Graduate Thesis Or Dissertation
 

Use of orthogonal collocation in the dynamic simulation of staged separation processes

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/4j03d182d

Descriptions

Attribute NameValues
Creator
Abstract
  • Two basic approaches to reduce computational requirements for solving distillation problems have been studied: simplifications of the model based on physical approximations and order reduction techniques based on numerical approximations. Several problems have been studied using full and reduced-order techniques along with the following distillation models: Constant Molar Overflow, Constant Molar Holdup and Time-Dependent Molar Holdup. Steady-state results show excellent agreement in the profiles obtained using orthogonal collocation and demonstrate that with an order reduction of up to 54%, reduced-order models yield better results than physically simpler models. Step responses demonstrate that with a reduction in computing time of the order of 60% the method still provides better dynamic simulations than those obtained using physical simplifications. Frequency response data obtained from pulse tests has been used to verify that reduced-order solutions preserve the dynamic characteristics of the original full-order system while physical simplifications do not. The orthogonal collocation technique is also applied to a coupled columns scheme with good results.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome) using ScandAll PRO 1.8.1 on a Fi-6770A in PDF format. CVista PdfCompressor 5.0 was used for pdf compression and textual OCR.
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items