Graduate Thesis Or Dissertation

 

Application of sandwich structure analysis in predicting critical flow velocity for a laminated flat plate Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/pk02cd35m

Descriptions

Attribute NameValues
Creator
Abstract
  • The Oregon State University (OSU), Hydro Mechanical Fuel test Facility (HMFTF) is designed to hydro-mechanically test prototypical plate type fuel. OSU's fuel test program is a part of the Global Threat Reduction Initiative (GTRI), formerly known as the Reduced Enrichment for Research and Test Reactor program. One of the GTRI's goals is to convert all civilian research, and test reactors in the United State from highly enriched uranium (HEU) to a low enriched uranium (LEU) fuel in an effort to reduce nuclear proliferation. An analytical model has been developed and is described in detail which complements the experimental work being performed by the OSU HMFTF, and advances the science of hydro-mechanics. This study investigates two methods for determining the critical flow velocity for a pair of laminated plates. The objective is accomplished by incorporating a flexural rigidity term into the formulation of critical flow velocity originally derived by Miller, and employing sandwich structure theory to determine the rigidity term. The final outcome of this study results in the developing of a single equation for each of three different edge boundary conditions which reliably and comprehensively predicts the onset of plate collapse. The two models developed and presented, are termed the monocoque analogy and the ideal laminate model.  
License
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items