Graduate Thesis Or Dissertation
 

Fast opamp-free delta sigma modulator

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/ng451m581

Descriptions

Attribute NameValues
Creator
Abstract
  • Switched-capacitor (SC) circuits are commonly used for analog signal processing because they can be used to realize precision filters and data converters on an integrated circuit (IC). However, for high speed applications SC circuit operating speeds are limited by the internally-compensated opamps found in SC integrators, a common building block of these circuits. This thesis studies gain stages that eliminate the internal compensation, thus allowing the SC circuits to operate at significantly higher operating speeds. An inverter-based SC integrator is presented. The proposed SC integrator is built with a pseudo-differential structure to improve its rejection of common-mode noise, such as charge injection and clock feedthrough. The proposed integrator also incorporates correlated double sampling (CDS) to boost its effective DC gain. Clock-boosting and switch bootstrapping techniques are not used in the proposed circuit, even though it uses a low supply voltage. To verify the speed advantage of the proposed circuit, a high speed delta sigma (Δ∑) modulator was designed in a 1.8V, 0.18μm CMOS technology. The designed Δ∑ modulator operates at a clock frequency of 500MHz. Circuit implementation and layout floorplan are described. The design is based on MATLAB and SpectreS simulations.
License
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome, 8-bit Grayscale) using ScandAll PRO 1.8.1 on a Fi-6770A in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items