1+}$,M$^{2+}$O$_3$)$_3$X, belovite (A$^{1+}$B$^{1+}$Cl)$_3$ (M$^{2+}$O$_3$)$_2$X, britholite ([A$^{1+}$B$^{1+}$]$_2$M$^{2+}$O$_3$)$_2$X) [13,14], hedyphane (A$^{1+}$B$^{2+}$M$^{2+}$O$_3$)$_2$X and ellestadite (A$^{1+}$M$^{2+}$O$_4$)$_3$ (M$^{2+}$O$_4$)$_2$X) mineral groups [15]. Apatite-type compounds containing Mn$^{5+}$ tetrahedrally coordinated by oxygen might be promising materials for pigments with deep blue and green colors [16,17]. In inorganic oxides the oxidation state 5$^+$ of manganese is very unusual, because Mn$^{5+}$ is unstable and has a tendency to disproportionate into more stable oxidation states 4$^+$ and 7$^+$. Apatite-type compounds with Mn$^{5+}$ in tetrahedral coordination ($M = $ site cation) exist mostly with Ba$^{2+}$ as an $A = $ site cation, which due to its high (\sim5 eV) first ionization potential helps manganese to keep the unusual oxidation state [18]. Several solid solutions with the apatite host structure have been synthesized and colors of compounds were described [19,20], but no detailed and systematic structural, optical and magnetic data are reported.

The parent compound Ba$_3$(MnO$_4$)$_2$Cl crystallizes in space group P6$_3$/m ($a = 10.48$ Å, $c = 7.772$ Å, $V = 739.4$ Å3) [21–24], isostructural with Ba$_3$(VO$_4$)$_2$Cl [25–28] and Ba$_3$(PO$_4$)$_2$Cl [29–43] (Fig. 1). There are two crystallographic sites of Ba$^{2+}$ in the hexagonal structure (4f and 6h) differing in coordination number and local symmetry. The Ba1 atoms occupying 4f positions have a coordination number of 9,

* Corresponding author. Department of Chemistry, Oregon State University, Gilbert 153, Corvallis, OR 97331, United States.
E-mail address: lij@science.oregonstate.edu (J. Li).

http://dx.doi.org/10.1016/j.solidstatesciences.2015.12.001
1293-2558/© 2015 Elsevier Masson SAS. All rights reserved.
forming face-sharing Ba(1)O9 tricapped trigonal prism chains along the c axis. The Ba2 atoms occupying 6h positions are bonded to six oxygens and two chlorines, forming edge-sharing Ba2O4Cl2 bicapped trigonal prism (distorted) chains in channels of Ba(1)O9 chains. The discrete MnO4 tetrahedra interconnect the one-dimensional Ba polyhedral chains to form the three-dimensional crystal structure. Chlorine atoms are located between layers formed by MnO4 tetrahedra and stacked up in channels of Ba polyhedral chains along the c axis. For further structural descriptions of the apatite framework see Fig. S1 in supporting information (SI).

In the present work two apatite-type solid solutions, Ba5Mn3−xVxO12Cl and Ba5Mn3−xPxE2O12Cl, were successfully synthesized and their structural, optical and magnetic properties were studied in detail using various experimental methods and techniques. The end members of the solid solutions are dark green (Ba5(MnO4)3Cl) and white (Ba5(PO4)3Cl and Ba5(VO4)3Cl), while the colors of the solid solutions vary from dark green to bright turquoise with different shades when Mn5+ cations are gradually substituted by isovalent V5+ and P5+. Several minerals and pigments with turquoise color are well-known and used today (amazonite, vivianite, blue zircon, chalcedony, some types of spinel and beryl). The most famous among them is the opaque gem called turquoise with the formula CuAl6(PO4)4(OH)8•4H2O [44]. Some widely used commercial turquoise pigments contain toxic cobalt [45–47]. The apatite-related pigments described here are more environmentally friendly and thermally stable with brighter colors.

2. Experimental section

All samples were synthesized using standard solid state synthesis. Stoichiometric amounts of BaCO3 (Cerac, 99.9%), MnO2 (Alfa Aesar, 99.9%), V2O5 (Cerac, 99.9%), BaCl2•2H2O (Mallinckrodt, 99.9%) and (NH4)2HPO4 (Mallinckrodt, 99.9%) were ground in an agate mortar, pelletized and heated in an alumina crucible at 800 °C for 12 h. The mixture was then ground again, pelletized and reheated at 850 °C for 12 h.

Low temperature synthesis (sol–gel method) was also attempted for the Ba5Mn3−xVxO12Cl system. Stoichiometric amounts of Ba(NO3)2 (Mallinckrodt, 99.9%), Mn(NO3)2•4H2O (Aldrich, 99.9%), NH4Cl (Macron, 99.9%) were mixed and dissolved in DI water. The nitrate solutions were heated while stirring, and the citric acid (Sigma–Aldrich, ≥ 99.5%) was added in a molar ratio of 2:1 citric acid to metal nitrate. Here the citric acid is used as a cross linking agent. The pH of the resulting solutions was then adjusted to 7 using aqueous NH4OH (28–30% solution, ACS), and the neutralized solutions were heated until the formation of dry gel. Dark brown amorphous powder was obtained after heating the translucent dry gel at 250 °C for 2 h, and it was further calcined at 700–750 °C in air for 12 h.

XRD data were collected using a Rigaku MiniFlex II diffractometer with CuKα radiation (λ = 1.5418 Å) and a graphite monochromator at room temperature. For phase identification the measurements were carried out at 0.5°/min within 15°–70° 2θ range. For lattice parameter calculation the data were collected with an internal standard such as Si. Powder neutron diffraction data were collected on the 32-counter high-resolution diffractometer BT-1 at the Center for Neutron Research at the National Institute of Standards and Technology. A Cu(311) monochromator, yielding a wavelength of 1.5403(2) Å, was employed. Collimation of 15° of arc was used before the monochromator, 20° before the sample, and 7° before the detectors. The samples were loaded into vanadium containers of 15.6 mm diameter and 50 mm length. Data were collected at room temperature over a 2θ range of 3°–167°. XRD and neutron data were refined using the Rietveld method, as implemented in GSAS-EXPGUI software [48,49]. Bond-valence analysis of the neutron structures made use of the bond-valence calculator [50].

Konica Minolta CM-700d Spectrophotometer (Standard illuminant D65) was used to measure L*, a*, b* color coordinates. Diffuse reflectance data in the visible range were measured using a homemade UV-VIS spectrophotometer (MgO as the reference) and converted to absorbance using the Kubelka-Munk equation [51]. Near-infrared reflectance data (up to 2500 nm) were collected using a Jasco V-670 Spectrophotometer. IR measurements were performed using a Thermo Scientific Nicolet 6700 FT-IR Spectrometer in the spectral range of 700 cm−1 to 2500 cm−1.

Magnetic properties measurements were made using a Quantum Design Physical Property Measurement System (QD-PPMS) at temperature range of 5 K–300 K (zero-field cooling, applied magnetic field 0.5 T). Inverse magnetic susceptibility data was used to
fit for Curie–Weiss law. Diamagnetic corrections were made for calculations of experimental μ_B [52].

3. Results and discussion

3.1. Crystal structures by X-ray and neutron diffraction

The XRD patterns are similar for Ba$_5$Mn$_3$-xV$_x$O$_{12}$Cl and Ba$_5$Mn$_{3-x}$P$_x$O$_{12}$Cl samples prepared by solid state reaction and sol–gel method. Diffraction data on samples from solid state reactions were used for structural analysis, as shown in Fig. 2. Nearly all the samples are pure with two exceptions: Ba$_5$(PO$_4$)$_3$Cl has two visible small impurity peaks belong to Ba(PO$_3$)$_2$ and Ba$_5$(VO$_4$)$_3$Cl contains a small amount of Ba$_2$V$_2$O$_7$ impurity phase. With increasing substitution of manganese with vanadium in the structure there are no visible peak shifts because the ionic radii of M-site cations differ only slightly.

Based on structure refinements all members of both series are isostructural, with the same hexagonal unit cell ($P6_3/m$) as the parent compounds or end-members of the series. The unit cell (a, c) values for both solid solutions (average c/a) were calculated based on the literature data. The average bond length (α) for both solid solutions.

Neutron diffraction data on Ba$_5$Mn$_{3-x}$V$_x$O$_{12}$Cl ($x = 0$, 0.5, 2.8) and Ba$_5$Mn$_{0.5}$P$_2$O$_{12}$Cl samples were collected and the crystal structures were refined using the Rietveld fitting method. The observed and calculated diffraction patterns for Ba$_5$Mn$_{0.2}$V$_{2.8}$O$_{12}$Cl are shown in Fig. 4 and those for Ba$_5$(MnO$_3$)$_2$Cl, Ba$_5$Mn$_2$V$_{0.5}$O$_{12}$Cl and Ba$_5$Mn$_{0.5}$P$_2$O$_{12}$Cl can be found in Supporting Information (Fig. S2–S4). The structure refinement results are shown in Tables 1–5, and bond valence sums (BVS) were calculated using the bond-valence calculator. Refined anisotropic U values are available in CIF files in the Supporting Information.

The refinement of atomic site occupancies shows that there are no oxygen or chlorine vacancies in the structures, i.e. oxygen and chlorine sites are fully occupied. Occupancies of vanadium atoms in the compounds were not refined because vanadium does not scatter neutrons much; all vanadium occupancies shown in the tables were calculated based on refined manganese occupancies. Refined atomic displacement parameter U values are reasonable and calculated bond valence sums are as expected. Mn$^{5+}$, V$^{5+}$, P$^{5+}$ occupy the same crystallographic sites in the structure and have tetrahedral coordination, bonded to four oxygen atoms.

Bond distances and angles for Ba$_5$Mn$_{0.2}$V$_{2.8}$O$_{12}$Cl are shown in Table 6 and those for Ba$_5$(MnO$_3$)$_2$Cl, Ba$_5$Mn$_{2.5}$V$_{0.5}$O$_{12}$Cl, and Ba$_5$Mn$_{0.5}$P$_2$O$_{12}$Cl are given in supporting information (Tables S1–S3). The M-O bonds in (MO$_3$)$_2$ tetrahedra become shorter and more covalent with increasing of Mn content in the case of Ba$_5$Mn$_{3-x}$V$_x$O$_{12}$Cl solid solution (average M-O bond length of Ba$_5$(MnO$_3$)$_2$Cl equals 1.699(5) Å and 1.711(8) Å for Ba$_5$Mn$_{0.2}$V$_{2.8}$O$_{12}$Cl).

The main differences in the studied structures occur in the tetrahedrally coordinated M-atoms (Fig. 5). A change of the tetrahedral central atom leads to modifications of polyhedra parameters (bond lengths and bond angles). To describe the distortion of tetrahedra the bond angle variance (BAV) and bond length distortion (BLD) parameters might be used [54,55]. BAV and BLD are used to characterize any polyhedra deviations from the ideal geometry. The bond angle variance (BAV) can be calculated using $\theta_i = \text{ideal bond angle for a regular polyhedron}$, $n = \text{number of bond angles in polyhedron}$ and $\theta_i = \text{individual bond angles}$. BLD = 100/\sum n \frac{1}{\theta_i - \theta_i}^2/n – 1. 1 equation ($\theta = \text{ideal bond angle}$ for a regular polyhedron, $n = \text{number of bond angles in polyhedron}$ and $\theta_i = \text{individual bond angles}$). BLD = 100/\sum n \frac{1}{\theta_i - \theta_i}^2/n – 1.

Bond angles O-M-O in (MO$_3$)$_2$ tetrahedra slightly varies for both series with increasing x value (V/P content). The mean O-M-O angle equals 108.72°, 109.40°, 109.45°, 109.48° and 109.47° for

Fig. 2. XRD patterns of Ba$_5$Mn$_{1-x}$V$_x$O$_{12}$Cl (a) and Ba$_5$Mn$_{3-x}$P$_x$O$_{12}$Cl (b) samples (asterisk – impurity peaks).
Ba₅(VO₄)₃Cl, Ba₅Mn₀.₂V₂.₈O₁₂Cl, Ba₅(MnO₄)₃Cl, Ba₅Mn₀.₅P₂.₅O₁₂Cl and Ba₅(PO₄)₃Cl, respectively (ideal tetrahedral angle is 109.47°). The O-M-O bond angle for the larger (VO₄)₃⁻ tetrahedra deviate more from 109.47°; this fact is confirmed by BAV values (BAV(Ba₅(VO₄)₃Cl) = 13.7, BAV(Ba₅Mn₀.₂V₂.₈O₁₂Cl) = 13.5, BAV(Ba₅(MnO₄)₃Cl) = 12.8, BAV(Ba₅Mn₀.₅P₂.₅O₁₂Cl) = 2.93 and BAV(Ba₅(PO₄)₃Cl) = 2.35. There is an opposite trend in the case of BLD values; with decreasing of M⁵⁺ ionic radius BLD increases. The smaller tetrahedral (PO₄)₃⁻ anion is more distorted, where Ba₅(PO₄)₃Cl has the highest value of BLD = 0.83 BLD(Ba₅(VO₄)₃Cl) = 0.19, BLD(Ba₅Mn₀.₂V₂.₈O₁₂Cl) = 0.21, BLD(Ba₅(MnO₄)₃Cl) = 0.39 and BLD(Ba₅Mn₀.₅P₂.₅O₁₂Cl) = 0.82).

3.2. Optical properties

Optical properties were characterized to study the evolution of colors of the solid solutions and understand structure-property relationships. The substituted samples have very bright colors, varying from light to dark turquoise and dark green (Mn-rich ends of solid solutions); the end members Ba₅(PO₄)₃Cl and Ba₅(VO₄)₃Cl have a white color (Fig. 6). To characterize the color of Ba₅M₃₋ₓMₓO₁₂Cl (M = V, P) samples, the L*, a*, b* color coordinates were measured [56] (L*a*b* color sphere and YXY color space for both series are given in Fig. S5–S8). As shown in Fig. 7, the L* and a* values gradually increase with increasing of x value, while the b* values decrease as x moves to the vanadium/phosphorus-rich sides of the solid solutions.

Interatomic excitations (d→d transitions) in Mn⁵⁺ (tetrahedral coordination) are mainly responsible for the color of the samples. There are two transitions that significantly impact the visible spectrum and thus color. The ground state e₂ has two states with two unpaired electrons. There are just two fully allowed transitions to examine: one electron up to t₂ (e₂t₂) and two electrons up to t₂ (e₀t₂). The one-electron transition gives the blue color. The two-electron transition has a higher energy and lower probability. Consequently, the second transition is what changes blue to blue-green (turquoise) color. It is possible that this less probable two-electron transition is intensified by the high oxidation state (5⁺) of the manganese ion and this is the reason it is most enhanced for barium containing compounds where Mn–O covalency is very high.

Diffuse reflectance spectra of the Ba₅M₃₋ₓMₓO₁₂Cl series are shown in Fig. 8. All Ba₅M₃₋ₓVₓO₁₂Cl (x = 0–2.9) samples show two maximum peaks in the red-orange (≈630 nm) and purple (≈380 nm) regions and one minimum in the green-blue region (≈500 nm–520 nm); this combination causes the green or turquoise color of the compounds. Ba₅V₃O₁₂Cl and Ba₅P₃O₁₂Cl don’t absorb in the visible region and the color of these samples is white. On each absorbance vs. wavelength spectrum there are two shoulders, which are present in the high- and low-energy regions of the visible spectrum. The low-energy peak is due to the allowed transitions of electrons (d→d transitions) inside the manganese atom and the high-energy peak is due to a Mn⁵⁺-O²⁻ charge transfer transition. The intensity of the samples’ absorbance goes down with decreasing of manganese content (x increases), because the d→d transition’s contribution becomes smaller, and the samples become lighter. At the same time the minimum of absorbance becomes broader, though it still exists in the spectrum of the lightest sample (x = 2.5) and completely disappears for white samples.

![Fig. 3. Unit cell edges of Ba₅M₃₋ₓVₓO₁₂Cl (a) and Ba₅M₃₋ₓPₓO₁₂Cl (b) phases, cell volumes (c) and c/a ratio showing anisotropic structural change (d) of both solid solutions as a function of x (vanadium/phosphorus content). The estimated errors for a, c, and V are less than the size of the points in the figures.](image-url)
Ba$_5$Mn$_{3}$ are shown in Fig. 9. There is one peak around 500 nm in the visible region for the colored samples, and the maximum of this peak UV (Neutron structural refinement of Ba$_5$Mn$_{3-x}$P$_2$O$_{12}$Cl. The chemical formula of compound based on the refined occupancies is Ba$_5$(MnO$_4$)$_3$Cl.

<table>
<thead>
<tr>
<th>Composition</th>
<th>x = 0</th>
<th>M = V, x = 0.5</th>
<th>M = V, x = 2.8</th>
<th>M = P, x = 2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Å)</td>
<td>7.7744(7)</td>
<td>7.7660(7)</td>
<td>7.7553(5)</td>
<td>7.6702(4)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>10.482(5)</td>
<td>10.490(7)</td>
<td>10.553(2)</td>
<td>10.301(0)</td>
</tr>
<tr>
<td>V$_c$ (Å3)</td>
<td>739.83(4)</td>
<td>740.19(1)</td>
<td>748.00(2)</td>
<td>704.85(3)</td>
</tr>
</tbody>
</table>

Table 3
Neutron structural refinement of Ba$_5$Mn$_{3-x}$V$_2$O$_{12}$Cl. The chemical formula of compound based on the refined occupancies is Ba$_5$(MnO$_4$)$_3$Cl.

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Wyckoff position</th>
<th>BVS</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Occupation</th>
<th>U_{iso} (Å2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba1</td>
<td>6h</td>
<td>2.1</td>
<td>1/3</td>
<td>2/3</td>
<td>0</td>
<td>1.0</td>
<td>0.009(4)</td>
</tr>
<tr>
<td>Ba2</td>
<td>6h</td>
<td>1.9</td>
<td>0.2585(8)</td>
<td>0.0132(1)</td>
<td>1/4</td>
<td>1.0</td>
<td>0.009(3)</td>
</tr>
<tr>
<td>Mn1</td>
<td>6h</td>
<td>4.7</td>
<td>0.3706(6)</td>
<td>0.4046(5)</td>
<td>1/4</td>
<td>1.0</td>
<td>0.009(4)</td>
</tr>
<tr>
<td>Cl1</td>
<td>2b</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>0.012(5)</td>
</tr>
<tr>
<td>O1</td>
<td>2h</td>
<td>1.9</td>
<td>0.4798(0)</td>
<td>0.3267(8)</td>
<td>1/4</td>
<td>1.0</td>
<td>0.016(3)</td>
</tr>
<tr>
<td>O2</td>
<td>6h</td>
<td>2.1</td>
<td>0.4688(9)</td>
<td>0.5925(8)</td>
<td>1/4</td>
<td>1.0</td>
<td>0.009(3)</td>
</tr>
<tr>
<td>O3</td>
<td>12i</td>
<td>1.9</td>
<td>0.2589(7)</td>
<td>0.3543(5)</td>
<td>0.0757(7)</td>
<td>1.0</td>
<td>0.014(1)</td>
</tr>
</tbody>
</table>

Table 3
Neutron structural refinement of Ba$_5$Mn$_{3-x}$V$_2$O$_{12}$Cl. The chemical formula of compound based on the refined occupancies is Ba$_5$Mn$_{0.2}$V$_{2.8}$O$_{12}$Cl.

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Wyckoff position</th>
<th>BVS</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Occupation</th>
<th>U_{iso} (Å2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba1</td>
<td>6h</td>
<td>2.1</td>
<td>1/3</td>
<td>2/3</td>
<td>0</td>
<td>1.0</td>
<td>0.008(8)</td>
</tr>
<tr>
<td>Ba2</td>
<td>6h</td>
<td>1.9</td>
<td>0.2576(6)</td>
<td>0.0120(6)</td>
<td>1/4</td>
<td>1.0</td>
<td>0.012(3)</td>
</tr>
<tr>
<td>Mn1</td>
<td>6h</td>
<td>5.0</td>
<td>0.3717(2)</td>
<td>0.4051(2)</td>
<td>1/4</td>
<td>0.85(2)</td>
<td>0.008(0)</td>
</tr>
<tr>
<td>V1</td>
<td>6h</td>
<td>5.0</td>
<td>0.3717(2)</td>
<td>0.4051(2)</td>
<td>1/4</td>
<td>0.15</td>
<td>0.006(8)</td>
</tr>
<tr>
<td>Cl1</td>
<td>2b</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>0.011(3)</td>
</tr>
<tr>
<td>O1</td>
<td>2h</td>
<td>1.9</td>
<td>0.4796(9)</td>
<td>0.3272(4)</td>
<td>1/4</td>
<td>1.0</td>
<td>0.019(2)</td>
</tr>
<tr>
<td>O2</td>
<td>6h</td>
<td>2.1</td>
<td>0.4693(8)</td>
<td>0.5920(1)</td>
<td>1/4</td>
<td>1.0</td>
<td>0.011(2)</td>
</tr>
<tr>
<td>O3</td>
<td>12i</td>
<td>1.8</td>
<td>0.2586(6)</td>
<td>0.3545(4)</td>
<td>0.0760(4)</td>
<td>1.0</td>
<td>0.000(3)</td>
</tr>
</tbody>
</table>

(x = 3), which do not absorb in the visible region.

Near-infrared reflectance spectra were measured to examine the potential cool pigment application of the samples (Fig. S9, S10). UV–vis and NIR reflectance of Ba$_5$Mn$_{1.5}$V$_0.5$O$_{12}$Cl (x = 0, 2.5, 3) and Ba$_5$Mn$_{3-x}$P$_2$O$_{12}$Cl (x = 0, 2.5, 3) samples as a function of wavelength are shown in Fig. 9. There is one peak around 500 nm in the visible region for the colored samples, and the maximum of this peak shifts toward longer wavelength with increasing manganese content as the sample color goes from turquoise to dark green. With decreasing amount of vanadium/phosphorus (when x value decreases) metal-oxygen M-O bonds become more covalent and the crystal field around the M-atom changes resulting in the peak shifting. The (MnO$_4$)$_3^-$ group shows five reflectance peaks and absorbance valleys in the 400 nm–1400 nm region, which are related to five interatomic transitions of the Mn$^{4+}$ cation [57–60]. All synthesized samples show these transitions in the studied region: e^2 $(^3A_1g$ \rightarrow $^3T_2g) (= 300$ nm); e^2 $(^3A_2g$ \rightarrow 3T_2g $(^3T_1g = 700$ nm) and e^2 $(^3A_3g$ \rightarrow 3T_2g $(^3F_2g = 900$ nm) are spin allowed transitions and two are spin forbidden: e^2 $(^3A_2g$ \rightarrow 3A_1g $(= 800$ nm) and there is minimum peak around 1200 nm, which corresponds to e^2 $(^3A_2g$ \rightarrow 3E transition. Intensity of reflectance goes down from light turquoise to dark-green samples. The abrupt change in the IR reflectance of Ba$_5$Mn$_{3-x}$V$_2$O$_{12}$Cl solid solution near 800 nm is probably due to the effect of fluorescence in samples containing manganese and vanadium together; samples with x = 0 and x = 3 do not show this phenomenon. The reflectance of the samples in the 750 nm–2500 nm region where “cool pigments” display high reflectance is around 70%–85%. All synthesized compounds are promising materials for “cool pigments” applications.

3.3. IR investigation

Based on literature data the most intense vibrational modes in apatite-type compounds are due to vibrations of (MO$_4$)$_3^-$ tetrahedra; the group has characteristic bands in the 700 cm$^{-1}$ to 1100 cm$^{-1}$ IR region [61–63]. Positions and shapes of vibrational peaks depend on symmetry of the group, distortion of atoms from ideal tetrahedral coordination and origin of atoms surrounding M
wavenumbers (420 cm\(^{-1}\) to 290 cm\(^{-1}\)) pertain to stretching vibrations (\(\nu_{2}\) — symmetrical and \(\nu_{4}\) — asymmetrical). Mn—O and V—O bond distances are very similar and vibrational peaks of (VO\(_4\))\(^3^-\) and (MnO\(_4\))\(^3^-\) functional groups might be overlapped. (PO\(_4\))\(^3^-\) group’s deformation modes lie in the region with higher wavenumbers (1000 cm\(^{-1}\) to 1200 cm\(^{-1}\)), because the P—O bond is shorter than V—O and Mn—O bonds. All vibrations located below these regions are vibrations of the lattice, and vibrations lying above are composite vibrations. Due to the large mass of the chlorine atom, its vibrations cannot be detected in the measured region; they are shifted towards the smaller wavenumbers and lie below 200 cm\(^{-1}\). The Ba\(_5\)Mn\(_{0.5}\)P\(_2.5\)O\(_{12}\)Cl sample shows three (PO\(_4\))\(^3^-\) group vibrational modes around 1000 cm\(^{-1}\) (fingerprint region of the group), which correspond to \(\nu_{1}\) and \(\nu_{3}\) modes. All samples have the \(\nu_{3}\) vibrational peak of (MnO\(_4\))\(^3^-\) around 730 cm\(^{-1}\) to 770 cm\(^{-1}\). Vanadium containing samples Ba\(_5\)Mn\(_2.5\)V\(_{0.5}\)O\(_{12}\)Cl and Ba\(_5\)Mn\(_{0.2}\)V\(_{2.8}\)O\(_{12}\)Cl show the \(\nu_{3}\) vibrational mode of (VO\(_4\))\(^3^-\) group around 800 cm\(^{-1}\).

3.4. Magnetic properties

Magnetic properties of the parent compound Ba\(_5\)Mn\(_3\)O\(_{12}\)Cl were
reported earlier [64]; however those of the solid solutions have not been studied systematically. We measured magnetic susceptibilities of three phases: \(\text{Ba}_5\text{Mn}_3\text{O}_{12}\text{Cl}, \text{Ba}_5\text{Mn}_{1.5}\text{V}_{1.5}\text{O}_{12}\text{Cl}\) and \(\text{Ba}_5\text{Mn}_{1.5}\text{P}_{1.5}\text{O}_{12}\text{Cl}\). Based on magnetic susceptibility vs. temperature and \(1/\chi\) vs. temperature graphs (Fig. 10) all samples show paramagnetic behavior in the measured temperature region \((5\text{ K} \leq T \leq 300\text{ K})\). Calculated magnetic moments are listed in Table 7; the calculated moments are in agreement with the theoretical magnetic moment of Mn\(^{2+}\) \(\mu_{\text{th}} = 2.83\); this indicates that manganese in all samples shows an oxidation state of Mn\(^{2+}\) with two unpaired electrons. The Curie and Weiss constants were calculated from the slope and intercept of the linear region of \(1/\chi\) versus temperature.

4. Conclusions

We have successfully synthesized two solid solutions \(\text{Ba}_5\text{Mn}_{3-x}\text{V}_{x}\text{O}_{12}\text{Cl}\) \((x = 0, 2.5, 3.0)\) and \(\text{Ba}_5\text{Mn}_{3-x}\text{P}_{x}\text{O}_{12}\text{Cl}\) \((x = 0, 2.5, 3.0)\). All samples show intense turquoise and green colors. All phases were characterized using X-ray diffraction, optical, magnetic and IR measurements; for four samples (\(\text{Ba}_5\text{Mn}_{0.5}\text{V}_{2.5}\text{O}_{12}\text{Cl}, \text{Ba}_5\text{Mn}_{2.5}\text{V}_{0.5}\text{O}_{12}\text{Cl}, \text{Ba}_5\text{Mn}_{0.2}\text{V}_{2.8}\text{O}_{12}\text{Cl}\) and \(\text{Ba}_5\text{Mn}_{0.5}\text{P}_{2.5}\text{O}_{12}\text{Cl}\) neutron data were collected and their structures were refined. The synthesized compounds show great potential as environmentally benign materials.
inorganic cool pigments.

Acknowledgments

This research was supported by National Science Foundation (DMR – 1508527). The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.solidstatesciences.2015.12.001.

References

[4] J.S.R.K. Rao, R.D. Raju, Apatite-structurally intermediate between Ba$_5$(PO$_4$)$_3$Cl and Ba$_5$(VO$_4$)$_3$Cl; 1 emu (cgs units) $\times 10^{-3}$ A m$^{-1}$ (SI units).

Fig. 10. Magnetic susceptibility and inverse magnetic susceptibility of Ba$_5$(MnO$_4$)$_3$Cl, Ba$_5$Mn$_{1.5}$V$_{1.5}$O$_{12}$Cl and Ba$_5$Mn$_{1.5}$P$_{1.5}$O$_{12}$Cl; 1 emu (cgs units) $\times 10^{-3}$ A m$^{-1}$ (SI units).

Table 7

<table>
<thead>
<tr>
<th>Compound</th>
<th>T region (K)</th>
<th>C</th>
<th>θ (K)</th>
<th>μ_{eff} (emu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba$_5$(MnO$_4$)$_3$Cl</td>
<td>200–300</td>
<td>0.8244</td>
<td>14.92</td>
<td>2.61</td>
</tr>
<tr>
<td>Ba5Mn${1.5}$V${1.5}$O${12}$Cl</td>
<td>200–300</td>
<td>0.8107</td>
<td>19.37</td>
<td>2.57</td>
</tr>
<tr>
<td>Ba5Mn${1.5}$P${1.5}$O${12}$Cl</td>
<td>200–300</td>
<td>1.0314</td>
<td>18.27</td>
<td>2.84</td>
</tr>
</tbody>
</table>

[59] M.A. Scott, B. Henserson, H.C. Gallagher, T.P.J. Han, Optical spectroscopy of (MnO4)3− and (VO4)3− in Sr10(VO4)6F2, J. Phys. Condens. Matter 9 (1997) 9893–9908.