mirage   mirage   mirage

Topology independent transmission scheduling algorithms in mobile ad hoc networks

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Bose, Bella
dc.creator Youn, Jong-Hoon
dc.date.accessioned 2012-07-17T16:46:46Z
dc.date.available 2012-07-17T16:46:46Z
dc.date.copyright 2002-05-31
dc.date.issued 2002-05-31
dc.identifier.uri http://hdl.handle.net/1957/31124
dc.description Graduation date: 2003 en_US
dc.description.abstract Due to the rapid growth of wireless technology, there has been a growing interest in the capabilities of ad hoc networks connecting mobile phones, PDAs and laptop computers. The distributed and self-configurable capabilities of ad hoc networks make them very attractive for some applications such as tactical communication for military, search and rescue mission, disaster recovery, conferences, lectures, etc. In this thesis, we describe several new time scheduling algorithms for multihop packet radio networks; MaxThrou, MinDelay, ECTS (Energy Conserving Transmission Scheduling) and LA-TSMA (Location-Aided Time-Spread Multiple-Access). The MaxThrou and MinDelay algorithms focus on maximizing the system throughput and minimizing the delay bound by using constant weight codes. In these algorithms, each mobile host is assigned a word from an appropriate constant weight code of length n, distance d and weight w. The host can send a message at the j[superscript th] slot provided the assigned code has a 1 in this j[superscript th] bit. The MaxThrou and MinDelay scheduling algorithms are better than the previously known algorithms in terms of the minimum throughput per node and/or the delay bound. Since most of mobile hosts are operated using the scarce battery, and the battery life is not expected to increase significantly in the near future, energy efficiency is a critical issue in ad hoc networks. The ECTS algorithm conserves the power using strategies that allow the network interface to use the low power sleep mode instead of the idle mode, and also eliminates data collisions by introducing Request-To-Send (RTS) and Clear-To-Send (CTS) control slots. Simulation study shows that the ECTS algorithm outperforms previously known protocols. Due to the increasing popularity of mobile networking systems, the scalability becomes a significant new challenge for ad hoc network protocols. To provide a scalable solution for mobile ad hoc networks, we introduce the LA-TSMA algorithm. Instead of assigning a globally unique TSV to each host as done in previous topology-transparent scheduling algorithms, the proposed algorithm assigns a locally unique TSV to each host. In LA-TSMA, a territory is divided into zones, and the mobile hosts located in different zones can be assigned the same TSV. en_US
dc.language.iso en_US en_US
dc.subject.lcsh Mobile communication systems en_US
dc.subject.lcsh Radio -- Packet transmission en_US
dc.title Topology independent transmission scheduling algorithms in mobile ad hoc networks en_US
dc.type Thesis/Dissertation en_US
dc.degree.name Doctor of Philosophy (Ph. D.) in Computer Science en_US
dc.degree.level Doctoral en_US
dc.degree.discipline Engineering en_US
dc.degree.grantor Oregon State University en_US
dc.contributor.committeemember Budd, Timothy
dc.contributor.committeemember Lee, Ben
dc.contributor.committeemember Minoura, Toshimi
dc.contributor.committeemember Koc, Cetin K.
dc.description.digitization File scanned at 300 ppi (Monochrome) using ScandAll PRO 1.8.1 on a Fi-6770A in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR. en_US
dc.description.peerreview no en_us


This item appears in the following Collection(s)

Show simple item record

Search ScholarsArchive@OSU


Advanced Search

Browse

My Account

Statistics