Article
 

Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na⁺-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/articles/h702q8066

Descriptions

Attribute NameValues
Creator
Abstract
  • The Na⁺ translocating NADH:quinone oxidoreductase (Na⁺-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na⁺-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na⁺-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na⁺-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na⁺ pump(s) can compensate for Na⁺ pumping activity of Na⁺-NQR. Overall, our study provides important insights into the contribution of Na⁺-NQR to V. cholerae physiology.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Minato Y, Fassio SR, Kirkwood JS, Halang P, Quinn MJ, et al. (2014) Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na⁺-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance. PLoS ONE 9(5): e97083. doi:10.1371/journal.pone.0097083
Journal Title
Journal Volume
  • 9
Journal Issue/Number
  • 5
Rights Statement
Funding Statement (additional comments about funding)
  • This research was supported by grants from the National Institutes of Health to C.C.H. [AI-063121-02] and to J.F.S [S10RR027878 and P30ES000210] andthe Deutsche Forschungsgemeinschaft (FR1321/3-1) to J.S. S.R.F was partially supported by the OSU Undergraduate Research, Innovation, Scholarship & Creativity(URISC) fund and the OSU Howard Hughes Medical Institute Summer Undergraduate Research Program.
Publisher
Peer Reviewed
Language
Replaces

Relationships

Parents:

This work has no parents.

Items