Article

 

Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/articles/xk81jk72k

Descriptions

Attribute NameValues
Creator
Abstract
  • Light Detection and Ranging (LiDAR) remote sensing has demonstrated potential in measuring forest biomass. We assessed the ability of LiDAR to accurately estimate forest total above ground biomass (TAGB) on an individual stem basis in a conifer forest in the US Pacific Northwest region using three different computer software programs and compared results to field measurements. Software programs included FUSION, TreeVaW, and watershed segmentation. To assess the accuracy of LiDAR TAGB estimation, stem counts and heights were analyzed. Differences between actual tree locations and LiDAR-derived tree locations using FUSION, TreeVaW, and watershed segmentation were 2.05 m (SD 1.67), 2.19 m (SD 1.83), and 2.31 m (SD 1.94), respectively, in forested plots. Tree height differences from field measured heights for FUSION, TreeVaW, and watershed segmentation were −0.09 m (SD 2.43), 0.28 m (SD 1.86), and 0.22 m (2.45) in forested plots; and 0.56 m (SD 1.07 m), 0.28 m (SD 1.69 m), and 1.17 m (SD 0.68 m), respectively, in a plot containing young conifers. The TAGB comparisons included feature totals per plot, mean biomass per feature by plot, and total biomass by plot for each extraction method. Overall, LiDAR TAGB estimations resulted in FUSION and TreeVaW underestimating by 25 and 31% respectively, and watershed segmentation overestimating by approximately 10%. LiDAR TAGB underestimation occurred in 66% and overestimation occurred in 34% of the plot comparisons.
  • Keywords: LiDAR, biomass, forestry, inventory
Resource Type
DOI
Date Available
Date Issued
Citation
  • Edson, C., & Wing, M. (2011). Airborne light detection and ranging (LiDAR) for individual tree stem location, height, and biomass measurements. REMOTE SENSING, 3(11), 2494-2528. doi: 10.3390/rs3112494
Journal Title
Journal Volume
  • 3
Journal Issue/Number
  • 1
Academic Affiliation
Rights Statement
Publisher
Peer Reviewed
Language
Replaces

Relationships

Parents:

This work has no parents.

Items