Neurospora crassa has been for decades a principal model for filamentous
fungal genetics and physiology as well as for understanding
the mechanism of circadian clocks. Eukaryotic fungal and animal
clocks comprise transcription-translation-based feedback loops that
control rhythmic transcription of a substantial fraction of these transcriptomes,
yielding the changes in protein...
Peptide phosphorodiamidate morpholino oligomers (PPMO) are synthetic DNA mimics that bind complementary RNA and inhibit bacterial gene expression. (RFF)₃RXB- AcpP PPMO (R, arginine; F, phenylalanine; X, 6-aminohexanoic acid; B, β-alanine) is complementary to 11 bases of the essential gene acpP (encodes acyl carrier protein). The MIC of (RFF)₃RXB-AcpP was 2.5...
Background: In the leuphotrochozoan parasitic platyhelminth Schistosoma mansoni, male individuals are homogametic (ZZ) whereas females are heterogametic (ZW). To elucidate the mechanisms that led to the emergence of sex chromosomes, we compared the genomic sequence and the chromatin structure of male and female individuals. As for many eukaryotes, the lower...
Background: DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood.
Results: We surveyed DNA methylation from...
Chromosome segregation relies on coordinated activity of a large assembly of proteins, the kinetochore interaction network (KIN). How conserved the underlying mechanisms driving the epigenetic phenomenon of centromere and kinetochore assembly and maintenance are remains unclear, even though various eukaryotic models have been studied. More than 50 different proteins, many...
Chromosome segregation relies on coordinated activity of a large assembly of proteins, the kinetochore interaction network (KIN). How conserved the underlying mechanisms driving the epigenetic phenomenon of centromere and kinetochore assembly and maintenance are remains unclear, even though various eukaryotic models have been studied. More than 50 different proteins, many...
Chromosome segregation relies on coordinated activity of a large assembly of proteins, the kinetochore interaction network (KIN). How conserved the underlying mechanisms driving the epigenetic phenomenon of centromere and kinetochore assembly and maintenance are remains unclear, even though various eukaryotic models have been studied. More than 50 different proteins, many...
Chromosome segregation relies on coordinated activity of a large assembly of proteins, the kinetochore interaction network (KIN). How conserved the underlying mechanisms driving the epigenetic phenomenon of centromere and kinetochore assembly and maintenance are remains unclear, even though various eukaryotic models have been studied. More than 50 different proteins, many...
Chromosome segregation relies on coordinated activity of a large assembly of proteins, the kinetochore interaction network (KIN). How conserved the underlying mechanisms driving the epigenetic phenomenon of centromere and kinetochore assembly and maintenance are remains unclear, even though various eukaryotic models have been studied. More than 50 different proteins, many...
In response to genotoxic stress, ATR and ATM kinases phosphorylate H2A in fungi and H2AX in animals on a C-terminal serine.
The resulting modified histone, called γH2A, recruits chromatin-binding proteins that stabilize stalled replication forks or promote
DNA double-strand-break repair. To identify genomic loci that might be prone to replication...